Sample records for x-cut near-stoichiometric lithium

  1. Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25 degrees -rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration.

    PubMed

    Hum, D S; Route, R K; Fejer, M M

    2007-04-15

    Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25 degrees -rotated, x-cut, near-stoichiometric lithium tantalate has been performed. Using a face-normal topology for frequency conversion applications allows scalable surface area to avoid surface and volume damage in high-power interactions. First-order, quasi-phase-matched second-harmonic generation was achieved using near-stoichiometric lithium tantalate fabricated by vapor transport equilibration. These crystals supported 1 J of 1064 nm radiation and generated 21 mJ of 532 nm radiation from a 7 ns, Q-switched Nd:YAG laser within a factor of 4.2 of expectation.

  2. Periodic domain inversion in x-cut single-crystal lithium niobate thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackwitz, P., E-mail: peterm@mail.upb.de; Rüsing, M.; Berth, G.

    2016-04-11

    We report the fabrication of periodically poled domain patterns in x-cut lithium niobate thin-film. Here, thin films on insulator have drawn particular attention due to their intrinsic waveguiding properties offering high mode confinement and smaller devices compared to in-diffused waveguides in bulk material. In contrast to z-cut thin film lithium niobate, the x-cut geometry does not require back electrodes for poling. Further, the x-cut geometry grants direct access to the largest nonlinear and electro-optical tensor element, which overall promises smaller devices. The domain inversion was realized via electric field poling utilizing deposited aluminum top electrodes on a stack of LNmore » thin film/SiO{sub 2} layer/Bulk LN, which were patterned by optical lithography. The periodic domain inversion was verified by non-invasive confocal second harmonic microscopy. Our results show domain patterns in accordance to the electrode mask layout. The second harmonic signatures can be interpreted in terms of spatially, overlapping domain filaments which start their growth on the +z side.« less

  3. Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator

    DTIC Science & Technology

    2006-01-01

    AFRL-SN-RS-TR-2006-15 Final Technical Report January 2006 STOICHIOMETRIC LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO...LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO) MODULATOR 6. AUTHOR(S) Dr Stuart Kingsley, Dr Sri Sriram 5. FUNDING NUMBERS C...SUBJECT TERMS electro - optic modulator, linearization, directional coupler, variable coupling, optical waveguide, Mach-Zehnder, photonic link, lithium

  4. Lithium-ion diffusion mechanisms in the battery anode material Li(1+x)V(1-x)O₂.

    PubMed

    Panchmatia, Pooja M; Armstrong, A Robert; Bruce, Peter G; Islam, M Saiful

    2014-10-21

    Layered Li(1+x)V(1-x)O2 has attracted recent interest as a potential low voltage and high energy density anode material for lithium-ion batteries. A greater understanding of the lithium-ion transport mechanisms is important in optimising such oxide anodes. Here, stoichiometric LiVO2 and Li-rich Li1.07V0.93O2 are investigated using atomistic modelling techniques. Lithium-ion migration is not found in LiVO2, which has also previously shown to be resistant to lithium intercalation. Molecular dynamics simulations of lithiated non-stoichiometric Li(1.07+y)V0.93O2 suggest cooperative interstitial Li(+) diffusion with favourable migration barriers and diffusion coefficients (D(Li)), which are facilitated by the presence of lithium in the transition metal layers; such transport behaviour is important for high rate performance as a battery anode.

  5. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    NASA Astrophysics Data System (ADS)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  6. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.; Department of Electrical and Computer Engineering, MSC01 1100, University of New Mexico, Albuquerque, New Mexico 87131-0001; Branch, D. W.

    2015-08-15

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5more » μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  7. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    DOE PAGES

    Patel, N.; Branch, D. W.; Schamiloglu, E.; ...

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO 3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses tomore » both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  8. EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate

    NASA Astrophysics Data System (ADS)

    Malovichko, G.; Grachev, V.; Okulov, S.; Kokanyan, E.; Henecker, F.; Hofstaetter, A.; Schirmer, O.

    2006-02-01

    The cover picture refers to the article by Galina Malovichko et al. which has been selected as Editor's Choice for this issue [1]. The lower part of the figure shows a section of the angular dependence of the EPR spectra in the xy-plane for nearly stoichiometric LiNbO3:Nd3+. The solid lines correspond to non-magnetic neodymium isotopes of axial C3 symmetry (green) and low C1 symmetry (purple and blue), respectively; the symbols represent experimental data. The upper part of the figure shows possible structures of the nearest surrounding for the C3 and C1 centers and their correspondence to the observed line positions.The first author Galina Malovichko is Associate Professor in the Physics Department at the Montana State University, USA. Her scientific activity is devoted to experimental condensed matter physics, particularly to the study of structures of extrinsic, intrinsic and radiation defects and their influence on crystal prop-erties. Her group is involved in the characterization of various materials and optimization of their parameters for advanced ap-plications.

  9. Prediction of a New Phase of Cu x S near Stoichiometric Composition

    DOE PAGES

    Khatri, Prashant; Huda, Muhammad N.

    2015-01-01

    Cumore » 2 S is known to be a promising solar absorber material due to its suitable band gap and the abundance of its constituent elements. 2 S is known to have complex phase structures depending on the concentration of vacancies. Its instability of phases is due to favorable formation of vacancies and the mobility of atoms within the crystal. Understanding its phase structures is of crucial important for its application as solar absorber material. In this paper, we have predicted a new crystal phase of copper sulfide ( x S) around chemical composition of x = 1.98 by utilizing crystal database search and density functional theory. We have shown that this new crystal phase of x S is more favorable than low chalcocite structure even at stoichiometric composition of x = 2 . However, vacancy formation probability was found to be higher in this new phase than the low chalcocite structure.« less

  10. Cavity-dumped femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate

    NASA Astrophysics Data System (ADS)

    Yoon, E.; Joo, T.

    2016-03-01

    A synchronously pumped cavity-dumped femtosecond optical parametric oscillator (OPO) based on a periodically poled stoichiometric lithium tantalate (PPSLT) crystal is reported. The OPO runs in positive group velocity dispersion (GVD) mode to deliver high pulse energy at high repetition rate. It delivers pulse energy over 130 nJ up to 500 kHz and 70 nJ at 1 MHz of repetition rate at 1100 nm. Pulse duration is as short as 42 fs, and the OPO is tunable in the near infrared region from 1050 to 1200 nm. Dispersion property of the OPO was also explored. The cavity-dumped output carries a positive GVD, which can be compensated easily by an external prism pair, and large negative third order dispersion (TOD), which results in a pedestal in the pulse shape. Approaches to obtain clean pulse shape by reducing the large TOD are proposed.

  11. Comparison of cutting efficiency with different diamond burs and water flow rates in cutting lithium disilicate glass ceramic.

    PubMed

    Siegel, Sharon C; Patel, Tejas

    2016-10-01

    This study compared different diamond burs and different water flow rates on the cutting efficiency of sectioning through lithium disilicate glass ceramic. The authors used a standardized cutting regimen with 4 brands of diamond burs to section through lithium disilicate glass ceramic blocks. Twelve diamonds of each brand cut through the blocks in randomized order. In the first part of the study, the authors recorded sectioning rates in millimeters per minute for each diamond bur as a measure of cutting efficiency. In the second part of the study, the authors compared sectioning rates using only 1 brand of diamond bur, with 3 different water flow rates. The authors averaged and compared cutting rates of each brand of diamond bur and the cutting rates for each flow rate using an analysis of variance and determined the differences with a Tukey honest significant difference test. One diamond bur cut significantly slower than the other 3, and one diamond bur cut significantly faster than 2 of the others. The diamond bur cutting efficiency through lithium disilicate glass ceramic with a 20 mL/min water flow rate was significantly higher than 15 mL/min. There are differences in cutting efficiency between diamond burs when sectioning lithium disilicate glass ceramic. Use a minimum of 20 mL/min of water coolant flow when sectioning lithium disilicate glass ceramic with dental diamond burs to maximize cutting efficiency. Recommendations for specific diamond burs with a coarse grit and water flow rate of 20 mL/min can be made when removing or adjusting restorations made from lithium disilicate glass ceramic. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  12. Thermal-induced domain wall motion of tip-inverted micro/nanodomains in near-stoichiometric LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Kitamura, K.; Liu, Y. M.; Ohuchi, F. S.; Li, J. Y.

    2011-09-01

    Thermal-induced domain wall motion of tip-inverted micro/nanodomains in near-stoichiometric LiNbO3 single crystals was investigated using piezoresponse force microscopy (PFM). The domain wall motion was observed in PFM phase and amplitude images at room temperature after the sample was subjected to a thermal process at a heating temperature higher than 100 °C. In hexagonal domains with only y walls, predetermined nucleation with layer-by-layer growth is the main mechanism for the domain wall motion. In the domains composed of both x walls and y walls, the x walls are more mobile than the y walls, and the domain wall motion starts from the random nucleation of steps along the x walls that finally grow into y walls. The domain wall motion in the near-stoichiometric LiNbO3 crystal is attributed to the energy-preferable domain wall orientation, the pyroelectric effect, and the screening charge variation caused by the thermal process.

  13. Ultraviolet photorefractive effect in Mg-doped near-stoichiometric LiNbO 3

    NASA Astrophysics Data System (ADS)

    Zhu, Dengsong; Xu, Jingjun; Qiao, Haijun; Shi, Yanli; Gao, Feng; Li, Wei; Fu, Bo; Zhang, Guaquan; Zheng, Ke

    2006-10-01

    The ultraviolet photorefractive effect of Mg-doped near-stoichiometric LiNbO3 crystals prepared by vapor transport equilibration (VTE) technique was studied at 351 nm. It was found in the near-stoichiometric LiNbO3 crystals that the ultraviolet photorefractive effect could be enhanced greatly with the increase of Mg concentration. Based on the activation energy of dark decay of the photorefractive grating, possible centers responsible for the ultraviolet photorefractive effect were also discussed.

  14. Twin defects in thick stoichiometric lithium tantalate crystals prepared by a vapor transport equilibration method

    NASA Astrophysics Data System (ADS)

    Yang, Jinfeng; Sun, Jun; Xu, Jingjun; Li, Qinglian; Shang, Jifang; Zhang, Ling; Liu, Shiguo; Huang, Cunxin

    2016-01-01

    The twins were observed and investigated in vapor transport equilibration (VTE) treated lithium tantalate crystals by burying congruent lithium tantalate crystals (CLT) in a Li-rich polycrystalline powder. Twins and their etched patterns were observed under an optical polarizing microscope, and the geometry of the twins was discussed. Twin composition planes were the { 01 1 bar 2 } planes. The cause of twinning was analyzed and verified by experiment. The results indicate that the emergence of twins is due to sintering stress, which arises from sintered Li-rich polycrystalline powders at high temperature. 3.2 mm thick stoichiometric lithium tantalate (SLT) crystals without twins were obtained by setting corundum crucibles over the top of the crystals to make crystals free from the sintering stress. In addition, cracks were observed at the intersection of twin bands, and the stress caused by the dislocation pile-up was considered to be the reason for the formation of cracks.

  15. Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate.

    PubMed

    Tovstonog, Sergey V; Kurimura, Sunao; Suzuki, Ikue; Takeno, Kohei; Moriwaki, Shigenori; Ohmae, Noriaki; Mio, Norikatsu; Katagai, Toshio

    2008-07-21

    We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.

  16. Enhancing Near Zero Volt Storage Tolerance of Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Crompton, Kyle R.

    discharge measurements were performed and show that double layer capacitance likely plays a major role in determining the behavior of electrode potentials during near zero volt storage. To further the viability of the anode pre-lithiation method in LiCoO2/MCMB cells, stabilization coatings on the cathode materials are being investigated to increase the tolerance of the cathode to the low potentials it may experience during near zero volt storage of an RLE lithium ion cell. Results show that an AlPO4 coating prevents cation exhange in the cathode crystal structure and substantially increases the cathode's resilience to low electrochemical potentials. Investigations into applying anode pre-lithiation to cells utilizing LiNiCoAlO2 (NCA) cathodes have also been initiated and found to maintain the anode potential below the copper dissolution potential during near zero volt storage. RLE NCA/MCMB cells showed strong recharge performance and improved rate capability retention over a conventional NCA/MCMB cell after ten, 3-day near zero volt storage periods. Scale up of reversible lithium management to NCA/MCMB x3450 pouch cells was achieved using bath lithium addition and rendered a cell that retained 100% of its discharge performance after a 14 day period at near zero volts under fixed load. The near zero volt storage tolerance of lithium ion cells utilizing an advanced, high energy density lithium rich cathode material (0.49Li2MnO3˙0.51LiNi 0.37Co0.24Mn0.39O2 or HE5050) has also been studied and found to be high at room temperature without the need for anode pre-lithiation. HE5050/MCMB cells maintained 100% of their discharge capacity after five, 3-day and five, 7-day near zero volt storage periods at room temperature. HE5050/MCMB also maintained 99% of their discharge capacity after two, 3-day near zero volt storage periods at 40°C. The high first cycle loss and lower intercalation potential of the HE5050 cathode lead to the anode potential remaining <2.8 V vs. Li/Li+ during

  17. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    DOE PAGES

    Alikin, Denis O.; Ievlev, Anton; Turigin, Anton P.; ...

    2015-05-05

    Currently ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to investigation of the domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate allows us to study the forward growthmore » with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. Lastly, to explain experimental results we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.« less

  18. Fabrication of spinel Li4-xTi5O12 via ion exchange for high-rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Chongling; Liu, Hongjiang; Li, Jun; Xue, Xin; Cao, Hui; Wang, Dayang; Shi, Liyi

    2015-06-01

    The present work demonstrates that lithium ions can be stepwise substituted by protons from spinel Li4Ti5O12 crystalline particles though simple ion-exchange in aqueous HCl solution with the aid of heat treatment. This enables us to continuously tune the Li-to-Ti stoichiometric ratios from 0.80 to 0.59, 0.41, 0.21, 0.15, and 0.09, thus transforming Li4Ti5O12 to Li4-xTi5O12 nanocrystals. The resulting nanocrystals maintain the spinel crystal structure when x becomes smaller than 3. Among as-prepared the Li4-xTi5O12 crystalline particles, Li1Ti5O12 shows the highest capacity of 193 mAh g-1 at 1C and 148 mAh g-1 at 20C, lower current impedance (47 Ω), significantly improved rate capability and fairly long cycle life. This excellent electrochemical performance makes spinel Li4-xTi5O12 particles as a promising anode candidate for lithium ion batteries superior.

  19. Magnetic properties of nearly stoichiometric CeAuBi2 heavy fermion compound

    NASA Astrophysics Data System (ADS)

    Adriano, C.; Rosa, P. F. S.; Jesus, C. B. R.; Grant, T.; Fisk, Z.; Garcia, D. J.; Pagliuso, P. G.

    2015-05-01

    Motivated by the interesting magnetic anisotropy found in the heavy fermion family CeTX2 (T = transition metal and X = pnictogen), here, we study the novel parent compound CeAu1-xBi2-y by combining magnetization, pressure dependent electrical resistivity, and heat-capacity measurements. The magnetic properties of our nearly stoichiometric single crystal sample of CeAu1-xBi2-y (x = 0.92 and y = 1.6) revealed an antiferromagnetic ordering at TN = 12 K with an easy axis along the c-direction. The field dependent magnetization data at low temperatures reveal the existence of a spin-flop transition when the field is applied along the c-axis (Hc ˜ 7.5 T and T = 5 K). The heat capacity and pressure dependent resistivity data suggest that CeAu0.92Bi1.6 exhibits a weak heavy fermion behavior with strongly localized Ce3+ 4f electrons. Furthermore, the systematic analysis using a mean field model including anisotropic nearest-neighbors interactions and the tetragonal crystalline electric field (CEF) Hamiltonian allows us to extract a CEF scheme and two different values for the anisotropic J RKKY exchange parameters between the Ce3+ ions in this compound. Thus, we discuss a scenario, considering both the anisotropic magnetic interactions and the tetragonal CEF effects, in the CeAu1-xBi2-y compounds, and we compare our results with the isostructural compound CeCuBi2.

  20. Lithium metal for x-ray filters and refractive optics

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.; Dufresne, Eric; Dierker, Steve

    2001-04-01

    Lithium is the most x-ray transparent solid element. Lithium is very stable in dry air with a dew point below -50 C or so, but as the humidity increases lithium starts to react with the air's nitrogen and oxygen. Under usual laboratory conditions a shiny piece of lithium metal becomes a white powder within the hour, preventing lithium's widespread use in x-ray work. Use of lithium as a window for pulsed x-rays demands that lithium withstands corrosion in open air for at least 15 minutes. Protection by a one micron layer of parylene turns out to be enough. Although parylene absorbs soft x-rays 12 times more than lithium, the parylene layer can remain in place for the window application. Lithium is also ideal for refractive x-ray lenses. We are evaluating the performance of such lenses with 10 keV photons from the MHATT-CAT beam line at the Advanced Photon Source. These measurements are in progress: the paper will show the results from these measurements as available.

  1. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-12-01

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  2. Self-assembly of Carbon Vacancies in Sub-stoichiometric ZrC1−x

    PubMed Central

    Zhang, Yanhui; Liu, Bin; Wang, Jingyang

    2015-01-01

    Sub-stoichiometric interstitial compounds, including binary transition metal carbides (MC1−x), maintain structural stability even if they accommodate abundant anion vacancies. This unique character endows them with variable-composition, diverse-configuration and controllable-performance through composition and structure design. Herein, the evolution of carbon vacancy (VC) configuration in sub-stoichiometric ZrC1−x is investigated by combining the cluster expansion method and first-principles calculations. We report the interesting self-assembly of VCs and the fingerprint VC configuration (VC triplet constructed by 3rd nearest neighboring vacancies) in all the low energy structures of ZrC1−x. When VC concentration is higher than the critical value of 0.5 (x > 0.5), the 2nd nearest neighboring VC configurations with strongly repulsive interaction inevitably appear, and meanwhile, the system energy (or formation enthalpy) of ZrC1−x increases sharply which suggests the material may lose phase stability. The present results clarify why ZrC1−x bears a huge amount of VCs, tends towards VC ordering, and retains stability up to a stoichiometry of x = 0.5. PMID:26667083

  3. Pulsed laser deposition of lithium niobate thin films

    NASA Astrophysics Data System (ADS)

    Canale, L.; Girault-Di Bin, C.; Cosset, F.; Bessaudou, A.; Celerier, A.; Decossas, J.-Louis; Vareille, J.-C.

    2000-12-01

    Pulsed laser deposition of Lithium Niobate thin films onto sapphire (0001) substrates is reported. Thin films composition and structure have been determined using Rutherford Backscattermg Spectroscopy (RBS) and X-ray diffraction ( XRD) experiments. The influe:nce of deposition parameters such as substrate temperature, oxygen pressure and target to substrate distance on the composition and the structure of the films has been studied. Deposition temperature is found to be an important parameter which enables us to grow LiNbO3 films without the Li deficient phase LiNb3O8. Nearly stoichiometric thin fihns have been obtained for an oxygen pressure of 0. 1 Ton and a substrate temperature of 800°C. Under optimized conditions the (001) preferential orientation of growth, suitable for most optical applications, has been obtained.

  4. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  5. Excess lithium storage and charge compensation in nanoscale Li4+xTi5O12

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wu, Lijun; Ma, Chao; Su, Dong; Zhu, Yimei; Graetz, Jason

    2013-10-01

    Lithium titanate spinel (Li4Ti5O12; LTO) is a promising candidate for anodes in lithium-ion batteries due to its excellent cyclability and safety performance, and has been known as a ‘zero-strain’ material that allows reversible lithium insertion-deinsertion with little change in the lattice parameters. For a better understanding of lithium reaction mechanisms in this material, it has been of great interest to identify where lithium is inserted and how it migrates during charge and discharge, which is often difficult with x-ray and electron scattering techniques due to the low scattering power of lithium. In this study, we employed atomic-resolution annular bright-field imaging to directly image the lithium on interstitial sites in nanoscale LTO, and electron energy-loss spectroscopy to measure local lithium occupancy and electronic structure at different states of charge. During lithiation, charge compensation occurs primarily at O sites, rather than at Ti sites, and no significant change was found in the projected density of states (Ti 3d) until the voltage was lowered to ˜50 mV or below. The Li K-edge spectra were simulated via ab initio calculations, providing a direct correlation between the near-edge fine structure and the local lithium coordination. During the initial states of discharge, lithium ions on 8a sites migrate to 16c sites (above 740 mV). Further lithiation causes the partial re-occupation of 8a sites, initially in the near-surface region at ˜600 mV, and then in the bulk at lower voltages (˜50 mV). We attribute the enhanced capacity in nanostructured LTO to extra storage of lithium in the near-surface region, primarily at {111} facets.

  6. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits

    NASA Astrophysics Data System (ADS)

    Sosunov, A. V.; Ponomarev, R. S.; Yur'ev, V. A.; Volyntsev, A. B.

    2017-01-01

    This paper shows that the near-surface layer of a lithium niobate single layer 15 μm in depth is essentially different from the rest of the volume of the material from the standpoint of composition, structure, and mechanical properties. The pointed out differences are due to the effect of cutting, polishing, and smoothing of the lithium niobate plates, which increase the density of point defects and dislocations. The increasing density of the structural defects leads to uncontrollable changes in the conditions of the formations of waveguides and the drifting of characteristics of integrated optical circuits. The results obtained are very important for the manufacture of lithium niobate based integrated optical circuits.

  7. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting in Tb and Yb co-doped glass containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Sekar, G.; Akrobetu, R.; Mu, R.; Morgan, S. H.

    2011-10-01

    Tb, Yb, and Ag co-doped glass nano-composites were synthesized in a lithium-lanthanum-aluminosilicate glass matrix (LLAS) by a melt-quench technique. Ag nanoparticles (NPs) were formed in the glass matrix and confirmed by optical absorption and transmission electron microscopy (TEM). Plasmon enhanced luminescence was observed. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting were studied for samples with different thermal annealing times. Because the Yb3+ emission at 940 - 1020 nm is matched well with the band gap of crystalline Si, the quantum cutting effect may have its potential application in silicon-based solar cells.

  8. 78 FR 35758 - Drawbridge Operation Regulation; Bishop Cut, Near Stockton, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Operation Regulation; Bishop Cut, Near Stockton, CA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation... operating regulation that governs the San Joaquin County Highway Bridge across Bishop Cut, mile 1.0, near... Highway Bridge, mile 1.0, over Bishop Cut, near Stockton, CA. The drawbridge navigation span provides a...

  9. Designing new lithium-excess cathode materials from percolation theory: nanohighways in Li(x)Ni(2-4x/3)Sb(x/3)O2.

    PubMed

    Twu, Nancy; Li, Xin; Urban, Alexander; Balasubramanian, Mahalingam; Lee, Jinhyuk; Liu, Lei; Ceder, Gerbrand

    2015-01-14

    Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered Li(x)Ni(2-4x/3)Sb(x/3)O2 (x = 1.00-1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies reveal a complex nanostructure pattern of Li-Sb and Ni-Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li-Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.

  10. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Conder, Joanna; Bouchet, Renaud; Trabesinger, Sigita; Marino, Cyril; Gubler, Lorenz; Villevieille, Claire

    2017-06-01

    In the on going quest towards lithium-battery chemistries beyond the lithium-ion technology, the lithium-sulfur system is emerging as one of the most promising candidates. The major outstanding challenge on the route to commercialization is controlling the so-called polysulfide shuttle, which is responsible for the poor cycling efficiency of the current generation of lithium-sulfur batteries. However, the mechanistic understanding of the reactions underlying the polysulfide shuttle is still incomplete. Here we report the direct observation of lithium polysulfides in a lithium-sulfur cell during operation by means of operando X-ray diffraction. We identify signatures of polysulfides adsorbed on the surface of a glass-fibre separator and monitor their evolution during cycling. Furthermore, we demonstrate that the adsorption of the polysulfides onto SiO2 can be harnessed for buffering the polysulfide redox shuttle. The use of fumed silica as an electrolyte additive therefore significantly improves the specific charge and Coulombic efficiency of lithium-sulfur batteries.

  11. Designing new lithium-excess cathode materials from percolation theory: Nanohighways in Li xNi 2–4x/3Sb x/3O 2

    DOE PAGES

    Twu, Nancy; Li, Xin; Urban, Alexander; ...

    2014-12-17

    Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered Li xNi 2–4x/3Sb x/3O 2 (x = 1.00–1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies disclose a complex nanostructure pattern of Li–Sb and Ni–Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li–Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.

  12. Influence of free carbon on the characteristics of ZrC and deposition of near-stoichiometric ZrC in TRISO coated particle fuel

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Ko, Myeong Jin; Park, Ji Yeon; Cho, Moon Sung; Kim, Weon-Ju

    2014-08-01

    Advanced TRISO coated particles with a ZrC coating layer as a main pressure boundary were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method using a chloride process. Experiments were performed to determine the effect of codeposition of graphitic carbon on the hardness and obtain the stoichiometric ZrC phase. The ZrC coating layer was composed of a mixture of ZrC and graphitic carbon phases at a low ZrCl4/CH4 ratio. A near-stoichiometric ZrC without the free carbon can be obtained by employing an impeller-driven ZrCl4 vaporizer. The codeposition of the graphitic carbon significantly lowered the hardness of ZrC while increasing the fraction of the carbon. The hardness reached its maximum when ZrC was in a slight carbon deficit without free carbon. As the graphitic carbon increased up to 12 vol%, the hardness was reduced by approximately 50% compared to the near-stoichiometric ZrC.

  13. Discovery of high-gain stimulated polariton scattering near 4  THz from lithium niobate.

    PubMed

    Chiu, Yu-Chung; Wang, Tsong-Dong; Zhao, Gang; Huang, Yen-Chieh

    2017-12-01

    Lithium niobate is the most popular material for terahertz wave generation via stimulated polariton scattering (SPS), previously known to have a gain peak near 2 THz. Here we report the discovery of another phase-matched gain peak near 4 THz in lithium niobate, which greatly extends the useful gain spectrum of lithium niobate. Despite the relatively high 4 THz absorption in lithium niobate, the 4 THz SPS becomes dominant over the 2 THz one in an intensely pumped short lithium niobate crystal due to less diffraction-induced absorption and mode-area mismatch. We also demonstrate a signal-seeded OTPO that generates 1.4 nJ at 4.2 THz from lithium niobate with 17.5 mJ pump energy.

  14. Palladium-catalyzed double carbonylation using near stoichiometric carbon monoxide: expedient access to substituted 13C2-labeled phenethylamines.

    PubMed

    Nielsen, Dennis U; Neumann, Karoline; Taaning, Rolf H; Lindhardt, Anders T; Modvig, Amalie; Skrydstrup, Troels

    2012-07-20

    A novel and general approach for (13)C(2)- and (2)H-labeled phenethylamine derivatives has been developed, based on a highly convergent single-step assembly of the carbon skeleton. The efficient incorporation of two carbon-13 isotopes into phenethylamines was accomplished using a palladium-catalyzed double carbonylation of aryl iodides with near stoichiometric carbon monoxide.

  15. Cathodoluminescence of SiOx under-stoichiometric silica layers

    NASA Astrophysics Data System (ADS)

    Salh, Roushdey; von Czarnowski, A.; Zamoryanskaya, M. V.; Kolesnikova, E. V.; Fitting, H.-J.

    2006-06-01

    Under-stoichiometric thin silica layers SiOx with different stoichiometric degree 1 x 2, were prepared by thermal evaporation of silicon monoxide in vacuum and in ambient oxygen atmosphere of various pressure onto crystalline silicon substrates. The chemical composition has been determined by Fourier transform infrared spectroscopy (FTIR). A special formula is derived to correlate the stoichiometric degree x with the wavenumber of the main TO stretching mode (Si-O-Si) in silica, finally to determine the actual composition values x of the layers. Cathodoluminescence (CL) of these layers shows the development of typical amorphous SiO2 luminescence bands at the composition threshold x > 1.5 and then onwards to x = 2. These luminescence bands were observed at 4.3, 2.7, 2.15, and 1.9 eV. The green-yellow luminescence (2.15 eV) is strongly increasing with the annealing temperature up to 1300 °C and is assigned to phase separation of SiOx into Si and SiO2 and formation of hexamer silicon rings in the understoichiometric silica network. Finally we observe Si nanoclusters by means of transmission elec- tron microscopy (TEM) micrographs.

  16. Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.

    PubMed

    Schroeder, Melanie; Eames, Christopher; Tompsett, David A; Lieser, Georg; Islam, M Saiful

    2013-12-21

    Lithium iron fluoride materials have attracted recent interest as cathode materials for lithium ion batteries. The electrochemical properties of the high energy density Li(x)FeF6 (x = 2, 3, 4) materials have been evaluated using a combination of potential-based and DFT computational methods. Voltages of 6.1 V and 3.0 V are found for lithium intercalation from Li2FeF6 to α-Li3FeF6 and α-Li3FeF6 to Li4FeF6 respectively. The calculated density of states indicate that Li2FeF6 possesses metallic states that become strongly insulating after lithium intercalation to form α-Li3FeF6. The large energy gain associated with this metal-insulator transition is likely to contribute to the associated large voltage of 6.1 V. Molecular dynamics simulations of lithium diffusion in α-Li3FeF6 at typical battery operating temperatures indicate high lithium-ion mobility with low activation barriers. These results suggest the potential for good rate performance of lithium iron fluoride cathode materials.

  17. Lithium rich cathode/graphite anode combination for lithium ion cells with high tolerance to near zero volt storage

    NASA Astrophysics Data System (ADS)

    Crompton, K. R.; Staub, J. W.; Hladky, M. P.; Landi, B. J.

    2017-03-01

    Management of reversible lithium is an advantageous approach to design lithium ion cells that are tolerant to near zero volt (NZV) storage under fixed resistive load towards highly controllable, enhanced user-inactive safety. Presently, the first cycle loss from a high energy density Li-rich HE5050 cathode is used to provide excess reversible lithium when paired with an appropriately capacity matched mesocarbon microbead (MCMB) anode. Cells utilizing 1.2 M LiPF6 3:7 v/v ethylene carbonate:ethyl methyl carbonate electrolyte and a lithium reference were used for 3-electrode testing. After conditioning, a fixed resistive load was applied to 3-electrode cells for 72 or 168-h during which the anode potential and electrode asymptotic potential (EAP) remained less than the copper dissolution potential. After multiple storage cycles (room temperature or 40 °C), the NZV coulombic efficiency (cell reversibility) exceeded 97% and the discharge capacity retention was >98%. Conventional 2-electrode HE5050/MCMB pouch cells stored at NZV or open circuit for 3 days had nearly identical rate capability (up to 5C) and discharge performance stability (for 500 cycles under a 30% depth of discharge low-earth-orbit regime). Thus, lithium ion cells with appropriately capacity matched HE5050/MCMB electrodes have excellent tolerance to prolonged NZV storage, which can lead to enhanced user-inactive safety.

  18. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies

    NASA Astrophysics Data System (ADS)

    Beattie, Shane D.; Loveridge, M. J.; Lain, Michael J.; Ferrari, Stefania; Polzin, Bryant J.; Bhagat, Rohit; Dashwood, Richard

    2016-01-01

    Commercial Li-ion batteries are typically cycled between 3.0 and 4.2 V. These voltages limits are chosen based on the characteristics of the cathode (e.g. lithium cobalt oxide) and anode (e.g. graphite). When alternative anode/cathode chemistries are studied the same cut-off voltages are often, mistakenly, used. Silicon (Si) based anodes are widely studied as a high capacity alternative to graphite for Lithium-ion batteries. When silicon-based anodes are paired with high capacity cathodes (e.g. Lithium Nickel Cobalt Aluminium Oxide; NCA) the cell typically suffers from rapid capacity fade. The purpose of this communication is to understand how the choice of upper cut-off voltage affects cell performance in Si/NCA cells. A careful study of three-electrode cell data will show that capacity fade in Si/NCA cells is due to an ever-evolving silicon voltage profile that pushes the upper voltage at the cathode to >4.4 V (vs. Li/Li+). This behaviour initially improves cycle efficiency, due to liberation of new lithium, but ultimately reduces cycling efficiency, resulting in rapid capacity fade.

  19. Free-standing anode of N-doped carbon nanofibers containing SnO{sub x} for high-performance lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Mingzhong; Li, Jiaxin, E-mail: ljx3012982@yahoo.com; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002

    2014-12-15

    Highlights: • Self-standing SnO{sub x} N-CNF electrodes were synthesized by electrospinning. • The SnO{sub x} N-CNFs anode exhibits high capacity, good cyclic stability, and excellent rate performance for lithium ion batteries. • The enhanced performance is ascribed to the synergetic effects between N-CNFs and SnO{sub x} nanoparticles. - Abstract: Free-standing paper of N-doped carbon nanofibers (NCNFs) containing SnO{sub x} was prepared by electrospinning. The structure and morphology of the sample were analyzed by XRD, XPS, SEM, and TEM. The results show that nitrogen atoms were successfully doped into CNFs. The SnO{sub x} were homogenously embedded in the N-doped CNFs viamore » annealing treatment. Subsequently, the SnO{sub x} NCNF paper was cut into disks and used as anodes for lithium ion batteries (LIBs). The anodes of SnO{sub x} NCNFs exhibit excellent cycling stability and show high capacity of 520 mA h g{sup −1} tested at a 200 mA g{sup −1} after 100 cycles. More importantly, at a high current density of 500 mA g{sup −1}, a large reversible capacity of 430 mA h g{sup −1} after 100 cycles can still be obtained. The good electrochemical performance should be attributed to the good electronic conductivity from the NCNFs and the synergistic effects from NCNFs and SnO{sub x} materials.« less

  20. Ferromagnetic resonance study of the non-stoichiometric double perovskite Sr2Fe1+xMo1-xO6

    NASA Astrophysics Data System (ADS)

    Medina, J. De La Torre; Piraux, L.; Soto, T. E.; Morales, R.; Navarro, O.

    2018-02-01

    In this work we report a ferromagnetic resonance study on the magnetic properties of double perovskite compounds fab-ricated by solid state reaction. Based on a mean field approach, along with morphological considerations, we accurately determined the saturation magnetization of the non-stoichiometric double perovskite Sr2Fe1+xMo1-xO6. Our approach has revealed a direct in-fluence of composition on the overall magnetic behavior of these materials, providing complementary experimental evidence that corroborates previous theoretical findings. The understanding of the influence of composition is of paramount importance for the design of ferromagnetic oxides with tunable magnetic and magneto-transport behavior.

  1. Effects of momentum transfer on sizing of current collectors for lithium-ion batteries during laser cutting

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyoung; Mazumder, Jyotirmoy

    2018-02-01

    One of the challenges of the lithium-ion battery manufacturing process is the sizing of electrodes with good cut surface quality. Poor cut surface quality results in internal short circuits in the cells and significant heat generation. One of the solutions that may improve the cut quality with a high cutting speed is laser cutting due to its high energy concentration, fast processing time, high precision, small heat affected zone, flexible range of laser power and contact free process. In order to utilize the advantages of laser electrode cutting, understanding the physical phenomena for each material is crucial. Thus, this study focuses on the laser cutting of current collectors, such as pure copper and aluminum. A 3D self-consistent mathematical model for the laser cutting, including fluid flow, heat transfer, recoil pressure, multiple reflections, capillary and thermo-capillary forces, and phase changes, is presented and solved numerically. Simulation results for the laser cutting are analyzed in terms of penetration time, depth, width, and absorptivity, based on these selected laser parameters. In addition, melt pool flow, melt pool geometry and temperature distribution are investigated.

  2. Reflection second harmonic generation on a z -cut congruent lithium niobate crystal

    NASA Astrophysics Data System (ADS)

    Sono, T. J.; Scott, J. G.; Sones, C. L.; Valdivia, C. E.; Mailis, S.; Eason, R. W.; Frey, J. G.; Danos, L.

    2006-11-01

    Reflection second harmonic generation experiments were performed on z -cut congruent lithium niobate crystals (LiNbO3) to reveal the interfacial layer symmetry as the crystal is rotated around the z axis. To suppress the bulk contribution, the fundamental wavelength was selected to be 532nm , resulting in second harmonic generation at a wavelength within the absorption region of the crystal. The polarity of the direction of the y -axis was determined from second harmonic generation data and used to show that this direction also inverts during domain inversion.

  3. Synthesis of lithium mangan dioxide (LiMn2O4) for lithium-ion battery cathode from various lithium sources

    NASA Astrophysics Data System (ADS)

    Priyono, S.; Ginting, N. R.; Humaidi, S.; Subhan, A.; Prihandoko, B.

    2018-03-01

    LiMn2O4 as a cathode material has been synthesized via solid state reaction. The synthesis has been done by varying lithium sources such as LiOH.H2O and Li2CO3 while MnO2 was used as Mn sources. All raw materials were mixed stoichiometrically to be the precursors of LiMn2O4. The precursors were sintered using high temperature furnace at 800 °C for 4 hours in atmospheric condition to form final product. The final products were sieved to separate the finer and smoother particles from the coarse ones. The products were characterized by X-Ray Diffractometer (XRD) to identify phases and crystal structure. The peak wave number was also determined using Fourier Transform Infra Red (FTIR) to find functional group. LiMn2O4 sheets were prepared by mixing active material with polyvinylidene fluoride (PVdF) and acetylene black (AB) in mass ratio of 85:10:5 wt.% in N,N-Dimethylacetamide (DMAc) solvents to form slurry. The slurry was then coated onto Al foil with thickness of about 0.15 mm and dried in an oven. LiMn2O4 sheet was cut into circular discs and arranged with separator, metallic lithium, and electrolyte in a coin cell. Automatic battery cycler was used to measure electrochemical performance and specific capacity of the cell. XRD analysis showed that sample synthesized with Li2CO3 has higher crystallinity and more pristine than sample synthesized with LiOH.H2O. FTIR analysis revealed that both of samples have identical functional group but sample with Li2CO3 source tend to degrade. Cyclic voltammetry data gave information that sample with LiOH.H2O source has better electrochemical performance. It showed double oxidation/reduction peaks more clearly but sample with Li2CO3 source has higher specific capacity (64.78 mAh/g) than sample with LiOH.H2O (50 mAh/g).

  4. Near-infrared quantum cutting in Yb3+ ion doped strontium vanadate

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The materials Sr3-x(VO4)2:xYb were successfully synthesized by co-precipitation method varying the concentration of Yb3+ ions from 0 to 0.06 mol. It was characterize by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Yb3+ ion doped tristrontium vanadate (Sr3(VO4)2) phosphors that can convert a photon of UV region (349 nm) into photons of NIR region (978, 996 and 1026 nm). Hence this phosphor could be used as a quantum cutting (QC) luminescent convertor in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss due to spectral mismatch of the solar cells. The theoretical value of quantum efficiency (QE) was calculated from steady time decay measurement and the maximum efficiency approached up to 144.43%. The Sr(3-x) (VO4)2:xYb can be potentiality used for betterment of photovoltaic (PV) technology.

  5. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  6. Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials

    NASA Astrophysics Data System (ADS)

    Brant, William R.; Li, Dan; Gu, Qinfen; Schmid, Siegbert

    2016-01-01

    A comparative study of ex-situ and operando X-ray diffraction techniques using the fast lithium ion conductor Li0.18Sr0.66Ti0.5Nb0.5O3 is presented. Ex-situ analysis of synchrotron X-ray diffraction data suggests that a single phase material exists for all discharges to as low as 0.422 V. For samples discharged to 1 V or lower, i.e. with higher lithium content, it is possible to determine the lithium position from the X-ray data. However, operando X-ray diffraction from a coin cell reveals that a kinetically driven two phase region occurs during battery cycling below 1 V. Through monitoring the change in unit cell dimension during electrochemical cycling the dynamics of lithium insertion are explored. A reduction in the rate of unit cell expansion of 22(2)% part way through the first discharge and 13(1)% during the second discharge is observed. This reduction may be caused by a drop in lithium diffusion into the bulk material for higher lithium contents. A more significant change is a jump in the unit cell expansion by 60(2)% once the lithium content exceeds one lithium ion per vacant site. It is suggested that this jump is caused by damping of octahedral rotations, thus establishing a link between lithium content and octahedral rotations.

  7. Ternary lithium stannides Li xT 3Sn 7-x ( T=Rh, Ir)

    NASA Astrophysics Data System (ADS)

    Sreeraj, Puravankara; Kurowski, Daniel; Hoffmann, Rolf-Dieter; Wu, Zhiyun; Pöttgen, Rainer

    2005-11-01

    The ternary stannides Li xRh 3Sn 7-x ( x=0.45, 0.64, 0.80) and Li xIr 3Sn 7-x ( x=0.62 and 0.66) were synthesized from the elements in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. The samples were characterized by X-ray diffraction on powders and single crystals. The stannides adopt the cubic Ir 3Ge 7-type structure (space group Im3¯m, Z=4). In this structure type the tin atoms occupy the Wyckoff positions 12 d and 16 f and form two interpenetrating frameworks consisting of cubes and square antiprisms. The rhodium and iridium atoms center the square antiprisms and are arranged in pairs. With increasing lithium substitution the lattice parameter of Ir 3Sn 7 (936.7) decreases via 932.2 pm ( x=0.62) to 931.2 pm ( x=0.66), while the Ir-Ir distance remains almost the same (290 pm). A similar trend is observed for the rhodium compounds. The lithium atoms substitute Sn on both framework sites. However, the 16 f site shows a substantially larger preference for Li occupation. This is in contrast to the isotypic magnesium based compounds.

  8. Influence of NiO on the crystallization kinetics of near stoichiometric cordierite glasses nucleated with TiO2

    NASA Astrophysics Data System (ADS)

    Goel, Ashutosh; Shaaban, Essam R.; Ribeiro, Manuel J.; Melo, Francisco C. L.; Ferreira, José M. F.

    2007-09-01

    This work presents the effect of NiO on the thermal behavior and the crystallization kinetics of glasses lying near the stoichiometric cordierite composition nucleated with TiO2. Three glasses with NiO content varying between 1 and 5 mol% have been synthesized in Pt crucibles. Activation energies for structural relaxation and viscous flow have been calculated using the data obtained from differential thermal analysis (DTA). Kinetic fragility of the glasses along with other thermal parameters has been calculated. Non-isothermal crystallization kinetic studies have been employed to study the mechanism of crystallization in all three glasses. The crystallization sequence in the glasses has been followed by x-ray diffraction analysis of the heat treated glass samples in the temperature range of 800-1200 °C. μ-cordierite has been observed to be the first crystalline phase in all the glass samples after heat treatment at 850 °C, while NiO plays an important role in determining the crystallization sequence at higher temperatures, leading to the formation of α-cordierite.

  9. Ultraviolet-infrared laser-induced domain inversion in MgO-doped congruent LiNbO3 and near stoichiometric LiTaO3 crystals

    NASA Astrophysics Data System (ADS)

    Zhi, Ya'nan; Qu, Weijuan; Liu, De'an; Sun, Jianfeng; Yan, Aimin; Liu, Liren

    2008-08-01

    Laser-induced domain inversion is a promising technique for domain engineering in LiNbO3 and LiTaO3. The ultraviolet-infrared laser induced domain inversions in MgO-doped congruent LiNbO3 and near stoichiometric LiTaO3 crystals are investigated for the first time here. Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are systematically investigated in the MgO-doped congruent LiNbO3 crystals. The investigation of ultrashort-pulse laser-induced domain inversion in MgO-doped congruent LiNbO3 is performed with 800 nm wavelength irradiation. The focused continuous ultraviolet laser-induced ferroelectric domain inversion in the near stoichiometric LiTaO3 is also investigated. The different physical explanations, based on space charge field and defect formation, are presented for the laser-induced domain inversion, and the solid experimental proofs are also presented. The results provide the solid experimental proofs and feasible schemes for the further investigation of laser-induced domain engineering in MgO-doped LiNbO3 and near stoichiometric LiTaO3 crystals. The important characteristics of domain inversion, including domain wall and internal field, in LiNbO3 crystals are also investigated by the digital holographic interferometry with an improved reconstruction method, and some creative experimental results and conclusions are achieved.

  10. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    NASA Technical Reports Server (NTRS)

    Shapiro, E.; Danielson, L. R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 C. The non-stoichiometric lanthanum sulfides (LaS(x), where x is in the range 1.33-1.50) appear to possess the most favorable thermoelectric properties. The Seebeck coefficient and resistivity vary significantly with composition, so that an optimum value of alpha sq/rho (where alpha is the Seebeck coefficient and rho is the resistivity) can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of alpha sq/rho should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides will be pressed, together with structural properties of these materials.

  11. On Computations of Duct Acoustics with Near Cut-Off Frequency

    NASA Technical Reports Server (NTRS)

    Dong, Thomas Z.; Povinelli, Louis A.

    1997-01-01

    The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. A study of this cut-off effect on the computations of duct acoustics is performed in the present work. The results show that the computation of duct acoustic modes near cut-off requires higher numerical resolutions than others to avoid being numerically cut off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme with the selective artificial damping method and results are presented and compared to reference solutions.

  12. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  13. Highly linear ring modulator from hybrid silicon and lithium niobate.

