Sample records for x-38 crew return

  1. Artist's Concept of the X-38 Crew Return

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is an artist's concept of the X-38 Crew Return Vehicle (CRV). The X-38 will take place of the Russian Soyuz capsule and is well underway on development for the International Space Station. The Soyuz can only stay on orbit for six months as opposed to three years for the CRV.

  2. Battery/Ultracapacitor Evaluation for X-38 Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Strangways, Bradley

    1999-01-01

    This presentation reported on the evaluation of the battery/ultracapacitor for the crew return vehicle (CRV). The CRV, as part of the international space station (ISS) planning, will be available to return to earth an ill or injured crew person, or if the ISS becomes unsafe, and the shuttle is not available. The requirements of the X-38 CRV are reviewed, and in light of the power requirements, the battery's required performance is reviewed. The ultracapacitor bank, and its test method is described. The test results are reviewed. A picture of the test set up is displayed showing the ultracapacitor bank and the NiMH battery. The presentation continues by reviewing tests of 5 available trade high power cell designs: (1) Hawker lead acid, (2) Bolder lead acid, (3) Energizer NiMH, (4) Sanyo NiCd, and (5) Energizer NiCd. The test methods and results are reviewed. There is also a review of the issues concerning lead acid batteries and conclusions.

  3. X-38 Prototype Technology Demonstrator for the Crew Return Vehicle (CRV) and Project Managers Bob Ba

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Bob Baron of the Dryden Flight Research Center (left) and Brian Anderson of the Johnson Space Flight Center (right) flank an X-38 prototype Crew Return Vehicle technology demonstrator under construction at the Johnson Space Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an

  4. The X-38 prototype of the Crew Return Vehicle is suspended under its giant 7,500-square-foot parafoi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-38 prototype of the Crew Return Vehicle for the International Space Station is suspended under its giant 7,500-square-foot parafoil during its eighth free flight on Thursday, Dec. 13, 2001. A portion of the descent was flown by remote control by a NASA astronaut from a ground vehicle configured like the CRV's interior before the X-38 made an autonomous landing on Rogers Dry Lake.

  5. X-38 Seal Development

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Lewis, Ronald K.; Hagen, Jeffrey D.

    2002-01-01

    An X-38 Crew Return Vehicle Seal Development is presented. The contents include: 1) X-38 Crew Return Vehicle; 2) X-38 TPS Configuration; 3) X-38 Seal Locations; 4) X-38 Rudder/Fin Seal Assembly; 5) Baseline X-38 Rudder/Fin Seal Design; 6) Rudder/Fin Seal to Bracket Assembly; 7) X-38 Rudder/Fin Vertical Rub Surface Inconel-0.10 inches; 8) X-38 Rudder/Fin Seal Analysis; 9) Seal Analysis Model; and 10) Governing Differential Equations for Equilibrium Thermal Assumption. The X-38 Rudder/Fin Seal temperature and pressure properties are also given.

  6. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  7. Battery Systems for X-38 Crew Return Vehicle (CRV) and Deorbit Propulsion Stage (DPS)

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    1998-01-01

    A 28V 32 Ah cell Li/MnO2 and a 28V NiMH battery systems for the Deorbit Propulsion Stage (DPS) and the X-38 Crew Return Vehicle (CRV) are developed in Friwo-Silforkraft, Germany with the following objectives and approach: Provide safe battery designs for lowest volume and cost, and within schedule; Take advantage of less complex requests for V201 vs OPS CRV to simplify design and reduce cost; Use only existing commercial cell designs as building blocks for larger battery; Derive battery designs from the ASTRO-SPAS design which is the largest lithium battery design with Shuttle flight experience; Place maximum amount of battery energy on DPS; DPS battery is non rechargeable; and CRV batteries are rechargeable. This paper contains the following sections: a brief introduction on CRV requirements, CRV advantages over Soyuz, and X-38 programs; Battery objectives and approach; Battery requirements and groundrules (performance, on-orbit operation, etc); Design trades, solutions, redundancy plan, and margins; Envelope, size, and mass; Interfaces (structural, electrical & thermal); and Deviation from OPS CRV.

  8. Parachute Testing for the NASA X-38 Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stein, Jenny M.

    2005-01-01

    NASA's X-38 program was an in-house technology demonstration program to develop a Crew Return Vehicle (CRV) for the International Space Station capable of returning seven crewmembers to Earth when the Space Shuttle was not present at the station. The program, managed out of NASA's Johnson Space Center, was started in 1995 and was cancelled in 2003. Eight flights with a prototype atmospheric vehicle were successfully flown at Edwards Air Force Base, demonstrating the feasibility of a parachute landing system for spacecraft. The intensive testing conducted by the program included testing of large ram-air parafoils. The flight test techniques, instrumentation, and simulation models developed during the parachute test program culminated in the successful demonstration of a guided parafoil system to land a 25,000 Ib spacecraft. The test program utilized parafoils of sizes ranging from 750 to 7500 p. The guidance, navigation, and control system (GN&C) consisted of winches, laser or radar altimeter, global positioning system (GPS), magnetic compass, barometric altimeter, flight computer, and modems for uplink commands and downlink data. The winches were used to steer the parafoil and to perform the dynamic flare maneuver for a soft landing. The laser or radar altimeter was used to initiate the flare. In the event of a GPS failure, the software navigated by dead reckoning using the compass and barometric altimeter data. The GN&C test beds included platforms dropped from cargo aircraft, atmospheric vehicles released from a 8-52, and a Buckeye powered parachute. This paper will describe the test program and significant results.

  9. X-38 Program Status/Overview

    NASA Technical Reports Server (NTRS)

    Anderson, Brian L.

    2001-01-01

    The X-38 Project consists of a series of experimental vehicles designed to provide the technical "blueprint" for the International Space Station's (ISS) Crew Return Vehicle (CRV). There are three atmospheric vehicles and one space flight vehicle in the program. Each vehicle is designed as a technical stepping stone for the next vehicle, with each new vehicle being more complex and advanced than it's predecessor. The X-38 project began in 1995 at the Johnson Space Center (JSC) in Houston, Texas at the direction of the NASA administrator. From the beginning, the project has had the CRY design validation as its ultimate goal. The CRY has three basic missions that drive the design that must be proven during the course of the X-38 Project: a) Emergency return of an ill or injured crew member. b) Emergency return of an entire ISS crew due to the inability of ISS to sustain life c) Planned return of an entire ISS crew due to the inability to re-supply the ISS or return the crew. The X-38 project must provide the blueprint for a vehicle that provides the capability for human return from space for all three of these design missions.

  10. X-38 TPS Seal Status

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2000-01-01

    This presentation discuss the x-38 crew return vehicle. As an element of the International Space Station (ISS), there are potential problems that are discussed. These include ISS catastrophe, emergency medical evacuation, and period of Space Shuttle unavailability. The x-38 program purpose was also discussed. The Reduction of the costs and schedule for the development of Crew Return Vehicles (CRV's) and Crew Transfer Vehicles (CTV's) through the use of the rapid development methodology associated with an X-project were also presented. With specific attention to ground testing, atmospheric testing, and space flight testing.

  11. Evaluation of X-38 Crew Return Vehicle Input Control Devices in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Welge, Kirsten; Moore, Alicia; Pope, Ruth Ann; Shivers, Suzette; Fox, Jeffrey

    2000-01-01

    This report was created by students from Longview High School, Longview, Texas. Longview High School was selected from a group of Texas high schools to participate in the 1999 Texas Fly High Program. This program gives Texas high school students a chance to work with NASA engineers to design and fly a real-world experiment aboard the KC-135 during zero-g parabolas. Jeffrey Fox's role was to provide a concept for the experiment and to mentor the students in its design and testing. The students were responsible for executing all phases of the project. The X-38 Project Office at the Lyndon B. Johnson Space Center Johnson Space is designing a crew return vehicle (CRV) to be docked at the International Space Station for crew rescue in an emergency. Vehicle controls will be almost completely automated, but a few functions will be manually controlled. Four crew input control devices were selected for evaluation by Longview High School students as part of the 1999 Texas Fly High program. These were (1) Logitech Trackman Marble (optical trackball), (2) Smart Cat Touchpad. (3) Microsoft SideWinder 3D-Pro Joystick, and (4) Microsoft SideWinder Gamepad. In two flight tests in the KC-135 aircraft and a series of ground tests, the devices were evaluated for ability to maneuver an on-screen cursor, level of accuracy, ease of handling blind operations, and level of user comfort in microgravity. The tests results led to recommendation of further tests with the Joystick and the Trackman by astronauts and actual space station residents.

  12. The X-38 prototype of the Crew Return Vehicle is suspended under its giant 7,500-square-foot parafoil during its eighth free flight on Thursday, December 13, 2001

    NASA Image and Video Library

    2001-12-13

    The X-38 prototype of the Crew Return Vehicle for the International Space Station is suspended under its giant 7,500-square-foot parafoil during its eighth free flight on Thursday, Dec. 13, 2001. A portion of the descent was flown by remote control by a NASA astronaut from a ground vehicle configured like the CRV's interior before the X-38 made an autonomous landing on Rogers Dry Lake.

  13. The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center

    NASA Image and Video Library

    2000-07-11

    The X-38 Vehicle 131R, intended to prove the utility of a "lifeboat" crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the crew return vehicle to return from space and land in the length of a football field.

  14. The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 Vehicle 131R, intended to prove the utility of a 'lifeboat' crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the crew return vehicle to return from space and land in the length of a football field.

  15. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver

    NASA Technical Reports Server (NTRS)

    Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry

    1999-01-01

    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design of tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  16. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver

    NASA Technical Reports Server (NTRS)

    Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry

    1999-01-01

    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and Modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design and tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges of that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  17. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver

    NASA Technical Reports Server (NTRS)

    Simpson, James; Lightsey, Glenn; Campbell, Chip; Carpenter, Russell; Davis, George; Jackson, Larry; Davis, Ed; Kizhner, Semion

    1999-01-01

    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X- 38CrewReturnVehicle(CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and modified in software by NASA:s Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design of tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  18. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA

  19. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward a desert lakebed under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA

  20. X-38 Experimental Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Fitzgerald, Steve M.

    2000-01-01

    The X-38 program seeks to demonstrate an autonomously returned orbital test flight vehicle to support the development of an operational Crew Return Vehicle for the International Space Station. The test flight, anticipated in 2002, is intended to demonstrate the entire mission profile of returning Space Station crew members safely back to earth in the event of medical or mechanical emergency. Integral to the formulation of the X-38 flight data book and the design of the thermal protection system, the aerothermodynamic environment is being defined through a synergistic combination of ground based testing and computational fluid dynamics. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at the NASA Langley Research Center in support of the X-38 development. Global and discrete surface heat transfer force and moment, surface streamline patterns, and shock shapes were measured on scaled models of the proposed X-38 configuration in different test gases at Mach 6, 10 and 20. The test parametrics include angle of attack from 0 to 50 degs, unit Reynolds numbers from 0.3 x 10 (exp 6) to 16 x 10 (exp 6)/ ft, rudder deflections of 0, 2, and 5 deg. and body flap deflections from 0 to 30 deg. Results from hypersonic aerodynamic screening studies that were conducted as the configuration evolved to the present shape at, presented. Heavy gas simulation tests have indicated that the primary real gas effects on X-38 aerodynamics at trim conditions are expected to favorably influence flap effectiveness. Comparisons of the experimental heating and force and moment data to prediction and the current aerodynamic data book are highlighted. The effects of discrete roughness elements on boundary layer transition were investigated at Mach 6 and the development of a transition correlation for the X-38 vehicle is described. Extrapolation of ground based heating measurements to flight radiation equilibrium wall temperatures at Mach 6 and 10 were

  1. X-38 - First Free Flight, March 12, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed

  2. X-38 - First Free Flight, March 12, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert during its first free flight in March 1998 at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the

  3. X-38 Drop Model: Testing Parafoil Landing System during Drop Tests

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  4. X-38 V201 Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Bedos, Thierry; Anderson, Brian L.

    1999-01-01

    The X-38 is an experimental NASA project developing a core human capable spacecraft at a fraction of the cost of any previous human rated vehicle. The first operational derivative developed from the X-38 program will be the International Space Station (ISS) Crew Return Vehicle (CRV). Although the current X-38 vehicles are designed as re-entry vehicles only, the option exists to modify the vehicle for uses as an upward vehicle launched from an expendable launch vehicle or from the X-33 operational derivative. The Operational CRV, that will be derived from the X-38 spaceflight vehicle, will provide an emergency return capability from the International Space Station (ISS). The spacecraft can hold a crew of up to seven inside a pressurized cabin. The CRV is passively delivered to ISS, stays up to three year on-orbit attached to ISS in a passive mode with periodic functional checkout, before separation from ISS, de-orbit, entry and landing. The X-38 Vehicle 201 (V201) is being developed at NASA/JSC to demonstrate key technologies associated with the development of the CRV design. The X-38 flight test will validate the low cost development concept by demonstrating the entire station departure, re-entry, guidance and landing portions of the CRV mission. All new technologies and subsystems proposed for CRV will be validated during either the on orbit checkout or flight phases of the X-38 space flight test. The X-38 subsystems are required to be similar to those subsystems required for the CRV to the greatest extent possible. In many cases, the subsystems are identical to those that will be utilized on the Operational CRV.

  5. X-38 Vehicle #132 Landing on First Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), flares for its lakebed landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted

  6. X-38: Artist Concept of Re-Entering Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's depiction of NASA's proposed Crew Return Vehicle (CRV) re-entering the earth's atmosphere. A team of NASA researchers began free flight tests of the X-38, a technology demonstrator for the CRV, at NASA's Dryden Flight Research Center, Edwards, California, in 1998. The CRV is being designed as a 'lifeboat' for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used

  7. X-38 on Lakebed after Landing on Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's X-38, a prototype of a Crew Return Vehicle (CRV) resting on the lakebed near the Dryden Flight Research Center after the completion of its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than

  8. X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a 'lifeboat' to enable a full seven-person station crew to evacuate in an emergency.

  9. X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency.

  10. The Interior of the Crew Return Vehicle (CRV) Shows How Up to Seven Astronauts Can Be Carried

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo of the interior of a full-size mock-up of the Crew Return Vehicle (CRV) cabin at NASA's Johnson Space Center, Houston, Texas, shows how up to seven astronauts could be carried aboard the spacecraft. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80

  11. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) is transported down a road at NASA's Dryden Flight Research Center, Edwards, California, upon its arrival there in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more

  12. X-38 - Landing After First Free Flight, March 12, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The X-38 Crew Return Vehicle touches down amidst the California desert scrubbrush at the end of its first free flight at the Dryden Flight Research Center, Edwards, California, in March 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the

  13. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  14. X-38 in Flight during Second Free Flight

    NASA Image and Video Library

    1999-02-06

    NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward a desert lakebed under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet.

  15. X-38 in Flight during Second Free Flight

    NASA Image and Video Library

    1999-02-06

    NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet.

  16. X-38 vehicle #131R in first free flight

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The third iteration of the X-38, V-131R, glides down under a giant parafoil towards a landing on Rogers Dry Lake near NASA's Dryden Flight Research Center during its first free flight Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) 'lifeboat' to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38's are air-launched from NASA's venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.

  17. X-38 vehicle #131R in first free flight

    NASA Image and Video Library

    2000-11-02

    The third iteration of the X-38, V-131R, glides down under a giant parafoil towards a landing on Rogers Dry Lake near NASAÕs Dryden Flight Research Center during its first free flight Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) ÒlifeboatÓ to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38Õs are air-launched from NASAÕs venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.

  18. X-38 Drop Model: Glides to Earth After Being Dropped from a Cessna

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  19. X-38 Drop Model: Used to Test Parafoil Landing System during Drop Tests

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  20. X-38 - First Free Flight, March 12, 1998

    NASA Image and Video Library

    1998-03-12

    The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998.

  1. A Full-Size Mockup of the Cabin for the Crew Return Vehicle (CRV) for the International Space Statio

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo, taken at NASA's Johnson Space Center, Houston, Texas, shows a full-size mockup of the cabin for the Crew Return Vehicle (CRV) for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  2. The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center

    NASA Image and Video Library

    2000-07-11

    The X-38 Vehicle 131R, intended to prove the utility of a "lifeboat" crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the CRV to return from space and land in the length of a football field.

  3. The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 Vehicle 131R, intended to prove the utility of a 'lifeboat' crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the CRV to return from space and land in the length of a football field.

  4. X-38 vehicle #131R during pre-launch with B-52 008 mothership and F-18 chase aircraft

    NASA Image and Video Library

    2000-11-02

    The X-38 prototypes are intended to perfect a "crew lifeboat" for the International Space Station. The X-38 vehicle 131R demonstrates a huge 7,500 square-foot parafoil that will that will enable the Crew Return Vehicle (CRV) to land on the length of a football field after returning from space. The CRV is intended to serve as an emergency transport to carry a crew to safety in the event of problems with the International Space Station.

  5. X-38 vehicle #131R during pre-launch with B-52 008 mothership and F-18 chase aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 prototypes are intended to perfect a 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R demonstrates a huge 7,500 square-foot parafoil that will that will enable the Crew Return Vehicle (CRV) to land on the length of a football field after returning from space. The CRV is intended to serve as an emergency transport to carry a crew to safety in the event of problems with the International Space Station.

  6. X-38 on Lakebed after Landing on Second Free Flight

    NASA Image and Video Library

    1999-02-06

    NASA's X-38, a prototype of a Crew Return Vehicle (CRV) resting on the lakebed near the Dryden Flight Research Center after the completion of its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet.

  7. X-38 Mounted on Pylon of B-52 Mothership

    NASA Image and Video Library

    1997-07-06

    A close-up view of the X-38 research vehicle mounted under the wing of the B-52 mothership prior to a 1997 test flight. The X-38, which was designed to help develop technology for an emergency crew return vehicle (CRV) for the International Space Station, is one of many research vehicles the B-52 has carried aloft over the past 40 years.

  8. X-38 Vehicle #132 in Flight Approaching Landing during First Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), maneuvers toward landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting

  9. X-38 - On Ground after First Free Flight, March 12, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Crew members surround the X-38 lifting body research vehicle after a successful test flight and landing in March 1998. The flight was the first free flight for the vehicle and took place at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an

  10. X-38 vehicle #131R during landing on first free flight

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The latest version of the X-38, V-131R, touches down on Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center at Edwards, California, at the end of its first free flight under a giant parafoil on Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) 'lifeboat' to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38's are air-launched from NASA's venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.

  11. X-38 vehicle #131R during landing on first free flight

    NASA Image and Video Library

    2000-11-02

    The latest version of the X-38, V-131R, touches down on Rogers Dry Lake adjacent to NASAÕs Dryden Flight Research Center at Edwards, California, at the end of its first free flight under a giant parafoil on Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) ÒlifeboatÓ to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38Õs are air-launched from NASAÕs venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.

  12. Dale Reed with X-38 and a Subscale Model Used in Test Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Dale Reed, a NASA engineer who worked on the original lifting-body research programs in the 1960s and 1970s, stands with a scale-model X-38 that was used in 1995 research flights, with a full-scale X-38 (80 percent of the size of a potential Crew Return Vehicle) behind him. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space

  13. X-38 Vehicle #132 in Flight with Deployed Parafoil during First Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting

  14. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  15. Overview of X-38 Hypersonic Wind Tunnel Data and Comparison with Numerical Results

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Caram, Jose; Berry, Scott; DiFulvio, Michael; Horvath, Tom

    1997-01-01

    A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic characteristics of this X-23/X-2&4 derived crew return vehicle (designated X-38) are being evaluated in various wind tunnels in support of this effort. Aerodynamic data has been acquired in three NASA hypersonic facilities at Mach 20, and Mach 6. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with portions of this data. Experimental data from the Mach 6 Air and CF4 facilities illustrate a net positive pitching moment increment due to density ratio, as well as increased elevon effectiveness. Chemical nonequilibrium computational fluid dynamics solutions at flight conditions reinforce this conclusion.

  16. X-38 Ship #2 in Free Flight

    NASA Image and Video Library

    1999-07-09

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parachute during a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute.

  17. X-38 Ship #2 Landing on Lakebed, Completing the Program's 4th Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), makes a gentle lakebed landing at the end of a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational

  18. Overview of X-38 Hypersonic Aerothermodynamic Wind Tunnel Data and Comparison with Numerical Results

    NASA Technical Reports Server (NTRS)

    Campbell, C.; Caram, J.; Berry, S.; Horvath, T.; Merski, N.; Loomis, M.; Venkatapathy, E.

    2004-01-01

    A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic aerothermodynamic characteristics of the X-23/X-24A derived X-38 crew return vehicle are being evaluated in various wind tunnels in support of this effort. Aerothermodynamic data from two NASA hypersonic tunnels at Mach 6 and Mach 10 has been obtained with cast ceramic models and a thermographic phosphorus digital imaging system. General windward surface heating features are described based on experimental surface heating images and surface oil flow patterns for the nominal hypersonic aerodynamic orientation. Body flap reattachment heating levels are examined. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with this data.

  19. X-38: Plywood Mockup of Aft End Used for Flight Termination System Parachute Test

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a plywood mockup of the X-38's aft end, minus vertical stabilizers, mounted on a truck for an economical test of the X-38's Flight Termination System (FTS) on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The FTS seven-foot diameter parachute was launched safely away from the mockup by a pyrotechnic firing system. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be

  20. X-38: Parachute Canister Fired from Plywood Mockup during Flight Termination System Test

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The canister containing a seven-foot-diameter X-38 Flight Termination System (FTS) parachute is launched safely away from a plywood mockup of the X-38 by a pyrotechnic firing system on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally

  1. The First X-38 Technology Demonstrator (V-131) Shown with Modifications to the Rear to Conform More

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The first X-38 technology demonstrator (V-131) is seen here undergoing modifications to the rear to conform more to the shape of the future Crew Return Vehicle (CRV) The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency

  2. Assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)

    1991-01-01

    A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.

  3. X-38 Experimental Controls Laws

    NASA Technical Reports Server (NTRS)

    Munday, Steve; Estes, Jay; Bordano, Aldo J.

    2000-01-01

    X-38 Experimental Control Laws X-38 is a NASA JSC/DFRC experimental flight test program developing a series of prototypes for an International Space Station (ISS) Crew Return Vehicle, often called an ISS "lifeboat." X- 38 Vehicle 132 Free Flight 3, currently scheduled for the end of this month, will be the first flight test of a modem FCS architecture called Multi-Application Control-Honeywell (MACH), originally developed by the Honeywell Technology Center. MACH wraps classical P&I outer attitude loops around a modem dynamic inversion attitude rate loop. The dynamic inversion process requires that the flight computer have an onboard aircraft model of expected vehicle dynamics based upon the aerodynamic database. Dynamic inversion is computationally intensive, so some timing modifications were made to implement MACH on the slower flight computers of the subsonic test vehicles. In addition to linear stability margin analyses and high fidelity 6-DOF simulation, hardware-in-the-loop testing is used to verify the implementation of MACH and its robustness to aerodynamic and environmental uncertainties and disturbances.

  4. X-38: Close-up of Pyrotechnic Firing during Test of Flight Termination System Parachute Deployment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In these close-ups, the canister containing the seven-foot-diameter X-38 Flight Termination System (FTS) parachute can be seen launching safely away from an aft-end mockup of the X-38 by a pyrotechnic firing system in December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft-end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research

  5. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  6. The X-38 lifting body research vehicle, seen here wrapped in a protective material, lowered onto a t

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  7. X-38 Application of Dynamic Inversion Flight Control

    NASA Technical Reports Server (NTRS)

    Wacker, Roger; Munday, Steve; Merkle, Scott

    2001-01-01

    This paper summarizes the application of a nonlinear dynamic inversion (DI) flight control system (FCS) to an autonomous flight test vehicle in NASA's X-38 Project, a predecessor to the International Space Station (ISS) Crew Return Vehicle (CRV). Honeywell's Multi-Application Control-H (MACH) is a parameterized FCS design architecture including both model-based DI rate-compensation and classical P+I command-tracking. MACH was adopted by X-38 in order to shorten the design cycle time for different vehicle shapes and flight envelopes and evolving aerodynamic databases. Specific design issues and analysis results are presented for the application of MACH to the 3rd free flight (FF3) of X-38 Vehicle 132 (V132). This B-52 drop test, occurring on March 30, 2000, represents the first flight test of MACH and one of the first few known applications of DI in the primary FCS of an autonomous flight test vehicle.

  8. The world's largest parafoil slowly deflates after carrying the X-38, V-131R, to a safe landing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Looking like a giant air mattress, the world's largest parafoil slowly deflates seconds after it carried the latest version of the X-38, V-131R, to a landing on Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center at Edwards, California, at the end of its first free flight, November 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) 'lifeboat' to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38's are air-launched from NASA's venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.

  9. The world's largest parafoil slowly deflates after carrying the X-38, V-131R, to a safe landing

    NASA Image and Video Library

    2000-11-02

    Looking like a giant air mattress, the world's largest parafoil slowly deflates seconds after it carried the latest version of the X-38, V-131R, to a landing on Rogers Dry Lake adjacent to NASAÕs Dryden Flight Research Center at Edwards, California, at the end of its first free flight, November 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) "lifeboat" to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38's are air-launched from NASA's venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.

  10. The Three Main Rings of the X-38 Vehicle 201 Shown under Construction at NASA Johnson Space Flight C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows the X-38 Vehicle 201, intended for spaceflight testing, under construction at NASA Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  11. Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics

    NASA Technical Reports Server (NTRS)

    Myers, Harvey Dean

    1990-01-01

    The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.

  12. X-38 NASA/DLR/ESA-Dassault Aviation Integrated Aerodynamic and Aerothermodynamic Activities

    NASA Technical Reports Server (NTRS)

    Labbe, Steve G.; Perez, Leo F.; Fitzgerald, Steve; Longo, Jose; Rapuc, Marc; Molina, Rafael; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The characterization of the aeroshape selected for the X-38 [Crew Return Vehicle (CRV) demonstrator] is presently being performed as a cooperative endeavour between NASA, DLR (through its TETRA Program), and European Space Agency (ESA) with Dassault Aviation integrating the aerodynamic and aerothermodynamic activities. The methodologies selected for characterizing the aerodynamic and aerothermodynamic environment of the X-38 are presented. Also, the implications for related disciplines such as Guidance Navigation and Control (GN&C) with its corresponding Flight Control System (FCS), Structural, and Thermal Protection System (TPS) design are discussed. An attempt is made at defining the additional activities required to support the design of a derived operational CRV.

  13. Design and Demonstration of Bolt Retractor Separation System for X-38 Deorbit Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Ahmed, Raf; Johnston, A. S.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2003-01-01

    A separation system was designed for the X-38 experimental crew return vehicle program to allow the Deorbit Propulsion Stage (DPS) to separate from the X-38 lifting body during reentry operations. The configuration chosen was a spring-loaded plunger, known as the Bolt Retractor Subsystem (BRS), that retracts each of the six DPS-to-lifting body attachment bolts across the interface plane after being triggered by a separation nut mechanism. The system was designed to function on the ground in an atmospheric environment as well as in space. The BRS provides the same functionality as that of a completely pyrotechnic shear separation system that would normally be considered ideal for this application, but at a much lower cost. This system also could potentially be applied to future space station crew return vehicles. The design goal of 40 ms retraction time was successfully met in a series of demonstrations performed at the NASA Marshall Space Flight Center s Pyrotechnic Shock Facility (PSF) and Flight Robotics Laboratory (FRL). It must be emphasized that a full-scale test series was not performed on the BRS due to program schedule and cost constraints.

  14. X-38 Landing Gear Skid Test Report

    NASA Technical Reports Server (NTRS)

    Gafka, George K.; Daugherty, Robert H.

    2000-01-01

    NASA incorporates skid-equipped landing gear on its series of X-38 flight test vehicles. The X-38 test program is the proving ground for the Crew Return Vehicle (CRV) a gliding parafoil-equipped vehicle designed to land at relatively low speeds. The skid-equipped landing gear is designed to attenuate the vertical landing energy of the vehicle at touchdown using crushable materials within the struts themselves. The vehicle then slides out as the vehicle horizontal energy is dissipated through the skids. A series of tests was conducted at Edwards Airforce Base (EAFB) in an attempt to quantify the drag force produced while "dragging" various X-38 landing gear skids across lakebed regions of varying surface properties. These data were then used to calculate coefficients of friction for each condition. Coefficient of friction information is critical for landing analyses as well as for landing gear load and interface load analysis. The skid specimens included full- and sub-scale V201 (space test vehicle) nose and main gear designs, a V131/V 132 (atmospheric flight test vehicles) main gear skid (actual flight hardware), and a newly modified, full-scale V201 nose -ear skid with substantially increased edge curvature as compared to its original design. Results of the testing are discussed along with comments on the relative importance of various parameters that influence skid stability and other dynamic behavior.

  15. STS-122 Crew Return Ceremony

    NASA Image and Video Library

    2008-02-21

    JSC2008-E-014907 (21 Feb. 2008) --- Johnson Space Center's (JSC) director Michael L. Coats (right) greets astronauts Rex Walheim (left) and Leland Melvin, STS-122 mission specialists, at Ellington Field near JSC prior to the STS-122 crew return ceremonies.

  16. Mass Properties Measurement in the X-38 Project

    NASA Technical Reports Server (NTRS)

    Peterson, Wayne L.

    2004-01-01

    This paper details the techniques used in measuring the mass properties for the X-38 family of test vehicles. The X-38 Project was a NASA internal venture in which a series of test vehicles were built in order to develop a Crew Return Vehicle (CRV) for the International Space Station. Three atmospheric test vehicles and one spaceflight vehicle were built to develop the technologies required for a CRV. The three atmospheric test vehicles have undergone flight-testing by a combined team from the NASA Johnson Space Center and the NASA Dryden Flight Research Center. The flight-testing was performed at Edward's Air Force Base in California. The X-38 test vehicles are based on the X-24A, which flew in the '60s and '70s. Scaled Composites, Inc. of Mojave, California, built the airframes and the vehicles were outfitted at the NASA Johnson Space Center in Houston, Texas. Mass properties measurements on the atmospheric test vehicles included weight and balance by the three-point suspension method, four-point suspension method, three load cells on jackstands, and on three in-ground platform scales. Inertia measurements were performed as well in which Ixx, Iyy, Izz, and Ixz were obtained. This paper describes each technique and the relative merits of each. The proposed measurement methods for an X-38 spaceflight test vehicle will also be discussed. This vehicle had different measurement challenges, but integrated vehicle measurements were never conducted. The spaceflight test vehicle was also developed by NASA and was scheduled to fly on the Space Shuttle before the project was cancelled.

  17. X-38 Vehicle 131R Free Flights 1 and 2

    NASA Technical Reports Server (NTRS)

    Munday, Steve

    2000-01-01

    The X-38 program is using a modern flight control system (FCS) architecture originally developed by Honeywell called MACH. During last year's SAE G&C subcommittee meeting, we outlined the design, implementation and testing of MACH in X-38 Vehicles 132, 131R & 201. During this year's SAE meeting, I'll focus upon the first two free flights of V131R, describing what caused the roll-over in FF1 and how we fixed it for FF2. I only have 30 minutes, so it will be a quick summary including VHS video. X-38 is a NASA JSC/DFRC experimental flight test program developing a series of prototypes for an International Space Station (ISS) Crew Return Vehicle (CRV), often described as an ISS "lifeboat." X-38 Vehicle 132 Free Flight 3 was the first flight test of a modern FCS architecture called Multi-Application ControlH (MACH), developed by the Honeywell Technology Center in Minneapolis and Honeywell's Houston Engineering Center. MACH wraps classical Proportional+integral (P+I) outer attitude loops around modern dynamic inversion attitude rate loops. The presentation at last year's SAE Aerospace Meeting No. 85 focused upon the design and testing of the FCS algorithm and Vehicle 132 Free Flight 3. This presentation will summarize flight control and aerodynamics lessons learned during Free Flights 1 and 2 of Vehicle 131R, a subsonic test vehicle laying the groundwork for the orbital/entry test of Vehicle 201 in 2003.

  18. Assured crew return vehicle man-systems integration standards

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is Volume 6 of the Man-Systems Integration Standards (MSIS) family of documents, which is contained in several volumes and a relational database. Each volume has a specific purpose, and each has been assembled from the data contained in the relational database. Volume 6 serves as the Assured Crew Return Vehicle project man-systems integration design requirements. The data in this document is a subset of the data found in Volume 1 and defines the requirements which are pertinent to the Assured Crew Return Vehicle as defined in the SPRD. Additional data and guidelines are provided to assist in the design.

  19. STS-109 Crew Return Ceremony at Ellington Field

    NASA Image and Video Library

    2002-03-13

    JSC2002-E-09329 (13 March 2002) --- Astronaut Duane G. Carey (right foreground), STS-109 pilot, shakes hands with Johnson Space Center’s (JSC) Acting Director Roy Estess during the crew return ceremonies at Ellington Field. Also pictured are astronaut Scott D. Altman (left background), mission commander, and astronaut Steven A. Hawley, Director of Flight Crew Operations.

