Sample records for x-irradiated tumor cell

  1. Induction of metallothionein synthesis in transplanted murine tumors by X irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyoshi, Shibuya; Masahiko Satoh; Yuzo, Watanabe

    1995-07-01

    Although recent studies have shown that radiation can induce metallothionein (MT) synthesis in normal tissues, the induction of tumor MT synthesis by irradiation has not been reported. We examined the accumulation of MT in the Meth-A tumor (mouse fibrosarcoma cells) transplanted into mice exposed to whole-body X irradiation. In the present study, the MT content in the tumor cells was increased by X irradiation in a dose-dependent manner. The MT level induced in the tumor cells by X irradiation was elevated not only after a single exposure but also after repeated exposures. Several studies have shown that MT is onemore » of the important cellular factors in resistance to various anti-cancer drugs and ionizing radiation. Thus our results suggest that the radiation-induced MT in the tumor cells may have to be taken into consideration when designing protocols for radio-and chemotherapy. 29 refs., 3 figs.« less

  2. VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation.

    PubMed

    Fujisawa, Hiroshi; Nakajima, Nakako Izumi; Sunada, Shigeaki; Lee, Younghyun; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2015-08-19

    High linear energy transfer (LET) radiation such as carbon ion particles is successfully used for treatment of solid tumors. The reason why high LET radiation accomplishes greater tumor-killing than X-rays is still not completely understood. One factor would be the clustered or complex-type DNA damages. We previously reported that complex DNA double-strand breaks produced by high LET radiation enhanced DNA end resection, and this could lead to higher kinase activity of ATR protein recruited to RPA-coated single-stranded DNA. Although the effect of ATR inhibition on cells exposed to low LET gamma-rays has recently been reported, little is known regarding the effect of ATR inhibitor on cells treated with high LET radiation. The purpose of this study is to investigate the effects of the ATR inhibitor VE-821 in human tumor and normal cells irradiated with high LET carbon ions. HeLa, U2OS, and 1BR-hTERT (normal) cells were pre-treated with 1 μM VE-821 for 1 hour and irradiated with either high LET carbon ions or X-rays. Cell survival, cell cycle distribution, cell growth, and micronuclei formation were evaluated. VE-821 caused abrogation of G2/M checkpoint and forced irradiated cells to divide into daughter cells. We also found that carbon ions caused a higher number of multiple micronuclei than X-rays, leading to decreased cell survival in tumor cells when treated with VE-821, while the survival of irradiated normal cells were not significantly affected by this inhibitor. ATR inhibitor would be an effective tumor radiosensitizer with carbon ion irradiation.

  3. Relative Biologic Effectiveness (RBE) of 50 kV X-rays Measured in a Phantom for Intraoperative Tumor-Bed Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi; Schneider, Frank; Ma, Lin

    Purpose: Intraoperative radiation therapy (IORT) with low-energy x-rays is used to treat the tumor bed during breast-conserving surgery. The purpose was to determine the relative biologic effectiveness (RBE) of 50-kV x-rays for inactivation of cells irradiated in a tumor-bed phantom. Methods and Materials: The RBE was determined for clonogenic inactivation of human tumor and normal cells (MCF7, human umbilical vein endothelial cells, normal skin fibroblasts), and hamster V79 cells. The 50-kV x-rays from the Intrabeam machine (Carl Zeiss Surgical) with a spherical 4-cm applicator were used. Cells were irradiated in a water-equivalent phantom at defined distances (8.1-22.9 mm) from themore » applicator surface. The 50-kV x-rays from a surface therapy machine (Dermopan, Siemens) were included for comparison; 6-MV x-rays were used as reference radiation. Results: At 8.1-mm depth in the phantom (dose rate 15.1 Gy/h), mean RBE values of 50-kV x-rays from Intrabeam were 1.26 to 1.42 for the 4 cell types at doses yielding surviving fractions in the range of 0.01 to 0.5. Confidence intervals were in the range of 1.2 and 1.5. Similar RBE values were found for 50-kV x-rays from Dermopan for V79 (1.30, CI 1.25-1.36, P=.74) and GS4 (1.42, CI 1.30-1.54, P=.67). No significant dependence of RBE on dose was found for Intrabeam, but RBE decreased at a larger distance (12.7 mm; 9.8 Gy/h). Conclusions: An increased clinically relevant RBE was found for cell irradiation with Intrabeam at depths in the tumor bed targeted by IORT. The reduced RBE values at larger distances may be related to increased repair of sublethal damage during protracted irradiation or to hardening of the photon beam energy.« less

  4. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    NASA Astrophysics Data System (ADS)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  5. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  6. Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schildkopf, Petra, E-mail: petra.schildkopf@uk-erlangen.de; Frey, Benjamin, E-mail: benjamin.frey@uk-erlangen.de; Mantel, Frederick, E-mail: frederick.mantel@web.de

    2010-01-01

    Colorectal cancer is the second leading cause of death in developed countries. Tumor therapies should on the one hand aim to stop the proliferation of tumor cells and to kill them, and on the other hand stimulate a specific immune response against residual cancer cells. Dying cells are modulators of the immune system contributing to anti-inflammatory or pro-inflammatory responses, depending on the respective cell death form. The positive therapeutic effects of temperature-controlled hyperthermia (HT), when combined with ionizing irradiation (X-ray), were the origin to examine whether combinations of X-ray with HT can induce immune activating tumor cell death forms, alsomore » characterized by the release of the danger signal HMGB1. Human colorectal tumor cells with differing radiosensitivities were treated with combinations of HT (41.5 {sup o}C for 1 h) and X-ray (5 or 10 Gy). Necrotic cell death was prominent after X-ray and could be further increased by HT. Apoptosis remained quite low in HCT 15 and SW480 cells. X-ray and combinations with HT arrested the tumor cells in the radiosensitive G2 cell cycle phase. The amount of released HMGB1 protein was significantly enhanced after combinatorial treatments in comparison to single ones. We conclude that combining X-ray with HT may induce anti-tumor immunity as a result of the predominant induction of inflammatory necrotic tumor cells and the release of HMGB1.« less

  7. Curative potential of GM-CSF-secreting tumor cell vaccines on established orthotopic liver tumors: mechanisms for the superior antitumor activity of live tumor cell vaccines.

    PubMed

    Tai, Kuo-Feng; Chen, Ding-Shinn; Hwang, Lih-Hwa

    2004-01-01

    In preclinical studies, tumor cells genetically engineered to secrete cytokines, hereafter referred to as tumor cell vaccines, can often generate systemic antitumor immunity. This study investigated the therapeutic effects of live or irradiated tumor cell vaccines that secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) on established orthotopic liver tumors. Experimental results indicated that two doses (3 x 10(7) cells per dose) of irradiated tumor cell vaccines were therapeutically ineffective, whereas one dose (3 x 10(6) cells) of live tumor cell vaccines caused complete tumor regression. In vivo depletion of CD8+ T cells, but not natural killer cells, restored tumor formation in the live vaccine-treated animals. Additionally, the treatment of cells with live vaccine induced markedly higher levels of cytotoxic T lymphocyte activity than the irradiated vaccines in the draining lymph nodes. The higher levels of cytokine and antigen loads could partly explain the superior antitumor activity of live tumor cell vaccines, but other unidentified mechanisms could also play a role in the early T cell activation in the lymph nodes. A protocol using multiple and higher dosages of irradiated tumor cell vaccines also caused significant regression of liver tumors. These results suggest that the GM-CSF-secreting tumor cell vaccines are highly promising for orthotopic liver tumors if higher levels of immune responses are elicited during early tumor development. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  8. Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chang W., E-mail: songx001@umn.edu; Korea Institute of Radiological and Medical Sciences, Seoul; Lee, Yoon-Jin

    Purpose: The purpose of this study was to reveal the biological mechanisms underlying stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). Methods and Materials: FSaII fibrosarcomas grown subcutaneously in the hind limbs of C3H mice were irradiated with 10 to 30 Gy of X rays in a single fraction, and the clonogenic cell survival was determined with in vivo–in vitro excision assay immediately or 2 to 5 days after irradiation. The effects of radiation on the intratumor microenvironment were studied using immunohistochemical methods. Results: After cells were irradiated with 15 or 20 Gy, cell survival in FSaII tumors declined for 2 to 3 daysmore » and began to recover thereafter in some but not all tumors. After irradiation with 30 Gy, cell survival declined continuously for 5 days. Cell survival in some tumors 5 days after 20 to 30 Gy irradiation was 2 to 3 logs less than that immediately after irradiation. Irradiation with 20 Gy markedly reduced blood perfusion, upregulated HIF-1α, and increased carbonic anhydrase-9 expression, indicating that irradiation increased tumor hypoxia. In addition, expression of VEGF also increased in the tumor tissue after 20 Gy irradiation, probably due to the increase in HIF-1α activity. Conclusions: Irradiation of FSaII tumors with 15 to 30 Gy in a single dose caused dose-dependent secondary cell death, most likely by causing vascular damage accompanied by deterioration of intratumor microenvironment. Such indirect tumor cell death may play a crucial role in the control of human tumors with SBRT and SRS.« less

  9. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    PubMed Central

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  10. Gamma-ray irradiation enhanced boron-10 compound accumulation in murine tumors.

    PubMed

    Liu, Yong; Nagata, Kenji; Masunaga, Shin-ichiro; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji

    2009-11-01

    Previous studies have demonstrated that X-ray irradiation affects angiogenesis in tumors. Here, we studied the effects of gamma-ray irradiation on boron-10 compound accumulation in a murine tumor model. The mouse squamous cell carcinoma was irradiated with gamma-ray before BSH ((10)B-enriched borocaptate sodium) administration. Then, the boron-10 concentrations in tumor and normal muscle tissues were measured by prompt gamma-ray spectrometry (PGA). A tumor blood flow assay was performed, and cell killing effects of neutron irradiation with various combinations of BSH and gamma-rays were also examined. BSH concentrations of tumor tissues were 16.1 +/- 0.6 microg/g, 16.7 +/- 0.5 microg/g and 17.8 +/- 0.5 microg/g at 72 hours after gamma-ray irradiation at doses of 5, 10, and 20 Gy, compared with 13.1 +/- 0.5 microg/g in unirradiated tumor tissues. The enhancing inhibition of colony formation by neutron irradiation with BSH was also found after gamma-ray irradiation. In addition, increasing Hoechst 33342 perfusion was also observed. In this study, we demonstrated that gamma-ray irradiation enhances BSH accumulation in tumors. The present results suggest that the enhancement of (10)B concentration that occurs after gamma-ray irradiation may be due to the changes in the extracellular microenvironment, including in tumor vessels, induced by gamma-ray irradiation.

  11. Efficient Active Oxygen Free Radical Generated in Tumor Cell by Loading-(HCONH2)·H2O2 Delivery Nanosystem with Soft-X-ray Radiotherapy

    PubMed Central

    Xu, Lei; Shao, Yiran; Chang, Chengkang; Zhu, Yingchun

    2018-01-01

    Tumor hypoxia is known to result in radiotherapy resistance and traditional radiotherapy using super-hard X-ray irradiation can cause considerable damage to normal tissue. Therefore, formamide peroxide (FPO) with high reactive oxygen content was employed to enhance the oxygen concentration in tumor cells and increase the radio-sensitivity of low-energy soft-X-ray. To improve stability of FPO, FPO is encapsulated into polyacrylic acid (PAA)-coated hollow mesoporous silica nanoparticles (FPO@HMSNs-PAA). On account of the pH-responsiveness of PAA, FPO@HMSNs-PAA will release more FPO in simulated acidic tumor microenvironment (pH 6.50) and subcellular endosomes (pH 5.0) than in simulated normal tissue media (pH 7.40). When exposed to soft-X-ray irradiation, the released FPO decomposes into oxygen and the generated oxygen further formed many reactive oxygen species (ROS), leading to significant tumor cell death. The ROS-mediated cytotoxicity of FPO@HMSNs-PAA was confirmed by ROS-induced green fluorescence in tumor cells. The presented FPO delivery system with soft-X-ray irradiation paves a way for developing the next opportunities of radiotherapy toward efficient tumor prognosis. PMID:29649155

  12. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  13. Hypofractionated Irradiation Has Immune Stimulatory Potential and Induces a Timely Restricted Infiltration of Immune Cells in Colon Cancer Tumors

    PubMed Central

    Frey, Benjamin; Rückert, Michael; Weber, Julia; Mayr, Xaver; Derer, Anja; Lotter, Michael; Bert, Christoph; Rödel, Franz; Fietkau, Rainer; Gaipl, Udo S.