    PubMed

    Chen, Li; Chen, Jiahong; Nagy, Jonathan; Reano, Ronald M

    2015-05-18

    We present a highly linear ring modulator from the bonding of ion-sliced x-cut lithium niobate onto a silicon ring resonator. The third order intermodulation distortion spurious free dynamic range is measured to be 98.1 dB Hz(2/3) and 87.6 dB Hz(2/3) at 1 GHz and 10 GHz, respectively. The linearity is comparable to a reference lithium niobate Mach-Zehnder interferometer modulator operating at quadrature and over an order of magnitude greater than silicon ring modulators based on plasma dispersion effect. Compact modulators for analog optical links that exploit the second order susceptibility of lithium niobate on the silicon platform are envisioned.

  14. Controlling the sol–gel process of nano-crystalline lithium-mica glass-ceramic by its chemical composition and synthesis parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tohidifar, M.R., E-mail: tohidifar@znu.ac.ir; Alizadeh, P.; Aghaei, A.R.

    2015-01-15

    This paper aims to explore the impact of the parameters such as pH of the system, refluxing temperature, water quantity and chemical composition on the sol–gel synthesis of lithium-mica glass-ceramic nano-powder. The synthesis process was accomplished using two chemical composition formula (Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} and LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2}). X-ray diffraction, Brunauer–Emmett–Teller surface area measurement and scanning electron microscopy techniques were applied to evaluate a variety of as-synthesized samples. Consequently, a transparent homogeneous sol was obtained under the conditions as pH ≤ 4, synthesis temperature ≤ 50 °C, and mol ratio of water to chemicals ≤more » 2. The prepared nano-powders under such conditions were in the range of 60–100 nm. The results also revealed that the mica glass-ceramics prepared based on the composition Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} possessed finer powders due to their slow hydrolysis process. Moreover, any reduction in the stoichiometric deviation of lithium mica (x) leads to acquiring finer powders. - Highlights: • A transparent homogeneous sol leads to prepare nanopowders in the range of 60–100 nm. • The particles synthesized at lower temperatures possess finer sizes. • The acquired product which is prepared with excessive water offers larger sizes. • Any reduction in stoichiometric deviation leads to acquiring finer powders. • Taking synthesis composition as Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} offers finer powders.« less

  15. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  16. UV-light-induced one-color and two-color photorefractive effects in congruent and near-stoichiometric LiNbO 3:Mg crystals

    NASA Astrophysics Data System (ADS)

    Qiao, Haijun; Xu, Jingjun; Tomita, Yasuo; Zhu, Dengsong; Fu, Bo; Zhang, Guoquan; Zhang, Guangyin

    2007-03-01

    We describe the ultraviolet-light one-color photorefraction (UV-OPR) at 351 nm in LiNbO3 crystals with different Mg-doping concentrations and [Li]/[Nb] ratios. It is shown that as the Mg-doping concentration and/or the [Li]/[Nb] ratio increase, the refractive index change and the two-beam coupling gain increase but the response time decreases. It is also shown that the recording sensitivity as large as ∼27 cm/J is obtainable at a recording intensity of ∼1 W/cm2 in near-stoichiometric LiNbO3 doped with 2 mol% Mg. This sensitivity is approximately one order of magnitude higher than those for other LiNbO3 crystals. We also describe the ultraviolet-light-gating two-color photorefraction (UV-TPR) using 365 nm gating and 633 nm recording beams in LiNbO3 crystals with different Mg-doping concentrations and [Li]/[Nb] ratios. It is shown that UV-TPR is only observed in near-stoichiometric crystals and the grating-formation dynamics strongly depend on the Mg concentration.

  17. Electronic and thermal properties of non-stoichiometric and doped cobaltum antimonide

    NASA Astrophysics Data System (ADS)

    Velasco-Soto, Diego; Menéndez-Proupin, Eduardo; Realyvazquez-Guevara, Rebeca; Andrés Matutes-Aquino, José

    2018-02-01

    The electronic, vibrational and thermal properties of stoichiometric and non-stoichiometric cobalt antimonide CoSb x (x = 2.81, 2.875, and 3) are investigated by means of first principle calculations and thermal measurements. The molar heat capacity, electrical conductivity, and the electronic thermal conductivity are increased by the effect of Sb vacancies. Doping with Te and Ge also increases the electrical and thermal conductivity, suggesting that it can be used to enhance cobaltum antimonide as a thermoelectric material.

  18. Performance and emission characteristics of swirl-can combustors to near-stoichiometric fuel-air ratio

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Trout, A. M.

    1976-01-01

    Emissions and performance characteristics were determined for two full annular swirl-can combustors operated to near stoichiometric fuel-air ratio. Test condition variations were as follows: combustor inlet-air temperatures, 589, 756, 839, and 894 K; reference velocities, 24 to 37 meters per second; inlet pressure, 62 newtons per square centimeter; and fuel-air ratios, 0.015 to 0.065. The combustor average exit temperature and combustor efficiency were calculated from the combustor exhaust gas composition. For fuel-air ratios greater than 0.04, the combustion efficiency decreased with increasing fuel-air ratios in a near-linear manner. Increasing the combustor inlet air temperature tended to offset this decrease. Maximum oxides of nitrogen emission indices occurred at intermediate fuel-air ratios and were dependent on combustor design. Carbon monoxide levels were extremely high and were the primary cause of poor combustion efficiency at the higher fuel-air ratios. Unburned hydrocarbons were low for all test conditions. For high fuel-air ratios SAE smoke numbers greater than 25 were produced, except at the highest inlet-air temperatures.

  19. Erbium ion implantation into different crystallographic cuts of lithium niobate

    NASA Astrophysics Data System (ADS)

    Nekvindova, P.; Svecova, B.; Cajzl, J.; Mackova, A.; Malinsky, P.; Oswald, J.; Kolistsch, A.; Spirkova, J.

    2012-02-01

    Single crystals like lithium niobate are frequently doped with optically active rare-earth or transition-metal ions for a variety of applications in optical devices such as solid-state lasers, amplifiers or sensors. To exploit the potential of the Er:LiNbO 3, one must ensure high intensity of the 1.5 μm luminescence as an inevitable prerequisite. One of the important factors influencing the luminescence properties of a lasing ion is the crystal field of the surrounding, which is inevitably determined by the crystal structure of the pertinent material. From that point it is clear that it cannot be easy to affect the resulting luminescence properties - intensity or position of the luminescence band - without changing the structure of the substrate. However, there is a possibility to utilise a potential of the ion implantation of the lasing ions, optionally accompanied with a sensitising one, that can, besides the doping, also modify the structure of the treated area od the crystal. This effect can be eventually enhanced by a post-implantation annealing that may help to recover the damaged structure and hence to improve the desired luminescence. In this paper we are going to report on our experiments with ion-implantation technique followed with subsequent annealing could be a useful way to influence the crystal field of LN. Optically active Er:LiNbO 3 layers were fabricated by medium energy implantation under various experimental conditions. The Er + ions were implanted at energies of 330 and 500 keV with fluences ranging from 1.0 × 10 15 to 1.0 × 10 16 ion cm -2 into LiNbO 3 single-crystal cuts of both common and special orientations. The as-implanted samples were annealed in air and oxygen at two different temperatures (350 and 600 °C) for 5 h. The depth concentration profiles of the implanted erbium were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He + ions. The photoluminescence spectra of the samples were measured to determine the

  20. Wide spectral range multiple orders and half-wave achromatic phase retarders fabricated from two lithium tantalite single crystal plates

    NASA Astrophysics Data System (ADS)

    Emam-Ismail, M.

    2015-11-01

    In a broad spectral range (300-2500 nm), we report the use of channeled spectra formed from the interference of polarized white light to extract the dispersion of the phase birefringence Δnp(λ) of the x- and y-cuts of lithium tantalite (LiTaO3:LT) plates. A new method named as wavenumber difference method is used to extract the spectral behavior of the phase birefringence of the x- and y- cuts of LT plates. The correctness of the obtained birefringence data is confirmed by using Jones vector method through recalculating the plates thicknesses. The spectral variation of the phase birefringence Δnp(λ) of the x- and y-cuts of LT plates is fitted to Cauchy dispersion function with relative error for both x- and y-cuts of order 2.4×10-4. The group birefringence dispersion Δng (λ) of the x- and y-cuts of LT plates is also calculated and fitted to Ghosh dispersion function with relative error for both x- and y-cuts of order 2.83×10-4. Furthermore, the phase retardation introduced by the x- and y-cuts of LT plates is also calculated. It is found that the amount of phase retardation confirms that the x- and y-cuts of LT plates can act as a multiple order half- and quarter-wave plates working at many different wavelengths through the spectral range 300-2500 nm. For the x- and y-cuts of LT plates, a large difference between group and phase birefringence is observed at a short wavelength (λ=300 nm); while such difference progressively diminished at longer wavelength (λ=2000 nm). In the near infrared region (NIR) region (700-2500 nm), a broad spectral full width at half maximum (FWHM) is observed for either x- or y-cut of LT plate which can act as if it is working as a zero order wave plate. Finally, an achromatic half-wave plate working at 598 nm and covering a wide spectral range (300-900 nm) is demonstrated experimentally by combining both x- and y-cuts of LT plates.

  1. Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO(2+x).

    PubMed

    He, Heming; Shoesmith, David

    2010-07-28

    A method to determine the defect structures in hyper-stoichiometric UO(2+x) using a combination of XRD and Raman spectroscopy has been developed. A sequence of phase transitions, from cubic to tetragonal symmetry, occurs with increasing degree of non-stoichiometry. This sequence proceeds from a cubic phase through an intermediate t''-type tetragonal (axial ratio c/a = 1) phase to a final t-type tetragonal (c/a not = 1) phase. Four distinct structural defect regions can be identified in the stoichiometry range, UO(2) to U(3)O(7): (i) a random point defect structure (x (in UO(2+x)) < or = 0.05); (ii) a non-stoichiometry region (0.05 < or = x < or = 0.15) over which point defects are gradually eliminated and replaced by the Willis 2:2:2 cluster; (iii) a mixture of Willis and cuboctahedral clusters (0.15 < or = x < or = 0.23); (iv) the cuboctahedral cluster (x > or = 0.23). The geometry and steric arrangement of these defects is primarily determined by the concentration of the excess-oxygen interstitials.

  2. Hard X-ray photoelectron spectroscopy of Li{sub x}Ni{sub 1−x}O epitaxial thin films with a high lithium content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumara, L. S. R., E-mail: KUMARA.Rosantha@nims.go.jp; Yang, Anli; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2014-07-28

    The core-level and valence-band electronic structures of Li{sub x}Ni{sub 1−x}O epitaxial thin films with x = 0, 0.27, and 0.48 were studied by hard X-ray photoelectron spectroscopy. A double peak structure, consisting of a main peak and a shoulder peak, and a satellite structure were observed in the Ni 2p{sub 3/2} core-level spectra. The intensity ratio of the shoulder to main peak in this double peak structure increased with increasing lithium content in Li{sub x}Ni{sub 1−x}O. This lithium doping dependence of the Ni 2p{sub 3/2} core-level spectra was investigated using an extended cluster model, which included the Zhang–Rice (ZR) doubletmore » bound states arising from a competition between O 2p – Ni 3d hybridization and the Ni on-site Coulomb interaction. The results indicated that the change in the intensity ratio in the main peak is because of a reduction in the ZR doublet bound states from lithium substitutions. This strongly suggests that holes compensating Li doping in Li{sub x}Ni{sub 1−x}O are of primarily ZR character.« less

  3. High-temperature X-ray diffraction study of crystallization and phase segregation on spinel-type lithium manganese oxides

    NASA Astrophysics Data System (ADS)

    Komaba, Shinichi; Yabuuchi, Naoaki; Ikemoto, Sachi

    2010-01-01

    To study crystallization process of spinel-type Li 1+xMn 2-xO 4, in-situ high-temperature X-ray diffraction technique (HT-XRD) was utilized for the mixture consisting of Li 2CO 3 and Mn 2O 3 as starting material in the temperature range of 25-700 °C. In-situ HT-XRD analysis directly revealed that crystallization process of Li 1+xMn 2-xO 4 was significantly affected by the difference in the Li/Mn molar ratio in the precursor. Single phase of stoichiometric LiMn 2O 4 formed at 700 °C. The formation of single phase of spinel was achieved at the lower temperature than the stoichiometric sample as Li/Mn molar ratio in the precursor increased. Lattice parameter of the stoichiometric LiMn 2O 4 at 25 °C was 8.24 Å and expanded to 8.31 Å at 700 °C, which corresponds to the approximately 3% expansion in the unit cell volume. From the slope of the lattice parameter change as a function of temperatures, linear thermal expansion coefficient of the stoichiometric LiMn 2O 4 was calculated to be 1.2×10 -5 °C -1 in this temperature range. When the Li/Mn molar ratio in Li 1+xMn 2-xO 4 increased ( x > 0.1), the spinel phase segregated into the Li 1+yMn 2-yO 4 ( x > y) and Li 2MnO 3 during heating, which involved the oxygen loss from the materials. During the cooling process from 700 °C, and the segregated phase merged into Li 1+xMn 2-xO 4 with oxygen incorporation. Such trend directly observed by in-situ HT-XRD was supported by thermal gravimetric analysis as reversible weight (oxygen) loss/gain at higher temperature (500-700 °C).

  4. Lithium treatment alleviates impaired cognition in a mouse model of Fragile X Syndrome

    PubMed Central

    King, Margaret K.; Jope, Richard S.

    2013-01-01

    Fragile X Syndrome (FXS) is caused by suppressed expression of fragile X mental retardation protein (FMRP), which results in intellectual disability accompanied by many variably manifested characteristics, such as hyperactivity, seizures, and autistic-like behaviors. Treatment of mice that lack FMRP, Fmr1 knockout (KO) mice, with lithium has been reported to ameliorate locomotor hyperactivity, prevent hypersensitivity to audiogenic seizures, improve passive avoidance behavior, and attenuate sociability deficits. To focus on the defining characteristic of FXS, which is cognitive impairment, we tested if lithium treatment ameliorated impairments in four cognitive tasks in Fmr1 KO mice, tested if the response to lithium differed in adolescent and adult mice, and tested if therapeutic effects persisted after discontinuation of lithium administration. Fmr1 KO mice displayed impaired cognition in the novel object detection task, temporal ordering for objects task, and coordinate and categorical spatial processing tasks. Chronic lithium treatment of adolescent (from 4–8 weeks of age) and adult (from 8–12 weeks of age) mice abolished cognitive impairments in all four cognitive tasks. Cognitive deficits returned after lithium treatment was discontinued for 4 weeks. These results demonstrate that Fmr1 KO mice exhibit severe impairments in these cognitive tasks, that lithium is equally effective in normalizing cognition in these tasks whether it is administered to young or adult mice, and that lithium administration must be continued for the cognitive improvements to be sustained. These findings provide further evidence that lithium administration may be beneficial for individuals with FXS. PMID:23941202

  5. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2015-01-01

    Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121

  6. Permeability and storage ability of inorganic X12Y12 fullerenes for lithium atom and ion

    NASA Astrophysics Data System (ADS)

    Munsif, Sajida; Ayub, Khurshid

    2018-04-01

    In the current study, permeability and storage ability (exohedral and endohedral) of inorganic fullerenes X12Y12 (X = B, Al and Y = N, P) for lithium atom/ion (Li/Li+) is studied theoretically at M05-2X method. The translation of Li/Li+ through Al12P12 nano-cages is not only a kinetically feasible process but also has very high separation ratio in the favor of lithium atom over lithium ion. Adsorption/encapsulation energies of alkali metal on/in nano-cages show strong correlation with the size of the nano-cage. The percent changes in H-L gap for Li+-X12Y12 are about 1-25%, whereas the corresponding changes for Li-X12Y12 are 30-72%.

  7. Ce(x)O(y)⁻ (x = 2-3) + D₂O reactions: stoichiometric cluster formation from deuteroxide decomposition and anti-Arrhenius behavior.

    PubMed

    Felton, Jeremy A; Ray, Manisha; Waller, Sarah E; Kafader, Jared O; Jarrold, Caroline Chick

    2014-10-30

    Reactions between small cerium oxide cluster anions and deuterated water were monitored as a function of both water concentration and temperature in order to determine the temperature dependence of the rate constants. Sequential oxidation reactions of the Ce(x)O(y)⁻ (x = 2, 3) suboxide cluster anions were found to exhibit anti-Arrhenius behavior, with activation energies ranging from 0 to -18 kJ mol⁻¹. Direct oxidation of species up to y = x was observed, after which, -OD abstraction and D₂O addition reactions were observed. However, the stoichiometric Ce₂O₄⁻ and Ce₃O₆⁻ cluster anions also emerge in reactions between D₂O and the respective precursors, Ce₂O₃D⁻ and Ce₃O₅D₂⁻. Ce₂O₄⁻ and Ce₃O₆⁻ product intensities diminish relative to deuteroxide complex intensities with increasing temperature. The kinetics of these reactions are compared to the kinetics of the previously studied Mo(x)O(y)⁻ and W(x)O(y)⁻ reactions with water, and the possible implications for the reaction mechanisms are discussed.

  8. Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes.

    PubMed

    Abel, Paul R; Chockla, Aaron M; Lin, Yong-Mao; Holmberg, Vincent C; Harris, Justin T; Korgel, Brian A; Heller, Adam; Mullins, C Buddie

    2013-03-26

    Both silicon and germanium are leading candidates to replace the carbon anode of lithium ions batteries. Silicon is attractive because of its high lithium storage capacity while germanium, a superior electronic and ionic conductor, can support much higher charge/discharge rates. Here we investigate the electronic, electrochemical and optical properties of Si(1-x)Gex thin films with x = 0, 0.25, 0.5, 0.75, and 1. Glancing angle deposition provided amorphous films of reproducible nanostructure and porosity. The film's composition and physical properties were investigated by X-ray photoelectron spectroscopy, four-point probe conductivity, Raman, and UV-vis absorption spectroscopy. The films were assembled into coin cells to test their electrochemical properties as a lithium-ion battery anode material. The cells were cycled at various C-rates to determine the upper limits for high rate performance. Adjusting the composition in the Si(1-x)Gex system demonstrates a trade-off between rate capability and specific capacity. We show that high-capacity silicon anodes and high-rate germanium anodes are merely the two extremes; the composition of Si(1-x)Gex alloys provides a new parameter to use in electrode optimization.

  9. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references

    NASA Astrophysics Data System (ADS)

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-01

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach.

  10. Broadband X-ray edge-enhancement imaging of a boron fibre on lithium fluoride thin film detector

    NASA Astrophysics Data System (ADS)

    Nichelatti, E.; Bonfigli, F.; Vincenti, M. A.; Cecilia, A.; Vagovič, P.; Baumbach, T.; Montereali, R. M.

    2016-10-01

    The white beam (∼6-80 keV) available at the TopoTomo X-ray beamline of the ANKA synchrotron facility (KIT, Karlsruhe, Germany) was used to perform edge-enhancement imaging tests on lithium fluoride radiation detectors. The diffracted X-ray image of a microscopic boron fibre, consisting of tungsten wire wrapped by boron cladding, was projected onto lithium fluoride thin films placed at several distances, from contact to 1 m . X-ray photons cause the local formation of primary and aggregate colour centres in lithium fluoride; these latter, once illuminated under blue light, luminesce forming visible-light patterns-acquired by a confocal laser scanning microscope-that reproduce the intensity of the X-ray diffracted images. The tests demonstrated the excellent performances of lithium fluoride films as radiation detectors at the investigated photon energies. The experimental results are here discussed and compared with those calculated with a model that takes into account all the processes that concern image formation, storing and readout.

  11. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0<x<1, 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  12. Light-induced absorption and its relaxation under illumination of continuous wave ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Youwen; Kitamura, Kenji; Takekawa, Shunji

    2005-04-01

    The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less

  13. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M [Naperville, IL; Kim, Jeom-Soo [Naperville, IL; Johnson, Christopher S [Naperville, IL

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  14. Thermodynamic assessment of oxygen diffusion in non-stoichiometric UO2±x from experimental data and Frenkel pair modeling

    NASA Astrophysics Data System (ADS)

    Berthinier, C.; Rado, C.; Chatillon, C.; Hodaj, F.

    2013-02-01

    The self and chemical diffusion of oxygen in the non-stoichiometric domain of the UO2 compound is analyzed from the point of view of experimental determinations and modeling from Frenkel pair defects. The correlation between the self-diffusion and the chemical diffusion coefficients is analyzed using the Darken coefficient calculated from a thermodynamic description of the UO2±x phase. This description was obtained from an optimization of thermodynamic and phase diagram data and modeling with different point defects, including the Frenkel pair point defects. The proposed diffusion coefficients correspond to the 300-2300 K temperature range and to the full composition range of the non stoichiometric UO2 compound. These values will be used for the simulation of the oxidation and ignition of the uranium carbide in different oxygen atmospheres that starts at temperatures as low as 400 K.

  15. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  16. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  17. Lithium vanadium oxides (Li1+xV3O8) as cathode materials in lithium-ion batteries for soldier portable power systems

    NASA Astrophysics Data System (ADS)

    Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.

  18. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references.

    PubMed

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-15

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Extended asymmetric-cut multilayer X-ray gratings.

    PubMed

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  20. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  1. Synthesis and characterization of lithium aluminum-doped spinel (LiAl xMn 2- xO 4) for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Sung; Kumada, Naoki; Yoshio, Masaki

    LiAl xMn 2- xO 4 has been synthesized using various aluminum starting materials, such as Al(NO 3) 3, Al(OH) 3, AlF 3 and Al 2O 3 at 600-800°C for 20 h in air or oxygen atmosphere. A melt-impregnation method was used to synthesize Al-doped spinel with good battery performance in this research. The Al-doped content and the intensity ratio of (3 1 1)/(4 0 0) peaks can be important parameters in synthesizing Al-doped spinel which satisfies the requirements of high discharge capacity and good cycleability at the same time. The decrease in Mn 3+ ion by Al substitution induces a high average oxidation state of Mn ion in the LiAl xMn 2- xO 4 material. The electrochemical behavior of all samples was studied in Li/LiPF 6-EC/DMC (1:2 by volume)/LiAl xMn 2- xO 4 cells. Especially, the initial and last discharge capacity of LiAl 0.09Mn 1.97O 4 using LiOH, Mn 3O 4 and Al(OH) 3 complex were 128.7 and 115.5 mAh/g after 100 cycles. The Al substitution in LiMn 2O 4 was an excellent method of enhancing the cycleability of stoichiometric spinel during electrochemical cycling.

  2. Oxygen chemical diffusion in hypo-stoichiometric MOX

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Morimoto, Kyoichi; Tamura, Tetsuya; Sunaoshi, Takeo; Konashi, Kenji; Aono, Shigenori; Kashimura, Motoaki

    2009-06-01

    Kinetics of the oxygen-to-metal ratio change in (U 0.8Pu 0.2)O 2-x and (U 0.7Pu 0.3)O 2-x was evaluated in the temperature range of 1523-1623 K using a thermo-gravimetric technique. The oxygen chemical diffusion coefficients were decided as a function of temperature from the kinetics of the reduction process under a hypo-stoichiometric composition. The diffusion coefficient of (U 0.7Pu 0.3)O 2-x was smaller than that of (U 0.8Pu 0.2)O 2-x. No strong dependence was observed for the diffusion coefficient on the O/M variation of samples.

  3. Optical properties of Nd3+ doped barium lithium fluoroborate glasses for near-infrared (NIR) emission

    NASA Astrophysics Data System (ADS)

    Mariselvam, K.; Arun Kumar, R.; Suresh, K.

    2018-04-01

    The neodymium doped barium lithium fluoroborate (Nd3+: BLFB) glasses with the chemical composition (70-x) H3BO3 - 10 Li2CO3 - 10 BaCO3- 5 CaF2-5 ZnO - x Nd2O3 (where x = 0.05, 0.1, 0.25, 0.5, 1, 2 in wt %) have been prepared by the conventional melt quenching technique and characterised through optical absorption, near infrared emission and decay-time measurements. The x-ray diffraction studies confirm the amorphous nature of the prepared glasses. The optical absorption spectra and emission spectra were recorded in the wavelength ranges of 190-1100 nm. The optical band gap (Eg) and Urbach energy (ΔE) values were calculated from the absorption spectra. The Judd-Ofelt intensity parameters were determined from the systematic analysis of the absorption spectrum of neodymium ions in the prepared glasses. The emission spectra exhibited three prominent peaks at 874, 1057, 1331 nm corresponding to the 4F3/2 → 4I9/2, 11/2, 13/2 transitions levels respectively in the near infrared region. The emission intensity of the 4F3/2 → 4I11/2 transition increases with the increase in neodymium concentration up to 0.5 wt% and the concentration quenching mechanism was observed for 1 wt% and 2 wt% concentrations. The lifetime of the 4F3/2 level was found to decrease with increasing Nd3+ ion concentration. The nature of energy transfer process was a single exponential curve which was studied for all the glasses and analysed.

  4. Ferromagnetic resonance in non-stoichiometric Ni 1- x- yMn xGa y

    NASA Astrophysics Data System (ADS)

    Shanina, B. D.; Konchits, A. A.; Kolesnik, S. P.; Gavriljuk, V. G.; Glavatskij, I. N.; Glavatska, N. I.; Söderberg, O.; Lindroos, V. K.; Foct, J.

    2001-12-01

    Non-stoichiometric alloys Ni 1- x- yMn xGa y characterised by different values of MSME (from 0.2% to 7.3%) were studied using ferromagnetic resonance (FMR). The angular dependence of the FMR signals was measured in the martensitic and austenitic states of the samples just before and after martensite-austenite transition. Experimental data were used for the determination of the magnetisation 4 πMs and anisotropy parameters K1, K2 for the martensitic state and K1c for the austenitic state. All studied alloys were characterised by large values of the anisotropy parameters of the first and second orders. A special feature of the alloys possessing high MSME is a larger value of the coefficient K2. The temperature dependence of the FMR signals was investigated in the temperature range from below Ms to above TC, where FMR was replaced by conduction electron spin resonance (CESR). Magnetically induced strain in the martensitic phase was measured as a function of the applied magnetic field. The main difference between the alloys in the martensitic state revealing the large or small MSM strain is the behaviour of the electronic structure. In the alloys with the small MSM strain, all the electrons are involved in the ferromagnetic system. On the contrary, in the alloy with the large MSM strain, the narrow resonance line of one electron subsystem is present separately in the FMR spectra. An intensive signal of CESR is observed in the alloys with the large MSME, which is an evidence for a high concentration of free electrons. The suggestion made is that the high concentration of free electrons, i.e. enhanced metallic character of interatomic bonds, assists MSME.

  5. Raman analysis of non stoichiometric Ni1-δO

    NASA Astrophysics Data System (ADS)

    Dubey, Paras; Choudhary, K. K.; Kaurav, Netram

    2018-04-01

    Thermal decomposition method was used to synthesize non-stoichiometric nickel oxide at different sintering temperatures upto 1100 °C. The structure of synthesized compounds were analyzed by X ray diffraction analysis (XRD) and magnetic ordering was studied with the help of Raman scattering spectroscopy for the samples sintered at different temperature. It was found that due to change in sintering temperature the stoichiometry of the sample changes and hence intensity of two magnon band changes. These results were interpreted as the decomposition temperature increases, which heals the defects present in the non-stoichiometric nickel oxide and antiferromagnetic spin correlation changes accordingly.

  6. Electrolyte Structure near Electrode Interfaces in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Ong, Mitchell; Verners, Osvalds; van Duin, Adri; Draeger, Erik; Pask, John

    2014-03-01

    The performance of lithium-ion secondary batteries (LIBs) is strongly tied to electrochemistry and ionic transport near the electrode-electrolyte interface. Changes in ion solvation near the interface affect ion conductivity and also are associated with the formation and evolution of solid-electrolyte interphase (SEI) layers, which impede transport but also passivate the interface. Thus, understanding these effects is critical to optimizing battery performance. Here we present molecular dynamics (MD) simulations of typical organic liquid LIB electrolytes in contact with graphite electrodes to understand differences in molecular structure and solvation near the interface compared to the bulk electrolyte. Results for different graphite terminations are presented. We compare the results of density-functional based MD to the empirical reactive forcefield ReaxFF and the non-reactive, non-polarizable COMPASS forcefield. Notable differences in the predictive power of each of these techniques are discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Venugopal, Ganesh

    Lithium-ion (Li-ion) cells that are subjected to electrical abuse, overcharge and external short-circuit in particular, exhibit a rapid increase in cell temperature that could potentially lead to catastrophic disassembly of the cell. For this reason these cells are integrated or combined with one or more safety components that are designed to restrict or even prevent current flow through the cell under abusive conditions. In this work, the characteristics of these components in several prismatic Li-ion cells are studied by monitoring the impedance ( Z) at 1 kHz and the open circuit voltage (OCV) of the discharged cells as a function of temperature. All the cells studied were found to use polyethylene-based shutdown (SD) separators that were irreversibly activated within a narrow temperature range between 130 and 135°C. In some cells irreversible cut-off was also provided by a current interrupt device (CID) or a thermal fuse. Both these devices had a circuit-breaker effect, causing the impedance of the cell to rise infinitely and the OCV to drop to zero. In addition to these irreversible cut-off mechanisms, some cells also contained internal or external positive-temperature-coefficient (PTC) devices that could provide current-limiting capability over a very wide temperature range. The interdependence of the thermal behavior of these components on each other and on other thermally dependant processes like cell venting, separator meltdown and weld joint failure are also discussed.

  8. Solid-state lithium battery

    DOEpatents

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  9. Effect of Flame Stabilizer Design on Performance and Exhaust Pollutants of a Two-Row Swirl-Can Combustor Operated to Near-Stoichiometric Conditions

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Trout, Arthur M.

    1977-01-01

    Emissions and performance characteristics were determined for two full annulus modular combustors operated to near stoichiometric fuel air ratios. The tests were conducted to obtain stoichiometric data at inlet air temperatures from 756 to 894 K and to determine the effects of a flat plate circular flame stabilizer with upstream fuel injection and a contraswirl flame stabilizer with downstream fuel injection. Levels of unburned hydrocarbons were below 0.50 gram per kilogram of fuel for both combustors and thus there was no detectable difference in the two methods of fuel injection. The contraswirl flame stabilizer did not produce the level of mixing obtained with a flat plate circular flame stabilizer. It did produce higher levels of oxides of nitrogen, which peaked at a fuel air ratio of 0.037. For the flat plate circular flame stabilizer, oxides of nitrogen emission levels were still increasing with fuel air ratio to the maximum tested value of 0.045.

  10. Understanding the Origins of Higher Capacities at Faster Rates in Lithium-Excess Li xNi 2–4x/3Sb x/3O 2

    DOE PAGES

    Twu, Nancy; Metzger, Michael; Balasubramanian, Mahalingam; ...

    2017-02-08

    Here, the lithium-excess Li xNi 2-4x/3Sb x/3O 2 (LNSO) materials were previously shown to demonstrate higher capacities and improved cyclability with increasing lithium content. While the performance trend is promising, observed capacities are much lower than theoretical capacities, pointing to a need for further understanding of active redox processes in these materials. In this work, we study the electrochemical behavior of the LNSO materials as a function of lithium content and at slow and fast rates. Surprisingly, Li 1.15Ni 0.47Sb 0.38O 2 (LNSO-15) exhibits higher discharge capacities at faster rates and traverses distinct voltage curves at slow and fast rates.more » To understand these two peculiarities, we characterize the redox activity of nickel, antimony, and oxygen at different rates. While experiments confirm some nickel redox activity and oxygen loss, these two mechanisms cannot account for all observed capacity. We propose that the balance of the observed capacity may be due reversible oxygen redox and that the rate-dependent voltage curve features may derive from irreversible nickel migration occurring on slow charge. As future high energy density cathodes are likely to contain both lithium excess and high nickel content, both of these findings have important implications for the development of novel high capacity cathode materials.« less

  11. Optical birefringence imaging of x-ray excited lithium tantalate

    DOE PAGES

    Durbin, S. M.; Landcastle, A.; DiChiara, A.; ...

    2017-08-04

    X-ray absorption in lithium tantalate induces large, long-lived (~10 -5 s) optical birefringence, visualized via scanning optical polarimetry, likely arising from electrooptic coupling to x-ray induced electric fields. Similar birefringence measured from glass, sapphire, and quartz was two orders of magnitude weaker. This suggests that x-ray excited charges preferentially create ordered, aligned dipoles within the noncentrosymmetric unit cell of ferroelectric LiTaO 3, enhancing the electric field compared to more isotropic charge distributions in the other materials. In conclusion, time-resolved measurements show a prompt response on a picosecond time scale, which along with the long decay time suggest novel approaches tomore » optical detection of x-rays using ferroelectric materials.« less

  12. Mechanochemical synthesis of high thermoelectric performance bulk Cu 2X (X = S, Se) materials

    DOE PAGES

    Yang, Dongwang; Su, Xianli; Yan, Yonggao; ...

    2016-11-01

    We devised a single-step mechanochemical synthesis/densification procedure for Cu 2X (X = S, Se) thermoelectric materials via applying a pressure of 3 GPa to a stoichiometric admixture of elemental Cu and X for 3 min at room temperature. The obtained bulk materials were single-phase, nearly stoichiometric structures with a relative packing density of 97% or higher. The structures contained high concentration of atomic scale defects and pores of 20-200 nm diameter. The above attributes gave rise to a high thermoelectric performance: at 873 K, the ZT value of Cu2S reached 1.07, about 2.1 times the value typical of samples grownmore » from the melt. The ZT value of Cu 2Se samples reached in excess of 1.2, close to the state-of-the-art value.« less

  13. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, R.; Canik, J. M.; Bell, R. E.

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10-30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which ismore » optimized for a boundary shape similar to the one in this experiment.« less

  14. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    DOE PAGES

    Maingi, R.; Canik, J. M.; Bell, R. E.; ...

    2016-07-19

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10-30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which ismore » optimized for a boundary shape similar to the one in this experiment.« less

  15. Lithium in 2012

    USGS Publications Warehouse

    Jaskula, B.W.

    2013-01-01

    In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.

  16. Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover

    DOE PAGES

    Li, Wangda; Kim, Un-Hyuck; Dolocan, Andrei; ...

    2017-05-14

    The formation of metallic lithium microstructures in the form of dendrites or mosses at the surface of anode electrodes (e.g., lithium metal, graphite, and silicon) leads to rapid capacity fade and poses grave safety risks in rechargeable lithium batteries. In this work, we present here a direct, relative quantitative analysis of lithium deposition on graphite anodes in pouch cells under normal operating conditions, paired with a model cathode material, the layered nickel-rich oxide LiNi 0.61Co 0.12Mn 0.27O 2, over the course of 3000 charge-discharge cycles. Secondary-ion mass spectrometry chemically dissects the solid-electrolyte interphase (SEI) on extensively cycled graphite with virtuallymore » atomic depth resolution and reveals substantial growth of Li-metal deposits. With the absence of apparent kinetic (e.g., fast charging) or stoichiometric restraints (e.g., overcharge) during cycling, we show lithium deposition on graphite is triggered by certain transition-metal ions (manganese in particular) dissolved from the cathode in a disrupted SEI. This insidious effect is found to initiate at a very early stage of cell operation (<200 cycles) and can be effectively inhibited by substituting a small amount of aluminum (~1 mol %) in the cathode, resulting in much reduced transition-metal dissolution and drastically improved cyclability. In conclusion, our results may also be applicable to studying the unstable electrodeposition of lithium on other substrates, including Li metal.« less

  17. Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wangda; Kim, Un-Hyuck; Dolocan, Andrei

    The formation of metallic lithium microstructures in the form of dendrites or mosses at the surface of anode electrodes (e.g., lithium metal, graphite, and silicon) leads to rapid capacity fade and poses grave safety risks in rechargeable lithium batteries. In this work, we present here a direct, relative quantitative analysis of lithium deposition on graphite anodes in pouch cells under normal operating conditions, paired with a model cathode material, the layered nickel-rich oxide LiNi 0.61Co 0.12Mn 0.27O 2, over the course of 3000 charge-discharge cycles. Secondary-ion mass spectrometry chemically dissects the solid-electrolyte interphase (SEI) on extensively cycled graphite with virtuallymore » atomic depth resolution and reveals substantial growth of Li-metal deposits. With the absence of apparent kinetic (e.g., fast charging) or stoichiometric restraints (e.g., overcharge) during cycling, we show lithium deposition on graphite is triggered by certain transition-metal ions (manganese in particular) dissolved from the cathode in a disrupted SEI. This insidious effect is found to initiate at a very early stage of cell operation (<200 cycles) and can be effectively inhibited by substituting a small amount of aluminum (~1 mol %) in the cathode, resulting in much reduced transition-metal dissolution and drastically improved cyclability. In conclusion, our results may also be applicable to studying the unstable electrodeposition of lithium on other substrates, including Li metal.« less

  18. Flash sintering of stoichiometric and hyper-stoichiometric urania

    DOE PAGES

    Valdez, James Anthony; Byler, Darrin David; Kardoulaki, Erofili; ...

    2018-03-29

    Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO 2) pellets. Stoichiometric (UO 2.00) and hyper-stoichiometric (UO 2.16) pellets were flash sintered at 600 °C within a few (2–3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (T H) for both conditions shows that in the case of flash sintering at 600 °C, T H =more » 0.3 versus T H = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO 2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 184 s at a field of 188 V/cm and a current density of 442 mA/mm 2. For the UO 2.16 pellet, the highest achieved density was 92% TD when flash sintered at 600 °C for 140 s at a field of 188 V/cm and a current density of 632 mA/mm 2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. Lastly, in all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.« less

  19. Flash sintering of stoichiometric and hyper-stoichiometric urania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, James Anthony; Byler, Darrin David; Kardoulaki, Erofili

    Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO 2) pellets. Stoichiometric (UO 2.00) and hyper-stoichiometric (UO 2.16) pellets were flash sintered at 600 °C within a few (2–3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (T H) for both conditions shows that in the case of flash sintering at 600 °C, T H =more » 0.3 versus T H = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO 2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 184 s at a field of 188 V/cm and a current density of 442 mA/mm 2. For the UO 2.16 pellet, the highest achieved density was 92% TD when flash sintered at 600 °C for 140 s at a field of 188 V/cm and a current density of 632 mA/mm 2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. Lastly, in all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.« less

  20. Flash sintering of stoichiometric and hyper-stoichiometric urania

    NASA Astrophysics Data System (ADS)

    Valdez, J. A.; Byler, D. D.; Kardoulaki, E.; Francis, J. S. C.; McClellan, K. J.

    2018-07-01

    Flash sintering (FS), a novel fabrication technique belonging to the family of field assisted sintering (FAS) techniques, has been utilized in this study to fabricate uranium dioxide (UO2) pellets. Stoichiometric (UO2.00) and hyper-stoichiometric (UO2.16) pellets were flash sintered at 600 °C within a few (2-3) minutes. This is in sharp contrast to conventional sintering where temperatures hundreds of degrees higher are necessary and the sintering time extends to hours. Relating this in terms of the homologous temperature ratio (TH) for both conditions shows that in the case of flash sintering at 600 °C, TH = 0.3 versus TH = 0.6 for conventional sintering at 1600 °C. The highest density achieved for a UO2.00 pellet was 81% theoretical density (TD) when flash sintered at 600 °C for 185 s at a field of 188 V/cm and a current density of 442 mA/mm2. For the UO2.16 pellet, the highest achieved density was 91% TD when flash sintered at 600 °C for 123 s at a field of 188 V/cm and a current density of 632 mA/mm2. X-ray diffraction (XRD) characterization of the sintered pellets showed the final sintered material to be single cubic fluorite phase. Scanning electron microscopy (SEM) of longitudinal sections revealed non-uniform microstructures with regions of high density where the grain size ranged from 1 to 15 μm. Comparisons between conventionally and flash sintered pellets that achieved equivalent shrinkage strains were also conducted. In all cases, the flash sintered pellets achieved similar densification to the conventionally sintered pellets at much lower furnace temperatures and shorter times.

  1. Conversion of broadband thermal radiation in lithium niobate crystals of various compositions

    NASA Astrophysics Data System (ADS)

    Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.

    2013-05-01

    The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.

  2. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    PubMed

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  3. Dy3TaO7, A stoichiometric spin glass and the effect of disorder via chemical substitution in the Dy3-xYxTaO7 (0 ≤ x ≤ 3) solid solution

    NASA Astrophysics Data System (ADS)

    Gómez-García, J. Francisco; Bucio, Lauro; Tavizon, Gustavo

    2018-01-01

    In this work, we present both structural and magnetic (DC magnetization and AC susceptibility) studies of the Dy3-xYxTaO7 solid solution. The structural characterization of samples was performed by Rietveld refinements of the X-ray diffraction data. All compounds crystallized in a weberite-related structure in the orthorhombic C2221 space group (No. 20); the variations of the lattice parameters obey the Vegard´s law in the whole range of composition. DC magnetic measurements of the Dy3-xYxTaO7 system showed a Curie-Weiss paramagnetic behaviour, with antiferromagnetic interactions at T>150 K. Below 3 K a spin glass behaviour in the 0 ≤ x ≤ 1 range of the solid solution was observed. The stoichiometric Dy3TaO7 compound showed spin glass behaviour although there is no evidence of structural disorder. For some Y3+ doped compounds (x = 0.33, 0.66 and 1.0), chemical disorder reduced the freezing temperature (Tg) values with a ×1/3 dependence. Cole-Cole analysis of the AC magnetic field response showed similar phenomenological parameters for the stoichiometric (x = 0) and the Y3+ doped compounds with spin glassiness, suggesting an analogous mechanism for these compounds. For the Dy3-xYxTaO7 system, in which the spin glass behaviour seems to exhibit a critical concentration, a magnetic phase diagram is proposed.

  4. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms.

    PubMed

    Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S

    2012-08-01

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  5. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries

    DOE PAGES

    Jia, Lei; Wu, Tianpin; Lu, Jun; ...

    2016-10-18

    Copper powder was introduced into the lithium sulfur battery system to capture intermediate polysulfides and Cu xS (x = 1 or 2) species was generated depending on the chain length of polysulfides. This phenomenon was verified by X-ray absorption near edge structure technique. The results indicated that copper can be oxidized to CuS by Li 2S x (x ≥ 6), and a mixture of Cu 2S and CuS was obtained when x ranges from 3 to 6. While Cu 2S is eventually formed in the presence of Li 2S 3. After several cycles activation, the polysulfide-shuttle effect and self-discharge phenomenonmore » which hinder the application of lithium sulfur batteries are found nearly eliminated Further experiments demonstrated that in the case of Cu 2S generation, a high specific sulfur capacity of 1300 mAh g –1 could be delivered, corresponding to 77.6% sulfur utilization, while the Coulombic efficiency approximates around 100%. As a result, self-discharge experiment further demonstrated that polysulfides almost disappear in the electrolyte, which verified the polysulfide-capture capability of copper.« less

  6. X-Z-Theta cutting method

    DOEpatents

    Bieg, Lothar F.

    1993-01-12

    A method for machining a workpiece. The method includes the use of a rotary cutting tool mounted on the end of a movable arm. The arm is adapted to move in a plane perpendicular to the axis of rotation of the cutting tool. The cutting tool has cutting teeth to cut chips of material off of the workpiece in a predetermined size and shape to facilitate better removal of the chips from the workpiece. The teeth can be of different type and length to permit the tool to both rough cut and finish cut the workpiece during machining. The total depth of cut is divided by the number of tool teeth, so that the longest tool always performs the finishing cut.

  7. Nodeless multiband superconductivity in stoichiometric single-crystalline CaKFe 4 As 4

    DOE PAGES

    Cho, Kyuil; Fente, A.; Teknowijoyo, S.; ...

    2017-03-08

    Measurements of the London penetration depth Δλ(T) and tunneling conductance in single crystals of the recently discovered stoichiometric iron-based superconductor CaKFe 4As 4 (CaK1144) show nodeless, two-effective-gap superconductivity with a larger gap of about 6–10 meV and a smaller gap of about 1–4 meV. Having a critical temperature T c,onset ≈ 35.8 K, this material behaves similar to slightly overdoped (Ba 1–xK x)Fe 2As 2 (e.g., x = 0.54,T c ≈ 34 K), a known multigap s ± superconductor. Here, we conclude that the superconducting behavior of stoichiometric CaK1144 demonstrates that two-gap s± superconductivity is an essential property of high-temperaturemore » superconductivity in iron-based superconductors, independent of the degree of substitutional disorder.« less

  8. Fragility and super-strong character of non-stoichiometric chalcogenides: implications on melt homogenization

    NASA Astrophysics Data System (ADS)

    Ravindren, Sriram; Gunasekera, Kapila; Boolchand, Punit; Micoulaut, Matthieu

    2014-03-01

    The kinetics of homogenization of binary AsxSe100-x melts in the As concentration range 0% <x <50% are followed using Raman profiling, and show that 2 gm sized melts in the range 20% <x <30% take nearly two weeks to homogenize when the starting materials are reacted at 700°C. The enthalpy of relaxation at Tg - Δ Hnr(x) - shows a minimum in 27% <x <37% in aged samples. In such homogeneous glasses, molar volumes vary non-monotonically with composition and the fragility index m displays a broad global minimum in 20% <x <40% where m <20. The super-strong nature of melt compositions in 20% <x <30% hinders melt diffusion at high temperatures, leading to the observed slow kinetics of melt homogenization. In comparing these results with earlier reports, there is evidence that fragility decreases as melts are homogenized. Furthermore, a clear scaling of m vs. Tg is observed with a negative slope for Flexible glasses and a positive slope for Rigid and Stressed-rigid ones. The absence of a melting endotherm in non-stoichiometric As-Se compositions is reported. Fragilities of the Ge-As-Se are reported and a correlation observed with fragilities of As-Se and Ge-Se. Supported by NSF grant DMR 08-53957.