  20. Low Velocity Airdrop Tests of an X-38 Backup Parachute Design

    NASA Technical Reports Server (NTRS)

    Stein, Jenny M.; Machin, Ricardo A.; Wolf, Dean F.; Hillebrandt, F. David

    2007-01-01

    The NASA Johnson Space Center's X-38 program designed a new backup parachute system to recover the 25,000 lb X-38 prototype for the Crew Return Vehicle spacecraft. Due to weight and cost constraints, the main backup parachute design incorporated rapid and low cost fabrication techniques using off-the-shelf materials. Near the vent, the canopy was constructed of continuous ribbons, to provide more damage tolerance. The remainder of the canopy was a constructed with a continuous ringslot design. After cancellation of the X-38 program, the parachute design was resized, built, and drop tested for Natick Soldiers Center's Low Velocity Air Drop (LVAD) program to deliver cargo loads up to 22,000 lbs from altitudes as low as 500 feet above the ground. Drop tests results showed that the 500-foot LVAD parachute deployment conditions cause severe skirt inversion and inflation problems for large parachutes. The bag strip occurred at a high angle of attack, causing skirt inversion before the parachute could inflate. The addition of a short reefing line prevented the skirt inversion. Using a lower porosity in the vent area, than is normally used in large parachutes, improved inflation. The drop testing demonstrated that the parachute design could be refined to meet the requirements for the 500-foot LVAD mission.

  1. Crew emergency return vehicle - Electrical power system design study

    NASA Technical Reports Server (NTRS)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  2. STS-104 Crew Return, Ellington Field, Building 990

    NASA Image and Video Library

    2001-07-26

    JSC2001-E-22791 (25 July 2001) --- JSC Acting Director Roy S. Estess introduces the STS-104 crew members to a crowd gathered in Ellington Field’s Hangar 990 during crew return ceremonies. Seated (from left) are Michael L. Gernhardt, James F. Reilly, Janet L. Kavandi, all mission specialists, along with Steven W. Lindsey and Charles O. Hobaugh, mission commander and pilot, respectively.

  3. The US - European Cooperation in the X-38 and CRV Programs

    NASA Astrophysics Data System (ADS)

    Sygulla, D.; Sabath, D.; Püttmann, N.; Schmid, V.; Caporicci, M.; Anderson, B.

    2002-01-01

    The European participation in the US X-38 program was initiated in 1997 and is realized by contributions from two European programs, by ESA's "Applied Reentry Technology Program", (ARTP) and the German/DLR "Technologies for Future Space Transportation Systems" (TETRA) program. The space agencies of USA, Europe and Germany have established two Memoranda of Understanding - NASA-ESA and NASA-DLR - for the European participation in the X-38 Program to deliver flight hard- and software in exchange to a re-entry flight opportunity with Vehicle 201 (V201). By October 2002 all European contributions to V201 of the X-38 program will be delivered to NASA JSC. Vehicle 201 represents the orbital test vehicle of the experimental vehicle family, developed and built from 1996 onwards by NASA at Johnson Space Center, JSC in Houston. The X-38 Program was initiated by NASA to prepare and develop the Crew Return Vehicle (CRV) with Vehicle 201 as prototype. NASA conducts the overall X-38 vehicle system engineering and integration, intended to provide the launch of the vehicle 201 with the Space Shuttle and will deliver flight data for post-flight analysis and assessment to DLR and ESA. The German national project TETRA (Technologies for future Space Transportation Systems) and the European ARTP (Applied Re-entry Technology Programme) are providing engineering support for design, analysis, system engineering and layout as well as delivering essential flight hard- and software: CMC Body flaps and CMC nose assembly from TETRA; rudders, CMC leading edges, landing gears and major elements of the V201 primary structure from ARTP. Since both programmes contribute in cooperation the major part of the aerodynamic database is generated, the flexible external insulation is developed and manufactured, and advanced sensors and data acquisition systems are built. The parts for V201 have been developed, fulfill the requirements, are qualified for flight and they are in the process of being

  4. Commerical Crew Program - SpaceX

    NASA Image and Video Library

    2016-04-25

    The interior structure of the SpaceX Crew Dragon spacecraft at the company's facility in Hawthorne, California. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.

  5. Commerical Crew Program - SpaceX

    NASA Image and Video Library

    2016-04-25

    A technician works on the interior structure of the SpaceX Crew Dragon spacecraft at the company's facility in Hawthorne, California. SpaceX is developing its Crew Dragon in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.

  6. The X-38 Vehicle 131R drops away from its launch pylon on the wing of NASA's NB-52B mothership as it begins its eighth free flight on Thursday, December 13, 2001

    NASA Image and Video Library

    2001-12-13

    The X-38 prototype of the Crew Return Vehicle for the International Space Station drops away from its launch pylon on the wing of NASA's NB-52B mothership as it begins its eighth free flight on Thursday, Dec. 13, 2001. The 13-minute test flight of X-38 vehicle 131R was the longest and fastest and was launched from the highest altitude to date in the X-38's atmospheric flight test program. A portion of the descent was flown under remote control by a NASA astronaut from a ground vehicle configured like the CRV's interior before the X-38 made an autonomous landing on Rogers Dry Lake.

  7. Adaptive Guidance and Control Algorithms applied to the X-38 Reentry Mission

    NASA Astrophysics Data System (ADS)

    Graesslin, M.; Wallner, E.; Burkhardt, J.; Schoettle, U.; Well, K. H.

    International Space Station's Crew Return/Rescue Vehicle (CRV) is planned to autonomously return the complete crew of 7 astronauts back to earth in case of an emergency. As prototype of such a vehicle, the X-38, is being developed and built by NASA with European participation. The X-38 is a lifting body with a hyper- sonic lift to drag ratio of about 0.9. In comparison to the Space Shuttle Orbiter, the X-38 has less aerodynamic manoeuvring capability and less actuators. Within the German technology programme TETRA (TEchnologies for future space TRAnsportation systems) contributing to the X-38 program, guidance and control algorithms have been developed and applied to the X-38 reentry mission. The adaptive guidance concept conceived combines an on-board closed-loop predictive guidance algorithm with flight load control that temporarily overrides the attitude commands of the predictive component if the corre- sponding load constraints are violated. The predictive guidance scheme combines an optimization step and a sequence of constraint restoration cycles. In order to satisfy on-board computation limitations the complete scheme is performed only during the exo-atmospheric flight coast phase. During the controlled atmospheric flight segment the task is reduced to a repeatedly solved targeting problem based on the initial optimal solution, thus omitting in-flight constraints. To keep the flight loads - especially the heat flux, which is in fact a major concern of the X-38 reentry flight - below their maximum admissible values, a flight path controller based on quadratic minimization techniques may override the predictive guidance command for a flight along the con- straint boundary. The attitude control algorithms developed are based on dynamic inversion. This methodology enables the designer to straightforwardly devise a controller structure from the system dynamics. The main ad- vantage of this approach with regard to reentry control design lies in the fact that

  8. German Contribution to the X-38 CRV Demonstrator in the Field of Guidance, Navigation and Control (GNC)

    NASA Astrophysics Data System (ADS)

    Soppa, Uwe; Görlach, Thomas; Roenneke, Axel Justus

    2002-01-01

    As a solution to meet a safety requirement to the future full scale space station infrastructure, the Crew Return/Rescue Vehicle (CRV) was supposed to supply the return capability for the complete ISS crew of 7 astronauts back to earth in case of an emergency. A prototype of such a vehicle named X-38 has been developed and built by NASA with European partnership (ESA, DLR). An series of aerial demonstrators (V13x) for tests of the subsonic TAEM phase and the parafoil descent and landing system has been flown by NASA from 1998 to 2001. A full scale unmanned space flight demonstrator (V201) has been built at JSC Houston and although the project has been stopped for budgetary reasons in 2002, it will hopefully still be flown in near future. The X-38 is a lifting body with hypersonic lift to drag ratio about 0.9. In comparison to the Space Shuttle Orbiter, this design provides less aerodynamic maneuvrability and a different actuator layout (divided body flap and winglet rudders instead as combined aileron and elevon in addition to thrust- ers for the early re-entry phase). Hence, the guidance and control concepts used onboard the shuttle orbiter had to be adapted and further developed for the application on the new vehicle. In the frame of the European share of the X-38 project and also of the German TETRA (TEchnol- ogy for future space TRAnsportation) project different GNC related contributions have been made: First, the primary flight control software for the autonomous guidance and control of the X-38 para- foil descent and landing phase has been developed, integrated and successfully flown on multiple vehicles and missions during the aerial drop test campaign conducted by NASA. Second, a real time X-38 vehicle simulator was provided to NASA which has also been used for the validation of a European re-entry guidance and control software (see below). According to the NASA verification and validation plan this simulator is supposed to be used as an independent vali

  9. Commerical Crew Program - SpaceX

    NASA Image and Video Library

    2016-06-28

    The inter-stage of a SpaceX Falcon 9 rocket inside the company's manufacturing facility. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA's Commercial Crew Program to carry astronauts to and from the International Space Station.

  10. Commerical Crew Program - SpaceX

    NASA Image and Video Library

    2014-05-21

    A SpaceX SuperDraco engine is hot-fired at the company's test facility in McGregor, Texas. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.

  11. Commerical Crew Program - SpaceX

    NASA Image and Video Library

    2018-01-02

    A SpaceX Merlin engine is on a test stand at the company's facility in McGregor, Texas. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.

  12. Return to Space Mission: The STS-26 Crew Report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This videotape features footage from NASA's return to space flight after the 51-L accident. The videotape is narrated by the crew, and it includes the following: launch, landing, and the TDRS/IUS deployment.

  13. X-38 - First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Reminiscent of the lifting body research flights conducted more than 30 years earlier, NASA's B-52 mothership lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also

  14. Return to Flight: Crew Activities Resource Reel 1 of 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The crew of the STS-114 Discovery Mission is seen in various aspects of training for space flight. The crew activities include: 1) STS-114 Return to Flight Crew Photo Session; 2) Tile Repair Training on Precision Air Bearing Floor; 3) SAFER Tile Inspection Training in Virtual Reality Laboratory; 4) Guidance and Navigation Simulator Tile Survey Training; 5) Crew Inspects Orbital Boom and Sensor System (OBSS); 6) Bailout Training-Crew Compartment; 7) Emergency Egress Training-Crew Compartment Trainer (CCT); 8) Water Survival Training-Neutral Buoyancy Lab (NBL); 9) Ascent Training-Shuttle Motion Simulator; 10) External Tank Photo Training-Full Fuselage Trainer; 11) Rendezvous and Docking Training-Shuttle Engineering Simulator (SES) Dome; 12) Shuttle Robot Arm Training-SES Dome; 13) EVA Training Virtual Reality Lab; 14) EVA Training Neutral Buoyancy Lab; 15) EVA-2 Training-NBL; 16) EVA Tool Training-Partial Gravity Simulator; 17) Cure in Place Ablator Applicator (CIPAA) Training Glove Vacuum Chamber; 16) Crew Visit to Merritt Island Launch Area (MILA); 17) Crew Inspection-Space Shuttle Discovery; and 18) Crew Inspection-External Tank and Orbital Boom and Sensor System (OBSS). The crew are then seen answering questions from the media at the Space Shuttle Landing Facility.

  15. Assured crew return vehicle post landing configuration design and test

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.; Armitage, Pamela Kay

    1992-01-01

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined effort to design a one-fifth scale model of the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study.

  16. The X-38 Spacecraft Fault-Tolerant Avionics System

    NASA Technical Reports Server (NTRS)

    Kouba,Coy; Buscher, Deborah; Busa, Joseph

    2003-01-01

    In 1995 NASA began an experimental program to develop a reusable crew return vehicle (CRV) for the International Space Station. The purpose of the CRV was threefold: (i) to bring home an injured or ill crewmember; (ii) to bring home the entire crew if the Shuttle fleet was grounded; and (iii) to evacuate the crew in the case of an imminent Station threat (i.e., fire, decompression, etc). Built at the Johnson Space Center, were two approach and landing prototypes and one spacecraft demonstrator (called V201). A series of increasingly complex ground subsystem tests were completed, and eight successful high-altitude drop tests were achieved to prove the design concept. In this program, an unprecedented amount of commercial-off-the-shelf technology was utilized in this first crewed spacecraft NASA has built since the Shuttle program. Unfortunately, in 2002 the program was canceled due to changing Agency priorities. The vehicle was 80% complete and the program was shut down in such a manner as to preserve design, development, test and engineering data. This paper describes the X-38 V201 fault-tolerant avionics system. Based on Draper Laboratory's Byzantine-resilient fault-tolerant parallel processing system and their "network element" hardware, each flight computer exchanges information on a strict timescale to process input data, compare results, and issue voted vehicle output commands. Major accomplishments achieved in this development include: (i) a space qualified two-fault tolerant design using mostly COTS (hardware and operating system); (ii) a single event upset tolerant network element board, (iii) on-the-fly recovery of a failed processor; (iv) use of synched cache; (v) realignment of memory to bring back a failed channel; (vi) flight code automatically generated from the master measurement list; and (vii) built in-house by a team of civil servants and support contractors. This paper will present an overview of the avionics system and the hardware

  17. Low Speed Aerodynamics of the X-38 CRV

    NASA Technical Reports Server (NTRS)

    Komerath, N. M.; Funk, R.; Ames, R. G.; Mahalingam, R.; Matos, C.

    1998-01-01

    This project was performed in support of the engineering development of the NASA X-38 Crew Return Vehicle (CRV)system. Wind tunnel experiments were used to visualize various aerodynamic phenomena encountered by the CRV during the final stages of descent and landing. Scale models of the CRV were used to visualize vortex structures above and below the vehicle, and in its wake, and to quantify their trajectories. The effect of flaperon deflection on these structures was studied. The structure and dynamics of the CRV's wake during the drag parachute deployment stage were measured. Regions of high vorticity were identified using surveys conducted in several planes using a vortex meter. Periodic shedding of the vortex sheets from the sides of the CRV was observed using laser sheet videography as the CRV reached high angles of attack during the quasi-steady pitch-up prior to parafoil deployment. Using spectral analysis of hot-film anemometer data, the Strouhal number of these wake fluctuations was found to be 0.14 based on the model span. Phenomena encountered in flight test during parafoil operation were captured in scale-model tests, and a video photogrammetry technique was implemented to obtain parafoil surface shapes during flight in the tunnel. Forces on the parafoil were resolved using tension gages on individual lines. The temporal evolution of the phenomenon of leading edge collapse was captured. Laser velocimetry was used to demonstrate measurement of the porosity of the parafoil surface. From these measurements, several physical explanations have been developed for phenomena observed at various stages of the X-38 development program. Quantitative measurement capabilities have also been demonstrated for continued refinement of the aerodynamic technologies employed in the X-38 project. Detailed results from these studies are given in an AIAA Paper, two slide presentations, and other material which are given on a Web-based archival resource. This is the Digital

  18. STS-104 Crew Return, Ellington Field, Building 990

    NASA Image and Video Library

    2001-07-26

    JSC2001-E-22794 (25 July 2001) --- Astronaut Steven W. Lindsey, STS-104 mission commander, addresses a crowd at Ellington Field’s Hangar 990 for a crew return ceremony. Seated from the left are Michael L. Gernhardt, James F. Reilly, both mission specialist, and Roy S. Estess, JSC Acting Director, along with Janet L. Kavandi, mission specialist, and Charles O. Hobaugh, pilot.

  19. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  20. Postlanding optimum designs for the assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Hosterman, Kenneth C.; Anderson, Loren A.

    1990-01-01

    The optimized preliminary engineering design concepts for postlanding operations of a water-landing Assured Crew Return Vehicle (ACRV) during a medical rescue mission are presented. Two ACRVs will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The optimized configuration of the ACRV is based on an Apollo command module (ACM) derivative. The scenario assumes landing a sick or injured crewmember on water with the possibility of a delayed rescue. Design emphasis is placed on four major areas. First is the design of a mechanism that provides a safe and time-critical means of removing the sick or injured crewmember from the ACRV. Support to the assisting rescue personnel is also provided. Second is the design of a system that orients and stabilizes the craft after landing so as to cause no further injury or discomfort to the already ill or injured crewmember. Third is the design of a system that provides full medical support to a sick or injured crewmember aboard the ACRV from the time of separation from the space station to rescue by recovery forces. Last is the design of a system that provides for the comfort and safety of the entire crew after splashdown up to the point of rescue. The four systems are conceptually integrated into the ACRV.

  1. X-38 - First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In a scene reminiscent of the lifting body research flights conducted more than 30 years earlier, this photo shows a close-up view of NASA's B-52 mothership as it lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the

  2. SpaceX Crew Dragon Ship

    NASA Image and Video Library

    2018-05-20

    The SpaceX Crew Dragon spacecraft is in the anechoic chamber for electromagnetic interference testing on May 20, 2018, at NASA's Kennedy Space Center in Florida. The Crew Dragon will be shipped to the agency's Plum Brook Station test facility at Glenn Research City in Cleveland, Ohio, for testing in the Reverberant Acoustic Test Facility, the world's most powerful acoustic test chamber. Crew Dragon is being prepared for its first uncrewed test flight, targeted for August 2018.

  3. STS-111 & Expedition 4 Crew Return Ceremony

    NASA Image and Video Library

    2002-06-24

    JSC2002-E-26023 (21 June 2002) --- Johnson Space Center’s (JSC) Director Jefferson Davis Howell, Jr. speaks from the lectern in Hangar 990 at Ellington Field during the STS-111 and Expedition Four crew return ceremonies. Seated (from left) are General Vasily Tsiblyiev, Deputy Director of the Gagarin Cosmonaut Training Center; cosmonaut Yury I. Onufrienko, Expedition Four mission commander; astronauts Carl E. Walz and Daniel W. Bursch, both Expedition Four flight engineers; and NASA Administrator Sean O'Keefe. Tsiblyiev and Onufrienko represent Rosaviakosmos.

  4. STS-102 / Expedition 1 Crew Return Ceremony at Ellington Field.

    NASA Image and Video Library

    2001-03-22

    JSC2001-E-08317 (22 March 2001) --- Members of the Expedition One crew await opportunities to individually address a crowd gathered at Ellington Field to honor their return to Houston. return. Pictured from the left are cosmonaut Vasily Tsibliev, Deputy Director of the Gagarin Cosmonaut Training Center in Star City; cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut William M. (Bill) Shepherd, mission commander; and Yuri P. Gidzenko, Soyuz commander; along with Joseph Rothenberg, NASA Associate Administrator for Space Flight.

  5. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  6. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the five pounds/inch and ten psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  7. Crew emergency return vehicle autoland feasibility study

    NASA Technical Reports Server (NTRS)

    Bossi, J. A.; Langehough, M. A.; Lee, K. L.

    1989-01-01

    The crew emergency return vehicle (CERV) autoland feasibility study focused on determining the controllability of the NASA Langley high lift over drag CERV for performing an automatic landing at a prescribed runway. An autoland system was developed using integral linear quadratic Gaussian (LQG) design techniques. The design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrate that the CERV configuration is a very flyable configuration for performing an autoland mission. Adequate stability and control was demonstrated for wind turbulence and wind shear. Control surface actuator requirements were developed.

  8. Considerations for Medical Transport from the Space Station via an Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Hamilton, Glenn C.; Stizza, Denis; Garrison, Richard; Gerstner, David

    2001-01-01

    In developing a permanently crewed space station, the importance of medical care has been continually reaffirmed; and the health maintenance facility (HMF) is an integral component. It has diagnostic, therapeutic, monitoring, and information management capability. It is designed to allow supportive care for: (1) non-life-threatening illnesses; e.g., headache, lacerations; (2) moderate to severe, possibly life-threatening illnesses; e.g., appendicitis, kidney stones; and (3) severe, incapacitating, life-threatening illnesses; e.g., major trauma, toxic exposure. Since the HMF will not have a general surgical capability, the need for emergency escape and recovery methods has been studied. Medical risk assessments have determined that it is impossible to accurately predict the incidence of crewmember illness/injury. A best estimate is 1:3 per work-year, with 1% of these needing an ACRV. For an eight-person crew, this means that one assured crew return vehicle (ACRV) will be used every 4 to 12 years. The ACRV would serve at least three basic objectives as: (1) a crew return if the space shuttle is unavailable; (2) an escape vehicle from a major time-critical space station emergency; and (3) a full or partial crew return vehicle for a medical emergency. The focus of this paper is the third objective for the ACRV.

  9. SpaceX Dragon returns on This Week @NASA- October 31, 2014

    NASA Image and Video Library

    2014-10-31

    The SpaceX Dragon cargo capsule was recently detached from the International Space Station for its return to Earth, just over a month after delivering about 5,000 pounds of supplies and experiments to the ISS. Dragon safely returned to Earth with more than 3,200 pounds of NASA cargo and science samples – completing the company’s fourth resupply mission to the station. Also, Destination Station ISS Tech Forum, Orbital Sciences investigating accident, Russian supply ships to and from the ISS, Next ISS crew trains in Russia, Wind tunnel tests of SLS model and more!

  10. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  11. Logistics resupply and emergency crew return system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Ahne, D.; Caldwell, D.; Davis, K.; Delmedico, S.; Heinen, E.; Ismail, S.; Sumner, C.; Bock, J.; Buente, B.; Gliane, R.

    1989-01-01

    Sometime in the late 1990's, if all goes according to plan, Space Station Freedom will allow the United States and its cooperating partners to maintain a permanent presence in space. Acting as a scientific base of operations, it will also serve as a way station for future explorations of the Moon and perhaps even Mars. Systems onboard the station will have longer lifetimes, higher reliability, and lower maintenance requirements than seen on any previous space flight vehicle. Accordingly, the station will have to be resupplied with consumables (air, water, food, etc.) and other equipment changeouts (experiments, etc.) on a periodic basis. Waste materials and other products will also be removed from the station for return to Earth. The availability of a Logistics Resupply Module (LRM), akin to the Soviet's Progress vehicle, would help to accomplish these tasks. Riding into orbit on an expendable launch vehicle, the LRM would be configured to rendezvous autonomously and dock with the space station. After the module is emptied of its cargo, waste material from the space station would be loaded back into it. The module would then begin its descent to a recovery point on Earth. Logistics Resupply Modules could be configured in a variety of forms depending on the type of cargo being transferred. If the LRM's were cycled to the space station in such a way that at least one vehicle remained parked at the station at all times, the modules could serve double duty as crew emergency return capsules. A pressurized LRM could then bring two or more crew-persons requiring immediate return (because of health problems, system failure, or unavoidable catastrophes) back to Earth. Large cost savings would be accrued by combining the crew return function with a logistics resupply system.

  12. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden listens to a reporter’s question after he announced the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  13. Crew Configuration, Ingress/Egress Procedures, and In-Flight Caregiving Capacity in a Space Ambulance Based on the Boeing X-37B

    NASA Astrophysics Data System (ADS)

    Halberg, Ephriam Etan

    This study proposes that a Boeing X-37B space plane, its dimensions and performance characteristics estimated from publicly available documents, diagrams, and photographs, could be internally redesigned as a medical evacuation (ambulance) vehicle for the International Space Station. As of 2017, there is currently no spacecraft designed to accommodate a contingency medical evacuation wherein a crew member aboard the ISS is injured or ailing and must be returned to Earth for immediate medical attention. The X-37B is an unmanned vehicle with a history of success in both sub-orbital testing and all four of its long-duration orbital missions to date. Research conducted at UC Davis suggests that it is possible to retain the outer mold line of the X-37B while expanding the internal payload compartment to a volume sufficient for a crew of three--pilot, crew medical officer, and injured crew member--throughout ISS un-dock and atmospheric entry, descent, and landing. In addition to crew life support systems, this re-purposed X-37B, hereafter referred to as the X-37SA (Space Ambulance), includes medical equipment for stabilization of a patient in-transit. This study suggests an optimal, ergonomic crew configuration and berthing port location, procedures for microgravity ingress and 1G egress, a minimum medical equipment list and location within the crew cabin for the medical care and monitoring equipment. Conceptual crew configuration, ingress/egress procedures, and patient/equipment access are validated via physical simulation in a full-scale mockup of the proposed X-37SA crew cabin.

  14. STS-103 crew return at building 990, Ellington Field

    NASA Image and Video Library

    1999-12-29

    Photographic documentation showing STS-103 crew return at bldg. 990, Ellington Field. Views include: Mission Specialist (MS) John M. Grunsfeld at podium (16048); MS Jean-Francois Clervoy at podium (16049); Grunsfeld signs autographs (16050); woman and child (16051); MS Claude Nicollier meets his Swiss-American fan club (16052); Clervoy holds child (16053); mission commander Curtis L. Brown signs autographs (16054, 16057); MS E. Michael Foale signs autographs (16055); MS and Payload Commander (PLC) Steven L. Smith kneels and holds child (16056); overall view of stage showing Brown at podium with crew seated behind him; from left to right: Nicollier, pilot Scott J. Kelly, Clervoy, Grunsfeld, Mr. George Abbey (JSC director), Foale and Smith (16058); Nicollier at podium (16059); Mr. George Abbey at the podium (16060): Foale ath the podium (16061); Kelly signs autographs (16062).

  15. Crew Dragon Demonstration Mission 1

    NASA Image and Video Library

    2018-06-13

    SpaceX’s Crew Dragon is at NASA’s Plum Brook Station in Ohio, ready to undergo testing in the In-Space Propulsion Facility — the world’s only facility capable of testing full-scale upper-stage launch vehicles and rocket engines under simulated high-altitude conditions. The chamber will allow SpaceX and NASA to verify Crew Dragon’s ability to withstand the extreme temperatures and vacuum of space. This is the spacecraft that SpaceX will fly during its Demonstration Mission 1 flight test under NASA’s Commercial Crew Transportation Capability contract with the goal of returning human spaceflight launch capabilities to the U.S.

  16. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden, left, announces the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida looks on at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  17. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Astronaut Mike Fincke, a former commander of the International Space Station, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  18. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  19. 38 CFR 3.1003 - Returned and canceled checks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Returned and canceled... canceled checks. Where the payee of a check for benefits has died prior to negotiating the check, the check shall be returned to the issuing office and canceled. (a) The amount represented by the returned check...

  20. STS-102 / Expedition 1 Crew Return Ceremony at Ellington Field.

    NASA Image and Video Library

    2001-03-22

    JSC2001-E-08325 (22 March 2001) --- Some of the participants of the Expedition One and STS-102 crew return ceremony applaud one of the speakers. Pictured from the left are cosmonaut Vasily Tsibliev, Deputy Director of the Gagarin Cosmonaut Training Center in Star City; cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut William M. (Bill) Shepherd, mission commander; and Yuri P. Gidzenko, Soyuz commander.

  1. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  2. STS-111 & Expedition 4 Crew Return Ceremony

    NASA Image and Video Library

    2002-06-24

    JSC2002-E-26021 (21 June 2002) --- Johnson Space Center’s (JSC) Director Jefferson Davis Howell, Jr. speaks from the lectern in Hangar 990 at Ellington Field during the STS-111 and Expedition Four crew return ceremonies. Seated (from left) are General Vasily Tsiblyiev, Deputy Director of the Gagarin Cosmonaut Training Center; cosmonaut Yury I. Onufrienko, Expedition Four mission commander; astronauts Carl E. Walz and Daniel W. Bursch, both Expedition Four flight engineers; NASA Administrator Sean O'Keefe; astronauts Kenneth D. Cockrell, STS-111 mission commander; Paul S. Lockhart, pilot; Franklin R. Chang-Diaz and Philippe Perrin, both mission specialists. Tsiblyiev and Onufrienko represent Rosaviakosmos, and Perrin represents CNES, the French Space Agency.

  3. STS-1 crew, State and White House dignitaries during crew return at Ellington

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Robert L. Crippen, center, addresses a large turnout of greeters at Ellington Air Force Base following return of Columbia's crew from Dryden. Astronaut John W. Young stands near his wife Suzy at right center. Crippen's wife Virginia and children are standing behind the Youngs on the platform. Others seen include Presidental aids Jim Baker, Houston Mayor Jim McConn, NASA Administrator (acting) Alan M. Lovelace, John F. Yardley, associate administrator for Space Transportation Systems; Dr. Crhisotpher C. Kraft, Jr. JSC Director; flight directors Neil B. Hutchinson, Charles L. Lewis and Donald R. Puddy and Robert F. Thompson, Manager of Space Shuttle Program Office.

  4. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  5. Assured crew return vehicle post landing configuration design and test

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-fifth scale model for the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study. Section 1 describes in detail the design of a one-fifth scale model of the Apollo Command Module Derivative (ACMD) ACRV. The objective of the ACMD Configuration Model Team was to use geometric and dynamic constraints to design a one-fifth scale working model of the

  6. A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.

    2000-01-01

    A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is shown in which only four crew are carried with the extra volume reserved for logistics cargo. A water parachute recovery system is shown as an emergency alternative to a runway landing. Primary reaction control thrusters from the Shuttle program are used for orbital maneuvering while the Shuttle verniers are used for all attitude control maneuvers.

  7. The X-38 V-201 Flap Actuator Mechanism

    NASA Technical Reports Server (NTRS)

    Hagen, Jeff; Moore, Landon; Estes, Jay; Layer, Chris

    2004-01-01

    The X-38 Crew Rescue Vehicle V-201 space flight test article was designed to achieve an aerodynamically controlled re-entry from orbit in part through the use of two body mounted flaps on the lower rear side. These flaps are actuated by an electromechanical system that is partially exposed to the re-entry environment. These actuators are of a novel configuration and are unique in their requirement to function while exposed to re-entry conditions. The authors are not aware of any other vehicle in which a major actuator system was required to function throughout the complete re-entry profile while parts of the actuator were directly exposed to the ambient environment.

  8. Photographic documentation of the return of the STS-98 crew to Ellington Field

    NASA Image and Video Library

    2001-02-22

    JSC2001-E-04804 (21 February 2001) --- Astronauts Mark L. Polansky (left) and Kenneth D. Cockrell (center), pilot and commander, respectively, for the STS-98 mission, are greeted by Steven A. Hawley of the Flight Crew Operations Directorate upon their return to Houston. The greetings took place prior to a welcoming ceremony at Ellington Field.

  9. STS-109 Crew Return Ceremony at Ellington Field

    NASA Image and Video Library

    2002-03-13

    Photographic documentation of the STS-109 Crew Return Ceremony. The events take place at Hangar 990 at Ellington Field. Views include: Overall view of crewmembers [09319]; View of crewmembers standing on stage talking to group [09320]; Unidentified crewmember waving to crowd [09321]; Unidentified crewmember autographing photo [09322]; Mission Specialist Michael J. Massimino holding crew photo as he talks to child in group [09323]; Pilot Duane G. Carey signing a crew photo for a visitor [09324]; Unidentified crewmember signing a photo for visitor [09325]; Commander Scott D. Altman talking to child in group [09326]; Unidentified crewmember giving a photo to visitor [09327]; Crewmembers exiting plane [09328]; Duane G. Carey shaking hands with visitor. Astronaut Scott Altman smiling in the background [09329); Astronaut Jim Newman kissing his child [09330]; Jim Newman holding his daughter as his son grabs at his pant leg [09331]; Close-up view of Payload Commander John Grunsfeld holding his daughter [09332]; Duane G. Carey standing with family members [09333]; Close-up view of Duane G. Carey placing his hand on a child's head as he is talking to him [09334]; Overall view of spectator watching ceremony [09335]; Close-up view of speaker during ceremony [09336]; Close-up view of Scott Altman speaking to crowd [09337]; Close-up view of a young spectator at ceremony [09338]; Close-up view of Duane G. Carey speaking to the crowd [09339]; Close-up view of Mission Specialist Nancy J. Currie speaking to the crowd [09340]; Close-up view of John M. Grunsfield speaking to the crowd [09341]; Close-up view of Mission Specialist Richard M. Linnehan speaking to the crowd [09342]; Close-up view of James H. Newman speaking to the crowd [09343]; Close-up view of Michael J. Massimino speaking to the crowd [09344

  10. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.

    1993-01-01

    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  11. Space-to-Ground: Busy Crew: 09/22/2017

    NASA Image and Video Library

    2017-09-21

    The SpaceX Dragon returns to Earth...the crew prepares for three spacewalks...and do you get scared in space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  12. STS-101 crew returns from Launch Pad 39A after launch was scrubbed

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown at left is Commander James D. Halsell Jr. At right is astronaut James Wetherbee, deputy director of the Johnson Space Center. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.

  13. STS-101 crew returns from Launch Pad 39A after launch was scrubbed

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yuri Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.

  14. View forward from bulkhead no. 38 of compartment B126 crew ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View forward from bulkhead no. 38 of compartment B-126 crew space. Note stop valves on bulkhead at right side of photograph; these steam control valves allowed remote activation of the main, auxiliary and safety valves for the port engine in the event that the engine room valves were disabled or unreachable. (044) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  15. Design, building, and testing of the post landing systems for the assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.