    2017-01-01

    In addition to locally controlling the tumor, hypofractionated radiotherapy (RT) particularly aims to activate immune cells in the RT-modified microenvironment. Therefore, we examined whether hypofractionated RT can activate dendritic cells (DCs), induce immune cell infiltration in tumors, and how the chronology of immune cell migration into tumors occurs to gain knowledge for future definition of radiation breaks and inclusion of immunotherapy. Colorectal cancer treatments offer only limited survival benefit, and immunobiological principles for additional therapies need to be explored with preclinical models. The impact of hypofractionated RT on CT26 colon cancer tumor cell death, migration of DCs toward supernatants (SN) of tumor cells, and activation of DCs by SN were analyzed. The subcutaneous tumor of a BALB/c-CT26 mouse model was locally irradiated with 2 × 5 Gy, the tumor volume was monitored, and the infiltration of immune cells in the tumor was determined by flow cytometry daily. Hypofractionated RT induced a mixture of apoptotic and necrotic CT26 cells, which is known to be in particular immunogenic. DCs that migrated toward SN of CT26 cells particularly upregulated the activation markers CD80 and CD86 when in contact with SN of irradiated tumor cells. After hypofractionated RT, the tumor outgrowth was significantly retarded and in the irradiated tumors an increased infiltration of macrophages (CD11bhigh/F4-80+) and DCs (MHC-II+), but only between day 5 and 10 after the first irradiation, takes place. While CD4+ T cells migrated into non-irradiated and irradiated tumors, CD8+ T cells were only found in tumors that had been irradiated and they were highly increased at day 8 after the first irradiation. Myeloid-derived suppressor cells and regulatory T cells show regular turnover in irradiated and non-irradiated tumors. Tumor cell-specific anti-IgM antibodies were enhanced in the serum of animals with irradiated tumors. We conclude that

  14. Natural killer cells attack tumor cells expressing high levels of sialyl Lewis x oligosaccharides

    PubMed Central

    Ohyama, Chikara; Kanto, Satoru; Kato, Kazunori; Nakano, Osamu; Arai, Yoichi; Kato, Tetsuro; Chen, Shihao; Fukuda, Michiko N.; Fukuda, Minoru

    2002-01-01

    Epithelial carcinoma and leukemia cells express sialyl Lewis x oligosaccharides as tumor-associated carbohydrate antigens. To determine the role of sialyl Lewis x oligosaccharides in tumor dissemination, human melanoma MeWo cells, which do not express sialyl Lewis x, were transfected with α1,3-fucosyltransferase III (FTIII), and cell lines expressing different amounts of sialyl Lewis x were isolated. When these cells were injected into the tail vein of nude mice, cells expressing moderate amounts of sialyl Lewis x (MeWo-FTIII⋅M) produced a significantly greater number of lung tumor foci than did parental MeWo cells. In contrast, cells expressing large amounts of sialyl Lewis x (MeWo-FTIII⋅H) produced few lung tumor foci in nude mice but were highly tumorigenic in beige mice, which have defective natural killer (NK) cells. In vitro assays demonstrated that MeWo-FTIII⋅H cells are much more sensitive to NK cell-mediated cytotoxicity than are MeWo-FTIII⋅M cells or parental MeWo cells and the susceptibility of MeWo-FTIII⋅H cells to NK cell-mediated cytolysis can be inhibited by preincubating MeWo-FTIII⋅H cells with anti-sialyl Lewis x antibody. Moreover, we discovered that NK cell-mediated cytolysis of MeWo-FTIII⋅H cells can be inhibited by the addition of an antibody against the NK cell receptor CD94 or sialyl Lewis x oligosaccharides. These results, combined with structural analysis of MeWo-FTIII⋅H cell carbohydrates, indicate that moderate amounts of sialyl Lewis x lead to tumor metastasis, whereas expression of high levels of sialyl Lewis x leads to an NK cell attack on tumor cells, demonstrating that expression of different amounts of sialyl Lewis x results in entirely different biological consequences. PMID:12370411

  15. Chemotherapeutic tumor microparticles combining low-dose irradiation reprogram tumor-promoting macrophages through a tumor-repopulating cell-curtailing pathway

    PubMed Central

    Sun, Yanling; Zheng, Zu'an; Zhang, Huafeng; Yu, Yuandong; Ma, Jingwei; Tang, Ke; Xu, Pingwei; Ji, Tiantian; Liang, Xiaoyu; Chen, Degao; Jin, Xun; Zhang, Tianzhen; Long, Zhixiong; Liu, Yuying; Huang, Bo

    2017-01-01

    ABSTRACT Stem cell-like tumor-repopulating cells (TRCs) have a critical role in establishing a tumor immunosuppressive microenvironment. However, means to enhance antitumor immunity by disrupting TRCs are absent. Our previous studies have shown that tumor cell-derived microparticles (T-MPs) preferentially abrogate TRCs by delivering antitumor drugs into nuclei of TRCs. Here, we show that low dose irradiation (LDI) enhances the effect of cisplatin-packaging T-MPs (Cis-MPs) on TRCs, leading to inhibiting tumor growth in different tumor models. This antitumor effect is not due to the direct killing of tumor cells but is T cell-dependent and relies on macrophages for their efficacy. The underlying mechanism is involved in therapeutic reprograming macrophages from tumor-promotion to tumor-inhibition by disrupting TRCs and curtailing their vicious education on macrophages. These findings provide a novel strategy to reset macrophage polarization and confer their function more like M1 than M2 types with highly promising potential clinical applications. PMID:28680743

  16. Alteration of Radiosensitivity of Quiescent Cell Populations in Solid Tumors Irradiated with X‐Rays Twice at Various Intervals

    PubMed Central

    Ono, Koji; Mitsumori, Michihide; Abe, Mitsuyuki

    1993-01-01

    5‐Bromo‐2′‐deoxyuridine (BUdR) was injected into SCC VII or EMT6/KU tumor‐bearing mice intraperitoneally to label all the proliferating tumor cells. First, the mice were irradiated with X‐rays at a dose of 10 Gy, followed by a dose of 0–20 Gy at 0, 12, 24 or 48 h later. During the interval, no BUdR was injected. Immediately after the second irradiation, the tumors were excised and trypsinized. The micronucleus (MN) frequency in cells without BUdR labeling was determined by means of incubation with cytochalasin‐B (a cytokinesis‐blocker) and immunoftuorescence staining for BUdR. When the tumors were not pretreated with BUdR before the first irradiation, the MN frequency in all tumor cells was determined. To determine the labeling indices of SCC VII and EMT6/KU tumors at the time of the second irradiation, each group also included mice that were continuously administered BUdR until just before the second irradiation using mini‐osmotic pumps which had been implanted subcutaneously 5 days before the first irradiation. The MN frequency of all tumor cell populations obtained immediately after the second irradiation decreased in proportion to the increase in interval time. However, in both tumor systems, the MN frequency of unlabeled cell populations, which could be regarded as quiescent cells in the tumors at the time of the first irradiation, was raised with increase in the interval time. In addition, the labeling index at the second irradiation was higher than that at the first irradiation. These findings support the occurrence of recruitment from quiescent to proliferating state during fractionated irradiation. PMID:8276718

  17. Cytopathic Effects of X-ray Irradiation and MnO Nanoparticles on Human Glioblastoma (U87)

    NASA Astrophysics Data System (ADS)

    Kuper, K. E.; Zavjalov, E. L.; Razumov, I. A.; Romaschenko, A. V.; Stupak, A. S.; Troicky, S. Yu; Goldenberg, B. G.; Legkodymov, A. G.; Lemzyakov, A. A.; Moshkin, M. P.

    Glioblastoma is a leader among the most malignant brain tumors with the average lifespan of patients around 9-12 months. For prevention and treatment of neuropathology, a variety of therapeutic and surgical approaches are being developed and improved, including radiation and chemical therapy methods. In our work, we investigated cytopathic effect of X-ray irradiation with application of metal oxides nanoparticles such as manganese oxide (MnO) on U87 human glioblastoma cells. We used the X-ray irradiation dose of 0.5, 4, 40 and 100 Gy in combination with nanoparticles at the concentration of 0.5 ng/ml. The irradiation of glioma cell was carried out at the synchrotron radiation source VEPP-4. After cells treatments with nanoparticles for about 24 h and radiation the results were assessed by MTT assay test with 106/ml cells densities. We demonstrate that preincubation of the glioblastoma cell lines U87 with MnO nanoparticles allows reducing dose of irradiation. This combination of nanoparticles and X-ray irradiation provides new possibilities for the treatment of brain tumors.

  18. Measuring the lactate-to-creatine ratio via 1H NMR spectroscopy can be used to noninvasively evaluate apoptosis in glioma cells after X-ray irradiation.

    PubMed

    Li, Hongxia; Cui, Yi; Li, Fuyan; Shi, Wenqi; Gao, Wenjing; Wang, Xiao; Zeng, Qingshi

    2018-01-01

    Radiotherapy is among the commonly applied treatment options for glioma, which is one of the most common types of primary brain tumor. To evaluate the effect of radiotherapy noninvasively, it is vital for oncologists to monitor the effects of X-ray irradiation on glioma cells. Preliminary research had showed that PKC-ι expression correlates with tumor cell apoptosis induced by X-ray irradiation. It is also believed that the lactate-to-creatine (Lac/Cr) ratio can be used as a biomarker to evaluate apoptosis in glioma cells after X-ray irradiation. In this study, we evaluated the relationships between the Lac/Cr ratio, apoptotic rate, and protein kinase C iota (PKC-ι) expression in glioma cells. Cells of the glioma cell lines C6 and U251 were randomly divided into 4 groups, with every group exposed to X-ray irradiation at 0, 1, 5, 10 and 15 Gy. Single cell gel electrophoresis (SCGE) was conducted to evaluate the DNA damage. Flow cytometry was performed to measure the cell cycle blockage and apoptotic rates. Western blot analysis was used to detect the phosphorylated PKC-ι (p-PKC-ι) level. 1 H NMR spectroscopy was employed to determine the Lac/Cr ratio. The DNA damage increased in a radiation dose-dependent manner ( p  < 0.05). With the increase in X-ray irradiation, the apoptotic rate also increased (C6, p  < 0.01; U251, p  < 0.05), and the p-PKC-ι level decreased (C6, p  < 0.01; U251, p  < 0.05). The p-PKC-ι level negatively correlated with apoptosis, whereas the Lac/Cr ratio positively correlated with the p-PKC-ι level. The Lac/Cr ratio decreases with an increase in X-ray irradiation and thus can be used as a biomarker to reflect the effects of X-ray irradiation in glioma cells.

  19. Time-dependent cell disintegration kinetics in lung tumors after irradiation

    NASA Astrophysics Data System (ADS)

    Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi

    2008-05-01

    We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.

  20. Radiotherapy-Induced Anti-Tumor Immunity Contributes to the Therapeutic Efficacy of Irradiation and Can Be Augmented by CTLA-4 Blockade in a Mouse Model

    PubMed Central

    Yoshimoto, Yuya; Suzuki, Yoshiyuki; Mimura, Kousaku; Ando, Ken; Oike, Takahiro; Sato, Hiro; Okonogi, Noriyuki; Maruyama, Takanori; Izawa, Shinichiro; Noda, Shin-ei; Fujii, Hideki; Kono, Koji; Nakano, Takashi

    2014-01-01

    Purpose There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity. Methods and Materials C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. Results In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy. Conclusions Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a

  1. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model.