  9. Characterization of stoichiometric nanocrystalline spinel ferrites dispersed on porous silica aerogel.

    PubMed

    Casula, M F; Concas, G; Congiu, F; Corrias, A; Loche, D; Marras, C; Spano, G

    2011-11-01

    Stoichiometric magnetic nanosized ferrites MFe2O4 (M = Mn, Co, Ni) were prepared in form of nearly spherical nanocrystals supported on a highly porous silica aerogel matrix, by a sol-gel procedure. X-ray diffraction and transmission electron microscopy indicate that these materials are made out of non-agglomerated ferrite nanocrystals having size in the 5-10 nm range. Investigation by Mössbauer Spectroscopy was used to gain insights on the superparamagnetic relaxation and on the inversion degree. Magnetic ordering at room temperature varies from superparamagnetic in the NiFe2O4 sample, highly blocked (approximately 70%) in the MnFe2O4 sample and nearly fully blocked in the CoFe2O4 sample. A fitting procedure of the Mössbauer data has been used in order to resolve the spectrum into the tetrahedral and octahedral components; in this way, an inversion degree of 0.68 (very close to bulk values) was obtained for 6 nm silica-supported CoFe2O4 nanocrystals.

  10. Effect of Gallium Substitution on Lithium-Ion Conductivity and Phase Evolution in Sputtered Li7-3 xGa xLa3Zr2O12 Thin Films.

    PubMed

    Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S

    2018-04-25

    Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.

  11. Assessment of off-stoichiometric Zr33-xFe52+xSi15 C14 Laves phase compounds as permanent magnet materials

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Hadjipanayis, G. C.

    2018-05-01

    Recently, Fe-based rare-earth-free compounds with non-cubic crystal structures were proposed as a base for permanent magnets which would not rely on critical elements. In this work, two series of alloys, Zr27Fe73-wSiw (0 ≤ w ≤ 15) and Zr33-xFe52+xSi15 (0 ≤ x ≤ 11), were prepared and characterized after annealing at 1538 K in order to determine the fundamental magnetic properties of the C36 and C14 hexagonal Laves phase compounds. A mixture of the cubic C15 and Zr6Fe23 structures was observed instead of the expected C36 structure. The hexagonal C14 was found in all Zr33-xFe52+xSi15 alloys with its lattice parameters linearly decreasing as the Fe(Si) atoms occupy the Zr sites in the Laves phase crystal structure. The solubility limit of Fe in the C14 structure at 1538 K corresponds to x = 9.5. The Curie temperature of the C14 compounds increases with deviation from the Laves phase stoichiometry from 290 K to 530 K. The room-temperature spontaneous magnetization also increases reaching, after correcting for the non-magnetic impurities, a value of 6.7 kG. The magnetocrystalline anisotropy of the off-stoichiometric C14 Laves phase was found to be uniaxial with the easy magnetization direction parallel to the hexagonal axis. Unfortunately, the anisotropy field, which does not exceed 10 kOe, is not sufficiently high to make the compounds interesting as permanent magnet materials.

  12. Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi2Te2S

    NASA Astrophysics Data System (ADS)

    Annese, E.; Okuda, T.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I. P.; Eremeev, S. V.; Kokh, K. A.; Golyashov, V. A.; Tereshchenko, O. E.; Chulkov, E. V.; Kimura, A.

    2018-05-01

    We have grown the phase-homogeneous ternary compound with composition Bi2Te1.85S1.15 very close to the stoichiometric Bi2Te2S . The measurements performed with spin- and angle-resolved photoelectron spectroscopy as well as density functional theory and G W calculations revealed a wide-band-gap three-dimensional topological insulator phase. The surface electronic spectrum is characterized by the topological surface state (TSS) with Dirac point located above the valence band and Fermi level lying in the band gap. TSS band dispersion and constant energy contour manifest a weak warping effect near the Fermi level along with in-plane and out-of-plane spin polarization along the Γ ¯-K ¯ line. We identified four additional states at deeper binding energies with high in-plane spin polarization.

  13. One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays

    NASA Astrophysics Data System (ADS)

    Eckert, Sebastian; da Cruz, Vinícius Vaz; Gel'mukhanov, Faris; Ertan, Emelie; Ignatova, Nina; Polyutov, Sergey; Couto, Rafael C.; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Odelius, Michael; Föhlisch, Alexander

    2018-05-01

    The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.

  14. Synthesis and Performance of LiFe1-xMnxPO4 in Lithium-ion Battery

    NASA Astrophysics Data System (ADS)

    Bazzi, Khadije; Nazri, Maryam; Vaishnava, Prem; Naik, Vaman; Nazri, Gholam-Abbas; Naik, Ratna

    2013-03-01

    Olivine-type lithium transition metal phosphates (i.e. LiFePO4) have been intensively investigated as promising electrode materials for rechargeable lithium-ion batteries. There have been attempts to improve energy density and voltage quality of phosphate based electrode. In this study, we have partially substituted FeII/FeIII redox center with MnII/MnIII in LiFePO4 that provides over 600 mV higher voltage. We prepared various compositions of LiFe1-xMnxPO4 (x =0, 0.2, 0.4, 0.6, 0.8 and 1) between the two end members (LiFePO4 - LiMnPO4) . Due to intrinsic low electronic conductivity of lithium transition metal phosphates, we coat these materials with a uniform conductive carbon through a unique sol-gel process developed in our laboratory. In addition, we made a composite of the carbon coated phosphate with carbon nano-tubes to develop a highly conductive matrix electrode. We report the materials structure, morphology, electrical conductivity and electrochemical performances of LiFe1-xMnxPO4 using XRD, Raman spectroscopy, SEM, TEM, XPS, electrical conductivity and galvanostatic charge/discharge measurements.

  15. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} andmore » Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3

  16. Fabrication and Performance of a Lithium X-Ray Lens

    NASA Astrophysics Data System (ADS)

    Young, Kristina; Khounsary, Ali; Jansen, Andrew N.; Dufresne, Eric M.; Nash, Philip

    2007-01-01

    Compound refractive lenses (CRLs) are arrays of concave lenses whose simple design and ease in implementation and alignment make them an attractive optic to focus x-rays. Factors considered in designing CRLs include lens material, fabrication, and assembly. Lithium is a desirable material because it provides the largest index of refraction decrement per unit absorption length of any solid elements. Lithium is a difficult material to handle and fabricate because it is rather malleable and more importantly, it reacts with moisture, and to a lesser extent, with oxygen and nitrogen in air. It also tends to adhere to molds and dies. We report on the fabrication and performance of a parabolic lithium lens consisting of 32 lenslets. Lenslets are fabricated in a precision press using an indenter with a parabolic profile and a 100 μm tip radius. The indenter is made of stainless steel and is figured using a computer numerically controlled (CNC) machine. The lens is designed to have a 1.7 m focal length at 10 keV energy. In an experiment conducted at the Advanced Photon Source (APS), a 0.5 mm × 0.5 mm monochromatic undulator beam strikes the lens. A focal length of 1.71, a focal spot size of 24 μm × 34 μm, and a peak intensity gain of over 18 are obtained.

  17. Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong

    2016-01-01

    Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.

  18. Lithium anode for lithium-air secondary batteries

    NASA Astrophysics Data System (ADS)

    Imanishi, Nobuyuki; Hasegawa, Satoshi; Zhang, Tao; Hirano, Atushi; Takeda, Yasuo; Yamamoto, Osamu

    The lithium ion conducting solid lithium phosphorous nitride (LiPON) has been sputtered on the water-stable NASICON-type lithium ion conducting solid electrolyte Li 1+ x+ yAl xTi 2- xP 3- ySi yO 12 (LATP). The stability and the interface resistance of the Li-Al/LiPON/LATP/LiPON/Li-Al cell have been examined. It is shown that the LiPON film protects LATP from reacting with the Li-Al alloy. The impedance of the Li-Al/LiPON/LATP/LiPON/Li-Al cell has been measured in the temperature range 25-80 °C. The total cell resistance is about 8600 Ω cm 2 at room temperature and 360 Ω cm 2 at 80 °C. The analysis of the impedance profiles suggests that the Li-Al/LiPON interface resistance is dominant at lower temperatures. The LATP plate immersed in water for 1 month shows only a slight degradation in the conductivity.

  19. Non-stoichiometric mixed-phase titania photocatalyst

    DOEpatents

    Chen, Le [Lakewood, CO; Gray, Kimberly A [Evanston, IL; Graham, Michael E [Evanston, IL

    2012-06-19

    A mixed anatase-rutile phase, non-stoichiometric titania photocatalyst material is a highly reactive and is a UV and visible light responsive photocastalyst in the as-deposited condition (i.e. without the need for a subsequent thermal treatment). The mixed phase, non-stoichiometric titania thin film material is non-stoichiometric in terms of its oxygen content such that the thin film material shows a marked red-shift in photoresponse.

  20. Comprehensive analysis of structure and temperature, frequency and concentration-dependent dielectric properties of lithium-substituted cobalt ferrites (Li x Co1- x Fe2O4)

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Nisa, Mehru; Sabah, Aneeqa; Rafique, M. S.; Zia, Rehana

    2017-08-01

    This paper has been dedicated to the synthesis and characterization of a series of lithium-substituted cobalt ferrites Li x Co1- x Fe2O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1). These samples have been prepared using simple ball milling machine through powder metallurgy route. The structural analysis is carried out using X-ray diffractometer and their 3D vitalization is simulated using diamond software. The frequency and temperature-dependent dielectric properties of prepared samples have been measured using inductor capacitor resistor (LCR) meter. The structural analysis confirms that all the prepared samples have inverse cubic spinel structure. It is also revealed that the crystallite size and lattice parameter decrease with the increasing concentration of lithium (Li+1) ions, it is due to the smaller ionic radii of lithium ions. The comprehensive analysis of frequency, concentration and temperature-dependent dielectric properties of prepared samples is described in this paper. It is observed that the dielectric constant and tangent loss have decreased and conductivity increased as the frequency increases. It is also revealed that the dielectric constant, tangent loss and AC conductivity increase as the concentration of lithium increases due to its lower electronegativity value. Temperature plays a vital role in enhancing the dielectric constant, tangent loss and AC conductivity because the mobility of ions increases as the temperature increases.

  1. Growing Cutting-edge X-ray Optics

    ScienceCinema

    Conley, Ray

    2018-03-02

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015.

  2. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.

    PubMed

    Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan

    2018-03-01

    The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.

  3. Off-stoichiometric defect clustering in irradiated oxides

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah; Allen, Todd; EL-Azab, Anter

    2017-04-01

    A cluster dynamics model describing the formation of vacancy and interstitial clusters in irradiated oxides has been developed. The model, which tracks the composition of the oxide matrix and the defect clusters, was applied to the early stage formation of voids and dislocation loops in UO2, and the effects of irradiation temperature and dose rate on the evolution of their densities and composition was investigated. The results show that Frenkel defects dominate the nucleation process in irradiated UO2. The results also show that oxygen vacancies drive vacancy clustering while the migration energy of uranium vacancies is a rate-limiting factor for the nucleation and growth of voids. In a stoichiometric UO2 under irradiation, off-stoichiometric vacancy clusters exist with a higher concentration of hyper-stoichiometric clusters. Similarly, off-stoichiometric interstitial clusters form with a higher concentration of hyper-stoichiometric clusters. The UO2 matrix was found to be hyper-stoichiometric due to the accumulation of uranium vacancies.

  4. Identification of New Cocrystal Systems with Stoichiometric Diversity of Salicylic Acid Using Thermal Methods.

    PubMed

    Zhou, Zhengzheng; Chan, Hok Man; Sung, Herman H-Y; Tong, Henry H Y; Zheng, Ying

    2016-04-01

    The purpose of this work was to develop thermal methods to identify cocrystal systems with stoichiometric diversity. Differential scanning calorimetry (DSC) and hot stage microscopy (HSM) have been applied to study the stoichiometric diversity phenomenon on cocrystal systems of the model compound salicylic acid (SA) with different coformers (CCFs). The DSC method was particularly useful in the identification of cocrystal re-crystallization, especially to improve the temperature resolution using a slower heating rate. HSM was implemented as a complementary protocol to confirm the DSC results. The crystal structures were elucidated by single-crystal X-ray diffraction (SXRD). Two new cocrystal systems consisting of salicylic acid-benzamide (SA-BZD, 1:1, 1:2) and salicylic acid-isonicotinamide (SA-ISN, 1:1, 2:1) have been identified in the present work. The chemical structures of the newly discovered cocrystals SA-BZD (1:2) and SA-ISN (2:1) have been elucidated using X-ray single crystal and powder diffraction methods. The developed thermal methods could rapidly identify cocrystal systems with stoichiometric diversity, with the potential to discover new pharmaceutical cocrystals in the future.

  5. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    DOE PAGES

    Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...

    2015-03-05

    In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO 2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO 2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO 2-x, oxygenmore » transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO 2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less

  6. Stimulated Raman scattering in an optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3.

    PubMed

    My, T-H; Robin, O; Mhibik, O; Drag, C; Bretenaker, F

    2009-03-30

    The evolution of the spectrum of a singly resonant optical parametric oscillator based on an MgO-doped periodically poled stoichiometric lithium tantalate crystal is observed when the pump power is varied. The onset of cascade Raman lasing due to stimulated Raman scattering in the nonlinear crystal is analyzed. Spurious frequency doubling and sum-frequency generation phenomena are observed and understood. A strong reduction of the intracavity Raman scattering is obtained by a careful adjustment of the cavity losses.

  7. Periodic disruptions induced by high repetition rate femtosecond pulses on magnesium-oxide-doped lithium niobate surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Shuanggen; Kan, Hongli; Zhai, Kaili; Ma, Xiurong; Luo, Yiming; Hu, Minglie; Wang, Qingyue

    2017-02-01

    In this paper, we demonstrate the periodic disruption formation on magnesium-oxide-doped lithium niobate surfaces by a femtosecond fiber laser system with wavelength and repetition rate of 1040 nm and 52 MHz, respectively. Three main experimental conditions, laser average power, scanning speed, and orientation of sample were systematically studied. In particular, the ablation morphologies of periodic disruptions under different crystal orientations were specifically researched. The result shows that such disruptions consisting of a bamboo-like inner structure appears periodically for focusing on the surface of X-, Y- and Z-cut wafers, which are formed by a rapid quenching of the material. Meanwhile, due to the anisotropic property, the bamboo-like inner structures consist of a cavity only arise from X- and Z-cut orientation.

  8. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shur, V. Ya., E-mail: vladimir.shur@usu.ru; Akhmatkhanov, A. R.; Baturin, I. S.

    2013-12-09

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation.

  9. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chezganov, D. S.; Lobov, A. I.; Baturin, I. S.; Smirnov, M. M.

    2013-12-01

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation.

  10. Characterization of laser-cut copper foil X-pinches

    NASA Astrophysics Data System (ADS)

    Collins, G. W.; Valenzuela, J. C.; Hansen, S. B.; Wei, M. S.; Reed, C. T.; Forsman, A. C.; Beg, F. N.

    2016-10-01

    Quantitative data analyses of laser-cut Cu foil X-pinch experiments on the 150 ns quarter-period, ˜250 kA GenASIS driver are presented. Three different foil designs are tested to determine the effects of initial structure on pinch outcome. Foil X-pinch data are also presented alongside the results from wire X-pinches with comparable mass. The X-ray flux and temporal profile of the emission from foil X-pinches differed significantly from that of wire X-pinches, with all emission from the foil X-pinches confined to a ˜3 ns period as opposed to the delayed, long-lasting electron beam emission common in wire X-pinches. Spectroscopic data show K-shell as well as significant L-shell emission from both foil and wire X-pinches. Fits to synthetic spectra using the SCRAM code suggest that pinching foil X's produced a ˜1 keV, ne ≥ 1023 cm-3 plasma. The spectral data combined with the improved reliability of the source timing, flux, and location indicate that foil X-pinches generate a reproducible, K-shell point-projection radiography source that can be easily modified and tailored to suit backlighting needs across a variety of applications.

  11. Deformation of products cut on AWJ x-y tables and its suppression

    NASA Astrophysics Data System (ADS)

    Hlaváč, L. M.; Hlaváčová, I. M.; Plančár, Š.; Krenický, T.; Geryk, V.

    2018-02-01

    The aim of this study is namely investigation of the abrasive water jet (AWJ) cutting of column pieces on commercial x-y cutting machines with AWJ. The shape deformation in curved and/or stepped parts of cutting trajectories caused by both the trailback (declination angle) and the taper (inclination of cut walls) can be calculated from submitted analytical model. Some of the results were compared with data measured on samples cut on two types of commercial tables. The main motivation of this investigation is determination of the percentage difference between predicted and real distortion of cutting product, i.e. accuracy of prepared analytical model. Subsequently, the possibility of reduction of the distortion can be studied through implementation of the theoretical model into the control systems of the cutting machines with the system for cutting head tilting. Despite some limitations of the used AWJ machines the comparison of calculated dimensions with the real ones shows very good correlation of model and experimental data lying within the range of measurement uncertainty. Results on special device demonstrated that the shape deformation in curved parts of the cutting trajectory can be substantially reduced through tilting of the cutting head.

  12. Lithium insertion in carbonaceous materials containing silicon

    NASA Astrophysics Data System (ADS)

    Wilson, Alfred Macdonald

    Three different series of silicon-containing carbonaceous materials were synthesized for use as anodes in lithium ion cells. Disordered (or pregraphitic) carbons containing nanodispersed silicon were prepared by the chemical vapour deposition (CVD) of various chlorosilanes (SiClsb4, (CHsb3)sb2Clsb2Si, and (CHsb3)sb3ClSi) with benzene in two different apparatuses. Silicon oxycarbide glasses were synthesized by the pyrolysis of over 50 silicon-containing polymers at various temperatures, although the principal materials in the study were prepared at 1000sp°C. Finally, materials which we believe to be similar to disordered carbons containing nanodispersed silicon were prepared by the pyrolysis of various blends of pitches with polysilanes. Powder X-ray diffraction was used to learn about the structure of all the materials made. Thermal gravimetric analysis was used to determine the silicon content in the CVD materials and, when coupled to a residual gas analyzer, to study the decomposition process of the polymers. Near edge X-ray absorption spectroscopy measurements of the silicon L- and K-edges of CVD materials and the silicon K-edges of silicon oxycarbides were used to learn about local chemical environments of the silicon atoms. Lithium metal electrochemical test cells of the silicon-containing CVD materials showed larger capacities (up to 500 mAh/g) than pure carbons prepared in the same way (˜300 mAh/g). The additional capacity was observed to be centered near 0.4 V on charge, the average voltage observed for the removal of lithium from a silicon-lithium alloy. Chemical analysis showed that the stoichiometries of materials made by polymer pyrolysis were distributed over a well-defined region in the Si-O-C Gibbs phase diagram. An interesting series of materials is found near the line in the Si-O-C Gibbs triangle connecting carbon to SiOsb{1.3}. Lithium metal electrochemical test cells made using all the silicon oxycarbides synthesized showed that a stoichiometry

  13. A Self-Healing Aqueous Lithium-Ion Battery.

    PubMed

    Zhao, Yang; Zhang, Ye; Sun, Hao; Dong, Xiaoli; Cao, Jingyu; Wang, Lie; Xu, Yifan; Ren, Jing; Hwang, Yunil; Son, In Hyuk; Huang, Xianliang; Wang, Yonggang; Peng, Huisheng

    2016-11-07

    Flexible lithium-ion batteries are critical for the next-generation electronics. However, during the practical application, they may break under deformations such as twisting and cutting, causing their failure to work or even serious safety problems. A new family of all-solid-state and flexible aqueous lithium ion batteries that can self-heal after breaking has been created by designing aligned carbon nanotube sheets loaded with LiMn 2 O 4 and LiTi 2 (PO 4 ) 3 nanoparticles on a self-healing polymer substrate as electrodes, and a new kind of lithium sulfate/sodium carboxymethylcellulose serves as both gel electrolyte and separator. The specific capacity, rate capability, and cycling performance can be well maintained after repeated cutting and self-healing. These self-healing batteries are demonstrated to be promising for wearable devices. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M [Naperville, IL; Johnson, Christopher S [Naperville, IL; Amine, Khalil [Downers Grove, IL; Kim, Jaekook [Naperville, IL

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0<x<1, and where M is one or more trivalent ion with at least one ion being Mn or Ni, and where M' is one or more tetravalent ion. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  15. Facile Synthesis of Rod-like Cu2-x Se and Insight into its Improved Lithium-Storage Property.

    PubMed

    Li, He; Jiang, Jiali; Wang, Feng; Huang, Jianxing; Wang, Yunhui; Zhang, Yiyong; Zhao, Jinbao

    2017-05-22

    A rod-like Cu 2-x Se is synthesized by a facile water evaporation process. The electrochemical reaction mechanism is investigated by ex situ X-ray diffraction (XRD). By adopting an ether-based electrolyte instead of a carbonate-based electrolyte, the electrochemical performance of Cu 2-x Se electrodes improved significantly. The Cu 2-x Se electrodes exhibit outstanding cycle performance: after 1000 cycles, 160 mA h g -1 can be maintained with a retention of 80.3 %. At current densities of 100, 200, 500, and 1000 mA g -1 , the capacity of a Cu 2-x Se/Li battery was 208, 202, 200, and 198 mA h g -1 , respectively, showing excellent rate capability. The 4-probe conductivity measurements along with electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV) tests illustrate that the Cu 2-x Se electrodes display high specific conductivity and impressive lithium-ion diffusion rate, which makes the Cu 2-x Se a promising anode material for lithium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    NASA Astrophysics Data System (ADS)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-01

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO2), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  17. Thin-film rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1994-11-01

    Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxynitride electrolyte, Li metal anode, and Li(1-x)Mn2O4 as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100 C or by enhancing the lithium ion transport rate in the cathode material.

  18. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M [Naperville, IL; Johnson, Christopher S [Naperville, IL; Amine, Khalil [Oakbrook, IL

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0<x<1, and where M is one or more ion with an average trivalent oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  19. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0<x<1, and where M is one or more ion with an average trivalent oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  20. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0<x<1, and where M is more than one ion with an average trivalent oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  1. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome.

    PubMed

    Berry-Kravis, Elizabeth; Sumis, Allison; Hervey, Crystal; Nelson, Michael; Porges, Stephen W; Weng, Ning; Weiler, Ivan Jeanne; Greenough, William T

    2008-08-01

    In fragile X syndrome (FXS), it is hypothesized that absence of the fragile X mental retardation protein (FMRP) disrupts regulation of group 1 metabotropic glutamate receptor (mGluR and mGluR5)-dependent translation in dendrites. Lithium reduces mGluR-activated translation and reverses phenotypes in the dfxr mutant fly and fmr1 knockout mouse. This pilot add-on trial was conducted to evaluate safety and efficacy of lithium in humans with FXS. Fifteen individuals with FXS, ages 6-23, received lithium titrated to levels of 0.8-1.2 mEq/L. The primary outcome measure, the Aberrant Behavior Checklist --Community Edition (ABC-C) Irritability Subscale, secondary outcome measures (other ABC-C subscales, clinical global improvement scale (CGI), visual analog scale for behavior (VAS), Vineland Adaptive Behavior Scale (VABS)), exploratory cognitive and psychophysiological measures and an extracellular signal-regulated kinase (ERK) activation assay were administered at baseline and 2 months of treatment. Side effects were quantified with a standardized checklist and lithium level, complete blood count (CBC), thyroid stimulating hormone (TSH), and chemistry screen were done at baseline, 2 weeks, 4 weeks and 2 months. The only significant treatment-related side effects were polyuria/polydipsia (n = 7) and elevated TSH (n = 4). Although the ABC-C Irritability Subscale showed only a trend toward improvement, there was significant improvement in the Total ABC-C score (p = 0.005), VAS (p = 0.003), CGI (p = 0.002), VABS Maladaptive Behavior Subscale (p = 0.007), and RBANS List Learning (p = 0.03) and an enhanced ERK activation rate (p = 0.007). Several exploratory tasks proved too difficult for lower-functioning FXS subjects. Results from this study are consistent with results in mouse and fly models of FXS, and suggest that lithium is well-tolerated and provides functional benefits in FXS, possibly by modifying the underlying neural defect. A placebo-controlled trial of lithium in

  2. Dynamics of Lithium Polymer Electrolytes using X-ray Photon Correlation Spectroscopy and Rheology

    NASA Astrophysics Data System (ADS)

    Oparaji, Onyekachi; Narayanan, Suresh; Sandy, Alec; Hallinan, Daniel, Jr.

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. Battery fade can be caused by structural evolution in the battery electrode and loss of electrode/electrolyte adhesion during cycling. Both of these effects are dependent on polymer mechanical properties. In addition, cycling rate is dictated by the ion mobility of the polymer electrolyte. Lithium ion mobility is expected to be strongly coupled to polymer dynamics. Therefore, we investigate polymer dynamics as a function of salt concentration using X-ray Photon Correlation Spectroscopy (XPCS) and rheology. We report the influence of lithium salt concentration on the structural relaxation time (XPCS) and stress relaxation time (rheology) of high molecular weight poly(styrene - ethylene oxide) block copolymer membranes.

  3. Interpreting the structural and electrochemical complexity of 0.5Li{sub 2}MnO{sub 3}{lg_bullet}.0.5LiMO{sub 2} electrodes for lithium batteries (M=Mn{sub 0.5-x}Ni{sub 0.5-x}Co{sub 2x}, 0{le}x{le}0.5).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S. H.; Kempgens, P.; Greenbaum, S.

    2007-01-01

    The structural and electrochemical features of layered 0.5Li{sub 2}MnO{sub 3} {center_dot} 0.5LiMO{sub 2} electrodes, in which M = Mn{sub 0.5-x}Ni{sub 0.5-x}Co{sub 2x} (0{le} x {le} 0.5), have been studied by powder X-ray diffraction, electrochemical differential-capacity measurements, {sup 7}Li magic-angle-spinning nuclear magnetic resonance, and X-ray absorption near-edge spectroscopy. Li{sub 2}MnO{sub 3}-like regions in the as-prepared samples were observed for all values of x, with transition-metal cation disorder between the LiMO{sub 2} and Li{sub 2}MnO{sub 3} components increasing with cobalt content (i.e., the value of x). The structural disorder and complexity of the electrochemical redox reactions increase when the Li{sub 2}MnO{sub 3}-likemore » regions within the electrode are activated to 4.6 V in lithium cells; interpretations of structural and electrochemical phenomena are provided.« less

  4. LiAl xCo 1- xO 2 as 4 V cathodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Haitao; Rao, G. V. Subba; Chowdari, B. V. R.

    Nominal LiAl xCo 1- xO 2 with x ranging from 0.1 to 0.3 was prepared by heating mixture of Al(OH) 3, Co 3O 4 and LiOH at 750°C in air. The effect of substitution of non-transition metal, Al, in LiCoO 2 is investigated as a 4 V cathode for lithium ion. X-ray diffraction (XRD) indicates formation of a single phase (R3¯m) within this range of substitution. When cycled between 4.5 and 2.5 V vs. Li/Li + at a current density of 1 mA cm -2, the LiAl 0.15Co 0.85O 2 cathode exhibits reversible capacity of 160 mA h g -1 initially. XRD of the cathode made at the end of 10 cycles reveals no significant change on host structure.

  5. Optical, electrical and elastic properties of ferroelectric domain walls in lithium niobate and lithium titanate

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon

    Ferroelectric LiNbO3 and LiTaO3 crystals have developed, over the last 50 years as key materials for integrated and nonlinear optics due to their large electro-optic and nonlinear optical coefficients and a broad transparency range from 0.4 mum-4.5 mum wavelengths. Applications include high speed optical modulation and switching in 40GHz range, second harmonic generation, optical parametric amplification, pulse compression and so on. Ferroelectric domain microengineering has led to electro-optic scanners, dynamic focusing lenses, total internal reflection switches, and quasi-phase matched (QPM) frequency doublers. Most of these applications have so far been on non-stoichiometric compositions of these crystals. Recent breakthroughs in crystal growth have however opened up an entirely new window of opportunity from both scientific and technological viewpoint. The growth of stoichiometric composition crystals has led to the discovery of many fascinating effects arising from the presence or absence of atomic defects, such as an order of magnitude changes in coercive fields, internal fields, domain backswitching and stabilization phenomenon. On the nanoscale, unexpected features such as the presence of wide regions of optical contrast and strain have been discovered at 180° domain walls. Such strong influence of small amounts of nonstoichiometric defects on material properties has led to new device applications, particularly those involving domain patterning and shaping such as QPM devices in thick bulk crystals and improved photorefractive damage compositions. The central focus of this dissertation is to explore the role of nonstoichiometry and its precise influence on macroscale and nanoscale properties in lithium niobate and tantalate. Macroscale properties are studied using a combination of in-situ and high-speed electro-optic imaging microscopy and electrical switching experiments. Local static and dynamic strain properties at individual domain walls is studied

  6. X-Ray Absorption Spectroscopy Studies of the Atomic Structure of Zirconium-Doped Lithium Silicate Glasses and Glass-Ceramics, Zirconium-Doped Lithium Borate Glasses, and Vitreous Rare-Earth Phosphates

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon

    In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.

  7. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubasov, I. V., E-mail: kubasov.ilya@gmail.com; Kislyuk, A. M.; Bykov, A. S.

    The bidomain structures produced by light external heating in z-cut lithium niobate and lithium tantalate single crystals are formed and studied. Interdomain regions about 200 and 40 μm wide in, respectively, LiNbO{sub 3} and LiTaO{sub 3} bidomain crystals are visualized and studied by optical microscopy and piezoresponse force microscopy. Extended chains and lines of domains in the form of thin layers with a width less than 10 μm in volume, which penetrate the interdomain region and spread over distances of up to 1 mm, are found.

  8. Catalytic activity in lithium-treated core–shell MoO x/MoS 2 nanowires

    DOE PAGES

    Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; ...

    2015-09-22

    Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoO x/MoS 2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H 2 evolution. The 1D nanowires exhibit significant improvement in H 2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS 2 layersmore » in the outer shell, leading to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less

  9. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction.

    PubMed

    Huang, Weicheng; Wang, Jinxin; Bian, Lang; Zhao, Chaoyue; Liu, Danqing; Guo, Chongshen; Yang, Bin; Cao, Wenwu

    2018-06-27

    A WO3-x/TiO2-x nanotube array (NTA) heterojunction photoanode was strategically designed to improve photoelectrocatalytic (PEC) performance by establishing a synergistic vacancy-induced self-doping effect and localized surface plasmon resonance (LSPR) effect of metalloid non-stoichiometric tungsten suboxide. The WO3-x/TiO2-x NTA heterojunction photoanode was synthesized through a successive process of anodic oxidation to form TiO2 nanotube arrays, magnetron sputtering to deposit metalloid WO3-x, and post-hydrogen reduction to engender oxygen vacancy in TiO2-x as well as crystallization. On the merits of such a synergistic effect, WO3-x/TiO2-x shows higher light-harvesting ability, stronger photocurrent response, and resultant improved photoelectrocatalytic performance than the contrast of WO3-x/TiO2, WO3/TiO2 and TiO2, confirming the importance of oxygen vacancies in improving PEC performance. Theoretical calculation based on density functional theory was applied to investigate the electronic structural features of samples and reveal how the oxygen vacancy determines the optical property. The carrier density tuning mechanism and charge transfer model were considered to be associated with the synergistic effect of self-doping and metalloid LSPR effect in the WO3-x/TiO2-x NTA.

  10. Pharmacological reversal of synaptic plasticity deficits in the mouse model of fragile X syndrome by group II mGluR antagonist or lithium treatment.

    PubMed

    Choi, Catherine H; Schoenfeld, Brian P; Bell, Aaron J; Hinchey, Paul; Kollaros, Maria; Gertner, Michael J; Woo, Newton H; Tranfaglia, Michael R; Bear, Mark F; Zukin, R Suzanne; McDonald, Thomas V; Jongens, Thomas A; McBride, Sean M J

    2011-03-22

    Fragile X syndrome is the leading single gene cause of intellectual disabilities. Treatment of a Drosophila model of Fragile X syndrome with metabotropic glutamate receptor (mGluR) antagonists or lithium rescues social and cognitive impairments. A hallmark feature of the Fragile X mouse model is enhanced mGluR-dependent long-term depression (LTD) at Schaffer collateral to CA1 pyramidal synapses of the hippocampus. Here we examine the effects of chronic treatment of Fragile X mice in vivo with lithium or a group II mGluR antagonist on mGluR-LTD at CA1 synapses. We find that long-term lithium treatment initiated during development (5-6 weeks of age) and continued throughout the lifetime of the Fragile X mice until 9-11 months of age restores normal mGluR-LTD. Additionally, chronic short-term treatment beginning in adult Fragile X mice (8 weeks of age) with either lithium or an mGluR antagonist is also able to restore normal mGluR-LTD. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of Fragile X syndrome is an important advance, in that this identifies and validates these targets as potential therapeutic interventions for the treatment of individuals afflicted with Fragile X syndrome. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Production of aluminum-lithium near net shape extruded cylinders

    NASA Technical Reports Server (NTRS)

    Hartley, Paula J.

    1995-01-01

    In the late 1980's, under funding from the Advanced Launch System Program, numerous near net shape technologies were investigated as a means for producing high quality, low cost Aluminum-Lithium (Al-Li) hardware. Once such option was to extrude near net shape barrel panels instead of producing panels by machining thick plate into a final tee-stiffened configuration (which produced up to 90% scrap). This method offers a reduction in the volume of scrap and consequently reduces the buy-to-fly cost. Investigation into this technology continued under Shuttle-C funding where four Al alloys 2219, 2195, 2096, and RX 818 were extruded. Presented herein are the results of that program. Each alloy was successfully extruded at Wyman Gordon, opened and flattened at Ticorm, and solution heat treated and stretched at Reynolds Metals Company. The first two processes were quite successful while the stretching process did offer some challenges. Due to the configuration of the panels and the stretch press set-up, it was difficult to induce a consistent percentage of cold work throughout the length and width of each panel. The effects of this variation will be assessed in the test program to be conducted at a future date.

  12. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    DOE PAGES

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less

  13. Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials

    NASA Astrophysics Data System (ADS)

    Braun, Artur; Wang, Hongxin; Shim, Joongpyo; Lee, Steven S.; Cairns, Elton J.

    The lithium(1s) K-edge X-ray absorption spectra of lithium-ion battery relevant materials (Li metal, Li 3N, LiPF 6, LiC 6, and LiMn 1.90Ni 0.10O 4) are presented. The Li and LiC 6 spectra are discussed and compared with literature data. The Li in lithium-intercalated carbon LiC 6, typically used as anode battery electrode material, could be clearly identified in the spectrum, and a presumed purely metallic character of the Li can be ruled out based on the chemical shift observed. The Li in corresponding cathode electrode materials, LiMn 1.90Ni 0.10O 4, could be detected with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, but the strong (self-) absorption of the spinel lattice provides an obstacle for quantitative analysis. Owing to its ionic bonding, the spectrum of the electrolyte salt LiPF 6 contains a sharp π-resonance at 61.8 eV, suggesting a distinct charge transfer between Li and the hexafluorophosphate anion. In addition, LiPF 6 resembles many spectral features of LiF, making it difficult to discriminate both from each other. Residual electrolyte on anodes or cathodes poses a problem for the spectroscopic analysis of the electrodes, because its Li spectrum overshadows the spectral features of the Li in the anode or cathode. The electrolyte must be removed from electrodes prior to spectroscopic analysis.

  14. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density.

    PubMed

    Wang, Longlong; Chen, Bingbing; Ma, Jun; Cui, Guanglei; Chen, Liquan

    2018-06-29

    By breaking through the energy density limits step-by-step, the use of lithium cobalt oxide-based Li-ion batteries (LCO-based LIBs) has led to the unprecedented success of consumer electronics over the past 27 years. Recently, strong demands for the quick renewal of the properties of electronic products every so often have resulted in smarter, larger screened, more lightweight devices with longer standby times that have pushed the energy density of LCO-based LIBs nearly to their limit. As a result, with the aim of achieving a higher energy density and lifting the upper cut-off voltage of LCO above 4.45 V (vs. Li/Li+), the development of LCO-based all-solid-state lithium batteries (ASSLBs) with a Li metal anode and LCO-based full cells with high-performance anodes have become urgent scientific and technological requirements. This review summarizes the key challenges of synthesizing LCO-based LBs with a higher energy density from the perspectives of structure and interface stability, and gives an account of effective modification strategies in view of the electrodes, liquid electrolytes, binders, separators, solid electrolytes and LCO-based full cells. The improvement mechanisms of these modification strategies and the controversy over them are also analyzed critically. Moreover, some perspectives regarding the remaining challenges for LCO-based LBs towards a higher energy density and possible future research focuses are also presented.

  15. Photodiode-based cutting interruption sensor for near-infrared lasers.

    PubMed

    Adelmann, B; Schleier, M; Neumeier, B; Hellmann, R

    2016-03-01

    We report on a photodiode-based sensor system to detect cutting interruptions during laser cutting with a fiber laser. An InGaAs diode records the thermal radiation from the process zone with a ring mirror and optical filter arrangement mounted between a collimation unit and a cutting head. The photodiode current is digitalized with a sample rate of 20 kHz and filtered with a Chebyshev Type I filter. From the measured signal during the piercing, a threshold value is calculated. When the diode signal exceeds this threshold during cutting, a cutting interruption is indicated. This method is applied to sensor signals from cutting mild steel, stainless steel, and aluminum, as well as different material thicknesses and also laser flame cutting, showing the possibility to detect cutting interruptions in a broad variety of applications. In a series of 83 incomplete cuts, every cutting interruption is successfully detected (alpha error of 0%), while no cutting interruption is reported in 266 complete cuts (beta error of 0%). With this remarkable high detection rate and low error rate, the possibility to work with different materials and thicknesses in combination with the easy mounting of the sensor unit also to existing cutting machines highlight the enormous potential for this sensor system in industrial applications.

  16. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Halpert, Gerald (Inventor); Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  17. Analysis of oxygen potential of (U 0.7Pu 0.3)O 2±x and (U 0.8Pu 0.2)O 2±x based on point defect chemistry

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Konashi, Kenji; Nakae, Nobuo

    2009-06-01

    Stoichiometries in (U 0.7Pu 0.3)O 2±x and (U 0.8Pu 0.2)O 2±x were analyzed with the experimental data of oxygen potential based on point defect chemistry. The relationship between the deviation x of stoichiometric composition and the oxygen partial pressure P was evaluated using a Kröger-Vink diagram. The concentrations of the point defects in uranium and plutonium mixed oxide (MOX) were estimated from the measurement data of oxygen potentials as functions of temperature and P. The analysis results showed that x was proportional to PO2±1/2 near the stoichiometric region of both (U 0.7Pu 0.3)O 2±x and (U 0.8Pu 0.2)O 2±x, which suggested that intrinsic ionization was the dominant defect. A model to calculate oxygen potential was derived and it represented the experimental data accurately. Further, the model estimated the thermodynamic data, ΔH and ΔS, of stoichiometric (U 0.7Pu 0.3)O 2.00 and (U 0.8Pu 0.2)O 2.00 as -552.5 kJ·mol -1 and -149.7 J·mol -1, and -674.0 kJ · mol -1 and -219.4 J · mol -1, respectively.

  18. Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.

    2013-04-01

    Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].

  19. Two-dimensional ultra-thin SiO(x) (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes.

    PubMed

    Sun, Lin; Su, Tingting; Xu, Lei; Liu, Meipin; Du, Hong-Bin

    2016-03-21

    Ultra-thin SiO(x) (0 < x < 2) nanosheets were obtained via a convenient solvothermal route from a Zintl compound CaSi2. After carbon coating, the SiOx@C nanosheet anodes exhibit high capacity, good rate and superior cycling performance for high-capacity lithium ion battery applications. The specific capacity can be maintained as high as 760 mA h g(-1) with almost no capacity decay after 400 cycles at a current density of 0.5 A g(-1).

  20. Anode for rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1994-01-01

    An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

  1. Exceptional effect of glassy lithium fluorophosphate on Mn-rich olivine cathode material for high-performance Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jongsoon; Kim, Hyungsub; Myung, Seung-Taek; Yoo, Jung-Keun; Lee, Seongsu

    2018-01-01

    Mn-rich olivine LiFe0.3Mn0.7PO4 is homogenously encapsulated by an ∼3-nm-thick conductive nanolayer composed of the glassy lithium fluorophosphate through simple non-stoichiometric synthesis using additives of small amounts of LiF and a phosphorus source. The coating of the glassy lithium fluorophosphate nanolayer is clearly verified using transmission electron microscopy and X-ray photoelectron spectroscopy. It enables significant decrease in charge transfer resistance of LiFe0.3Mn0.7PO4 and improvement of its sluggish Li diffusion. At a rate of 10C, the LiFe0.3Mn0.7PO4 encapsulated by conductive glassy lithium fluorophosphate (LiFe0.3Mn0.7PO4-GLFP) electrode delivers a capacity of ∼130 mAh g-1, which is ∼77% of its theoretical capacity (∼170 mAh g-1) and ∼1.5 times higher than that of the pristine counterpart at 10C. Furthermore, LiFe0.3Mn0.7PO4-GLFP achieves outstanding cycle stability (∼75% retention of its initial capacity over 500 cycles at 1C). The proposed olivine LiFe0.3Mn0.7PO4-GLFP battery is thus expected to be a promising candidate for large-scale energy storage applications.

  2. Silicon anode for rechargeable aqueous lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Teranishi, R.; Si, Q.; Mizukoshi, F.; Kawakubo, M.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.

    2015-01-01

    A novel aqueous lithium-air rechargeable cell with the configuration of Si/1 M LiClO4 in ethylene carbonate-diethylene carbonate/Li1+x+yAlx(Ti,Ge)2-xP3-ySiyO12/5 M LiCl-1 M LiOH aqueous solution/carbon black, air is proposed. A silicon anode composed of mechanically milled silicon power with an average particle size of ca. 0.5 μm, vapor grown carbon fiber and a polyimide binder was examined. The open-circuit voltage at the charged state was 2.9 V at 25 °C. The discharge capacity of 700 mAh g-silicon-1 was retained for 40 cycles at 0.3 mA cm-2 with cut-off voltages of 3.5 and 1.5 V. Significant capacity fade was observed at deep charge and discharge cycling at 2000 mAh g-silicon-1.

  3. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome.

    PubMed

    Yuskaitis, Christopher J; Mines, Marjelo A; King, Margaret K; Sweatt, J David; Miller, Courtney A; Jope, Richard S

    2010-02-15

    Fragile X syndrome (FXS), the most common form of inherited mental retardation and a genetic cause of autism, results from mutated fragile X mental retardation-1 (Fmr1). This study examined the effects on glycogen synthase kinase-3 (GSK3) of treatment with a metabotropic glutamate receptor (mGluR) antagonist, MPEP, and the GSK3 inhibitor, lithium, in C57Bl/6 Fmr1 knockout mice. Increased mGluR signaling may contribute to the pathology of FXS, and the mGluR5 antagonist MPEP increased inhibitory serine-phosphorylation of brain GSK3 selectively in Fmr1 knockout mice but not in wild-type mice. Inhibitory serine-phosphorylation of GSK3 was lower in Fmr1 knockout, than wild-type, mouse brain regions and was increased by acute or chronic lithium treatment, which also increased hippocampal brain-derived neurotrophic factor levels. Fmr1 knockout mice displayed alterations in open-field activity, elevated plus-maze, and passive avoidance, and these differences were ameliorated by chronic lithium treatment. These findings support the hypothesis that impaired inhibition of GSK3 contributes to the pathogenesis of FXS and support GSK3 as a potential therapeutic target.

  4. (sup 6)Li and (sup 7)MAS NMR and In Situ X-Ray Diffraction Studies of Lithium Manganate Cathode Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young Joo; Wang, Francis; Grey, Clare P.