    1991-01-01

    The design, building, and testing of the post landing support systems for a water landing Assured Crew Return Vehicle (ACRV) are presented. One ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The configuration of the ACRV is based on an Apollo Command Module (ACM) derivative. The 1990 to 91 effort concentrated on the design, building, and testing of a 1/5 scale model of the egress and stabilization systems. The objective was to determine the feasibility of: (1) stabilizing the ACM out of the range of motions which cause sea sickness; and (2) the safe and rapid removal of a sick or injured crewmember from the ACRV. The ACRV model construction is presented along with a discussion of the water test facility. The rapid egress system is also presented along with a discussion of the ACRV stabilization control systems. Results are given and discussed in detail.

  16. Further Investigations of Control Surface Seals for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; Newquist, Charles W.; Verzemnieks, Juris

    2001-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a potential crew return vehicle (CRV) for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. NASAs Johnson Space Center (JSC) and Glenn Research Center (GRC) are working together to develop and evaluate seals for these control surfaces. This paper presents results for compression. flow, scrub, and arc jet tests conducted on the baseline X-38 rudder/fin seal design. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload. contact area, stiffness. and resiliency characteristics under low load conditions. For all compression levels that were tested, unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits required to limit the loads on the adjoining Shuttle thermal tiles that the seals will contact. Flow rates through an unloaded (i.e. 0% compression) double arrangement were twice those of a double seal compressed to the 20% design compression level. The seals survived an ambient temperature 1000 cycle scrub test over relatively rough Shuttle tile surfaces. The seals were able to disengage and re-engage the edges of the rub surface tiles while being scrubbed over them. Arc jet tests were performed to experimentally determine anticipated seal temperatures for representative flow boundary conditions (pressures and temperatures) under simulated vehicle re-entry conditions. Installation of a single seat in the gap of the test fixture caused a large temperature drop (1710 F) across the seal

  17. Design, building, and testing of the postlanding systems for the assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Hosterman, Kenneth C.; Anderson, Loren A.

    1991-01-01

    The design, building, and testing of the postlanding support systems for a water-landing Assured Crew Return Vehicle (ACRV) are presented. One ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The configuration of the ACRV is based on an Apollo Command Module (ACM) derivative. The 1990-1991 effort concentrated on the design, building, and testing of a one-fifth scale model of the egress and stabilization systems. The objective was to determine the feasibility of (1) stabilizing the ACM out of the range of motions that cause seasickness and (2) the safe and rapid removal of a sick or injured crew member from the ACRV. The development of the ACRV postlanding systems model was performed at the University of Central Florida with guidance from the Kennedy Space Center ACRV program managers. Emphasis was placed on four major areas. First was design and construction of a one-fifth scale model of the ACM derivative to accommodate the egress and stabilization systems for testing. Second was the identification of a water test facility suitable for testing the model in all possible configurations. Third was the construction of the rapid egress mechanism designed in the previous academic year for incorporation into the ACRV model. The fourth area was construction and motion response testing of the attitude ring and underwater parachute systems.

  18. Commercial crew astronauts on This Week @NASA – July 10, 2015

    NASA Image and Video Library

    2015-07-10

    NASA has selected four astronauts to work closely with two U.S. commercial companies that will return human spaceflight launches to Florida’s Space Coast. NASA named veteran astronauts and experienced test pilots Robert Behnken, Eric Boe, Douglas Hurley and Sunita Williams to work closely with Boeing and SpaceX. NASA contracted with Boeing and SpaceX to develop crew transportation systems and provide crew transportation services to and from the International Space Station. The agency will select the commercial crew astronauts from this group of four for the first test, which is scheduled for 2017. Also, NASA’s newest astronauts, New Horizons still on track, Benefits for Humanity, Cargo ship arrives at space station, Training continues for next ISS crew and more!

  19. X-38 Mounted on Pylon of B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A close-up view of the X-38 research vehicle mounted under the wing of the B-52 mothership prior to a 1997 test flight. The X-38, which was designed to help develop technology for an emergency crew return vehicle (CRV) for the International Space Station, is one of many research vehicles the B-52 has carried aloft over the past 40 years. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space

  20. STS-121 Crew attends the "X Games" in Los Angeles

    NASA Image and Video Library

    2006-08-03

    JSC2006-E-32816 (3 August 2006) --- The crew of STS-121 attended opening day of the 12th "X Games" in Los Angeles Aug. 3, discussing their recent mission to the International Space Station with students and athletes. Astronaut Steven W. Lindsey (with microphone), commander, and his crew take time out of the question and answer session to watch "Rally Car" practice. The crew's visit also included presentations at the Jet Propulsion Laboratory and the California Science Center.

  1. T-38 AT SLF DURING STS-80 CREW ARRIVAL

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A T-38 parked at KSC's Shuttle Landing Facility is profiled against the brilliant twilight sky. The five astronauts assigned to Space Shuttle Mission STS-80 arrived from Houston at around 6:30 p.m.: Mission Commander Kenneth D. Cockrell; Pilot Kent V. Rominger; and Mission Specialists Tamara E. Jernigan, Thomas D. Jones and Story Musgrave headed for the crew quarters in the Operations and Checkout Building. Tomorrow, Nov. 12, the launch countdown will begin at 1 p.m. with the countdown clock set at T- 43 hours. The Space Shuttle Columbia is scheduled for liftoff from Launch Pad 39B at 2:50 p.m. EST, Nov. 15.

  2. Mars Sample Return as a Feed-Forward into Planetary Protection for Crewed Missions to the Martian Surface

    NASA Astrophysics Data System (ADS)

    Spry, J. A.; Siegel, B.

    2018-04-01

    PP implementation is a required part of crewed exploration of Mars. Determining how PP is achieved is contingent on improved knowledge of Mars, best obtained in part by analysis of martian material of known provenance, as part of a Mars Sample Return mission.

  3. Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1989-01-01

    The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.

  4. Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations

    NASA Astrophysics Data System (ADS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1989-07-01

    The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.

  5. STS-121 Crew attends the "X Games" in Los Angeles

    NASA Image and Video Library

    2006-08-03

    JSC2006-E-32814 (3 August 2006) --- The crew of STS-121 attended opening day of the 12th "X Games" in Los Angeles Aug. 3, discussing their recent mission to the International Space Station with students and athletes. Astronaut Mark E. Kelly, pilot, stands at the edge of the signature 80 foot high "Big Air Jump" skateboarding ramp - location for one of the event highlights. The crew's visit also included presentations at the Jet Propulsion Laboratory and the California Science Center.

  6. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Media representatives from all over the world fill the Kennedy Space Center Press Site Auditorium for a press conference held by the STS-95 crew before their return to the Johnson Space Center in Houston, Texas. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  7. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. Shown are Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Other members of the crew also at the briefing were Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski and Mission Specialist Stephen K. Robinson. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  8. 31 CFR 363.38 - What happens if my financial institution returns an ACH debit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TreasuryDirect § 363.38 What happens if my financial institution returns an ACH debit? If your designated financial institution returns an ACH debit, we reserve the right to reinitiate the debit at our option. We.... We are not responsible for any fees your financial institution may charge relating to returned ACH...

  9. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim

    2006-01-01

    The United States (U.S.) Vision for Space Exploration directs NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. This decision was reached after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by building on the Apollo Program and other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  10. Commercial Crew Medical Ops

    NASA Technical Reports Server (NTRS)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  11. STS-71 Pilot Charles J. Precort arrival in T-38

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-71 Pilot Charles J. Precourt arrives at the KSC Shuttle Landing Facility in one of the T-38 aircraft traditionally flown by the astronaut corps. The seven STS-71 crew members flew into KSC from Johnson Space Center as final preparations are under way toward the scheduled liftoff on June 23 of the Space Shuttle Atlantis on the first mission to dock with the Russian Space Station Mir. KSC-95EC-870 - Mir 19 Flight Engineer Nikolai M. Budarin arrives at KSC Mir 19 Flight Engineer Nikolai M. Budarin hitches a ride with STS-71 Pilot Charles J. Precourt in a T-38. Budarin, Precourt and the rest of the STS-71 crew arrived at KSC's Shuttle Landing Facility the same day the countdown clock began ticking toward a scheduled liftoff on Friday, June 23. During the historic flight of the Space Shuttle Atlantis on STS- 71, the crew will perform the first U.S. docking with the Russian Space Station Mir. Budarin and Mir 19 Mission Commander Anatoly Solovyev will transfer to Mir during the flight, and the three crew members currently on Mir will return to Earth in the orbiter.

  12. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Members of the STS-95 crew file past photographers and reporters from all over the world as they enter the Kennedy Space Center Press Site Auditorium to participate in a media briefing before returning to the Johnson Space Center in Houston, Texas. From left to right, they are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The other STS- 95 crew members participating in the briefing (but hidden behind Parazynski) are Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  13. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Members of the STS-95 crew file past photographers and reporters from all over the world as they enter the Kennedy Space Center Press Site Auditorium to participate in a media briefing before returning to the Johnson Space Center in Houston, Texas. From left to right, they are Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The other STS- 95 crew members participating in the briefing are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist and Payload Commander Stephen K. Robinson, and Mission Specialist Scott E. Parazynski. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  14. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr. (right), a senator from Ohio and one of the original seven Project Mercury astronauts, gestures during a media briefing at the Kennedy Space Center Press Site Auditorium. Glenn and the other members of the STS-95 crew held the briefing before returning to the Johnson Space Center in Houston, Texas. Others shown are (left to right) Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The other crew members participating in the briefing were Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, and Mission Specialist and Payload Commander Stephen K. Robinson. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  15. KENNEDY SPACE CENTER, FLA. - Walking away from the T-38 jet aircraft that brought them to KSC are STS-114 Mission Specialist Wendy Lawrence and Pilot James Kelly. Lawrence is a new addition to the crew. They and other crew members are at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Walking away from the T-38 jet aircraft that brought them to KSC are STS-114 Mission Specialist Wendy Lawrence and Pilot James Kelly. Lawrence is a new addition to the crew. They and other crew members are at KSC to take part in crew equipment and orbiter familiarization.

  16. STS-121 Crew attends the "X Games" in Los Angeles

    NASA Image and Video Library

    2006-08-03

    JSC2006-E-32815 (3 Aug. 2006) --- The crew of STS-121 attended opening day of the 12th "X Games" in Los Angeles Aug. 3, discussing their recent mission to the International Space Station with students and athletes. From left to right are astronauts Piers J. Sellers, Stephanie D. Wilson, Steven W. Lindsey, Michael E. Fossum, Lisa M. Nowak and Mark E. Kelly. In the background is the signature 80 foot high "Big Air Jump" skateboarding ramp - one of the event highlights. The crew's visit also included presentations at the Jet Propulsion Laboratory and the California Science Center.

  17. Crew Transportation Plan

    NASA Technical Reports Server (NTRS)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  18. The STS-95 crew poses with a Mercury capsule model before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Before returning to the Johnson Space Center in Houston, Texas, members of the STS-95 crew pose with a model of a Mercury capsule following a media briefing at the Kennedy Space Center Press Site Auditorium . From left to right are Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Pilot Steven W. Lindsey; Mission Commander Curtis L. Brown Jr.; Friendship 7; Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts; Mission Specialist Scott E. Parazynski; and Mission Specialist Pedro Duque, with the European Space Agency (ESA). Also on the crew is Mission Specialist and Payload Commander Stephen K. Robinson (not shown). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  19. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Bayt, Robert L. (Compiler); Lueders, Kathryn L. (Compiler)

    2016-01-01

    The ISS Crew Transportation and Services Requirements Document (CCT-REQ-1130) contains all technical, safety, and crew health medical requirements that are mandatory for achieving a Crew Transportation System Certification that will allow for International Space Station delivery and return of NASA crew and limited cargo. Previously approved on TN23183.

  20. Post landing design and testing of an ACRV model. [Assured Crew Return Vehicles

    NASA Technical Reports Server (NTRS)

    Hosterman, Kenneth C.; Anderson, Loren A.

    1991-01-01

    Consideration is given to a 1990-1991 program concentrated on the design, building, and testing of a one-fifth scale model of the egress and stabilization systems for an Apollo Command Module (ACM)-based assured crew return vehicle (ACRV). The program is aimed at determining the feasibility of 1) stabilizing the ACRV out of the range of motions which cause space sickness and 2) the safe and rapid removaling of a sick or injured crewmember from the ACRV. Research have been conducted in the following areas: ACRV model construction, water test facility identification, and stabilization control systems. The fidelity of the model has been established from geometric and dynamic characteristic tests performed on the model.

  1. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronaut Bob Behnken, work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  2. Lunar Return Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Wall Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Tran, Van T.; Bowles, Jeff

    2007-01-01

    Thermostructural analysis was performed on generic crew exploration vehicle (GCEV) heat shielded wall structures subjected to reentry heating rates based on five potential lunar return reentry trajectories. The GCEV windward outer wall is fabricated with a graphite/epoxy composite honeycomb sandwich panel and the inner wall with an aluminum honeycomb sandwich panel. The outer wall is protected with an ablative Avcoat-5026-39H/CG thermal protection system (TPS). A virtual ablation method (a graphical approximation) developed earlier was further extended, and was used to estimate the ablation periods, ablation heat loads, and the TPS recession layer depths. It was found that up to 83 95 percent of the total reentry heat load was dissipated in the TPS ablation process, leaving a small amount (3-15 percent) of the remaining total reentry heat load to heat the virgin TPS and maintain the TPS surface at the ablation temperature, 1,200 F. The GCEV stagnation point TPS recession layer depths were estimated to be in the range of 0.280-0.910 in, and the allowable minimum stagnation point TPS thicknesses that could maintain the substructural composite sandwich wall at the limit temperature of 300 F were found to be in the range of 0.767-1.538 in. Based on results from the present analyses, the lunar return abort ballistic reentry was found to be quite attractive because it required less TPS weight than the lunar return direct, the lunar return skipping, or the low Earth orbit guided reentry, and only 11.6 percent more TPS weight than the low Earth orbit ballistic reentry that will encounter a considerable weight penalty to obtain the Earth orbit. The analysis also showed that the TPS weight required for the lunar return skipping reentry was much more than the TPS weight necessary for any of the other reentry trajectories considered.

  3. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronauts Eric Boe, right, and Bob Behnken work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  4. Commerical Crew Astronauts Evaluate Crew Dragon Controls

    NASA Image and Video Library

    2017-01-10

    Astronauts Bob Behnken, left, and Eric Boe work in a mock-up of the SpaceX Crew Dragon flight deck at the company's Hawthorne, California, headquarters as development of the crew systems continues for eventual missions to the International Space Station.

  5. The FEI-TPS on the Upper Surface of the X-38

    NASA Astrophysics Data System (ADS)

    Antonenko, Johann; Kowal, John

    2002-01-01

    The X-38 is being developed by NASA-JSC as a technology demonstrator of a future Crew Rescue Vehicle. The size of the vehicle is limited to fit into the cargo bay of the shuttle. Due to its small size and shuttle-like trajectory all surfaces will receive comparably high heat rates leading to high surface temperatures. Temperatures on the nose are calculated to reach 1750°C, which is significantly higher than on the shuttle. Due to the lifting body shape, large areas of the central fuselage will be exposed to flow of hot gases around the vehicle. Here temperatures of the upper surface are calculated to reach up to 1000°C and the application of a high temperature blanket thermal protection system (TPS) becomes mandatory. Consecutively, the temperature level of the upper surface and the base area will be significantly high. Unlike on the shuttle, where large areas of the surface are covered by flexible reusable surface insulation (FRSI), locations with temperatures below 400°C will be scarce on the X-38. During development of the European shuttle HERMES the Flexible External Insulation (FEI) was developed for the upper surface TPS. This development was continued by ESA and DLR funded programs and currently a product family is available for temperatures ranging from 450°C to 1100°C for re-usable application. For a single re- entry under ultimate conditions temperatures may reach up to 1400°C. Under funding of DLR and ESA, the FEI assembly is one of the European contributions to the X-38. Three subassemblies have been chosen: the FEI-450, FEI-650 and FEI- 1000, capable of limit temperatures of 450°C, 650°C and 1000°C, respectively. The FEI-650 and FEI-1000 were already developed in the HERMES program. The FEI- 450 was developed in the German TETRA program. The qualification for X-38 application was performed for temperatures up to 510°C for the FEI-450 and up to 1130°C for the FEI-1000. Acoustic noise loads of up to 160dB have been endured, far beyond what X

  6. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The day after their return to Earth on board the orbiter Discovery, members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right are Lisa Malone, moderator and chief of NASA Public Affairs' Media Services at Kennedy Space Center; Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  7. STS-113 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-113 crew consists of Commander Jim Weatherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington. The goal of the STS-113 mission is to deliver the Expedition Six crew to the International Space Station and return the Expedition Five crew to Earth. Also, the P1 Truss will be installed on the International Space Station. The STS-113 crew is shown getting suited for Pre-Launch Ingress and Egress. The Neutral Buoyancy Lab Extravehicular Activity training (NBL) (EVA), CETA Bolt Familiarization, and Photography TV instruction are also presented.

  8. Dynamic and Static High Temperature Resistant Ceramic Seals for X- 38 re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Handrick, Karin E.; Curry, Donald M.

    2002-01-01

    In a highly successful partnership, NAS A, ESA, DLR (German Space Agency) and European industry are building the X-38, V201 re-entry spacecraft, the prototype of the International Space Station's Crew Return Vehicle (CRV). This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. The development of essential systems and technologies for a reusable re-entry vehicle is a first for Europe, and sharing the development of an advanced re-entry spacecraft with foreign partners is a first for NASA. NASA, in addition to its subsystem responsibilities, is performing overall X-38 vehicle system engineering and integration, will launch V201 on the Space Shuttle, deliver flight data for post-flight analysis and assessment and is responsible for development and manufacture of structural vehicle components and thermal protection (TPS) tiles. The major European objective for cooperation with NASA on X-38 was to establish a clear path through which key technologies needed for future space transportation systems could be developed and validated at affordable cost and with controlled risk. Europe has taken the responsibility to design and manufacture hot control surfaces like metallic rudders and ceramic matrix composites (CMC) body flaps, thermal protection systems such as CMC leading edges, the CMC nose cap and -skirt, insulation, landing gears and elements of the V201 primary structure. Especially hot control surfaces require extremely high temperature resistant seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent overheating of these structures and possible loss of the vehicle. Complex seal interfaces, which have to fulfill various, tight mission- and vehicle-related requirements exist between the moveable ceramic body flaps and the bottom surface of the vehicle, between the rudder and fin structure and the ceramic leading edge panel and TPS tiles. While NASA

  9. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, WIlliam

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  10. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Snoddy, Jim

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo-era experts to derive other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  11. The STS-95 crew and their families prepare for their return flight to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Pilot Steven W. Lindsey (left), Lindsey's daughter (front), and Payload Specialist John H. Glenn Jr. (right), a senator from Ohio and one of the original seven Project Mercury astronauts, give a thumbs up on the success of the mission. Members of the STS-95 crew and their families prepared for their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Others returning were Mission Commander Curtis L. Brown Jr.; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  12. STS-112 crew leave the crew transport vehicle after landing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- As the STS-112 crew leaves the crew transport vehicle, they are greeted by mission managers and guests. The crew, from left, are Mission Specialists David Wolf, Fyodor Yurchikhin and Sandra Magnus; Pilot Pamela Melroy; Piers Sellers (talking to Acting Deputy Director JoAnn Morgan) and Commander Jeffrey Ashby (talking to Launch Director Mike Leinbach). Morgan is also Director of External Relations and Business Development. The crew returned to KSC after completing a 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. .

  13. Ares I-X Flight Test Vehicle Similitude to the Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Smith, R. Marshall; Campbell, John R., Jr.; Taylor, Terry L.

    2008-01-01

    The Ares I-X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. The test flight is scheduled for April 2009, relatively early in the Ares I design process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Because of the short time frame (relative to new launch vehicle development) before the Ares I-X flight, decisions about the flight test vehicle design had to be made in order to complete analysis and testing in time to manufacture the Ares I-X vehicle hardware elements. This paper describes the similarities and differences between the Ares I-X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I-X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I-X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I-X flight test will provide in similitude to Ares I as well as what the test will not provide is important in the continued execution of the Ares I-X mission leading to its flight and the continued design and development of Ares I.

  14. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Dryden Experimental Fabrication Shop's Andy Blua and Jeff Doughty make sure the new pylon for the X-38 fits precisely during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California in 1997. The 1,200-pound steel pylon, fabricated at Dryden, was an 'adapter' to allow the X-38 research vehicle to be carried aloft and launched from the bomber. The X-38 was a designed as a technology demonstrator to help develop an emergency Crew Return Vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research

  15. Preliminary subsystem designs for the Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Described herein is a series of design studies concerning the Assured Crew Return Vehicle (ACRV). Study topics include a braking and landing system for the ACRV, ACRV growth options, and the design impacts of ACRV's role as a medical emergency vehicle. Four alternate designs are presented for the ACRV braking and landing system. Options presented include ballistic and lifting body reentries; the use of high-lift, high-payload aerodynamic decelerators, as well as conventional parachutes; landing systems designed for water landings, land landings or both; and an aerial recovery system. Uses of the ACRV or a similarly designed vehicle in several roles for possible future space missions are discussed, along with the required changes to the ACRV to allow it to perform these missions optimally. The impacts on the design of the ACRV due to its role as an emergency vehicle were studied and are presented here. This study included the design of a stretcher-like system to transport an ill or injured crewmember safely within the ACRV; a compilation of necessary medical equipment and decisions on how or where to store it; and recommendations about internal and external vehicle characteristics that will ease the transport of the ill or injured crewmember and allow for swift and easy ingress/egress of the vehicle.

  16. Safety Guided Design of Crew Return Vehicle in Concept Design Phase Using STAMP/STPA

    NASA Astrophysics Data System (ADS)

    Nakao, H.; Katahira, M.; Miyamoto, Y.; Leveson, N.

    2012-01-01

    In the concept development and design phase of a new space system, such as a Crew Vehicle, designers tend to focus on how to implement new technology. Designers also consider the difficulty of using the new technology and trade off several system design candidates. Then they choose an optimal design from the candidates. Safety should be a key aspect driving optimal concept design. However, in past concept design activities, safety analysis such as FTA has not used to drive the design because such analysis techniques focus on component failure and component failure cannot be considered in the concept design phase. The solution to these problems is to apply a new hazard analysis technique, called STAMP/STPA. STAMP/STPA defines safety as a control problem rather than a failure problem and identifies hazardous scenarios and their causes. Defining control flow is the essential in concept design phase. Therefore STAMP/STPA could be a useful tool to assess the safety of system candidates and to be part of the rationale for choosing a design as the baseline of the system. In this paper, we explain our case study of safety guided concept design using STPA, the new hazard analysis technique, and model-based specification technique on Crew Return Vehicle design and evaluate benefits of using STAMP/STPA in concept development phase.

  17. STS-104 Crew Return, Ellington Field, Building 990

    NASA Image and Video Library

    2001-07-26

    JSC2001-E-22790 (25 July 2001) --- Astronauts Janet L. Kavandi (left), STS-104 mission specialist, and Steven W. Lindsey, mission commander, are greeted by JSC Acting Director Roy S. Estess following crew arrival at Ellington Field.

  18. Ares I-X Flight Test Vehicle Similitude to the Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Smith, R. Marshall; Campbell, John R.; Taylor, Terry L.

    2009-01-01

    The Ares I-X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. Ares I-X is scheduled for a 2009 flight date, early enough in the Ares I design and development process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Decisions on Ares I-X scope, flight test objectives, and FTV fidelity were made prior to the Ares I systems requirements being baselined. This was necessary in order to achieve a development flight test to impact the Ares I design. Differences between the Ares I-X and the Ares I configurations are artifacts of formulating this experimental project at an early stage and the natural maturation of the Ares I design process. This paper describes the similarities and differences between the Ares I-X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I-X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I-X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I-X flight test will provide in similitude to Ares I - as well as what the test will not provide - is important in the continued execution of the Ares I-X mission leading to its flight and the continued design and development of Ares I.

  19. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Cars carrying Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin pull up to the terminal at the Kustanay Airport a few hours after the crew landed their Soyuz TMA-06M spacecraft near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and, Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  20. X-15 #3 being secured by ground crew after flight

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The X-15-3 (56-6672) research aircraft is secured by ground crew after landing on Rogers Dry Lakebed. The work of the X-15 team did not end with the landing of the aircraft. Once it had stopped on the lakebed, the pilot had to complete an extensive post-landing checklist. This involved recording instrument readings, pressures and temperatures, positioning switches, and shutting down systems. The pilot was then assisted from the aircraft, and a small ground crew depressurized the tanks before the rest of the ground crew finished their work on the aircraft. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the

  1. Columbia Crew Survival Investigation Report

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA commissioned the Columbia Accident Investigation Board (CAIB) to conduct a thorough review of both the technical and the organizational causes of the loss of the Space Shuttle Columbia and her crew on February 1, 2003. The accident investigation that followed determined that a large piece of insulating foam from Columbia s external tank (ET) had come off during ascent and struck the leading edge of the left wing, causing critical damage. The damage was undetected during the mission. The CAIB's findings and recommendations were published in 2003 and are available on the web at http://caib.nasa.gov/. NASA responded to the CAIB findings and recommendations with the Space Shuttle Return to Flight Implementation Plan. Significant enhancements were made to NASA's organizational structure, technical rigor, and understanding of the flight environment. The ET was redesigned to reduce foam shedding and eliminate critical debris. In 2005, NASA succeeded in returning the space shuttle to flight. In 2010, the space shuttle will complete its mission of assembling the International Space Station and will be retired to make way for the next generation of human space flight vehicles: the Constellation Program. The Space Shuttle Program recognized the importance of capturing the lessons learned from the loss of Columbia and her crew to benefit future human exploration, particularly future vehicle design. The program commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT). The SCSIIT was asked to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival for all future human space flight vehicles. To do this, the SCSIIT investigated all elements of crew survival, including the design features, equipment, training, and procedures intended to protect the crew. This report documents the SCSIIT findings, conclusions, and recommendations.

  2. Global Positioning Svstem (GPS) on International Space Station (ISS) and Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.

    2002-01-01

    Both the International Space Station and Crew Return Vehicle desired to have GPS on their vehicles due to improve state determination over traditional ground tracking techniques used in the past for space vehicles. Both also opted to use GPS for attitude determination to save the expense of a star tracker. Both vehicles have stringent pointing requirements for roll, pitch, and heading, making a sun or earth sensor not a viable option since the heading is undetermined. This paper discusses the technical challenges associated with the implementation of GPS on both of these vehicles. ISS and CRY use the same GPS receiver, but have faced different challenges since the mission of each is di fferent. ISS will be discussed first, then CRY. The flight experiments flown on the Space Shuttle in support of these efforts is also discussed.

  3. Advanced Crew Rescue Vehicle/Personnel Launch System

    NASA Astrophysics Data System (ADS)

    Craig, Jerry W.

    1993-02-01

    The Advanced Crew Rescue Vehicle (ACRV) will be an essential element of the Space Station to respond to three specific missions, all of which have occurred during the history space exploration by the U.S. and the Soviets: (1) Mission DRM-1: Return of disabled crew members during medical emergencies; (2) Mission DRM-2: Return of crew members from accidents or as a result of failures of Space Station systems; and (3) Mission DRM-3: Return of crew members during interruption of Space Shuttle launches. The ACRV will have the ability to transport up to eight astronauts during a 24-hour mission. Not only would the ACRV serve as a lifeboat to provide transportation back to Earth, but it would also be available as a immediately available safe refuge in case the Space Station were severely damaged by space debris or other catastrophe. Upon return to Earth, existing world-wide search and rescue assets operated by the Coast Guard and Department of Defense would be able to retrieve personnel returned to Earth via the ACRV. The operational approach proposed for the ACRV is tailored to satisfying mission requirements for simplicity of operation (no piloting skills or specially trained personnel are required), continuous availability, high reliability and affordability. By using proven systems as the basis for many critical ACRV systems, the ACRV program is more likely to achieve each of these mission requirements. Nonetheless, the need for the ACRV to operate reliably with little preflight preparation after, perhaps, 5 to 10 years in orbit imposes challenges not faced by any previous space system of this complexity. Specific concerns exist regarding micrometeoroid impacts, battery life, and degradation of recovery parachutes while in storage.

  4. Advanced Crew Rescue Vehicle/Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Craig, Jerry W.

    1993-01-01

    The Advanced Crew Rescue Vehicle (ACRV) will be an essential element of the Space Station to respond to three specific missions, all of which have occurred during the history space exploration by the U.S. and the Soviets: (1) Mission DRM-1: Return of disabled crew members during medical emergencies; (2) Mission DRM-2: Return of crew members from accidents or as a result of failures of Space Station systems; and (3) Mission DRM-3: Return of crew members during interruption of Space Shuttle launches. The ACRV will have the ability to transport up to eight astronauts during a 24-hour mission. Not only would the ACRV serve as a lifeboat to provide transportation back to Earth, but it would also be available as a immediately available safe refuge in case the Space Station were severely damaged by space debris or other catastrophe. Upon return to Earth, existing world-wide search and rescue assets operated by the Coast Guard and Department of Defense would be able to retrieve personnel returned to Earth via the ACRV. The operational approach proposed for the ACRV is tailored to satisfying mission requirements for simplicity of operation (no piloting skills or specially trained personnel are required), continuous availability, high reliability and affordability. By using proven systems as the basis for many critical ACRV systems, the ACRV program is more likely to achieve each of these mission requirements. Nonetheless, the need for the ACRV to operate reliably with little preflight preparation after, perhaps, 5 to 10 years in orbit imposes challenges not faced by any previous space system of this complexity. Specific concerns exist regarding micrometeoroid impacts, battery life, and degradation of recovery parachutes while in storage.

  5. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right, they are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  6. APOLLO X - CREW

    NASA Image and Video Library

    1969-06-03

    S69-35505 (June 1969) --- The prime crews of the Apollo 10 lunar orbit mission and the Apollo 11 lunar landing mission are photographed during an Apollo 10 postflight de-briefing session. Clockwise, from left foreground, are astronauts Michael Collins, Apollo 11 command module pilot; Edwin E. Aldrin Jr., Apollo 11 lunar module pilot; Eugene A. Cernan, Apollo 10 lunar module pilot; Thomas P. Stafford, Apollo 10 commander; Neil A. Armstrong, Apollo 11 commander; and John W. Young, Apollo 10 command module pilot.

  7. Orion Optical Navigation for Loss of Communication Lunar Return Contingencies

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Hanak, Chad; Kubitschek, Daniel G.

    2010-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans back to the Moon for the first time since the Apollo program. For nominal lunar mission operations, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of Orion and uplink state information to support Lunar return. However, in the loss of communications contingency return scenario, Orion must safely return the crew to the Earth's surface. The navigation design solution for this loss of communications scenario is optical navigation consisting of lunar landmark tracking in low lunar orbit and star- horizon angular measurements coupled with apparent planetary diameter for Earth return trajectories. This paper describes the optical measurement errors and the navigation filter that will process those measurements to support navigation for safe crew return.

  8. Preliminary Subsystem Designs for the Assured Crew Return Vehicle (ACRV), volumes 1-3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A long term manned facility in space must include provisions for the safety of the crew. The resolution of this need was the design of an Assured Crew Return Vehicle (ACRV). The main focus is on the braking and landing system of the ACRV. This subsystem of the ACRV was divided into three phases. The Phase 1 analysis showed that the use of a tether to aid in the reentry of the ACRV was infeasible due to cost and efficiency. Therefore, a standard rocket would be used for reentry. It was also found that the continental United States was an achievable landing site for the ACRV. The Phase 2 analysis determined the L/D of the vehicle to be 1.8, thus requiring the use of a lifting body for reentry. It was also determined that shuttle tiles would be used for the thermal protection system. In addition, a parachute sequence for further deceleration was included, namely a ringslot drogue chute, a pilot chute, and finally a ringsail main parachute. This sequence was found to be capable of slowing the vehicle to a descent velocity of 9 to 10 m/s, which is the required velocity for aerial recovery. The Phase 3 analysis proved that a Sikorsky CH-53E helicopter is capable of retrieving the ACRV at 5.5 km altitude with minimal g-forces induced on the ACRV and minimal induced moments on the helicopter upon hookup. The helicopter would be modified such that it could stabilize the ACRV close to the bottom of helicopter and carry it to the nearest designated trauma center.

  9. Commander Duffy and the STS-92 crew return to O&C after launch scrub

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Commander Brian Duffy pauses in the door of the Astrovan before exiting at the Operations and Checkout Building. The vehicle is returning the crew after the scheduled launch to the International Space Station (ISS) was scrubbed about 90 minutes before liftoff. The mission will be the fifth flight for the construction of the ISS. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or spacewalks, are planned. The Z-1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth ISS flight and Lab installation on the seventh ISS flight. The launch has been rescheduled for liftoff Oct. 11 at 7:17 p.m.