    PubMed

    Yoshimoto, Yuya; Suzuki, Yoshiyuki; Mimura, Kousaku; Ando, Ken; Oike, Takahiro; Sato, Hiro; Okonogi, Noriyuki; Maruyama, Takanori; Izawa, Shinichiro; Noda, Shin-ei; Fujii, Hideki; Kono, Koji; Nakano, Takashi

    2014-01-01

    There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity. C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy. Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a promising treatment in combination with

  2. X-rays effects on cytoskeleton mechanics of healthy and tumor cells.

    PubMed

    Panzetta, Valeria; De Menna, Marta; Musella, Ida; Pugliese, Mariagabriella; Quarto, Maria; Netti, Paolo A; Fusco, Sabato

    2017-01-01

    Alterations in the cytoskeleton structure are frequently found in several diseases and particularly in cancer cells. It is also through the alterations of the cytoskeleton structure that cancer cells acquire most of their common features such as uncontrolled cell proliferation, cell death evasion, and the gaining of migratory and invasive characteristics. Although radiation therapies currently represent one of the most effective treatments for patients, the effects of X-irradiation on the cytoskeleton architecture are still poorly understood. In this case we investigated the effects, over time of two different doses of X-ray irradiation, on cell cytoskeletons of BALB/c3T3 and Sv40-transformed BALB/c 3T3 cells (SVT2). Biophysical parameters - focal adhesion size, actin bundles organization, and cell mechanical properties - were measured before and after irradiations (1 and 2 Gy) at 24 and 72 h, comparing the cytoskeleton properties of normal and transformed cells. The differences, before and after X-irradiation, were revealed in terms of cell morphology and deformability. Finally, such parameters were correlated to the alterations of cytoskeleton dynamics by evaluating cell adhesion at the level of focal adhesion and cytoskeleton mechanics. X-irradiation modifies the structure and the activity of cell cytoskeleton in a dose-dependent manner. For transformed cells, radiation sensitively increased cell adhesion, as indicated by paxillin-rich focal adhesion, flat morphology, a well-organized actin cytoskeleton, and intracellular mechanics. On the other hand, for normal fibroblasts IR had negligible effects on cytoskeletal and adhesive protein organization. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams.

    PubMed

    Masunaga, Shin-Ichiro; Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Sakurai, Yoshinori; Tanaka, Hiroki; Tano, Keizo; Sanada, Yu; Suzuki, Minoru; Maruhashi, Akira; Ono, Koji

    2015-08-01

    The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells. Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays or accelerated carbon-ion beams at a high or reduced dose-rate. Other tumor-bearing mice received reactor thermal or epithermal neutrons at a reduced dose-rate. Immediately or 9 hours after the high dose-rate irradiation (HDRI), or immediately after the reduced dose-rate irradiation (RDRI), the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. The difference in radiosensitivity between the total (P + Q) and Q cells after γ-ray irradiation was markedly reduced with reactor neutron beams or carbon-ion beams, especially with a higher linear energy transfer (LET) value. Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. In both total and Q cells within both SAS/neo and SAS/mp53 tumors, carbon-ion beam irradiation, especially with a higher LET, showed little recovery capacity through leaving an interval between HDRI and the assay or decreasing the dose-rate. The recovery from radiation-induced damage after γ-ray irradiation was a p53-dependent event, but little recovery was found after carbon-ion beam irradiation. With RDRI

  4. The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams

    PubMed Central

    Masunaga, Shin-ichiro; Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Sakurai, Yoshinori; Tanaka, Hiroki; Tano, Keizo; Sanada, Yu; Suzuki, Minoru; Maruhashi, Akira; Ono, Koji

    2015-01-01

    Background The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells. Methods Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor-bearing mice received 5-bromo-2’-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays or accelerated carbon-ion beams at a high or reduced dose-rate. Other tumor-bearing mice received reactor thermal or epithermal neutrons at a reduced dose-rate. Immediately or 9 hours after the high dose-rate irradiation (HDRI), or immediately after the reduced dose-rate irradiation (RDRI), the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. Results The difference in radiosensitivity between the total (P + Q) and Q cells after γ-ray irradiation was markedly reduced with reactor neutron beams or carbon-ion beams, especially with a higher linear energy transfer (LET) value. Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. In both total and Q cells within both SAS/neo and SAS/mp53 tumors, carbon-ion beam irradiation, especially with a higher LET, showed little recovery capacity through leaving an interval between HDRI and the assay or decreasing the dose-rate. The recovery from radiation-induced damage after γ-ray irradiation was a p53-dependent event, but little recovery was found after carbon

  5. X-ray microbeam stand-alone facility for cultured cells irradiation

    NASA Astrophysics Data System (ADS)

    Bożek, Sebastian; Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M.

    2017-03-01

    The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.

  6. Effect of time between x-irradiation and chemotherapy on the growth of three solid mouse tumors. III. Cis-diamminedichloroplatinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twentyman, P.R.; Kallman, R.F.; Brown, J.M.

    1979-08-01

    Experiments have been carried out to determine the effect of different time intervals between the administration of x-irradiation (1200 rad) and cis-diamminedichloroplatinum (cis-DDP) (7 mg/kg) on the growth delay produced in three mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2X (for KHT) or 4X (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administeredmore » by the intraperitoneal route either 24, 6, or 2 h before radiation, immediately before the start of radiation, or 3, 6, or 24 h after radiation. All irradiations were carried out in unanesthetized mice. The growth delays due to the drug alone were 2, 10, and 2 days for the EMT6, RIF-1, and KHT tumors, respectively. In the RIF-1 and KHT tumors, the combined modality groups tend to show longer growth delays than predicted by the addition of the growth delays for the single agents. For the EMT6 tumor, however, the trend is in the opposite direction. There is no particular timing between irradiation and drug administration which appears to produce consistently longer or shorter growth delays from system to system.« less

  7. Effect of time between x-irradiation and chemotherapy on the growth of three solid mouse tumors. IV. Actinomycin-d

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twentyman, P.R.; Kallman, R.F.; Brown, J.M.

    1979-09-01

    Experiments have been carried out to determine the effect of different intervals between the administration of x-radiation (1200 rad) and actinomycin-D (200 ..mu..g/kg) on the growth delay produced in three mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle, and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2 x (for KHT) or 4 x (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administeredmore » intraperitoneally either 24, 6, or 2 hr before radiation, immediately before the start of radiation, or 3, 6, or 24 hr after radiation. All irradiations were carried out in unanesthetized mice. For a single administration at this dose level (close to the maximum tolerated dose) actinomycin-D did not produce a significant delay in the growth of any of the tumors. For the RIF-1 and KHT tumors, the growth delays produced by drug/radiation combinations generally were not significantly greater than that produced by irradiation alone. For the EMT6 tumor, great variability in the growth delays of combined modality groups seen, with mean growth delays significantly longer than predicted by the radiation alone data. No consistent dependence on timing between irradiation and drug administration was seen.« less

  8. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions.

    PubMed

    Liu, Bing; Wang, Qin; Yuan, Dong-dong; Hong, Xiao-ting; Tao, Liang

    2011-04-01

    Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC). The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine. In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions. These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  9. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    PubMed

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  10. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    PubMed

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  11. Analysis of Giant-nucleated Cell Formation Following X-ray and Proton Irradiations

    NASA Astrophysics Data System (ADS)

    Almahwasi, Ashraf Abdu

    Radiation-induced genetic instability has been observed in survivors of irradiated cancerous and normal cells in vitro and in vivo and has been determined in different forms, such as delayed cell death, chromosomal aberration or mutation. A well defined and characterized normal human-diploid AG1522 fibroblast cell line was used to study giant-nucleated cell (GCs) formation as the ultimate endpoint of this research. The average nuclear cross-sectional areas of the AG1522 cells were measured in mum2. The doubling time required by the AG1522 cells to divide was measured. The potential toxicity of the Hoechst dye at a working concentration on the live AG1522 cells was assessed. The yield of giant cells was determined at 7, 14 and 21 days after exposure to equivalent clinical doses of 0.2, 1 or 2 Gy of X-ray or proton irradiation. Significant differences were found to exist between X-ray or proton irradiation when compared with sham-irradiated control populations. The frequency of GCs induced by X-rays was also compared to those formed in proton irradiated cultures. The results confirm that 1 Gy X-rays are shown to induce higher rates of mitotically arrested GCs, increasing continually over time up to 21 days post-irradiation. The yield of GCs was significantly greater (10%) compared to those formed in proton populations (2%) 21 days postirradiation. The GCs can undergo a prolonged mitotic arrest that significantly increases the length of cell cycle. The arrest of GCs at the mitotic phase for longer periods of time might be indicative of a strategy for cell survival, as it increases the time available for DNA repair and enables an alternative route to division for the cells. However, the reduction in their formation 21 days after both types of radiation might favour GCs formation, ultimately contributing to carcinogenesis or cancer therapy resistance. The X-ray experiments revealed a dose-dependent increase in the GCs up to 14 days after irradiation. Although the proton

  12. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models

    PubMed Central

    Walenta, Stefan; Mueller-Klieser, Wolfgang

    2016-01-01

    This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during 12C+6 irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral mucosa, the

  13. Effect of time between x-irradiation and chemotherapy on the growth of three solid mouse tumors. II. Cyclophosphamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twentyman, P.R.; Kallman, R.F.; Brown, J.M.

    1979-09-01

    Experiments have been carried out to determine the effect of different time intervals between the administration of x-radiation (1200 rad) and cyclophosphamide (100 mg/kg) on the growth delay produced in 3 mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2X (for KHT) or 4X (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administered intraperitoneallymore » either 24, 6, or 2 hr before radiation, immediately before the start of radiation, or 3, 6, or 24 hr after radiation. All irradiations were carried out in unanesthetized mice. For the RIF-1, EMT6, and KHT tumors, the growth delays due to the drug alone were 11, 4.5, and 12 days, respectively. In the RIF-1 system, the growth delays following combination treatment tended to be longer than predicted by the addition of the single agent delays. For the KHT tumor, the opposite trend was seen, whereas in EMT6, there was no significant trend in either direction. No consistent dependence upon the timing between irradiation and drug administration was seen from system to system.« less

  14. Time-Lapse Cinemicrographic Studies of X-Irradiated HeLa S3 Cells

    PubMed Central

    Hurwitz, Camilla; Tolmach, L. J.

    1969-01-01

    Analysis of time-lapse cinemicrographs of X-irradiated HeLa S3 cells has shown that the incidence of cell fusion was increased from 0.9% (following 1267 divisions) in control cells to an average of 22% (following 655 divisions) in cells irradiated with 500 rad doses of 220 kv X-rays. The incidence depended on the stage of the generation cycle at which the parent cells were irradiated. It was nearly constant in the first three postirradiation generations. Fusion occurred at all stages of the generation cycle, but preferentially during the first 20%. Cells undergoing fusion progressed more slowly through the generation cycle and had a higher probability of disintegrating than did irradiated cells that did not fuse. The occurrence of fusion was clonally distributed in the population. It took place only between sister (or closely related) cells. Protoplasmic bridges were often visible between sister cells prior to fusion. Giant cells arose only as a result of fusion. The incidence of multipolar divisions, though higher than in unirradiated cells, was only 5.5% in cultures irradiated with 500 rads. Fusion occurred following 85% of the multipolar divisions and was often followed by a multipolar division. ImagesFigure 1 PMID:5807221

  15. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  16. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  17. In vitro and in vivo studies on the cytotoxicity of irradiated silk fibroin against mouse melanoma tumor cell

    NASA Astrophysics Data System (ADS)

    Byun, Eui-Baek; Sung, Nak-Yun; Kwon, Sun-Kyu; Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il; Hwang, Han-Joon; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    The physicochemical properties of proteins can be altered by irradiation. But, it is rarely that the researches on the functional properties of irradiated proteins have been reported. Fibroin is a fibrous protein derived from silkworm Bombyx mori and has been suggested as a biomaterial for biomedical application. Therefore, fibroin was selected as a model protein and was examined with the irradiation effects on the cytotoxicity of fibroin on tumor cell. The cytotoxicity of fibroin against mouse melanoma cell (B16BL6) showed a significant increase dependent upon the increase of irradiation dose. And also, the splenocyte proliferation activities of fibroin were increased by gamma irradiation. In addition, the oral administration of irradiated fibroin significantly increased the inhibition rate of tumor growth in tumor-bearing mouse model. The reason might be due to the change of protein structure by gamma irradiation and is being studied. From these result, it could be concluded that the irradiated fibroin might be a potential candidate as a valuable product in food and medical industry.

  18. Coordinate late expression of trefoil peptide genes (pS2/TFF1 and ITF/TFF3) in human breast, colon, and gastric tumor cells exposed to X-rays

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, Elizabeth K.; Harrison, George H.; Xu, Jing-Fan; Gutierrez, Peter L.