    {sup 6}Li MAS NMR spectra of lithium manganese oxides with differing manganese oxidation states (LiMn{sub 2}O{sub 4}, Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}Mn{sub 4}O{sub 9}, and Li{sub 2}Mn{sub 2}O{sub 4}) are presented. Improved understanding of the lithium NMR spectra of these model compounds is used to interpret the local structure of the Li{sub x}Mn{sub 2}O{sub 4} cathode materials following electrochemical Li{sup +} deintercalation to various charging levels. In situ x-ray diffraction patterns of the same material during charging are also reported for comparison. Evidence for two-phase behavior for x <0.4 (Li{sub x}Mn{sub 2}O{sub 4}) is seen by both NMR andmore » diffraction.« less

  5. Intrinsic high electrical conductivity of stoichiometric SrNb O3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Oka, Daichi; Hirose, Yasushi; Nakao, Shoichiro; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-11-01

    SrV O3 and SrNb O3 are perovskite-type transition-metal oxides with the same d1 electronic configuration. Although SrNb O3 (4 d1 ) has a larger d orbital than SrV O3 (3 d1 ), the reported electrical resistivity of SrNb O3 is much higher than that of SrV O3 , probably owing to nonstoichiometry. In this paper, we grew epitaxial, high-conductivity stoichiometric SrNb O3 using pulsed laser deposition. The growth temperature strongly affected the Sr/Nb ratio and the oxygen content of the films, and we obtained stoichiometric SrNb O3 at a very narrow temperature window around 630 °C. The stoichiometric SrNb O3 epitaxial thin films grew coherently on KTa O3 (001) substrates with high crystallinity. The room-temperature resistivity of the stoichiometric film was 2.82 ×10-5Ω cm , one order of magnitude lower than the lowest reported value of SrNb O3 and comparable with that of SrV O3 . We observed a T -square dependence of resistivity below T*=180 K and non-Drude behavior in near-infrared absorption spectroscopy, attributable to the Fermi-liquid nature caused by electron correlation. Analysis of the T -square coefficient A of resistivity experimentally revealed that the 4 d orbital of Nb that is larger than the 3 d ones certainly contributes to the high electrical conduction of SrNb O3 .

  6. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasingmore » need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 − (1 − X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 − 3(1 − X){sup 2/3} + 2(1 − X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.« less

  7. Investigating the Mechanism of Reversible Lithium Insertion into Anti-NASICON Fe 2(WO 4) 3

    DOE PAGES

    Barim, Gozde; Cottingham, Patrick; Zhou, Shiliang; ...

    2017-03-07

    The gram-scale preparation of Fe 2(WO 4) 3 by a new solution-based route and detailed characterization of the material are presented. The resulting Fe 2(WO 4) 3 undergoes a reversible electrochemical reaction against lithium centered around 3.0 V with capacities near 93% of the theoretical maximum. Evolution of the Fe 2(WO 4) 3 structure upon lithium insertion and deinsertion is probed using a battery of characterization techniques, including in situ X-ray diffraction, neutron total scattering, and X-ray absorption spectroscopy (XAS). A structural transformation from monoclinic to orthorhombic phases is confirmed during lithium intercalation. XAS and neutron total scattering measurements verifymore » that Fe 2(WO 4) 3 consists of trivalent iron and hexavalent tungsten ions. As lithium ions are inserted into the framework, iron ions are reduced to the divalent state, while the tungsten ions are electrochemically inactive and remain in the hexavalent state. Lastly, lithium insertion occurs via a concerted rotation of the rigid polyhedra in the host lattice driven by electrostatic interactions with the Li + ions; the magnitude of these polyhedral rotations was found to be slightly larger for Fe 2(WO 4) 3 than for the Fe 2(MoO 4) 3 analog.« less

  8. Investigating the Mechanism of Reversible Lithium Insertion into Anti-NASICON Fe 2(WO 4) 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barim, Gozde; Cottingham, Patrick; Zhou, Shiliang

    The gram-scale preparation of Fe 2(WO 4) 3 by a new solution-based route and detailed characterization of the material are presented. The resulting Fe 2(WO 4) 3 undergoes a reversible electrochemical reaction against lithium centered around 3.0 V with capacities near 93% of the theoretical maximum. Evolution of the Fe 2(WO 4) 3 structure upon lithium insertion and deinsertion is probed using a battery of characterization techniques, including in situ X-ray diffraction, neutron total scattering, and X-ray absorption spectroscopy (XAS). A structural transformation from monoclinic to orthorhombic phases is confirmed during lithium intercalation. XAS and neutron total scattering measurements verifymore » that Fe 2(WO 4) 3 consists of trivalent iron and hexavalent tungsten ions. As lithium ions are inserted into the framework, iron ions are reduced to the divalent state, while the tungsten ions are electrochemically inactive and remain in the hexavalent state. Lastly, lithium insertion occurs via a concerted rotation of the rigid polyhedra in the host lattice driven by electrostatic interactions with the Li + ions; the magnitude of these polyhedral rotations was found to be slightly larger for Fe 2(WO 4) 3 than for the Fe 2(MoO 4) 3 analog.« less

  9. Thermodynamics of aragonite-strontianite solid solutions: Results from stoichiometric solubility at 25 and 76°C

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.

    1987-01-01

    Neither equilibrium nor stoichiometric saturation is observed at 76°C during laboratory recrystallization of strontianite-aragonite solid solutions even after apparent 100 percent conversion to a narrow secondary composition and demonstration of a nearly constant composition system for periods of 300 hours.

  10. Non-stoichiometric AB5 alloys for metal hydride electrodes

    DOEpatents

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2001-01-01

    The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

  11. In Situ X-ray Absorption Spectroscopy Studies of Discharge Reactions in a Thick Cathode of a Lithium Sulfur Battery

    DOE PAGES

    Wujcik, Kevin H.; Wang, Dunyang Rita; Pascal, Tod A.; ...

    2016-12-01

    Lithium sulfur (Li-S) batteries are well known for their high theoretical specific capacities, but are plagued with scientific obstacles that make practical implementation of the technology impossible. The success of Li-S batteries will likely necessitate the use of thick sulfur cathodes that enable high specific energy densities. However, little is known about the fundamental reaction mechanisms and chemical processes that take place in thick cathodes, as most research has focused on studying thinner cathodes that enable high performance. In this study, in situ X-ray absorption spectroscopy at the sulfur K-edge is used to examine the back of a 115 μmmore » thick Li-S cathode during discharge. Our results show that in such systems, where electrochemical reactions between sulfur and lithium are likely to proceed preferentially toward the front of the cathode, lithium polysulfide dianions formed in this region diffuse to the back of the cathode during discharge. We show that high conversion of elemental sulfur is achieved by chemical reactions between elemental sulfur and polysulfide dianions of intermediate chain length (Li 2S x, 4 ≤ x ≤ 6). Our work suggests that controlling the formation and diffusion of intermediate chain length polysulfide dianions is crucial for insuring full utilization of thick sulfur cathodes.« less

  12. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilitiesa)

    NASA Astrophysics Data System (ADS)

    Szabo, C. I.; Feldman, U.; Seely, J. F.; Curry, J. J.; Hudson, L. T.; Henins, A.

    2010-10-01

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  13. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    NASA Astrophysics Data System (ADS)

    Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei; Kitamura, Kenji; Ro, Jung Hoon

    2015-03-01

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic "asymmetric in-out domain wall motion" observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (Ec) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1Ec is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15Ec is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  14. Protective coating on positive lithium-metal-oxide electrodes for lithium batteries

    DOEpatents

    Johnson, Christopher S.; Thackeray, Michael M.; Kahaian, Arthur J.

    2006-05-23

    A positive electrode for a non-aqueous lithium cell comprising a LiMn2-xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0.ltoreq.x.ltoreq.0.15, having one or more lithium spine oxide LiM'2O4 or lithiated spinel oxide Li1+yM'2O4 compounds on the surface thereof in which M' are cobalt cations and in which 0.ltoreq.y.ltoreq.1.

  15. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  16. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the samemore » time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  17. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE PAGES

    Wang, Shulei; Zheng, Shili; Wang, Zheming; ...

    2018-09-09

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  18. The Effect of Electrolyte Additives upon the Lithium Kinetics of Li-Ion Cells Containing MCMB and LiNi(x)Co(1-x)O2 Electrodes and Exposed to High Temperatures

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Gozdz, A. S.; Mani, S.

    2009-01-01

    With the intent of improving the performance of lithium-ion cells at high temperatures, we have investigated the use of a number of electrolyte additives in experimental MCMB- Li(x)Ni(y)Co(1-y)O2 cells, which were exposed to temperatures as high as 80 C. In the present work, we have evaluated the use of a number of additives, namely vinylene carbonate (VC), dimethyl acetamide (DMAc), and mono-fluoroethylene carbonate (FEC), in an electrolyte solution anticipated to perform well at warm temperature (i.e., 1.0M LiPF6 in EC+EMC (50:50 v/v %). In addition, we have explored the use of novel electrolyte additives, namely lithium oxalate and lithium tetraborate. In addition to determining the capacity and power losses at various temperatures sustained as a result of high temperature cycling (cycling performed at 60 and 80 C), the three-electrode MCMB-Li(x)Ni(y)Co(1-y)O2 cells (lithium reference) enabled us to study the impact of high temperature storage upon the solid electrolyte interphase (SEI) film characteristics on carbon anodes (MCMB-based materials), metal oxide cathodes, and the subsequent impact upon electrode kinetics.

  19. Soft X-ray emission spectroscopy of liquids and lithium batterymaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustsson, Andreas

    2004-01-01

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed tomore » view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1

  20. Voltage and power relationships in lithium-containing solar cells.

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1972-01-01

    Photovoltaic characteristics have been measured on a large number of crucible-grown lithium-containing solar cells irradiated by 1-MeV electrons to fluences ranging from 3 x 10 to the 13th power to 3 x 10 to the 15th power electrons per sq cm. These measurements have established empirical relationships between cell photovoltaic parameters and lithium donor density gradient. Short-circuit current and maximum power measured immediately after irradiation decrease logarithmically with lithium gradient. Open-circuit voltage increases logarithmically with lithium gradient both immediately after irradiation and after recovery, the degree of recovery being strongly gradient-dependent at high fluence. As a result, the maximum power and the power at 0.43 V after recovery from 3 x 10 to the 15th power electrons per sq cm increase with increasing lithium gradient.

  1. Quantitative Visualization of Salt Concentration Distributions in Lithium-Ion Battery Electrolytes during Battery Operation Using X-ray Phase Imaging.

    PubMed

    Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke; Hirano, Tatsumi

    2018-02-07

    A fundamental understanding of concentrations of salts in lithium-ion battery electrolytes during battery operation is important for optimal operation and design of lithium-ion batteries. However, there are few techniques that can be used to quantitatively characterize salt concentration distributions in the electrolytes during battery operation. In this paper, we demonstrate that in operando X-ray phase imaging can quantitatively visualize the salt concentration distributions that arise in electrolytes during battery operation. From quantitative evaluation of the concentration distributions at steady states, we obtained the salt diffusivities in electrolytes with different initial salt concentrations. Because of no restriction on samples and high temporal and spatial resolutions, X-ray phase imaging will be a versatile technique for evaluating electrolytes, both aqueous and nonaqueous, of many electrochemical systems.

  2. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    DOE PAGES

    Zhao, Jie; Zhou, Guangmin; Yan, Kai; ...

    2017-07-10

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less

  3. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Zhou, Guangmin; Yan, Kai

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less

  4. Atomic resolution of Lithium Ions in LiCoO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude

    2003-03-18

    LiCoO2 is the most common lithium storage material for lithium rechargeable batteries, used widely to power portable electronic devices such as laptop computers. Lithium arrangements in the CoO2 framework have a profound effect on the structural stability and electrochemical properties of LixCoO2 (0 < x < 1), however, probing lithium ions has been difficult using traditional X-ray and neutron diffraction techniques. Here we have succeeded in simultaneously resolving columns of cobalt, oxygen, and lithium atoms in layered LiCoO2 battery material using experimental focal series of LiCoO2 images obtained at sub-Angstrom resolution in a mid-voltage transmission electron microscope. Lithium atoms aremore » the smallest and lightest metal atoms, and scatter electrons only very weakly. We believe our observations of lithium to be the first by electron microscopy, and that they show promise to direct visualization of the ordering of lithium and vacancy in LixCoO2.« less

  5. X-shooter spectroscopy of young stellar objects in Lupus. Lithium, iron, and barium elemental abundances

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Frasca, A.; Alcalá, J. M.; Zusi, M.; Covino, E.; Randich, S.; Esposito, M.; Manara, C. F.; Antoniucci, S.; Nisini, B.; Rigliaco, E.; Getman, F.

    2017-09-01

    Aims: With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: 1) to derive the lithium abundance for the almost complete sample ( 90%) of known class II stars in the Lupus I, II, III, and IV clouds; 2) to perform chemical tagging of a region where few iron abundance measurements have been obtained in the past, and no determination of the barium content has been done up to now. We also investigated possible barium enhancement at the very young age of the region, as this element has become increasingly interesting in the last few years following the evidence of barium over-abundance in young clusters, the origin of which is still unknown. Methods: Using the X-shooter spectrograph mounted on the Unit 2 (UT2) at the Very Large Telescope (VLT), we analyzed the spectra of 89 cluster members, both class II (82) and class III (7) stars. We measured the strength of the lithium line at λ6707.8 Å and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also derived the iron and barium abundances using the spectral synthesis method and the code MOOG. The veiling contribution was taken into account in the abundance analysis for all three elements. Results: We find a dispersion in the strength of the lithium line at low effective temperatures and identify three targets with severe Li depletion. The nuclear age inferred for these highly lithium-depleted stars is around 15 Myr, which exceeds by an order of magnitude the isochronal one. We derive a nearly solar metallicity for the members whose spectra could be analyzed. We find that Ba is over-abundant by 0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar

  6. Survival and growth of planted yellow-cedar seedlings and rooted cuttings (stecklings) near Ketchikan, Alaska

    Treesearch

    Paul E. Hennon; Michael H. McClellan; Sheila R. Spores; Ewa H. Orlikowska

    2009-01-01

    The survival and growth of yellow-cedar (Chamaecyparis nootkatensis) seedlings and rooted cuttings (stecklings) were monitored for 6 years after planting at three sites near Ketchikan in southeast Alaska to determine whether stecklings could serve as a suitable planting stock. Survival for both seedlings and stecklings was >85% at the three...

  7. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    PubMed

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  8. Nanostructured Iron and Manganese Oxide Electrode Materials for Lithium Batteries: Influence of Chemical and Physical Properties on Electrochemistry

    NASA Astrophysics Data System (ADS)

    Durham, Jessica L.

    The widespread use of portable electronics and growing interest in electric and hybrid vehicles has generated a mass market for batteries with increased energy densities and enhanced electrochemical performance. In order to address a variety of applications, commercially fabricated secondary lithium-ion batteries employ transition metal oxide based electrodes, the most prominent of which include lithium nickel manganese cobalt oxide (LiNixMn yCo1-x-yO2), lithium iron phosphate (LiFePO4), and lithium manganese oxide (LiMn 2O4). Transition metal oxides are of particular interest as cathode materials due to their robust framework for lithium intercalation, potential for high energy density, and utilization of earth-abundant elements (i.e. iron and manganese) leading to decreased toxicity and cost-effective battery production on industrial scales. Specifically, this research focuses on MgFe2O4, AgxMn8O16, and AgFeO 2 transition metal oxides for use as electrode materials in lithium-based batteries. The electrode materials are prepared via co-precipitation, reflux, and hydrothermal methods and characterized by several techniques (XRD, SEM, BET, TGA, DSC, XPS, Raman, etc.). The low-temperature syntheses allowed for precise manipulation of structural, compositional, and/or functional properties of MgFe2O4, AgxMn8 O16, and AgFeO2 which have been shown to influence electrochemical behavior. In addition, advanced in situ and ex situ characterization techniques are employed to study the lithiation/de-lithiation process and establish valid redox mechanisms. With respect to both chemical and physical properties, the influence of MgFe2O4 particle size and morphology on electrochemical behavior was established using ex situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) imaging. Based on composition, tunneled AgxMn8O16 nanorods, prepared with distinct Ag+ contents and crystallite sizes, display dramatic differences in ion-transport kinetics due to

  9. Sensitivity and Limitations of Structures from X-ray and Neutron-Based Diffraction Analyses of Transition Metal Oxide Lithium-Battery Electrodes

    DOE PAGES

    Liu, Hao; Liu, Haodong; Lapidus, Saul H.; ...

    2017-06-21

    Lithium transition metal oxides are an important class of electrode materials for lithium-ion batteries. Binary or ternary (transition) metal doping brings about new opportunities to improve the electrode’s performance and often leads to more complex stoichiometries and atomic structures than the archetypal LiCoO 2. Rietveld structural analyses of X-ray and neutron diffraction data is a widely-used approach for structural characterization of crystalline materials. But, different structural models and refinement approaches can lead to differing results, and some parameters can be difficult to quantify due to the inherent limitations of the data. Here, through the example of LiNi 0.8Co 0.15Al 0.05Omore » 2 (NCA), we demonstrated the sensitivity of various structural parameters in Rietveld structural analysis to different refinement approaches and structural models, and proposed an approach to reduce refinement uncertainties due to the inexact X-ray scattering factors of the constituent atoms within the lattice. Furthermore, this refinement approach was implemented for electrochemically-cycled NCA samples and yielded accurate structural parameters using only X-ray diffraction data. The present work provides the best practices for performing structural refinement of lithium transition metal oxides.« less

  10. Sensitivity and Limitations of Structures from X-ray and Neutron-Based Diffraction Analyses of Transition Metal Oxide Lithium-Battery Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Liu, Haodong; Lapidus, Saul H.

    Lithium transition metal oxides are an important class of electrode materials for lithium-ion batteries. Binary or ternary (transition) metal doping brings about new opportunities to improve the electrode’s performance and often leads to more complex stoichiometries and atomic structures than the archetypal LiCoO 2. Rietveld structural analyses of X-ray and neutron diffraction data is a widely-used approach for structural characterization of crystalline materials. But, different structural models and refinement approaches can lead to differing results, and some parameters can be difficult to quantify due to the inherent limitations of the data. Here, through the example of LiNi 0.8Co 0.15Al 0.05Omore » 2 (NCA), we demonstrated the sensitivity of various structural parameters in Rietveld structural analysis to different refinement approaches and structural models, and proposed an approach to reduce refinement uncertainties due to the inexact X-ray scattering factors of the constituent atoms within the lattice. Furthermore, this refinement approach was implemented for electrochemically-cycled NCA samples and yielded accurate structural parameters using only X-ray diffraction data. The present work provides the best practices for performing structural refinement of lithium transition metal oxides.« less

  11. Stability and activity of lysozyme in stoichiometric and non-stoichiometric protic ionic liquid (PIL)-water systems

    NASA Astrophysics Data System (ADS)

    Wijaya, Emmy C.; Separovic, Frances; Drummond, Calum J.; Greaves, Tamar L.

    2018-05-01

    There has been a substantial increase in enzyme applications within the biochemical and pharmaceutical industries, for example, as industrial biocatalysts. However, enzymes have narrow marginal stability which makes them prone to become inactive and/or denature with a slight change in the solvent environment. Typically industrial applications require harsher solvent environments than enzyme native environments, and hence there is a need to understand solvent-protein interactions in order to develop strategies to maintain, or enhance, the enzymatic activity under industrially relevant solvent conditions. Previously we have shown that protic ionic liquids (PILs) with water can have a stabilising effect on lysozyme, with a large variation dependent on which PIL ions are present, and the water concentration [E. C. Wijaya et al., Phys. Chem. Chem. Phys. 18(37), 25926-25936 (2016)]. Here we extend on this work using non-stoichiometric aqueous PIL solvents to investigate, and isolate, the role of pH and ionicity on enzymes. We have used the PILs ethylammonium nitrate (EAN) and ethanolammonium formate (EOAF) since our previous work has identified these as good solvents for lysozyme. Solvent libraries were made from these two PILs with an additional precursor acid or base to modify the acidity/basicity of the neutral stoichiometric PIL, and with water added, to have solutions with 4-17 mol. % of the PIL ions in water. Molar ratios of base:acid were varied between 1:1.05 and 2:1 for EAN and 1:1.25 and 2:1 for EOAF, which enabled from highly basic to highly acidic solutions to be obtained. This was to modify the acidity/basicity of the neutral stoichiometric PILs, without the addition of buffers. The structure and stability of hen egg white lysozyme (HEWL) were explored under these solvent conditions using synchrotron small angle X-ray scattering (SAXS), Fourier transform infrared (FTIR), and activity assays. The radius of gyration and Kratky plots obtained from the SAXS data

  12. Coupling of lithium niobate disk resonators to integrated waveguides

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G. C.; Dispenza, M.; Secchi, A.

    2011-01-01

    Whispering gallery mode (WGM) disk resonators fabricated in single crystals can have high Q factors within their transparency bandwidth and may have application both in fundamental and applied optics. Lithium niobate (LN) resonators thanks to their electro-optical properties may be used in particular as tunable filters, modulators, and delay lines. A critical step toward the actual application of these devices is the implementation of a robust and efficient coupling system. High index prisms are typically used for this purpose. In this work we demonstrate coupling to high-Q WGM LN disks from an integrated optical LN waveguide. The waveguides are made by proton exchange in X-cut LN. The disks with diameters of about 5 mm and thickness of 1 mm are made from commercial Z-cut LN wafers by core drilling a cylinder and thereafter polishing the edges into a spheroidal profile. Both resonance linewidth and cavity photon lifetime measurements were performed to calculate the Q factor of the resonator, which is in excess of 108.

  13. Force-frequency effect of Y-cut langanite and Y-cut langatate.

    PubMed

    Kim, Yoonkee; Ballato, Arthur

    2003-12-01

    Most recently, langasite and its isomorphs (LGX) have been advanced as potential substitutes for quartz, owing to their extremely high-quality (Q) factors. At least twice higher Q value of LGX than that of quartz has been reported. High Q translates into potentially greater stability. In order to make such materials practical, the environmental sensitivities must be addressed. One of such sensitivities is the force-frequency effect, which relates the sensitiveness of a resonator to shock and vibration via the third-order (non-Hookean) elastic constants. In this paper, we report measured force-frequency coefficients of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator as a function of the azimuthal angle, which is the angle between the crystalline x-axis of a resonator plate and the direction of in-plane diametric force applied to the periphery of the resonator. It was found that the LGN and the LGT behave like AT-cut quartz in the polarity of the frequency changes and the existence of zero-coefficient angle. The maximum magnitudes of the coefficients of the LGN and the LGT are five and seven times smaller than that of stress-compensated cut (SC-cut) quartz, respectively (or, 7 and 10 times smaller comparing to AT-cut quartz). The coefficients of planar-stress, which represent the superposition of a continuous distribution of periphery stresses, also were obtained as 0.52 X 10(-15) m x s/N and 0.38 X 10(-15) m x s/N for the LGN and the LGT, respectively.

  14. Crystal structure characteristics, dielectric loss, and vibrational spectra of Zn-rich non-stoichiometric Ba[(Zn1/3Nb2/3)1-x Zn x ]O3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jianzhu; Xing, Chao; Qiao, Hengyang; Chen, Huiling; Yang, Jun; Dong, Helei; Shi, Feng

    2017-07-01

    Zn-Rich non-stoichiometric Ba(Zn1/3Nb2/3)1-x Zn x O3 (BZNZ) (x  =  0.01, 0.02, 0.03, 0.04) ceramics were prepared by the solid-state reaction method at 1500 °C for 2 h. The crystal structures and morphologies were analyzed by x-ray diffraction (XRD) and scanning electron microscopy. The vibration modes were obtained by Raman scattering spectroscopy and Fourier transform far-infrared (FTIR) reflectance spectroscopy. Rietveld refinement was performed for the XRD data. The relationship between crystal structures, dielectric properties, and phonon modes was analyzed in detail. XRD results show that the main phase is Ba(Zn1/3Nb2/3)O3. The Raman results displayed that the ordering structure of BZNZ transformed from 1:2 to 1:1 when x changed from 0.02 to 0.04, and the dielectric losses have a positive correlation with the full width at half maximum values of the A 1g(O) and E g(O) modes. The FTIR spectra were analyzed by the Kramers-Krönig method to obtain the real parts (ɛ‧) and the imaginary parts (ɛ″) of the dielectric constant. When x  =  0.02, the sample possesses uniform grains with clear boundaries and the lowest dielectric loss value (tanδ  =  5.5  ×  10‒4) due to the largest packing fraction.

  15. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    PubMed

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak

    For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less

  17. Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography

    DOE PAGES

    Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak; ...

    2017-01-28

    For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less

  18. Interfacial strain effects on lithium diffusion pathways in the spinel solid electrolyte Li-doped MgAl2O4

    NASA Astrophysics Data System (ADS)

    O'Rourke, Conn; Morgan, Benjamin J.

    2018-04-01

    The (Li,Al)-codoped magnesium spinel (LixMg1 -2 xAl2 +xO4 ) is a solid lithium-ion electrolyte with potential use in all-solid-state lithium-ion batteries. The spinel structure means that interfaces with spinel electrodes, such as LiyMn2O4 and Li4 +3 zTi5O12 , may be lattice matched, with potentially low interfacial resistances. Small lattice parameter differences across a lattice-matched interface are unavoidable, causing residual epitaxial strain. This strain potentially modifies lithium diffusion near the electrolyte-electrode interface, contributing to interfacial resistance. Here, we report a density functional theory study of strain effects on lithium diffusion pathways for (Li,Al)-codoped magnesium spinel, for xLi=0.25 and xLi=0.5 . We have calculated diffusion profiles for the unstrained materials, and for isotropic and biaxial tensile strains of up to 6 % , corresponding to {100 } epitaxial interfaces with LiyMn2O4 and Li4 +3 zTi5O12 . We find that isotropic tensile strain reduces lithium diffusion barriers by as much as 0.32 eV , with typical barriers reduced by ˜0.1 eV. This effect is associated with increased volumes of transitional octahedral sites, and broadly follows qualitative changes in local electrostatic potentials. For biaxial (epitaxial) strain, which more closely approximates strain at a lattice-matched electrolyte-electrode interface, changes in octahedral site volumes and in lithium diffusion barriers are much smaller than under isotropic strain. Typical barriers are reduced by only ˜0.05 eV. Individual effects, however, depend on the pathway considered and the relative strain orientation. These results predict that isotropic strain strongly affects ionic conductivities in (Li,Al)-codoped magnesium spinel electrolytes, and that tensile strain is a potential route to enhanced lithium transport. For a lattice-matched interface with candidate spinel-structured electrodes, however, epitaxial strain has a small, but complex, effect on lithium

  19. Study to determine and improve design for lithium-doped solar cells

    NASA Technical Reports Server (NTRS)

    Brucker, G.; Faith, T. J.; Holmes-Siedle, A.

    1971-01-01

    Solar cell experiments show that a single lithium density parameter, the lithium density gradient, calculated from nondestructive capacitance measurements, provides the basis for accurate predictions of lithium cell behavior in a 1-MeV electron environment for fluences ranging between 3 X 10 to the 13th power e/sq cm and 3 X 10 to the 15th power/e sq cm. The oxygen-rich (quartz crucible) lithium cell with phosphorous starting dopant and lithium gradient between approximately 5 X 10 to the 18th power and 1.5 x 10 to the 19th power/cm to the 4th power was found superior in performance to the commercial 10 ohm-cm n/p control cells. Post-recovery stability of oxygen-rich cells was satisfactory. An average post-recovery current drop of approximately 1 mA was observed for 70 crucible cells after 1 year-equivalent storage time at 80 C. In contrast the oxygen-poor (float zone and Lopex) lithium cells displayed spotty initial performance and stability problems at room temperature.

  20. Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction

    DOE PAGES

    Liu, Haodong; An, Ke; Venkatachalam, Subramanian; ...

    2016-04-06

    Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li-rich Li(Li x/3Ni (3/8-3x/8)Co (1/4-x/4)Mn (3/8+7x/24)O 2 (x = 0.6, HLR) and low Li-rich Li(Li x/3Ni (1/3-x/3)Co (1/3-x/3)Mn(1/3+x/3)O 2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the endmore » of charge. Density functional theory calculations show the presence of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. The lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate once the high voltage plateau is reached.« less

  1. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    PubMed

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Facile preparation of a zinc-based alloy composite as a novel anode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Thanh; Bae, Joonwon; Kim, Ji Hyeon; Son, Hyung Bin; Kim, Il Tae; Hur, Jaehyun

    2018-01-01

    We report a new Zn-based nanocomposite anode material (Zn-Ti-C) for lithium-ion batteries synthesized by thermal treatment and a high energy mechanical milling process. X-ray diffraction and high-resolution transmission electron microscopy revealed the formation of active Zn nanoparticles finely dispersed in the hybrid titanium carbide (TiC) and carbon matrix. Electrochemical analyses show that the formation of the TiC and carbon buffer matrix significantly contributed to the improved performance of the Zn-based electrode by mitigating the volume changes of the Zn nanoparticles during the charge/discharge processes. Furthermore, we optimized the stoichiometric ratio of Zn and Ti in terms of specific capacity, cycling performance, and rate capability in the presence of carbon. The material with a 2:1 atomic ratio (ZnTi(2:1)-C) exhibited the best cycle life, with a gravimetric capacity of 363.6 mAh g-1 and a volumetric capacity of 472.7 mAh cm-3 after 300 charge/discharge cycles (78.1% retention). At this ratio, Zn-Ti-C consistently showed the best rate capability measurements up to 3000 mA g-1 (85% of its capacity at 100 mA g-1). Therefore, our Zn-Ti-C composite is a promising alternative negative electrode material for lithium-ion batteries.

  3. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    PubMed

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  4. Kirigami-based stretchable lithium-ion batteries

    PubMed Central

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-01-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces. PMID:26066809

  5. Development of speckle-free channel-cut crystal optics using plasma chemical vaporization machining for coherent x-ray applications.

    PubMed

    Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto

    2016-06-01

    We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.

  6. Atomically Precise Interfaces from Non-stoichiometric Deposition

    NASA Astrophysics Data System (ADS)

    Nie, Yuefeng; Zhu, Ye; Lee, Che-Hui; Kourkoutis, Lena; Mundy, Julia; Junquera, Javier; Ghosez, Philippe; Baek, David; Sung, Suk Hyun; Xi, Xiaoxing; Shen, Kyle; Muller, David; Schlom, Darrell

    2015-03-01

    Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinO3n+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control--from just the n = 1 end members (perovskites) to the entire RP homologous series--enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.

  7. Atomically precise interfaces from non-stoichiometric deposition

    NASA Astrophysics Data System (ADS)

    Nie, Y. F.; Zhu, Y.; Lee, C.-H.; Kourkoutis, L. F.; Mundy, J. A.; Junquera, J.; Ghosez, Ph.; Baek, D. J.; Sung, S.; Xi, X. X.; Shen, K. M.; Muller, D. A.; Schlom, D. G.

    2014-08-01

    Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinOn+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control—from just the n=∞ end members (perovskites) to the entire RP homologous series—enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.

  8. The Synthesis and Characterization of Cerium Carbonate Hydroxide Nanorods as an Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Yining; Liu, Hefen; Liu, Jianqiang; Liu, Haowen

    2018-03-01

    Nanorods cerium carbonate hydroxide, CeCO3OH, was synthesized through a low-temperature reaction route. The data of x-ray diffraction and scanning electron microscopy revealed that the as-prepared samples were CeCO3OH nanorods. The diameters of the nanorods were in the range of 50-100 nm, and the lengths were around 300-500 nm. As an anode of a lithium ion battery, the charge-discharge capacity, cyclability and lithium-ion diffusion kinetics of CeCO3OH nanorods were investigated. The calculated lithium ion diffusion coefficient was 1.36 × 10-19 cm2 s-1. The initial discharge capacity was about 621.6 mA h g-1 at 0.2 mA cm-2 in 0.05-2.5 V. After 100 cycles, the discharge capacity stabilized at about 362 mA h g-1 and the Coulombic efficiency was nearly 98%, indicating the potential application in anodes of lithium-ion batteries.

  9. Analysis of complex environment effect on near-field emission

    NASA Astrophysics Data System (ADS)

    Ravelo, B.; Lalléchère, S.; Bonnet, P.; Paladian, F.

    2014-10-01

    The article is dealing with uncertainty analyses of radiofrequency circuits electromagnetic compatibility emission based on the near-field/near-field (NF/NF) transform combined with stochastic approach. By using 2D data corresponding to electromagnetic (EM) field (X=E or H) scanned in the observation plane placed at the position z0 above the circuit under test (CUT), the X field map was extracted. Then, uncertainty analyses were assessed via the statistical moments from X component. In addition, stochastic collocation based was considered and calculations were applied to planar EM NF radiated by the CUTs as Wilkinson power divider and a microstrip line operating at GHz levels. After Matlab implementation, the mean and standard deviation were assessed. The present study illustrates how the variations of environmental parameters may impact EM fields. The NF uncertainty methodology can be applied to any physical parameter effects in complex environment and useful for printed circuit board (PCBs) design guideline.

  10. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    NASA Astrophysics Data System (ADS)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  11. DNA flow cytometry of human spermatozoa: consistent stoichiometric staining of sperm DNA using a novel decondensation protocol.

    PubMed

    Kovács, Tamás; Békési, Gyöngyi; Fábián, Akos; Rákosy, Zsuzsa; Horváth, Gábor; Mátyus, László; Balázs, Margit; Jenei, Attila

    2008-10-01

    Rapid flow cytometric measurement of the frequency of aneuploid human sperms is in increasing demand but development of an exploitable method is hindered by difficulties of stoichiometric staining of sperm DNA. An aggressive decondensation protocol is needed after which cell integrity still remains intact. We used flow cytometry to examine the effect of lithium diiodosalicylate (LIS, chaotropic agent) on fluorescence intensity of propidium iodide-treated human spermatozoa from 10 normozoospermic men. When flow cytometric identification of diploid spermatozoa was achieved, validation was performed after sorting by three-color FISH. In contrast with the extremely variable histograms of nondecondensed sperms, consistent identification of haploid and diploid spermatozoa was possible if samples were decondensed with LIS prior to flow cytometry. A 76-fold enrichment of diploid sperms was observed in the sorted fractions by FISH. A significant correlation was found between the proportion of sorted cells and of diploid sperms by FISH. Application of LIS during the preparation of sperm for flow cytometry appears to ensure the stoichiometric staining of sperm DNA, making quantification of aneuploid sperm percentage possible. To our knowledge this is the first report in terms of separating spermatozoa with confirmedly abnormal chromosomal content. High correlation between the proportion of cells identified as having double DNA content by flow cytometry and diploid sperm by FISH allows rapid calculation of diploidy rate. Copyright 2008 International Society for Advancement of Cytometry.

  12. Lithium Oxysilicate Compounds Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apblett, Christopher A.; Coyle, Jaclyn

    In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopymore » (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.« less

  13. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    DOE PAGES

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; ...

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd (x)Sb 2 and T´-La 2CuOmore » 4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less

  14. Environmental modeling of uranium interstitial compositions of non-stoichiometric oxides: experimental and theoretical analysis.

    PubMed

    Ivanova, Bojidarka

    2016-10-01

    Study of uranium interstitial compositions of non-stoichiometric oxides UO2+x (x ∈ 0.1-0.02) in gas and condense phases has been presented, using various soft-ionization mass spectrometric methods such as ESI-, APCI-, and MALDI-MS at a wide dynamic temperature gradient (∈ 25-300 °C). Linearly polarized vibrational spectroscopy has been utilized in order to assign unambiguously, the vibrational frequencies of uranium non-stoichiometric oxides. Experimental design has involved xUO2.66·yUO2.33, xUO2.66·yUO2.33/SiO2, xUO2.66·yUO2.33/SiO2 (NaOH) and SiO2/x'NaOH·y'UO2(NO3)2·6H2O, multicomponent systems (x = 1, y ∈ 0.1-1.0 and x' = 1, y' ∈ 0.1-0.6) as well as phase transitions UO2(NO3)2·6H2O → {U4O9(UO2.25)} → U3O7(UO2.33) → U3O8(UO2.66) → {UO3}, thus ensuring a maximal representativeness to real environmental conditions, where diverse chemical, geochemical and biochemical reactions, including complexation and sorption onto minerals have occurred. Experimental factors such as UV-irradiation, pH, temperature, concentration levels, solvent types and ion strength have been taken into consideration, too. As far as uranium speciation represents a challenging analytical task in terms of chemical identification diverse coordination species, mechanistic aspects relating incorporation of oxygen into UO 2+x form the shown full methods validation significantly impacts the field of environmental radioanalytical chemistry. UO2 is the most commonly used fuel in nuclear reactors around the globe; however, a large non-stoichiometric range ∈ UO1.65-UO2.25 has occurred due to radiolysis of water on UO2 surface yielding to H2O2, OH(·), and more. Each of those compositions has different oxygen diffusion. And in this respect enormous effort has been concentrated to study the potential impact of hazardous radionuclide on the environment, encompassing from the reprocessing to the disposal stages of the fuel waste, including the waste itself, the

  15. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate

    DOE PAGES

    Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen; ...

    2017-10-30

    Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less

  16. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen

    Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less

  17. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liang; Chen-Wiegart, Yu-Chen K.

    2017-10-30

    Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less

  18. Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries?

    NASA Astrophysics Data System (ADS)

    Gzara, L.; Chagnes, A.; Carré, B.; Dhahbi, M.; Lemordant, D.

    3-Methyl-2-oxazolidinone (MeOx) has been mixed to ethylene carbonate (EC) or dimethyl carbonate (DMC) in presence of lithium tetrafluoroborate (LiBF 4) or lithium hexafluorophosphate (LiPF 6) for use as electrolyte in lithium batteries. The optimized electrolytes in term of conductivity and viscosity are MeOx:EC, x(MeOx) = 0.5 and MeOx:DMC, x(MeOx) = 0.4 in presence of LiBF 4 (1 M) or LiPF 6 (1 M). MeOx:EC electrolytes have a better thermal stability than MeOx:DMC electrolytes but the low wettability of the Celgard separator by MeOx:EC prevents its use in lithium batteries. No lithium insertion-deinsertion occurs when LiPF 6 is used as salt in MeOx-based electrolytes. MeOx:DMC, x(MeOx) = 0.4 + LiBF 4 (1 M) exhibits a good cycling ability at a graphite electrode but all the investigated electrolytes containing MeOx have a low stability in oxidation at a lithium cobalt oxide electrode (Li xCoO 2).

  19. Synthesis and characterization of cathode materials for lithium ion-rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Nieto Ramos, Santander

    Lithium intercalation materials are of special interest for cathodes in rechargeable lihium-ion batteries, because they are capable of reversibly intercalating lithium ions without altering the main unit. We developed a novel solution-based route for the synthesis of these lithium intercalates oxides. The first part of this work was devoted to the optimization of chemical solution process parameters in order to correlate their electrochemical properties. It was found that the lattice parameters and the crystallite size increase, whereas the lattice strain decreases with the increase in calcinations temperature. Powders annealed at 700°C for 15 h yielded best electrochemical performance. The electrochemical performance of substituted Li1.2Mn2O 4, Li1.2Mn1.8O4, Li1.2Cr 0.05Mn1.95O4, and Li1.2Cr0.05 Mn1.75O4 spinel electrodes in lithium cell has been studied. The electrochemical data showed that the Li and Cr dopant effect improves the cycleablility of spinel LiMn2O4 electrodes. The second part of this dissertation was devoted to improve the rate capabilities of these cathode materials by growing nano-size cathode particles and also by cation co-doping. Though the discharge capacity of these nano-crystalline cathodes was equivalent to their microcrystalline counterpart, these exhibited capacity fading in the 4V range. Through a combined X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses, we correlated the observed capacity fading with the onset of Jahn-Teller (J-T) distortion toward the end of the discharge in the cut-off limit between 4.2 and 3.2V. It was postulated that J-T distortion is the dominant fading mechanism of these nano-crystalline cathodes then by increasing the average oxidation state of the Mn ion in a virgin lithium manganate cathode, the onset of such distortion towards the end of the discharge could be delayed, and therefore, the cycleability of these cathodes could be improved. By synthesizing lithium

  20. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shownmore » that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.« less

  1. Influence of composition modification on Ca{sub 0.5−x}Mg{sub x}Ti{sub 2}(PO{sub 4}){sub 3} (0.0 ≤ x ≤ 0.5) nanoparticles as electrodes for lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal-Abarca, C., E-mail: q02vigac@uco.es; Aragón, M.J.; Lavela, P.

    2014-01-01

    Graphical abstract: - Highlights: • Cation mixing was determined in the Ca{sub 0.5−x}Mg{sub x}Ti{sub 2}(PO{sub 4}){sub 3} biphasic series. • Nanometric Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} delivered 138 mAh/g at C/20 in lithium cells. • Low content of Ca{sup 2+} increases cell volume favoring Li{sup +} insertion in R-3c framework. • Diminution of R{sub SEI} and R{sub CT} for Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} discharged electrodes. • Fast electrode response for x = 0.35. - Abstract: The Ca{sub 0.5−x}Mg{sub x}Ti{sub 2}(PO{sub 4}){sub 3} series (0.0 ≤ x ≤ 0.5) was prepared by a sol–gel method. X-ray diffraction patternsmore » showed two rhombohedral phases which coexist for intermediate compositions. Despite of the absence of a solid solution mechanism for the whole stoichiometry range, an appreciable cation mixing was observed in both phases. {sup 31}P MAS NMR spectroscopy revealed that low magnesium contents are incorporated to the calcium compound inducing changes in the ordering of the alkaline earth cations in M{sub 1} sites. Derivative plots of the voltage–capacity curves revealed two reversible regions ascribed to the reduction of Ti{sup 4+} to Ti{sup 3+}, ascribable to the subsequent insertion of lithium ions into M{sub 1} and M{sub 2} vacant sites. Capacity values as high as 138 mAh/g after the first discharge were monitored for nanometric Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} at C/20. Cell cycling under successive kinetic rates revealed a good capacity retention for samples with x = 0.15 and 0.25. Impedance spectra were recorded in lithium cells discharged after different number of cycles at different C rates. The increase in charge transfer resistance was shown to be an important factor determining the electrode behavior on extended cycling.« less

  2. Quality of fresh-cut purple fleshed sweet potatoes after x-ray irradiation treatment and refrigerated storage

    USDA-ARS?s Scientific Manuscript database

    The effect of x-ray irradiation on the quality of fresh-cut, refrigerated purple-fleshed sweetpotato (PFSP) cubes was investigated. Packaged sweetpotato cubes were treated with 0, 250, 500, 750 or 1000 Gy x-ray irradiation and stored at 4 ± 1 ºC for 14 days. After 14 days, total aerobic bacteria cou...

  3. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.

    PubMed

    Patel, Manu U M; Dominko, Robert

    2014-08-01

    Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Martensitic transformation in as-grown and annealed near-stoichiometric epitaxial Ni2MnGa thin films

    NASA Astrophysics Data System (ADS)

    Machain, P.; Condó, A. M.; Domenichini, P.; Pozo López, G.; Sirena, M.; Correa, V. F.; Haberkorn, N.

    2015-08-01

    Magnetic shape memory nanostructures have a great potential in the field of the nanoactuators. The relationship between dimensionality, microstructure and magnetism characterizes the materials performance. Here, we study the martensitic transformation in supported and free-standing epitaxial Ni47Mn24Ga29 films grown by sputtering on (0 0 1) MgO using a stoichiometric Ni2MnGa target. The films have a Curie temperature of ~390 K and a martensitic transition temperature of ~120 K. Similar transition temperatures have been observed in films with thicknesses of 1, 3 and 4 μm. Thicker films (with longer deposition time) present a wider martensitic transformation range that can be associated with small gradients in their chemical concentration due to the high vapour pressure of Mn and Ga. The magnetic anisotropy of the films shows a strong change below the martensitic transformation temperature. No features associated with variant reorientation induced by magnetic field have been observed. Annealed films in the presence of a Ni2MnGa bulk reference change their chemical composition to Ni49Mn26Ga25. The change in the chemical composition increases the martensitic transformation temperature, being closer to the stoichiometric compound, and reduces the transformation hysteresis. In addition, sharper transformations are obtained, which indicate that chemical inhomogeneities and defects are removed. Our results indicate that the properties of Ni-Mn-Ga thin films grown by sputtering can be optimized (fixing the chemical concentration and removing crystalline defects) by the annealing process, which is promising for the development of micromagnetic shape memory devices.