  10. Expedition 38 Press Conference

    NASA Image and Video Library

    2013-11-06

    Expedition 38 backup crew member Reid Wiseman of NASA is seen in quarantine, behind glass, during the final press conference held a day ahead of the launch of Expedition 38 prime crew members; Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, Soyuz Commander Mikhail Tyurin of Roscosmos, and, Flight Engineer Rick Mastracchio of NASA, to the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  11. STS-105 Expedition 2 Return

    NASA Image and Video Library

    2001-08-23

    JSC2001-E-25809 (23 August 2001) --- The STS-105 and Expedition Two crews meet their families and friends during the crew return ceremonies at Ellington Field. Among the crowd are Johnson Space Center's (JSC) Acting Director Roy Estess (back left), astronaut Marsha S. Ivins (third from the left), cosmonaut Yury V. Usachev (fourth from the left), Expedition Two mission commander, Susan J. Helms (fifth from the left), Expedition Two flight engineer, James S. Voss (third from the right), Expedition Two flight engineer, and cosmonaut Vasili V. Tsibliyev. The STS-105 crew delivered the Expedition Three crew and supplies to the International Space Station (ISS) and brought the Expedition Two crew back to Earth.

  12. Expedition 38 Press Conference

    NASA Image and Video Library

    2013-11-06

    Expedition 38 backup crew member Alexander Gerst of the European Space Agency is seen in quarantine, behind glass, during the final press conference held a day ahead of the launch of Expedition 38 prime crew members; Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, Soyuz Commander Mikhail Tyurin of Roscosmos, and, Flight Engineer Rick Mastracchio of NASA, to the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  13. Design of a 10.8 kWh, 28V Ni-MH Battery Using Commercial Ni-MH Cells

    NASA Technical Reports Server (NTRS)

    Hellen, Robert M.; Darcy, Eric C.

    2000-01-01

    This paper describes the design of a 10.8 kWh, 28V, Ni-MH battery using commercial off-the shelf (COTS) 4/3A Ni-MH cells for the X-38 vehicle, an experimental version of the Crew Return Vehicle (CRY). This will be an autonomous vehicle that will enable International Space Station crews to return to earth in the event of a medical, or other, emergency. The X-38 will be powered by 3 batteries: a 32 V primary battery, which will power the vehicle avionics for up to 7 hours for a loiter and de-orbit phase of the descent; a 28 V Ni-MH battery which will take over for the primary battery after de-orbit until landing, and a 270V Ni-Cd battery, which will be used to power electromechanical actuators and the winches controlling a parachute for landing.

  14. The STS-88 crew and families DEPART for Houston

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Commander Robert D. Cabana and his wife, Nancy, enter the airplane that will return them to Houston and the Johnson Space Center. They will be joined by other crew members, with their families, Pilot Frederick W. 'Rick' Sturckow. Mission Specialists Sergei Konstantinovich Krikalev, James H. Newman, Jerry L. Ross and Nancy J. Currie. The STS-88 crew returned Dec. 15 from a 12- day mission on orbit constructing the first elements of the International Space Station, the U.S.-built Unity connecting module and Russian-built Zarya control module.

  15. International Space Station (ISS) Accommodation of a Single US Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Garn, Michelle A.; Troutman, Patrick A.; Wang, Yuan; Kumar, Renjith; Heck, Michael L.

    1997-01-01

    The following report was generated to give the International Space Station (ISS) Program some additional insight into the operations and issues associated with accommodating a single U.S. developed Assured Crew Return Vehicle (ACRV). During the generation of this report, changes in both the ISS and ACRV programs were factored into the analysis with the realization that most of the work performed will eventually need to be repeated once the two programs become more integrated. No significant issues associated with the ISS accommodating the ACRV were uncovered. Kinematic analysis of ACRV installation showed that there are viable methods of using Shuttle and Station robotic manipulators. Separation analysis demonstrated that the ACRV departure path clears the Station structure for all likely contingency scenarios. The payload bay packaging analysis identified trades that can be made between payload bay location, Shuttle Remote Manipulator System (SRMS) reach and eventual designs of de-orbit stages and docking adapters.

  16. X-38 flies free from NASA's B-52 mothership, July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a 'lifeboat' for the International Space Station based on X-38 research.

  17. X-38 flies free from NASA's B-52 mothership, July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a "lifeboat" for the International Space Station based on X-38 research.

  18. NASA astronaut and Mir 24 crew member David Wolf after landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian Space Station Mir since late September 1997, greets his friend, Tammy Kruse, shortly after his return to Earth on Jan. 31. Dr. Wolf returned aboard the orbiter Endeavour with the rest of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts.

  19. Tuning Thermoelectric Properties of Type I Clathrate K 8–x Ba x Al 8+x Si 38x through Barium Substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sui, Fan; Kauzlarich, Susan M.

    2016-05-10

    The thermal stability and thermoelectric properties of type I clathrate K8Al8Si38 up to 873 K are reported. K8Al8Si38 possesses a high absolute Seebeck coefficient value and high electrical resistivity in the temperature range of 323 to 873 K, which is consistent with previously reported low temperature thermoelectric properties. Samples with Ba partial substitution at the K guest atom sites were synthesized from metal hydride precursors. The samples with the nominal chemical formula of K8–xBaxAl8+xSi38x (x = 1, 1.5, 2) possess type I clathrate structure (cubic, Pm3n), confirmed by X-ray diffraction. The guest atom site occupancies and thermal motions were investigatedmore » with Rietveld refinement of synchrotron powder X-ray diffraction. Transport properties of Ba-containing samples were characterized from 2 to 300 K. The K–Ba alloy phases showed low thermal conductivity and improved electrical conductivity compared to K8Al8Si38. Electrical resistivity and Seebeck coefficients were measured over the temperature range of 323 to 873 K. Thermal conductivity from 323 to 873 K was estimated from the Wiedemann–Franz relation and lattice thermal conductivity extrapolation from 300 to 873 K. K8–xBaxAl8+xSi38x (x = 1, 1.5) synthesized with Al deficiency showed enhanced electrical conductivity, and the absolute Seebeck coefficients decrease with the increased carrier concentration. When x = 2, the Al content increases toward the electron balanced composition, and the electrical resistivity increases with the decreasing charge carrier concentration. Overall, K6.5Ba1.5Al9Si37 achieves an enhanced zT of 0.4 at 873 K.« less

  20. Real-Time Stability Margin Measurements for X-38 Robustness Analysis

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Stachowiak, Susan J.

    2005-01-01

    A method has been developed for real-time stability margin measurement calculations. The method relies on a tailored-forced excitation targeted to a specific frequency range. Computation of the frequency response is matched to the specific frequencies contained in the excitation. A recursive Fourier transformation is used to make the method compatible with real-time calculation. The method was incorporated into the X-38 nonlinear simulation and applied to an X-38 robustness test. X-38 stability margins were calculated for different variations in aerodynamic and mass properties over the vehicle flight trajectory. The new method showed results comparable to more traditional stability analysis techniques, and at the same time, this new method provided coverage that is more complete and increased efficiency.

  1. Issues in life support and human factors in crew rescue from the ISS

    NASA Technical Reports Server (NTRS)

    Smart, K.

    2001-01-01

    The design and development of crew emergency response systems, particularly to provide an unplanned emergency return to Earth, requires an understanding of crew performance challenges in space. The combined effects of psychological and physiological adaptation during long-duration missions will have a significant effect on crew performance in the unpredictable and potentially life-threatening conditions of an emergency return to Earth. It is therefore important that the systems to be developed for emergency egress address these challenges through an integrated program to produce optimum productivity and safety in times of utmost stress. Fundamental to the success of the CRV is the Environmental Control and Life Support System (ECLSS), which provides the necessary conditions for the crew to survive their return mission in a shirtsleeve environment. This article will discuss the many issues in the design of an ECLSS system for CRV and place it in the context of the human performance challenges of the mission.

  2. Crew Exploration Vehicle Service Module Ascent Abort Coverage

    NASA Technical Reports Server (NTRS)

    Tedesco, Mark B.; Evans, Bryan M.; Merritt, Deborah S.; Falck, Robert D.

    2007-01-01

    The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability.

  3. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes.

  4. Designing the X-Ray Microcalorimeter Spectrometer for Optimal Science Return

    NASA Technical Reports Server (NTRS)

    Ptak, Andrew; Bandler, Simon R.; Bookbinder, Jay; Kelley, Richard L.; Petre, Robert; Smith, Randall K.; Smith, Stephen

    2013-01-01

    Recent advances in X-ray microcalorimeters enable a wide range of possible focal plane designs for the X-ray Microcalorimeter Spectrometer (XMS) instrument on the future Advanced X-ray Spectroscopic Imaging Observatory (AXSIO) or X-ray Astrophysics Probe (XAP). Small pixel designs (75 microns) oversample a 5-10" PSF by a factor of 3-6 for a 10 m focal length, enabling observations at both high count rates and high energy resolution. Pixel designs utilizing multiple absorbers attached to single transition-edge sensors can extend the focal plane to cover a significantly larger field of view, albeit at a cost in maximum count rate and energy resolution. Optimizing the science return for a given cost and/or complexity is therefore a non-trivial calculation that includes consideration of issues such as the mission science drivers, likely targets, mirror size, and observing efficiency. We present a range of possible designs taking these factors into account and their impacts on the science return of future large effective-area X-ray spectroscopic missions.

  5. Preliminary subsystem designs for the Assured Crew Return Vehicle (ACRV), volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A series of design studies is presented concerning the Assured Crew Return Vehicle (ACRV) for Space Station Freedom. Four alternate designs are presented for the ACRV braking and landing system. Options presented include: ballistic and lifting body reentries; the use of high-lift, high-payload aerodynamic decelerators, as well as conventional parachutes; landing systems designed for water landings, land landings, or both; and an aerial recovery system. All four design options presented combine some or all of the above attributes, and all meet performance requirements established by the ACRV Program Office. Two studies of ACRV growth options are also presented. Use of the ACRV or a similarly designed vehicle in several roles for possible future space missions is discussed, along with the required changes to a basic ACRV to allow it to perform these missions optimally. The outcome of these studies is a set of recommendations to the ACRV Program Office describing the vehicle characteristics of the basic ACRV which lend themselves most readily to be adapted for use in other missions. Finally, the impacts on the design of the ACRV due to its role as a medical emergency vehicle were studied and are presented. The use of the ACRV in this manner will impact its shape, internal configuration, and equipment.

  6. STS-99 crew and family DEPART for Houston

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, STS-99 crew members join family members for their return trip to Houston. At left is Jeanne Kregel, wife of Commander Kevin Kregel. At right is Mission Specialist Gerhard Thiele of Germany. The STS-99 crew completed a successful 11-day Shuttle Radar Topography Mission mapping 47 million square miles of the Earth's surface before landing at KSC Feb. 22.

  7. The STS-95 crew and their families prepare for their return flight to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, members of the STS-95 crew and their families prepare for their return flight to the Johnson Space Center in Houston, Texas. Shown are (left to right) Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson; Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Pilot Steven W. Lindsey (with his daughter); Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts; Mission Commander Curtis L. Brown Jr.; and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  8. The STS-93 crew takes part in payload familiarization of the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A TRW technician joins STS-93 Commander Eileen Collins (center) and Pilot Jeffrey S. Ashby (right) as they observe the Chandra X- ray Observatory on its work stand inside the Vertical Processing Facility. Other members of the STS-93 crew who are at KSC for payload familiarization are Mission Specialists Catherine G. Coleman and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a shuttle mission commander. She was the first woman pilot of a Space Shuttle, on mission STS-63, and also served as pilot on mission STS-84. The fifth member of the crew is Mission Specialist Steven A. Hawley. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  9. Expedition Five crew is ready to leave KSC for Houston

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Expedition Five crew are ready to leave KSC for Houston. From left are Science Officer Peggy Whitson, Commander Valery Korzun and Flight Engineer Sergei Treschev. The three returned to Earth on Endeavour Dec. 7, with the STS-113 crew, after six months on the International Space Station.

  10. Cygnus X-3 Returns to an Active State

    NASA Astrophysics Data System (ADS)

    McCollough, Michael L.; Koljonen, Karri; Gurwell, Mark A.; Trushkin, Sergei; Pooley, Guy G.

    2017-08-01

    Cygnus X-3 is a well-known microquasar composed of a mass-donating Wolf-Rayet star and a compact object. Recently, Cygnus X-3 has been in a quiescent state for an extended period of time (2011-2016) but returned to an active state on two occasions during 2016/2017 including quenched/hypersoft states, gamma-ray emission, and major radio flares. During these two periods of activity, we undertook multi-wavelength observing campaigns with observations in the radio (RATAN-600, AMI-LA, Metsähovi), submillimeter (SMA, EHT), X-ray (Swift/XRT, MAXI), hard X-ray (Swift/BAT, NuSTAR), and gamma-ray (AGILE, Fermi, VERITAS). At the peak of the major radio flare in April 2017 observations were made with VERITAS (TeV), NuSTAR (hard X-ray), and the Event Horizon Telescope (submillimeter). In this presentation, I will review these observing campaigns and the insights they provide about Cygnus X-3.

  11. Mir 21 crew and Astronaut Lucid stowing equipment

    NASA Image and Video Library

    1996-03-01

    NM21-386-024 (March 1996) --- Onboard the Base Block Module of Russia’s Mir Space Station, as two members of the Mir-21 crew prepare to move supplies to their proper stowage places. Astronaut Shannon W. Lucid, recently dropped off by the STS-76 Space Shuttle Atlantis crew members and now serving as a cosmonaut guest researcher, works with Yury V. Usachev, flight engineer. She went on to spend a total of 188 consecutive days in space before returning to Earth with the STS-79 crew. She worked with a total of five cosmonauts at various times during that stay.

  12. Expedition Three crew poses for photo at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  13. Crew Exploration Vehicle Ascent Abort Overview

    NASA Technical Reports Server (NTRS)

    Davidson, John B., Jr.; Madsen, Jennifer M.; Proud, Ryan W.; Merritt, Deborah S.; Sparks, Dean W., Jr.; Kenyon, Paul R.; Burt, Richard; McFarland, Mike

    2007-01-01

    One of the primary design drivers for NASA's Crew Exploration Vehicle (CEV) is to ensure crew safety. Aborts during the critical ascent flight phase require the design and operation of CEV systems to escape from the Crew Launch Vehicle and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage. These studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the CEV, driving requirements for abort scenarios, and an overview of current ascent abort modes. Example analysis results are then discussed. Finally, future areas for abort analysis are addressed.

  14. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., members of the STS-102 crew pose for a photograph with SPACEHAB workers in front of the International Cargo Carrier, which will carry cargo to the International Space Station (ISS). The crew are, left to right, Mission Specialists James Voss, Yuri Usachev, who is with the Russian Space Agency (RSA), and Susan Helms. STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi-Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. The mission is also transporting Helms, Voss and Usachev as the second resident crew (designated Expedition crew 2) to the station. In exchange, the mission will return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  15. Asteroid Redirect Crewed Mission Nominal Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; williams, Jacob

    2014-01-01

    In 2010, the President announced that, in 2025, the U.S. intended to launch a human mission to an asteroid [1]. This announcement was followed by the idea of a Capability Driven Framework (CDF) [2], which is based on the idea of evolving capabilities from less demanding to more demanding missions to multiple possible destinations and with increased flexibility, cost effectiveness and sustainability. Focused missions, such as a NASA inter-Center study that examined the viability and implications of sending a crew to a Near Earth Asteroid (NEA) [3], provided a way to better understand and evaluate the utility of these CDF capabilities when applied to an actual mission. The long duration of the NEA missions were contrasted with a concept described in a study prepared for the Keck Institute of Space Studies (KISS) [4] where a robotic spacecraft would redirect an asteroid to the Earth-Moon vicinity, where a relatively short duration crewed mission could be conducted to the captured asteroid. This mission concept was included in the National Aeronautics and Space Administration (NASA) fiscal year 2014 budget request, as submitted by the NASA Administrator [5]. NASA studies continued to examine the idea of a crewed mission to a captured asteroid in the Earth-Moon vicinity. During this time was an announcement of NASA's Asteroid Grand Challenge [6]. Key goals for the Asteroid Grand Challenge are to locate, redirect, and explore an asteroid, as well as find and plan for asteroid threats. An Asteroid Redirect Mission (ARM) study was being conducted, which supports this Grand Challenge by providing understanding in how to execute an asteroid rendezvous, capture it, and redirect it to Earth-Moon space, and, in particular, to a distant retrograde orbit (DRO). Subsequent to the returning of the asteroid to a DRO, would be the launch of a crewed mission to rendezvous with the redirected asteroid. This report examines that crewed mission by assessing the Asteroid Redirect Crewed

  16. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., members of the STS-102 crew look at part of the cargo for their mission. From left are Mission Specialists James Voss, Susan Helms and Yuri Usachev, with the Russian Space Agency (RSA). STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi-Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. The mission is also transporting Helms, Voss and Usachev as the second resident crew (designated Expedition crew 2) to the station. In exchange, the mission will return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  17. STS-102 (Expedition II) crew members in SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-102 crew members at left are briefed by workers (right) in the Space Station Processing Facility (SSPF) on equipment for their mission. From left are Mission Specialists James Voss, Susan Helms and Yuri Usachev, with the Russian Space Agency (RSA). STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi-Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. The mission is also transporting Helms, Voss and Usachev as the second resident crew (designated Expedition crew 2) to the station. In exchange, the mission will return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  18. Space Shuttle crew compartment debris-contamination

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Villarreal, Leopoldo J.

    1992-01-01

    Remedial actions undertaken to reduce debris during manned flights and ground turnaround operations at Kennedy Space Center and Palmdale are addressed. They include redesign of selected ground support equipment and Orbiter hardware to reduce particularization/debris generation; development of new detachable filters for air-cooled avionics boxes; application of tape-on screens to filter debris; and implementation of new Orbiter maintenance and turnaround procedures to clean filters and the crew compartment. Most of these steps were implemented before the return-to-flight of STS-26 in September 1988 which resulted in improved crew compartment habitability and less potential for equipment malfunction.

  19. STS-99 crew and family DEPART for Houston

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-99 crew get ready to leave KSC with their families for a return trip to Houston. From left are Mission Specialist Janice Voss, Pilot Dominic Gorie, Commander Kevin Kregel, and Mission Specialists Mamoru Mohri of Japan, Gerhard Thiele of Germany, and Janet Kavandi, holding her daughter. The STS-99 crew completed a successful 11-day Shuttle Radar Topography Mission mapping 47 million square miles of the Earth's surface before landing at KSC Feb. 22.

  20. X-38 Experimental Aeroheating at Mach 10

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Weilmuenster, K. James; Alter, Stephan J.; Merski, N. Ronald

    2001-01-01

    This report provides an update of the hypersonic aerothermodynamic wind tunnel test program conducted at the NASA Langley Research Center in support of the X-38 program. Global surface heat transfer distributions were measured on 0.0177 and 0.0236 scale models of the proposed X-38 configuration at Mach 10 in air. The parametrics that were investigated primarily include freestream unit Reynolds numbers of 0.6 to 2.2 million per foot and body flap deflections of 15, 20, and 25 deg for an angle-of-attack of 40 deg. The model-scale variance was tested to obtain laminar, transitional, and turbulent heating levels on the defected bodyflaps. In addition, a limited investigation of forced boundary layer transition through the use of discrete roughness elements was performed. Comparisons of the present experimental results to computational predictions and previous experimental data were conducted Laminar, transitional, and turbulent heating levels were observed on the deflected body flap, which compared favorably to the computational results and to the predicted heating based on the flight aerothermodynamic database.

  1. STS-102 crew members check out Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Members of the STS-102 crew check out Discovery's payload bay in the Orbiter Processing Facility bay 1. Dressed in green, they are Mission Specialist Paul W. Richards (left) and Pilot James W. Kelly. The crew is at KSC for Crew Equipment Interface Test activities. Above their heads on the left side are two of the experiments being carried on the flight. STS-102 is the 8th construction flight to the International Space Station and will carry the Multi-Purpose Logistics Module Leonardo. STS-102 is scheduled for launch March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module Destiny. The mission will also be carrying the Expedition Two crew to the Space Station, replacing the Expedition One crew who will return on Shuttle Discovery.

  2. Feasibility Analysis for a Manned Mars Free-Return Mission in 2018

    NASA Technical Reports Server (NTRS)

    Tito, Dennis A.; Anderson, Grant; Carrico, John P., Jr.; Clark, Jonathan; Finger, Barry; Lantz, Gary A.; Loucks, Michel E.; MacCallum, Taber; Poynter, Jane; Squire, Thomas H.; hide

    2013-01-01

    In 1998 Patel et al searched for Earth-Mars free-return trajectories that leave Earth, fly by Mars, and return to Earth without any deterministic maneuvers after Trans-Mars Injection. They found fast trajectory opportunities occurring two times every 15 years with a 1.4-year duration, significantly less than most Mars free return trajectories, which take up to 3.5 years. This paper investigates these fast trajectories. It also determines the launch and life support feasibility of flying such a mission using hardware expected to be available in time for an optimized fast trajectory opportunity in January, 2018. The authors optimized the original trajectory using patched-conic approximations, and then modeled the trajectory using numerical integration with high fidelity force models and the JPL planetary ephemerides. We calculated an optimum trajectory launching in early January, 2018. At the Mars encounter, the spacecraft will pass within a few hundred kilometers of the surface. We investigated the Earth reentry conditions and developed some aerocapture options to mitigate G-loads on the returning crew. We also describe tradeoffs and studies necessary to develop the Thermal Protection System (TPS). To size the Environmental Control and Life Support System (ECLSS) we set the initial mission assumption to two crew members for 500 days in a modified SpaceX Dragon class of vehicle. The journey is treated as a high-risk mission, which drives towards reliable - but minimalist - accommodations and provisions. As such, we investigated State Of the Art (SOA) technologies that would meet only basic human needs to support metabolic requirements and limited crew comfort allowances. We compare a baseline SOA architecture with an advanced architecture. The advanced architecture uses recently developed equipment that has higher efficiencies for water recovery and lighter base mass. They are not currently in operation and therefore present a schedule risk for development and

  3. Expedition Three crew clasp hands for photo at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  4. Identifying Return-Current Losses in Flare Hard X-ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2011-01-01

    I will report on theoretical studies and a data analysis program aimed at identifying and physically interpreting breaks in hard X-ray spectra resulting from return-current energy losses, as well as heating of the flare plasma resulting from these losses.

  5. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    NASA Technical Reports Server (NTRS)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  6. Recovery and Rescue Teams Practice with Full-Size Crew Dragon Tr

    NASA Image and Video Library

    2017-06-07

    Personnel from NASA, SpaceX and the U.S. Air Force have begun practicing recovery operations for the SpaceX Crew Dragon. Using a full-size model of the spacecraft that will take astronauts to the International Space Station, Air Force parajumpers practice helping astronauts out of the SpaceX Crew Dragon following a mission. In certain unusual recovery situations, SpaceX may need to work with Air Force for parajumpers to recover astronauts from the capsule following a water landing. The recovery trainer was recently lowered into the Indian River Lagoon near NASA’s Kennedy Space Center allowing Air Force pararescue and others to refine recovery procedures. SpaceX is developing the Crew Dragon in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.

  7. STS-120 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts took a break from training to pose for the STS-120 crew portrait. Pictured from the left are astronauts Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). The crew members were attired in training versions of their shuttle launch and entry suits. Tani joined Expedition 16 as flight engineer after launching to the International Space Station (ISS) and is scheduled to return home on mission STS-122. STS-120 launched October 23, 2007 with the main objectives of installing the U.S. Node 2, Harmony, and the relocation and deployment of the P6 truss to its permanent location.

  8. Mir 21 crew portrait in Base Block and Priroda

    NASA Image and Video Library

    1996-03-01

    NM21-395-024 (March 1996) --- Posed near a microgravity glove box on the Priroda Module aboard Russia’s Mir Space Station are the Mir-21 crew members. From the left are astronaut Shannon W. Lucid, cosmonaut guest researcher; Yuriy V. Usachov, flight engineer; and Yuriy I. Onufriyenko, commander. Lucid went on to spend a total of 188 consecutive days in space before returning to Earth with the STS-79 crew.

  9. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., members of the STS-102 crew look over the Integrated Cargo Carrier and the Russian crane Strela as part of familiarization activities. Starting second to left are Mission Specialists Susan Helms, cosmonaut Yuri Usachev, who is with the Russian Space Agency (RSA), and James Voss. STS- 102 is a resupply mission to the International Space Station, transporting the Leonardo Multi-Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. It is also transporting Voss, Helms and Usachev as the second resident crew (designated Expedition crew 2) to the station. The mission will also return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  10. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., members of the STS-102 crew look at part of the equipment on the Integrated Cargo Carrier that will be on their mission. From left are Mission Specialists Susan Helms, James Voss and Yuri Usachev, who is with the Russian Space Agency (RSA). STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi- Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. The mission is also transporting Helms, Voss and Usachev as the second resident crew (designated Expedition crew 2) to the station. In exchange, the mission will return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  11. Return to Flight Crew Activities Resource Reel JSC 1988 2 of 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The crew of the STS-114 Discovery continues to answer questions from the news media about the upcoming mission. Commander Collins thanks NASA for enabling the astronauts to express their thoughts and feelings about procedures during spaceflight and she is also very happy to work for NASA. Pilot James Kelly talks about the pictures that they are now able to take of the external tank. Mission Specialists Wendy Lawrence and Steve Robinson discuss the items that they will be bringing up to the International Space Station. Robinson also talks about mementos of the Space Shuttle Columbia crew that they will be taking to the International Space Station.

  12. STS-102 Crew Patch

    NASA Image and Video Library

    2001-04-24

    STS102-S-001 (January 2001) --- The central image on the STS-102 crew patch depicts the International Space Station (ISS) in the build configuration that it will have at the time of the arrival and docking of Discovery during the STS-102 mission, the first crew exchange flight to the space station. The station is shown along the direction of the flight as will be seen by the shuttle crew during their final approach and docking, the so-called V-bar approach. The names of the shuttle crew members are depicted in gold around the top of the patch, and surnames of the Expedition crew members being exchanged are shown in the lower banner. The three ribbons swirling up to and around the station signify the rotation of these ISS crew members. The number two is for the Expedition Two crew who fly up to the station, and the number one is for the Expedition One crew who then return down to Earth. In conjunction with the face of the Lab module of the station, these Expedition numbers create the shuttle mission number 102. Shown mated below the ISS is the Italian-built Multi-Purpose Logistics Module, Leonardo, that will fly for the first time on this flight, and which will be attached to the station by the shuttle crew during the docked phase of the mission. The flags of the countries that are the major contributors to this effort, the United States, Russia, and Italy are also shown in the lower part of the patch. The build-sequence number of this flight in the overall station assembly sequence, 5A.1, is captured by the constellations in the background. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  13. Mitigating and monitoring flight crew fatigue on a westward ultra-long-range flight.

    PubMed

    Signal, T Leigh; Mulrine, Hannah M; van den Berg, Margo J; Smith, Alexander A T; Gander, Philippa H; Serfontein, Wynand

    2014-12-01

    This study examined the uptake and effectiveness of fatigue mitigation guidance material including sleep recommendations for a trip with a westward ultra-long-range flight and return long-range flight. There were 52 flight crew (4-pilot crews, mean age 55 yr) who completed a sleep/duty diary and wore an actigraph prior to, during, and after the trip. Primary crew flew the takeoff and landing, while relief crew flew the aircraft during the Primary crew's breaks. At key times in flight, crewmembers rated their fatigue (Samn-Perelli fatigue scale) and sleepiness (Karolinska Sleepiness Scale) and completed a 5-min Psychomotor Vigilance Task. Napping was common prior to the outbound flight (54%) and did not affect the quantity or quality of in-flight sleep (mean 4.3 h). Primary crew obtained a similar amount on the inbound flight (mean 4.0 h), but Secondary crew had less sleep (mean 2.9 h). Subjective fatigue and sleepiness increased and performance slowed across flights. Performance was faster on the outbound than inbound flight. On both flights, Primary crew were less fatigued and sleepy than Secondary crew, particularly at top of descent and after landing. Crewmembers slept more frequently and had more sleep in the first 24 h of the layover than the last, and had shifted their main sleep to the local night by the second night. The suggested sleep mitigations were employed by the majority of crewmembers. Fatigue levels were no worse on the outbound ultra-long-range flight than on the return long-range flight.

  14. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Russian Flight Engineer Evgeny Tarelkin, left, Russian Soyuz Commander Oleg Novitskiy, center, and Commander Kevin Ford of NASA sit together at the Kustanay Airport a few hours after they landed near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin are returning from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  15. STS-113 crew breakfast before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-113 crew enjoys a snack before suiting up for launch. Seated left to right are Mission Specialists John Herrington and Michael Lopez-Alegria, Pilot Paul Lockhart and Commander James Wetherbee; Expedition 6 flight engineer Donald Pettit, Commander Ken Bowersox and flight engineer Nikolai Budarin. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  16. Understanding the Impact of Return-Current Losses on the X-Ray Emission from Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2012-01-01

    I obtain and examine the implications of one-dimensional analytic solutions for return-current losses on an initially power-law distribution of energetic electrons with a sharp low-energy cutoff in flare plasma with classical (collisional) resistivity. These solutions show, for example, that return-current losses are not sensitive to plasma density, but are sensitive to plasma temperature and the low energy cutoff of the injected nonthermal electron distribution. A characteristic distance from the electron injection site, x(sub rc), is derived. At distances less than x(sub rc) the electron flux density is not reduced by return-current losses, but plasma heating can be substantial in this region, in the upper, coronal part of the flare loop. Before the electrons reach the collisional thick-target region of the flare loop, an injected power-law electron distribution with a low-energy cutoff maintains that structure, but with a flat energy distribution below the cutoff energy, which is now determined by the total potential drop experienced by the electrons. Modifications due to the presence of collisional losses are discussed. I compare these results with earlier analytical results and with more recent numerical simulations. Emslie's 1980 conjecture that there is a maximum integrated X-ray source brightness on the order of 10(exp -15) photons per square centimeter per second per square centimeter is examined. I find that this is not actually a maximum brightness and its value is parameter dependent, but it is nevertheless a valuable benchmark for identifying return-current losses in hard X-ray spectra. I discuss an observational approach to identifying return-current losses in flare data, including identification of a return-current "bump" in X-ray light curves at low photon energies.

  17. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers at SPACEHAB, in Titusville, Fla., help members of the STS-102 crew become familiar with the Integrated Cargo Carrier and elements of its cargo for their mission. Starting second from left are Mission Specialists James Voss and Susan Helms and, fourth from left, cosmonaut Yuri Usachev, who is with the Russian Space Agency (RSA). STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi- Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. It is also transporting Voss, Helms and Usachev as the second resident crew (designated Expedition crew 2) to the station. The mission will also return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  18. The STS-88 crew talks to media before DEPARTing for Houston

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Commander Robert D. Cabana (at microphone) speaks to the news media before the crew's departure at Cape Canaveral Air Station. At left are Mission Specialists Sergei Konstantinovich Krikalev and James H. Newman. The other crew members (not shown) are Mission Specialists Jerry L. Ross and Nancy J. Currie, and Pilot Frederick W. 'Rick' Sturckow. The STS-88 crew returned Dec. 15 from a 12-day mission on orbit constructing the first elements of the International Space Station, the U.S.-built Unity connecting module and Russian-built Zarya control module.

  19. STS-93 crew takes part in a Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT), Mission Specialist Catherine G. Coleman (left) and Mission Commander Eileen M. Collins (right) check equipment that will fly on mission STS-93. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X- ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. Collins is the first woman to serve as a shuttle mission commander. The other STS-93 crew members are Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999.

  20. STS-105 crew poses for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  1. Expedition Three crew poses for photo on Fixed Service structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses on the Fixed Service Structure at Launch Pad 39A. From left are cosmonaut Mikhail Tyurin, commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  2. STS-102 (Expedition II) crew members in SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-102 Mission Specialists James Voss, Susan Helms and Yuri Usachev, with the Russian Space Agency (RSA), pose in front of the U.S. Lab module, named Destiny, in the Space Station Processing Facility (SSPF). STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi- Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. The mission is also transporting Helms, Voss and Usachev as the second resident crew (designated Expedition crew 2) to the station. In exchange, the mission will return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  3. STS-102 (Expedition II) crew members in SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Space Station Processing Facility (SSPF), a technician (right) explains use of the equipment in front of (left) STS-102 Mission Specialists James Voss, Susan Helms and Yuri Usachev, with the Russian Space Agency (RSA). STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi-Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. The mission is also transporting Helms, Voss and Usachev as the second resident crew (designated Expedition crew 2) to the station. In exchange, the mission will return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  4. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., STS-102 Mission Specialist Yuri Usachev, who is with the Russian Space Agency (RSA), looks at part of the cargo on the Integrated Cargo Carrier. STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi-Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. It is also transporting Usachev, and Mission Specialists James Voss and Susan Helms as the second resident crew (designated Expedition crew 2) to the station. The mission will also return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  5. Low-Latency Telerobotic Sample Return and Biomolecular Sequencing for Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Lupisella, M.; Bleacher, J.; Lewis, R.; Dworkin, J.; Wright, M.; Burton, A.; Rubins, K.; Wallace, S.; Stahl, S.; John, K.; Archer, D.; Niles, P.; Regberg, A.; Smith, D.; Race, M.; Chiu, C.; Russell, J.; Rampe, E.; Bywaters, K.

    2018-02-01

    Low-latency telerobotics, crew-assisted sample return, and biomolecular sequencing can be used to acquire and analyze lunar farside and/or Apollo landing site samples. Sequencing can also be used to monitor and study Deep Space Gateway environment and crew health.