    2002-01-01

    The trefoil factors (TFFs) are pleiotropic factors involved in organization and homeostasis of the gastrointestinal tract, estrogen responsiveness, inflammatory disorders, and carcinogenesis. In an earlier study using cDNA array technologies to identify new genes expressed in irradiated cell survivors, we isolated a cDNA clone corresponding to the reported human TFF1 gene (E. K. Balcer-Kubiczek et al., Int. J. Radiat. Biol., 75: 529-541, 1999). To determine whether expression of other TFFs is altered by ionizing radiation, we quantified changes in expression of TFF3 as well as TFF1 in RNA samples obtained from irradiated and control human tumor breast, colon, and gastric tumor cells and examined expression kinetics up to 2 weeks after irradiation. X-ray-induced TFF1 and TFF3 expression profiles were compared with those induced by hydrogen peroxide (H2O2) or 17beta-estradiol (ES). The results revealed that TFF1 and TFF3 mRNA are coinduced by X-irradiation in a subset of the lines, but substantial heterogeneity in their responses was observed in cells derived from a single cell type. TFF1 and TFF3 transcriptional response to X-irradiation differed from that to H2O2 or ES in the timing of their induction as well as tissue-type dependence, i.e., their induction pattern after X-irradiation was late and sustained, whereas their induction by H2O2 or ES was early and transient. TFF1 mRNA, protein production in the cytoplasm, and secretion in the culture supernatant were coordinately regulated after X-irradiation. There was no requirement for TP53 in this induction. These results demonstrate the existence of a novel class of radiation-responsive genes that might be involved in bystander effects.

  19. Response of the RIF-1 tumor in vitro and in C3H/Km mice to x-radiation (cell survival, regrowth delay, and tumor control), chemotherapeutic agents, and activated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.M.; Twentyman, P.R.; Zamvil, S.S.

    1980-03-01

    The radiation response of logarithmic growth phase and fed plateau phase RIF-1 cells in vitro was found to be characterized by D/sub 0/ values of 110 and 133 rads and extrapolation numbs of 36 and 28, respectively. The response of the tumor in vivo to X-irradiation in nonanesthetized mice showed a dependence on the tumor implantation site. In the leg muscle, the response indicated that most cells were at an intermediate level of oxygenation, whereas in the subcutaneous tissue of the flank, the response of the tumor indicated that it had a small fraction of hypoxic cells of maximum radioresistance.more » Misonidazole radiosensitized the leg-implanted tumor as measured both by cell survival and regrowth delay. The tumor was relatively insensitive to a single dose of 1,3-bis(2-chloroethyl)-1-nitrosourea, sensitive to a single dose of cis-platinum, and highly sensitive to a single dose of cyclophosphamide.« less

  20. Proton beam irradiation inhibits the migration of melanoma cells.

    PubMed

    Jasińska-Konior, Katarzyna; Pochylczuk, Katarzyna; Czajka, Elżbieta; Michalik, Marta; Romanowska-Dixon, Bożena; Swakoń, Jan; Urbańska, Krystyna; Elas, Martyna

    2017-01-01

    In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.

  1. Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam.

    PubMed

    Kaminaga, Kiichi; Noguchi, Miho; Narita, Ayumi; Hattori, Yuya; Usami, Noriko; Yokoya, Akinari

    2016-11-01

    To establish a new experimental technique to explore the photoelectric and subsequent Auger effects on the cell cycles of soft X-ray microbeam-irradiated cells and unirradiated bystander cells in a single colony. Several cells located in the center of a microcolony of HeLa-Fucci cells consisting of 20-80 cells were irradiated with soft X-ray (5.35 keV) microbeam using synchrotron radiation as a light source. All cells in the colony were tracked for 72 h by time-lapse microscopy imaging. Cell cycle progression, division, and death of each cell in the movies obtained were analyzed by pedigree assay. The number of cell divisions in the microcolony was also determined. The fates of these cells were clarified by tracking both irradiated and unirradiated bystander cells. Irradiated cells showed significant cell cycle retardation, explosive cell death, or cell fusion after a few divisions. These serious effects were also observed in 15 and 26% of the bystander cells for 10 and 20 Gy irradiation, respectively, and frequently appeared in at least two daughter or granddaughter cells from a single-parent cell. We successfully tracked the fates of microbeam-irradiated cells and unirradiated bystander cells with live cell recordings, which have revealed the dynamics of soft X-ray irradiated and unirradiated bystander cells for the first time. Notably, cell deaths or cell cycle arrests frequently arose in closely related cells. These details would not have been revealed by a conventional immunostaining imaging method. Our approach promises to reveal the dynamic cellular effects of soft X-ray microbeam irradiation and subsequent Auger processes from various endpoints in future studies.

  2. X-irradiation of human bronchial cancer cells causes the bystander effects in normal bronchial cells in vitro.

    PubMed

    Konopacka, M; Rogoliński, J

    2010-01-01

    Using X radiation commonly used in radiotherapy of cancers we investigated bystander interactions between human cells: irradiated A549 bronchial carcinoma human cells and non irradiated BEAS-2B normal bronchial epithelial cells. Non irradiated cells were incubated in medium transferred from irradiated A549 cells (ICM-irradiation conditioned medium) for 48h and next the chromosomal damage and apoptosis were estimated. Conditioned medium collected from irradiated cancer cells induced in non irradiated cells of the same line as well as in BEAS-2B normal cells genetic changes such as micronuclei, chromatid and chromosomal breaks and condensation of chromatin characteristic for processes of apoptosis. Addition of only 1% of conditioned medium to fresh medium was sufficient to induction of bystander response to normal bronchial cells. The presented results in this study could have implications for human radiation risk and in evaluating the secondary effects of radiotherapy.

  3. Antitumor activity of pluripotent cell-engineered vaccines and their potential to treat lung cancer in relation to different levels of irradiation

    PubMed Central

    Zhang, Yan-na; Duan, Xiao-gang; Zhang, Wen-hui; Wu, Ai-ling; Yang, Huan-Huan; Wu, Dong-ming; Wei, Yu-Quan; Chen, Xian-cheng

    2016-01-01

    Cancer stem cells (CSCs) are critical for tumor initiation/maintenance and recurrence or metastasis, so they may serve as a potential therapeutic target. However, CSC-established multitherapy resistance and immune tolerance render tumors resistant to current tumor-targeted strategies. To address this, renewable multiepitope-integrated spheroids based on placenta-derived mesenchymal stem cells (pMSCs) were X-ray-modified, at four different irradiation levels, including 80, 160, 240, and 320 Gy, as pluripotent biologics, to inoculate hosts bearing Lewis lung carcinoma (LL2) and compared with X-ray-modified common LL2 cells as control. We show that the vaccines at the 160/240 Gy irradiation levels could rapidly trigger tumor cells into the apoptosis loop and evidently prolong the tumor-bearing host’s survival cycle, in contrast to vaccines irradiated at other levels (P<0.05), with tumor-sustaining stromal cell-derived factor-1/CXCR4 pathway being selectively blockaded. Meanwhile, almost no or minimal toxicity was detected in the vaccinated hosts. Importantly, 160/240 Gy-irradiated vaccines could provoke significantly higher killing of CSCs and non-CSCs, which may provide an access to developing a novel biotherapy against lung carcinoma. PMID:27042111

  4. In situ method for estimating cell survival in a solid tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfieri, A.A.; Hahn, E.W.

    1978-09-01

    The response of the murine Meth-A fibrosarcoma to single and fractionated doses of x-irradiation, actinomycin D chemotherapy, and/or concomitant local tumor hyperthermia was assayed with the use of an in situ method for estimating cell kill within a solid tumor. The cell survival assay was based on a standard curve plotting number of inoculated viable cells with and without radiation-inactivated homologous tumor cells versus the time required for i.m. tumors to grow to 1.0 cu cm. The time for post-treatment tumors to grow to 1.0 cu cm was cross-referenced to the standard curve, and the number of surviving cells contributingmore » to tumor regrowth was estimated. The resulting surviving fraction curves closely resemble those obtained with in vitro systems.« less

  5. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    PubMed

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  6. AT cells show dissimilar hypersensitivity to heavy-ion and X-rays irradiation.

    PubMed

    Kitajima, Shoichiro; Nakamura, Hideaki; Adachi, Makoto; Ijichi, Kei; Yasui, Yoshihiro; Saito, Noriko; Suzuki, Masao; Kurita, Kenichi; Ishizaki, Kanji

    2010-01-01

    Ataxia telangiectasia (AT) cells, with their defective double-strand break (DSB) repair processes, exhibit high sensitivity to low-LET radiation such as X-rays irradiation and gamma beams. Since heavy ion beam treatment for cancer is becoming increasingly common in Japan and elsewhere, it is important to also determine their sensitivity to high-LET radiation. For this purpose we irradiated AT and normal human cells immortalized with the human telomerase gene using high- (24-60 keV/microm carbon and 200 keV/microm iron ions) or low-LET (X-rays) radiation in non-proliferative conditions. In normal cells the RBE (relative biological effectiveness) of carbon and iron ions increased from 1.19 to 1.81 in proportion to LET. In contrast, their RBE in AT cells increased from 1.32 at 24 keV/microm to 1.59 at 40 keV/microm, and exhibited a plateau at over 40 keV/microm. In normal cells most gamma-H2AX foci induced by both carbon- and iron-ion beams had disappeared at 40 h. In AT cells, however, a significant number of gamma-H2AX foci were still observed at 40 h. The RBEs found in the AT cells after heavy-ion irradiation were consistent with the effects predicted from the presence of non-homologous end joining defects. The DSBs remaining after heavy-ion irradiation suggested defects in the AT cells' DSB repair ability.

  7. Biological X-ray irradiator characterization for use with small animals and cells.

    PubMed

    Bruno, A Colello; Mazaro, S J; Amaral, L L; Rego, E M; Oliveira, H F; Pavoni, J F

    2017-03-02

    This study presents the characterization of an X-ray irradiator through dosimetric tests, which confirms the actual dose rate that small animals and cells will be exposed to during radiobiological experiments. We evaluated the linearity, consistency, repeatability, and dose distribution in the positions in which the animals or cells are placed during irradiation. In addition, we evaluated the performance of the X-ray tube (voltage and tube operating current), the radiometric survey (leakage radiation) and safety devices. The irradiator default setting was established as 160 kV and 25 mA. Tests showed that the dose rate was linear overtime (R2=1) and remained stable for long (constant) and short (repeatability) intervals between readings. The mean dose rate inside the animal cages was 1.27±0.06 Gy/min with a uniform beam of 95.40% (above the minimum threshold guaranteed by the manufacturer). The mean dose rate inside the cell plates was 0.92±0.19 Gy/min. The dose rate dependence with tube voltage and current presented a quadratic and linear relationship, respectively. There was no observed mechanical failure during evaluation of the irradiator safety devices and the radiometric survey obtained a maximum ambient equivalent dose rate of 0.26 mSv/h, which exempts it from the radiological protection requirements of the International Atomic Energy Agency. The irradiator characterization enables us to perform radiobiological experiments, and assists or even replaces traditional therapy equipment (e.g., linear accelerators) for cells and small animal irradiation, especially in early research stages.

  8. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  9. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Hasanjee, Aamr M.; Bahavar, Cody F.; Zhou, Fefian; Liu, Hong; Howard, Eric W.; Bullen, Liz C.; Silvy, Ricardo P.; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is being developed as a treatment modality for metastatic cancer which can destroy primary tumors and induce effective systemic anti-tumor responses by using a targeted treatment approach in conjunction with the use of a novel immunoadjuvant, glycated chitosan (GC). In this study, Non-invasive Laser Immunotherapy (NLIT) was used as the primary treatment mode. We incorporated single-walled carbon nanotubes (SWNTs) into the treatment regimen to boost the tumor-killing effect of LIT. SWNTs and GC were conjugated to create a completely novel, immunologically modified carbon nanotube (SWNT-GC). To determine the efficacy of different laser irradiation durations, 5 minutes or 10 minutes, a series of experiments were performed. Rats were inoculated with DMBA-4 cancer cells, a highly aggressive metastatic cancer cell line. Half of the treatment group of rats receiving laser irradiation for 10 minutes survived without primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 minutes had no survivors. Thus, Laser+SWNT-GC treatment with 10 minutes of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  10. Evaluation of strontium 90 irradiation in treatment of cutaneous mast cell tumors in cats: 35 cases (1992-2002).