  5. Molecular dynamics simulations of lithium silicate/vanadium pentoxide interfacial lithium ion diffusion in thin film lithium ion-conducting devices

    NASA Astrophysics Data System (ADS)

    Li, Weiqun

    The lithium ion diffusion behavior and mechanism in the glassy electrolyte and the electrolyte/cathode interface during the initial stage of lithium ion diffusing from electrolyte into cathode were investigated using Molecular Dynamics simulation technique. Lithium aluminosilicate glass electrolytes with different R (ratio of the concentration of Al to Li) were simulated. The structural features of the simulated glasses are analyzed using Radial Distribution Function (RDF) and Pair Distribution Function (PDF). The diffusion coefficient and activation energy of lithium ion diffusion in simulated lithium aluminosilicate glasses were calculated and the values are consistent with those in experimental glasses. The behavior of lithium ion diffusion from the glassy electrolyte into a polycrystalline layered intercalation cathode has been studied. The solid electrolyte was a model lithium silicate glass while the cathode was a nanocrystalline vanadia with amorphous V2O5 intergranular films (IGF) between the V2O5 crystals. Two different orientations between the V2O5 crystal planes are presented for lithium ion intercalation via the amorphous vanadia IGF. A series of polycrystalline vanadia cathodes with 1.3, 1.9, 2.9 and 4.4 nm thickness IGFs were simulated to examine the effects of the IGF thickness on lithium ion transport in the polycrystalline vanadia cathodes. The simulated results showed that the lithium ions diffused from the glassy electrolyte into the IGF of the polycrystalline vanadia cathode and then part of those lithium ions diffused into the crystalline V2O5 from the IGF. The simulated results also showed an ordering of the vanadium ion structure in the IGF near the IGF/V2 O5 interface. The ordering structure still existed with glass former silica additive in IGF. Additionally, 2.9 run is suggested to be the optimal thickness of the IGF, which is neither too thick to decrease the capacity of the cathode nor too thin to impede the transport of lithium from

  6. MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P.

    2016-02-01

    Manganese dioxide (MnO2) has been recognized as an effective catalyst for the oxygen reduction and oxygen evolution reactions in non-aqueous lithium-oxygen batteries. However, a further improvement in battery performance with the MnO2 catalyst is limited by its low electronic conductivity and catalytic activity, which strongly depend on the morphology and composition. In this work, we develop a carbon- and binder-free MnO2-x nanosheets/stainless steel (SS) cathode via a simple and effective electrodeposition-solvothermal route. The created Mn(III) and oxygen vacancy in MnO2-x nanosheets allows an significant increase in the electronic conductivity and catalytic activity. It is experimentally shown that the use of the present nanostructure MnO2-x/SS cathode in a non-aqueous lithium-oxygen battery results in a rechargeable specific capacity of 7300 mAh g-1 at a current density of 200 mA g-1, which is 39% higher than that with the MnO2/SS cathode. In addition, the specific capacities at 400 mA g-1 and 800 mA g-1 reach 5249 mAh g-1 and 2813 mAh g-1, respectively, which are over 30% higher than that with the MnO2/SS cathode. Furthermore, the discharge/charge cycle test shows no degradation for 120 cycles. All the results show that the present nanostructure MnO2-x/SS cathode is a promising candidate for high-performance lithium-oxygen batteries.

  7. Near Surface Stoichiometry in UO 2 : A Density Functional Theory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.

    2015-01-01

    The mechanisms of oxygen stoichiometry variation in UO 2at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO 2near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO 2have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variationmore » is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO 2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO 2prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  8. High voltage stable liquid electrolytes for Li 1+ xMn 2O 4/carbon rocking-chair lithium batteries

    NASA Astrophysics Data System (ADS)

    Guyomard, D.; Tarascon, J. M.

    A high voltage oxidation-resistant electrolyte is required for Li 1+ xMn 2O 4/carbon rocking-chair cells that need to be charged up to a voltage higher than 4.3 V. Many electrolyte compositions have been tested for their ability to resist to high voltages on Li 1+ xMn 2O 4 electrodes and their ability to maintain high ionic conductivity in a wide temperature range. This survey allowed us to select new electrolyte compositions in the system dimethyl carbonate (DMC) + ethylene carbonate (EC) + lithium hexafluorophosphate (LiPF 6) that are kinetically stable up to almost 5 V versus lithium at 55 °C on Li 1+ xMn 2O 4 electrodes. Low rate potentiostatic experiments, coupled with coulombmetric measurements in the 4.25-5.1 V range, allowed to select the following compositions: (DMC + EC) (1:2) + 1 M LiPF 6 and (DMC + EC) (2:1) + 1.5 M LiPF 6 as the best. These compositions have been used in practical Li 1+ xMn 2O 4/carbon rocking-chair batteries and show better performance in terms of cycle life and self-discharge over a wider temperature range. They are compatible with rocking-chair batteries based on LiCoO 2 and LiNiO 2 as well.

  9. Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Xingbo; Huang, Weifeng; Tao, Shi; Xie, Hui; Wu, Chuanqiang; Yu, Zhen; Su, Xiaozhi; Qi, Jiaxin; Rehman, Zia ur; Song, Li; Zhang, Guobin; Chu, Wangsheng; Wei, Shiqiang

    2017-08-01

    Peroxide structure O2n- has proven to appear after electrochemical process in many lithium-excess precious metal oxides, representing extra reversible capacity. We hereby report construction of a Li-excess rock-salt oxide Li1+xNi1/2-3x/2Ru1/2+x/2O2 electrode, with cost effective and eco-friendly 3d transition metal Ni partially substituting precious 4d transition metal Ru. It can be seen that O2n- is formed in pristine Li1.23Ni0.155Ru0.615O2, and stably exists in subsequent cycles, enabling discharge capacities to 295.3 and 198 mAh g-1 at the 1st/50th cycle, respectively. Combing ex-situ X-ray absorption near edge spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, high resolution transmission electron microscopy and electrochemical characterization, we demonstrate that the excellent electrochemical performance comes from both percolation network with disordered structure and cation/anion redox couples occurring in charge-discharge process. Li-excess and substitution of common element have been demonstrated to be a breakthrough for designing novel high performance commercial cathodes in rechargeable lithium ion battery field.

  10. Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal.

    PubMed

    Wang, Yuye; Tang, Longhuang; Xu, Degang; Yan, Chao; He, Yixin; Shi, Jia; Yan, Dexian; Liu, Hongxiang; Nie, Meitong; Feng, Jiachen; Yao, Jianquan

    2017-04-17

    A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 μJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10-4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.

  11. Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Anand, H.; Gillner, A.

    2017-08-01

    Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.

  12. Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water

    NASA Astrophysics Data System (ADS)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 (LATP), has been examined in distilled water, and aqueous solutions of LiNO 3, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO 3 and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li 3- xPO 4- yN y/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li 3- xPO 4- yN y (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 °C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water.

  13. High harmonic generation at the tunneling ionization of atoms by intense laser radiation near the classical cut-off

    NASA Astrophysics Data System (ADS)

    Gets, A. V.; Krainov, V. P.

    2018-01-01

    The yield of spontaneous photons at the tunneling ionization of atoms by intense low-frequency laser radiation near the classical cut-off is estimated analytically by using the three-step model. The Bell-shaped dependence in the universal photon spectrum is explained qualitatively.

  14. Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Duh, Jenq-Gong

    Lithium titanate is synthesized from titanium isopropoxide and lithium acetate solution under hydrothermal environment and calcinations. Introducing acidized carbon black during synthesis can produce mesoporous Li 4Ti 5O 12. The crystalline structure and morphological observation of the as-synthesized mesoporous Li 4Ti 5O 12 are characterized by X-ray diffraction (XRD) and scanning electron microscopy, respectively. The mesoporous structure can be directly observed through BEI images of the cross-section sample. Besides, N 2 adsorption/desorption isotherm also displays a hysteresis loop, implying the beneficial evidence of mesoporous structure. The pore size distribution of mesoporous lithium titanate evaluated by BJH model is narrow, and the average size of voids is around 4 nm. It is demonstrated that the electrochemical performance is significantly improved by the mesoporous structure. The mesoporous lithium titanate exhibits a stable capacity of 140 mAhg -1 at 0.5 C. Besides, the reversible capacity at 30 C remains over half of that at 0.5 C. The superior C-rate performance is associated with the mesoporous structure, facilitating lithium transportation ability during cycling.

  15. Safety and diagnostic systems on the Liquid Lithium Test Stand (LLTS)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. A.; Jaworski, M. A.; Ellis, R.; Kaita, R.; Mozulay, R.

    2013-10-01

    The Liquid Lithium Test Stand (LLTS) is a test bed for development of flowing liquid lithium systems for plasma-facing components at PPPL. LLTS is designed to test operation of liquid lithium under vacuum, including flowing, solidifying (such as would be the case at the end of plasma operations), and re-melting. Constructed of stainless steel, LLTS is a closed loop of pipe with two reservoirs and a pump, as well as diagnostics for temperature, flow rate, and pressure. Since liquid lithium is a highly reactive material, special care must be taken when designing such a system. These include a permanent-magnet MHD pump and MHD flow meter that have no mechanical components in direct contact with the liquid lithium. The LLTS also includes an expandable 24-channel leak-detector interlock system which cuts power to heaters and the pump if any lithium leaks from a pipe joint. Design for the interlock systems and flow meter are presented. This work is supported by US DOE Contract DE-AC02-09CH11466.

  16. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods.

    PubMed

    Vestad, Tor Arne; Malinen, Eirik; Olsen, Dag Rune; Hole, Eli Olaug; Sagstuen, Einar

    2004-10-21

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co gamma-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co gamma-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  17. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods

    NASA Astrophysics Data System (ADS)

    Vestad, Tor Arne; Malinen, Eirik; Rune Olsen, Dag; Olaug Hole, Eli; Sagstuen, Einar

    2004-10-01

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co ggr-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co ggr-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  18. Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi

    For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less

  19. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.

    PubMed

    Oh, Soo Jung; Lee, Jun Kyu; Yoon, Woo Young

    2014-09-01

    The principal drawback of lithium-sulfur batteries is the dissolution of long-chain lithium polysulfides into the electrolyte, which limits cycling performance. To overcome this problem, we focused on the development of a novel cathode as well as anode material and designed Nafion-coated NiCrAl/S as a cathode and lithium powder as an anode. Nafion-coated NiCrAl/S cathode was synthesized using a two-step dip-coating technique. The lithium-powder anode was used instead of a lithium-foil anode to prohibit dendrite growth and to improve on the electrochemical behaviors. The cells showed an initial discharge capacity of about 900 mA g(-1) and a final discharge capacity of 772 mA g(-1) after 100 cycles at 0.1 C-rate. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) demonstrate that using the Nafion-coated NiCrAl/S cathode can suppress the dissolution of long-chain lithium polysulfides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Early rooting of dormant hardwood cuttings of Populus: analysis of quantitative genetics and genotype x environment interactions

    Treesearch

    Ronald S., Jr. Zalesny; Don E. Riemenschneider; Richard B. Hall

    2005-01-01

    Rooting of hardwood cuttings is under strong genetic control, although genotype x environment interactions affect selection of promising genotypes. Our objectives were (1) to assess the variation in rooting ability among 21 Populus clones and (2) to examine genotype x environment interactions to refine clonal recommendations. The clones belonged to...

  1. Lithium in rocks from the Lincoln, Helena, and Townsend areas, Montana

    USGS Publications Warehouse

    Brenner-Tourtelot, Elizabeth F.; Meier, Allen L.; Curtis, Craig A.

    1978-01-01

    In anticipation of increased demand for lithium for energy-related uses, the U.S. Geological Survey has been appraising the lithium resources of the United States and investigating occurrences of lithium. Analyses of samples of chiefly lacustrine rocks of Oligocene age collected by M. R. Mudge near Lincoln, Mont. showed as much as 1,500 ppm lithium. Since then we have sampled the area in greater detail, and have sampled rocks of similar ages in the Helena and Townsend valleys. The lithium-rich beds crop out in a band about 1.3 km long by 0.3 km wide near the head of Beaver Creek, about 14 km northwest of Lincoln, Mont. These beds consist of laminated marlstone, oil shale, carbonaceous shale, limestone, conglomerate, and tuff. Some parts of this sequence average almost 0.1 percent lithium. The lithium-bearing rocks are too low in grade and volume to be economic. Samples of sedimentary rocks of Oligocene age from the Helena and Townsend valleys in the vicinity of Helena, Mont. were generally low in lithium (3-40 ppm). However, samples of rhyolites from the western side of the Helena valley and from the Lava Mountain area were slightly above average in lithium content (6-200 ppm).

  2. Near surface stoichiometry in UO 2: A density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.

    2015-08-01

    The mechanisms of oxygen stoichiometry variation in UO 2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO 2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO 2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the nearmore » surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO 2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO 2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  3. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes

    NASA Astrophysics Data System (ADS)

    Appetecchi, Giovanni B.; Montanino, Maria; Balducci, Andrea; Lux, Simon F.; Winterb, Martin; Passerini, Stefano

    In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR 13FSI) and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR 14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF 6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures.

  4. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  5. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less

  6. Does the stoichiometric carbon:phosphorus knife edge apply for predaceous copepods?

    PubMed

    Laspoumaderes, Cecilia; Modenutti, Beatriz; Elser, James J; Balseiro, Esteban

    2015-06-01

    Recent work has indicated that stoichiometric food quality in terms of the carbon:phosphorus (C:P) ratio affects consumers whether the imbalance involves a deficit or an excess of nutrients; hence, organisms exist on a "stoichiometric knife edge". While previous studies have focused primarily on autotroph-herbivore trophic transfer, nutritional imbalances may also affect the interactions between species at higher trophic levels. Since the foods of carnivores are normally stoichiometrically similar to the body compositions of those carnivores, they may be more severely affected than herbivores if imbalances become pronounced. We analysed the response of the predatory copepod Parabroteas sarsi to monospecific diet treatments consisting of high and low C:P prey items. These dietary treatments strongly affected the predator's elemental composition and growth, although prey selection, excretion, egestion, and respiration rates were not affected. We suggest that, due to their low threshold elemental ratio and a narrow C:P stoichiometric knife edge, these predators are highly vulnerable to stoichiometric imbalances, whether an excess or a deficit of nutrients is involved. Our results demonstrating this high sensitivity to prey C:P ratio show that the stoichiometric knife edge may apply to not only herbivores but also higher trophic levels. Thus, predators such as P. sarsi, with a much narrower range of food quality, may also be strongly affected by fluctuations in the quality of their prey, with negative consequences for their secondary production.

  7. TOPOTACTIC LITHIUM INSERTION/EXTRACTION PROPERTIES OF A NEW POLYANION MATERIAL LiXCo2(MoO4)3 [0 ≤ X < 3] FOR RECHARGEABLE LITHIUM BATTERIES

    NASA Astrophysics Data System (ADS)

    Begam, K. M.; Michael, M. S.; Prabaharan, S. R. S.

    An open framework type new material LixCo2(MoO4)3 [0 ≤ x < 3] possessing NASICON structure was identified as positive electrode material for use in 3V class lithium batteries. The new material was synthesized in its non-lithiated phase employing a metal/organic precursor method using a soft-combustion approach. We report here on the structural and electrochemical Li+ insertion/extraction properties of the resultant product. XRD revealed a single phase Co2(MoO4)3 powders and the annealed powders were found to contain ultrafine spherical grains. The redox behavior of the new material was demonstrated in lithium containing cells using the conventional wet cell configuration under Li+ aprotic organic electrolyte environment. The material offered a discharge capacity of 110 mAh/g between 3.5V and 1.5V during the first cycle and 50% of the initial capacity was retained at the end of 20th cycle.

  8. Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping.

    PubMed

    Kapylou, Andrei; Song, Jay Hyok; Missiul, Aleksandr; Ham, Dong Jin; Kim, Dong Han; Moon, San; Park, Jin Hwan

    2018-01-05

    The thermal stability of lithium-rich layered oxide with the composition Li(Li 1/6 Ni 1/6 Co 1/6 Mn 1/2 )O 2-x F x (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Operando analysis of lithium profiles in Li-ion batteries using nuclear microanalysis

    NASA Astrophysics Data System (ADS)

    Surblé, S.; Paireau, C.; Martin, J.-F.; Tarnopolskiy, V.; Gauthier, M.; Khodja, H.; Daniel, L.; Patoux, S.

    2018-07-01

    A wide variety of analytical methods are used for studying the behavior of lithium-ion batteries and particularly the lithium ion distribution in the electrodes. However, the development of in situ/operando techniques proved powerful to understand the mechanisms responsible for the lithium trapping and then the aging phenomenon. Herein, we report the design of an electrochemical cell to profile operando lithium concentration in LiFePO4 electrodes using Ion Beam Analysis techniques. The specificity of the cell resides in its ability to not only provide qualitative information about the elements present but above all to measure quantitatively their content in the electrode at different states of charge of the battery. The nuclear methods give direct information about the degradation of the electrolyte and particularly reveal inhomogeneous distributions of lithium and fluorine along the entire thickness of the electrode. Higher concentrations of fluorine is detected near the electrode/electrolyte interface while a depletion of lithium is observed near the current collector at high states of charge.

  10. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  11. High efficiency stoichiometric internal combustion engine system

    DOEpatents

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  12. X-ray near-field speckle: implementation and critical analysis

    PubMed Central

    Lu, Xinhui; Mochrie, S. G. J.; Narayanan, S.; Sandy, A. R.; Sprung, M.

    2011-01-01

    The newly introduced coherence-based technique of X-ray near-field speckle (XNFS) has been implemented at 8-ID-I at the Advanced Photon Source. In the near-field regime of high-brilliance synchrotron X-rays scattered from a sample of interest, it turns out that, when the scattered radiation and the main beam both impinge upon an X-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. A micrometer-resolution XNFS detector with a high numerical aperture microscope objective has been built and its capability for studying static structures and dynamics at longer length scales than traditional far-field X-ray scattering techniques is demonstrated. Specifically, the dynamics of dilute silica and polystyrene colloidal samples are characterized. This study reveals certain limitations of the XNFS technique, especially in the characterization of static structures, which is discussed. PMID:21997906

  13. In Situ X-ray Diffraction Studies of Li(sub x)Mn(sub 2)O(sub 4) Cathode Materials by Synchrotron X-ray Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. Q.; Sun, X.; Lee, S. J.

    In Situ x-ray diffraction studies on Li{sub x}Mn{sub 2}O{sub 4} spinel cathode materials during charge-discharge cycles were carried out by using a synchrotron as x-ray source. Lithium rich (x = 1.03-1.06) spinel materials obtained from two different sources were studied. Three cubic phases with different lattice constants were observed during charge-discharge cycles in all the samples when a Sufficiently low charge-discharge rate (C/10) was used. There are two regions of two-phase coexistence between these three phases, indicating that both phase transitions are first order. The separation of the Bragg peaks representing these three phases varies from sample to sample andmore » also depends on the charge-discharge rate. These results show that the de-intercalation of lithium in lithium-rich spinel cathode materials proceeds through a series of phase transitions from a lithium-rich phase to a lithium-poor phase and finally to a {lambda}-MnO{sub 2} like cubic phase, rather than through a continuous lattice constant contraction in a single phase.« less

  14. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0<x<1 and 0.ltoreq.y<1 in which the Li.sub.2MnO.sub.3 and LiMn.sub.2-yM.sub.yO.sub.4 components have layered and spinel-type structures, respectively, and in which M is one or more metal cations. The electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  15. Design and Fabrication of the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid

    2006-10-01

    The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.

  16. Monitoring and toxicity evaluation of phytoplankton on lithium manganese oxide adsorbents at lithium recovery pilot plant field.

    NASA Astrophysics Data System (ADS)

    Yoon, H. O.; Kim, J. A.; Kim, J. C.; Chung, K. S.; Ryu, J. H.

    2015-12-01

    For recovery of rare mineral resources such as lithium or boron from seawater, the lithium adsorbent material have been made by Korea Institute of Geoscience and Mineral Resources (KIGAM) and pilot plant was conducted in Okgye Harbor, Gangneung, Korea. The application of lithium adsorbent in pilot plant, it is important to consider the impact on the marine environment. Especially phytoplankton communities are important marine microorganism to represent marine primary product. At the same time, phytoplankton is possible to induce the decrease of lithium recovery rate due to cause of biofouling to surfaces of lithium adsorbents. Therefore long-term and periodic monitoring of phytoplankton is necessary to understand the environmental impact and biofouling problems near the lithium pilot plant. The abundance and biomass of phytoplankton have been evaluated through monthly interval sampling from February 2013 to May 2015. Abundance and species diversity of phytoplankton went up to summer from winter. When lithium adsorbents were immersing to seawater, eco-toxicities of released substances were determined using Microtox with bioluminescence bacteria Vibrio fischeri. The adsorbents were soaked in sterilized seawater and aeration for 1, 3, 5, 7, 10 and 14 days intervals under controlled temperature. Maximum EC50 concentration was 61.4% and this toxicity was showed in more than 10 days exposure.

  17. Near Infrared Quantum Cutting Luminescence of Er3+/Tm3+ Ion Pairs in a Telluride Glass.

    PubMed

    Chen, Xiaobo; Li, Song; Hu, Lili; Wang, Kezhi; Zhao, Guoying; He, Lizhu; Liu, Jinying; Yu, Chunlei; Tao, Jingfu; Lin, Wei; Yang, Guojian; Salamo, Gregory J

    2017-05-16

    The multiphoton near-infrared, quantum cutting luminescence in Er 3+ /Tm 3+ co-doped telluride glass was studied. We found that the near-infrared 1800-nm luminescence intensity of (A) Er 3+ (8%)Tm 3+ (0.5%):telluride glass was approximately 4.4 to 19.5 times larger than that of (B) Tm 3+ (0.5%):telluride glass, and approximately 5.0 times larger than that of (C) Er 3+ (0.5%):telluride glass. Additionally, the infrared excitation spectra of the 1800 nm luminescence, as well as the visible excitation spectra of the 522 nm and 652 nm luminescence, of (A) Er 3+ (8%)Tm 3+ (0.5%):telluride glass are very similar to those of Er 3+ ions in (C) Er 3+ (0.5%):telluride glass, with respect to the shapes of their excitation spectral waveforms and peak wavelengths. Moreover, we found that there is a strong spectral overlap and energy transfer between the infrared luminescence of Er 3+ donor ions and the infrared absorption of Tm 3+ acceptor ions. The efficiency of this energy transfer { 4 I 13/2 (Er 3+ ) →  4 I 15/2 (Er 3+ ), 3 H 6 (Tm 3+ ) →  3 F 4 (Tm 3+ )} between the Er 3+ and Tm 3+ ions is approximately 69.8%. Therefore, we can conclude that the observed behaviour is an interesting multiphoton, near-infrared, quantum cutting luminescence phenomenon that occurs in novel Er 3+ -Tm 3+ ion pairs. These findings are significant for the development of next-generation environmentally friendly germanium solar cells, and near-to-mid infrared (1.8-2.0 μm) lasers pumped by GaN light emitting diodes.

  18. Synthesis of tritium breeder ceramics from metallic lithium

    NASA Astrophysics Data System (ADS)

    Knitter, R.; Kolb, M. H. H.; Odemer, C.

    2012-01-01

    For the fabrication of Li-6 enriched ceramic breeder materials for ITER, the availability of Li-6 enriched compounds is limited, and metallic Li-6 is the most widely available compound. As metallic lithium cannot be used directly in ceramic fabrication processes, we investigated different syntheses to obtain lithium orthosilicate or lithium metatitanate directly from molten lithium. In exothermic reactions of molten lithium with silicon, silica, or titania, several intermediate or precursor phases were observed under argon that could easily be transformed to the desired ceramic phases by a subsequent heat treatment under air. The reaction steps and the resulting phases were studied by differential scanning calorimetry and X-ray diffractometry. The synthesis from lithium and silicon seems to be especially suited for the production of larger quantities and has the advantage that silicon is available with a very high grade of purity.

  19. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  20. Determination of the cutting forces regression functions for milling machining of the X105CrMo17 material

    NASA Astrophysics Data System (ADS)

    Popovici, T. D.; Dijmărescu, M. R.

    2017-08-01

    The aim of the research presented in this paper is to determine a cutting force prediction model for milling machining of the X105CrMo17 stainless steel. The analysed material is a martensitic stainless steel which, due to the high Carbon content (∼1%) and Chromium (∼17%), has high hardness and good corrosion resistance characteristics. This material is used for the steel structures parts which are subject of wear in corrosive environments, for making valve seats, bearings, various types of cutters, high hardness bushings, casting shells and nozzles, measuring instruments, etc. The paper is structured into three main parts in accordance to the considered research program; they are preceded by an introduction and followed by relevant conclusions. In the first part, for a more detailed knowledge of the material characteristics, a quality and quantity micro-analysis X-ray and a spectral analysis were performed. The second part presents the physical experiment in terms of input, necessary means, process and registration of the experimental data. In the third part, the experimental data is analysed and the cutting force model is developed in terms of the cutting regime parameters such as cutting speed, feed rate, axial depth and radial depth.

  1. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes.

    PubMed

    Bhaway, Sarang M; Qiang, Zhe; Xia, Yanfeng; Xia, Xuhui; Lee, Byeongdu; Yager, Kevin G; Zhang, Lihua; Kisslinger, Kim; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu; Vogt, Bryan D

    2017-02-28

    Emergent lithium-ion (Li + ) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li + , but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo 2 O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the

  2. A lithium-oxygen battery based on lithium superoxide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi

    Although the superoxide of lithium (LiO2) is believed to be a key intermediate in Li-O2 batteries leading to the formation of lithium peroxide, LiO2 has never been observed in its pure state. In this work, we provide evidence that use of a cathode based on a reduced graphene oxide with Ir nanoparticles in a Li-O2 battery results in a LiO2 discharge product formed by single electron transfer without further electron transfer or disproportionation to form Li2O2. High energy X-ray diffraction (HE-XRD) patterns indicates the presence of crystalline LiO2 with no evidence of Li2O2 or Li2O. The HEXRD studies as amore » function of time also show that LiO2 can be stable in its crystalline form after one week of aging in the presence of electrolyte. The results provide evidence that LiO2 is stable enough that it can be repeatedly charged and discharged with a very low charge potential (~3.2 V) and may open the avenue for a lithium superoxide-based battery.« less

  3. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  4. Electrochemical properties of chemically processed SiO x as coating material in lithium-ion batteries with Si anode.

    PubMed

    Jeong, Hee-June; Yang, Hyeon-Woo; Yun, Kang-Seop; Noh, Eul; Jung, Sang-Chul; Kang, Wooseung; Kim, Sun-Jae

    2014-01-01

    A SiO x coating material for Si anode in lithium-ion battery was processed by using SiCl4 and ethylene glycol. The produced SiO x particles after heat treatment at 725°C for 1 h were porous and irregularly shaped with amorphous structure. Pitch carbon added to SiO x was found to strongly affect solid electrolyte interphase stabilization and cyclic stability. When mixed with an optimal amount of 30 wt% pitch carbon, the SiO x showed a high charge/discharge cyclic stability of about 97% for the 2nd to the 50th cycle. The initial specific capacity of the SiO x was measured to be 1401 mAh/g. On the basis of the evaluation of the SiO x coating material, the process utilized in this study is considered an efficient method to produce SiO x with high performance in an economical way.

  5. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  6. Synthesis, characterization and electrochemmistry of lithium battery electrodes : xLi{sub 2}MnO{sub 3}{center_dot}(1-x)LiMn{sub 0.333}Ni{sub 0.333}Co{sub 0.333}O{sub2} (0{le}x{le}0.7).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C. S.; Li, N.; Lefief, C.

    2008-01-01

    Lithium- and manganese-rich layered electrode materials, represented by the general formula xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} in which M is Mn, Ni, and Co, are of interest for both high-power and high-capacity lithium ion cells. In this paper, the synthesis, structural and electrochemical characterization of xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMn{sub 0.333}Ni{sub 0.333}Co{sub 0.333}O{sub 2} electrodes over a wide compositional range (0 {le} x {le} 0.7) is explored. Changes that occur to the compositional, structural, and electrochemical properties of the electrodes as a function of x and the importance of using a relatively high manganese content and a high chargingmore » potential (>4.4 V) to generate high capacity (>200 mAh/g) electrodes are highlighted. Particular attention is given to the electrode composition 0.3Li{sub 2}MnO{sub 3} {center_dot} 0.7LiMn{sub 0.333}Ni{sub 0.333}Co{sub 0.333}O{sub 2} (x = 0.3) which, if completely delithiated during charge, yields Mn{sub 0.533}Ni{sub 0.233}Co{sub 0.233}O{sub 2}, in which the manganese ions are tetravalent and, when fully discharged, LiMn{sub 0.533}Ni{sub 0.233}Co{sub 0.233}O{sub 2}, in which the average manganese oxidation state (3.44) is marginally below that expected for a potentially damaging Jahn-Teller distortion (3.5). Acid treatment of 0.3Li{sub 2}MnO{sub 3} {center_dot} 0.7LiMn{sub 0.333}Ni{sub 0.333}Co{sub 0.333}O{sub 2} composite electrode structures with 0.1 M HNO{sub 3} chemically activates the Li{sub 2}MnO{sub 3} component and essentially eliminates the first cycle capacity loss but damages electrochemical behavior, consistent with earlier reports for Li{sub 2}MnO{sub 3}-stabilized electrodes. Differences between electrochemical and chemical activation of the Li{sub 2}MnO{sub 3} component are discussed. Electrochemical charge/discharge profiles and cyclic voltammogram data suggest that small spinel-like regions, generated in cycled manganese-rich electrodes, serve to stabilize

  7. Conversion of broadband IR radiation and structural disorder in lithium niobate single crystals with low photorefractive effect

    NASA Astrophysics Data System (ADS)

    Litvinova, Man Nen; Syuy, Alexander V.; Krishtop, Victor V.; Pogodina, Veronika A.; Ponomarchuk, Yulia V.; Sidorov, Nikolay V.; Gabain, Aleksei A.; Palatnikov, Mikhail N.; Litvinov, Vladimir A.

    2016-11-01

    The conversion of broadband IR radiation when the noncritical phase matching condition is fulfilled in lithium niobate (LiNbO3) single crystals with stoichiometric (R = Li/Nb = 1) and congruent (R = 0.946) compositions, as well as in congruent single crystals doped with zinc has been investigated. It is shown that the spectrum parameters of converted radiation, such as the conversion efficiency, spectral width and position of maximum, depend on the ordering degree of structural units of the cation sublattice along the polar axis of crystal.

  8. SAW parameters on Y-cut langasite structured materials.

    PubMed

    Puccio, Derek; Malocha, Donald C; Saldanha, Nancy; da Cunha, Mauricio Pereira

    2007-09-01

    This paper presents results and investigations of several new, man-made piezoelectric single crystal, Czochralski-grown substrate materials for surface acoustic waves (SAW) applications. These materials, langanite (LGN), langatate (LGT), Sr3TaGa3Si2O14 (STGS), Sr3NbGa3Si2O14 (SNGS), Ca3TaGa3Si2O14 (CTGS), and Ca3NbGa3Si2O14 (CNGS), have the same structure as langasite (LGS) and are of the same crystal class as quartz. These compounds are denser than quartz, resulting in lower phase velocities. They also have higher coupling. Unlike quartz and lithium niobate, there is no degradation of material properties below the material melting points resulting in the possibility of extreme high-temperature operation (> 1000 degrees C). This paper gives a summary of extracted SAW material parameters for various propagation angles on Y-cut substrates of the six materials. Parameters included are electromechanical coupling, phase velocity, transducer capacitance, metal strip reflectivity, and temperature coefficient of frequency. Using previously published fundamental material constants, extracted parameters are compared with predictions for LGT and LGN. In addition, power flow angle and fractional frequency curvature data are reported for propagation angles on CTGS and CNGS Y-cut substrates that exhibit temperature compensation near room temperature. Detailed descriptions of the SAW parameter extraction techniques are given. A discussion of the results is provided, including a comparison of extracted parameters and an overview of possible SAW applications.

  9. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Nakano, S.; Nakayama, A.; Kikegawa, T.

    2008-07-01

    Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.

  10. Is violence in part a lithium deficiency state?

    PubMed

    Goldstein, Mark R; Mascitelli, Luca

    2016-04-01

    Violence, particularly firearm violence, leading to suicide and homicide is a significant problem worldwide. A majority of suicidal and homicidal violence involves males; homicidal violence is prevalent among young men and suicide is the leading cause of violence worldwide. Lithium, in pharmacological doses, has been used successfully for decades in treating bipolar disorders, and has been shown to decrease violent crime in this situation. Interestingly, lithium, in trace amounts, as occurs in some drinking water, has been inversely related to aggression, and suicidal and homicidal violence. Lithium is naturally found in vegetables, grains and drinking water, and dietary intake varies from nearly zero to 3mg daily. Elemental lithium, in trace doses, has been shown to improve mood in weeks. Moreover, lithium, in trace amounts, has no toxicity. In order to ensure adequate dietary intakes of elemental lithium daily for the purpose of decreasing aggression and violence, we propose considering the fortification of cereal grain products with lithium and also the addition of lithium to vitamin preparations for adults. Importantly, randomized trials in various populations are needed to test this hypothesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Improvement Cut

    Treesearch

    J. W. Johnson

    1950-01-01

    Early, effects of partial cutting on diameter growth in bottomland hardwood forests have been measured recently near Vance, Mississippi, according to a report by J. W. Johnson of the Southern Forest Experiment Station, New Orleans, LA.

  12. Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery.

    PubMed

    Liu, Jie; Qian, Tao; Wang, Mengfan; Liu, Xuejun; Xu, Na; You, Yizhou; Yan, Chenglin

    2017-08-09

    Using molecularly imprinted polymer to recognize various target molecules emerges as a fascinating research field. Herein, we applied this strategy for the first time to efficiently recognize and trap long-chain polysulfides (Li 2 S x , x = 6-8) in lithium sulfur battery to minimize the polysulfide shuttling between anode and cathode, which enables us to achieve remarkable electrochemical performance including a high specific capacity of 1262 mAh g -1 at 0.2 C and superior capacity retention of over 82.5% after 400 cycles at 1 C. The outstanding performance is attributed to the significantly reduced concentration of long-chain polysulfides in electrolyte as evidenced by in situ UV/vis spectroscopy and Li 2 S nucleation tests, which were further confirmed by density functional theory calculations. The molecular imprinting is demonstrated as a promising approach to effectively prevent the free diffusion of long-chain polysulfides, providing a new avenue to efficiently recognize and trap lithium polysulfides for high-performance lithium sulfur battery with greatly suppressed shuttle effect.

  13. Lithium alloy negative electrodes

    NASA Astrophysics Data System (ADS)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  14. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.

    PubMed

    Xiao, Jiefeng; Li, Jia; Xu, Zhenming

    2017-10-17

    Lithium is a rare metal because of geographical scarcity and technical barrier. Recycling lithium resource from spent lithium ion batteries (LIBs) is significant for lithium deficiency and environmental protection. A novel approach for recycling lithium element as Li 2 CO 3 from spent LIBs is proposed. First, the electrode materials preobtained by mechanical separation are pyrolyzed under enclosed vacuum condition. During this process the Li is released as Li 2 CO 3 from the crystal structure of lithium transition metal oxides due to the collapse of the oxygen framework. An optimal Li recovery rate of 81.90% is achieved at 973 K for 30 min with a solid-to-liquid ratio of 25 g L -1 , and the purity rate of Li 2 CO 3 is 99.7%. The collapsed mechanism is then presented to explain the release of lithium element during the vacuum pyrolysis. Three types of spent LIBs including LiMn 2 O 4 , LiCoO 2 , and LiCo x Mn y Ni z O 2 are processed to prove the validity of in situ recycling Li 2 CO 3 from spent LIBs under enclosed vacuum condition. Finally, an economic assessment is taken to prove that this recycling process is positive.

  15. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.

    PubMed

    Zhang, Jie; Lu, Qingwen; Fang, Jianhua; Wang, Jiulin; Yang, Jun; NuLi, Yanna

    2014-10-22

    Lithium-rich materials represented by xLi2MnO3·(1 - x)LiMO2 (M = Mn, Co, Ni) are attractive cathode materials for lithium-ion battery due to their high specific energy and low cost. However, some drawbacks of these materials such as poor cycle and rate capability remain to be addressed before applications. In this study, a thin polyimide (PI) layer is coated on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) by a polyamic acid (PAA) precursor with subsequently thermal imidization process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) results confirm the successful formation of a PI layer (∼3 nm) on the surface of LNMCO without destruction of its main structure. X-ray photoelectron spectroscopy (XPS) spectra show a slight shift of the Mn valence state from Mn(IV) to Mn(III) in the PI-LNMCO treated at 450 °C, elucidating that charge transfer takes place between the PI layer and LNMCO surface. Electrochemical performances of LNMCO including cyclic stability and rate capability are evidently improved by coating a PI nanolayer, which effectively separates the cathode material from the electrolyte and stabilizes their interface at high voltage.

  16. Lithium Recovery from Aqueous Resources and Batteries: A Brief Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Deshmane, Vishwanath G.; Paranthaman, M. Parans

    The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbentsmore » including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)3). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.« less

  17. Lithium Recovery from Aqueous Resources and Batteries: A Brief Review

    DOE PAGES

    Li, Ling; Deshmane, Vishwanath G.; Paranthaman, M. Parans; ...

    2018-04-01

    The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbentsmore » including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)3). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.« less

  18. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  19. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  20. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  1. High-Performance Ga2O3 Anode for Lithium-Ion Batteries.

    PubMed

    Tang, Xun; Huang, Xin; Huang, Yongmin; Gou, Yong; Pastore, James; Yang, Yao; Xiong, Yin; Qian, Jiangfeng; Brock, Joel D; Lu, Juntao; Xiao, Li; Abruña, Héctor D; Zhuang, Lin

    2018-02-14

    There is a great deal of interest in developing battery systems that can exhibit self-healing behavior, thus enhancing cyclability and stability. Given that gallium (Ga) is a metal that melts near room temperature, we wanted to test if it could be employed as a self-healing anode material for lithium-ion batteries (LIBs). However, Ga nanoparticles (NPs), when directly applied, tended to aggregate upon charge/discharge cycling. To address this issue, we employed carbon-coated Ga 2 O 3 NPs as an alternative. By controlling the pH of the precursor solution, highly dispersed and ultrafine Ga 2 O 3 NPs, embedded in carbon shells, could be synthesized through a hydrothermal carbonization method. The particle size of the Ga 2 O 3 NPs was 2.6 nm, with an extremely narrow size distribution, as determined by high-resolution transmission electron microscopy and Brunauer-Emmett-Teller measurements. A lithium-ion battery anode based on this material exhibited stable charging and discharging, with a capacity of 721 mAh/g after 200 cycles. The high cyclability is due to not only the protective effects of the carbon shell but also the formation of Ga 0 during the lithiation process, as indicated by operando X-ray absorption near-edge spectroscopy.

  2. X-ray absorption spectroscopy of LiBF 4 in propylene carbonate. A model lithium ion battery electrolyte

    DOE PAGES

    Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; ...

    2014-08-20

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF 4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li + ion in thismore » model electrolyte. By generating linear combinations of the computed spectra of Li +-associating and free PC molecules and comparing to the experimental spectrum, we find a Li +–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less

  3. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb 2 Ti 2 O 7

    DOE PAGES

    Gaudet, J.; Maharaj, D. D.; Sala, G.; ...

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb 3+ ion in the candidate quantum spin ice pyrochlore magnet Yb 2Ti 2O 7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti 4+ sites are occupied by excess Yb 3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Ybmore » 2Ti 2O 7, as well as a crushed single crystal with weak stuffing and an approximate composition of Yb 2+xTi 2–xO 7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of m J = ±1/2, as expected. However, stuffing at low temperatures in Yb 2+xTi 2–xO 7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb 2Ti 2O 7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb 2+xTi 2–xO 7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.« less

  4. Durability of the Li 1+xTi 2–xAl x(PO 4) 3 Solid Electrolyte in Lithium–Sulfur Batteries

    DOE PAGES

    Wang, Shaofei; Ding, Yu; Zhou, Guangmin; ...

    2016-10-31

    Adoption of cells with a solid-state electrolyte is a promising solution for eliminating the polysulfide shuttle problem in Li-S batteries. Among the various known lithium-ion conducting solid electrolytes, the sodium superionic conductor (NASICON)-type Li 1+xTi 2-xAl x(PO 4) 3 offers the advantage of good stability under ambient conditions and in contact with air. Accordingly, we present here a comprehensive assessment of the durability of Li 1+xTi 2-xAl x(PO 4) 3 in contact with polysulfide solution and in Li-S cells. Because of its high reduction potential (2.5 V vs Li/Li +), Li 1+xTi 2-xAl x(PO 4) 3 gets lithiated in contactmore » with lithium polysulfide solution and Li 2CO 3 is formed on the particle surface, blocking the interfacial lithium-ion transport between the liquid and solid-state electrolytes. After the lithium insertion into the NASICON framework, the crystal expands in an anisotropic way, weakening the crystal bonds, causing fissures and resultant cracks in the ceramic, corroding the grain boundaries by polysulfide solution, and leaving unfavorable pores. The assembly of pores creates a gateway for polysulfide diffusion from the cathode side to the anode side, causing an abrupt decline in cell performance. Therefore, the solid-state electrolytes need to have good chemical compatibility with both the electrode and electrolyte, long-term stability under harsh chemical environment, and highly stable grain boundaries.« less

  5. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  6. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering

    PubMed Central

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-01-01

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials. PMID:28845452

  7. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering

    DOE PAGES

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; ...

    2017-08-02

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. In this study, we show that inelastic scattering spectroscopy using high-energy x-ray photonsmore » (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO 4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.« less

  8. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. In this study, we show that inelastic scattering spectroscopy using high-energy x-ray photonsmore » (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO 4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.« less

  9. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering.

    PubMed

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-08-01

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO 4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.

  10. Lithium dendrite growth through solid polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  11. Non-Destructive Characterization of UO2+x Nuclear Fuels

    DOE PAGES

    Pokharel, Reeju; Brown, Donald W.; Clausen, Bjørn; ...

    2017-10-27

    This article describes the effect of fabrication conditions on as-sintered microstructures of various stoichiometric ratios of uranium dioxide, UO 2+x, with the aim of enhancing the understanding of fabrication process and developing and validating a predictive microstructurebased model for fuel performance. We demonstrate the ability of novel, non-destructive methods such as near-field high-energy X-ray diffraction microscopy (nf-HEDM) and micro-computed tomography (μ-CT) to probe bulk samples of high-Z materials by non-destructively characterizing three samples: UO 2.00, UO 2.11, and UO 2.16, which were sintered at 1450°C for 4 hours. The measured 3D microstructures revealed that grain size and porosity were influencedmore » by deviation from stoichiometry.« less

  12. Capacity fade of LiNi(1-x-y)CoxAlyO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi(1-x-y)CoxAlyO2 and LiCoO2 cathodes in cylindrical lithium-ion cells during long term storage test

    NASA Astrophysics Data System (ADS)

    Watanabe, Shoichiro; Kinoshita, Masahiro; Nakura, Kensuke

    2014-02-01

    Ni-based LiNi(1-x-y)CoxAlyO2 (NCA) and LiCoO2 (LCO) cathode materials taken out of lithium-ion cells after storage for 2 years at 45 °C were analyzed by various spectroscopic techniques. X-ray photoelectron spectroscopy exhibited that there was no difference between NCA and LCO. On the other hand, scanning transmission electron microscopy-electron energy-loss spectroscopy demonstrated there was a remarkably large difference between the two cathode materials. Ni-L2,3 energy-loss near-edge structure (ELNES) spectra of the NCA showed a peak at about 856.5 eV, which was assigned to trivalent nickel, was maintained even after storage, indicating that the NCA had no significant change in its surface structure during storage. On the other hand, in the Co-L2,3 ELNES spectra of the LCO a peak at about 782.5 eV, which was assigned to trivalent cobalt, significantly shifted to the lower energies after storage. These results suggest that crystal structure change of the active material surface is a predominant reason of deterioration during the storage test.

  13. Structural and magnetic phase transitions near optimal superconductivity in BaFe 2(As 1-xP x) 2

    DOE PAGES

    Hu, Ding; Lu, Xingye; Zhang, Wenliang; ...

    2015-04-17

    In this study, we use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe 2(As 1-xP x) 2. Thus, previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x = 0.3. However, we show that the tetragonal-to-orthorhombic structural (T s) and paramagnetic to antiferromagnetic (AF, T N) transitions in BaFe 2(As 1-xP x) 2 are always coupled and approach to T N ≈ T s ≥ T c (≈ 29 K) formore » x = 0.29 before vanishing abruptly for x ≥ 0.3. These results suggest that AF order in BaFe 2(As 1-xP x) 2 disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.« less

  14. Vaporization chemistry of hypo-stoichiometric (U,Pu)O 2

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Krishnaiah, M. V.

    2001-04-01

    Calculations were performed on hypo-stoichiometric uranium plutonium di-oxide to examine its vaporization behavior as a function of O/ M ( M= U+ Pu) ratio and plutonium content. The phase U (1- y) Pu yO z was treated as an ideal solid solution of (1- y)UO 2+ yPuO (2- x) such that x=(2- z)/ y. Oxygen potentials for different desired values of y, z, and temperature were used as the primary input to calculate the corresponding partial pressures of various O-, U-, and Pu-bearing gaseous species. Relevant thermodynamic data for the solid phases UO 2 and PuO (2- x) , and the gaseous species were taken from the literature. Total vapor pressure varies with O/M and goes through a minimum. This minimum does not indicate a congruently vaporizing composition. Vaporization behavior of this system can at best be quasi-congruent. Two quasi-congruently vaporizing compositions (QCVCs) exist, representing the equalities (O/M) vapor=(O/M) mixed-oxide and (U/Pu) vapor=(U/Pu) mixed-oxide, respectively. The (O/M) corresponding to QCVC1 is lower than that corresponding to QCVC2, but very close to the value where vapor pressure minimum occurs. The O/M values of both QCVCs increase with decrease in plutonium content. The vaporization chemistry of this system, on continuous vaporization under dynamic condition, is discussed.

  15. A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes

    NASA Astrophysics Data System (ADS)

    Aurbach, D.; Gofer, Y.; Schechter, A.; Chusid, O.; Gizbar, H.; Cohen, Y.; Moshkovich, M.; Turgeman, R.