  6. Planning for Crew Exercise for Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, E. Cherice; Ryder, Jeff

    2015-01-01

    Exercise which is necessary for maintaining crew health on-orbit and preparing the crew for return to 1G can be challenging to incorporate into spaceflight vehicles. Deep space missions will require further understanding of the physiological response to microgravity, understanding appropriate mitigations, and designing the exercise systems to effectively provide mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  7. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Russian Flight Engineer Evgeny Tarelkin, left with flowers, Commander Kevin Ford of NASA, center with flowers, and Russian Soyuz Commander Oleg Novitskiy are greeted at the Kustanay Airport a few hours after they landed near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin are returning from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  8. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Women in ceremonial Kazakh dress prepare to welcome home Expedition 34 Russian Flight Engineer Evgeny Tarelkin, Commander Kevin Ford of NASA, and Russian Soyuz Commander Oleg Novitskiy at the Kustanay Airport a few hours after they landed near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Tarelkin, Ford, and Novitskiy, returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  9. STS-26: The return to flight

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The major activities leading up to the return to flight of the Space Shuttles are summarized. Major orbiter modifications and solid rocket motor redesign are described. Shuttle payloads are discussed briefly. Also provided are the biographies of the crew.

  10. STS-101: Crew Activity Report/Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This video presents a report from the Space Shuttle Atlantis Crew. The crew consists of James D. Halsell, Jr., Mission Commander; Scott Horowitz, Pilot; and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. The crew made preparations for the Space Shuttle Atlantis return to Earth. Weber gave a general overview of refurbishments done to the International Space Station such as maintenance of the electrical system, one to three thousands of pounds of new hardware supplied to I.S.S. and a supply of personal hygiene products. Also live animation of the Spacehab Module is given where supplies bound for the Space Station are stored.

  11. Characterization of Crew Refuse Returned from Shuttle Missions with Permanent Gas, Volatile Organic Compound, and Microbial Analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Hummerick, M.; Roberts, M.; Krummins, V.; Kish, A.; Garland, J.; Maxwell, S.; Mills, A.

    In addition to the mass and energy costs associated with bioregenerative systems for advanced life support, the storage and processing of waste on spacecraft requires both atmospheric and biological management. Risks to crew health may arise from the presence of potential human pathogens in waste or from decay processes during waste storage and/or processing. This study reports on the permanent gas, trace volatile organic and microbiological analyses of crew refuse returned from shuttle missions STS-105, 109 and 110. The research objective is to characterize the biological stability of the waste stream, to assess the risks associated with its storage, and to provide baseline measures for the evaluation of waste processing technologies. Microbiological samples were collected from packaging material, food waste, bathroom waste, and bulk liquid collected from the volume F waste container. The number of culturable bacteria and total bacteria were determined by plating on R2A media and by Acridine Orange direct count, respectively. Samples of the trash were analyzed for the presence of fecal and total coliforms and other human-associated bacteria. Dry and ash weights were determined to estimate both water and organic content of the materials. The aerobic and anaerobic bio-stability of stored waste was determined by on-line monitoring of CO2 and by laboratory analysis of off-gas samples for hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA method TO15 with gas chromatography/mass spectrometry and by gas chromatography with selective detectors . This study establishes a baseline measure of waste composition, labile organics, and microbial load for this material.

  12. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  13. 26 CFR 301.6652-1 - Failure to file certain information returns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), relating to information returns with respect to remuneration of certain crew members defined in section... by fishing boat operators with respect to remuneration of certain crew members, within the time... prescribed if it is established to the satisfaction of the district director or the director of the Internal...

  14. Expedition Five crew members wave to onlookers as they leave KSC for Houston

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition Five crew members wave to onlookers as they leave KSC for Houston. From left are Science Officer Peggy Whitson and Commander Valery Korzun. Not seen is Flight Engineer Sergei Treschev. The three returned to Earth Dec. 7 on Endeavour, with the STS-113 crew, after six months on the International Space Station.

  15. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Flight Engineer Evgeny Tarelkin of Russia is helped out a Russian Search and Rescue helicopter after flying from his Soyuz TMA-06M spacecraft landing site outside the town of Arkalyk to Kustanay, Kazakhstan on Saturday, March 16, 2013. Tarelkin, along with Commander Kevin Ford of NASA and Russian Soyuz Commander Oleg Novitskiy returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  16. Expedition 38 Press Conference

    NASA Image and Video Library

    2013-11-06

    Expedition 38 Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency is seen in quarantine, behind glass, during the final press conference held a day ahead of his launch with fellow crew mates, Expedition 38 Soyuz Commander Mikhail Tyurin of Roscosmos, and, Flight Engineer Rick Mastracchio of NASA, to the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  17. STS-105 crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  18. Asteroid Sample Return Mission Launches on This Week @NASA – September 9, 2016

    NASA Image and Video Library

    2016-09-09

    On Sept. 8, NASA launched the Origins, Spectral Interpretation, Resource Identification, Security - Regolith Explorer, or OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida. OSIRIS-REx, the first U.S. mission to sample an asteroid, is scheduled to arrive at near-Earth asteroid Bennu in 2018. Mission plans call for the spacecraft to survey the asteroid, retrieve a small sample from its surface, and return the sample to Earth for study in 2023. Analysis of that sample is expected to reveal clues about the history of Bennu over the past 4.5 billion years, as well as clues about the evolution of our solar system. Also, Jeff Williams’ Record-Breaking Spaceflight Concludes, Next ISS Crew Prepares for Launch, Sample Return Robot Challenge, NASA X-Plane Gets its Wing, and Convergent Aeronautics Solutions Showcase!

  19. Supersonic aerodynamic characteristics of a proposed Assured Crew Return Capability (ACRC) lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.

    1989-01-01

    An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range.

  20. NASA astronauts and industry experts check out the crew accommod

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Lee Archambault, and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  1. The Expedition Three crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  2. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States' human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After over 40 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent and how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very

  3. X-38 V-132 Free Flight 2 (This is a video tape)

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo J.

    2000-01-01

    Mr. Aldo Bordano will be presenting details of some of the JSC flight mechanics involvement in the X-38 testing program. Focus shall be on the parafoil system with regards its testing, performance analysis, and GN&C. An excellent example of a recent flight test at Dryden Flight Research Center shall be shown which portrays the system characteristics, sequencing, performance, and testing techniques. The intent is to inform the scientific and engineering communities about the developments in the X-38 parafoil program, as well as invite feedback on potential improvements in testing or systems.

  4. STS-113 crew group photo at SLF before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - After their arrival at the KSC Shuttle Landing Facility, the crews of mission STS-113 pause for a group photo. From left are STS-113 Commander James Wetherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington; and the Expedition 6 crew, Flight Engineer Nikolai Budarin, Commander Ken Bowersox and Flight Engineer Donald Pettit. Budarin represents the Russian Space Agency. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. In addition, the major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  5. Commerical Crew Astronauts Visit Launch Complex 39A

    NASA Image and Video Library

    2018-03-27

    Commercial Crew Program astronauts, from the left, Suni Williams, Eric Boe, Bob Behnken and Doug Hurley take in the view from the top of Launch Complex 39A at Kennedy Space Center. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. Tower modifications included l removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.

  6. Commerical Crew Astronauts Visit Launch Complex 39A

    NASA Image and Video Library

    2018-03-27

    Commercial Crew Program astronauts, from the left Doug Hurley, Eric Boe, Bob Behnken and Suni Williams, pose just outside Launch Complex 39A at NASA's Kennedy Space Center in Florida. The astronauts toured the pad for an up-close look at modifications that are in work for the SpaceX Crew Dragon flight tests. The tower modifications included removal of the space shuttle era rotating service structure. Future integration of the crew access arm will allow for safe crew entry for launch and exit from the spacecraft in the unlikely event a pad abort is required.

  7. Crew Transfer Options for Servicing of Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A.

    2012-01-01

    In 2011, NASA and DARPA undertook a study to examine capabilities and system architecture options which could be used to provide manned servicing of satellites in Geostationary Earth Orbit (GEO). The study focused on understanding the generic nature of the problem and examining technology requirements, it was not for the purpose of proposing or justifying particular solutions. A portion of this study focused on assessing possible capabilities to efficiently transfer crew between Earth, Low Earth Orbit (LEO), and GEO satellite servicing locations. This report summarizes the crew transfer aspects of manned GEO satellite servicing. Direct placement of crew via capsule vehicles was compared to concepts of operation which divided crew transfer into multiple legs, first between earth and LEO and second between LEO and GEO. In space maneuvering via purely propulsive means was compared to in-space maneuvering which utilized aerobraking maneuvers for return to LEO from GEO. LEO waypoint locations such as equatorial, Kennedy Space Center, and International Space Station inclinations were compared. A discussion of operational concepts is followed by a discussion of appropriate areas for technology development.

  8. Expedition 38 Crewmembers during Transfer of Command Ceremony

    NASA Image and Video Library

    2014-03-09

    ISS038-E-068903 (9 March 2014) --- The new commander of the current crew on the International Space Station (Expedition 39) and the Expedition 38/39 flight engineers wave inside the Kibo laboratory. Their waving may very well be a symbolic farewell to the Expedition 38 crew members (out of frame) who are on the eve of their departure day from the orbital outpost. Expedition 39 Commander Koichi Wakata (center) of the Japanese Aerospace Exploration Agency (JAXA) is joined here by Flight Engineers Rick Mastracchio (right) of NASA and cosmonaut Mikhail Tyurin of the Russian Federal Space Agency (Roscosmos).

  9. Expedition 6 crew group photo at SLF before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Expedition 6 crew poses for a photo after their arrival at the KSC Shuttle Landing Facility to prepare for launch on mission STS-113. From left are Flight Engineer Nikolai Budarin, Commander Ken Bowersox and Flight Engineer Donald Pettit. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. In addition, the major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  10. Expedition 34 Crew Landing

    NASA Image and Video Library

    2013-03-16

    A Russian helicopter commander waits inside his Search and Rescue helicopter that was grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Commander Kevin Ford of NASA poses for a photograph with women in ceremonial Kazakh dress at the Kustanay Airport in Kazakhstan a few hours after he, along with Expedition 34 Russian Soyuz Commander Oleg Novitskiy, and Russian Flight Engineer Evgeny Tarelkin, landed their Soyuz TMA-06M spacecraft near the town of Arkalyk on Saturday, March 16, 2013. Ford, Novitskiy, and, Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Commander Kevin Ford of NASA poses for a photograph after receiving welcome home gifts at the Kustanay Airport in Kazakhstan a few hours after he, along with Expedition 34 Russian Soyuz Commander Oleg Novitskiy, and Russian Flight Engineer Evgeny Tarelkin, landed their Soyuz TMA-06M spacecraft near the town of Arkalyk on Saturday, March 16, 2013. Ford, Novitskiy, and, Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 34 Crew Lands

    NASA Image and Video Library

    2013-03-16

    Expedition 34 Russian Soyuz Commander Oleg Novitskiy, left, and Russian Flight Engineer Evgeny Tarelkin pose for a photograph with women in ceremonial Kazakh dress at the Kustanay Airport in Kazakhstan a few hours after they, along with Expedition 34 Commander Kevin Ford of NASA, landed their Soyuz TMA-06M spacecraft near the town of Arkalyk on Saturday, March 16, 2013. Novitskiy, Tarelkin, and Ford returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)

  14. Kinetics and thermal stability of the Ni62Nb38- x Ta x ( x=5, 10, 15, 20 and 25) bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    He, MengKe; Zhang, Yi; Xia, Lei; Yu, Peng

    2017-07-01

    We studied thermal stability and its relationship to the glass-forming ability (GFA) of the Ni62Nb38- x Ta x ( x=5, 10, 15, 20, 25) bulk metallic glasses (BMG) from a kinetic point of view. By fitting the heating-rate dependence of glass transition temperature ( T g onset) and crystallization temperatures ( T x onset and T x peak) of the Ni62Nb38- x Ta x BMG using the Vogel-Fulcher-Tammann (VFT) equation, we obtained the ideal glass transition and crystallization temperatures ( T g 0 and T x 0) and the fragility parameter ( m), and also constructed continuous heating transition (CHT) diagrams for crystallization of the BMG. The CHT diagrams of the BMG indicate enhanced thermal stability by Ta addition; the T g 0 as well as the T x 0 also illustrates this improved stability limit. The compositional dependence of m, which agrees well with that of the reduced glass-transition temperature, indicates a strong correlation between liquid fragility and glass-forming ability in the present alloy system. These results provide new evidence for understanding thermal stability, liquid fragility, and GFA in BMG.

  15. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Donald Pettit concentrates on driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  16. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin takes his turn driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  17. Flight Crew Factors for CTAS/FMS Integration in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Crane, Barry W.; Prevot, Thomas; Palmer, Everett A.; Shafto, M. (Technical Monitor)

    2000-01-01

    Center TRACON Automation System (CTAS)/Flight Management System (FMS) integration on the flightdeck implies flight crews flying coupled in highly automated FMS modes [i.e. Vertical Navigation (VNAV) and Lateral Navigation (LNAV)] from top of descent to the final approach phase of flight. Pilots may also have to make FMS route edits and respond to datalink clearances in the Terminal Radar Approach Control (TRACON) airspace. This full mission simulator study addresses how the introduction of these FMS descent procedures affect crew activities, workload, and performance. It also assesses crew acceptance of these procedures. Results indicate that the number of crew activities and workload ratings are significantly reduced below current day levels when FMS procedures can be flown uninterrupted, but that activity numbers increase significantly above current day levels and workload ratings return to current day levels when FMS procedures are interrupted by common ATC interventions and CTAS routing advisories. Crew performance showed some problems with speed control during FMS procedures. Crew acceptance of the FMS procedures and route modification requirements was generally high; a minority of crews expressed concerns about use of VNAV in the TRACON airspace. Suggestions for future study are discussed.

  18. STS-111 Crew in white room during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room, Launch Pad 39A, the STS-111 and Expedition 5 crews pose in front of the entry into Space Shuttle Endeavour. From left are Expedition 5 crew member Sergei Treschev and Commander Valeri Korzun, with the Russian Space Agency; STS-111 Mission Specialist Philippe Perrin, with the French Space Agency; Commander Kenneth Cockrell and Pilot Paul Lockhart; Expedition 5 crew member Peggy Whitson; and Mission Specialist Franklin Chang-Diaz. The crews are taking part in Terminal Countdown Demonstration Test activities at the pad, which include emergency egress training and a simulated launch countdown. The mission is Utilization Flight 2, carrying supplies and equipment to the International Space Station, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  19. Expedition Six crew member Nikolai Budarin at pad before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition Six crew member Nikolai Budarin, of the Russian Space Agency, pauses in front of Space Shuttle Endeavour at Launch Pad 39A during a tour of Kennedy Space Center prior to his launch. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  20. Crew systems and architectural considerations for first lunar surface return missions

    NASA Astrophysics Data System (ADS)

    Winisdoerffer, F.; Ximenes, S.

    1992-08-01

    The design requirements for the habitability of the pressurized volumes of a typical first manned lander are presented. Attention is given to providing dual habitation/exploration services (EVA/IVA), supporting the separation of the surface/flight functions, allowing growth potential based on site characteristics, and in situ resources utilization. Lunar lander conceptual diagrams are provided for the basic system architecture, automatic cargo delivery, the piloted crew module, and the pressurized volumes.

  1. What Is the Return on Investment for Implementation of a Crew Resource Management Program at an Academic Medical Center?

    PubMed

    Moffatt-Bruce, Susan D; Hefner, Jennifer L; Mekhjian, Hagop; McAlearney, John S; Latimer, Tina; Ellison, Chris; McAlearney, Ann Scheck

    Crew Resource Management (CRM) training has been used successfully within hospital units to improve quality and safety. This article presents a description of a health system-wide implementation of CRM focusing on the return on investment (ROI). The costs included training, programmatic fixed costs, time away from work, and leadership time. Cost savings were calculated based on the reduction in avoidable adverse events and cost estimates from the literature. Between July 2010 and July 2013, roughly 3000 health system employees across 12 areas were trained, costing $3.6 million. The total number of adverse events avoided was 735-a 25.7% reduction in observed relative to expected events. Savings ranged from a conservative estimate of $12.6 million to as much as $28.0 million. Therefore, the overall ROI for CRM training was in the range of $9.1 to $24.4 million. CRM presents a financially viable way to systematically organize for quality improvement.

  2. STS-93 Crew Training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage of the STS-93 crewmembers shows Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, Mission Specialists Steven A. Hawley, Catherine G. Coleman, and Michel Tognini going through various training activities. These activities include Bail Out Training NBL, Emergency Egress Training, Earth Observations Classroom Training, Simulator Training, T-38 Departure from Ellington Field, Chandra Deploy Training, SAREX Shuttle Amateur Radio Experiment, CCT Bail Out Crew Compartment Training, and Southwest Research Ultraviolet Imaging System (SWUIS) Training.

  3. ISS Expedition 42 / 43 Crew Training Resource Reel (JSC-2641)

    NASA Image and Video Library

    2014-11-14

    Media resource reel of ISS Expedition 42 / 43 Crew training activities. Includes footage of crew photo shots with Samantha Cristoforetti, Anton Shkaplerov and Terry Virts; Routine shots with Virts, ISS Expedition 43 crewmember Scott Kelly, Cristoforetti, ISS Expedition 41 / 42 crewmember Barry Wilmore; and Shklaplerov; T-38 Operations with Virts; Routine operations with Cristoforetti, Shkaplerov and Virts; Neutral Buoyancy Lab (NBL) with Cristoforetti and Kelly; and Emergency Scenatios with Virts, Cristoforetti and Shkaplerov.

  4. Next Generation Spacecraft, Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes research on reusable launch vehicles, aerospace planes, shuttle replacement, crew/cargo transfer vehicle, related X-craft, orbital space plane, and next generation launch technology.

  5. Challenges of assuring crew safety in space shuttle missions with international cargoes.

    PubMed

    Vongsouthy, C; Stenger-Nguyen, P A; Nguyen, H V; Nguyen, P H; Huang, M C; Alexander, R G

    2004-02-01

    The top priority in America's manned space flight program is the assurance of crew and vehicle safety. This priority gained greater focus during and after the Space Shuttle return-to-flight mission (STS-26). One of the interesting challenges has been to assure crew safety and adequate protection of the Space Shuttle, as a national resource, from increasingly diverse cargoes and operations. The control of hazards associated with the deployment of complex payloads and cargoes has involved many international participants. These challenges are examined in some detail along with examples of how crew safety has evolved in the manned space program and how the international partners have addressed various scenarios involving control and mitigation of potential hazards to crew and vehicle safety. c2003 Published by Elsevier Ltd.

  6. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    1999-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue counter-measure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  7. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  8. Expedition 38 Crewmembers during Transfer of Command Ceremony

    NASA Image and Video Library

    2014-03-09

    ISS038-E-068899 (9 March 2014) --- The new commander of the current crew on the International Space Station (Expedition 39) and the Expedition 38/39 flight engineers exchange handshakes inside the Kibo laboratory. Their celebration may very well be a follow-up gesture following the transfer of command ceremony and a symbolic farewell to the Expedition 38 crew members (out of frame) who are on the eve of their departure from the orbital outpost. Expedition 39 Commander Koichi Wakata (center) of the Japanese Aerospace Exploration Agency (JAXA) is joined here by Flight Engineers Rick Mastracchio (right) of NASA and cosmonaut Mikhail Tyurin of the Russian Federal Space Agency (Roscosmos).

  9. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Expedition 6 crew pauses for a photo after emergency egress training at the pad, which included driving the M-113 armored personnel carrier behind them. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  10. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Pilot Paul Lockhart test drives an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He is accompanied by several other crew members, seen at left, Mission Specialist Michael Lopez-Alegria and Commander James Wetherbee. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  11. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States's human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After nearly 50 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either of the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return to the home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent as to how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a

  12. Mars Sample Return Landed with Red Dragon

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Lemke, Lawrence G.

    2013-01-01

    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged

  13. Commercial Crew Vehicle Ascent Abort Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Gnam, Christopher

    2017-01-01

    SpaceX and Boeing have been selected to develop and operate crew vehicles to transport astronauts to and from the International Space Station. Their design work is to be analyzed to ensure that they are meeting all of the safety and operational requirements put forth by NASA. Throughout my time here, I worked familiarized myself with the SpaceX Dragon Abort system, as well as the NASA Human-Systems Integration Requirements (HSIR). This included understanding the different abort scenarios, and how each one could potentially impact the astronaut crew. In addition, I familiarized myself with the simulation developed my NASA to test and analyze the Guidance Navigation and Control (GN&C) systems developed by SpaceX and Boeing.

  14. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During emergency egress training on Launch Pad 39A, Expedition Three cosmonaut Vladimir Nikolaevich Dezhurov, STS-105 Mission Specialist Patrick Forrester, and cosmonaut Mikhail Tyurin watch while other crew members descend in a slidewire basket. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  15. STS-84 Crew speaking at TCDT Press Briefing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-84 crew members listen intently to Commander Charles J. Precourt, at far right, as he talks to news media representatives and other onlookers at Launch Pad 39A during the Terminal Countdown Demonstration Test (TCDT). Other crew members, from left, are Mission Specialist Edward Tsang Lu, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Jean-Francois Clervoy of the European Space Agency, C. Michael Foale, and Elena V. Kondakova of the Russian Space Agency. STS-84 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. After docking, Foale will transfer to the space station and become a member of the Mir 23 crew, replacing U.S. astronaut Jerry M. Linenger, who will return to Earth aboard Atlantis. Foale will live and work on Mir until mid-September when his replacement is expected to arrive on the STS-86 mission. STS-84 is targeted for a May 15 liftoff.

  16. Investigation of crew performance in a multi-vehicle supervisory control task

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Plamondon, B. D.; Jagacinski, R. J.; Kirlik, A. C.

    1986-01-01

    Crew information processing and decision making in a supervisory control task which is loosely based on the mission of future generation helicopters is measured and represented. Subjects control the motion and activities of their own vehicle and direct the activities of four additional craft. The task involves searching an uncertain environment for cargo and enemies, returning cargo to home base and destroying enemies while attempting to avoid destruction of the scout and the supervised vehicles. A series of experiments with two-person crews and one-person crews were performed. Resulting crew performance was modeled with the objective of describing and understanding the information processing strategies utilized. Of particular interest are problem simplification strategies under time stress and high work load, simplification and compensation in the one-person cases, crew coordination in the two-person cases, and the relationship between strategy and errors in all cases. The results should provide some insight into the effective use of aids, particularly aids based on artificial intelligence, for similar tasks. The simulation is described which is used for the study and some preliminary results from the first two-person crew study are discussed.

  17. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Andy Blua and Jeff Doughty of Dryden's Experimental Fabrication Shop, along with B-52 Crew Chief Dan Bains and assistant Mark Thompson, all eye the new X-38 pylon during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California. The fit-check was the first time the 1,200-pound steel pylon, which was fabricated at Dryden, was mated to the B-52. The pylon served as an 'adapter' that allowed the X-38 to be attached to the B-52's wing. Earlier flight research vehicles had used the X-15 pylon for attachment to and launch from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the Hi

  18. NASA's B-52 takes the X-38 aloft for the seventh free flight of the program, July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The X-38, mounted beneath the right wing of NASA's B-52, climbed from the runway at Edwards Air Force Base for the seventh free flight test of the X-38, July 10, 2001. The X-38 was released at 37,500 feet and completed a thirteen minute glide flight to a landing on Rogers Dry Lake.

  19. NASA's B-52 takes the X-38 aloft for the seventh free flight of the program, July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-38, mounted beneath the right wing of NASA's B-52, climbed from the runway at Edwards Air Force Base for the seventh free flight test of the X-38, July 10, 2001. The X-38 was released at 37,500 feet and completed a thirteen minute glide flight to a landing on Rogers Dry Lake.

  20. Commercial Crew Development Program Overview

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  1. Upper Extremity Injuries in NASCAR Drivers and Pit Crew: An Epidemiological Study.

    PubMed

    Wertman, Gary; Gaston, R Glenn; Heisel, William

    2016-02-01

    Understanding the position-specific musculoskeletal forces placed on the body of athletes facilitates treatment, prevention, and return-to-play decisions. While position-specific injuries are well documented in most major sports, little is known about the epidemiology of position-specific injuries in National Association for Stock Car Automobile Racing (NASCAR) drivers and pit crew. To investigate position-specific upper extremity injuries in NASCAR drivers and pit crew members. Descriptive epidemiological study. A retrospective chart review was performed to assess position-specific injuries in NASCAR drivers and pit crew members. Included in the study were patients seen by a single institution between July 2003 and October 2014 with upper extremity injuries from race-related NASCAR events or practices. Charts were reviewed to identify the diagnosis, mechanism of injury, and position of each patient. A total of 226 NASCAR team members were treated between July 2003 and October 2014. Of these, 118 injuries (52%) occurred during NASCAR racing events or practices. The majority of these injuries occurred in NASCAR changers (42%), followed by injuries in drivers (16%), carriers (14%), jack men (11%), fuel men (9%), and utility men (8%). The majority of the pit crew positions are at risk for epicondylitis, while drivers are most likely to experience neuropathies, such as hand-arm vibration syndrome. The changer sustains the most hand-related injuries (42%) on the pit crew team, while carriers commonly sustain injuries to their digits (29%). Orthopaedic injuries in NASCAR vary between positions. Injuries in NASCAR drivers and pit crew members are a consequence of the distinctive forces associated with each position throughout the course of the racing season. Understanding these forces and position-associated injuries is important for preventive measures and facilitates diagnosis and return-to-play decisions so that each team can function at its maximal efficiency.

  2. Return to Flight activities at The Mall at Cortana

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Christian Gonzales, 11 (right), watches as his little brother Walter, 2, adds his own brand of good wishes to a banner encouraging the crew of Space Shuttle Discovery on NASA's Return to Flight mission, scheduled to launch in summer 2005. The brothers, of Baton Rouge, were participating in a Camp Kids event at The Mall at Cortana, where Return to Flight activities were presented by NASA's Stennis Space Center (SSC).

  3. Return to Flight activities at The Mall at Cortana

    NASA Image and Video Library

    2005-06-28

    Christian Gonzales, 11 (right), watches as his little brother Walter, 2, adds his own brand of good wishes to a banner encouraging the crew of Space Shuttle Discovery on NASA's Return to Flight mission, scheduled to launch in summer 2005. The brothers, of Baton Rouge, were participating in a Camp Kids event at The Mall at Cortana, where Return to Flight activities were presented by NASA's Stennis Space Center (SSC).

  4. A Human Factors Evaluation of a Methodology for Pressurized Crew Module Acceptability for Zero-Gravity Ingress of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sanchez, Merri J.

    2000-01-01

    This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.

  5. SpaceX Spacesuit

    NASA Image and Video Library

    2017-08-22

    The SpaceX spacesuit that will be worn by astronauts aboard its Crew Dragon spacecraft (in the background) during missions to and from the International Space Station. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the space station.

  6. The STS-88 crew talks to media before DEPARTing for Houston

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-88 crew meet with news media at the Cape Canaveral Air Station Skid Strip before leaving for Houston. From left, they are Mission Specialists Sergei Konstantinovich Krikalev and James H. Newman, Commander Robert D. Cabana (at microphone), Mission Specialists Jerry L. Ross and Nancy J. Currie, and Pilot Frederick W. 'Rick' Sturckow. The STS-88 crew returned Dec. 15 from a 12-day mission on orbit constructing the first elements of the International Space Station, the U.S.-built Unity connecting module and Russian-built Zarya control module.

  7. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Three members of the STS-102 crew hurry to the slidewire baskets for emergency egress training. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  8. Commerical Crew Astronaut Suni Williams in SpaceX's Spacesuit

    NASA Image and Video Library

    2018-05-17

    NASA Astronaut Suni Williams, fully suited in SpaceX’s spacesuit, interfaces with the display inside a mock-up of the Crew Dragon spacecraft in Hawthorne, California, during a testing exercise on Tuesday, April 3, 2018.

  9. Design Criteria for X-CRV Honeycomb Panels: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Caccese, Vincent; Verinder, Irene

    1997-01-01

    The objective of this project is to perform the first step in developing structural design criteria for composite sandwich panels that are to be used in the aeroshell of the crew return vehicle (X-CRV). The preliminary concept includes a simplified method for assessing the allowable strength in the laminate material. Ultimately, it is intended that the design criteria be extended to address the global response of the vehicle. This task will require execution of a test program as outlined in the recommendation section of this report. The aeroshell of the X-CRV is comprised of composite sandwich panels consisting of fiberite face sheets and a phenolic honeycomb core. The function of the crew return vehicle is to enable the safe return of injured or ill crewpersons from space station, the evacuation of crew in case of emergency or the return of crew if an orbiter is not available. A significant objective of the X-CRV project is to demonstrate that this vehicle can be designed, built and operated at lower cost and at a significantly faster development time. Development time can be reduced by driving out issues in both structural design and manufacturing concurrently. This means that structural design and analysis progresses in conjunction with manufacturing and testing. Preliminary tests results on laminate coupons are presented in the report. Based on these results a method for detection material failure in the material is presented. In the long term, extrapolation of coupon data to large scale structures may be inadequate. Test coupons used to develop failure criteria at the material scale are typically small when compared to the overall structure. Their inherent small size indicates that the material failure criteria can be used to predict localized failure of the structure, however, it can not be used to predict failure for all failure modes. Some failure modes occur only when the structure or one of its sub-components are studied as a whole. Conversely, localized

  10. STS-105 and Expedition Three crews pose together for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  11. Developing a Crew Time Model for Human Exploration Missions to Mars

    NASA Technical Reports Server (NTRS)

    Battfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Cirillo, William; Goodliff, Kandyce

    2015-01-01

    Candidate human missions to Mars require mission lengths that could extend beyond those that have previously been demonstrated during crewed Lunar (Apollo) and International Space Station (ISS) missions. The nature of the architectures required for deep space human exploration will likely necessitate major changes in how crews operate and maintain the spacecraft. The uncertainties associated with these shifts in mission constructs - including changes to habitation systems, transit durations, and system operations - raise concerns as to the ability of the crew to complete required overhead activities while still having time to conduct a set of robust exploration activities. This paper will present an initial assessment of crew operational requirements for human missions to the Mars surface. The presented results integrate assessments of crew habitation, system maintenance, and utilization to present a comprehensive analysis of potential crew time usage. Destination operations were assessed for a short (approx. 50 day) and long duration (approx. 500 day) surface habitation case. Crew time allocations are broken out by mission segment, and the availability of utilization opportunities was evaluated throughout the entire mission progression. To support this assessment, the integrated crew operations model (ICOM) was developed. ICOM was used to parse overhead, maintenance and system repair, and destination operations requirements within each mission segment - outbound transit, Mars surface duration, and return transit - to develop a comprehensive estimation of exploration crew time allocations. Overhead operational requirements included daily crew operations, health maintenance activities, and down time. Maintenance and repair operational allocations are derived using the Exploration Maintainability and Analysis Tool (EMAT) to develop a probabilistic estimation of crew repair time necessary to maintain systems functionality throughout the mission.

  12. Spaceship Discovery's Crew and Cargo Lander Module Designs for Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2008-01-01

    The Spaceship Discovery design was first presented at STAIF 2006. This conceptual design space vehicle architecture for human solar system exploration includes two types of Mars exploration lander modules: A piloted crew lander, designated Lander Module 2 (LM2), and an autonomous cargo lander, designated Lander Module 3 (LM3). The LM2 and LM3 designs were first presented at AIAA Space 2007. The LM2 and LM3 concepts have recently been extensively redesigned. The specific objective of this paper is to present these revised designs. The LM2 and LM3 landers are based on a common design that can be configured to carry either crew or cargo. They utilize a combination of aerodynamic reentry, parachutes, and propulsive braking to decelerate from orbital velocity to a soft landing. The LM2 crew lander provides two-way transportation for a nominal three-person crew between Mars orbit and the surface, and provides life support for a 30-day contingency mission. It contains an ascent section to return the crew to orbit after completion of surface operations. The LM3 cargo lander provides one-way, autonomous transportation of cargo from Mars orbit to the surface and can be configured to carry a mix of consumables and equipment, or equipment only. Lander service life and endurance is based on the Spaceship Discovery conjunction-class Design Reference Mission 2. The LM3 is designed to extend the surface stay for three crew members in an LM2 crew lander such that two sets of crew and cargo landers enable human exploration of the surface for the bulk of the 454 day wait time at Mars, in two shifts of three crew members each. Design requirements, mission profiles, mass properties, performance data, and configuration layouts are presented for the LM2 crew and LM3 cargo landers. These lander designs are a proposed solution to the problem of safely transporting a human crew from Mars orbit to the surface, sustaining them for extended periods of time on the surface, and returning them

  13. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Donald Pettit stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  14. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During emergency egress training at the pad, Expedition 6 crew member Donald Pettit stands inside an M-113 armored personnel carrier before his practice drive. The training is part of Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  15. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Commander James Wetherbee gets ready to drive an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  16. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Commander James Wetherbee practices driving an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  17. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  18. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Pilot Paul Lockhart stands inside an M-113 armored personnel carrier he is about to drive, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  19. X-38 Bolt Retractor Subsystem Separation Demonstration

    NASA Technical Reports Server (NTRS)

    Rugless, Fedoria (Editor); Johnston, A. S.; Ahmed, R.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2002-01-01

    The Flight Robotics Laboratory FRL successfully demonstrated the X-38 bolt retractor subsystem (BRS). The BRS design was proven safe by testing in the Pyrotechnic Shock Facility (PSI) before being demonstrated in the FRL. This Technical Memorandum describes the BRS, FRL, PSF, and interface hardware. Bolt retraction time, spacecraft simulator acceleration, and a force analysis are also presented. The purpose of the demonstration was to show the FRL capability for spacecraft separation testing using pyrotechnics. Although a formal test was not performed due to schedule and budget constraints, the data will show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  20. Crew Training - Apollo X (Apollo Mission Simulator [AMS]) - KSC

    NASA Image and Video Library

    1969-04-05

    S69-32788 (3 April 1969) --- Astronaut John W. Young, Apollo 10 prime crew command module pilot, participates in simulation activity in the Apollo Mission Simulator at the Kennedy Space Center during preparations for his scheduled lunar orbit mission.