    PubMed

    Turrel, Jane M; Farrelly, John; Page, Rodney L; McEntee, Margaret C

    2006-03-15

    To determine the efficacy of strontium 90 beta irradiation in the management of cutaneous mast cell tumors (CMCTs) in cats. Retrospective case series. 35 client-owned cats with CMCTs. Medical records of cats with CMCTs in which tumors were radiated by use of a strontium 90 ophthalmic applicator from 1992 to 2002 were reviewed. Cats were included if CMCT was diagnosed, there were no other sites of MCT involvement at the time of treatment, and records contained adequate follow-up information to permit retrospective assessment of local tumor control. 54 tumors in 35 cats were treated with a median dose of 135 Gy of strontium 90 beta irradiation, resulting in local tumor control in 53 of 54 (98%) tumors with a median follow-up time of 783 days after treatment. Median survival time was 1,075 days. Adverse effects of treatment appeared to be infrequent and of mild severity. Results indicated that strontium 90 beta irradiation resulted in long-term tumor control and should be considered an effective alternative to surgical resection in management of CMCTs in cats.

  11. Immunization against strontium-90 induction of bone tumors with inactivated FBJ virus and irradiated syngeneic strontium-90-induced tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reif, A.E.; Triest, W.E.

    1981-01-01

    Three hundred six C57BL/6J female mice were subdivided into a control group left untreated and an experimental group treated intraperitoneally with 1.0 ..mu..Ci strontium-90/g of body weight at an age of 66 days. Treatments for the groups were as follows: none, 6 injections of formalin-inactivated FBJ viral preparation, 6 injections of active FBJ viral preparation, and 2 injections of 10,000 rad irradiated transplantable osteosarcoma previously induced in C57BL/6J mice by strontium-90. In addition to the above groups, two other groups were treated with respectively 0.032 and 0.10 ..mu..Ci strontium-90/g body weight in order to obtain information on the dose-response relationshipmore » between the injection of strontium-90 and the yield of bone tumors. In the groups not treated with strontium-90, only 1 bone tumor developed; this occurred in the group injected with FBJ virus. The incidence of bone tumors in the groups treated with 1.0 ..mu..Ci strontium-90 was significantly lower (18.5% or 18.2%) in the two groups that had received injections of inactivated FBJ virus or irradiated isogenic osteosarcoma when compared to the group left uninjected, which developed 43.5% tumors. In contrast, the strontium-90-treated group that also received injections of active FBJ virus developed 63.0% tumors. Only a single bone tumor developed in the groups treated solely with intermediate doses of strontium-90. The results indicate that immunization with inactivated FBJ virus or with irradiated syngeneic strontium-90-induced tumor cells can significantly decrease the development of strontium-90-induced tumors.« less

  12. Head and neck tumors after energetic proton irradiation in rats

    NASA Astrophysics Data System (ADS)

    Wood, D.; Cox, A.; Hardy, K.; Salmon, Y.; Trotter, R.

    1994-10-01

    This is a two-year progress report on a life span dose-response study of brain tumor risk at moderate to high doses of energetic protons. It was initiated because a joint NASA/USAF life span study of rhesus monkeys that were irradiated with 55-MeV protons (average surface dose, 3.5 Gy) indicated that the incidence of brain tumors per unit surface absorbed dose was over 19 times that of the human tinea capitis patients whose heads were exposed to 100 kv x-rays. Examination of those rats that died in the two-year interval after irradiation of the head revealed a linear dose-response for total head and neck tumor incidence in the dose range of 0-8.5 Gy. The exposed rats had a greater incidence of pituitary chromophobe adenomas, epithelial and mesothelial cell tumors than the unexposed controls but the excessive occurrence of malignant gliomas that was observed in the monkeys was absent in the rats. The estimated dose required to double the number of all types of head and neck tumors was 5.2 Gy. The highest dose, 18 Gy, resulted in high mortality due to obstructive squamous metaplasia at less than 50 weeks, prompting a new study of the relative bological effectiveness of high energy protons in producing this lesion.

  13. Ineffective vaccination against solid tumors can be enhanced by hematopoietic cell transplantation.

    PubMed

    Filatenkov, Alexander; Müller, Antonia M S; Tseng, William Wei-Lin; Dejbakhsh-Jones, Sussan; Winer, Daniel; Luong, Richard; Shizuru, Judith A; Engleman, Edgar G; Strober, Samuel

    2009-12-01

    Vaccination with tumor Ags has not been an effective treatment for solid tumors. The goal of the current study was to determine whether a combination of vaccination and hematopoietic cell transplantation (HCT) can effectively treat primary, disseminated, or metastatic CT26 and MC38 murine colon tumors. Vaccination of tumor-bearing mice with irradiated tumor cells and CpG adjuvant failed to alter progressive tumor growth. However, mice bearing primary, disseminated lung, or metastatic liver tumors were uniformly cured after administration of total body irradiation, followed by the transplantation of hematopoietic progenitor cells and T cells from syngeneic, but not allogeneic vaccinated donors. Requirements for effective treatment of tumors included irradiation of hosts, vaccination of donors with both tumor cells and CpG, transfer of both CD4(+) and CD8(+) T cells along with progenitor cells, and ability of donor cells to produce IFN-gamma. Irradiation markedly increased the infiltration of donor T cells into the tumors, and the combined irradiation and HCT altered the balance of tumor-infiltrating cells to favor CD8(+) effector memory T cells as compared with CD4(+)CD25(+)FoxP3(+) T regulatory cells. The combination of vaccination and autologous hematopoietic cell transplantation was also effective in treating tumors. In conclusion, these findings show that otherwise ineffective vaccination to solid nonhematologic tumors can be dramatically enhanced by HCT.

  14. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopwood, L.E.; Moulder, J.E.

    1989-11-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not formore » ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance.« less

  15. Effect of time between x-irradiation and chemotherapy on the growth of three solid mouse tumors. V. Bleomycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twentyman, P.R.; Kallman, R.F.; Brown, J.M.

    1979-09-01

    Experiments have been carried out to determine the effect of different time intervals between the administration of x-radiation (1200 rad) and bleomycin (20 mg/kg) on the growth delay produced in three mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2X (for KHT) or 4X (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administered bymore » the intraperitoneal route either 24, 6, or 2 hr before radiation, immediately before the start of radiation, or 3, 6, or 24 hr after radiation. All irradiations were carried out in unanesthetized mice. For a single administration at this dose level, bleomycin alone did not produce a significant growth delay in any of the tumors. In the RIF-1 tumor, growth delays following combination treatments were equal to the addition of the single agent growth delays. In two experiments with EMT6, contrary results were obtained, one producing longer delays following combination treatments than predicted and the other producing shorter delays. This is apparently due to the variability in the growth delay after treatment with radiation alone for this tumor. For the KHT tumor, only small differences from the addition of single agent delays were seen.« less

  16. Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-I and COX-2, and Promote Tumor Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.-S.; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan; Chen, F.-H.

    2007-06-01

    Purpose: To investigate the effects of single and fractionated doses of radiation on tumors and tumor-associated macrophages (TAMs), and to elucidate the potential of TAMs to influence tumor growth. Methods and Materials: A murine prostate cell line, TRAMP-C1, was grown in C57Bl/6J mice to 4-mm tumor diameter and irradiated with either 25 Gy in a single dose, or 60 Gy in 15 fractions. The tumors were removed at the indicated times and assessed for a variety of markers related to TAM content, activation status, and function. Results: In tumors receiving a single radiation dose, arginase (Arg-I), and cycloxygenase-2 (COX-2) mRNAmore » expression increased as a small transient wave within 24 h and a larger persistent wave starting after 3 days. Inducible nitric oxide synthase (iNOS) mRNA was elevated only after 3 days and continued to increase up to 3 weeks. After fractionated irradiation, Arg-1 and COX-2 mRNA levels increased within 5 days, whereas iNOS was increased only after 10 fractions of irradiation had been given. Increased levels of Arg-I, COX-2, and, to a lesser extent, iNOS protein were found to associate with TAMs 1-2 weeks after tumor irradiation. Function of TAMs were compared by mixing them with TRAMP-C1 cells and injecting them into mice; TRAMP-C1 cells mixed with TAMs from irradiated tumors appeared earlier and grew significantly faster than those mixed with TAMs from unirradiated tumors or TRAMP-C1 alone. Conclusions: Tumor-associated macrophages in the postirradiated tumor microenvironment express higher levels of Arg-1, COX-2, and iNOS, and promote early tumor growth in vivo.« less

  17. Action of caffeine on x-irradiated HeLa cells. III. enhancement of x-ray-induced killing during G/sub 2/ arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, P.M.; Bose, S.K.; Jones, R.W.

    1978-11-01

    The ability of caffeine to enhance the expression of potentially lethal x-ray damage in HeLa S3 cells was examined as a function of the age of the cells in the generation cycle. Synchronous populations were irradiated at different times after mitotic collection and treated for various intervals with 1 mM caffeiene, which causes negligible killing of unirradiated cells. The response was thereby determined as a function of cell age at both the time of irradiation and the time of exposure to caffeine. The amount of cell killing depends strongly on when in the cycle caffeine is present and only weaklymore » on when the cells are irradiated. If cells are irradiated in early G/sub 1/, caffeine treatment enhances killing for 2 to 3 hr. No additional enhancement is observed until 16 to 17 hr postcollection, corresponding to G/sub 2/; here they enter a second period of much greater sensitivity. Similarly, fluorodeoxyuridine resynchronized cells irradiated during S and treated with caffeine suffer no enhanced killing until they pass into this sensitive phase in G/sub 2/, approximately 7 hr after release from the fluorodeoxyuridine block. The sensitive period appears to coincide with G/sub 2/ arrest. The rate and extent of killing during this period are dependent upon the x-ray dose and the caffeine concentration. In the absence of caffeine, cells irradiated in G/sub 1/ lose sensitivity to caffeine in about 9 hr; they do so faster in G/sub 2/. It is concluded that the potentially lethal x-ray damage expressed on treatment with caffeine is retained for many hours in the presence of caffeine and is maximally manifested by G/sub 2/-arrested cells.« less

  18. The combination of Hsp90 inhibitor 17AAG and heavy-ion irradiation provides effective tumor control in human lung cancer cells.

    PubMed

    Hirakawa, Hirokazu; Fujisawa, Hiroshi; Masaoka, Aya; Noguchi, Miho; Hirayama, Ryoichi; Takahashi, Momoko; Fujimori, Akira; Okayasu, Ryuichi

    2015-03-01

    Hsp90 inhibitors have become well-studied antitumor agents for their selective property against tumors versus normal cells. The combined treatment of Hsp90 inhibitor and conventional photon radiation also showed more effective tumor growth delay than radiation alone. However, little is known regarding the combined treatment of Hsp90 inhibitor and heavy-ion irradiation. In this study, SQ5 human lung tumor cells were used in vitro for clonogenic cell survival and in vivo for tumor growth delay measurement using a mouse xenograft model after 17-allylamino-17-demethoxygeldanamycin (17AAG) pretreatment and carbon ion irradiation. Repair of DNA double strand breaks (DSBs) was also assessed along with expressions of DSB repair-related proteins. Cell cycle analysis after the combined treatment was also performed. The combined treatment of 17AAG and carbon ions revealed a promising treatment option in both in vitro and in vivo studies. One likely cause of this effectiveness was shown to be the inhibition of homologous recombination repair by 17AAG. The more intensified G2 cell cycle delay was also associated with the combined treatment when compared with carbon ion treatment alone. Our findings indicate that the combination of Hsp90 inhibition and heavy-ion irradiation provides a new effective therapeutic alternative for treatment of solid tumors. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  19. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  20. Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype.

    PubMed

    Jeon, Hee-Young; Kim, Jun-Kyum; Ham, Seok Won; Oh, Se-Yeong; Kim, Jaebong; Park, Jae-Bong; Lee, Jae-Yong; Kim, Sung-Chan; Kim, Hyunggee

    2016-05-01

    Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17-20 % of GBM cells dead, but resulted in 60-80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21(CIP1)-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.

  1. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopwood, L.E.; Davies, B.M.; Moulder, J.E.