    This paper describes briefly the difference between reversible lithium and magnesium electrodes. In the case of lithium, the active metal is always covered by surface films. Li dissolution-deposition is reversible only when the surface films contain elastomers and are flexible. Hence, they can accommodate the morphological changes of the electrode during the electrochemical processes without breaking down. In an ideal situation, lithium is deposited beneath the surface films, while being constantly protected in a way that prevents reactions between freshly deposited lithium and solution species. In contrast to lithium, magnesium electrodes are reversible only in solutions where surface film free conditions exist. Mg does not react with ethers, and thus, in ethereal solutions of Grignard reagents (RMgX, where R=alkyl, aryl, X=halide) and complexes of the following type: Mg(AlX 4- nR n' R n″ ') 2, R and R'=alkyl groups, X=halide, A=Al, 0< n<4 and n'+ n''= n, magnesium electrodes behave reversibly. However, it should be noted that the above stoichiometry of the Mg salts does not reflect the true structure of the active ions in solutions. Mg deposition does not occur via electron transfer to simply solvated Mg 2+ ions. The behavior of Mg electrodes in these solutions is discussed in light of studies by EQCM, EIS, FTIR, XPS, STM and standard electrochemical techniques.

  16. Formation and transformation of the radiation-induced nearsurface color centers in sodium and lithium fluorides nanocrystals

    NASA Astrophysics Data System (ADS)

    Novikov, A. N.; Kalinov, V. S.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Voitovich, A. P.

    2017-11-01

    Near-surface color centers in sodium fluoride nanocrystals have been formed. At pre-irradiation annealing of sodium and lithium fluorides samples at temperatures of 623 K and above, the near-surface color centers in them have not been found after γ-irradiation. Annealing lithium fluoride nanocrystals with the near-surface defects leads to their transformation into bulk ones of the same composition.

  17. Characterization of near-stoichiometric Ti:LiNbO(3) strip waveguides with varied substrate refractive index in the guiding layer.

    PubMed

    Zhang, De-Long; Zhang, Pei; Zhou, Hao-Jiang; Pun, Edwin Yue-Bun

    2008-10-01

    We have demonstrated the possibility that near-stoichiometric Ti:LiNbO(3) strip waveguides are fabricated by carrying out vapor transport equilibration at 1060 degrees C for 12 h on a congruent LiNbO(3) substrate with photolithographically patterned 4-8 microm wide, 115 nm thick Ti strips. Optical characterizations show that these waveguides are single mode at 1.5 microm and show a waveguide loss of 1.3 dB/cm for TM mode and 1.1 dB/cm for TE mode. In the width/depth direction of the waveguide, the mode field follows the Gauss/Hermite-Gauss function. Secondary-ion-mass spectrometry (SIMS) was used to study Ti-concentration profiles in the depth direction and on the surface of the 6 microm wide waveguide. The result shows that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. The surface Ti concentration, 1/e width and depth, and mean diffusivities along the width and depth directions of the guide are similar to 3.0 x 10(21) cm(-3), 3.8 microm, 2.6 microm, 0.30 and 0.14 microm(2)/h, respectively. Micro-Raman analysis was carried out on the waveguide endface to characterize the depth profile of Li composition in the guiding layer. The results show that the depth profile of Li composition also follows a complementary error function with a 1/e depth of 3.64 microm. The mean ([Li(Li)]+[Ti(Li)])/([Nb(Nb)]+[Ti(Nb)]) ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer. A two-dimensional refractive index profile model in the waveguide is proposed by taking into consideration the varied substrate index and assuming linearity between Ti-induced index change and Ti concentration. The net waveguide surface index increments at 1545 nm are 0.0114 and 0.0212 for ordinary and extraordinary rays, respectively. Based upon the constructed index model, the fundamental mode field profile was calculated using the

  18. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Zhu, Lu; Wu, Feng; Li, Li; Zhang, Rong; Chen, Shi

    2014-01-01

    Lithium difluoromono(oxalato)borate (LiODFB) has been used as a novel lithium salt for battery in recent studies. In this study, a series of novel electrolytes has been prepared by adding 30 vol% dimethyl sulfite (DMS) or dimethyl carbonate (DMC) as co-solvent into an ethylene carbonate (EC)/ethyl methyl carbonate (EMC) + LiX mixture, in which the LiX could be LiClO4, LiODFB, LiBOB, LiTFSI, or LiCF3SO3. These ternary electrolytes have been investigated for use in lithium ion batteries. FT-IR spectroscopy analysis shows that characteristic functional groups (-CO3, -SO3) undergo red-shift or blue-shift with the addition of different lithium salts. The LiODFB-EC/EMC/DMS electrolyte exhibits high ionic conductivity, which is mainly because of the low melting point of DMS, and LiODFB possessing high solubility. The Li/MCMB cells containing this novel electrolyte exhibit high capacities, good cycling performance, and excellent rate performance. These performances are probably because both LiODFB and DMS can assist in the formation of SEI films by reductive decomposition. Additionally, the discharge capacity of Li/LiCoO2 half cell containing LiODFB-EC/EMC/DMS electrolyte is 130.9 mAh g-1 after 50 cycles, and it is very comparable with the standard-commercial electrolyte. The results show that this study produces a promising electrolyte candidate for lithium ion batteries.

  19. Intricate Li-Sn Disorder in Rare-Earth Metal-Lithium Stannides. Crystal Chemistry of RE3Li4- xSn4+ x (RE = La-Nd, Sm; x < 0.3) and Eu7Li8- xSn10+ x ( x ≈ 2.0).

    PubMed

    Suen, Nian-Tzu; Guo, Sheng-Ping; Hoos, James; Bobev, Svilen

    2018-05-07

    Reported are the syntheses, crystal structures, and electronic structures of six rare-earth metal-lithium stannides with the general formulas RE 3 Li 4- x Sn 4+ x (RE = La-Nd, Sm) and Eu 7 Li 8- x Sn 10+ x . These new ternary compounds have been synthesized by high-temperature reactions of the corresponding elements. Their crystal structures have been established using single-crystal X-ray diffraction methods. The RE 3 Li 4- x Sn 4+ x phases crystallize in the orthorhombic body-centered space group Immm (No. 71) with the Zr 3 Cu 4 Si 4 structure type (Pearson code oI22), and the Eu 7 Li 8- x Sn 10+ x phase crystallizes in the orthorhombic base-centered space group Cmmm (No. 65) with the Ce 7 Li 8 Ge 10 structure type (Pearson code oC50). Both structures can be consdered as part of the [RESn 2 ] n [RELi 2 Sn] m homologous series, wherein the structures are intergrowths of imaginary RESn 2 (AlB 2 -like structure type) and RELi 2 Sn (MgAl 2 Cu-like structure type) fragments. Close examination the structures indicates complex occupational Li-Sn disorder, apparently governed by the drive of the structure to achieve an optimal number of valence electrons. This conclusion based on experimental results is supported by detailed electronic structure calculations, carried out using the tight-binding linear muffin-tin orbital method.

  20. Negative thermal expansion near two structural quantum phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K formore » dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion« less

  1. Negative thermal expansion near two structural quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions. We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of new materials exhibiting negative thermal expansion.

  2. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, R.; Bell, R. E.; Boyle, D. P.

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  3. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE PAGES

    Majeski, R.; Bell, R. E.; Boyle, D. P.; ...

    2017-03-20

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  4. The Deformations of Carbon Nanotubes under Cutting.

    PubMed

    Deng, Jue; Wang, Chao; Guan, Guozhen; Wu, Hao; Sun, Hong; Qiu, Longbin; Chen, Peining; Pan, Zhiyong; Sun, Hao; Zhang, Bo; Che, Renchao; Peng, Huisheng

    2017-08-22

    The determination of structural evolution at the atomic level is essential to understanding the intrinsic physics and chemistries of nanomaterials. Mechanochemistry represents a promising method to trace structural evolution, but conventional mechanical tension generates random breaking points, which makes it unavailable for effective analysis. It remains difficult to find an appropriate model to study shear deformations. Here, we synthesize high-modulus carbon nanotubes that can be cut precisely, and the structural evolution is efficiently investigated through a combination of geometry phase analysis and first-principles calculations. The lattice fluctuation depends on the anisotropy, chirality, curvature, and slicing rate. The strain distribution further reveals a plastic breaking mechanism for the conjugated carbon atoms under cutting. The resulting sliced carbon nanotubes with controllable sizes and open ends are promising for various applications, for example, as an anode material for lithium-ion batteries.

  5. Engineering experimental program on the effects of near-space radiation on lithium doped solar cells

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of an experimental evaluation of the real-time degradation characteristics of lithium-diffused silicon solar cells are reported. A strontium-90 radioisotope was used for simulation of a typical earth-orbital electron environment. The experiment was performed in an ion pump vacuum chamber with samples maintained at -50, +20, +50, and +80 C. Samples were illuminated during the 6-month exposure run with solar cell 1-5 characteristics measured periodically in situ. This 6-month exposure corresponded to a 1 MeV equivalent fluence of approximately 10 to the 14th power electrons/sq cm. Several types of lithium cells were irradiatied and compared directly with conventional N/P cells. The best lithium cells compared favorably with N/P cells, particularly at the higher test temperatures. With a slight improvement of initial performance characteristics, lithium cells appear feasible for 5 to 10 year missions at synchronous altitude. Based on the reported results and those of other irradiation experiments, lithium cells would appear to be superior to N/P cells in proton-dominated earth-orbital environments. Another important conclusion of the effort was that illuminated/loaded cells degrade more rapidly than do dark/unloaded cells. The irradiation experiment provided data of high quality with a high degree of confidence because of the experimental and statistical analysis techniques utilized.

  6. Quantum and isotope effects in lithium metal

    NASA Astrophysics Data System (ADS)

    Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti

    2017-06-01

    The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

  7. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  8. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    DOE PAGES

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; ...

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi 2MnO 3·(1-x)LiMO 2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopymore » is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less

  9. Strong texturing of lithium metal in batteries

    DOE PAGES

    Shi, Feifei; Pei, Allen; Vailionis, Arturas; ...

    2017-10-30

    Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type ofmore » additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO 3 and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. In conclusion, this understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.« less

  10. Strong texturing of lithium metal in batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Feifei; Pei, Allen; Vailionis, Arturas

    Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type ofmore » additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO 3 and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. In conclusion, this understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.« less

  11. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng

    Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in

  12. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes

    DOE PAGES

    Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng; ...

    2017-02-07

    Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in

  13. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  14. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  15. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  16. Near-infrared counterparts to the Galactic Bulge Survey X-ray source population

    NASA Astrophysics Data System (ADS)

    Greiss, S.; Steeghs, D.; Jonker, P. G.; Torres, M. A. P.; Maccarone, T. J.; Hynes, R. I.; Britt, C. T.; Nelemans, G.; Gänsicke, B. T.

    2014-03-01

    We report on the near-infrared matches, drawn from three surveys, to the 1640 unique X-ray sources detected by Chandra in the Galactic Bulge Survey (GBS). This survey targets faint X-ray sources in the bulge, with a particular focus on accreting compact objects. We present all viable counterpart candidates and associate a false alarm probability (FAP) to each near-infrared match in order to identify the most likely counterparts. The FAP takes into account a statistical study involving a chance alignment test, as well as considering the positional accuracy of the individual X-ray sources. We find that although the star density in the bulge is very high, ˜90 per cent of our sources have an FAP <10 per cent, indicating that for most X-ray sources, viable near-infrared counterparts candidates can be identified. In addition to the FAP, we provide positional and photometric information for candidate counterparts to ˜95 per cent of the GBS X-ray sources. This information in combination with optical photometry, spectroscopy and variability constraints will be crucial to characterize and classify secure counterparts.

  17. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  18. Effect of lithium in the DIII-D SOL and plasma-facing surfaces

    NASA Astrophysics Data System (ADS)

    Jackson, G. L.; Chrobak, C. P.; McLean, A. G.; Maingi, R.; Mansfield, D. K.; Roquemore, A. L.; Diwakar, P.; Hassanein, A.; Lietz, A.; Rudakov, D. L.; Sizyuk, T.; Tripathi, J.

    2015-08-01

    Lithium has been introduced into the DIII-D tokamak, and migration and retention in graphite have been characterized since no lithium was present in DIII-D initially. A new regime with an enhanced edge electron pedestal and H98y2 ⩽ 2 has been obtained with lithium. Lithium deposition was not uniform, but rather preferentially deposited near the strike points, consistent with previous 13C experiments. Edge visible lithium light (LiI) remained well above the previous background during the entire DIII-D campaign, decaying with a 2600 plasma-second e-fold, but plasma performance was only affected on the discharge with lithium injection. Lithium injection demonstrated the capability of reducing hydrogenic recycling, density, and ELM frequency. Graphite and silicon samples were exposed to a lithium-injected discharge, using the DiMES system and then removed for ex-situ analysis. The deposited lithium layer remained detectable to a depth up to 1 μm.

  19. Near-edge X-ray refraction fine structure microscopy

    DOE PAGES

    Farmand, Maryam; Celestre, Richard; Denes, Peter; ...

    2017-02-06

    We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less

  20. Lithium

    USGS Publications Warehouse

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  1. A rechargeable lithium battery employing cobalt chevrel-phase compound as the cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yomaguchi, S.; Uchida, T.; Wakihara, M.

    This paper reports on the single-phase region of cobalt Chevrel-phase compound (Co{sub y}Mo{sub 6}S{sub 8{minus}z}:CoCP) determined by x-ray diffraction analysis. The nonstoichiometric range of CoCP was very narrow and the only CoCP with y = 1.6,8 {minus} z = 7.7 could be prepared as a single phase. The CoCP was evaluated as a cathode for lithium secondary batteries. 1M CiClO{sub 4} in PC was used as an electrolyte. The discharge properties and discharge-charge cycling properties were measured galvanostatically under constant current densities from 0.1 to 2.0 mA/cm{sup 2}. The cell exhibited good discharge performance; for example when the cell wasmore » discharged under a cd = 0.1 mA/cm{sup 2}, 4.8 Li/Co{sub 1.6}Mo{sub 6}S{sub 7.7} were incorporated before the cell voltage fell down to 1.0 V (energy density: 277 Wh/kg). Also a rechargeability of more than 200 cycles was observed at cd = 0.5 mA/cm{sup 2}. The curve of OCV with varying Li content in the CoCP was very flat and near 2.1 V. The x-ray analysis of lithium incorporated cobalt Chevrel phase, Li{sub x}CoCP, was two sets of hexagonal lattice parameters showing the existence of two types of Chevrel phases (having different lattice parameters) coexisting in a wide range of 0 {lt} x {lt} 4.5.« less

  2. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experimentmore » (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (d ~ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H2 within minutes. For impurity sequestration, LTX plasma

  3. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance

  4. Lithium ameliorates open-field and elevated plus maze behaviors, and brain phospho-glycogen synthase kinase 3-beta expression in fragile X syndrome model mice.

    PubMed

    Chen, Xi; Sun, Weiwen; Pan, Ying; Yang, Quan; Cao, Kaiyi; Zhang, Jin; Zhang, Yizhi; Chen, Mincong; Chen, Feidi; Huang, Yueling; Dai, Lijun; Chen, Shengqiang

    2013-10-01

    To investigate whether lithium modifies open-field and elevated plus maze behavior, and brain phospho-glycogen synthase kinase 3 (P-GSK3beta) expression in Fmr1 knockout mice. One hundred and eighty FVB mice, including knockout and wild type, with an age of 30 days were used. An open-field and elevated plus maze was utilized to test behavior, while western blot was used to measure the P-GSK3beta expression. Six groups were formed: control (saline), lithium chloride 30, 60, 90, 120, and 200 mg/kg. The experiments were carried out in the Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China between January and June 2012. Lithium significantly decreased total distance, crossing, central area time, and center entry in the open-field test (p<0.05), and significantly reduced open-arm tracking, open-arm entry, and open-arm time in the elevated plus maze (p<0.05) in knockout mice. In wild type mice, significant changes were observed in both behavior tests in some treatment groups. Lithium ameliorated P-GSK3beta expression in the hippocampus of all the treatment groups in knockout mice (p<0.05). However, lithium did not modify either GSK3beta expression in tissues of knockout mice, or P-GSK3beta or GSK3beta expression in tissues of wild type mice. Lithium ameliorated open-field and elevated plus maze behaviors of Fmr1 knockout mice. This effect may be related to its enhancement of P-GSK3beta expression. Our findings suggest that lithium might have a therapeutic effect in fragile X syndrome.

  5. Synthesis, characterization and lithium-ion migration dynamics simulation of LiFe1- x T x PO4 (T = Mn, Co, La and Ce) doping cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Yi; Zhang, Fu Chun; Han, Jeong In

    2016-11-01

    LiFePO4 was doped by metallic cation in Fe sites via ball milling by a solid-state reaction method synthesis, and with very low-level doping of these samples, such as Li0.95T0.05FePO4 (where T = Mn2+, Co2+, La3+, Ce4+). The effects of doping were studied by X-ray diffraction pattern, Raman shift, scanning electronic microscopy and energy-dispersive X-ray spectroscopy as sample characterizations. The results indicate that these dopants have no significant effect on the structure of the material, but considerably improve its electrochemical behavior. First-principles calculations were used to obtain the migration pathway of Li ions along the one-dimensional (010) direction in LiFePO4, and molecular dynamics simulation was used to investigate the lithium-ion diffusion coefficients ( D Li) inside LiFePO4, which were derived from the slope of the mean square displacement versus time plots. The evolution of the structure during the simulation was analyzed by the radial distribution function to obtain the data, and radial distribution functions and mean square displacements were used to confirm the formation of crystalline units and the evolution of structure.

  6. Lithium in M67

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.; Pilachowski, Catherine

    1986-01-01

    Echelle spectra recorded at the Li I 6707-A line are reported for seven main-sequence members and one cool subgiant in M67. The spectral types of the seven dwarfs studied range from about F8 at the turnoff point to about G5. The principal result is that the average lithium abundance in the three hottest main-sequence stars is 0.45 x 10 to the -9th. Any enrichment of lithium in the gas of the Galactic disk in the last 5 Gyr therefore has not exceeded a factor of about two and probably is entirely negligible, when the corresponding results for NGC 752 and the Hyades are taken into account.

  7. Improvement Cutting in Bottomland Hardwoods

    Treesearch

    J. W. Johnson

    1951-01-01

    Do bottomland hardwood forests respond to improvement cuts? Do growth rate and stand quality increase enough to make up for the extra effort and, sometimes, outright expense of improvement cutting? Ten years of growth on some plots on the Delta Experimental Forest near Stoneville, Mississippi, indicates that the answer to both questions is "yes".

  8. X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling

    NASA Astrophysics Data System (ADS)

    Carter, Rachel; Huhman, Brett; Love, Corey T.; Zenyuk, Iryna V.

    2018-03-01

    X-ray computed tomography (X-ray CT) across multiple length scales is utilized for the first time to investigate the physical abuse of high C-rate pulsed discharge on cells wired individually and in parallel.. Manufactured lithium iron phosphate cells boasting high rate capability were pulse power tested in both wiring conditions with high discharge currents of 10C for a high number of cycles (up to 1200) until end of life (<80% of initial discharge capacity retained). The parallel assembly reached end of life more rapidly for reasons unknown prior to CT investigations. The investigation revealed evidence of overdischarge in the most degraded cell from the parallel assembly, compared to more traditional failure in the individual cell. The parallel-wired cell exhibited dissolution of copper from the anode current collector and subsequent deposition throughout the separator near the cathode of the cell. This overdischarge-induced copper deposition, notably impossible to confirm with other state of health (SOH) monitoring methods, is diagnosed using CT by rendering the interior current collector without harm or alteration to the active materials. Correlation of CT observations to the electrochemical pulse data from the parallel-wired cells reveals the risk of parallel wiring during high C-rate pulse discharge.

  9. An Outlook on Lithium Ion Battery Technology

    PubMed Central

    2017-01-01

    Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along with solid electrolytes and lithium metal anode are being intensively pursued. This article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies. PMID:29104922

  10. Characterization of reactive tracers for C-wells field experiments 1: Electrostatic sorption mechanism, lithium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, H.R.; Polzer, W.L.; Essington, E.H.

    1989-11-01

    Lithium (Li{sup +}) was introduced as lithium bromide (LiBr), as a retarded tracer for experiments in the C-wells complex at Yucca Mountain, Nevada Test Site, Nevada. The objective was to evaluate the potential of lithium to sorb predominately by physical forces. lithium was selected as a candidate tracer on the basis of high solubility, good chemical and biological stability, and relatively low sorptivity; lack of bioaccumulation and exclusion as a priority pollutant in pertinent federal environmental regulations; good analytical detectability and low natural background concentrations; and a low cost Laboratory experiments were performed with suspensions of Prow Pass cuttings frommore » drill hole UE-25p{number_sign}1 at depths between 549 and 594 m in J-13 water at a pH of approximately 8 and in the temperature range of 25{degree}C to 45{degree}C. Batch equilibrium and kinetics experiments were performed; estimated thermodynamic constants, relative behavior between adsorption and desorption, and potentiometric studies provided information to infer the physical nature of lithium sorption.« less

  11. Lithium in Stellar Atmospheres: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Lyubimkov, L. S.

    2016-09-01

    Of all the light elements, lithium is the most sensitive indicator of stellar evolution. This review discusses current data on the abundance of lithium in the atmospheres of A-, F-, G-, and K-stars of different types, as well as the consistency of these data with theoretical predictions. The variety of observed Li abundances is illustrated by the following objects in different stages of evolution: (1) Old stars in the galactic halo, which have a lithium abundance logɛ(Li)=2.2 (the "lithium plateau") that appears to be 0.5 dex lower than the primordial abundance predicted by cosmological models. (2) Young stars in the galactic disk, which have been used to estimate the contemporary initial lithium abundance logɛ(Li)=3.2±0.1 for stars in the Main sequence. Possible sources of lithium enrichment in the interstellar medium during evolution of the galaxy are discussed. (3) Evolving FGK dwarfs in the galactic disk, which have lower logɛ(Li) for lower effective temperature T eff and mass M. The "lithium dip" near T eff ~6600 K in the distribution of logɛ(Li) with respect to T eff in old clusters is discussed. (4) FGK giants and supergiants, of which most have no lithium at all. This phenomenon is consistent with rotating star model calculations. (5) Lithium rich cold giants with logɛ(Li) ≥ 2.0, which form a small, enigmatic group. Theoretical models with rotation can explain the existence of these stars only in the case of low initial rotation velocities V 0 <50 km/s. In all other cases it is necessary to assume recent synthesis of lithium (capture of a giant planet is an alternative). (6) Magnetic Ap-stars, where lithium is concentrated in spots located at the magnetic poles. There the lithium abundance reaches logɛ(Li)=6. Discrepancies between observations and theory are noted for almost all the stars discussed in this review.

  12. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  13. The Behavioral Actions of Lithium in Rodent Models

    PubMed Central

    O’Donnell, Kelley C.; Gould, Todd D.

    2007-01-01

    For nearly as long as lithium has been in clinical use for the treatment of bipolar disorder, depression, and other conditions, investigators have attempted to characterize its effects on behaviors in rodents. Lithium consistently decreases exploratory activity, rearing, aggression, and amphetamine-induced hyperlocomotion; and it increases the sensitivity to pilocarpine-induced seizures, decreases immobility time in the forced swim test, and attenuates reserpine-induced hypolocomotion. Lithium also predictably induces conditioned taste aversion and alterations in circadian rhythms. The modulation of stereotypy, sensitization, and reward behavior are less consistent actions of the drug. These behavioral models may be relevant to human symptoms and to clinical endophenotypes. It is likely that the actions of lithium in a subset of these animal models are related to the therapeutic efficacy, as well the side effects, of the drug. We conclude with a brief discussion of various molecular mechanisms by which these lithium-sensitive behaviors may be mediated, and comment on the ways in which rat and mouse models can be used more effectively in the future to address persistent questions about the therapeutically relevant molecular actions of lithium. PMID:17532044

  14. Influence of oxygen vacancies on the magnetic and electrical properties of La1-xSrxMnO3-x/2 manganites

    NASA Astrophysics Data System (ADS)

    Trukhanov, S. V.; Lobanovski, L. S.; Bushinsky, M. V.; Khomchenko, V. A.; Pushkarev, N. V.; Troyanchuk, I. O.; Maignan, A.; Flahaut, D.; Szymczak, H.; Szymczak, R.

    2004-11-01

    The crystal structure, magnetization and electrical transport depending on the temperature and magnetic field for the doped stoichiometric La_{1-x}^{3 + } Sr_x^{2 + } Mn_{1-x}^{3 + } Mn_x^{4 + } O_3^{2-} as well as anion-deficient La_{1-x}^{3 + } Sr_x^{2 + } Mn^{3 + }O_{3-x/2}^{2-} (0le x le 0.30) ortomanganite systems have been experimentally studied. It is established that the stochiometric samples in the region of the 0 le x le 0.125 are an O'-orthorhombic perovskites whereas in the 0.175 le x le 0.30 - a rhombohedric. For the anion-deficient system the symmetry type of the unit cell is similar to the stoichiometric one. As a doping level increases the samples in the ground state undergo a number of the magnetic transitions. It is assumed that the samples with the large amount of oxygen vacancies are a cluster spin glasses (0.175 < x le 0.30) and temperature of the magnetic moment freezing is 40 K. All the anion-deficient samples are semiconductors and show considerable magnetoresistance over a wide temperature range with a peak for the x = 0.175 only. Concentration dependences of the spontaneous magnetization and magnetic ordering temperature for the anion-deficient La_{1-x}^{3 + } Sr_x^{2 + } Mn^{3 + }O_{3-x/2}^{2-} system have been established by the magnetic measurements and compared with those for the stoichiometric La_{1-x}^{3 + } Sr_x^{2 + } Mn_{1-x}^{3 + } Mn_x^{4 + } O_3^{2-} one. The magnetic propeprties of the anion-deficient samples may be interpreted on the base of the superexchange interaction and phase separation (chemical disorder) models.

  15. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  16. Cost of cutting grapevines before logging

    Treesearch

    H. Clay Smith; Paul M. Smithson

    1975-01-01

    To reduce damage to hardwood stems by grapevines, it is recommended that grapevines be cut near ground level several years before the harvest cutting. Cost of completing this practice on 117 acres supporting 22 vines per acre was found to be about $3.50 per acre.

  17. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe 3–xSe x

    DOE PAGES

    Cui, Shan; He, Lan -Po; Hong, Xiao -Chen; ...

    2016-06-09

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe 3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe 3–x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe 3–x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependencemore » of κ 0/T manifests a multigap behavior. Lastly, these results demonstrate multiple nodeless superconducting gaps in ZrTe 3–x Se x, which indicates conventional superconductivity despite of the existence of a CDW QCP.« less

  18. Direct observation of vast off-stoichiometric defects in single crystalline SnSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Wu, Lijun; He, Dongsheng

    Single crystalline tin selenide (SnSe) recently emerged as a very promising thermoelectric material for waste heat harvesting and thermoelectric cooling, due to its record high figure of merit ZT in mediate temperature range. The most striking feature of SnSe lies in its extremely low lattice thermal conductivity as ascribed to the anisotropic and highly distorted Sn-Se bonds as well as the giant bond anharmonicity by previous studies, yet no theoretical models so far can give a quantitative explanation to such low a lattice thermal conductivity. Here, we presented direct observation of an astonishingly vast number of off-stoichiometric Sn vacancies andmore » Se interstitials, using sophisticated aberration corrected scanning transmission electron microscope; and credited the previously reported ultralow thermal conductivity of the SnSe single crystalline samples partly to their off-stoichiometric feature. In order to further validate the conclusion, we also synthesized stoichiometric SnSe single crystalline samples, and illustrated that the lattice thermal conductivity is deed much higher as compared with the off-stoichiometric single crystals. Finally, the scattering efficiency of individual point defect on heat-carrying phonons was then discussed in the state-of-art Debye-Callaway model.« less

  19. Direct observation of vast off-stoichiometric defects in single crystalline SnSe

    DOE PAGES

    Wu, Di; Wu, Lijun; He, Dongsheng; ...

    2017-04-06

    Single crystalline tin selenide (SnSe) recently emerged as a very promising thermoelectric material for waste heat harvesting and thermoelectric cooling, due to its record high figure of merit ZT in mediate temperature range. The most striking feature of SnSe lies in its extremely low lattice thermal conductivity as ascribed to the anisotropic and highly distorted Sn-Se bonds as well as the giant bond anharmonicity by previous studies, yet no theoretical models so far can give a quantitative explanation to such low a lattice thermal conductivity. Here, we presented direct observation of an astonishingly vast number of off-stoichiometric Sn vacancies andmore » Se interstitials, using sophisticated aberration corrected scanning transmission electron microscope; and credited the previously reported ultralow thermal conductivity of the SnSe single crystalline samples partly to their off-stoichiometric feature. In order to further validate the conclusion, we also synthesized stoichiometric SnSe single crystalline samples, and illustrated that the lattice thermal conductivity is deed much higher as compared with the off-stoichiometric single crystals. Finally, the scattering efficiency of individual point defect on heat-carrying phonons was then discussed in the state-of-art Debye-Callaway model.« less

  20. Enhanced H-mode pedestals with lithium injection in DIII-D

    DOE PAGES

    Osborne, Thomas H.; Jackson, Gary L.; Yan, Zheng; ...

    2015-05-08

    Periods of edge localized mode (ELM)-free H-mode with increased pedestal pressure and width were observed in the DIII-D tokamak when density fluctuations localized to the region near the separatrix were present. Injection of a powder of 45 μm diameter lithium particles increased the duration of the enhanced pedestal phases to up to 350 ms, and also increased the likelihood of a transition to the enhanced phase. Lithium injection at a level sufficient for triggering the extended enhanced phases resulted in significant lithium in the plasma core, but carbon and other higher Z impurities as well as radiated power levels weremore » reduced. Recycling of the working deuterium gas appeared unaffected by this level of lithium injection. The ion scale, k θ ρ s ~ 0.1–0.2, density fluctuations propagated in the electron drift direction with f ~ 80 kHz and occurred in bursts every ~1 ms. The fluctuation bursts correlated with plasma loss resulting in a flattening of the pressure profile in a region near the separatrix. This localized flattening 2 allowed higher overall pedestal pressure at the peeling-ballooning stability limit and higher pressure than expected under the EPED model due to reduction of the pressure gradient below the “ballooning critical profile”. Furthermore, reduction of the ion pressure by lithium dilution may contribute to the long ELM-free periods.« less

  1. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kumar, Binod

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li 1+ xAl xGe 2- x(PO 4) 3 (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si 3N 4) and PC(Li 2O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li 2O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity.

  2. High-temperature deformation of stoichiometric /sup 239/PuO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, J.J.; Land, C.C.

    1980-03-01

    The deformation behavior of stoichiometric /sup 239/PuO/sub 2/ was examined at 800/sup 0/ to 1500/sup 0/C, using direct and diametral compression. Maximum ductility was observed at 1000/sup 0/C, but above this temperature both strength and ductility decreased and the fracture mode changed from transgranular to intergranular. The deformation activation energy measured at 1000/sup 0/C was 598 kJ/mol. Comparison to the deformation behavior of hypostoichiometric /sup 239/PuO/sub 2-x/ suggests that high-temperature dislocation motion becomes more difficult with increasing O/Pu ratio due to effects of stoichiometry on diffusion rates. Deformation mechanisms in /sup 239/PuO/sub 2/ appear to be a combination of dislocationmore » motion and grain-boundary sliding.« less

  3. Measure of horizontal and vertical displacement of the acromioclavicular joint after cutting ligament using X-ray and opto-electronic system.

    PubMed

    Rochcongar, Goulven; Emily, Sébastien; Lebel, Benoit; Pineau, Vincent; Burdin, Gilles; Hulet, Christophe

    2012-09-01

    Surgical versus orthopedic treatments of acromioclavicular disjunction are still debated. The aim of this study was to measure horizontal and vertical acromion's displacement after cutting the ligament using standard X-ray and an opto-electronic system on cadaver. Ten cadaveric shoulders were studied. A sequential ligament's section was operated by arthroscopy. The sequence of cutting was chosen to fit with Rockwood's grade. The displacement of the acromion was measured on standard X-ray and with an opto-electronic system allowing measuring of the horizontal displacement. Statistical comparisons were performed using a paired Student's t test with significance set at p < 0.05. Cutting the coracoclavicular ligament and delto-trapezius muscles cause a statistical downer displacement of the acromion, but not after sectioning the acromioclavicular ligament. The contact surface between the acromion and the clavicle decreases statistically after sectioning the acromioclavicular ligament and the coracoclavicular ligament with no effect of sectioning the delto-trapezius muscles. Those results are superposing with those dealing with the anterior translation. The measure concerning the acromioclavicular distance and the coracoclavicular distance are superposing with those of Rockwood. However, there is a significant horizontal translation after cutting the acromioclavicular ligament. Taking into account this displacement, it may be interesting to choose either surgical or orthopedic treatment. There is a correlation between anatomical damage and importance of instability. Horizontal instability is misevaluated in clinical practice.

  4. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries.

    PubMed

    Boisset, Aurélien; Menne, Sebastian; Jacquemin, Johan; Balducci, Andrea; Anouti, Mérièm

    2013-12-14

    In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li(+), X(-) and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO4 (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g(-1) with a good efficiency (99%) is observed in the DES based on the LiNO3 salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs.

  5. 40 CFR 1065.362 - Non-stoichiometric raw exhaust FID O2 interference verification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Non-stoichiometric raw exhaust FID O2... Measurements § 1065.362 Non-stoichiometric raw exhaust FID O2 interference verification. (a) Scope and frequency. If you use FID analyzers for raw exhaust measurements from engines that operate in a non...

  6. 40 CFR 1065.362 - Non-stoichiometric raw exhaust FID O2 interference verification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Non-stoichiometric raw exhaust FID O2... Measurements § 1065.362 Non-stoichiometric raw exhaust FID O2 interference verification. (a) Scope and frequency. If you use FID analyzers for raw exhaust measurements from engines that operate in a non...

  7. Room temperature structures and odd even behaviour of a homologous series of anhydrous lithium n-alkanoates

    NASA Astrophysics Data System (ADS)

    White, Nicole A. S.; Ellis, Henry A.

    2008-10-01

    The molecular structures of a homologous series of lithium n-alkanoates have been determined at room temperature using infrared spectroscopy, polarizing light microscopy and X-ray powder diffraction in conjunction with density and melting point measurements. For all the compounds investigated, asymmetric ionic metal-carboxylate coordination is proposed, with the molecules located within a triclinic crystal system with P1¯ space group. The molecules are nearly all of similar structure and are arranged within lamellar layers with four molecules per unit cell. The hydrocarbon chains, in nearly all trans conformation, are arranged tail-to-tail and tilted at an average angle of 55 ο to the planes containing lithium ions. The unit cell parameters such as sides: b and c increase linearly with increasing chain length whilst side a shows a linear decrease. Furthermore, the measured densities and melting points show odd-even behaviour, suggesting differences in molecular packing between odd and even chain length homologues. Geometric models are proposed to explain molecular orientation within a lamella and odd-even behaviour, involving the influence of terminal groups on the packing geometry of hydrocarbon chains within the lattice.

  8. Hazards, Safety and Design Considerations for Commercial Lithium-ion Cells and Batteries

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2007-01-01

    This viewgraph presentation reviews the features of the Lithium-ion batteries, particularly in reference to the hazards and safety of the battery. Some of the characteristics of the Lithium-ion cell are: Highest Energy Density of Rechargeable Battery Chemistries, No metallic lithium, Leading edge technology, Contains flammable electrolyte, Charge cut-off voltage is critical (overcharge can result in fire), Open circuit voltage higher than metallic lithium anode types with similar organic electrolytes. Intercalation is a process that places small ions in crystal lattice. Small ions (such as lithium, sodium, and the other alkali metals) can fit in the interstitial spaces in a graphite lattice. These metallic ions can go farther and force the graphitic planes apart to fit two, three, or more layers of metallic ions between the carbon sheets. Other features of the battery/cell are: The graphite is conductive, Very high energy density compared to NiMH or NiCd, Corrosion of aluminum occurs very quickly in the presence of air and electrolyte due to the formation of HF from LiPF6 and HF is highly corrosive. Slides showing the Intercalation/Deintercalation and the chemical reactions are shown along with the typical charge/discharge for a cylindrical cell. There are several graphs that review the hazards of the cells.

  9. Effect of the synthesis conditions on the electrochemical properties of LiFePO{sub 4} obtained from NH{sub 4}FePO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosini, Pier Paolo, E-mail: pierpaolo.prosini@enea.it; Gislon, Paola; Cento, Cinzia

    Graphical abstract: - Highlights: • Four different samples of FAP were synthesized by precipitation techniques. • The samples were used as precursors to synthesize electrochemical active LiFePO{sub 4}. • Their morphology, composition, structure and electrochemical performance were studied. • The LiFePO{sub 4} electrochemical performance resulted affected by the preparation method - Abstract: In this paper the morphological, structural and electrochemical properties of crystalline lithium iron phosphate (LiFePO{sub 4}) obtained from ferrous ammonium phosphate (FAP) have been studied. The FAP was obtained following four different processes, namely: (1) homogeneous phase precipitation, (2) heterogeneous phase precipitation from stoichiometric sodium phosphate, (3) heterogeneousmore » phase precipitation from stoichiometric ammonium phosphate, and (4) heterogeneous phase precipitation from over stoichiometric ammonium phosphate. Lithium iron phosphate was prepared by solid state reaction of FAP with lithium hydroxide. In order to evaluate the effect of reaction time and synthesis temperature the LiFePO{sub 4} was prepared varying the heating temperatures (550, 600 and 700 °C) and the reaction times (1 or 2 h). The morphology of the materials was evaluated by scanning electron microscopy while the chemical composition was determined by electron energy loss spectroscopy. X-ray diffraction was used to evaluate phase composition, crystal structure and crystallite size. The so obtained LiFePO{sub 4}'s were fully electrochemical characterized and a correlation was found between the crystal size and the electrochemical performance.« less

  10. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Xiang, Pan; Wang, Daxiong; Zhou, Zhenwen; Wang, Feijun; Wang, Wenjun; Wang, Jianquan

    2014-09-22

    Novel cellulose derivative CMC-Li was synthesized by cotton as raw material. The mechanism of the CMC-Li modified electrode materials by electrospinning was reported. CMC-Li/lithium iron phosphate (LiFePO4, LFP) composite fiber coated with LFP and CMC-Li nanofibers was successfully obtained by electrospinning. Then, CMC-Li/LFP nano-composite fiber was carbonized under nitrogen at a high temperature formed CNF/LFP/Li (CLL) composite nanofibers as cathode material. It can increase the contents of Li+, and improving the diffusion efficiency and specific capacity. The battery with CLL as cathode material retained close to 100% of initial reversible capacity after 200 cycles at 168 mAh g(-1), which was nearly the theoretical specific capacity of LFP. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscope (SEM) were characterizing material performance. The batteries have good electrochemical property, outstanding pollution-free, excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. ATE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions

    NASA Astrophysics Data System (ADS)

    Wei, Pei-Kuen; Wang, Way-Seen

    1994-02-01

    A new TE-TM mode splitter with an asymmetric Y-junction structure fabricated by diffusing different materials into y-cut lithium niobate is presented. Randomly polarized light launched into a titanium indiffused waveguide is split into TE and TM modes by two different single-polarization waveguides. The ordinary-polarized waveguide is made by nickel indiffusion and the extraordinary-polarized waveguide by magnesium-oxide induced lithium outdiffusion. The measured extinction ratios are greater than 20 dB for both TE and TM modes. The devices operate over a wide wavelength range and have a large fabrication tolerance.

  12. Forcing Cesium into Higher Oxidation States Using Useful hard x-ray Induced Chemistry under High Pressure

    NASA Astrophysics Data System (ADS)

    Sneed, D.; Pravica, M.; Kim, E.; Chen, N.; Park, C.; White, M.

    2017-10-01

    This paper discusses our attempt to synthesize higher oxidation forms of cesium fluoride by pressurizing cesium fluoride in a fluorine-rich environment created via the x-ray decomposition of potassium tetrafluoroborate. This was done in order to confirm recent theoretical predictions of higher oxidation forms of CsFn. We discuss the development of a technique to produce molecular fluorine in situ via useful hard x-ray photochemistry, and the attempt to utilize this technique to form higher oxidation states of cesium fluoride. In order to verify the formation of the novel stoichiometric species of CsFn. X-ray Absorption Near Edge Spectroscopy (XANES) centered on the cesium K-edge was performed to probe the oxidation state of cesium as well as the local molecular coordination around Cs.

  13. Study of Lithium Silicide Nanoparticles as Anode Materials for Advanced Lithium Ion Batteries.

    PubMed

    Li, Xuemin; Kersey-Bronec, Faith E; Ke, John; Cloud, Jacqueline E; Wang, Yonglong; Ngo, Chilan; Pylypenko, Svitlana; Yang, Yongan

    2017-05-17

    The development of high-performance silicon anodes for the next generation of lithium ion batteries (LIBs) evokes increasing interest in studying its lithiated counterpart-lithium silicide (Li x Si). In this paper we report a systematic study of three thermodynamically stable phases of Li x Si (x = 4.4, 3.75, and 2.33) plus nitride-protected Li 4.4 Si, which are synthesized via the high-energy ball-milling technique. All three Li x Si phases show improved performance over that of unmodified Si, where Li 4.4 Si demonstrates optimum performance with a discharging capacity of 3306 (mA h)/g initially and maintains above 2100 (mA h)/g for over 30 cycles and above 1200 (mA h)/g for over 60 cycles at the current density of 358 mA/g of Si. A fundamental question studied is whether different electrochemical paradigms, that is, delithiation first or lithiation first, influence the electrode performance. No significant difference in electrode performance is observed. When a nitride layer (Li x N y Si z ) is created on the surface of Li 4.4 Si, the cyclability is improved to retain the capacity above 1200 (mA h)/g for more than 80 cycles. By increasing the nitridation extent, the capacity retention is improved significantly from the average decrease of 1.06% per cycle to 0.15% per cycle, while the initial discharge capacity decreases due to the inactivity of Si in the Li x N y Si z layer. Moreover, the Coulombic efficiencies of all Li x Si-based electrodes in the first cycle are significantly higher than that of a Si electrode (∼90% vs 40-70%).

  14. Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels

    NASA Astrophysics Data System (ADS)

    Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.

    2017-09-01

    The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.

  15. Stoichiometric network theory for nonequilibrium biochemical systems.

    PubMed

    Qian, Hong; Beard, Daniel A; Liang, Shou-dan

    2003-02-01

    We introduce the basic concepts and develop a theory for nonequilibrium steady-state biochemical systems applicable to analyzing large-scale complex isothermal reaction networks. In terms of the stoichiometric matrix, we demonstrate both Kirchhoff's flux law sigma(l)J(l)=0 over a biochemical species, and potential law sigma(l) mu(l)=0 over a reaction loop. They reflect mass and energy conservation, respectively. For each reaction, its steady-state flux J can be decomposed into forward and backward one-way fluxes J = J+ - J-, with chemical potential difference deltamu = RT ln(J-/J+). The product -Jdeltamu gives the isothermal heat dissipation rate, which is necessarily non-negative according to the second law of thermodynamics. The stoichiometric network theory (SNT) embodies all of the relevant fundamental physics. Knowing J and deltamu of a biochemical reaction, a conductance can be computed which directly reflects the level of gene expression for the particular enzyme. For sufficiently small flux a linear relationship between J and deltamu can be established as the linear flux-force relation in irreversible thermodynamics, analogous to Ohm's law in electrical circuits.

  16. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    NASA Astrophysics Data System (ADS)

    Inda, Yasushi; Katoh, Takashi; Baba, Mamoru

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10 -3 S cm -1 or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO 2 positive electrode, a Li 4Ti 5O 12 negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic.

  17. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization.

    PubMed

    Camp, Robert L; Dolled-Filhart, Marisa; Rimm, David L

    2004-11-01

    The ability to parse tumors into subsets based on biomarker expression has many clinical applications; however, there is no global way to visualize the best cut-points for creating such divisions. We have developed a graphical method, the X-tile plot that illustrates the presence of substantial tumor subpopulations and shows the robustness of the relationship between a biomarker and outcome by construction of a two dimensional projection of every possible subpopulation. We validate X-tile plots by examining the expression of several established prognostic markers (human epidermal growth factor receptor-2, estrogen receptor, p53 expression, patient age, tumor size, and node number) in cohorts of breast cancer patients and show how X-tile plots of each marker predict population subsets rooted in the known biology of their expression.

  18. Development of lithium doped radiation resistent solar cells

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Lithium-doped solar cells have been fabricated with initial lot efficiencies averaging 11.9 percent in an air mass zero (AMO) solar simulator and a maximum observed efficiency of 12.8 percent. The best lithium-doped solar cells are approximately 15 percent higher in maximum power than state-of-the-art n-p cells after moderate to high fluences of 1-MeV electrons and after 6-7 months exposure to low flux irradiation by a Sr-90 beta source, which approximates the electron spectrum and flux associated with near Earth space. Furthermore, lithium-doped cells were found to degrade at a rate only one tenth that of state-of-the-art n-p cells under 28-MeV electron irradiation. Excellent progress has been made in quantitative predictions of post-irradiation current-voltage characteristics as a function of cell design by means of capacitance-voltage measurements, and this information has been used to achieve further improvements in lithium-doped cell design.