  1. CREW TRAINING - APOLLO X (APOLLO MISSION SIMULATOR [AMS]) - KSC

    NASA Image and Video Library

    1969-04-05

    S69-32789 (3 April 1969) --- Astronaut John W. Young, Apollo 10 prime crew command module pilot, participates in simulation activity in the Apollo Mission Simulator at the Kennedy Space Center during preparations for his scheduled lunar orbit mission.

  2. Results of an International Space Crew Debrief

    NASA Technical Reports Server (NTRS)

    Santy, P. A.; Holland, A. W.; Looper, L.; Marcondes-North, R.

    1992-01-01

    In order to identify potential multi-cultural and multinational problems for future International Space Station Freedom crew, a crew debrief questionnaire was developed for U.S. astronauts who flew on shuttle missions with one or more crew members from other countries. Methods: From 1981-90, a total of 20 U.S. astronauts flew on international space missions. Debriefs were mailed to all 20 with instructions not to identify themselves or their specific mission. The debrief focused primarily on preflight training and post flight incidents of misunderstanding, miscommunication, and interpersonal friction among crewmembers. Astronauts were also asked to rate the impact of the incident to the mission (low, medium, high). Results: Ten astronauts responded, but only nine responses were able to be scored, for a return rate of 45 percent. 42 incidents were reported, 9 in the preflight period, 26 inflight, and 7 in the postflight period. Most of the incidents were rated at a low or medium impact, but 5 of the inflight incidents were rated at a 'high' mission impact. A number of causes for the problems were listed, and are discussed. Conclusions: The debrief respondents provide useful and timely recommendations on preflight training which might help facilitate the integration of multinational crews and prevent multi-cultural or multinational factors from interfering with mission operations.

  3. Docking of the SpaceX Dragon Commercial cargo craft

    NASA Image and Video Library

    2012-10-10

    ISS033-E-011170 (10 Oct. 2012) --- The SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station's Harmony node. Working from the robotics workstation inside the seven-windowed Cupola, Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, with the assistance of NASA astronaut Sunita Williams, commander, captured Dragon at 6:56 a.m. (EDT) and used the Canadarm2 robotic arm to berth Dragon to Harmony Oct. 10, 2012. Dragon is scheduled to spend 18 days attached to the station. During that time, the crew will unload 882 pounds of crew supplies, science research and hardware from the cargo craft and reload it with 1,673 pounds of cargo for return to Earth. After Dragon?s mission at the station is completed, the crew will use Canadarm2 to detach Dragon from Harmony and release it for a splashdown about six hours later in the Pacific Ocean, 250 miles off the coast of southern California. Dragon launched atop a Falcon 9 rocket at 8:35 p.m. Oct. 7 from Cape Canaveral Air Force Station in Florida, beginning NASA's first contracted cargo delivery flight, designated SpaceX CRS-1, to the station.

  4. STS-96 Crew Training, Mission Animation, Crew Interviews, STARSHINE, Discovery Rollout and Repair of Hail Damage

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage shows the crewmembers of STS-96, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette and Valery Ivanovich Tokarev during various training activities. Scenes include astronaut suit-up, EVA training in the Virtual Reality Lab, Orbiter space vision training, bailout training, and crew photo session. Footage also shows individual crew interviews, repair activities to the external fuel tank, and Discovery's return to the launch pad. The engineers are seen sanding, bending, and painting the foam used in repairing the tank. An animation of the deployment of the STARSHINE satellite, International Space Station, and the STS-96 Mission is presented. Footage shows the students from Edgar Allen Poe Middle School sanding, polishing, and inspecting the mirrors for the STARSHINE satellite. Live footage also includes students from St. Michael the Archangel School wearing bunny suits and entering the clean room at Goddard Space Flight Center.

  5. STS-113 crew poses for a photo after arrival at SLF

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-113 crew poses for a photo after their arrival at the KSC Shuttle Landing Facility to prepare for launch. From left are Commander James Wetherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. In addition, the major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  6. Evaluating science return in space exploration initiative architectures

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann; Spudis, Paul D.

    1993-01-01

    Science is an important aspect of the Space Exploration Initiative, a program to explore the Moon and Mars with people and machines. Different SEI mission architectures are evaluated on the basis of three variables: access (to the planet's surface), capability (including number of crew, equipment, and supporting infrastructure), and time (being the total number of man-hours available for scientific activities). This technique allows us to estimate the scientific return to be expected from different architectures and from different implementations of the same architecture. Our methodology allows us to maximize the scientific return from the initiative by illuminating the different emphases and returns that result from the alternative architectural decisions.

  7. Crew Training - Apollo X (Apollo Mission Simulator [AMS])

    NASA Image and Video Library

    1969-04-05

    S69-32787 (3 April 1969) --- Two members of the Apollo 10 prime crew participate in simulation activity at the Kennedy Space Center during preparations for their scheduled lunar orbit mission. Astronaut Thomas P. Stafford, commander, is in the background; and in the foreground is astronaut Eugene A. Cernan, lunar module pilot. The two crewmen are in the Lunar Module Mission Simulator.

  8. STS-26 crew arrives at KSC Shuttle Landing Facility (SLF)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crew arrives at Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). The recently announced flight crew of the next space shuttle mission STS-26 stands in front of NASA T-38 aircraft. The STS-26 crew is making a motivational visit to KSC in order to talk to and meet the support teams that help launch the shuttle. From left to right are: Mission Specialist (MS) David C. Hilmers who flew on 51J; Pilot Richard O. Covey who flew on 51I; Commander Frederick H. Hauck who flew as commander on 51A and as pilot on STS-7; and MS George D. Nelson who flew on 41C and 61C.

  9. X-38 on B-52 Wing Pylon - View from Observation Window

    NASA Image and Video Library

    1997-11-19

    A unique, close-up view of the X-38 under the wing of NASA's B-52 mothership prior to launch of the lifting-body research vehicle. The photo was taken from the observation window of the B-52 bomber as it banked in flight.

  10. High energy X-ray observations of the 38-second pulsar

    NASA Technical Reports Server (NTRS)

    Byrne, P. F.; Levine, A. M.; Bautz, M.; Howe, S. K.; Lang, F. L.; Primini, F. A.; Lewin, W. H. G.; Gruber, D. E.; Knight, F. K.; Nolan, P. L.

    1981-01-01

    The results of observations of the 38-second pulsar obtained at high X-ray energies (13-180 keV) with the UCSD/MIT instrument aboard HEAO 1 are reported. The results include a measurement of the source location, measurement of the pulse profile, and determination of the average intensity and spectrum during each of three time intervals spanning a baseline of 1 year. The total intensity of the pulsar is seen to vary on a 6-month time scale. The spectrum is hard but, like other X-ray pulsars, steepens at energies above 20 keV.

  11. STS-113 crew breakfast before second launch attempt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - On the second launch attempt, the STS-113 crew enjoys a snack before suiting up for launch. The launch was scrubbed on Nov. 22 because of poor weather in the Transoceanic Abort Landing sites. Seated left to right are Mission Specialists Michael Lopez-Alegria and John Herrington, Pilot Paul Lockhart and Commander James Wetherbee; Expedition 6 flight engineer Nikolai Budarin, Commander Ken Bowersox and flight engineer Donald Pettit. STS-113 is the 16th American assembly flight to the International Space Station. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST.

  12. STS-102 crew gets emergency exit training at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Getting training on the use of the slidewire basket for emergency exits from the launch pad are STS-102 Mission Specialists Paul Richards and Andrew Thomas. The rest of the crew includes Commander James Wetherbee, Pilot James Kelly and Mission Specialists James Voss, Susan Helms and Yury Usachev. The crew is taking part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  13. STS-111 crew exits the O&C Building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews eagerly exit from the Operations and Checkout Building for launch aboard Space Shuttle Endeavour. It is the second launch attempt in six days. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  14. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington stands inside an M-113 armored personnel carrier that he is about to drive as part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  15. Earth observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2013-11-24

    ISS038-E-007756 (24 Nov. 2013) --- One of the Expedition 38 crew members aboard the Earth-orbiting International Space Station used an 800mm lens to record this nadir image of Key West, Florida on Nov. 24, 2013.

  16. Optimizing the physical conditioning of the NASCAR sprint cup pit crew athlete.

    PubMed

    Ferguson, David P; Davis, Adam M; Lightfoot, J Timothy

    2015-03-01

    Stock car racing is the largest spectator sport in the United States. As a result, National Association for Stock Car Automobile Racing (NASCAR) Sprint Cup teams have begun to invest in strength and conditioning programs for their pit crew athletes. However, there is limited knowledge regarding the physical characteristics of elite NASCAR pit crew athletes, how the NASCAR Sprint Cup season affects basic physiological parameters such as body composition, and what is the most appropriate physical training program that meets the needs of a pit crew athlete. We conducted 3 experiments involving Sprint Cup motorsport athletes to determine predictors of success at the elite level, seasonal physiological changes, and appropriate physical training programs. Our results showed that hamstring flexibility (p = 0.015) and the score on the 2-tire front run test (p = 0.012) were significant predictors of NASCAR Sprint Cup Pit Crew athlete performance. Additionally, during the off season, pit crew athletes lost lean body mass, which did not return until the middle of the season. Therefore, a strength and conditioning program was developed to optimize pit crew athlete performance throughout the season. Implementation of this strength and conditioning program in 1 NASCAR Sprint Cup team demonstrated that pit crew athletes were able to prevent lean body mass loss and have increased muscle power output from the start of the season to the end of the season.

  17. STS-113 and Expedition Six crews pose for a group photo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-113 and Expedition Six crews pose for a group photo at Launch Pad 39A with Space Shuttle Endeavour in the background during a tour of Kennedy Space Center prior to their launch. From left are Expedition Six crew members Donald Pettit and Nikolai Budarin of the Russian Space Agency, STS-113 Mission Specialists John Herrington and Michael Lopez-Alegria, Expedition Six Commander Ken Bowersox, STS-113 Pilot Paul Lockhart, and STS-113 Commander James Wetherbee. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  18. Cooling Properties of the Shuttle Advanced Crew Escape Spacesuit: Results of an Environmental Chamber Experiment

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas; Gillis, David; Bue, Grant; Son, Chan; Norcross, Jason; Kuznetz, Larry; Chapman, Kirt; Chhipwadia, Ketan; McBride, Tim

    2008-01-01

    The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.

  19. STS-105 and Expedition Three crews pose for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose at Launch Pad 39A after training exercises. Pictured (left to right) are STS-105 Mission Specialists Patrick Forrester and Daniel Barry and Commander Scott Horowitz; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; and STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  20. STS-105 and Expedition Three crews in White Room at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  1. STS-102 crew talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Terminal Countdown Demonstration Test activities, the STS-102 crew takes time to talk to the media at the slidewire basket landing near Launch Pad 39B. From left to right are Commander James Wetherbee; Mission Specialists Yury Usachev, Andrew Thomas, James Voss, Susan Helms and Paul Richards; and Pilot James Kelly. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo Launch on mission STS-102 is scheduled for March 8.

  2. STS-95 crew members Glenn, Lindsey and Robinson at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr., senator from Ohio, smiles at his fellow crew members (middle) Pilot Steven W. Lindsey and (right) Mission Specialist Stephen K. Robinson while visiting Launch Pad 39B. The crew were making final preparations for launch, targeted for liftoff at 2 p.m. on Oct. 29. The other crew members (not shown) are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), Mission Commander Curtis L. Brown Jr., and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The STS-95 mission is expected to last 8 days, 21 hours and 49 minutes, returning to KSC at 11:49 a.m. EST on Nov. 7.

  3. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Terminal Countdown Demonstration Test activities, the STS-102 crew takes time to talk to the media at the slidewire basket landing near Launch Pad 39B. From left to right are Commander James Wetherbee; Mission Specialists Yury Usachev, Andrew Thomas, James Voss, Susan Helms and Paul Richards; and Pilot James Kelly. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo Launch on mission STS-102 is scheduled for March 8.

  4. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- An STS-102 crew member reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. On the horizon in the background can be seen the Vehicle Assembly Building. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  5. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialists Andrew Thomas (front, left) and Paul Richards take their seats in the slidewire basket, used for emergency egress from the orbiter and pad. Behind them, other crew members climb into their basket. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  6. Minority-spin t 2gstates and the degree of spin polarization in ferromagnetic metallic La 2-2xSr 1+2xMn 2O 7 (x = 0.38)

    DOE PAGES

    Sun, Z.; Wang, Q.; Douglas, J. F.; ...

    2013-11-07

    In this paper, a half-metal is a material with conductive electrons of one spin orientation. This type of substance has been extensively searched for due to the fascinating physics as well as the potential applications for spintronics. Ferromagnetic manganites are considered to be good candidates, though there is no conclusive evidence for this notion. Here we show that the ferromagnet La 2–2xSr 1+2xMn 2O 7 (x = 0.38) possesses minority-spin states, challenging whether any of the manganites may be true half-metals. However, when electron transport properties are taken into account on the basis of the electronic band structure, we foundmore » that the La 2–2xSr 1+2xMn 2O 7 (x = 0.38) can essentially behave like a complete half metal.« less

  7. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington is at the wheel of an M-113 armored personnel carrier during emergency egress training at the pad. He is accompanied by (left) Mission Specialist Michael Lopez-Alegria and Commander James Wetherbee. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  8. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-113 crew pause for a photo after test drives in the M-113 armored personnel carrier behind them. From left are Mission Specialist Michael Lopez-Alegria, Pilot Paul Lockhart, Commander James Wetherbee and Mission Specialist John Herrington. Driving the M-113 is part of emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  9. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria concentrates on driving an M-113 armored personnel carrier during emergency egress training at the pad. He is accompanied by (far left) Mission Specialist John Herrington and Commander James Wetherbee. Behind Lopez-Alegria is Pilot Paul Lockhart. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  10. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist Michael Lopez-Alegria is ready to begin a test drive behind the wheel of an M-113 armored personnel carrier during emergency egress training at the pad. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.

  11. The STS-92 crew is ready to leave KSC after CEIT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-92 Commander Brian Duffy climbs into a T-38 jet aircraft at KSC's Shuttle Landing Facility for a flight back to Houston. He and other crew members were at KSC for Crew Equipment Interface Test (CEIT) activities, looking over their mission payload and related equipment. STS-92 is scheduled to launch Oct. 5 on Shuttle Discovery from Launch Pad 39A on the fifth flight to the International Space Station. Discovery will carry the Integrated Truss Structure (ITS) Z1, the PMA-3, Ku-band Communications System, and Control Moment Gyros (CMGs).

  12. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    NASA Astrophysics Data System (ADS)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  13. Environmental Control and Life Support Integration Strategy for 6-Crew Operations

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.; Tressler, Chad H.

    2010-01-01

    The International Space Station (ISS) crew complement has increased in size from 3 to 6 crew members. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System (OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the t OS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station

  14. X-38 Ship #2 Mated to B-52 Mothership in Flight

    NASA Image and Video Library

    1999-07-09

    This photo shows one of the X-38 lifting-body research vehicles mated to NASA's B-52 mothership in flight prior to launch. The B-52 has been a workhorse for the Dryden Flight Research Center for more than 40 years, carrying numerous research vehicles aloft and conducting a variety of other research flight experiments.

  15. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  16. STS-113 and Expedition 6 crews leave the O&C building for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-113 and Expedition 6 crews leave the Operations and Checkout Building, heading for Launch Pad 39A and Space Shuttle Endeavour. In front, left to right, are Expedition 6 Commander Ken Bowersox and Mission Commander James Wetherbee; next row, Mission Specialist John Herrington and Pilot Paul Lockhart; third row, Mission Specialist Michael Lopez-Alegria and Expedition 6 flight engineer Nikolai Budarin; and finally, Expedition 6 flight engineer Donald Pettit. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 22, 2002, at 8:15 p.m. EST.

  17. STS-113 and Expedition 6 crews leave the O&C building for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-113 and Expedition 6 crews head for the Astrovan to transport them to Launch Pad 39A and Space Shuttle Endeavour. In the foreground, from left, are Mission Specialist Michael Lopez-Alegria and John Herrington, and Expedition 6 Commander Ken Bowersox. In the background, from left, are Expedition 6 flight engineers Donald Pettit and Nikolai Budarin, Pilot Paul Lockhart and Commander James Wetherbee. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 22, 2002, at 8:15 p.m. EST.

  18. STS-79 crew insignia

    NASA Image and Video Library

    1998-09-09

    STS79-S-001 (April 1996) --- STS-79 is the fourth in a series of NASA docking missions to the Russian Mir Space Station, leading up to the construction and operation of the International Space Station (ISS). As the first flight of the Spacehab Double Module, STS-79 encompasses research, test and evaluation of ISS, as well as logistics resupply for the Mir Space Station. STS-79 is also the first NASA-Mir American crew member exchange mission, with John E. Blaha (NASA-Mir-3) replacing Shannon W. Lucid (NASA-Mir-2) aboard the Mir Space Station. The lettering of their names either up or down denotes transport up to the Mir Space Station or return to Earth on STS-79. The patch is in the shape of the space shuttle?s airlock hatch, symbolizing the gateway to international cooperation in space. The patch illustrates the historic cooperation between the United States and Russia in space. With the flags of Russia and the United States as a backdrop, the handshake of Extravehicular Mobility Unit (EMU) - suited crew members symbolizes mission teamwork, not only of the crew members but also the teamwork between both countries? space personnel in science, engineering, medicine and logistics. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  19. Cardiovascular and Cerebrovascular Control on Return from ISS

    NASA Technical Reports Server (NTRS)

    Hughson, Richard Lee; Shoemaker, Joel Kevin; Blaber, Andrew Philip; Arbeille, Philippe; Greaves, Danielle Kathleen

    2008-01-01

    Cardiovascular and Cerebrovascular Control on Return from ISS (CCISS) will study the effects of long-duration spaceflight on crew members' heart functions and their blood vessels that supply the brain. Learning more about the cardiovascular and cerebrovascular systems could lead to specific countermeasures that might better protect future space travelers. This experiment is collaborative with the Canadian Space Agency.

  20. Earth observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2013-11-26

    ISS038-E-008471 (26 Nov. 2013) --- One of the Expedition 38 crew members aboard the International Space Station took this photograph showing a part of South Africa's Atlantic Coast. South Africa is the only African nation bordered by both the Indian and Atlantic Oceans.

  1. STS-105 and Expedition Three crews talk to media at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, STS-105 Mission Specialist Daniel Barry responds to a question during a media interview. With him are (left to right) Mission Specialist Patrick Forrester, Pilot Rick Sturckow and Commander Scott Horowitz; with the Expedition Three crew Commander Frank Culbertson and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, who are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  2. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-102 crew poses for a photo on the 215-foot level of the Fixed Service Structure. Behind them is Space Shuttle Discovery. Standing, left to right, are Mission Specialist Susan Helms, Pilot James Kelly, Mission Specialists Andrew Thomas and Paul Richards, Commander James Wetherbee and Mission Specialists Yury Usachev and James Voss. The crew is taking part in Terminal Countdown Demonstration Test activities, which include emergency exit training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  3. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  4. Expedition 38 Press Conference

    NASA Image and Video Library

    2013-11-06

    Expedition 38 Flight Engineer Rick Mastracchio of NASA talks, while in quarantine behind glass, during the final press conference held a day ahead of his launch with fellow crew mates, Soyuz Commander Mikhail Tyurin of Roscosmos, and, Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, to the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  5. Expedition 38 Press Conference

    NASA Image and Video Library

    2013-11-06

    Expedition 38 Soyuz Commander Mikhail Tyurin of Roscosmos is seen in quarantine behind glass during the final press conference held a day ahead of his launch with fellow crew mates, Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, and, Flight Engineer Rick Mastracchio of NASA, to the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  6. Expedition 38 Press Conference

    NASA Image and Video Library

    2013-11-06

    Expedition 38 Soyuz Commander Mikhail Tyurin of Roscosmos, right, talks as Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, listens, from quarantine behind glass, during the final press conference held a day ahead of their launch with fellow crew mate, Flight Engineer Rick Mastracchio of NASA, to the International Space Station, Wednesday, Nov. 6, 2013 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  7. Views of STS-3 crew during departure activites at Ellington with family

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Views of STS-3 crew, Astronauts Jack R. Lousma, left, and C. Gordon Fullerton prior to their departure in T-38 aircraft from Ellington Air Force Base for the launch of STS-3 (28700); Some of the family members of astronaut crew are greeted by a crowd of spectators on hand for Lousma and Fullerton's departure. Matthew Lousma is standing at the microphone in center of the frame, flanked by Mrs. Gratia Kay Lousma (left) and Mrs. Maria Fullerton. Left to right in front are Mary Lousma, Andrew Fullerton and Molly Fullerton (28701-2); Astronaut Lousma walks away from microphone after greeting news media representatives and public prior to departure for Kennedy (28703); Astronaut Lousma talking to Fullerton, left, and Astronuat Brewster H. Shaw, center before boarding T-38's to leave for KSC (28704); Lousma, left, and Fullerton pause at Ellington prior to their departure in T-38 aircraft for KSC (28705); Lousma, right, and Fullerton greet crowd on hand at Ellington for their departure to KSC

  8. STS-78 crew holds up Olympic torch at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-78 Payload Commander Susan J. Helms (center) holds up an Olympic torch that was presented to the crew after they arrived at KSC's Shuttle Landing Facility. With Helms are (from left) Payload Specialist Robert Brenton Thirsk (Canadian Space Agency); Mission Specialist Charles E. Brady; Mission Commander Terence T. 'Tom' Henricks; Helms; Mission Specialist Richard M. Linnehan; Pilot Keven R. Kregel; and Payload Specialist Jean-Jacques Favier (French Space Agency). The crew will take the torch with them on their upcoming spaceflight and then present it upon their return to a representative of the Atlanta Committee for the Olympic games (ACOG). The countdown clock began ticking earlier today toward the June 20 launch of the Space Shuttle Columbia on Mission STS- 78, the fifth Shuttle flight of 1996.

  9. STS-102 crew talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Terminal Countdown Demonstration Test activities, the STS-102 crew takes time to talk to the media at the slidewire basket landing near Launch Pad 39B. With the microphone (left) is Commander James Wetherbee; the others are (left to right) Mission Specialists Yury Usachev, Andrew Thomas, James Voss, Susan Helms and Paul Richards; and Pilot James Kelly. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  10. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Relaxing after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B, are(left to right) STS-102 Mission Specialists Andrew Thomas and Paul Richards and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Also flying on the mission are the Expedition Two crew, who will replace the Expedition One crew on Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  11. STS-103 crew is greeted after exiting the Crew Hatch Access Vehicle

    NASA Technical Reports Server (NTRS)

    1999-01-01

    As he exits the Crew Hatch Access Vehicle, STS-103 Commander Curtis L. Brown Jr. is greeted with a handshake by Joseph Rothenberg, associate administrator, Office of Space Flight. Descending the stairs behind Brown are (left to right) Mission Specialists C. Michael Foale (Ph.D.) and John M. Grunsfeld (Ph.D.) and Pilot Scott J. Kelly. At right, applauding the astronauts return are Earle Huckins, deputy associate administrator, Office of Space Science, and Roy Bridges, director, Kennedy Space Center. Others in the crew (not shown) are Mission Specialists Steven L. Smith, and Jean-Francois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. The crew of seven completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 EST and wheel stop at 7:01:34 EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.

  12. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  13. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  14. STS-79 crew watches from aft flight deck during undocking from Mir

    NASA Image and Video Library

    1997-03-26

    STS079-S-097 (16-26 Sept. 1996) --- Left to right, Terrence W. (Terry) Wilcutt, pilot; Shannon W. Lucid, mission specialist; and William F. Readdy, mission commander, are pictured on the space shuttle Atlantis' aft flight deck during undocking operations with Russia's Mir Space Station. Mir had served as both work and home for Lucid for over six months before greeting her American colleagues upon docking of Mir and Atlantis last week. Following her lengthy stay aboard Mir and several days on Atlantis, Lucid went on to spend 188 consecutive days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  15. Next Space Station Crew Previews Mission

    NASA Image and Video Library

    2017-10-11

    NASA astronaut Scott Tingle and crewmates Anton Shkaplerov of the Russian space agency Roscosmos and Norishege Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their upcoming mission to the International Space Station in a news conference on Oct. 11 at NASA’s Johnson Space Center in Houston. Tingle, Shkaplerov and Kanai will launch to the space station aboard the Soyuz MS-07 spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan. They will join the station’s Expedition 54 crew, and return to Earth in April 2018 as members of Expedition 55. During a planned four-month mission, the station crew members will take part in about 250 research investigations and technology demonstrations not possible on Earth in order to advance scientific knowledge of Earth, space, physical and biological sciences. Science conducted on the space station continues to yield benefits for humanity and will enable future long-duration human and robotic exploration into deep space, including missions past the Moon and Mars. This will be the first spaceflight for Tingle and Kanai, and the third for Shkaplerov.

  16. STS-95 crew members greet families at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members greet their families from Launch Pad 39B. From left, they are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Stephen K. Robinson, Pilot Steven W. Lindsey, Mission Commander Curtis L. Brown Jr., and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The crew were making final preparations for launch, targeted for liftoff at 2 p.m. on Oct. 29. The mission is expected to last 8 days, 21 hours and 49 minutes, returning to KSC at 11:49 a.m. EST on Nov. 7.

  17. Crew factors in flight operations VII : psychophysiological responses to overnight cargo operations

    DOT National Transportation Integrated Search

    1996-02-01

    To document the psychophysiological effects of flying overnight cargo operations, 41 B-727 crew members (average age 38 yr) were monitored before, during, and after one of two typical 8-day trip patterns. During daytime layovers, the average sleep ep...

  18. X-2 on ramp with B-50 mothership and support crew

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Air Force test pilot Capt. Iven Kincheloe stands in front of the Bell X-2 (46-674) on the ramp at Edwards Air Force Base, California. Behind the X-2 are ground support personnel, the B-50 launch aircraft and crew, chase planes, and support vehicles. Kincheloe had flown nearly 100 combat missions in Korea in an F-86 and was credited with shooting down 10 enemy aircraft. He then graduated from the Empire Test Pilot's School in Great Britain in December 1954, whereupon he was assigned to Edwards Air Force Base. He made four powered flights in the X-2. On September 7, 1956, he reached an altitude of 126,200 feet. After the death of Capt. Mel Apt and the loss of the X-2 #1 on September 27, 1956, in the first Mach 3 flight, Kincheloe was assigned as the Air Force project pilot for the X-15. Before he had a chance to fly that rocket-powered aircraft, Kincheloe himself lost his life on July 26, 1958, in an F-104 accident. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights

  19. Commercial Crew Program Crew Safety Strategy

    NASA Technical Reports Server (NTRS)

    Vassberg, Nathan; Stover, Billy

    2015-01-01

    The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.

  20. STS-69 Crew members display 'Dog Crew' patches

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Following their arrival at KSC's Shuttle Landing Facility, the five astronauts assigned to Space Shuttle Mission STS-69 display the unofficial crew patch for their upcoming spaceflight: the Dog Crew II patch. Mission Commander David M. Walker (center) and Payload Commander James S. Voss (second from right) previously flew together on Mission STS-53, the final dedicated Department of Defense flight on the Space Shuttle. A close comradery formed among Walker, Voss and the rest of the crew, and they dubbed themselves the 'dogs of war', with each of the STS-53 'Dog Crew' members assigned a 'dog tag' or nickname. When the STS-69 astronauts also became good buddies, they decided it was time for the Dog Crew II to be named. Walker's dog tag is Red Dog, Voss's is Dogface, Pilot Kenneth D. Cockrell (second from left) is Cujo, space rookie and Mission Specialist Michael L. Gernhardt (left) is Under Dog, and Mission Specialist James H. Newman (right) is Pluato. The Dog Crew II patch features a bulldog peering out from a doghouse shaped like the Space Shuttle and lists the five crew member's dog names. The five astronauts are scheduled to lift off on the fifth Shuttle flight of the year at 11:04 a.m. EDT, August 31, aboard the Space Shuttle Endeavour.

  1. Role of Hf on Phase Formation in Ti45Zr(38-x)Hf(x)Ni17 Liquids and Solids

    NASA Technical Reports Server (NTRS)

    Wessels, V.; Sahu, K. K.; Gangopadhyay, A. K.; Huett, V. T.; Canepari, S.; Goldman, A. I.; Hyers, R. W.; Kramer, M. J.; Rogers, J. R.; Kelton, K. F.; hide

    2008-01-01

    Hafnium and zirconium are very similar, with almost identical sizes and chemical bonding characteristics. However, they behave differently when alloyed with Ti and Ni. A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched and as-cast Ti45Zr38-xHfxNi17 alloys. Rapidly-quenched samples that contain less than 18 at.% Hf form the icosahedral quasicrystal phase, whiles samples containing more than 21 at.% form the 3/2 rational approximant phase. In cast alloys, a C14 structure is observed for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 ) FCC Ti2Ni-type structure is found in alloys with Hf concentrations above the boundary. To better understand the role of Hf on phase formation, the structural evolution with supercooling and the solidification behavior of liquid Ti45Zr38-xHfxNi17 alloys (x=0, 12, 18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne National Laboratory. For all liquids primary crystallization was to a BCC solid solution phase; interestly, an increase in Hf concentration leads to a decrease in the BCC lattice parameter in spite of the chemical similarity between Zr and Hf. A Reitveld analysis confirmed that as in the cast alloys, the secondary phase that formed was the C14 below the phase formation boundary and a Ti2Ni-type structure at higher Hf concentrations. Both the liquidus temperature and the reduced undercooling change sharply on traversing the phase formation boundary concentration, suggesting a change in the liquid structure. Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo fits to the S(q) liquid data will be presented to address this issue.

  2. Might astronauts one day be treated like return samples?

    NASA Astrophysics Data System (ADS)

    Arnould, Jacques; Debus, André

    2008-09-01

    The next time humans set foot on the Moon or another planet, will we treat the crew like we would a sample return mission when they come back to Earth? This may seem a surprising or even provocative question, but it is one we need to address. The hurdles and hazards of sending humans to Mars for example, the technology constraints and physiological and psychological challenges are many; but let us not forget the need to protect populations and environments from the risk of contamination [United Nations, treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial bodies (the “Outer Space Treaty”) referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966]. The first hurdle is the size of crew modules. It is hard to envisage being able to decontaminate a crew module as thoroughly as we can interplanetary probes at launch. And once a crew arrives on Mars, it will not be easy either to break the chain of contact between their habitat and the Martian environment. How will astronauts avoid coming into direct contact with Mars dust when they remove their spacesuits in the airlock? How will they avoid bringing it into the crew module, and then back to Earth? At this stage, it would seem vital to do preliminary research on unmanned exobiology missions to identify zones that do not, a priori, pose a contamination hazard for astronauts. However, this precaution will not dispense with the need to perfect methods to chemically sterilize Mars dust inside airlocks, and quarantine procedures for the return to Earth. While the technology challenges of protecting astronauts and their habitat are considerable, the ethical issues are not to be underestimated either. They must be addressed alongside all the other issues bound up with human spaceflight, chief among them astronauts’ acceptance of the risk of a launch failure and other accidents, exposure to cosmic radiation and so on. For missions to

  3. X-Ray Computed Tomography: The First Step in Mars Sample Return Processing

    NASA Technical Reports Server (NTRS)

    Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.

    2017-01-01

    The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and

  4. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39B, members of the STS-102 crew relax after emergency escape training. From left are Mission Specialists Paul Richards, Andrew Thomas and Susan Helms, and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Helms is part of the Expedition Two crew who will be on the mission to replace Expedition One on the International Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  5. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39B, members of the STS-102 crew relax after emergency escape training. At left is Pilot James Kelly; in the center and right are Mission Specialists Yury Usachev and James Voss. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Usachev and Voss are part of the Expedition Two crew who will be on the mission to replace Expedition One on the International Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  6. 49 CFR 38.123 - Restrooms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Restrooms. 38.123 Section 38.123 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY... measured to the top of the toilet seat. Seats shall not be sprung to return to a lifted position. (3) A...