    1990-09-01

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance ismore » seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance.« less

  2. Differential response of two cell lines sequentially irradiated with low X-ray doses.

    PubMed

    Güerci, A M; Dulout, F N; Grillo, C A; Seoane, A I

    2005-05-01

    An experiment was designed to compare the effect of repeated low doses of X-rays in two different cell lines: one transformed, epithelial like and aneuploid Chinese hamster ovary K-1 (CHO-K1); the other originated from a human primary culture, fibroblast, diploid and non-transformed, MRC-5. CHO and MRC-5 cells were cultured for 14 or eight passages, respectively. Irradiation was performed once per passage when cells were in the quiescent state (90 - 95% in G1/G0). Cells were exposed to 10.0 mSv X-ray doses. Ionizing radiation did not induce apoptosis or necrosis in the exposed CHO cell population. Significant increases of low-level damaged cells (degrees 1 and 2) were found for the 14 cycles of radiation when compared with controls, except for the first irradiation cycle. No significant increases in the frequency of cells with severe damage were observed. The frequency of MRC-5 cells with low-level damage increased significantly when compared with controls for radiation cycles seven and eight. Significant increases of apoptosis, necrosis and severe damage were found only for the highest dose. Transformed and non-transformed cell types responded differently to direct and indirect damage using low-dose repeat exposures to ionizing radiation. Though more investigation is needed to understand the mechanisms of radiation effects in chronic low-dose-exposed cell populations, cellular type should be taken into account in the design of in vitro experiments for understanding low-dose-irradiation effects.

  3. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation

    PubMed Central

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Soors, Els; Buset, Jasmine; Chiriotti, Sabina; Tabury, Kevin; Gregoire, Vincent; Baatout, Sarah

    2015-01-01

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated 13C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type–specific responses to the different radiation types. PMID:25190155

  4. Delayed persistence of giant-nucleated cells induced by X-ray and proton irradiation in the progeny of replicating normal human f ibroblast cells

    NASA Astrophysics Data System (ADS)

    Almahwasi, A. A.; Jeynes, J. C.; Merchant, M. J.; Bradley, D. A.; Regan, P. H.

    2017-08-01

    Ionising radiation can induce giant-nucleated cells (GCs) in the progeny of irradiated populations, as demonstrated in various cellular systems. Most in vitro studies have utilised quiescent cancerous or normal cell lines but it is not clear whether radiation-induced GCs persist in the progeny of normal replicated cells. In the current work we show persistent induction of GCs in the progeny of normal human-diploid skin fibroblasts (AG1522). These cells were originally irradiated with a single equivalent clinical dose of 0.2, 1 or 2 Gy of either X-ray or proton irradiation and maintained in an active state for various post-irradiation incubation interval times before they were replated for GC analysis. The results demonstrate that the formation of GCs in the progeny of X-ray or proton irradiated cells was increased in a dose-dependent manner when measured 7 days after irradiation and this finding is in agreement with that reported for the AG1522 cells using other radiation qualities. For the 1 Gy X-ray doses it was found that the GC yield increased continually with time up to 21 days post-irradiation. These results can act as benchmark data for such work and may have important implications for studies aimed at evaluating the efficacy of radiation therapy and in determining the risk of delayed effects particularly when applying protons.

  5. Comparison of the X-radiation, drug and ultraviolet-radiation responses of clones isolated from a human colorectal tumor cell line.

    PubMed

    Qutob, Sami S; Multani, Asha S; Pathak, S; Feng, Y; Kendal, Wayne S; Ng, Cheng E

    2004-03-01

    We isolated several clones with a wide range of responses to X radiation from an unirradiated human colorectal (HCT 116) tumor cell line. The responses of one of these clones (HCT116-Clone10) and nine other clones to either fractionated or acute (i.e. single, nonfractionated doses) X irradiation in vitro was similar to that of the parental cell line. By contrast, after the same types of treatment, another clone (HCT116-Clone2) manifested a significantly increased survival whereas a third clone (HCT116-CloneK) manifested a significantly decreased survival relative to the parental cell line. This suggested that they were, respectively, a radioresistant and a radiosensitive clone. All three clones (clones 2, 10, K) retained their tumorigenic phenotype and formed tumors in nude mice. G-banding studies demonstrated that they were of human origin and were derived from the same parental cell line. The metaphases of HCT116-Clone2 demonstrated features commonly associated with genomic instability (i.e. mitotic catastrophe including chromosome and chromatid breaks, dicentrics and additional nonclonal markers). Data obtained by quantitative fluorescence in situ hybridization (Q- FISH) analysis failed to demonstrate any apparent correlation between the radiosensitivity and the relative telomere content of these three clones. Interestingly, HCT116-CloneK was the most resistant to several chemotherapeutic drugs (topotecan, camptothecin, etoposide and cisplatin) with diverse mechanisms of action. Also, there were no significant differences in the survivals of the three clones after treatment with UV radiation. Because of the lack of overlap among the relative sensitivities of these clones to X radiation, chemotherapeutic drugs and UV radiation, these clones may be useful models for evaluating the genetic basis of the response of human tumor cells to these treatment agents both in vitro and in vivo.

  6. Survival of tumor cells after proton irradiation with ultra-high dose rates

    PubMed Central

    2011-01-01

    Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289

  7. Chloroquine Engages the Immune System to Eradicate Irradiated Breast Tumors in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratikan, Josephine Anna; Sayre, James William; Schaue, Dörthe, E-mail: dschaue@mednet.ucla.edu

    2013-11-15

    Purpose: This study used chloroquine to direct radiation-induced tumor cell death pathways to harness the antitumor activity of the immune system. Methods and Materials: Chloroquine given immediately after tumor irradiation increased the cure rate of MCaK breast cancer in C3H mice. Chloroquine blocked radiation-induced autophagy and drove MCaK cells into a more rapid apoptotic and more immunogenic form of cell death. Results: Chloroquine treatment made irradiated tumor vaccines superior at inducing strong interferon gamma-associated immune responses in vivo and protecting mice from further tumor challenge. In vitro, chloroquine slowed antigen uptake and degradation by dendritic cells, although T-cell stimulation wasmore » unaffected. Conclusions: This study illustrates a novel approach to improve the efficacy of breast cancer radiation therapy by blocking endosomal pathways, which enhances radiation-induced cell death within the field and drives antitumor immunity to assist therapeutic cure. The study illuminates and merges seemingly disparate concepts regarding the importance of autophagy in cancer therapy.« less

  8. Mammary gland tumors in irradiated and untreated guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoch-Ligeti, C.; Liebelt, A.G.; Congdon, C.C.

    1986-01-01

    This is a report of mammary gland tumors from 62 guinea pigs. The tumors arose in the terminal ductal-lobular units as either lobular acinar carcinoma or cystadenocarcinoma or as papillary carcinomas within large ducts near the mammilla. About half the number of the males had terminal ductal-lobular carcinomas and all but 2 of the papillary duct carcinomas also arose in males. Large tumors frequently exhibited squamous, chondromatous, osseous, fatty and myoepitheliomatous types of tissues. In 2 irradiated males and 1 female the tumors metastasized. Whole-body irradiation did not produce significant changes in the number or sex distribution or in themore » morphology of mammary gland tumors in inbred or outbred guinea pigs. All females had cystic ovaries without increase in granulosa cells, 24 (66.6%) had uterine tumors and 13 (34.2%) had adrenal gland tumors; all males had atrophic testes, 5 (16.5%) had testicular and 6 (22.2%) had adrenal gland tumors.« less

  9. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eke, Iris; Storch, Katja; Kaestner, Ina

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg,more » {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.« less

  10. RESISTANCE TO X-IRRADIATION BY EMBRYONIC CELLS OF THE LIMB-BUDS OF TADPOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, B.M.; Ewell, L.M.

    1959-01-01

    Both total-body irradiation and shielding of the trunk were used to study the effects of x irradiation from 1000 to 30000 r upon the limb-buds of Bufo boreas and Hyla regilla tadpoles. The object was to test the view that the younger the cells the more sensitive they are to irradiation. The answer is negative. If there is any special susceptibility of these undifferentiated cells it should appear at levels far below the 30000 r maximum employed. A sharp distinction is made between the very susceptible mitotic cells and the resistant non-dividing embryonic cells that have been accumulated in suchmore » numbers that they may rapidly differentiate into the characteristic limb tissues under the stimulus of the thyroid hormone. Many irradiated ectoderm cells were changed to form bizarre excrescences but were not destroyed. Unicellular cuthneous gland cells continued to arise even after the heaviest irradiation. Irradiated tadpoles with hind limb-buds from 0.6 mm down to 0.2 mm length were unable to develop normal limbs. This capacity was propontional to the number of non-dividing embryonic cells stored at the time of irradiation. Irradiation of 5000, equal degree but the rapidity was greatest in the cases of higher dosage. Not only did these levels of irradiation fail to destroy the non-dividing embryonic cells but they did not effect their pre-deterrmined specificity nor modify their capacity for subsequent differentiation and growth. Exposure to a thyroxin solution caused the hind limb-buds without visible differentiation of cells to grow from a length of 0.8 or 0.9 mm or 1.0 mm at the time of irradiation to a length of as much as 5.0 mm in the course of 7 days. Development of thigh, shank, ankle, and toes was complete. Microscopic studies showed characteristic tissues such as cartilage, connective tissue, and muscle, developed to a comparable degree in control and irradiated specimens. (auth)« less

  11. Oligodendrocyte progenitor cell (OPC) transplantation is unlikely to offer a means of preventing X-irradiation induced damage in the CNS.

    PubMed

    Chari, Divya M; Gilson, Jennifer M; Franklin, Robin J M; Blakemore, William F

    2006-03-01

    Oligodendrocyte lineage cells [oligodendrocytes and their parent cells, the oligodendrocyte progenitor cells (OPCs)] are depleted by X-irradiation and progenitor cell transplantation has been proposed as a therapeutic strategy to counteract radiation induced myelopathy. Previous studies have demonstrated that oligodendrocyte progenitor cell (OPC) depletion is a prerequisite for establishing transplanted OPCs in normal tissue. One can therefore predict that the extent and timing of OPC depletion and regeneration following X-irradiation will be crucial factors in determining the feasibility of this therapeutic approach. To address this issue, we have examined the time course of OPC depletion and regeneration following a range of X-irradiation doses (5 to 40 Gy), and its relationship to establishing transplanted OPCs in X-irradiated tissue. Doses above 10 Gy resulted in rapid death of OPCs. With doses up to 20 Gy, surviving X-irradiated OPCs were capable of robust regeneration, restoring normal densities within 6 weeks. Transplanted OPCs could only be established in tissue that had been exposed to > or =20 Gy. Since 20 Gy is close to the ED50 for radiation necrosis, our findings demonstrate the limitation of OPC replacement strategies.

  12. EFFECTS OF IRRADIATION ON BRAIN VASCULATURE USING AN IN SITU TUMOR MODEL

    PubMed Central

    Zawaski, Janice A.; Gaber, M. Waleed; Sabek, Omaima M.; Wilson, Christy M.; Duntsch, Christopher D.; Merchant, Thomas E.

    2013-01-01

    Purpose Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood–brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results The presence of tumor alone increases permeability but has little effect on leukocyte–endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation. PMID:22197233

  13. Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.

    PubMed

    Bigelow, A W; Randers-Pehrson, G; Garty, G; Geard, C R; Xu, Y; Harken, A D; Johnson, G W; Brenner, D J

    2010-08-08

    The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the electrostatic quadrupole lenses on the microbeam II system and the magnetic quadrupole lenses on the PMM system are arranged as compound lenses consisting of two quadrupole triplets with "Russian" symmetry. Also, the RARAF accelerator is a source for a proton-induced x-ray microbeam (undergoing testing) and is projected to supply protons to a neutron microbeam based on the (7)Li(p, n)(7)Be nuclear reaction (under development). Leveraging from the multiphoton microscope technology integrated within the microbeam II endstation, a UV microspot irradiator - based on multiphoton excitation - is available for facility users. Highlights from radiation-biology demonstrations on single living mammalian cells are included in this review of microbeam systems for cell irradiation at RARAF.

  14. BIOCHEMICAL CHANGES IN TUMOR CELLS AFTER TREATMENT WITH X RAYS, IODOACETATE, HYDROGEN PEROXIDE, AND ETHYLENIMINOBENZOQUINONE (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maass, H.; Kunkel, H.A.

    1960-07-01

    Results are reported from biochemical investigations on tumor cells after treatment with various physical and chemical agents. If the effects of x rays, iodo-acetate, H/sub 2/O/sub 2/, and several ethyleneimino-benzoquinones on the carbchydrate metabolism are compared, very similar mechanisms of action are observed. These four agents inhibit the dehydrogenation of triosephosphate; but in the case of iodoacetate. an inactivation of triosephosphatedehydrogenase seems to be the reason for this inhibition. In irradiated cells, however, this enzyme is not inactivated, the delay of dehydrogenation being caused mainly by a loss of DPN. After application of cytostatic agents and H/sub 2/O/sub 2/, amore » similar mechanism can be suggested although both agents are also able to block this enzyme. On the other hand, the reaction of the DNA-synthesis is different. Here a much greater sensitivity to x rays and to cytostatic agents than in the case of glycolysis is observed. lodo-acetate, however, inhibits DNA-synthesis in the same range of concentrations in which the glycolysis is blocked. (auth)« less

  15. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  16. Hsp70- and p53-reponses after heat treatment and/or X-irradiation mediate the susceptibility of hematopoietic cells to undergo apoptosis.