  19. An Outlook on Lithium Ion Battery Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manthiram, Arumugam

    Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less

  20. An Outlook on Lithium Ion Battery Technology

    DOE PAGES

    Manthiram, Arumugam

    2017-09-07

    Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less

  1. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  2. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX [VUV/XUV measurements of low recycling plasmas with liquid lithium surfaces on LTX

    DOE PAGES

    Tritz, Kevin; Bell, Ronald E.; Beiersdorfer, Peter; ...

    2014-11-12

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in themore » form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. In conclusion, these new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments.« less

  3. Observation of the strain field near the Si(111) 7 x 7 surface with a new X-ray diffraction technique.

    PubMed

    Emoto, T; Akimoto, K; Ichimiya, A

    1998-05-01

    A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.

  4. Effects of bicarbonate on lithium transport in human red cells

    PubMed Central

    1978-01-01

    Lithium influx into human erythrocytes increased 12-fold, when chloride was replaced with bicarbonate in a 150 mM lithium medium (38 degrees C. pH 7.4). The increase was linearly related to both lithium- and bicarbonate concentration, and was completely eliminated by the amino reagent 4, 4'- diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS binds to an integral membrane protein (mol wt approximately 10(5) dalton) involved in anion exchange. Inhibition of both anion exchange and of bicarbonate-stimulated lithium influx was linearly related to DIDS binding. 1.1 X 10(6) DIDS molecules per cell caused complete inhibition of both processes. Both Cl- and Li+ can apparently be transported by the anion transport mechanism. The results support our previous proposal that bicarbonate-induced lithium permeability is due to transport of lithium-carbonate ion pairs (LiCO-3). DIDS-sensitive lithium influx had a high activation energy (24 kcal/mol), compatible with transport by the anion exchange mechanism. We have examined how variations of passive lithium permeability, induced by bicarbonate, affect the sodium-driven lithium counter-transport in human erythrocytes. The ability of the counter-transport system to establish a lithium gradient across the membrane decrease linearly with bicarbonate concentration in the medium. The counter-transport system was unaffected by DIDS treatement. At a plasma bicarbonate concentration of 24 mM, two-thirds of the lithium influx is mediated by the bicarbonate-stimulated pathway, and the fraction will increase significantly in metabolic alkalosis. PMID:670928

  5. Lithium Dinitramide as an Additive in Lithium Power Cells

    NASA Technical Reports Server (NTRS)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with

  6. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy.

    PubMed

    Yu, Xujiang; Yang, Kai; Chen, Xiaoyuan; Li, Wanwan

    2017-10-01

    Semiconductor nanoparticles with localized surface plasmon resonance (LSPR) have gained increasing interest due to their potential for use in nanomedicine, particularly in the area of cancer photothermal therapy. In this study, we have synthesized non-stoichiometric hollow silicon oxide nanoparticles (H-SiO x NPs) using a magnesiothermic reduction process. The black NPs generated a desired LSPR in the second near-infrared (NIR-II) window, as was demonstrated by a photothermal conversion efficiency of up to 48.6% at 1064 nm. Such an efficiency is the highest reported among the noble metal and semiconductor-based NPs as NIR-II PTT photothermal agents. In addition, H-SiO x NPs exhibited excellent in vivo photoacoustic (PA) imaging properties, and thus can be used for highly efficient in vivo cancer treatment via irradiation with a 1064 nm laser, even at 0.6 W cm -2 . The findings described are the first to demonstrate the existence of LSPR in non-stoichiometric silicon-based nanoparticles with a low-toxicity degradation pathway for in vivo application, and provide new insights towards understanding the role of new semiconductor nanoparticles in nanomedicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Use of a Polyacetylene Cathode in Primary Lithium-Thionyl Chloride Cells.

    DTIC Science & Technology

    1983-10-01

    BUJREAU OF STANDAFRfA1.-, A 70 o 0 :0 .0 0 S S 0. 5, * ...- 7. * E~1 ~ C -TR-83-281 USE OF A POLYACETYLENE CATHODE IN PRIMARY LITHIUM -THIONYL CHLORIDE...CELLS ,.710 c-- -IGEO-CENTERS, INC. C. t 2G’ X=. 2. . ~t ~ ~* ~.4 . . ~. t ~ GC-TR-83-281 USE OF A POLYACETYLENE CATHODE IN PRIMARY LITHIUM -THIONYL...cathode material in a lithium /thionyl chloride (Li/SOCl 2) battery. S?The objective of the project was three-fold: -. (1) To characterize and

  8. Optical waveguides in lithium niobate: Recent developments and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In allmore » cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.« less

  9. Upstream Density for Plasma Detachment with Conventional and Lithium Vapor-Box Divertors

    NASA Astrophysics Data System (ADS)

    Goldston, Rj; Schwartz, Ja

    2016-10-01

    Fusion power plants are likely to require detachment of the divertor plasma from material targets. The lithium vapor box divertor is designed to achieve this, while limiting the flux of lithium vapor to the main plasma. We develop a simple model of near-detachment to evaluate the required upstream plasma density, for both conventional and lithium vapor-box divertors, based on particle and dynamic pressure balance between up- and down-stream, at near-detachment conditions. A remarkable general result is found, not just for lithium-induced detachment, that the upstream density divided by the Greenwald-limit density scales as (P 5 / 8 /B 3 / 8) Tdet1 / 2 / (ɛcool + γTdet) , with no explicit size scaling. Tdet is the temperature just before strong pressure loss, 1/2 of the ionization potential of the dominant recycling species, ɛcool is the average plasma energy lost per injected hydrogenic and impurity atom, and γ is the sheath heat transmission factor. A recent 1-D calculation agrees well with this scaling. The implication is that the plasma exhaust problem cannot be solved by increasing R. Instead significant innovation, such as the lithium vapor box divertor, will be required. This work supported by DOE Contract No. DE-AC02-09CH11466.

  10. Advanced Nanofiber-Based Lithium-Ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Toprakci, Ozan

    composite nanofibers were synthesized by using a combination of sol-gel and electrospinning. During the material preparation, polyacrylonitrile (PAN) was used as an electrospinning media and a carbon source. LiFePO 4 precursor materials and/or conductive materials (carbon nanotubes and graphene) and PAN were dissolved in N,N-dimethylformamide separately and they were mixed before electrospinning. LiFePO4 precursor/PAN fibers were heat treated, during which LiFePO4 precursor transformed to energy-storage LiFePO4 material and PAN was converted to carbon. The surface morphology, microstructure and electrochemical performance of the materials were analyzed. Compared with conventional powder based positive electrodes, the novel LiFePO4/C composite nanofiber cathodes possess better electrochemical performance. Furthermore, the newly developed LiFePO 4/C composite nanofibers are easy to fabricate, highly controllable, and can be used in practical Lithium-ion battery applications. In addition to LiFePO4, more recent efforts have been directed to mixed form of layered lithiummetal oxides (Li-Ni-Mn-Co). Nickel and manganese are of importance because of their lower cost, safety and higher abundance in nature. These new cathodes offer noticeable improvement in the capacity and cycling behavior. In these cathodes, LiNi1/3Co1/3Mn 1/3O2 attracted significant interest because of its good electrochemical properties such as high capacity, prolonged cycling life, and so on. On the other hand, it has some disadvantages such as instability at high voltages and high current densities. To overcome these problems, synthesis of layered Li-rich composite materials such as xLi2MnO3˙(1-x)LiCo 1/3Ni1/3Mn1/3O2 can be a promising approach. In this study, various xLi2MnO3˙(1-x)LiCo 1/3Ni1/3Mn1/3O2 (x=0.1, 0.2, 0.3, 0.4, 0.5) composite cathode materials were prepared by a one-step sol-gel route. Morphology, microstructure and electrochemical behavior of these cathode materials were evaluated. The

  11. Imidazolium-organic solvent mixtures as electrolytes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Chagnes, A.; Diaw, M.; Carré, B.; Willmann, P.; Lemordant, D.

    γ-Butyrolactone (BL) has been mixed to the room temperature ionic liquid (RTIL) 1-butyl 3-methyl-imidazolium tetrafluoroborate (BMIBF 4) (ratio: 3/2, v/v) in the presence of lithium tetrafluoroborate (LiBF 4) for use as electrolyte in lithium-ion batteries. This mixture exhibits a larger thermal stability than the reference electrolyte EC/DEC/DMC (2/2/1) + LiPF 6 (1 M) and can be considered as a new RTIL as no free BL molecules are present in the liquid phase. The cycling ability of this electrolyte has been investigated at a graphite, a titanate oxide (Li 4Ti 5O 12) and a cobalt oxide (Li xCoO 2) electrodes. The ionic liquid is strongly reduced at the graphite electrode near 1 V and leads to the formation of a blocking film, which prevents any further cycling. The titanate oxide electrode can be cycled with a high capacity without any significant fading. Cycling of the positive cobalt oxide electrode was unsuccessfully owing to an oxidation reaction at the electrode surface, which prevents the intercalation or de-intercalation of Li ions in and from the host material. Less reactive cathode material than cobalt oxide must be employed with this RTIL.

  12. Femtosecond writing of near-surface waveguides in lithium niobate for low-loss electro-optical modulators of broadband emission

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-05-01

    In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.

  13. Operando Spectromicroscopy of Sulfur Species in Lithium-Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Elizabeth C.; Kasse, Robert M.; Heath, Khloe N.

    Here, a novel cross-sectional battery cell was developed to characterize lithium-sulfur batteries using X-ray spectromicroscopy. Chemically sensitive X-ray maps were collected operando at energies relevant to the expected sulfur species and were used to correlate changes in sulfur species with electrochemistry. Significant changes in the sulfur/carbon composite electrode were observed from cycle to cycle including rearrangement of the elemental sulfur matrix and PEO10LiTFSI binder. Polysulfide concentration and area of spatial diffusion increased with cycling, indicating that some polysulfide dissolution is irreversible, leading to polysulfide shuttle. Fitting of the maps using standard sulfur and polysulfide XANES spectra indicated that upon subsequentmore » discharge/charge cycles, the initial sulfur concentration was not fully recovered; polysulfides and lithium sulfide remained at the cathodes with higher order polysulfides as the primary species in the region of interest. Quantification of the polysulfide concentration across the electrolyte and electrode interfaces shows that the polysulfide concentration before the first discharge and after the third charge is constant within the electrolyte, but while cycling, a significant increase in polysulfides and a gradient toward the lithium metal anode forms. Finally, this chemically and spatially sensitive characterization and analysis provides a foundation for further operando spectromicroscopy of lithium-sulfur batteries.« less

  14. Operando Spectromicroscopy of Sulfur Species in Lithium-Sulfur Batteries

    DOE PAGES

    Miller, Elizabeth C.; Kasse, Robert M.; Heath, Khloe N.; ...

    2017-11-03

    Here, a novel cross-sectional battery cell was developed to characterize lithium-sulfur batteries using X-ray spectromicroscopy. Chemically sensitive X-ray maps were collected operando at energies relevant to the expected sulfur species and were used to correlate changes in sulfur species with electrochemistry. Significant changes in the sulfur/carbon composite electrode were observed from cycle to cycle including rearrangement of the elemental sulfur matrix and PEO10LiTFSI binder. Polysulfide concentration and area of spatial diffusion increased with cycling, indicating that some polysulfide dissolution is irreversible, leading to polysulfide shuttle. Fitting of the maps using standard sulfur and polysulfide XANES spectra indicated that upon subsequentmore » discharge/charge cycles, the initial sulfur concentration was not fully recovered; polysulfides and lithium sulfide remained at the cathodes with higher order polysulfides as the primary species in the region of interest. Quantification of the polysulfide concentration across the electrolyte and electrode interfaces shows that the polysulfide concentration before the first discharge and after the third charge is constant within the electrolyte, but while cycling, a significant increase in polysulfides and a gradient toward the lithium metal anode forms. Finally, this chemically and spatially sensitive characterization and analysis provides a foundation for further operando spectromicroscopy of lithium-sulfur batteries.« less

  15. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  16. Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mengjin; Kim, Dong Hoe; Yu, Yue

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se 2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA 0.83Cs 0.17Pb(I 0.6Br 0.4) 3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I.more » Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.« less

  17. Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells

    DOE PAGES

    Yang, Mengjin; Kim, Dong Hoe; Yu, Yue; ...

    2017-10-02

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se 2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA 0.83Cs 0.17Pb(I 0.6Br 0.4) 3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I.more » Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.« less

  18. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2016-01-01

    release; distribution is unlimited. 1 1. Introduction Lithium (Li)- ion batteries are currently one of the leading energy storage device technologies...ARL-TR-7584 ● JAN 2016 US Army Research Laboratory Grain Boundary Engineering of Lithium - Ion - Conducting Lithium Lanthanum...Titanate for Lithium -Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public

  19. Extensive Natural Intraspecific Variation in Stoichiometric (C:N:P) Composition in Two Terrestrial Insect Species

    PubMed Central

    Bertram, S. M.; Bowen, M.; Kyle, M.; Schade, J. D.

    2008-01-01

    Heterotrophic organisms must obtain essential elements in sufficient quantities from their food. Because plants naturally exhibit extensive variation in their elemental content, it is important to quantify the within-species stoichiometric variation of consumers. If extensive stoichiometric variation exists, it may help explain consumer variation in life-history strategy and fitness. To date, however, research on stoichiometric variation has focused on interspecific differences and assumed minimal intraspecific differences. Here this assumption is tested. Natural variation is quantified in body stoichiometry of two terrestrial insects: the generalist field cricket, Gryllus texensis Cade and Otte (Orthoptera: Gryllidae) and a specialist curculionid weevil, Sabinia setosa (Le Conte) (Coleoptera: Curculionidae). Both species exhibited extensive intraspecific stoichiometric variation. Cricket body nitrogen content ranged from 8–12% and there was a four-fold difference in body phosphorus content, ranging from 0.32–1.27%. Body size explained half this stoichiometric variation, with larger individuals containing less nitrogen and phosphorus. Weevils exhibited an almost three-fold difference in body phosphorus content, ranging from 0.38–0.97%. Overall, the variation observed within each of these species is comparable to the variation previously observed across almost all terrestrial insect species. PMID:20298114

  20. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    PubMed Central

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide. PMID:28071681

  1. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.

  2. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  3. Characteristics of signals originating near the lithium-diffused N+ contact of high purity germanium p-type point contact detectors

    DOE PAGES

    Aguayo, E.; Amman, M.; Avignone, F. T.; ...

    2012-11-09

    A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Furthermore, experiments that operate germanium detectors with a verymore » low energy threshold may benefit from the methods presented herein.« less

  4. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.

    PubMed

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-12-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  5. Equation of state and electron localisation in fcc lithium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Mungo; Levitan, Abraham L.; Sun, Peihao

    We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.

  6. Equation of state and electron localisation in fcc lithium

    DOE PAGES

    Frost, Mungo; Levitan, Abraham L.; Sun, Peihao; ...

    2018-02-14

    We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.

  7. Studies on the O-polysaccharide of Escherichia albertii O2 characterized by non-stoichiometric O-acetylation and non-stoichiometric side-chain l-fucosylation.

    PubMed

    Naumenko, Olesya I; Zheng, Han; Xiong, Yanwen; Senchenkova, Sof'ya N; Wang, Hong; Shashkov, Alexander S; Li, Qun; Wang, Jianping; Knirel, Yuriy A

    2018-05-22

    An O-polysaccharide was isolated from the lipopolysaccharide of Escherichia albertii O2 and studied by chemical methods and 1D and 2D 1 H and 13 C NMR spectroscopy. The following structure of the O-polysaccharide was established: . The O-polysaccharide is characterized by masked regularity owing to a non-stoichiometric O-acetylation of an l-fucose residue in the main chain and a non-stoichiometric side-chain l-fucosylation of a β-GlcNAc residue. A regular linear polysaccharide was obtained by sequential Smith degradation and alkaline O-deacetylation of the O-polysaccharide. The content of the O-antigen gene cluster of E. albertii O2 was found to be essentially consistent with the O-polysaccharide structure established. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Near-Infrared Plasmon-Assisted Water Oxidation.

    PubMed

    Nishijima, Yoshiaki; Ueno, Kosei; Kotake, Yuki; Murakoshi, Kei; Inoue, Haruo; Misawa, Hiroaki

    2012-05-17

    We report the stoichiometric evolution of oxygen via water oxidation by irradiating a plasmon-enhanced photocurrent generation system with near-infrared light (λ: 1000 nm), in which gold nanostructures were arrayed on the surface of TiO2 electrode. It is considered that multiple electron holes generated by plasmon-induced charge excitation led to the effective recovery of water oxidation after the electron transfer from gold to TiO2. The proposed system containing a gold nanostructured TiO2 electrode may be a promising artificial photosynthetic system using near-infrared light.

  9. X-ray diagnostic development for measurement of electron deposition to the SABRE anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lash, J.S.; Derzon, M.S.; Cuneo, M.E.

    Extraction applied-B ion diodes are under development on the SABRE (6 MV, 250 kA) accelerator at Sandia. The authors are assessing this technology for the production of high brightness lithium ion beams for inertial confinement fusion. Electron loss physics is a focus of effort since electron sheath physics affects ion beam divergence, ion beam purity, and diode impedance. An x-ray slit-imaging diagnostic is under development for detection of x-rays produced during electron deposition to the anode. This diagnostic will aid in the correlation of electron deposition to ion production to better understand the ion diode physics. The x-ray detector consistsmore » of a filter pack, scintillator and optical fiber array that is streaked onto a CCD camera. Current orientation of the diagnostic provides spatial information across the anode radius at three different azimuths or at three different x-ray energy cuts. The observed x-ray emission spectrum can then be compared to current modeling efforts examining electron deposition to the anode.« less

  10. High-Temperature Thermoelectric Properties of (1 - x) SrTiO3 - ( x) La1/3NbO3 Ceramic Solid Solution

    NASA Astrophysics Data System (ADS)

    Srivastava, Deepanshu; Azough, F.; Molinari, M.; Parker, S. C.; Freer, R.

    2015-06-01

    Ceramics based on SrTiO3 are of growing interest as thermoelectric materials because of their high-temperature stability and non-toxicity. Substitution of La and Nb into the perovskite structure provides opportunities to control both the microstructure and properties. Ceramic solid solutions of (1 - x) SrTiO3 - ( x) La1/3NbO3 were prepared by the mixed oxide route, using compositional steps of x = 0.1. Pressed pellets were sintered at temperatures of 1573 K to 1723 K in air. Addition of aliovalent ions (La3+, Nb5+) on the A/B sites (Sr2+, Ti4+) led to A-Site cation deficiency in the stoichiometric compositions and other defect structures which increased carrier concentration. A maximum ZT of 0.004 was obtained for the x = 0.2 stoichiometric sample, although much higher ZT values are possible by sample reduction.

  11. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  12. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  13. Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Ganter, Matthew

    Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel

  14. Rechargeable aqueous lithium-air batteries with an auxiliary electrode for the oxygen evolution

    NASA Astrophysics Data System (ADS)

    Sunahiro, S.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.

    2014-09-01

    A rechargeable aqueous lithium-air cell with a third auxiliary electrode for the oxygen evolution reaction was developed. The cell consists of a lithium metal anode, a lithium conducting solid electrolyte of Li1+x+yAlx(Ti,Ge)2-xSiyP3-yO12, a carbon black oxygen reduction air electrode, a RuO2 oxygen evolution electrode, and a saturated aqueous solution of LiOH with 10 M LiCl. The cell was successfully operated for several cycles at 0.64 mA cm-2 and 25 °C under air, where the capacity of air electrode was 2000 mAh gcathod-1. The cell performance was degraded gradually by cycling under open air. The degradation was reduced under CO2-free air and pure oxygen. The specific energy density was calculated to be 810 Wh kg-1 from the weight of water, lithium, oxygen, and carbon in the air electrode.

  15. Suppression of dendritic lithium growth in lithium metal-based batteries.

    PubMed

    Li, Linlin; Li, Siyuan; Lu, Yingying

    2018-06-19

    Lithium metal-based batteries offer promising prospects as alternatives to today's lithium-ion batteries, due to their ultra-high energy density. Unfortunately, the application of lithium metal is full of challenges and has puzzled researchers for more than 40 years. In this feature article, we describe the history of the development of lithium metal batteries and their existing key challenges, which include non-uniform electrodeposition, volume expansion, high reactivity of the lithium metal/unstable solid electrolyte interphase (SEI), and the shuttling of active cathode materials. Then, we focus on the growth mechanisms of uneven lithium electrodeposition and extend the discussion to the approaches to inhibit lithium dendrites. Finally, we discuss future directions that are expected to drive progress in the development of lithium metal batteries.

  16. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less

  17. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-x Se x

    NASA Astrophysics Data System (ADS)

    Shan, Cui; Lan-Po, He; Xiao-Chen, Hong; Xiang-De, Zhu; Cedomir, Petrovic; Shi-Yan, Li

    2016-07-01

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ 0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-x Se x , which indicates conventional superconductivity despite of the existence of a CDW QCP. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.

  18. Selection of new Kynar-based electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Christie, Alasdair M.; Christie, Lynn; Vincent, Colin A.

    New electrolyte solution compositions have been identified for use in lithium-ion batteries after gelling with an appropriate quantity of Kynar polymer. Since the Li + conducting medium is largely the liquid electrolyte component, the assessment of these solutions as suitable lithium-ion cell candidates were investigated before adding the polymer. Selected electrolyte solutions were then used in the preparation of polymer gels. The specific conductivities of Kynar-based gels were determined as a function of salt concentration and polymer concentration. Optimised self-supporting polymer films, based on mixtures of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and lithium hexafluorophosphate (LiPF 6) or lithium tetrafluoroborate (LiBF 4), showed good high current density cycling performance when used as separators in coke and Li 1- xMn 2O 4 (spinel) half-cells.

  19. The influence of cutting speed and cutting initiation location in specimen preparation for the microtensile bond strength test.

    PubMed

    Abreu, Celina Wanderley; Santosb, Jarbas F; Passos, Sheila Pestana; Michida, Silvia Masae; Takahashi, Fernando Eidi; Bottino, Marco Antonio

    2011-06-01

    This study evaluated the effect of cutting initiation location and cutting speed on the bond strength between resin cement and feldspathic ceramic. Thirty-six blocks (6.4 x 6.4 x 4.8 mm) of ceramic (Vita VM7) were produced. The ceramic surfaces were etched with 10% hydrofluoric acid gel for 60 s and then silanized. Each ceramic block was placed in a silicon mold with the treated surface exposed. A resin cement (Variolink II) was injected into the mold over the treated surface and polymerized. The resin cement-ceramic blocks were divided into two groups according to experimental conditions: a) cutting initiation location - resin cement, ceramic and interface; and b) cutting speed - 10,000, 15,000, and 20,000 rpm. The specimens were sectioned to achieve non-trimmed bar specimens. The microtensile test was performed in a universal testing machine (1 mm/min). The failure modes were examined using an optical light microscope and SEM. Bond strength results were analyzed using one-way ANOVA and Tukey's test (α = 0.05). Significant influences of cutting speed and initiation location on bond strength (p < 0.05) were observed. The highest mean was achieved for specimens cut at 15,000 rpm at the interface (15.12 ± 5.36 MPa). The lowest means were obtained for specimens cut at the highest cutting speed in resin cement (8.50 ± 3.27 MPa), and cut at the lowest cutting speed in ceramic (8.60 ± 2.65 MPa). All groups showed mainly mixed failure (75% to 100%). The cutting speed and initiation location are important factors that should be considered during specimen preparation for microtensile bond strength testing, as both may influence the bond strength results.

  20. Cutting efficiency of diamond burs operated with electric high-speed dental handpiece on zirconia.

    PubMed

    Nakamura, Keisuke; Katsuda, Yusuke; Ankyu, Shuhei; Harada, Akio; Tenkumo, Taichi; Kanno, Taro; Niwano, Yoshimi; Egusa, Hiroshi; Milleding, Percy; Örtengren, Ulf

    2015-10-01

    Zirconia-based dental restorations are becoming used more commonly. However, limited attention has been given to the difficulties experienced, concerning cutting, in removing the restorations when needed. The aim of the present study was to compare the cutting efficiency of diamond burs, operated using an electric high-speed dental handpiece, on zirconia (Zir) with those on lithium disilicate glass-ceramic (LD) and leucite glass-ceramic (L). In addition, evaluation of the cutting efficiency of diamond burs on Zir of different thicknesses was performed. Specimens of Zir were prepared with thicknesses of 0.5, 1.0, 2.0, and 4.0 mm, and specimens of LD and L were prepared with a thickness of 1.0 mm. Cutting tests were performed using diamond burs with super coarse (SC) and coarse (C) grains. The handpiece was operated at 150,000 rpm with a cutting force of 0.9 N. The results demonstrated that cutting of Zir took about 1.5- and 7-fold longer than cutting of LD and L, respectively. The SC grains showed significantly higher cutting efficiency on Zir than the C grains. However, when the thickness of Zir increased, the cutting depth was significantly decreased. As it is suggested that cutting of zirconia is time consuming, this should be taken into consideration in advance when working with zirconia restorations. © 2015 Eur J Oral Sci.

  1. Lattice softening in body-centered-cubic lithium-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Winter, I. S.; Tsuru, T.; Chrzan, D. C.

    2017-08-01

    A first-principles investigation of the influence of lattice softening on lithium-magnesium alloys near the body-centered-cubic (bcc)/hexagonal close-packed (hcp) transition composition is presented. Results show that lithium-magnesium alloys display a softening of the shear modulus C11-C12 , and an acoustic phonon branch between the Γ and N high symmetry points, as the composition approaches the stability limit for the bcc phase. This softening is accompanied by an increase in the size of the dislocation core region. Ideal tensile strength calculations predict that ordered phases of lithium-magnesium alloys are intrinsically brittle. Methods to make the alloys more ductile are discussed, and the propensity for these alloys to display gum-metal-like behavior is assessed.

  2. Lithium Poisoning.

    PubMed

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G; Gosselin, Sophie; Roberts, Darren M

    2017-05-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic supratherapeutic drug concentrations to clinical toxicity such as confusion, ataxia, or seizures. Lithium poisoning has a low mortality rate; however, chronic lithium poisoning can require a prolonged hospital length of stay from impaired mobility and cognition and associated nosocomial complications. Persistent neurological deficits, in particular cerebellar, are described and the incidence and risk factors for its development are poorly understood, but it appears to be uncommon in uncomplicated acute poisoning. Lithium is readily dialyzable, and rationale support extracorporeal treatments to reduce the risk or the duration of toxicity in high-risk exposures. There is disagreement in the literature regarding factors that define patients most likely to benefit from treatments that enhance lithium elimination, including specific plasma lithium concentration thresholds. In the case of extracorporeal treatments, there are observational data in its favor, without evidence from randomized controlled trials (none have been performed), which may lead to conservative practices and

  3. Investigation on porous MnO microsphere anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Kaifu; Zhang, Bin; Luo, Shihai; Wen, Wen; Li, Hong; Huang, Xuejie; Chen, Liquan

    MnO microspheres with and without carbon coating are prepared as anode materials for lithium ion batteries. The MnO microsphere material shows a reversible capacity of 800 mAh g -1 and an initial efficiency of 71%. It can deliver 600 mAh g -1 at a rate of 400 mA g -1. Results of Mn K-edge X-ray absorption near-edge structure (XANES) spectra and extended X-ray absorption fine structure (EXAFS) confirm further the conversion reaction mechanism, indicate that pristine MnO is reduced to Mn 0 after discharging to 0 V and part of reduced Mn 0 is not oxidized to Mn 2+ after charging to 3 V. This explains the origin of the initial irreversible capacity loss partially. The quasi open circuit voltage and the relationship between the current density and the overpotential are investigated. Both indicate that there is a significant voltage difference between the charging and discharging profiles even when the current density decreases to zero.

  4. Forcing Cesium into Higher Oxidation States Using Useful hard x-ray Induced Chemistry under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneed, D.; Pravica, M.; Kim, E.

    This paper discusses our attempt to synthesize higher oxidation forms of cesium fluoride by pressurizing cesium fluoride in a fluorine-rich environment created via the x-ray decomposition of potassium tetrafluoroborate. This was done in order to confirm recent theoretical predictions of higher oxidation forms of CsFn. We discuss the development of a technique to produce molecular fluorine in situ via useful hard x-ray photochemistry, and the attempt to utilize this technique to form higher oxidation states of cesium fluoride. In order to verify the formation of the novel stoichiometric species of CsFn. X-ray Absorption Near Edge Spectroscopy (XANES) centered on themore » cesium K-edge was performed to probe the oxidation state of cesium as well as the local molecular coordination around Cs.« less

  5. Lithium isotope geochemistry and origin of Canadian shield brines.

    PubMed

    Bottomley, D J; Chan, L H; Katz, A; Starinsky, A; Clark, I D

    2003-01-01

    Hypersaline calcium/chloride shield brines are ubiquitous in Canada and areas of northern Europe. The major questions relating to these fluids are the origin of the solutes and the concentration mechanism that led to their extreme salinity. Many chemical and isotopic tracers are used to solve these questions. For example, lithium isotope systematics have been used recently to support a marine origin for the Yellowknife shield brine (Northwest Territories). While having important chemical similarities to the Yellowknife brine, shield brines from the Sudbury/Elliot Lake (Ontario) and Thompson/Snow Lake (Manitoba) regions, which are the focus of this study, exhibit contrasting lithium behavior. Brine from the Sudbury Victor mine has lithium concentrations that closely follow the sea water lithium-bromine concentration trajectory, as well as delta6Li values of approximately -28/1000. This indicates that the lithium in this brine is predominantly marine in origin with a relatively minor component of crustal lithium leached from the host rocks. In contrast, the Thompson/Snow Lake brine has anomalously low lithium concentrations, indicating that it has largely been removed from solution by alteration minerals. Furthermore, brine and nonbrine mine waters at the Thompson mine have large delta6Li variations of approximately 30/1000, which primarily reflects mixing between deep brine with delta6Li of -35 +/- 2/1000 and near surface mine water that has derived higher delta6Li values through interactions with their host rocks. The contrary behavior of lithium in these two brines shows that, in systems where it has behaved conservatively, lithium isotopes can distinguish brines derived from marine sources.

  6. The Spectacular Radio-Near-IR-X-Ray Jet of 3C 111: the X-Ray Emission Mechanism and Jet Kinematics

    NASA Technical Reports Server (NTRS)

    Clautice, Devon; Perlman, Eric S.; Georganopoulos, Markos; Lister, Matthew L.; Tombesi, Francesco; Cara, Mihai; Marshall, Herman L.; Hogan, Brandon M.; Kazanas, Demos

    2016-01-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the subparsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near- IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and Hubble Space Telescope (HST) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR, HST, and Chandra will allow us to further constrain the emission mechanisms.

  7. THE SPECTACULAR RADIO-NEAR-IR-X-RAY JET OF 3C 111: THE X-RAY EMISSION MECHANISM AND JET KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clautice, Devon; Perlman, Eric S.; Georganopoulos, Markos

    2016-08-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new,more » deep Chandra and Hubble Space Telescope ( HST ) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR , HST , and Chandra will allow us to further constrain the emission mechanisms.« less

  8. Simple route to (NH4)xWO3 nanorods for near infrared absorption

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio

    2012-05-01

    Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film

  9. Elucidating anionic oxygen activity in lithium-rich layered oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jing; Sun, Meiling; Qiao, Ruimin

    Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less

  10. Elucidating anionic oxygen activity in lithium-rich layered oxides

    DOE PAGES

    Xu, Jing; Sun, Meiling; Qiao, Ruimin; ...

    2018-03-05

    Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less

  11. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery.

    PubMed

    Kang, Shaohong; Yu, Tao; Liu, Tingting; Guan, Shiyou

    2018-02-15

    We proposed a large-sized graphene preparation method by short-circuit discharge of the lithium-graphite primary battery for the first time. LiC x is obtained through lithium ions intercalation into graphite cathode in the above primary battery. Graphene was acquired by chemical reaction between LiC x and stripper agents with dispersion under sonication conditions. The gained graphene is characterized by Raman spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Atomic force microscope (AFM) and Scanning electron microscopy (SEM). The results indicate that the as-prepared graphene has a large size and few defects, and it is monolayer or less than three layers. The quality of graphene is significant improved compared to the reported electrochemical methods. The yield of graphene can reach 8.76% when the ratio of the H 2 O and NMP is 3:7. This method provides a potential solution for the recycling of waste lithium ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Conductive lithium storage electrode

    DOEpatents

    Chiang, Yet-Ming [Framingham, MA; Chung, Sung-Yoon [Seoul, KR; Bloking, Jason T [Cambridge, MA; Andersson, Anna M [Uppsala, SE

    2008-03-18

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001x, y, and z are greater than zero. The compound can have a conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  13. Conductive lithium storage electrode

    DOEpatents

    Chiang, Yet-Ming [Framingham, MA; Chung, Sung-Yoon [Incheon, KR; Bloking, Jason T [Mountain View, CA; Andersson, Anna M [Vasteras, SE

    2012-04-03

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001x, y, and z are greater than zero. The compound can have a conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  14. Electrochemical Energy Storage Materials

    DTIC Science & Technology

    2012-07-01

    of porous polypropylene membrane (Celgrad® 2400) separators soaked in a liquid electrolyte solution containing 1.0 M lithium hexafluorophosphate ... Lithium Li-ion Lithium ion LiO2 Lithium Dioxide LiOx Lithium Oxide (non stoichiometric) LiPF6 lithium hexafluorophosphate LT-ALD Low Temperature...Nanostructured Battery Architectures, Nanostructured Lithium Ion Batteries 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF

  15. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes

    NASA Astrophysics Data System (ADS)

    Park, Kisung; Yu, Sunghun; Lee, Chulhaeng; Lee, Hochun

    2015-11-01

    Lithium bis(fluorosulfonyl)imide (LiFSI) is a promising salt that can possibly overcome the limitations of lithium hexafluorophosphate (LiPF6) in current Li-ion batteries (LIBs). Aluminum (Al) corrosion issue, however, is a major bottleneck for the wide use of LiFSI. This study investigates lithium borate salts as Al corrosion inhibitors in LiFSI electrolytes. Through a systematic comparison among lithium tetrafluoroborate (LiBF4), lithium bis(oxalato)borate (LiBOB), and lithium difluoro(oxalato)borate (LiDFOB), and LiPF6, the inhibition ability of the additives is revealed to be in the following order: LiDFOB > LiBF4 ≈ LiPF6 > LiBOB. In particular, the inhibition effect of LiDFOB is outstanding; the anodic behavior of Al in 0.8 M LiFSI + 0.2 M LiDFOB ethylene carbonate (EC)-based electrolyte is comparable to that of corrosion-free 1 M LiPF6 solution. The superior inhibition ability of LiDFOB is attributed to the formation of a passive layer composed of Al-F, Al2O3, and B-O species, as evidenced by X-ray photoelectron spectroscopy (XPS) measurements. A LiCoO2/graphite cell with 0.8 M LiFSI + 0.2 M LiDFOB electrolyte exhibits a rate capability comparable to a cell with 1 M LiPF6 solution, whereas a cell with 0.8 M LiFSI solution without LiDFOB suffers from poor power performance resulting from severe Al corrosion.

  16. A low-temperature electrolyte for lithium and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Plichta, E. J.; Behl, W. K.

    An electrolyte consisting of 1 M solution of lithium hexafluorophosphate in 1:1:1 ethylene carbonate(EC)-dimethyl carbonate(DMC)-ethyl methyl carbonate(EMC) is proposed for low temperature applications of lithium and lithium-ion cells. The new electrolyte has good conductivity and electrochemical stability. Lithium and lithium-ion cells using the new electrolyte were found to be operable at temperatures down to -40°C. The paper also reports on the electrochemical stability of aluminum metal, which is used as a substrate for the positive electrodes in lithium-ion cells, in the new electrolyte.

  17. Nickel-Hydrogen and Lithium Ion Space Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Robert O., II

    2004-01-01

    The tasks of the Electrochemistry Branch of NASA Glenn Research Center are to improve and develop high energy density and rechargeable, life-long batteries. It is with these batteries that people across the globe are able to power their cell phones, laptop computers, and cameras. Here, at NASA Glenn Research Center, the engineers and scientists of the Electrochemistry branch are leading the way in the development of more powerful, long life batteries that can be used to power space shuttles and satellites. As of now, the cutting edge research and development is being done on nickel-hydrogen batteries and lithium ion batteries. Presently, nickel-hydrogen batteries are common types of batteries that are used to power satellites, space stations, and space shuttles, while lithium batteries are mainly used to power smaller appliances such as portable computers and phones. However, the Electrochemistry Branch at NASA Glenn Research Center is focusing more on the development of lithium ion batteries for deep space use. Because of the limitless possibilities, lithium ion batteries can revolutionize the space industry for the better. When compared to nickel-hydrogen batteries, lithium ion batteries possess more advantages than its counterpart. Lithium ion batteries are much smaller than nickel-hydrogen batteries and also put out more power. They are more energy efficient and operate with much more power at a reduced weight than its counterpart. Lithium ion cells are also cheaper to make, possess flexibility that allow for different design modifications. With those statistics in hand, the Electrochemistry Branch of NASA Glenn has decided to shut down its Nickel-Hydrogen testing for lithium ion battery development. Also, the blackout in the summer of 2003 eliminated vital test data, which played a part in shutting down the program. from the nickel-hydrogen batteries and compare it to past data. My other responsibilities include superheating the electrolyte that is used in the

  18. Research of a smart cutting tool based on MEMS strain gauge

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  19. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    NASA Astrophysics Data System (ADS)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  20. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  1. Crystal growth of LiIn 1–xGa xSe 2 crystals

    DOE PAGES

    Wiggins, Brenden; Bell, Joseph; Woodward, Jonathan; ...

    2016-10-22

    Lithium containing chalcogenide single crystals have become very promising materials for photonics and radiation detection. Detection applications include nuclear nonproliferation, neutron science, and stellar investigations for the search of life. Synthesis and single crystal growth methods for lithium containing chalcogenide, specifically LiIn 1-xGa xSe 2, single crystals are discussed. This study elucidates the possibility of improving neutron detection by reducing the indium capture contribution; with the incorporation of the lithium-6 isotope, gallium substitution may overcome the neutron detection efficiency limitation of 6LiInSe 2 due to appreciable neutron capture by the indium-115 isotope. As a figure of merit, the ternary parentmore » compounds 6LiInSe 2 and 6LiGaSe 2 were included in this study. Quality crystals can be obtained utilizing the vertical Bridgman method to produce quaternary compounds with tunable optical properties. Here, quaternary crystals of varying quality depending on the gallium concentration, approximately 5 x 5 x 2 mm 3 or larger in volume, were harvested, analyzed and revealed tunable absorption characteristics between 2.8-3.4 eV.« less

  2. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment (LTX)

    NASA Astrophysics Data System (ADS)

    Majeski, Dick

    2016-10-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (<0.1) from lithium. So far experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  3. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  4. Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides.

    PubMed

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M; Högberg, Björn

    2013-07-01

    Single-stranded oligonucleotides are important as research tools, as diagnostic probes, in gene therapy and in DNA nanotechnology. Oligonucleotides are typically produced via solid-phase synthesis, using polymer chemistries that are limited relative to what biological systems produce. The number of errors in synthetic DNA increases with oligonucleotide length, and the resulting diversity of sequences can be a problem. Here we present the 'monoclonal stoichiometric' (MOSIC) method for enzyme-mediated production of DNA oligonucleotides. We amplified oligonucleotides from clonal templates derived from single bacterial colonies and then digested cutter hairpins in the products, which released pools of oligonucleotides with precisely controlled relative stoichiometric ratios. We prepared 14-378-nucleotide MOSIC oligonucleotides either by in vitro rolling-circle amplification or by amplification of phagemid DNA in Escherichia coli. Analyses of the formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides.

  5. Lithium-associated hyperthyroidism.

    PubMed

    Siyam, Fadi F; Deshmukh, Sanaa; Garcia-Touza, Mariana

    2013-08-01

    Goiters and hypothyroidism are well-known patient complications of the use of lithium for treatment of bipolar disease. However, the occurrence of lithium-induced hyperthyroidism is a more rare event. Many times, the condition can be confused with a flare of mania. Monitoring through serial biochemical measurement of thyroid function is critical in patients taking lithium. Hyperthyroidism induced by lithium is a condition that generally can be controlled medically without the patient having to discontinue lithium therapy, although in some circumstances, discontinuation of lithium therapy may be indicated. We report on a patient case of lithium-associated hyperthyroidism that resolved after discontinuation of the medication.

  6. Electrostatic spray deposition of porous Fe 2O 3 thin films as anode material with improved electrochemical performance for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, H. W.; Chen, P. C.; Zhang, D. W.; Ding, C. X.; Chen, C. H.

    Iron oxide materials are attractive anode materials for lithium-ion batteries for their high capacity and low cost compared with graphite and most of other transition metal oxides. Porous carbon-free α-Fe 2O 3 films with two types of pore size distribution were prepared by electrostatic spray deposition, and they were characterized by X-ray diffraction, scanning electron microscopy and X-ray absorption near-edge spectroscopy. The 200 °C-deposited thin film exhibits a high reversible capacity of up to 1080 mAh g -1, while the initial capacity loss is at a remarkable low level (19.8%). Besides, the energy efficiency and energy specific average potential (E av) of the Fe 2O 3 films during charge/discharge process were also investigated. The results indicate that the porous α-Fe 2O 3 films have significantly higher energy density than Li 4Ti 5O 12 while it has a similar E av of about 1.5 V. Due to the porous structure that can buffer the volume changes during lithium intercalation/de-intercalation, the films exhibit stable cycling performance. As a potential anode material for high performance lithium-ion batteries that can be applied on electric vehicle and energy storage, rate capability and electrochemical performance under high-low temperatures were also investigated.

  7. Crystal structure and magnetic properties of high-oxygen pressure annealed Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swierczek, Konrad; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439; Dabrowski, Bogdan

    2009-02-15

    Structural and magnetic studies are presented for the perovskite type Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5) materials annealed under moderately high-oxygen pressures of {approx}200 atm. A detailed analysis of the room temperature neutron time-of-flight diffraction data reveals that the crystal structure of the sample SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89(1)}, previously described as vacancy-disordered cubic, is similar to the formerly reported, oxygen-vacancy ordered Sr{sub 8}Fe{sub 8}O{sub 23} compound, i.e. Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23} is tetragonal with the I4/mmm symmetry. With an increase of the La content the studied materials become nearly oxygen stoichiometric and a lowering of the crystal symmetrymore » is observed from cubic Pm3-barm (x=0.1 and 0.2) to tetragonal I4/mcm (x=0.3 and 0.4), and finally to monoclinic I12/c1 (x=0.5). Low-temperature structural and magnetic measurements show a ferromagnetic ordering with the maximum Curie temperature near 290 K at x=0.2. - Graphical Abstract: Room temperature Rietveld refinement profile using I4/mmm space group for the oxygen vacancy ordered SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89} (Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23}). Top tick-marks denote allowed reflections in I4/mmm, bottom one emphasize the possibility of inexact indexing using Pm3-barm symmetry. Previous reports indicate that similar ordering is common for SrCo{sub 1-x}Fe{sub x}O{sub 3-{delta}} compounds possibly hindering their applications.« less

  8. Carbon and nutrient use efficiencies optimally balance stoichiometric imbalances

    NASA Astrophysics Data System (ADS)

    Manzoni, Stefano; Čapek, Petr; Lindahl, Björn; Mooshammer, Maria; Richter, Andreas; Šantrůčková, Hana

    2016-04-01

    Decomposer organisms face large stoichiometric imbalances because their food is generally poor in nutrients compared to the decomposer cellular composition. The presence of excess carbon (C) requires adaptations to utilize nutrients effectively while disposing of or investing excess C. As food composition changes, these adaptations lead to variable C- and nutrient-use efficiencies (defined as the ratios of C and nutrients used for growth over the amounts consumed). For organisms to be ecologically competitive, these changes in efficiencies with resource stoichiometry have to balance advantages and disadvantages in an optimal way. We hypothesize that efficiencies are varied so that community growth rate is optimized along stoichiometric gradients of their resources. Building from previous theories, we predict that maximum growth is achieved when C and nutrients are co-limiting, so that the maximum C-use efficiency is reached, and nutrient release is minimized. This optimality principle is expected to be applicable across terrestrial-aquatic borders, to various elements, and at different trophic levels. While the growth rate maximization hypothesis has been evaluated for consumers and predators, in this contribution we test it for terrestrial and aquatic decomposers degrading resources across wide stoichiometry gradients. The optimality hypothesis predicts constant efficiencies at low substrate C:N and C:P, whereas above a stoichiometric threshold, C-use efficiency declines and nitrogen- and phosphorus-use efficiencies increase up to one. Thus, high resource C:N and C:P lead to low C-use efficiency, but effective retention of nitrogen and phosphorus. Predictions are broadly consistent with efficiency trends in decomposer communities across terrestrial and aquatic ecosystems.