  7. STS-113 and Expedition Six crews pose for a group photo at SLF

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-113 and Expedition Six crews pose for a group photo at Launch Pad 39A with Space Shuttle Endeavour in the background during a tour of Kennedy Space Center prior to their launch. From left are Expedition Six crew members Donald Pettit and Nikolai Budarin of the Russian Space Agency, STS-113 Mission Specialists John Herrington and Michael Lopez-Alegria, Expedition Six Commander Ken Bowersox, STS-113 Pilot Paul Lockhart, and STS-113 Commander James Wetherbee. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  8. Apollo 11 Astronaut Collins Arrives at the Flight Crew Training Building

    NASA Technical Reports Server (NTRS)

    1968-01-01

    In this photograph, Apollo 11 astronaut Michael Collins carries his coffee with him as he arrives at the flight crew training building of the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  9. Environmental Control and Life Support Integration Strategy for 6-Crew Operations

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The International Space Station (ISS) crew compliment will be increasing in size from 3 to 6 crew members in the summer of 2009. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). A critical step in advancing to a 6Crew support capability on ISS is a full checkedout and verification of the Regenerative ECLS hardware. With a successful checkout, the ISS will achieve full redundancy in its onorbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offers additional challenges. These challenges create the need for a higher level of onorbit consumables reserve to ensure crewmember life support during a system failure. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6Crew on ISS, as well as the continued work which will be necessary to ensure the support of crew and ISS Program objectives through the life of station.

  10. An Overview of the Guided Parafoil System Derived from X-38 Experience

    NASA Technical Reports Server (NTRS)

    Stein, Jenny M.; Madsen, Chris M.; Strahan, Alan L.

    2005-01-01

    The NASA Johnson Space Center built a 4200 sq ft parafoil for the U.S. Army Natick Soldier Center to demonstrate autonomous flight using a guided parafoil system to deliver 10,000 lbs of useable payload. The parafoil's design was based upon that developed during the X-38 program. The drop test payload consisted of a standard 20-foot Type V airdrop platform, a standard 12-foot weight tub, a 60 ft drogue parachute, a 4200 ft2 parafoil, an instrumentation system, and a Guidance, Navigation, and Control (GN&C) system. Instrumentation installed on the load was used to gather data to validate simulation models and preflight loads predictions and to perform post flight trajectory and performance reconstructions. The GN&C system, developed during NASA's X-38 program, consisted of a flight computer, modems for uplink commands and downlink data, a compass, laser altimeter, and two winches. The winches were used to steer the parafoil and to perform the dynamic flare maneuver for a soft landing. The laser was used to initiate the flare. The GN&C software was originally provided to NASA by the European Space Agency. NASA incorporated further software refinements based upon the X-38 flight test results. Three full-scale drop tests were conducted, with the third being performed during the Precision Airdrop Technology Conference and Demonstration (PATCAD) Conference at the U.S. Army Yuma Proving Ground (YPG) in November of 2003. For the PATCAD demonstration, the parafoil and GN&C software and hardware performed well, concluding with a good flare and the smallest miss distance ever experienced in NASA's parafoil drop test program. This paper describes the 4200 sq ft parafoil system, simulation results, and the results of the drop tests.

  11. Soyuz spacecraft taken by the Expedition 25 crew

    NASA Image and Video Library

    2010-11-09

    ISS025-E-013634 (9 Nov. 2010) --- The Soyuz TMA-19 spacecraft dominates the foreground of this image exposed by one of the Expedition 25 crew members as the International Space Station and the docked Russian spacecraft were 220 miles above the Caribbean Sea. The island of Andros, in the Bahamas chain, can be seen in the background. Three members of the current six-person staffing aboard the orbital complex are expected to return to Earth in the Soyuz in about two and half weeks.

  12. Soyuz spacecraft taken by the Expedition 25 crew

    NASA Image and Video Library

    2010-11-09

    ISS025-E-013635 (9 Nov. 2010) --- The Soyuz TMA-19 spacecraft dominates the foreground of this image exposed by one of the Expedition 25 crew members as the International Space Station and the docked Russian spacecraft were 220 miles above the Caribbean Sea. The island of Andros, in the Bahamas chain, can be seen in the background. Three members of the current six-person staffing aboard the orbital complex are expected to return to Earth in the Soyuz in about two and half weeks.

  13. STS-69 Mission Commander David M. Walker returns to KSC

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker and four fellow crew members return to KSC for a second launch try. The Space Shuttle Endeavour is scheduled for liftoff on Sept. 7 at 11:09 a.m. EDT, just about a week after the first try was scrubbed due to a faulty fuel cell.

  14. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Pulmonary tuberculosis... Rating Considerations Relative to Specific Diseases § 3.370 Pulmonary tuberculosis shown by X-ray in... connection for pulmonary tuberculosis. When under consideration, all available service department films and...

  15. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Pulmonary tuberculosis... Rating Considerations Relative to Specific Diseases § 3.370 Pulmonary tuberculosis shown by X-ray in... connection for pulmonary tuberculosis. When under consideration, all available service department films and...

  16. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Pulmonary tuberculosis... Rating Considerations Relative to Specific Diseases § 3.370 Pulmonary tuberculosis shown by X-ray in... connection for pulmonary tuberculosis. When under consideration, all available service department films and...

  17. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Pulmonary tuberculosis... Rating Considerations Relative to Specific Diseases § 3.370 Pulmonary tuberculosis shown by X-ray in... connection for pulmonary tuberculosis. When under consideration, all available service department films and...

  18. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Pulmonary tuberculosis... Rating Considerations Relative to Specific Diseases § 3.370 Pulmonary tuberculosis shown by X-ray in... connection for pulmonary tuberculosis. When under consideration, all available service department films and...

  19. In-Situ Resource Utilization Experiment for the Asteroid Redirect Crewed Mission

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Fries, M.; Love, S.; Sellar, R. G.; Voecks, G.; Wilson, D.

    2015-10-01

    The Asteroid Redirect Crewed Mission (ARCM) represents a unique opportunity to perform in-situ testing of concepts that could lead to full-scale exploitation of asteroids for their valuable resources [1]. This paper describes a concept for an astronautoperated "suitcase" experiment to would demonstrate asteroid volatile extraction using a solar-heated oven and integral cold trap in a configuration scalable to full-size asteroids. Conversion of liberated water into H2 and O2 products would also be demonstrated through an integral processing and storage unit. The plan also includes development of a local prospecting system consisting of a suit-mounted multi-spectral imager to aid the crew in choosing optimal samples, both for In-Situ Resource Utilization (ISRU) and for potential return to Earth.

  20. Eric Boe and Bob Behnken Dragon Tour

    NASA Image and Video Library

    2017-03-08

    During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronaut Bob Behnken views the Crew Dragon on March 8, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.

  1. Promoting Crew Autonomy: Current Advances and Novel Techniques

    NASA Technical Reports Server (NTRS)

    Harris, Samantha

    2017-01-01

    Since the dawn of the era of human space flight, mission control centers around the world have played an integral role in guiding space travelers toward mission success. In the International Space Station (ISS) program, astronauts and cosmonauts have the benefit of near constant access to the expertise and resources within mission control, as well as lifeboat capability to quickly return to Earth if something were to go wrong. As we move into an era of longer duration missions to more remote locations, rapid and ready access to mission control on earth will no longer be feasible. To prepare for such missions, long duration crews must be prepared to operate more autonomously, and the mission control paradigm that has been successfully employed for decades must be re-examined. The team at NASA's Payload Operations and Integration Center (POIC) in Huntsville, Alabama is playing an integral role in the development of concepts for a more autonomous long duration crew of the future via research on the ISS.

  2. Expedition 8 Crew Interviews: C. Michael Foale - CDR

    NASA Technical Reports Server (NTRS)

    2003-01-01

    C. Michael Foale, Commander of the Expedition 8 crew to the International Space Station (ISS), answers interview questions in this video. The questions cover: 1) The goals of the Expedition; 2) How his Mir experience prepared him for long-duration spaceflight; 3) The reaction the Columbia accident where he was training in Star City, Russia; 4) Why the rewards of spaceflight are worth the risks; 5) Why he wanted to become an astronaut; 6) His career path; 7) His influences; 8) His path of study; 9) His responsibilities on a mission; 10) What a Soyuz capsule is like; 11) What the oncoming and offgoing ISS crews will do together; 12) How the ISS science mission will be advanced during his stay; 13) Training and plans for extravehicular activity (EVA); 14) Return to Flight of Shuttle; 15) What is needed to make his mission a success; 16) The most valuable contribution of the ISS.

  3. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee talks about the mission during a media event at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  4. Progress on the J-2X Upper Stage Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Byrd, Thomas D.; Kynard, Michael .

    2007-01-01

    NASA's Vision for Exploration requires a safe, reliable, affordable upper stage engine to power the Ares I Crew Launch Vehicle (CLV) and the Ares V Cargo Launch Vehicle. The J-2X engine is being developed for that purpose, epitomizing NASA's philosophy of employing legacy knowledge, heritage hardware, and commonality to carry the next generation of explorers into low-Earth orbit and out into the solar system This presentation gives top-level details on accomplishments to date and discusses forward work necessary to bring the J-2X engine to the launch pad.

  5. Expedition 38 Prelaunch

    NASA Image and Video Library

    2013-11-07

    Expedition 38 Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency waves hello to family members gathered to watch him through glass as he and fellow crew mates, Soyuz Commander Mikhail Tyurin of Roscosmos, and, Flight Engineer Rick Mastracchio of NASA, have their Russian Sokol suits pressure checked a few hours ahead of their launch, Thursday, Nov. 7, 2013, in Baikonur, Kazakhstan. Tyurin, Wakata, and, Mastracchio will launch in their Soyuz TMA-11M spacecraft to the International Space Station to begin a six-month mission. Photo Credit (NASA/Bill Ingalls)

  6. STS-111 crew exits O&C building on way to LC-39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 and Expedition 5 crews hurry from the Operations and Checkout Building for a second launch attempt aboard Space Shuttle Endeavour. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  7. Environmental Control and Life Support Integration Strategy for 6-Crew Operations Stephanie Duchesne

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.

    2009-01-01

    The International Space Station (ISS) crew compliment has increased in size from 3 to 6 crew members . In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station.

  8. STS-84 crew participates in TCDT activities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-84 crew members ride in and learn how to operate an M-113 armored personnel carrier as part of the Terminal Countdown Demonstration Test (TCDT) activities. In the front seat is Pilot Eileen Marie Collins. George Hoggard, a training officer with KSC Fire Services, sits beside her on top of the personnel carrier. Directly behind Hoggard, from left, are Commander Charles J. Precourt and Mission Specialist Elena V. Kondakova (sitting) of the Russian Space Agency. At the rear, from left, are Mission Specialist C. Michael Foale and Mission Specialist Jean-Francois Clervoy of the European Space Agency. STS-84 aboard the Space Shuttle Atlantis will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. After docking, Foale will transfer to the space station and become a member of the Mir 23 crew, replacing U.S. astronaut Jerry M. Linenger, who will return to Earth aboard Atlantis. Foale will live and work on Mir until mid-September when his replacement is expected to arrive on the STS-86 mission. STS-84 is targeted for a May 15 liftoff.

  9. Activation of p38 MAPK-regulated Bcl-xL signaling increases survival against zoledronic acid-induced apoptosis in osteoclast precursors.

    PubMed

    Tai, Ta-Wei; Su, Fong-Chin; Chen, Ching-Yu; Jou, I-Ming; Lin, Chiou-Feng

    2014-10-01

    The nitrogen-containing bisphosphonate zoledronic acid (ZA) induces apoptosis in osteoclasts and inhibits osteoclast-mediated bone resorption. It is widely used to treat osteoporosis. However, some patients are less responsive to ZA treatment, and the mechanisms of resistance are still unclear. Here, we identified that murine osteoclast precursors may develop resistance to ZA-induced apoptosis. These resistant cells survived the apoptotic effect of ZA following an increase in anti-apoptotic Bcl-xL. Pharmacologically inhibiting Bcl-xL facilitated ZA-induced apoptosis. Treatment with ZA activated p38 MAPK, increasing Bcl-xL expression and cell survival. Nuclear import of β-catenin regulated by p38 MAPK determined Bcl-xL mRNA expression and cell survival in response to ZA. ZA also inactivated glycogen synthase kinase (GSK)-3β, a negative upstream regulator of β-catenin, in a p38 MAPK-mediated manner. Synergistic pharmacological inhibition of p38 MAPK with ZA attenuated receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and facilitated ZA-induced apoptosis. These results demonstrate that elevated Bcl-xL expression mediated by p38 MAPK-regulated GSK-3β/β-catenin signaling is required for cell survival of ZA-induced apoptosis in both osteoclast precursors and osteoclasts. Finally, we demonstrated that inhibiting p38 MAPK-mediated pathway enhanced ZA effect on increasing the bone mineral density of ovariectomized mice. This result suggests that targeting these pathways may represent a potential therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The 'missing man' formation concluded the memorial for the STS 51-L crew

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The 'missing man' formation concluded the memorial services at JSC for the STS 51-L crew. Four NASA T-38 jet aircraft were used for the symbolic flight. A small portion of the crowd is visible in the bottom portion of the frame.

  11. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    NASA Technical Reports Server (NTRS)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  12. KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy speaks to attendees at a memorial service honoring the crew of Columbia. He stands in front of the Space Memorial Mirror at the KSC Visitor Complex. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. Attended by many friends, co-workers and families, the memorial service was also open to the public.

    NASA Image and Video Library

    2004-02-01

    KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy speaks to attendees at a memorial service honoring the crew of Columbia. He stands in front of the Space Memorial Mirror at the KSC Visitor Complex. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. Attended by many friends, co-workers and families, the memorial service was also open to the public.

  13. X-38 on B-52 Wing Pylon - View from Observation Window

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A unique, close-up view of the X-38 under the wing of NASA's B-52 mothership prior to launch of the lifting-body research vehicle. The photo was taken from the observation window of the B-52 bomber as it banked in flight. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In

  14. Space shuttle three main engine return to launch site abort

    NASA Technical Reports Server (NTRS)

    Carter, J. F.; Bown, R. L.

    1975-01-01

    A Return-to-Launch-Site (RTLS) abort with three Space Shuttle Main Engines (SSME) operational was examined. The results are trajectories and main engine cutoff conditions that are approximately the same as for a two SSME case. Requiring the three SSME solution to match the two SSME abort eliminates additional crew training and is accomplished with negligible software impact.

  15. STS-113 crew during M-113 armored personnel carrier training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 Commander Ken Bowersox stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  16. The Mars-500 crew in daily life activities: An ethological study

    NASA Astrophysics Data System (ADS)

    Tafforin, Carole

    2013-10-01

    A Mars mission is a new challenge for scientific investigators in the space field. What would be the behavioral profile of an interplanetary crew with long-duration social isolation and spatial restriction? The current study addresses this question with the first ethological data from the Mars-500 experiment. It took place in Moscow, Russia from June 3, 2010 to November 4, 2011. It was designed to simulate the living and working conditions of an isolated and confined crew over 250 days for reaching Mars, 30 days for Mars orbiting with Mars landing and 240 days for returning to Earth. The Mars-500 crew was composed of three Russians, two Europeans and one Chinese. The Mars-500 facilities comprised four hermetically sealed, interconnected modules and a Martian surface module. We applied the ethological method based on observation, description and quantification of the individual and inter-individual behaviors in terms of personal actions, visual interactions, object interactions, body interactions, facial expressions and collateral acts. These events were scored on the Observer XT® software, from video recordings made every two weeks at breakfast time inside the habitat module. We found the following results: a diminishing collective time from the first phase corresponding to the 250-day trip to Mars to the second phase corresponding to the 240-day return to Earth; 35-day cycles then 70-day cycles of high duration of personal actions within these phases; periodic oscillations of duration of inter-personal actions; decreasing then increasing occurrences of facial expressions with temporal points of decrements, around day 159 and day 355, after 6 months and one year of simulation; increasing occurrences of collateral acts over the full 520-day journey. We discuss the findings with regard to a Mars mission scenario. Time has a major impact on the behavioral profile, as shown by indicators of physical and psychological states of fatigue, stress, well being and good

  17. Commercial Crew Astronauts Visit Kennedy on This Week @NASA – August 12, 2016

    NASA Image and Video Library

    2016-08-12

    Two of the NASA astronauts training for the first flight tests for the agency’s Commercial Crew Program visited with employees during an Aug. 11 event at Kennedy Space Center. Astronauts Eric Boe and Suni Williams, alongside Commercial Crew Program Manager Kathy Lueders, responded to questions during a panel discussion, moderated by Kennedy Director Robert Cabana. NASA has contracted with Boeing and SpaceX to develop crew transportation systems and provide crew transportation services to and from the International Space Station. The agency will select the commercial crew astronauts from the group that includes Boe, Williams, Bob Behnken and Doug Hurley The first flight tests are targeted for next year. Also, Air Quality Flight over California Wildfire, CYGNSS Media Day, Putting NASA Earth Science to Work, and more!

  18. Eric Boe and Bob Behnken Dragon Tour

    NASA Image and Video Library

    2017-03-08

    During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Eric Boe, left, and Bob Behnken view the Crew Dragon on March 8, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.

  19. 270V Battery Using COTS NiCd Cells For Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Davies,Frank; Hummer, Leigh; Strangways, Brad

    2002-01-01

    A high power (>35 kW at 215V), low capacity (5.2 Ah), and compact (45L) NiCd battery was developed for the X-38 Crew Return Vehicle (CRV), which is an experimental version of the lifeboat for the International Space Station (ISS). A simple design and innovative approach using a commercial-off-the-shelf (COTS) NiCd cell design enabled the design, qualification, and production of 4 flight units of this highly reliable and safe spacecraft battery to be achieved rapidly (2 years) and cheaply ($13M).

  20. Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model

    NASA Astrophysics Data System (ADS)

    Alaoui, Meriem; Holman, Gordon D.

    2017-12-01

    Hard X-ray (HXR) spectral breaks are explained in terms of a one-dimensional model with a cospatial return current. We study 19 flares observed by the Ramaty High Energy Solar Spectroscopic Imager with strong spectral breaks at energies around a few deka-keV, which cannot be explained by isotropic albedo or non-uniform ionization alone. We identify these breaks at the HXR peak time, but we obtain 8 s cadence spectra of the entire impulsive phase. Electrons with an initially power-law distribution and a sharp low-energy cutoff lose energy through return-current losses until they reach the thick target, where they lose their remaining energy through collisions. Our main results are as follows. (1) The return-current collisional thick-target model provides acceptable fits for spectra with strong breaks. (2) Limits on the plasma resistivity are derived from the fitted potential drop and deduced electron-beam flux density, assuming the return current is a drift current in the ambient plasma. These resistivities are typically 2–3 orders of magnitude higher than the Spitzer resistivity at the fitted temperature, and provide a test for the adequacy of classical resistivity and the stability of the return current. (3) Using the upper limit of the low-energy cutoff, the return current is always stable to the generation of ion-acoustic and electrostatic ion-cyclotron instabilities when the electron temperature is nine times lower than the ion temperature. (4) In most cases, the return current is most likely primarily carried by runaway electrons from the tail of the thermal distribution rather than by the bulk drifting thermal electrons. For these cases, anomalous resistivity is not required.

  1. Orion Underway Recovery Test for EFT-1 - Return and Offload

    NASA Image and Video Library

    2014-02-21

    SAN DIEGO, Calif. – The Orion boilerplate test vehicle was offloaded from the USS San Diego at the U.S. Naval Base San Diego in California. Orion was transported in the ship’s well deck about 100 miles offshore for an underway recovery test. NASA and the U.S. Navy conducted tests to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test allowed the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. During the testing, the tether lines were unable to support the tension caused by crew module motion that was driven by wave turbulence in the well deck of the ship. NASA and the U.S. Navy are reviewing the testing data collected to evaluate the next steps. The Ground Systems Development and Operations Program was conducting the recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  2. Orion Underway Recovery Test for EFT-1 - Return and Offload

    NASA Image and Video Library

    2014-02-21

    SAN DIEGO, Calif. – The Orion boilerplate test vehicle is being offloaded from the USS San Diego at the U.S. Naval Base San Diego in California. Orion was transported in the ship’s well deck about 100 miles offshore for an underway recovery test. NASA and the U.S. Navy conducted tests to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test allowed the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. During the testing, the tether lines were unable to support the tension caused by crew module motion that was driven by wave turbulence in the well deck of the ship. NASA and the U.S. Navy are reviewing the testing data collected to evaluate the next steps. The Ground Systems Development and Operations Program was conducting the recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  3. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. Behind him is Pilot James Kelly. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  4. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  5. Aircrew perceived stress: examining crew performance, crew position and captains personality.

    PubMed

    Bowles, S; Ursin, H; Picano, J

    2000-11-01

    This study was conducted at NASA Ames Research Center as a part of a larger research project assessing the impact of captain's personality on crew performance and perceived stress in 24 air transport crews (5). Three different personality types for captains were classified based on a previous cluster analysis (3). Crews were comprised of three crewmembers: captain, first officer, and second officer/flight engineer. A total of 72 pilots completed a 1.5-d full-mission simulation of airline operations including emergency situations in the Ames Manned Vehicle System Research Facility B-727 simulator. Crewmembers were tested for perceived stress on four dimensions of the NASA Task Load Index after each of five flight legs. Crews were divided into three groups based on rankings from combined error and rating scores. High performance crews (who committed the least errors in flight) reported experiencing less stress in simulated flight than either low or medium crews. When comparing crew positions for perceived stress over all the simulated flights no significant differences were found. However, the crews led by the "Right Stuff" (e.g., active, warm, confident, competitive, and preferring excellence and challenges) personality type captains typically reported less stress than crewmembers led by other personality types.

  6. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the slidewire basket landing near Launch Pad 39B, the Expedition Two crew poses for a photograph. From left to right are Susan Helms, Yury Usachev and James Voss. They are flying on Space Shuttle Discovery (seen in the background) as mission specialists for STS-102, joining Commander James Wetherbee, Pilot James Kelly and Mission Specialists Andrew Thomas and Paul Richards for the eighth construction flight to the International Space Station. Voss, Helms and Usachev will be replacing the Expedition One crew, who will return to Earth with Discovery. STS-102 will be carrying the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8.

  7. Crew operations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The requirements for the activities involved, and the procedures used by the crew in the operations of the modular space station are presented. All crew-related characteristics of the station and its operations are indicated. The interior configuration and arrangement of each of the space station modules, the facilities and equipment in the module and their operation are described as related to crew habitability. The crew activities and procedures involved in the operation of the station in the accomplishment of its primary mission are defined. The operations involved in initial station buildup, and the on-orbit operation and maintenance of the station and its subsystems to support the experimental program are included. A general description of experiment operations is also given.

  8. Microbiology and Crew Medical Events on the International Space Station

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie M.; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van

    2014-01-01

    The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.

  9. Blood lead level and types of aviation fuel in aircraft maintenance crew.

    PubMed

    Park, Won-Ju; Gu, Hye-Min; Lee, Suk-Ho

    2013-10-01

    This study inquired into any significant difference in blood lead levels (BLLs) among aircraft maintenance crews at the air-bases, each with a different aviation fuel in use, and confirmed an environmental impact of leaded aviation gasoline (AVGAS). This study included a total of 256 male aircraft maintenance personnel, among whom 105 used only AVGAS as their aviation fuel, while 151 used only jet propellant 8 (JP-8), a kerosene variety. BLLs were measured and the data on related factors were obtained. The arithmetic and geometric means of BLLs of the personnel at the airbases that used only AVGAS were 4.20 microg x dl(-1) and 4.01 microg x dl(-1) and that used only JP-8 were 3.79 microg x dl(-1) and 3.57 microg x dl(-1), respectively. The BLLs of the maintenance crew of the main workspace that was located within a 200-m distance from the runway were higher than those of the main workspace that was located 200 m or farther from the runway. The longer the work hours in the runway or the longer the work duration, the higher the BLLs of the maintenance crew. This investigation exposed the fact that a body's BLL could be increased by AVGAS emissions through the examination of aircraft maintenance crew. This result is in agreement with results of previous studies that suggest proximity to an airport may be associated with elevated BLLs for adults and children. Collectively, the results of the current study and previous research suggest that long-duration inhabitation and/or activities in close proximity to an air facility should be limited given that lead poses known health risks.

  10. STS-114 Crew Interview: Stephen Robinson

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Stephen Robinson, Mission Specialist 2 (MS2), of the STS-114 space mission is seen during a prelaunch interview. He discusses his duties as flight engineer, Extravehicular Activity 2 (EVA 2) spacewalker, and medical officer. Robinson answers questions about his interests in spaceflight and the specific goals of the mission. He identifies this mission as the International Space Station Resupply Mission because supplies and experiments are brought to the International Space Station and Expedition 6 crew of Commander Kenneth Bowersox, and Flight Engineers Donald Pettit and Nikolai Budarin are returning to Earth. Lastly, he talks about the docking of the Space Shuttle Atlantis with the International Space Station. He looks forward to this experience in space.

  11. Earth Observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047324 (13 Feb. 2014) --- This grand panorama of the Southern Patagonia Icefield (center) was imaged by an Expedition 38 crew member on the International Space Station on one of the rare clear days in the southern Andes Mountains. With an area of 13,000 square kilometers, the icefield is the largest temperate ice sheet in the Southern Hemisphere. Storms that swirl into the region from the southern Pacific Ocean (top) bring rain and snow (equivalent to a total of 2-11 meters of rainfall per year) resulting in the buildup of the ice sheet shown here (center). During the ice ages the glaciers were far larger. Geologists now know that ice tongues extended far onto the plains in the foreground, completely filling the great Patagonian lakes on repeated occasions. Similarly, ice tongues extended into the dense network of fjords (arms of the sea) on the Pacific side of the icefield. Ice tongues today appear tiny compared to the view that an "ice age" astronaut would have seen. A study of the surface topography of sixty-three glaciers, based on Shuttle Radar Topography Mission (SRTM) data, compared data from 2000 to data from studies going back about 30 years (1968-1975). Many glacier tongues showed significant annual "retreat" of their ice fronts, a familiar signal of climate change. The study also revealed that the almost invisible loss by glacier thinning is far more significant in explaining ice loss. The researchers concluded that volume loss by frontal collapse is 4-10 times smaller than that caused by thinning. Scaled over the entire icefield, including frontal loss (so-called calving when ice masses collapse into the lakes), it was calculated that 13.5 cubic kilometers of ice was lost each year over the study period. This number becomes more meaningful compared with the rate measured in the last five years of the study (1995-2000), when the rate increased almost threefold, averaging 38.7 cubic kilometers per year. Extrapolating results from the low altitude

  12. STS-78 Crew and alternates arrive at the SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    KENNEDY SPACE CENTER, FL. -- STS-78 Mission Commander Terence T. 'Tom' Henricks (third from left) displays an Olympic torch that was presented to the flight crew and their alternates after they arrived at KSC's Shuttle Landing Facility. With Henricks are (from left) Payload Specialist Jean-Jacques Favier (French Space Agency); Alternate Payload Specialist Luca Urbani (Italian Space Agency); Henricks; Mission Specialist Charles E. Brady Jr.; Payload Commander Susan J. Helms; Pilot Kevin R. Kregel; Mission Specialist Richard M. Linnehan; Alternate Payload Specialist Pedro Duque (European Space Agency); and Payload Specialist Robert Brenton Thirsk (Canadian Space Agency). The crew will take the torch with them on their upcoming spaceflight and then present it upon their return to a representative of the Atlanta Committee for the Olympic games (ACOG). The countdown clock began ticking earlier today toward the June 20 launch of the Space Shuttle Columbia on Mission STS-78, the fifth Shuttle flight of 1996.

  13. Medical practice during a world cruise: a descriptive epidemiological study of injury and illness among passengers and crew.

    PubMed

    Dahl, Eilif

    2005-01-01

    To describe the medical practice of one physician and two nurses during a 106-day westward cruise from Los Angeles to New York in 2004 with an average of 464 passengers (51% women) and 615 crew (22% women) aboard. Patient data were registered continuously and reviewed after the voyage. There were 4244 recorded patient contacts (=40 per day), 2866 of which directly involved the doctor (=27 per day). Passengers accounted for 59% of the doctor consultations, while crew accounted for 59% of the nurse consultations. The most frequent consultation cause was respiratory illness (19%) in passengers and skin disorders (27%) in crew. Among 101 reported injuries (56 passengers, 45 crew) wound was the most common type (passengers 41%, crew 40%). The most frequent accident location for passengers was ashore (27%) and for crew galleys aboard (31%). 133 crew were on sick leave for a total of 271 days, and seven were medically signed off, six of them following injuries. Seven passengers and 13 crew were referred to dentists ashore, five passengers and two crew were referred to medical specialists ashore and returned to the ship, while seven passengers and one crew were hospitalized in port. The medical staff on long voyages will have a busy general practice. Broad experience in emergency and general medicine, good communication skills and previous cruise experience are useful qualifications. While the ACEP PREP may be sufficient for shorter cruises, additional equipment is recommended for long voyages.

  14. STS-101 crew waves to media after arriving at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew wave at media and photographers at KSC's Shuttle Landing Facility after their landing the night of May 14. Standing left to right are Mission Specialists Yuri Usachev, James Voss, Mary Ellen Weber and Jeff Williams; Commander James Halsell; and Pilot Scott Horowitz. Not present is Mission Specialist Susan Helms, who arrived later. The crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  15. STS-38 Pilot Culbertson rolls through CCT side hatch during egress training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.

  16. STS-38 Pilot Culbertson rolls through CCT side hatch during egress training

    NASA Image and Video Library

    1990-03-05

    STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.

  17. Astronauts Bob Behnken and Eric Boe walk the Crew Access Arm at

    NASA Image and Video Library

    2017-08-30

    Astronauts Bob Behnken, left, and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The access arm will be installed on the launch pad, providing a bridge between the launch tower it’s the Fixed Service Structure, as noted below, and SpaceX’s Dragon 2 spacecraft for astronauts flying to the International Space Station on the company’s Falcon 9 rocket as part of NASA’s Commercial Crew Program. The access arm is being readied for installation in early 2018. It will be installed 70 feet higher than the former space shuttle access arm on the launch pad’s Fixed Service Structure. SpaceX continues to modify the historic launch site from its former space shuttle days, removing more than 500,000 pounds of steel from the pad structure, including the Rotating Service Structure that was once used for accessing the payload bay of the shuttle. SpaceX also is using the modernized site to launch commercial payloads, as well as cargo resupply missions to and from the International Space Station for NASA. The first SpaceX launch from the historic Apollo and space shuttle site was this past February. NASA’s Commercial Crew Program is working with private companies, Boeing and SpaceX, with a goal of once again flying people to and from the International Space Station, launching from the United States.

  18. Earth Observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2013-11-11

    ISS038-E-000232 (11 Nov. 2013) --- One of the Expedition 38 crew members aboard the International Space Station used a 180mm lens to photograph this oblique image featuring the Galapagos Islands or Islas Galapagos, distributed on either side of the Equator in the eastern Pacific Ocean. An archipelago of volcanic islands, the group?s official name is Archipielago de Colon.

  19. X-15 flight crew - Engle, Rushworth, McKay, Knight, Thompson, and Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force Major William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. These six pilots made 125 of the 199 total flights in the X-15. Rushworth made 34 flights (the most of any X-15 pilot); McKay flew 29 times; Engle, Knight, and Dana each flew 16 times; Thompson's total was 14. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52

  20. STS-95 crew members Glenn and Mukai learn about emergency egress system

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Pilot Steven W. Lindsey, Payload Specialist John H. Glenn Jr., senator from Ohio, and Payload Specialist Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA), listen to the Safety Egress trainer talk about the emergency egress system from the pad. The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other crew members are Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Mission Commander Curtis L. Brown, and Mission Specialist Stephen K. Robinson. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  1. STS-93: Chandra Crew Arrival

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows the astronauts arrival at Kennedy Space Center a week before the launch. Each of the astronauts gives brief remarks, beginning with Eileen Collins, the first woman to command a space mission.

  2. STS-38 MS Springer climbs through CCT side hatch prior to egress training

    NASA Image and Video Library

    1990-03-05

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.

  3. STS-38 MS Springer climbs through CCT side hatch prior to egress training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.