    PubMed

    Nijhuis, E H A; Poot, A A; Feijen, J; Vermes, I

    2008-02-01

    The effect of heat treatment in combination with X-irradiation was examined with regard to expression of p53, a tumor suppressor gene product, and Hsp70, a heat-shock protein, in association with the occurrence of programmed cell death (apoptosis). Three hematopoietic cell lines (HSB2, HL60 and Kasumi-1), which differ in p53 status, were exposed to 42.5 degrees C during one hour and/or X-radiation (total dose 8 Gy). After exposure, both mRNA and protein expression levels of Hsp70 and p53 were investigated by real-time PCR (polymerase chain reaction) and Western blotting. Apoptosis was simultaneously analyzed by observation of cell morphology as well as flowcytometric determination of Annexin V binding to phosphatidylserine and propidium iodide exclusion. Both HL60 and HSB2 cell lines with a low p53 status and a quick response to heat treatment with Hsp70 over-expression are less susceptible to heat-induced apoptosis compared to Kasumi-1 cells with wild-type p53 protein and no Hsp70 response. The combination of first applying X-irradiation followed by heat treatment resulted in the most effective induction of apoptosis due to impairment of the Hsp70 response in all three cell lines. These results indicate that the Hsp70 response and p53 status mediate the susceptibility of hematopoietic cells to undergo heat-induced apoptosis. Therefore, these parameters can be used as markers to predict the effectiveness of hyperthermia in cancer treatment.

  17. THE EFFECT OF X-RAY IRRADIATION ON THE GROWTH, AND THE MICROSCOPIC AND SUB- MICROSCOPIC STRUCTURE OF BONE SARCOMAS INDUCED BY RADIOACTIVE STRONTIUM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khomutovskii, O.A.

    1963-01-01

    Bone sarcomas were induced in rats by the intraperitoneal injection of two doses of Sr/sup 90/ at monthly intervals using a dosage of 0.32 mu C of Sr/ sup 90/ per gram of body weight. The sarcomas appeared in 15 out of 60 rats on the 170th to 200th day after injection of the injection of the Sr/sup 90/. Induced sarcom as were given a local x-ray dose of 9 kr and 18 kr. With an irradiation dose of 18 kr, growth of the sarcoma is retarded, and the parts of the tumor where formation of osteoid material occurs aremore » almost completely destroyed. With a dose of 9 kr, the tumor continues to grow, and the destruction is less marked. Cancer cells from the irradiated sarcoma can be transplanted. However, in the transplanted tumor, the cells lose their ability to metastasize to other sites, to lyse osseous tissue, and to form osteoid materiai. Changes in the size and form of the mitochrondria snd the shell nucleus of the cells were observed after x-ray irradiation of the bone sarcoma. (TTT)« less

  18. P2X7 Integrates PI3K/AKT and AMPK-PRAS40-mTOR Signaling Pathways to Mediate Tumor Cell Death

    PubMed Central

    Bai, Aiping; Zhang, Chunqing; Li, Linglin; Enjyoji, Keiichi; Junger, Wolfgang G.; Robson, Simon C.; Wu, Yan

    2013-01-01

    Background Extracellular adenosine triphosphate (ATP) functions as a novel danger signal that boosts antitumor immunity and can also directly kill tumor cells. We have previously reported that chronic exposure of tumor cells to ATP provokes P2X7-mediated tumor cell death, by as yet incompletely defined molecular mechanisms. Methodology/Principal Findings Here, we show that acute exposure of tumor cells to ATP results in rapid cytotoxic effects impacting several aspects of cell growth/survival, leading to inhibition of tumor growth in vitro and in vivo. Using agonist and antagonist studies together with generation of P2X7 deficient tumor cell lines by lentiviral shRNA delivery system, we confirm P2X7 to be the central control node transmitting extracellular ATP signals. We identify that downstream intracellular signaling regulatory networks implicate two signaling pathways: the known P2X7-PI3K/AKT axis and remarkably a novel P2X7-AMPK-PRAS40-mTOR axis. When exposed to high levels of extracellular ATP, these two signaling axes perturb the balance between growth and autophagy, thereby promoting tumor cell death. Conclusions Our study defines novel molecular mechanisms underpinning the antitumor actions of P2X7 and provides a further rationale for purine-based drugs in targeted cancer therapy. PMID:23565201

  19. Low- and high-dose laser irradiation effects on cell migration and destruction

    NASA Astrophysics Data System (ADS)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  20. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helbig, Linda; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Koi, Lydia

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluatedmore » 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement

  1. Proliferation kinetics of cultured cells after irradiation with X-rays and 14 MeV neutrons studied by time-lapse cinematography.

    PubMed

    Kooi, M W; Stap, J; Barendsen, G W

    1984-06-01

    Exponentially growing cells of an established line derived from a mouse osteosarcoma (MOS) have been studied by time-lapse cinematography after irradiation with 3 Gy of 200 kV X-rays or 1.5 Gy of 14 MeV neutrons. Cell cycle times (Tc) of individual cells and their progeny in three subsequent generations as well as the occurrence of aberrant mitosis have been determined to evaluate the variation in expression of damage in relation to the stage in the intermitotic cycle and the radiation quality. The results show that the radiation doses applied cause an equal elongation of the mean Tc, which is largest in the irradiated cells but persists in the three subsequent generations. After 3 Gy of X-rays, mitotic delay is largest in cells irradiated in later stages of the cycle, but this difference is not observed after 1.5 Gy of 14 MeV neutrons. In subsequent generations the Tc values show larger variations among descendents of cells treated in the same stage of the cycle as compared to controls but this variation is equal for the doses of X-rays and neutrons applied. Division probability was significantly reduced in irradiated cells as well as in subsequent generations, whereby with neutrons as compared to X-rays the damage is expressed in earlier generations, with less variation as a function of the cell cycle.

  2. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    PubMed

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  3. Decrease in hematopoietic stem cell domains as a delayed effect of x-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, M.A.; Lamela, R.A.; Patt, H.M.

    Although the hematopoietic integrity of locally X-irradiated sites can be restored for a time even after fairly large doses, a secondary aplasia often occurs some months later. To gain further insight into this delayed effect within the framework of the stem cell regulatory domain hypothesis, we characterized the growth kinetics of spleen colony forming units (CFU-S) in WBB6FI-+/+ bone marrow transplanted into WBB6FI-W/WV mice in which one leg had been exposed to 10-30 Gy of X rays 4-5 months previously. Compared to unirradiated contralateral marrow, fewer CFU-S either reached the previously irradiated marrow or were seeded into sites that couldmore » support growth. The initial exponential growth of effectively seeded CFU-S was unchanged, but growth deceleration (inflection point) occurred at a lower level of CFU-S in marrow previously irradiated with 20-30 Gy. This change in the inflection point indicates a radiation dose-dependent decrease consistent with the decrease in bone marrow cellularity. The decrease in effective stem cell domains after 20 Gy was calculated to be about 35%. We interpret these results to reflect the highly localized nature of delayed radiation damage to the marrow microenvironment.« less

  4. Photon activated therapy (PAT) using monochromatic Synchrotron x-rays and iron oxide nanoparticles in a mouse tumor model: feasibility study of PAT for the treatment of superficial malignancy

    PubMed Central

    2012-01-01

    Background X-rays are known to interact with metallic nanoparticles, producing photoelectric species as radiosensitizing effects, and have been exploited in vivo mainly with gold nanoparticles. The purpose of this study was to investigate the potential of sensitizing effect of iron oxide nanoparticles for photon activated therapy. Methods X-rays photon activated therapy (PAT) was studied by treating CT26 tumor cells and CT26 tumor-bearing mice loaded with 13-nm diameter FeO NP, and irradiating them at 7.1 keV near the Fe K-edge using synchrotron x-rays radiation. Survival of cells was determined by MTT assay, and tumor regression assay was performed for in vivo model experiment. The results of PAT treated groups were compared with x-rays alone control groups. Results A more significant reduction in viability and damage was observed in the FeO NP-treated irradiated cells, compared to the radiation alone group (p < 0.04). Injection of FeO NP (100 mg/kg) 30 min prior to irradiation elevated the tumor concentration of magnetite to 40 μg of Fe/g tissue, with a tumor-to-muscle ratio of 17.4. The group receiving FeO NP and radiation of 10 Gy showed 80% complete tumor regression (CTR) after 15–35 days and relapse-free survival for up to 6 months, compared to the control group, which showed growth retardation, resulting in 80% fatality. The group receiving radiation of 40 Gy showed 100% CTR in all cases irrespective of the presence of FeO NP, but CTR was achieved earlier in the PAT-treated group compared with the radiation alone group. Conclusions An iron oxide nanoparticle enhanced therapeutic effect with relatively low tissue concentration of iron and 10 Gy of monochromatic X-rays. Since 7.1 keV X-rays is attenuated very sharply in the tissue, FeO NP-PAT may have promise as a potent treatment option for superficial malignancies in the skin, like chest wall recurrence of breast cancer. PMID:23111059

  5. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore » important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less

  6. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    DOE PAGES

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; ...

    2015-02-23

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore » important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less

  7. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamlah, Florentine, E-mail: Kamlah@staff.uni-marburg.de; Haenze, Joerg; Arenz, Andrea

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug,more » allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells

  8. Action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolmach, L.J.; Busse, P.M.

    1980-05-01

    The response of x-irradiated and unirradiated HeLa S3 cells to treatment with caffeine at concentrations between 1 and 10 nM has been examined with respect to both delay in progression through the cell generation cycle and enhancement of the expression of potentially lethal x-ray damage. Progression is delayed in a concentration-dependent fashion: the generation time is doubled at about 4 mM. The duration of G/sub 1/ is lengthened, and the rate of DNA synthesis is reduced, although the kinetics are different in the two phases; the rate of DNA synthesis is usually unaffected at 1 or 2 mM, while theremore » is no concentration threshold for the slowing of progression through G/sub 1/. Progression through G/sub 2/ appears to be unaffected by concentrations up to at least 10 mM. Killing of irradiated cells in G/sub 2/ is somewhat greater after treatment with the higher caffeine concentrations than reported previously for 1 mM. Moreover, an additional mode of killing is observed in irradiated G/sub 1/ cells which had been found previously to be only slightly affected by 1 mM caffeine; they suffer extensive killing at concentrations above 5 mM. The time-survival curves for irradiated, caffeine-treated G/sub 1/ and G/sub 2/ cells have characteristically different shapes. The dose-survival curves for cells treated with the higher caffeine concentrations display steeper terminal slopes and narrower shoulders.« less

  9. Effect of Irradiation on Tumor Microenvironment and Bone Marrow Cell Migration in a Preclinical Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Jonathan L.; Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan; Krueger, Sarah A.