  9. The Influence of Water Vapor on the Stability and Processing of Hybrid Perovskite Solar Cells Made from Non-Stoichiometric Precursor Mixtures.

    PubMed

    Petrus, Michiel L; Hu, Yinghong; Moia, Davide; Calado, Philip; Leguy, Aurélien M A; Barnes, Piers R F; Docampo, Pablo

    2016-09-22

    We investigated the influence of moisture on methylammonium lead iodide perovskite (MAPbI 3 ) films and solar cells derived from non-stoichiometric precursor mixtures. We followed both the structural changes under controlled air humidity through in situ X-ray diffraction, and the electronic behavior of devices prepared from these films. A small PbI 2 excess in the films improved the stability of the perovskite compared to stoichiometric samples. We assign this to excess PbI 2 layers at the perovskite grain boundaries or to the termination of the perovskite crystals with Pb and I. In contrast, the MAI-excess films composed of smaller perovskite crystals showed increased electronic disorder and reduced device performance owing to poor charge collection. Upon exposure to moisture followed by dehydration (so-called solvent annealing), these films recrystallized to form larger, highly oriented crystals with fewer electronic defects and a remarkable improvement in photocurrent and photovoltaic efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuping, E-mail: yupingtai@126.com; Zheng, Guojun, E-mail: zhengguojun88@126.com; Wang, Hui, E-mail: huiwang@nwu.edu.cn

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfermore » (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.« less

  11. Lithium/water battery with lithium ion conducting glass-ceramics electrolyte

    NASA Astrophysics Data System (ADS)

    Katoh, Takashi; Inda, Yasushi; Nakajima, Kousuke; Ye, Rongbin; Baba, Mamoru

    Lithium/water batteries have attracted considerable attention as high power supply devices because they use high energy density lithium metal as an anode and water as a cathode. In this study, we investigate the use of lithium/water batteries that use a glass-ceramics plate as an electrolyte. A lithium ion conducting glass-ceramics plate has no through-holes and does not exhibit moisture permeation. Such a plate has stable ionic conductivity in water. Lithium/water batteries that used a glass-ceramics plate as an electrolyte had a long and stable discharge for 50 days at room temperature when the lithium metal was prevented from coming into contact with water. Lithium/seawater batteries using a glass-ceramics plate as an electrolyte also operated well in the 10-70 °C temperature range.

  12. Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings

    PubMed Central

    Burgio, Lucia; Clark, Robin J. H.; Hark, Richard R.

    2010-01-01

    Italian medieval and Renaissance manuscript cuttings and miniatures from the Victoria and Albert Museum were analyzed by Raman microscopy to compile a database of pigments used in different periods and different Italian regions. The palette identified in most manuscripts and cuttings was found to include lead white, gypsum, azurite, lazurite, indigo, malachite, vermilion, red lead, lead tin yellow (I), goethite, carbon, and iron gall ink. A few of the miniatures, such as the historiated capital “M” painted by Gerolamo da Cremona and the Petrarca manuscript by Bartolomeo Sanvito, are of exceptional quality and were analyzed extensively; some contained unusual materials. The widespread usage of iron oxides such as goethite and hematite as minor components of mixtures with azurite is particularly notable. The use of a needle-shaped form of iron gall ink as a pigment rather than a writing material was established by both Raman microscopy and x-ray fluorescence spectroscopy for the Madonna and Child by Franco de’ Russi. PMID:20304797

  13. Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings.

    PubMed

    Burgio, Lucia; Clark, Robin J H; Hark, Richard R

    2010-03-30

    Italian medieval and Renaissance manuscript cuttings and miniatures from the Victoria and Albert Museum were analyzed by Raman microscopy to compile a database of pigments used in different periods and different Italian regions. The palette identified in most manuscripts and cuttings was found to include lead white, gypsum, azurite, lazurite, indigo, malachite, vermilion, red lead, lead tin yellow (I), goethite, carbon, and iron gall ink. A few of the miniatures, such as the historiated capital "M" painted by Gerolamo da Cremona and the Petrarca manuscript by Bartolomeo Sanvito, are of exceptional quality and were analyzed extensively; some contained unusual materials. The widespread usage of iron oxides such as goethite and hematite as minor components of mixtures with azurite is particularly notable. The use of a needle-shaped form of iron gall ink as a pigment rather than a writing material was established by both Raman microscopy and x-ray fluorescence spectroscopy for the Madonna and Child by Franco de' Russi.

  14. Stoichiometric Experiments with Alkane Combustion: A Classroom Demonstration

    ERIC Educational Resources Information Center

    Zhilin, Denis M.

    2012-01-01

    A simple, effective demonstration of the concept of limiting and excess reagent is presented. Mixtures of either air/methane (from a gas line) or air/butane (from a disposable cigarette lighter) contained in a plastic 2 L soda bottles are ignited. The mixtures combust readily when air/fuel ratios are stoichiometric, but not at a 2-fold excess of…

  15. JWST Near-Infrared Detectors: Latest Test Results

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.; Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Chiao, Meng; Clemons, Brian L.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; hide

    2009-01-01

    The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection.

  16. Electronic and Electrochemical Properties of Li 1–x Mn 1.5 Ni 0.5 O 4 Spinel Cathodes As a Function of Lithium Content and Cation Ordering

    DOE PAGES

    Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...

    2015-10-05

    The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less

  17. Single crystal growth by gel technique and characterization of lithium hydrogen tartrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2015-02-01

    Single crystal growth of lithium hydrogen tartrate by gel encapsulation technique is reported. Dependence of crystal count on gel density, gel pH, reactant concentration and temperature are studied and the optimum conditions for these crystals are worked out. The stoichiometric composition of the grown crystals is determined using EDAX/AES and CH analysis. The grown crystals are characterized by X-ray diffraction, FTIR and Uv-Visible spectroscopy. It is established that crystal falls under orthorhombic system and space group P222 with the cell parameters as: a=10.971 Å, b=13.125 Å and c=5.101 Å; α=90.5o, β=γ=90°. The morphology of the crystals as revealed by SEM is illustrated. Crystallite size, micro strain, dislocation density and distortion parameters are calculated from the powder XRD results of the crystal. UV-vis spectroscopy shows indirect allowed transition with an optical band gap of 4.83 eV. The crystals are also shown to have high transmittance in the entire visible region. Dependence of dielectric constant, dielectric loss and conductivity on frequency of the applied ac field is analyzed. The frequency-dependent real part of the complex ac conductivity is found to follow the universal dielectric response: σac (ω) ωs. The trend in the variation of frequency exponent with frequency corroborates the fact that correlated barrier hopping is the dominant charge-transport mechanism in the present system.

  18. Single-ion conducting diblock terpolymers for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  19. The effect of disk type and cutting speed on the micro-tensile bond strength of ceramic specimens to resin cement.

    PubMed

    Castro, Martha C C; Sadek, Fernanda T; Batitucci, Eduardo; Miranda, Mauro S

    2014-01-01

    The bond strength of dental materials has been evaluated by tensile testing of micro-specimens. The cutting process used to obtain specimens may influence the results. The objective of this study was to investigate the influence of different types of diamond disks and cutting speeds on the bond strength of ceramic specimens and on specimen integrity. Lithium disilicate-based ceramic cubes were bonded with resin cement to composite resin cubes, according to the manufacturers' instructions. The ceramic/cement/resin blocks thus obtained were divided into two groups to be cut with Buehler(®) or Extec(®) disks and then sectioned at cutting speeds of 200 rpm and 400 rpm. The results showed that the bond strength values were affected by the cutting speed and disk/speed interaction (p<0.05). SEM analysis revealed better specimen properties when the blocks were cut at 200 rpm. It was concluded that ceramic specimens must be cut at low speeds.

  20. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part 2; Effect of Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This paper is the first report on the effect prior low temperature creep on the thermal cycling behavior of NiTi. The isothermal low temperature creep behavior of near-stoichiometric NiTi between 300 and 473 K was discussed in Part I. The effect of temperature cycling on its creep behavior is reported in the present paper (Part II). Temperature cycling tests were conducted between either 300 or 373 K and 473 K under a constant applied stress of either 250 or 350 MPa with hold times lasting at each temperature varying between 300 and 700 h. Each specimen was pre-crept either at 300 or at 473 K for several months under an identical applied stress as that used in the subsequent thermal cycling tests. Irrespective of the initial pre-crept microstructures, the specimens exhibited a considerable increase in strain with each thermal cycle so that the total strain continued to build-up to 15 to 20 percent after only 5 cycles. Creep strains were immeasurably small during the hold periods. It is demonstrated that the strains in the austenite and martensite are linearly correlated. Interestingly, the differential irrecoverable strain, in the material measured in either phase decreases with increasing number of cycles, similar to the well-known Manson-Coffin relation in low cycle fatigue. Both phases are shown to undergo strain hardening due to the development of residual stresses. Plots of true creep rate against absolute temperature showed distinct peaks and valleys during the cool-down and heat-up portions of the thermal cycles, respectively. Transformation temperatures determined from the creep data revealed that the austenitic start and finish temperatures were more sensitive to the pre-crept martensitic phase than to the pre-crept austenitic phase. The results are discussed in terms of a phenomenological model, where it is suggested that thermal cycling between the austenitic and martensitic phase temperatures or vice versa results in the deformation of the austenite and

  1. Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide

    NASA Astrophysics Data System (ADS)

    Yakub, Eugene; Ronchi, Claudio; Staicu, Dragos

    2007-09-01

    Results of molecular dynamics (MD) simulation of UO2 in a wide temperature range are presented and discussed. A new approach to the calibration of a partly ionic Busing-Ida-type model is proposed. A potential parameter set is obtained reproducing the experimental density of solid UO2 in a wide range of temperatures. A conventional simulation of the high-temperature stoichiometric UO2 on large MD cells, based on a novel fast method of computation of Coulomb forces, reveals characteristic features of a premelting λ transition at a temperature near to that experimentally observed (Tλ=2670K ). A strong deviation from the Arrhenius behavior of the oxygen self-diffusion coefficient was found in the vicinity of the transition point. Predictions for liquid UO2, based on the same potential parameter set, are in good agreement with existing experimental data and theoretical calculations.

  2. Cutting work in thick section cryomicrotomy.

    PubMed

    Saubermann, A J; Riley, W D; Beeuwkes, R

    1977-09-01

    The forces during cryosectioning were measured using miniature strain gauges attached to a load cell fitted to the drive arm of the Porter-Blum MT-2 cryomicrotome. Work was calculated and the data normalized to a standard (1 mm X 1 mm X 0.5 micrometer) section. Thermal energy generated was also calculated. Five parameters were studied: cutting angle, thickness, temperature, hardness, and block shape. Force patterns could be divided into three major groups thought to represent cutting (Type I), large fracture planes greater than 10 micrometer in length (Type II), and small fracture planes less than 10 micrometer in length (Type III). Type I and Type II produced satisfactory sections. Work in cutting ranged from an average of 78.4 muJ to 568.8 muJ. Cutting angle and temperature had the greatest effect on sectioning. Heat generated would be sufficient to cause through-section melting for 0.5 micrometer thick sections assuming the worst possible case, namely that all heat went into the section without loss. Presence of a Type II pattern (large fracture pattern) is thought to be presumptive evidence against thawing.

  3. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOEpatents

    Bates, John B.

    1994-01-01

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  4. Optical excitation of carbon nanotubes drives stoichiometric reaction with diazonium salts

    NASA Astrophysics Data System (ADS)

    Powell, Lyndsey; Piao, Yanmei; Wang, Yuhuang; YuHuang Wang Research Group Team

    Covalent chemistry is known to lack the precision required to tailor the physical properties of carbon nanostructures. Here we show that, for the first time, light can be used to drive a typically inefficient reaction with single-walled carbon nanotubes in a more stoichiometric fashion. Specifically, our experimental results suggest that light can enhance the reaction rate of diazonium salt with carbon nanotubes by as much as 35-fold, making possible stoichiometric control of the covalent bonding of a functional group to the sp2 carbon lattice. This light-controlled reaction paves the way for the possibility of highly selective and precise chemistry on single-walled carbon nanotubes and other graphitic nanostructures.

  5. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    PubMed Central

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  6. Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions.

    PubMed

    Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan

    2016-05-23

    Lithium-sulfur batteries are among the most promising electrochemical energy storage devices of the near future. Especially the low price and abundant availability of sulfur as the cathode material and the high theoretical capacity in comparison to state-of-the art lithium-ion technologies are attractive features. Despite significant research achievements that have been made over the last years, fundamental (electro-) chemical questions still remain unanswered. This review addresses ten crucial questions associated with lithium-sulfur batteries and critically evaluates current research with respect to them. The sulfur-carbon composite cathode is a particular focus, but its complex interplay with other hardware components in the cell, such as the electrolyte and the anode, necessitates a critical discussion of other cell components. Modern in situ characterisation methods are ideally suited to illuminate the role of each component. This article does not pretend to summarise all recently published data, but instead is a critical overview over lithium-sulfur batteries based on recent research findings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Interstellar Lithium and Rubidium in the Diffuse Gas Near IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.

    2011-01-01

    We present an analysis of interstellar lithium and rubidium from observations made with the Hobby-Eberly Telescope at McDonald Observatory of the Li I λ6707 and Rb I λ7800 absorption lines along four lines of sight through the supernova remnant IC 443. The observations probe interstellar material polluted by the ejecta of a core-collapse (Type II) supernova and can thus be used to constrain the contribution from massive stars to the synthesis of lithium and rubidium. Production of 7Li is expected to occur through neutrino spallation in the helium and carbon shells of the progenitor star during the terminal supernova explosion, while both 6Li and 7Li are synthesized via spallation and fusion reactions involving cosmic rays accelerated by the remnant. Gamma-ray emission from IC 443 provides strong evidence for the interaction of accelerated cosmic rays with the ambient atomic and molecular gas. Rubidium is also produced by massive stars through the weak s-process in the He- and C-burning shells and the r-process during core collapse. We examine interstellar 7Li/6Li isotope ratios as well as Li/K and Rb/K ratios along each line of sight, and discuss the implications of our results in the context of nucleosynthesis associated with Type II supernovae.

  8. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.

    PubMed

    Kämäräinen, Jari; Knoop, Henning; Stanford, Natalie J; Guerrero, Fernando; Akhtar, M Kalim; Aro, Eva-Mari; Steuer, Ralf; Jones, Patrik R

    2012-11-30

    Cyanobacteria are capable of directly converting sunlight, carbon dioxide and water into hydrocarbon fuel or precursors thereof. Many biological and non-biological factors will influence the ability of such a production system to become economically sustainable. We evaluated two factors in engineerable cyanobacteria which could potentially limit economic sustainability: (i) tolerance of the host to the intended end-product, and (ii) stoichiometric potential for production. Alcohols, when externally added, inhibited growth the most, followed by aldehydes and acids, whilst alkanes were the least inhibitory. The growth inhibition became progressively greater with increasing chain-length for alcohols, whilst the intermediate C6 alkane caused more inhibition than both C3 and C11 alkane. Synechocystis sp. PCC 6803 was more tolerant to some of the tested chemicals than Synechococcus elongatus PCC 7942, particularly ethanol and undecane. Stoichiometric evaluation of the potential yields suggested that there is no difference in the potential productivity of harvestable energy between any of the studied fuels, with the exception of ethylene, for which maximal stoichiometric yield is considerably lower. In summary, it was concluded that alkanes would constitute the best choice metabolic end-product for fuel production using cyanobacteria if high-yielding strains can be developed. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Lithium in drinking water and suicide mortality: interplay with lithium prescriptions

    PubMed Central

    Helbich, Marco; Leitner, Michael; Kapusta, Nestor D.

    2015-01-01

    Background Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. Aims To examine the interplay between natural lithium in drinking water, prescribed lithium-based pharmaceuticals and suicide in Austria. Method Spatial Bayesian regressions for males, females and pooled suicide mortality rates were estimated. Results Although the expected inverse association between lithium levels in drinking water and suicide mortality was confirmed for males and for total suicide rates, the relationship for females was not significant. The models do not indicate that lithium from prescriptions, assumed to accumulate in drinking water, is related to suicide risk patterns either as an individual effect or as a moderator of lithium levels in drinking water. Gender-specific differences in risk factors and local risk hot spots are confirmed. Conclusions The findings do not support the hypotheses that lithium prescriptions have measureable protective effects on suicide or that they interact with lithium in drinking water. PMID:25953888

  10. Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement

    DTIC Science & Technology

    2011-01-19

    or lithium iron phosphate ( LiFePO4 ), on a current collector of aluminum foil, (iii) a microporous separator between the electrodes, and (iv) a liquid...with four LiFePO4 lithium ion cells will likely result in a closely matched voltage. However, other types of lithium ion cells also consisting of...20.5 15- 24.6 17.5- 28.7 20- 32.8 22.5- 36.9 Voltage(V) ( LiFePO4 ) 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 n x 3.3 Voltage range (V

  11. Lithium in drinking water and suicide mortality: interplay with lithium prescriptions.

    PubMed

    Helbich, Marco; Leitner, Michael; Kapusta, Nestor D

    2015-07-01

    Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. To examine the interplay between natural lithium in drinking water, prescribed lithium-based pharmaceuticals and suicide in Austria. Spatial Bayesian regressions for males, females and pooled suicide mortality rates were estimated. Although the expected inverse association between lithium levels in drinking water and suicide mortality was confirmed for males and for total suicide rates, the relationship for females was not significant. The models do not indicate that lithium from prescriptions, assumed to accumulate in drinking water, is related to suicide risk patterns either as an individual effect or as a moderator of lithium levels in drinking water. Gender-specific differences in risk factors and local risk hot spots are confirmed. The findings do not support the hypotheses that lithium prescriptions have measureable protective effects on suicide or that they interact with lithium in drinking water. © The Royal College of Psychiatrists 2015.

  12. Preparation of refractory cermet structures for lithium compatibility testing

    NASA Technical Reports Server (NTRS)

    Heestand, R. L.; Jones, R. A.; Wright, T. R.; Kizer, D. E.

    1973-01-01

    High-purity nitride and carbide cermets were synthesized for compatability testing in liquid lithium. A process was developed for the preparation of high-purity hafnium nitride powder, which was subsequently blended with tungsten powder or tantalum nitride and tungsten powders and fabricated into 3 in diameter billets by uniaxial hot pressing. Specimens were then cut from the billets for compatability testing. Similar processing techniques were applied to produce hafnium carbide and zirconium carbide cermets for use in the testing program. All billets produced were characterized with respect to chemistry, structure, density, and strength properties.

  13. Development of lithium powder based anode with conductive carbon materials for lithium batteries

    NASA Astrophysics Data System (ADS)

    Park, Man Su

    Current lithium ion battery with a graphite anode shows stable cycle performance and safety. However, the lithium ion battery still has the limitation of having a low energy density caused by the application of lithium intercalated cathode and anode with low energy density. The combination of high capacity non-lithiated cathode such as sulfur and carbon and lithium metal anode has been researched for a long time to maximize battery's energy density. However, this cell design also has a lot of technical challenges to be solved. Among the challenges, lithium anode's problem related to lithium dendrite growth causing internal short and low cycling efficiency is very serious. Thus, extensive research on lithium metal anode has been performed to solve the lithium dendrite problem and a major part of the research has been focused on the control of the interface between lithium and electrolyte. However, research on lithium anode design itself has not been much conducted. In this research, innovative lithium anode design for less dendrite growth and higher cycling efficiency was suggested. Literature review for the lithium dendrite growth mechanism was conducted in Chapter 2 to develop electrode design concept and the importance of the current density on lithium dendrite growth was also found in the literatures. The preliminary test was conducted to verify the developed electrode concept by using lithium powder based anode (LIP) with conductive carbon materials and the results showed that lithium dendrite growth could be suppressed in this electrode design due to its increased electrochemical surface area and lithium deposition sites during lithium deposition. The electrode design suggested in Chapter 2 was extensively studied in Chapter 3 in terms of lithium dendrite growth morphology, lithium cycling efficiency and full cell cycling performance. This electrode concept was further developed to maximize the electrode's performance and safety in Chapter 4. In this new

  14. Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept.

    PubMed

    Gnaiger, E; Bitterlich, G

    1984-06-01

    Carbohydrate, lipid, and protein compositions are stoichiometrically related to organic CHN (carbon, hydrogen, nitrogen) contents. Elemental CHN analyses of total biomass and ash, therefore, provide a basis for the calculation of proximate biochemical composition and bomb caloric value. The classical nitrogen to protein conversion factor (6.25) should be replaced by 5.8±0.13. A linear relation exists between the mass fraction of non-protein carbon and the carbohydrate and lipid content. Residual water in dry organic matter can be estimated with the additional information derived from hydrogen measurements.The stoichiometric CHN method and direct biochemical analysis agreed within 10% of ash-free dry biomass (for muscle, liver and fat tissue of silver carp; gut contents composed of detritus and algae; commercial fish food). The detrital material, however, had to be corrected for non-protein nitrogen.A linear relationship between bomb caloric value and organic carbon fractions was derived on the basis of thermodynamic and stoichiometric principles, in agreement with experimental data published for bacteria, algae, protozoa and invertebrates. The highly automatic stoichiometric CHN method for the separation of nutrient contents in biomass extends existing ecophysiological concepts for the construction of balanced carbon and nitrogen, as well as biochemical and energy budgets.

  15. Intense Photosensitized Emission from Stoichiometric Compounds Featuring Mn(2+) in Seven- and Eightfold Coordination Environments.

    PubMed

    Reid, Howard O. N.; Kahwa, Ishenkumba A.; White, Andrew J. P.; Williams, David J.

    1998-07-27

    Synthetic, structural and luminescence studies of stoichiometric crown ether compounds of Mn(2+) in well-defined coordination environments were undertaken in an effort to understand the origin of emitting crystal defects found in cubic F23 [(K18C6)(4)MnBr(4)][TlBr(4)](2) crystals (Fender, N. S.; et al. Inorg. Chem. 1997, 36, 5539). The new compound [Mn(12C4)(2)][MnBr(4)](2)[N(CH(3))(4)](2) (3) features Mn(2+) ions in eight- and fourfold coordination environments of [Mn(12C4)(2)](2+) and MnBr(4)(2)(-) respectively, while Mn(2+) in [Mn(15C5)(H(2)O)(2)][TlBr(5)] (4) is in the sevenfold coordination polyhedron of [Mn(15C5)(H(2)O)(2)](2+). Crystal data for 3: monoclinic, P2(1)/c (No. 14); a = 14.131(3) Å, b = 12.158(1) Å, c = 14.239(2) Å, beta = 110.37(1) degrees, Z = 2, R1 = 0.039 and wR2 = 0.083. For 3, long-lived emission (77 K decay rate approximately 3 x 10 s(-)(1)) from [Mn(12C4)(2)](2+) (the first for eight-coordinate Mn(2+) in stoichiometric compounds) is observed (lambda(max) approximately 546 nm) along with that of the sensitizing MnBr(4)(2)(-) (lambda(max) approximately 513 nm), which is partially quenched. Emission from the seven-coordinate [Mn(15C5)(H(2)O)(2)](2+) species of 4 and [Mn(15C5)(H(2)O)(2)][MnBr(4)] (the first for seven-coordinate Mn(2+) in stoichiometric compounds) peaks at lambda(max) approximately 592 nm. Unusually intense absorptions attributable to the seven-coordinate species are observed at 317 ((2)T(2)((2)I) <-- (6)A(1)), 342 ((4)T(1)((4)P) <-- (6)A(1)), 406 ((4)E((4)G) <-- (6)A(1)), and 531 ((4)T(1)((4)G) <-- (6)A(1)) nm.

  16. Recycling rice husks for high-capacity lithium battery anodes

    PubMed Central

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-01-01

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  17. Recycling rice husks for high-capacity lithium battery anodes.

    PubMed

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  18. Near-edge X-ray absorption spectra for metallic Cu and Mn

    NASA Astrophysics Data System (ADS)

    Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.

    1981-11-01

    The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.

  19. Beyond the structure-property relationship paradigm: influence of the crystal structure and microstructure on the Li+ conductivity of La2/3Li(x)Ti(1-x)Al(x)O3 Oxides.

    PubMed

    García-Martín, Susana; Morata-Orrantía, Ainhoa; Alario-Franco, Miguel A; Rodríguez-Carvajal, Juan; Amador, Ulises

    2007-01-01

    The crystal structures of several oxides of the La(2/3)Li(x)Ti(1-x)Al(x)O(3) system have been studied by selected-area electron diffraction, high-resolution transmission electron microscopy, and powder neutron diffraction, and their lithium conductivity has been by complex impedance spectroscopy. The compounds have a perovskite-related structure with a unit cell radical2 a(p)x2 a(p)x radical2 a(p) (a(p)=perovskite lattice parameter) due to the tilting of the (Ti/Al)O(6) octahedra and the ordering of lanthanum and lithium ions and vacancies along the 2 a(p) axis. The Li(+) ions present a distorted square-planar coordination and are located in interstitial positions of the structure, which could explain the very high ionic conductivity of this type of material. The lithium conductivity depends on the oxide composition and its crystal microstructure, which varies with the thermal treatment of the sample. The microstructure of these titanates is complex due to formation of domains of ordering and other defects such as strains and compositional fluctuations.

  20. A Database for Comparative Electrochemical Performance of Commercial 18650-Format Lithium-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkholtz, Heather M.; Fresquez, Armando; Chalamala, Babu R.

    Lithium-ion batteries are a central technology to our daily lives with widespread use in mobile devices and electric vehicles. These batteries are also beginning to be widely used in electric grid infrastructure support applications which have stringent safety and reliability requirements. Typically, electrochemical performance data is not available for modelers to validate their simulations, mechanisms, and algorithms for lithium-ion battery performance and lifetime. In this paper, we report on the electrochemical performance of commercial 18650 cells at a variety of temperatures and discharge currents. We found that LiFePO 4 is temperature tolerant for discharge currents at or below 10 Amore » whereas LiCoO 2, LiNi xCo yAl 1-x-yO 2, and LiNi 0.80Mn 0.15Co 0.05O 2 exhibited optimal electrochemical performance when the temperature is maintained at 15°C. LiNi xCo yAl 1-x-yO 2 showed signs of lithium plating at lower temperatures, evidenced by irreversible capacity loss and emergence of a high-voltage differential capacity peak. Furthermore, all cells need to be monitored for self-heating, as environment temperature and high discharge currents may elicit an unintended abuse condition. Overall, this study shows that lithium-ion batteries are highly application-specific and electrochemical behavior must be well understood for safe and reliable operation. Additionally, data collected in this study is available for anyone to download for further analysis and model validation.« less

  1. A Database for Comparative Electrochemical Performance of Commercial 18650-Format Lithium-Ion Cells

    DOE PAGES

    Barkholtz, Heather M.; Fresquez, Armando; Chalamala, Babu R.; ...

    2017-09-08

    Lithium-ion batteries are a central technology to our daily lives with widespread use in mobile devices and electric vehicles. These batteries are also beginning to be widely used in electric grid infrastructure support applications which have stringent safety and reliability requirements. Typically, electrochemical performance data is not available for modelers to validate their simulations, mechanisms, and algorithms for lithium-ion battery performance and lifetime. In this paper, we report on the electrochemical performance of commercial 18650 cells at a variety of temperatures and discharge currents. We found that LiFePO 4 is temperature tolerant for discharge currents at or below 10 Amore » whereas LiCoO 2, LiNi xCo yAl 1-x-yO 2, and LiNi 0.80Mn 0.15Co 0.05O 2 exhibited optimal electrochemical performance when the temperature is maintained at 15°C. LiNi xCo yAl 1-x-yO 2 showed signs of lithium plating at lower temperatures, evidenced by irreversible capacity loss and emergence of a high-voltage differential capacity peak. Furthermore, all cells need to be monitored for self-heating, as environment temperature and high discharge currents may elicit an unintended abuse condition. Overall, this study shows that lithium-ion batteries are highly application-specific and electrochemical behavior must be well understood for safe and reliable operation. Additionally, data collected in this study is available for anyone to download for further analysis and model validation.« less

  2. Establishment, sex structure and breeding system of an exotic riparian willow, Salix X rubens

    USGS Publications Warehouse

    Shafroth, Patrick B.; Scott, Michael L.; Friedman, Jonathan M.; Laven, Richard D.

    1994-01-01

    Several Eurasian tree willows (Salix spp.) have become naturalized in riparian areas outside of their native range. Salix x rubens is a Eurasian willow that is conspicuous along streams in the high plains of Colorado. We examined establishment of seedlings and cuttings, the sex structure and the breeding system of S. x rubens. An experiment was conducted on establishment and growth of seedlings and cuttings under a range of hydrologic conditions. Seedlings became established under all conditions except when flooded, although many fewer seedlings became established where soil surface conditions were relatively dry. Cuttings became established under all experimental conditions, but most frequently where soil moisture was highest. The sex structure of S. x rubens was determined along several streams in the Colorado high plains. Of 2175 trees surveyed, >99% (2172) were female. Salix x rubens produce viable seed apparently as a result of hybridization with another Eurasian willow, S. alba var. vitellina. Salix x rubens often reproduces vegetatively, which, combined with low hybrid seedling survival in the field, may explain the unusual sex structure. Salix x rubens will likely continue to spread vegetatively in high plains riparian areas, and the potential for spread through hybridization could increase if males of compatible Salix spp. are planted near extant S. x rubens.

  3. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    PubMed

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  4. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.

  5. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes.

    PubMed

    Cheng, Lei; Crumlin, Ethan J; Chen, Wei; Qiao, Ruimin; Hou, Huaming; Franz Lux, Simon; Zorba, Vassilia; Russo, Richard; Kostecki, Robert; Liu, Zhi; Persson, Kristin; Yang, Wanli; Cabana, Jordi; Richardson, Thomas; Chen, Guoying; Doeff, Marca

    2014-09-14

    Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.

  6. Lithium

    MedlinePlus

    Lithium is used to treat and prevent episodes of mania (frenzied, abnormally excited mood) in people with ... depression, episodes of mania, and other abnormal moods). Lithium is in a class of medications called antimanic ...

  7. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygenmore » from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.« less

  8. A stoichiometric calibration method for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Bourque, Alexandra E.; Carrier, Jean-François; Bouchard, Hugo

    2014-04-01

    The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic

  9. Challenges and issues facing lithium metal for solid-state rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K.

    2017-06-01

    The commercial use of lithium metal batteries was delayed because of dendrite formation on the surface of the lithium electrode, and the difficulty finding a suitable electrolyte that has both the mechanical strength and ionic conductivity required for solid electrolytes. Recently, strategies have developed to overcome these difficulties, so that these batteries are currently an option for different applications, including electric cars. In this work, we review these strategies, and discuss the different routes that are promising for progress in the near future.

  10. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  11. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    PubMed

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  12. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  13. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    DOEpatents

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  14. On the stability of sub-stoichiometric uranium oxides

    NASA Astrophysics Data System (ADS)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1986-12-01

    The oxidation of clean, high-purity polycrystalline uranium metal surfaces for low exposures to dry oxygen was studied with AES and XPS in an attempt to substantiate claims for the formation of a stable UO surface phase at ambient temperatures. We found no evidence for such a surface phase and found instead that grossly sub-stoichiometric surface oxides were formed after sequential oxygen saturation and heating.

  15. The temperature and ion energy dependence of deuterium retention in lithium films

    NASA Astrophysics Data System (ADS)

    Buzi, Luxherta; Koel, Bruce E.; Skinner, Charles H.

    2016-10-01

    Lithium conditioning of plasma facing components in magnetic fusion devices has improved plasma performance and lowered hydrogen recycling. For applications of lithium in future high heat flux and long pulse duration machines it is important to understand and parameterize deuterium retention in lithium. This work presents surface science studies of deuterium retention in lithium films as a function of surface temperature, incident deuterium ion energy and flux. Initial experiments are performed on thin (3-30 ML) lithium films deposited on a single crystal molybdenum substrate to avoid effects due to grain boundaries, intrinsic defects and impurities. A monoenergetic and mass-filtered deuterium ion beam was generated in a differentially pumped Colutron ion gun. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to identify the elemental composition and temperature programmed desorption was used to measure the deuterium retention under the different conditions. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  16. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O2 , S, Se, Te, I2 , Br2 ) Batteries.

    PubMed

    Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue

    2017-07-01

    Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Parabolic lithium mirror for a laser-driven hot plasma producing device

    DOEpatents

    Baird, James K.

    1979-06-19

    A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.

  18. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  19. Lithium-ion conducting electrolyte salts for lithium batteries.

    PubMed

    Aravindan, Vanchiappan; Gnanaraj, Joe; Madhavi, Srinivasan; Liu, Hua-Kun

    2011-12-16

    This paper presents an overview of the various types of lithium salts used to conduct Li(+) ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato)borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In situ stress measurements during electrochemical cycling of lithium-rich cathodes

    DOE PAGES

    Nation, Leah; Li, Juchuan; James, Christine; ...

    2017-08-29

    Layered lithium transition metal oxides (Li 1+xM 1-xO 2, M= Ni, Mn, Co) are attractive cathode materials for lithium-ion batteries due to their high reversible capacity but suffer from structural changes and voltage fade. In this study, we use stress as a novel way to track irreversible changes in Li 1.2Mn 0.55Ni 0.125Co 0.125O 2 (LR-NMC) cathodes. A unique and unpredicted stress signature is observed during the first delithiation. Initially, a tensile stress is observed, consistent with volume contraction from lithium removal, however, the stress reverses and becomes compressive with continued charging beyond 4 V vs Li/Li +, indicating volumemore » expansion; this phenomenon is present in the first cycle only. The origin of this irreversible stress during delithiation is likely oxygen loss and the resulting cation rearrangement. Here, Raman spectroscopy provides evidence of the layered-to-spinel phase transition after cycling in the LR-NMC films, as well as recovery of the original spectra upon re-annealing in an oxygen environment.« less

  1. In situ stress measurements during electrochemical cycling of lithium-rich cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nation, Leah; Li, Juchuan; James, Christine

    Layered lithium transition metal oxides (Li 1+xM 1-xO 2, M= Ni, Mn, Co) are attractive cathode materials for lithium-ion batteries due to their high reversible capacity but suffer from structural changes and voltage fade. In this study, we use stress as a novel way to track irreversible changes in Li 1.2Mn 0.55Ni 0.125Co 0.125O 2 (LR-NMC) cathodes. A unique and unpredicted stress signature is observed during the first delithiation. Initially, a tensile stress is observed, consistent with volume contraction from lithium removal, however, the stress reverses and becomes compressive with continued charging beyond 4 V vs Li/Li +, indicating volumemore » expansion; this phenomenon is present in the first cycle only. The origin of this irreversible stress during delithiation is likely oxygen loss and the resulting cation rearrangement. Here, Raman spectroscopy provides evidence of the layered-to-spinel phase transition after cycling in the LR-NMC films, as well as recovery of the original spectra upon re-annealing in an oxygen environment.« less

  2. In situ stress measurements during electrochemical cycling of lithium-rich cathodes

    NASA Astrophysics Data System (ADS)

    Nation, Leah; Li, Juchuan; James, Christine; Qi, Yue; Dudney, Nancy; Sheldon, Brian W.

    2017-10-01

    Layered lithium transition metal oxides (Li1+xM1-xO2, M = Ni, Mn, Co) are attractive cathode materials for lithium-ion batteries due to their high reversible capacity. However, they suffer from structural changes that lead to substantial voltage fade. In this study, we use stress as a novel way to track irreversible changes in Li1.2Mn0.55Ni0.125Co0.125O2 (LR-NMC) cathodes. A unique and unpredicted stress signature is observed during the first delithiation. Initially, a tensile stress is observed, consistent with volume contraction from lithium removal, however, the stress reverses and becomes compressive with continued charging beyond 4 V vs Li/Li+, indicating volume expansion; this phenomenon is present in the first cycle only. This irreversible stress during delithiation is likely to be at least partially due to oxygen loss and the resulting cation rearrangement. Raman spectroscopy provides evidence of the layered-to-spinel phase transition after cycling in the LR-NMC films, as well as recovery of the original spectra upon re-annealing in an oxygen environment.

  3. Ion-solvation structure and battery electrode characteristics of nonflammable organic electrolytes based on tris(trifluoroethyl)phosphate dissolving lithium salts.

    PubMed

    Todorov, Yanko Marinov; Fujii, Kenta; Yoshimoto, Nobuko; Hirayama, Daisuke; Aoki, Masahiro; Mimura, Hideyuki; Morita, Masayuki

    2017-11-29

    The structure and properties of lithium salt solutions based on tris(2,2,2-trifluoroethyl)phosphate (TFEP) solvent have been studied to design a safer electrolyte system for large-sized lithium-ion battery applications. Influences of the ionic structure on the polarization behavior of the LiCoO 2 (LCO) positive electrode were investigated. The ionic conductivity and viscosity of the solution consisting of lithium salts dissolved in TFEP, LiX/TFEP (X = PF 6 , BF 4 and TFSA) (TFSA = (CF 3 SO 2 ) 2 N), were measured. The results suggest that the ion-solvation structure greatly depends on the anionic species in the salt. Spectroscopic measurements also support the conclusion that the Li + -solvation structure varies with the lithium salts. The differences in the ionic structure of LiX/TFEP influence the electrochemical oxidation potential of the solution and the polarization behavior of the LCO electrode. The overvoltage for Li-desertion/insertion from/into LCO in LiX/TFEP, being much higher than that observed in conventional LIB electrolyte solutions, shows the order of BF 4 < PF 6 < TFSA. The addition of ethylene carbonate (EC) to LiX/TFEP increases the ionic conductivity, which is probably caused by changes in the Li + -solvation structure in TFEP. The overvoltage for the Li-desertion/insertion of LCO is much lowered by the addition of EC to LiX/TFEP.

  4. Layered lithium manganese(0.4) nickel(0.4) cobalt(0.2) oxide(2) as cathode for lithium batteries

    NASA Astrophysics Data System (ADS)

    Ma, Miaomiao

    The lithium ion battery occupies a dominant position in the portable battery market today. Intensive research has been carried out on every part of the battery to reduce cost, avoid environmental hazards, and improve battery performance. The commercial cathode material LiCoO2 has been partially replaced by LiNiyCo1- yO2 in the last two years, and mixed metal oxides have been introduced in the last quarter. From a resources point of view, only about 10 million tons of cobalt deposits are available from the world's minerals. However, there is about 500 times more manganese available than cobalt. Moreover, cobalt itself is not environmentally friendly. The purpose of this work is to find a promising alternative cathode material that can maintain good cycling performance, while at the same time reducing the cost and toxicity. When the cost is lowered, it is then possible to consider the larger scale use of lithium ion batteries in application such as hybrid electric vehicles (HEV). The research work presented in this thesis has focused on a specific composition of a layered lithium transition metal oxide, LiMn0.4Ni 0.4Co0.2O2 with the R3¯m structure. The presence of cobalt plays a critical role in minimizing transition metal migration to the lithium layer, and perhaps also in enhancing the electronic conductivity; however, cobalt is in limited supply and it is therefore more costly than nickel or manganese. The performance of LiMn0.4Ni0.4Co 0.2O2 was investigated and characterized utilizing various techniques an its performance compared with cobalt free LiMn0.5N i0.5O2, as well as with LiMn1/3Ni1/3Co 1/3O2, which is the most extensively studied replacement candidate for LiNiyCo1- yO2, and may be in SONY'S new hybrid cells. First, the structure and cation distribution in LiMn0.4Ni 0.4Co0.2O2 was studied by a combination of X-ray and neutron diffraction experiments. This combination study shows that about 3--5% nickel is present in the lithium layer, while manganese and

  5. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrese, A; Newman, J

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasimore » steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.« less

  6. Exhaustive identification of steady state cycles in large stoichiometric networks

    PubMed Central

    Wright, Jeremiah; Wagner, Andreas

    2008-01-01

    Background Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. Results We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. Conclusion The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable. PMID:18616835

  7. Size Dependence of Metal-Insulator Transition in Stoichiometric Fe₃O4₄Nanocrystals.

    PubMed

    Lee, Jisoo; Kwon, Soon Gu; Park, Je-Geun; Hyeon, Taeghwan

    2015-07-08

    Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.

  8. Exploratory development of an electrically rechargeable lithium battery

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Goldman, J. L.; Dempsey, M. D.; Holleck, G. L.

    1980-10-01

    The cathodic behavior or V6013 was investigated in rechargeable Li cells of the type, Li/2Me-THF,LiAsF6/V6013,C. Two forms of V6013 were synthesized and characterized. These were a stoichiometric form, i.e., V02.17, and a slightly non-stoichiometric form, i.e., V02.19. Stoichiometric V6013 was prepared by heating requisite quantities of V205 and V powder for 24 hrs. at 650 C. The slightly non-stoichiometric V6013 was prepared by the thermal decomposition of NH4V03 at 450 C. The discharge characteristics of the stoichiometric oxide at 60 C were similar to that of non-stoichiometric oxide at room temperature. The rechargeability of both the oxides were found to be sensitive to the lower voltage cutoff. The safest limits of cycling were 3.0 and 1.9V. Potentiostatic discharges of the oxides between 1.9 and 1.3V revealed a high capacity irreversible reduction process at about 1.6V. Three types of hermetically sealed cells were constructed and tested. In a high capacity (5Ah) prismatic cell utilizing the non-stoichiometric oxide, energy densities of 106 Whr/kg and 190 Whr/DM3 were achieved.

  9. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV-vis-NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology-Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission-Department of Atomic Research-Consortium for Scientific Research (Grant No. CSR-KN/CSR-63/2014-2015/503), and the Kalpakkam and Indore, India.

  10. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    PubMed

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  11. Nanostructured high-energy cathode materials for advanced lithium batteries.

    PubMed

    Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

    2012-11-01

    Nickel-rich layered lithium transition-metal oxides, LiNi(1-x)M(x)O(2) (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g(-1)), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

  12. One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology.

    PubMed

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Liberti, Emanuela; Allen, Christopher S; Kirkland, Angus I; Bruce, Peter G

    2016-12-14

    Lithium-rich transition metal oxides, Li 1+x TM 1-x O 2 (TM, transition metal), have attracted much attention as potential candidate cathode materials for next generation lithium ion batteries because their high theoretical capacity. Here we present the synthesis of Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 using a facile one-pot resorcinol-formaldehyde method. Structural characterization indicates that the material adopts a hierarchical porous morphology consisting of uniformly distributed small pores and disordered large pore structures. The material exhibits excellent electrochemical cycling stability and a good retention of capacity at high rates. The material has been shown to be both advantageous in terms of gravimetric and volumetric capacities over state of the art commercial cathode materials.

  13. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.

    PubMed

    Jackson, Everett D; Prieto, Amy L

    2016-11-09

    Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.

  14. Theory of simultaneous excitonic-superconductivity condensation II Experimental evidence and stoichiometric interpretations

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Ching, W. Y.

    1989-04-01

    We discuss a variety of experimental observations which are consistent with theory of the excitonic-enhancement model (EEM) presented earlier. The experimental works discussed are: (1) isotope substitution; (2) fluorinated YBa 2Cu 3O 7- x; (3) infrared optical spectra; (4) specific heat and tunneling gap; (5) Hall effect and nuclear spin relaxation; (6) positron annihilation; (7) utrasound velocity and sound attenuation; (8) Meissner effect and critical current; (9) antiferromagnetism and oxygen deficiency; (10) flux quantization; and (11) photoemission. A simple stoichiometric interpretation on the existing high temperature superconducting oxides based on the specific stacking of chemical subsystems is also presented. It is argued that according to EEM theory, a superconducting oxide must contain two stable oxides, one having excitonic levels such as Cu 2O; the other having intrinsic hole population at the top of the valence band such as CuO. A systematic search for other potential high Tc compounds is also suggested.

  15. High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1- x Te with a Converted Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.

    2018-04-01

    The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1- x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K

  16. High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1-x Te with a Converted Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.

    2018-04-01

    The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1-x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K

  17. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    USGS Publications Warehouse

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  18. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam

    DOE PAGES

    Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; ...

    2014-07-16

    Our investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. But, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi 0.4Mn 0.4Co 0.18Ti 0.02O 2 particles, repeated electron beam irradiation induced a phase transition from an Rmore » $$\\bar{3}$$m layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from R$$\\bar{3}$$m 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, in using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.« less

  19. Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X-ray Absorption Spectroscopy.

    PubMed

    Zhang, Liang; Sun, Dan; Kang, Jun; Wang, Hsiao-Tsu; Hsieh, Shang-Hsien; Pong, Way-Faung; Bechtel, Hans A; Feng, Jun; Wang, Lin-Wang; Cairns, Elton J; Guo, Jinghua

    2018-06-06

    As the lightest and cheapest transition metal dichalcogenide, TiS 2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge-charge reaction mechanism of the TiS 2 electrode is still elusive. Here, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS 2 during the discharge-charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS 2 is partially reversible in the first cycle. However, Ti-O related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Such understanding is important for the future design and optimization of TiS 2 based electrodes for lithium batteries.

  20. Homogeneity of lithium distribution in cylinder-type Li-ion batteries

    PubMed Central

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.

    2015-01-01

    Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode. PMID:26681110