  4. Lithiation-induced zinc clustering of Zn 3, Zn 12, and Zn 18 units in Zintl-like Ca ~30Li 3+xZn 60-x (x=0.44-1.38)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qisheng

    2014-11-14

    Zinc clusters are not common for binary intermetallics with relatively low zinc content, but this work shows that zinc clustering can be triggered by lithiation, as exemplified by Ca ~30Li 3+xZn 60-x, P6/mmm, Z = 1, which can be directly converted from CaZn 2. Two end members of the solid solution (x = 0.44 and 1.38) were established and structurally characterized by single-crystal X-ray diffraction analyses: Ca 30Li 3.44(6)Zn59.56(6), a = 15.4651(9) Å, c = 9.3898(3) Å; Ca 30.45(2)Li 4.38(6)Zn 58.62(6), a = 15.524(3) Å, c = 9.413(2) Å. The structures of Ca ~30Li 3+xZn 60-x feature a condensed anionicmore » network of Zn3 triangles, lithium-centered Zn12 icosahedra, and arachno-(Zn,Li)18 tubular clusters that are surrounded respectively by Ca 14, Ca 20, and Ca 30 polyhedra. These polyhedra share faces and form a clathrate-like cationic framework. The specific occupation of lithium in the structure is consistent with theoretical “coloring” analyses. Analysis by the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation reveals that Ca ~30Li 3+xZn 60-x is a metallic, Zintl-like phase with an open-shell electronic structure. The contribution of Ca–Zn polar covalent interactions is about 41%.« less

  5. Wireless Crew Communication Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  6. The X-38 V-201 Fin Fold Actuation Mechanism

    NASA Technical Reports Server (NTRS)

    Lupo, Christian; Robertson, Brandan; Gafka, George

    2004-01-01

    The X-38 Vehicle 201 (V-201) is a space flight prototype lifting body vehicle that was designed to launch to orbit in the Space Shuttle orbiter payload bay. Although the project was cancelled in May 2003, many of the systems were nearly complete. This paper will describe the fin folding actuation mechanism flight subsystems and development units as well as lessons learned in the design, assembly, development testing, and qualification testing. The two vertical tail fins must be stowed (folded inboard) to allow the orbiter payload bay doors to close. The fin folding actuation mechanism is a remotely or extravehicular activity (EVA) actuated single fault tolerant system consisting of seven subsystems capable of repeatedly deploying or stowing the fins.

  7. Cadre Photos for Joint Test Team Feature

    NASA Image and Video Library

    2017-02-23

    During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Suni Williams, left, and Doug Hurley participate in joint test team training using mockup components of the Crew Dragon on Feb. 23, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.

  8. Cadre Photos for Joint Test Team Feature

    NASA Image and Video Library

    2017-02-23

    During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Bob Behnken, left, and Eric Boe participate in joint test team training using mockup components of the Crew Dragon on Feb. 23, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.

  9. Eric Boe and Bob Behnken Dragon Tour

    NASA Image and Video Library

    2017-03-08

    During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Bob Behnken, left, and Eric Boe participate in joint test team training using mockup components of the Crew Dragon on March 8, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.

  10. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Mission Specialist Janet Kavandi, Ph.D., STS091 Pilot Dominic Gorie, and STS-91 Commander Charles Precourt, and Boeing SPACEHAB Program Senior Engineer Shawn Hicks.

  11. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. Sitting in front of SPACEHAB is STS-91 Commander Charles Precourt listening to instruction by Chris Jaskolka, Boeing SPACEHAB Program senior engineer, as Lynn Ashby, Boeing SPACEHAB Program principal engineer, looks on.

  12. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, STS-91 Pilot Dominic Gorie, Boeing SPACEHAB Program Principal Engineer Lynn Ashby, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  13. HL-20 structural design comparison - Conformal shell versus cylindrical crew compartment

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.

    1993-01-01

    Extensive studies have been performed at NASA Langley Research Center (LaRC) on personnel launch systems (PLS) concepts. The primary mission of a PLS is the transport of Space Station crew members from Earth to the Space Station and return. The NASA LaRC PLS studies have led to the design of a lifting body configuration named the HL-20. In this study, two different HL-20 structural configurations are evaluated. The two configurations are deemed the conformal shell and the cylindrical crew compartment. The configurations are based on two different concerns for maintenance and operations. One configuration allows for access to subsystems while on-orbit from the interior, while the other allows for easy access to the subsystems during ground maintenance and operations. For each concept, the total structural weight required to sustain the applied loads is quantified through a structural evaluation. Structural weight for both configurations is compared along with the particular attributes of each. Analyses of both configurations indicate no appreciable weight or load relief advantage of one concept over the other. Maintainability and operability, therefore become the primary discriminator, leading to a choice of a crew compartment configuration.

  14. STS-95 crew members Duque and Mukai check out slidewire basket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39-B, STS-95 Mission Specialist Pedro Duque of Spain (left) and Payload Specialist Chiaki Mukai look over the gate for the slidewire basket, part of the emergency egress system on the pad. Mukai represents the National Space Development Agency of Japan (NASDA), and Duque the European Space Agency (ESA). The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other STS-95 crew members are Mission Specialist Stephen K. Robinson, Mission Commander Curtis L. Brown, Pilot Steven W. Lindsey, Payload Specialists John H. Glenn Jr., senator from Ohio, and Mission Specialist Scott E. Parazynski. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  15. Crew decision making under stress

    NASA Technical Reports Server (NTRS)

    Orasanu, J.

    1992-01-01

    Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.

  16. GPS Lessons Learned from the International Space Station, Space Shuttle and X-38

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    This document is a collection of writings concerning the application of Global Positioning System (GPS) technology to the International Space Station (ISS), Space Shuttle, and X-38 vehicles. An overview of how GPS technology was applied is given for each vehicle, including rationale behind the integration architecture, and rationale governing the use (or non-use) of GPS data during flight.

  17. X-38 Ship #2 Mated to B-52 Mothership in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows one of the X-38 lifting-body research vehicles mated to NASA's B-52 mothership in flight prior to launch. The B-52 has been a workhorse for the Dryden Flight Research Center for more than 40 years, carrying numerous research vehicles aloft and conducting a variety of other research flight experiments. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  18. The J-2X Upper Stage Engine: From Design to Hardware

    NASA Technical Reports Server (NTRS)

    Byrd, Thomas

    2010-01-01

    NASA is well on its way toward developing a new generation of launch vehicles to support of national space policy to retire the Space Shuttle fleet, complete the International Space Station, and return to the Moon as the first step in resuming this nation s exploration of deep space. The Constellation Program is developing the launch vehicles, spacecraft, surface systems, and ground systems to support those plans. Two launch vehicles will support those ambitious plans the Ares I and Ares V. (Figure 1) The J-2X Upper Stage Engine is a critical element of both of these new launchers. This paper will provide an overview of the J-2X design background, progress to date in design, testing, and manufacturing. The Ares I crew launch vehicle will lift the Orion crew exploration vehicle and up to four astronauts into low Earth orbit (LEO) to rendezvous with the space station or the first leg of mission to the Moon. The Ares V cargo launch vehicle is designed to lift a lunar lander into Earth orbit where it will be docked with the Orion spacecraft, and provide the thrust for the trans-lunar journey. While these vehicles bear some visual resemblance to the 1960s-era Saturn vehicles that carried astronauts to the Moon, the Ares vehicles are designed to carry more crew and more cargo to more places to carry out more ambitious tasks than the vehicles they succeed. The government/industry team designing the Ares rockets is mining a rich history of technology and expertise from the Shuttle, Saturn and other programs and seeking commonality where feasible between the Ares crew and cargo rockets as a way to minimize risk, shorten development times, and live within the budget constraints of its original guidance.

  19. Failure Analysis of T-38 Aircraft Burst Hydraulic Aileron Return Line

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Figert, J. D.; Paton, R. M.; Nguyen, S. D.; Flint, A.

    2012-01-01

    During maintenance troubleshooting for fluctuating hydraulic pressures, a technician found that a right hand aileron return line, on the flight hydraulic side, was ruptured (Fig. 1, 2). This tubing is part of the Hydraulic Flight Control Aileron Return Reducer to Aileron Manifold and is suspected to be original to the T-38 Talon trainer aircraft. Ailerons are small hinged sections on the outboard portion of a wing used to generate rolling motion thereby banking the aircraft. The ailerons work by changing the effective shape of the airfoil of the outer portion of the wing [1]. The drawing, Northrop P/N 3-43033-55 (6/1960), specifies that the line is made from 0.375 inch OD, aluminum 5052-0 tubing with a 0.049 inch wall thickness. WW-T-787 requires the tube shall be seamless and uniform in quality and temper [2]. The test pressure for this line is 3000 psi, and the operational pressure for this line is estimated to be between 45 psi and 1500 psi based on dynamic loading during flight. Examination of the fracture surface found evidence of arrest bands originating on the inner diameter (Fig 3). Ductile dimples are observed on the tube fractures (Fig. 4). The etched cross-section revealed thinning and work-hardening in the burst region (Fig. 5). The wall thickness just outside the work-hardened fracture region measured 0.035". Barlow's Formula: P = 2St/D, where P is burst pressure, S is allowable stress, t is wall thickness and D is the outer diameter of tube. Using the ultimate tensile strength of 28 ksi and a measured wall thickness of 0.035 inches at burst, P = 5.2 ksi (burst pressure). Using the yield of 13 ksi (YS) for aluminum 5052-0, plastic deformation will happen at P = 2.4 ksi suggesting plastic deformation occurred at a proof pressure of 3.0 ksi. Conclusion: The burst resulted from high stress, low-cycle fatigue. Evidence of arrest bands originating on the inner diameter. Fracture is predominately shear dimples, characteristic of high load ductile fractures

  20. Expedition 38 Prelaunch

    NASA Image and Video Library

    2013-11-07

    General Director of the Russian Federal Space Agency, Roscosmos, Oleg Ostapenko, left, and, President of RSC Energia, Designer General V.A.Lapota, right, assist Expedition 38 Soyuz Commander Mikhail Tyurin of Roscosmos, as he and fellow crew members, Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, behind Tyurin, and, Flight Engineer Rick Mastracchio of NASA, far back, walk to the soyuz rocket for their launch to the International Space Station, Thursday, Nov. 7, 2013, in Baikonur, Kazakhstan. Tyurin, Wakata, and, Mastracchio will launch in their Soyuz TMA-11M spacecraft to the International Space Station to begin a six-month mission. Photo Credit: (NASA/Bill Ingalls)

  1. The STS-99 crew poses with NASA Administrator Dan Goldin.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- Members of the STS-99 crew pose with NASA Administrator Dan Goldin underneath Space Shuttle Endeavour on KSC's Shuttle Landing Facility. From left are Commander Kevin Kregel, Mission Specialist Janet Kavandi, Pilot Dominic Gorie, Goldin, and Mission Specialists Gerhard Thiele and Mamoru Mohri. Not in the photo is Mission Specialist Janice Voss. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. The crew returned from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  2. Review of X-43A Return to Flight Activities and Current Status

    NASA Technical Reports Server (NTRS)

    Reubush, David E.; Nguyen, Luat T.; Rausch, Vincent L.

    2004-01-01

    This paper provides an overview and status of the return to flight activities for the X-43A scramjet flight demonstrator after the first flight mishap. The first flight was attempted on June 2, 2001 and resulted in vehicle destruction by range safety when the booster went out of control early in the flight. In the time since the mishap much work has been done to examine the causes of the failure and make modifications to the booster to insure that the boost for the second flight will be successful. In addition, all other aspects of the flight have been examined to maximize the probability of a successful flight.

  3. ISS Propulsion Module Crew Systems Interface Analysis in the Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Chen, Di-Wen

    1999-01-01

    ERGO, a human modeling software for ergonomic assessment and task analysis, was used for the crew systems interface analysis of the International Space Station (ISS) Propulsion Module (PM). The objective of analysis was to alleviate passageway size concerns. Three basic passageway configuration concepts: (1) 45" clear passageway without centerline offset (2) 50" clear passageway, 12" centerline offset, (3) 50" clear passageway, no centerline offset, and were reviewed. 95 percentile male and female models which were provided by the software performed crew system analysis from an anthropometric point of view. Four scenarios in which the crew floats in microgravity through a 50" no-offset passageway as they carry a 16" x 20" x 30" avionics box were simulated in the 10-weeks of intensive study. From the results of the analysis, concept (3) was the preferred option. A full scale, three-dimensional virtual model of the ISS Propulsion Module was created to experience the sense of the Intelligent Synthesis Environment and to evaluate the usability and applicability of the software.

  4. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  5. Crew health

    NASA Technical Reports Server (NTRS)

    Billica, Roger D.

    1992-01-01

    Crew health concerns for Space Station Freedom are numerous due to medical hazards from isolation and confinement, internal and external environments, zero gravity effects, occupational exposures, and possible endogenous medical events. The operational crew health program will evolve from existing programs and from life sciences investigations aboard Space Station Freedom to include medical monitoring and certification, medical intervention, health maintenance and countermeasures, psychosocial support, and environmental health monitoring. The knowledge and experience gained regarding crew health issues and needs aboard Space Station Freedom will be used not only to verify requirements and programs for long duration space flight, but also in planning and preparation for Lunar and Mars exploration and colonization.

  6. Lunar lander and return propulsion system trade study

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Moreland, Robert; Sanders, Gerald B.; Robertson, Edward A.; Amidei, David; Mulholland, John

    1993-01-01

    This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.

  7. Crew Activity Analyzer

    NASA Technical Reports Server (NTRS)

    Murray, James; Kirillov, Alexander

    2008-01-01

    The crew activity analyzer (CAA) is a system of electronic hardware and software for automatically identifying patterns of group activity among crew members working together in an office, cockpit, workshop, laboratory, or other enclosed space. The CAA synchronously records multiple streams of data from digital video cameras, wireless microphones, and position sensors, then plays back and processes the data to identify activity patterns specified by human analysts. The processing greatly reduces the amount of time that the analysts must spend in examining large amounts of data, enabling the analysts to concentrate on subsets of data that represent activities of interest. The CAA has potential for use in a variety of governmental and commercial applications, including planning for crews for future long space flights, designing facilities wherein humans must work in proximity for long times, improving crew training and measuring crew performance in military settings, human-factors and safety assessment, development of team procedures, and behavioral and ethnographic research. The data-acquisition hardware of the CAA (see figure) includes two video cameras: an overhead one aimed upward at a paraboloidal mirror on the ceiling and one mounted on a wall aimed in a downward slant toward the crew area. As many as four wireless microphones can be worn by crew members. The audio signals received from the microphones are digitized, then compressed in preparation for storage. Approximate locations of as many as four crew members are measured by use of a Cricket indoor location system. [The Cricket indoor location system includes ultrasonic/radio beacon and listener units. A Cricket beacon (in this case, worn by a crew member) simultaneously transmits a pulse of ultrasound and a radio signal that contains identifying information. Each Cricket listener unit measures the difference between the times of reception of the ultrasound and radio signals from an identified beacon

  8. Coordination strategies of crew management

    NASA Technical Reports Server (NTRS)

    Conley, Sharon; Cano, Yvonne; Bryant, Don

    1991-01-01

    An exploratory study that describes and contrasts two three-person flight crews performing in a B-727 simulator is presented. This study specifically attempts to delineate crew communication patterns accounting for measured differences in performance across routine and nonroutine flight patterns. The communication patterns in the two crews evaluated indicated different modes of coordination, i.e., standardization in the less effective crew and planning/mutual adjustment in the more effective crew.

  9. Flight crew sleep during multiple layover polar flights.

    PubMed

    Sasaki, M; Kurosaki, Y S; Spinweber, C L; Graeber, R C; Takahashi, T

    1993-07-01

    This study investigated changes in sleep after multiple transmeridian flights. The subjects were 12 B747 airline pilots operating on the following polar flight: Tokyo (TYO)-Anchorage (ANC)-London (LON)-Anchorage-Tokyo. Sleep polysomnograms were recorded on two baseline nights (B1, B2), during layovers, and, after returning to Tokyo, two recovery nights were recorded (R1, R2). In ANC (outbound), total sleep time (TST) was reduced and, sleep efficiency was low (72.0%). In London, time in bed (TIB) increased slightly, but sleep efficiency was still reduced. On return to ANC (inbound), there was considerable slow wave sleep (SWS) rebound and multiple awakenings reduced sleep efficiency to 76.8%. Sleep efficiency on R2 was significantly lower than on B1 (t-test, p < 0.05) but not different from R1. To sum up, sleep of aircrews flying multiple transmeridian flights is disrupted during layovers and this effect persists during the two recovery nights. As a result, there is a marked cumulative sleep loss during multi-legs polar route trip in comparison to single leg flights. These findings suggest that following such extensive transmeridian trips, crews should have at least three nights of recovery sleep in their home time zone before returning to duty.

  10. Flight crew sleep during multiple layover polar flights

    NASA Technical Reports Server (NTRS)

    Sasaki, Mitsuo; Kurosaki, Yuko S.; Spinweber, Cheryl L.; Graeber, R. C.; Takahashi, Toshiharu

    1993-01-01

    This study investigated changes in sleep after multiple transmeridian flights. The subjects were 12 B747 airline pilots operating on the following polar flight: Tokyo (TYO)-Anchorage (ANC)-London (LON)-Anchorage-Tokyo. Sleep polysmonograms were recorded on two baseline nights (B1, B2), during layovers, and, after returning to Tokyo, two recovery nights were recorded (R1, R2). In ANC (outbound), total sleep time was reduced and, sleep efficiency was low (72.0 percent). In London, time in bed increased slightly, but sleep efficiency was still reduced. On return to ANC (inbound), there was considerable slow wave sleep rebound and multiple awakenings reduced sleep efficiency to 76.8 percent. Sleep efficiency on R2 was significantly lower than on B1 but not different from R1. To sum up, sleep of aircrews flying multiple transmeridian flights is disrupted during layovers and this effect persists during the two recovery nights. As a result, there is a marked cumulative sleep loss during multilegs polar route trip in comparison to single leg flights. These findings suggest that following such extensive transmeridian trips, crews should have at least three nights of recovery sleep in their home time zone before returning to duty.

  11. STS-95 crew members Glenn, Robinson and Lindsey take break from TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39-B, at the 195-foot level, STS-95 crew members learn about the slidewire basket, lower right, that is part of the emergency egress system from the orbiter before launch. Shown are (left to right) Mission Specialist Scott E. Parazynski, Pilot Steven W. Lindsey, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Mission Specialist Stephen K. Robinson, Payload Specialist Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA), Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  12. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares 1-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

  13. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares I-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

  14. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Eric Boe observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  15. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Bob Behnken observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  16. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Suni Williams observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  17. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Doug Hurley observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  18. STS-86 Crew Lunch in O&C Building

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As part of the final STS-86 prelaunch activities, the seven crew members gather for a snack and a photo opportunity in the Operations and Checkout Building. From left, are Mission Specialist Wendy B. Lawrence, Pilot Michael J. Bloomfield, Mission Specialist Scott E. Parazynski, Commander James D. Wetherbee, Mission Specialist David A. Wolf, Mission Specialist Jean-Loup J.M. Chretien of the French Space Agency, CNES, and Mission Specialist Vladimir Georgievich Titov of the Russian Space Agency. After a weather briefing, the astronauts will don their orange launch and entry suits and depart for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff at about 10:34 p.m. EDT, Sept. 25. The exact launch time may vary slightly based on calculations of the Russian Space Station Mirs precise location in space at the time of liftoff. STS-86 is slated to be the seventh of nine planned dockings of the Shuttle with the Mir. Wolf is scheduled to become a member of the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who will return to Earth aboard Atlantis after more than four months on the Russian orbiting outpost.

  19. Space Station Crew Member Discusses Live in Space with Italian Prime Minister

    NASA Image and Video Library

    2017-11-06

    Aboard the International Space Station, Expedition 53 Flight Engineer Paolo Nespoli of Italy and ESA (the European Space Agency) discussed the accomplishments of his mission during an in-flight conversation Nov. 6 with Italian Prime Minister Paolo Gentiloni. Nespoli is in the final month of a five-and-a-half-month mission aboard the orbiting laboratory. The crew is scheduled to return to Earth in a Russian Soyuz spacecraft Dec. 14, landing in south central Kazakhstan.

  20. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. At far left is Boeing SPACEHAB Program Senior Engineer Ellen Styles, and around the table are, left to right, STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., Boeing SPACEHAB Program Senior Engineer Chris Jazkolka, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  1. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., STS-91 Commander Charles Precourt, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Russian Interpreter Olga Belozerova, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  2. CCP Astronauts at LC 39A and SpaceX Recovery Ship

    NASA Image and Video Library

    2018-03-28

    At Cape Canaveral Air Force Station's Naval Ordnance Test Unit basin in Florida, Commercial Crew Program astronaut Doug Hurley, right, observes operation of the SpaceX recovery ship. During a recent visit to the Kennedy Space Center, the crew members were given an up-close look at preparations for the SpaceX Crew Dragon flight tests.

  3. An Alternative Approach to Human Servicing of Crewed Earth Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Mularski, John R.; Alpert, Brian K.

    2017-01-01

    As crewed spacecraft have grown larger and more complex, they have come to rely on spacewalks, or Extravehicular Activities (EVA), for assembly and to assure mission success. Typically, these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires up-mass, volume for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware. This paper proposes an alternative methodology, utilizing either launch-on-need hardware and crew or regularly scheduled missions to provide EVA capability for space stations in low Earth orbit after assembly complete. Much the same way that one would call a repairman to fix something at their home these EVAs are dedicated to maintenance and upgrades of the orbiting station. For crew safety contingencies it is assumed the station would be designed such the crew could either solve those issues from inside the spacecraft or use the docked Earth to Orbit vehicles as a return lifeboat, in the same manner as the International Space Station (ISS) which does not rely on EVA for crew safety related contingencies. This approach would reduce ground training requirements for long duration crews, save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, and lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to any failures such as IVA systems reconfiguration or jumper installation as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current unplanned EVAs are conducted on ISS, including the time required for preparation, and offer an alternative for future spacecraft. As this methodology relies on the on-time and on

  4. Memphis Belle and Crew Visit the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1943-07-21

    Captain Robert Morgan and the rest of the Memphis Belle crew arrive in Cleveland on a rainy July 7, 1943, for three-day publicity visit. This B–17 Flying Fortress had recently become the first U.S. bomber to complete 25 missions over Germany and France. The lack of long distance escort fighters made the feat even more remarkable. The Memphis Belle and its crew returned to the United States in June and were immediately thrown into a three-month-long war bond tour. While in Cleveland the crew toured the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory, the Cleveland Bomber Plant, and Thompson Products. In the evenings they were feted downtown by the Chamber of Commerce at the Hotel Cleveland. A local company brought Morgan’s family and his fiancé—the Memphis Belle’s inspiration—to Cleveland to participate in the activities. The bomber was on display to the public near the airport’s fenceline and stored in the NACA’s hangar overnight. Pictured in this photograph from left to right: Robert Hanson, Vincent Evans, Charles Leighton, NACA Manager Raymond Sharp, Robert Morgan, William Holliday of the Chamber of Commerce, Army Liaison Officer Colonel Edwin Page, Airport Commissioner Jack Berry, Cecil Scott, John Quinlan and James Verinis. Kneeling are Harold Loch, Casimer Nastal and Charles Wichell.

  5. STS-99 crew respond to media at SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After landing at the Shuttle Landing Facility aboard T-38 jet aircraft, the STS-99 crew addresses the media. Standing, left to right, are Mission Specialists Gerhard Thiele of Germany and Mamoru Mohri of Japan, Commander Kevin Kregel (at the microphone), Mission Specialists Janice Voss and Janet Kavandi, and Pilot Dominic Gorie. They are ready to prepare for the second launch attempt of Endeavour Feb. 11 at 12:30 p.m. EST from Launch Pad 39A. The earlier launch scheduled for Jan. 31 was scrubbed due to poor weather and a faulty Enhanced Master Events Controller in the orbiter's aft compartment. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Landing is expected at KSC on Feb. 22 at 4:36 p.m. EST.

  6. Earth Observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2013-12-26

    ISS038-E-021401 (24 Dec. 2013) --- The Caribbean country of Cuba is pictured in this high oblique image, photographed by one of the Expedition 38 crew members aboard the International Space Station. Andros ISland, part of the Bahamas, is Cuba is an archipelago of islands in the northern Caribbean Sea at the confluence with the Gulf of Mexico and the Atlantic Ocean. A Russian Soyuz spacecraft is docked to the station.

  7. Earth Observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2014-01-05

    ISS038-E-025812 (5 Feb. 2014) --- One of the Expedition 38 crew members aboard the International Space Station used a 400mm lens to expose this vertical view of the general area of the 2014 Winter Olympics. Sochi is a city in Krasnodar Krai, Russia, located on the Black Sea coast near the border between Georgia/Abkhazia and Russia. It has an area of 1,353 square miles or 3,505 square kilometers.

  8. Space Station Astronauts Return Safely to Earth on This Week @NASA – December 11, 2015

    NASA Image and Video Library

    2015-12-11

    On Dec. 11 aboard the International Space Station, NASA’s Kjell Lindgren, Russian cosmonaut Oleg Kononenko and Kimiya Yui of the Japan Aerospace Exploration Agency, bid farewell to crew members remaining on the station -- including Commander Scott Kelly, NASA’s one-year mission astronaut. The returning members of Expedition 45 then climbed aboard their Soyuz spacecraft for the trip back to Earth. They safely touched down hours later in Kazakhstan – closing out a 141-day stay in space. Also, Next space station crew prepares for launch, Supply mission arrives at space station, Quantum computing lab and more!

  9. STS-111 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 Crew is in training for space flight. The crew consists of Commander Ken Cockrell, Pilot Paul Lockhart, Mission Specialists Franklin Chang-Diaz and Philippe Perrin. The crew training begins with Post Insertion Operations with the Full Fuselage Trainer (FFT). Franklin Chang-Diaz, Philippe Perrin and Paul Lockhart are shown in training for airlock and Neutral Buoyancy Lab (NBL) activities. Bailout in Crew Compartment Training (CCT) with Expedition Five is also shown. The crew also gets experience with photography, television, and habitation equipment.

  10. STS-84 crew members in M-113 armored carrier for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-84 crew members ride in and learn how to operate an M-113 armored personnel carrier as part of the Terminal Countdown Demonstration Test (TCDT) activities. Seated inside the M-113, from left, are Mission Specialist Jean-Francois Clervoy, Pilot Eileen Marie Collins (waving) and Commander Charles J. Precourt, in front. George Hoggard, a training officer with KSC Fire Services, sits on top of the personnel carrier. STS-84 aboard the Space Shuttle Atlantis will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. After docking, STS-84 Mission Specialist C. Michael Foale will transfer to the space station and become a member of the Mir 23 crew, replacing U.S. astronaut Jerry M. Linenger, who will return to Earth aboard Atlantis. Foale will live and work on Mir until mid-September when his replacement is expected to arrive on the STS-86 mission. STS-84 is targeted for a May 15 liftoff.

  11. The STS-102 crew has snack before suiting up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-102 crew enjoys a snack before beginning suitup procedures for launch of Space Shuttle Discovery on the eighth construction flight to the International Space Station. From left, seated are Mission Specialists Paul Richards and Andrew Thomas, Pilot James Kelly and Commander James Wetherbee; Mission Specialists Yury Usachev, representing the Russian Aviation and Space Agency, Susan Helms and James Voss. Usachev, Helms and Voss are wearing different shirts because they also are the Expedition Two crew who will be replacing Expedition One on the International Space Station. Discovery is scheduled to launch March 8 at 6:42 a.m. EST, carrying the Multi-Purpose Logistics Module Leonardo. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.

  12. Space Station Crew Returns Safely on This Week @NASA – March 5, 2018

    NASA Image and Video Library

    2018-03-05

    A safe return from the International Space Station, a new weather satellite launched into orbit, and our next mission to Mars moves closer to launch … a few of the stories to tell you about – This Week at NASA!

  13. STS 51-L crewmembers at Ellington AFB for training flight in T-38

    NASA Image and Video Library

    1986-01-08

    S86-25199 (September 1985) --- Three members of the STS-51L prime crew and a backup crew member walk away from the flight line at nearby Ellington Field following flights in the T-38 jet trainers seen in the background. Sharon Christa McAuliffe (center right), payload specialist/citizen observer for the Teacher-in-Space Project, and Barbara R. Morgan (center left), her backup, are flanked by astronauts Francis R. (Dick) Scobee (right), mission commander, and Michael J. Smith, pilot. The photo was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  14. Orion Pad Abort 1 Crew Module Mass Properties Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2012-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module (CM). These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance coefficients to be calculated post-launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test setup that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  15. STS-111 crew on top of Launch Pad 39-A during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at Launch Pad 39A, the Expedition 5 and STS-111 crews pose on the 295-foot level. Standing, left to right, are Pilot Paul Lockhart, and the Expedition 5 crew Peggy Whitson, Commander Valeri Korzun and Sergei Treschev. Kneeling in front are Mission Specialist Philippe Perrin, Commander Kenneth Cockrell and Mission Specialist Franklin Chang-Diaz. Korzun and Treschev are with the Russian Space Agency, and Perrin is with the French Space Agency. Seen behind the crews are the top of the orange external tank and one of the white solid rocket boosters. The TCDT includes emergency egress training at the pad and a simulated launch countdown. Mission STS-111 is known as Utilization Flight 2, carrying supplies and equipment in the Multi-Purpose Logistics Module Leonardo to the International Space Station. The payload also includes the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  16. Returning Human Spaceflight to America on This Week @NASA - September 22, 2014

    NASA Image and Video Library

    2014-09-22

    During a September 16 news conference at Kennedy Space Center – a major announcement by NASA Administrator Charlie Bolden that Boeing and SpaceX have been chosen to transport U.S. astronauts to and from the International Space Station – effectively putting America back into the business of launching humans to space – ending our sole reliance on Russia by 2017. Final pre-launch processing of the Boeing CST-100 and the SpaceX Crew Dragon spacecraft will take place at Florida’s Kennedy Space Center with launches of the vehicles happening at nearby Cape Canaveral Air Force Station. Also, SpaceX CRS-4 mission previewed, Astronaut visits commercial partner, Next space station crews prepare, MAVEN’s arrival at Mars, and Rosetta’s landing site.

  17. Trajectory Design Analysis over the Lunar Nodal Cycle for the Multi-Purpose Crew Vehicle (MPCV) Exploration Mission 2 (EM-2)

    NASA Technical Reports Server (NTRS)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.

    2014-01-01

    The first crewed mission, Exploration Mission 2 (EM-2), for the MPCV Orion spacecraft is scheduled for August 2021, and its current mission is to orbit the Moon in a highly elliptical lunar orbit for 3 days. A 21-year scan was performed to identify feasible missions that satisfy the propulsive capabilities of the Interim Cryogenic Propulsion Stage (ICPS) and MPCV Service Module (SM). The mission is divided into 4 phases: (1) a lunar free return trajectory, (2) a hybrid maneuver, during the translunar coast, to lower the approach perilune altitude to 100 km, (3) lunar orbit insertion into a 100 x 10,000 km orbit, and (4) lunar orbit loiter and Earth return to a splashdown off the coast of Southern California. Trajectory data was collected for all feasible missions and converted to information that influence different subsystems including propulsion, power, thermal, communications, and mission operations. The complete 21-year scan data shows seasonal effects that are due to the Earth-Moon geometry and the initial Earth parking orbit. The data and information is also useful to identify mission opportunities around the current planned launch date for EM-2.

  18. Cancer incidence in professional flight crew and air traffic control officers: disentangling the effect of occupational versus lifestyle exposures.

    PubMed

    dos Santos Silva, Isabel; De Stavola, Bianca; Pizzi, Costanza; Evans, Anthony D; Evans, Sally A

    2013-01-15

    Flight crew are occupationally exposed to several potentially carcinogenic hazards; however, previous investigations have been hampered by lack of information on lifestyle exposures. The authors identified, through the United Kingdom Civil Aviation Authority medical records, a cohort of 16,329 flight crew and 3,165 air traffic control officers (ATCOs) and assembled data on their occupational and lifestyle exposures. Standardised incidence ratios (SIRs) were estimated to compare cancer incidence in each occupation to that of the general population; internal analyses were conducted by fitting Cox regression models. All-cancer incidence was 20-29% lower in each occupation than in the general population, mainly due to a lower incidence of smoking-related cancers [SIR (95% CI) = 0.33 (0.27-0.38) and 0.42 (0.28-0.60) for flight crew and ATCOs, respectively], consistent with their much lower prevalence of smoking. Skin melanoma rates were increased in both flight crew (SIR = 1.87; 95% CI = 1.45-2.38) and ATCOs (2.66; 1.55-4.25), with rates among the former increasing with increasing number of flight hours (p-trend = 0.02). However, internal analyses revealed no differences in skin melanoma rates between flight crew and ATCOs (hazard ratio: 0.78, 95% CI = 0.37-1.66) and identified skin that burns easily when exposed to sunlight (p = 0.001) and sunbathing to get a tan (p = 0.07) as the strongest risk predictors of skin melanoma in both occupations. The similar site-specific cancer risks between the two occupational groups argue against risks among flight crew being driven by occupation-specific exposures. The skin melanoma excess reflects sun-related behaviour rather than cosmic radiation exposure. Copyright © 2012 UICC.

  19. The crew of Space Shuttle mission STS-114 gathered in front of the shuttle Discovery following landing at Edwards Air Force Base, California, August 9, 2005

    NASA Image and Video Library

    2005-08-09

    The crew of Space Shuttle mission STS-114 gathered in front of the shuttle Discovery following landing at Edwards Air Force Base, California, August 9, 2005. From left to right: Mission Specialist Stephen Robinson, Commander Eileen Collins, Mission Specialists Andrew Thomas, Wendy Lawrence, Soichi Noguchi and Charles Camarda, and Pilot James Kelly. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  20. Orbiter fire rescue and crew escape training for EVA crew systems support

    NASA Image and Video Library

    1993-01-28

    Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).