    Purpose: To characterize the tumor microenvironment after standard radiation therapy (SRT) and pulsed radiation therapy (PRT) in Lewis lung carcinoma (LLC) allografts. Methods and Materials: Subcutaneous LLC tumors were established in C57BL/6 mice. Standard RT or PRT was given at 2 Gy/d for a total dose of 20 Gy using a 5 days on, 2 days off schedule to mimic clinical delivery. Radiation-induced tumor microenvironment changes were examined after treatment using flow cytometry and antibody-specific histopathology. Normal tissue effects were measured using noninvasive {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography after naïve animals were given whole-lung irradiation to 40 Gy in 4 weeks using the same 2-Gy/dmore » regimens. Results: Over the 2 weeks of therapy, PRT was more effective than SRT at reducing tumor growth rate (0.31 ± 0.02 mm{sup 3}/d and 0.55 ± 0.04 mm{sup 3}/d, respectively; P<.007). Histopathology showed a significant comparative reduction in the levels of Ki-67 (14.5% ± 3%), hypoxia (10% ± 3.5%), vascular endothelial growth factor (2.3% ± 1%), and stromal-derived factor-1α (2.5% ± 1.4%), as well as a concomitant decrease in CD45{sup +} bone marrow–derived cell (BMDC) migration (7.8% ± 2.2%) after PRT. The addition of AMD3100 also decreased CD45{sup +} BMDC migration in treated tumors (0.6% ± 0.1%). Higher vessel density was observed in treated tumors. No differences were observed in normal lung tissue after PRT or SRT. Conclusions: Pulsed RT–treated tumors exhibited slower growth and reduced hypoxia. Pulsed RT eliminated initiation of supportive mechanisms utilized by tumors in low oxygen microenvironments, including angiogenesis and recruitment of BMDCs.« less

  10. Antiproliferative effects of ZnO, ZnO-MTCP, and ZnO-CuMTCP nanoparticles with safe intensity UV and X-ray irradiation

    PubMed Central

    Sadjadpour, Susan; Safarian, Shahrokh; Zargar, Seyed Jalal; Sheibani, Nader

    2016-01-01

    In photodynamic therapy (PDT) of cancer both the light and the photosensitizing agent are normally harmless, but in combination they could result in selective tumor killing. Zinc oxide nanoparticles were synthesized and coated with the amino acid cysteine to provide an adequate arm for conjugation with porphyrin photosensitizers (meso-tetra (4-carboxyphenyl) porphyrin [MTCP] and CuMTCP). Porphyrin-conjugated nanoparticles were characterized by TEM, FTIR, and UV–vis, and fluorescence spectrophotometry. The 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure cell viability in the presence or absence of porphyrin conjugates following UV and X-ray irradiation. The uptake of the porphyrin-conjugated ZnO nanoparticles by cells was detected using fluorescence microscopy. Our results indicated that the survival of T-47D cells was significantly compromised in the presence of ZnO-MTCP-conjugated nanostructures with UV light exposure. Exhibition of cytotoxic activity of ZnO-MTCP for human prostate cancer (Du145) cells occurred at a higher concentration, indicating the more resistant nature of these tumor cells. ZnO-CuMTCP showed milder cytotoxic effects in human breast cancer (T-47D) and no cytotoxic effects in Du145 with UV light exposure, consistent with its lower cytotoxic potency as well as cellular uptake. Surprisingly, none of the ZnO-porphyrin conjugates exhibited cytotoxic effects with X-ray irradiation, whereas ZnO alone exerted cytotoxicity. Thus, ZnO and ZnO-porphyrin nanoparticles with UV or X-ray irradiation may provide a suitable treatment option for various cancers. PMID:25581219

  11. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuuring, Janneke; Department of Neurology, Groene Hart Hospital, Gouda; Bussink, Johan

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, whenmore » combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.« less

  12. Inductive potential of recombinant human granulocyte colony-stimulating factor to mature neutrophils from x-irradiated human peripheral blood hematopoietic progenitor cells.

    PubMed

    Katsumori, Takeo; Yoshino, Hironori; Hayashi, Masako; Takahashi, Kenji; Kashiwakura, Ikuo

    2009-11-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for treatment of neutropenia. Filgrastim, Nartograstim, and Lenograstim are clinically available in Japan. However, the differences in potential benefit for radiation-induced disorder between these types of rhG-CSFs remain unknown. Therefore, the effects of three different types of rhG-CSFs on granulocyte progenitor cells and expansion of neutrophils from nonirradiated or 2 Gy X-irradiated human CD34+ hematopoietic progenitor cells were examined. For analysis of granulocyte colony-forming units (CFU-G) and a surviving fraction of CFU-G, nonirradiated or X-irradiated CD34+ cells were cultured in methylcellulose containing rhG-CSF. These cells were cultured in serum-free medium supplemented with rhG-CSF, and the expansion and characteristics of neutrophils were analyzed. All three types of rhG-CSFs increased the number of CFU-G in a dose-dependent manner; however, Lenograstim is superior to others because of CFU-G-derived colony formation at relatively low doses. The surviving fraction of CFU-G was independent of the types of rhG-CSFs. Expansion of neutrophils by rhG-CSF was largely attenuated by X-irradiation, though no significant difference in neutrophil number was observed between the three types of rhG-CSFs under both nonirradiation and X-irradiation conditions. In terms of functional characteristics of neutrophils, Lenograstim-induced neutrophils produced high levels of reactive oxygen species compared to Filgrastim, when rhG-CSF was applied to nonirradiated CD34(+) cells. In conclusion, different types of rhG-CSFs lead to different effects when rhG-CSF is applied to nonirradiated CD34+ cells, though Filgrastim, Nartograstim, and Lenograstim show equal effects on X-irradiated CD34+ cells.

  13. Modification of mortality and tumorigenesis by tocopherol-mono-glucoside (TMG) administered after X irradiation in mice and rats.

    PubMed

    Ueno, Megumi; Inano, Hiroshi; Onoda, Makoto; Murase, Hironobu; Ikota, Nobuo; Kagiya, Tsutomu V; Anzai, Kazunori

    2009-10-01

    The effects of TMG [2-(alpha-d-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol], a water-soluble vitamin E derivative, administered after irradiation on the mortality of X-irradiated mice and on the development of tumors in the mammary and pituitary glands in rats were investigated. When TMG (650 mg/kg) was administered intraperitoneally (i.p.) to C3H mice immediately after whole-body exposure to 7 Gy radiation, the 30-day survival was significantly higher than that of the control mice. The i.p. administration of TMG at 4 h after irradiation significantly improved survival compared to that of the controls, but administration 8 h after irradiation did not have a significant effect. Subcutaneous administration of TMG immediately after irradiation also decreased mortality significantly. When dams of lactating Wister rats were exposed to 1.5 Gy of X rays at day 21 after parturition and were then treated with diethylstilbestrol as a tumor promoter, the incidence of mammary tumors and pituitary tumors was increased compared to that in the nonirradiated control group. The administration of TMG (600 mg/kg, i.p.) after irradiation significantly reduced the incidence of mammary tumors and pituitary tumors. The number of rats that were free of both mammary and pituitary gland tumors was enhanced fourfold by TMG. These results suggest that TMG is effective in preventing radiation-induced bone marrow death in mice and in reducing mammary and pituitary tumors in rats even when it is administered after irradiation.

  14. Significance of Fractionated Administration of Thalidomide Combined With γ-Ray Irradiation in Terms of Local Tumor Response and Lung Metastasis

    PubMed Central

    Masunaga, Shin-ichiro; Sanada, Yu; Moriwaki, Takahiro; Tano, Keizo; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Watanabe, Tsubasa; Nakagawa, Yosuke; Maruhashi, Akira; Ono, Koji

    2014-01-01

    Background The aim of this study was to evaluate the significance of fractionated administration of thalidomide combined with γ-ray irradiation in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells. Methods B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumor-bearing mice then received γ-ray irradiation after thalidomide treatment through a single or two consecutive daily intraperitoneal administrations up to a total dose of 400 mg/kg in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Results Thalidomide raised the sensitivity of the total cell population more remarkably than Q cells in both single and daily administrations. Daily administration of thalidomide elevated the sensitivity of both the total and Q cell populations, but especially the total cell population, compared with single administration. Daily administration, especially combined with MTH, decreased the number of lung metastases. Conclusion Daily fractionated administration of thalidomide in combination with γ-ray irradiation was thought to be more promising than single administration because of its potential to enhance local tumor response and repress lung metastatic potential. PMID:29147396

  15. Red blood cells metabolome changes upon treatment with different X-ray irradiation doses.

    PubMed

    Baroni, Fabio; Marraccini, Chiara; Merolle, Lucia; Piccagli, Vando; Lambertini, Daniele; Iori, Mauro; Fasano, Tommaso; Casali, Emanuela; Spisni, Alberto; Baricchi, Roberto; Pertinhez, Thelma A

    2018-06-07

    The upholding of red blood cells (RBC) quality and the removal of leukocytes are two essential issues in transfusion therapy. Leukodepletion provides optimum results, nonetheless there are cases where irradiation is recommended for some groups of hematological patients such as the ones with chronic graft-vs-host disease, congenital cellular immunodeficiency, and hematopoietic stem cell transplant recipients. The European guidelines suggest irradiation doses from 25 to 50 Gray (Gγ). We evaluated the effect of different prescribed doses (15 to 50 Gγ) of X-ray irradiation on fresh leukodepleted RBCs bags using a novel protocol that provides a controlled irradiation. Biochemical assays integrated with RBCs metabolome profile, assessed by nuclear magnetic resonance spectroscopy, were performed on RBC units supernatant, during 14 days storage. Metabolome analysis evidenced a direct correlation between concentration increase of three metabolites, glycine, glutamine and creatine, and irradiation dose. Higher doses (35 and 50 Gγ) effect on RBC mean corpuscular volume, hemolysis, and ammonia concentration are considerable after 7 and 14 days of storage. Our data show that irradiation with 50 Gγ should be avoided and we suggest that 35 Gγ should be the upper limit. Moreover, we suggest for leukodepleted RBCs units the irradiation with the prescribed dose of 15 Gγ, value at center of bag, and ranging between 13.35-15 Gγ, measured over the entire bag volume, may guarantee the same benefits of a 25 Gγ dose assuring, in addition, a better quality of RBCs.

  16. Roles of purinergic P2X7 receptor in glioma and microglia in brain tumors.

    PubMed

    McLarnon, James G

    2017-08-28

    This review considers evidence suggesting that activation of the ionotropic purinergic receptor P2X 7 (P2X 7 R) is a contributing factor in the growth of brain tumors. Importantly, expression of P2X 7 R may be upregulated in both glioma cells and in immune responding microglial cells with possible differential effects on tumor progression. The recruitment of immune cells into tumor regions may not only be involved in supporting an immunosuppressive environment aiding tumor growth but activated microglia could secrete inflammatory factors promoting neoangiogenesis in expanding tumors. The subtype P2X 7 R exhibits a number of unique properties including activation of the receptor in pathological conditions associated with developing brain tumors. In particular, the tumor microenvironment includes elevated levels of ATP required for activation of P2X 7 R and the sustained tumor and immune cell P2X 7 R-mediated responses which in total contribute to overall tumor growth and viability. Studies on cultured rat and human glioma show marked increases in expression of P2X 7 R and enhanced cell mobility relative to control. Glioma cell animal models demonstrate enhanced expression of P2X 7 R in both glioma and microglia with antagonism of receptor showing differential effects on tumor growth. Overall, P2X 7 R activation is associated with a complexity of modulatory actions on tumor growth in part due to ubiquitous expression of the receptor in glioma and immune responsive cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors.

    PubMed

    Narayanasamy, Ganesh; Zhang, Xin; Meigooni, Ali; Paudel, Nava; Morrill, Steven; Maraboyina, Sanjay; Peacock, Loverd; Penagaricano, Jose

    2017-08-01

    Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2 t ) value of 0·5. In addition, the mean ± SD of TR values for SF2 t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2 t value of 0.5. HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.

  18. Tumor Induction in Mice After Localized Single- or Fractionated-Dose Irradiation: Differences in Tumor Histotype and Genetic Susceptibility Based on Dose Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, Elijah F., E-mail: elijah.edmondson@colostate.edu; Hunter, Nancy R.; Weil, Michael M.

    2015-07-15

    Purpose: To investigate differences in tumor histotype, incidence, latency, and strain susceptibility in mice exposed to single-dose or clinically relevant, fractioned-dose γ-ray radiation. Methods and Materials: C3Hf/Kam and C57BL/6J mice were locally irradiated to the right hindlimb with either single large doses between 10 and 70 Gy or fractionated doses totaling 40 to 80 Gy delivered at 2-Gy/d fractions, 5 d/wk, for 4 to 8 weeks. The mice were closely evaluated for tumor development in the irradiated field for 800 days after irradiation, and all tumors were characterized histologically. Results: A total of 210 tumors were induced within the radiation field in 788 mice. Anmore » overall decrease in tumor incidence was observed after fractionated irradiation (16.4%) in comparison with single-dose irradiation (36.1%). Sarcomas were the predominant postirradiation tumor observed (n=201), with carcinomas occurring less frequently (n=9). The proportion of mice developing tumors increased significantly with total dose for both single-dose and fractionated schedules, and latencies were significantly decreased in mice exposed to larger total doses. C3Hf/Kam mice were more susceptible to tumor induction than C57BL/6J mice after single-dose irradiation; however, significant differences in tumor susceptibilities after fractionated radiation were not observed. For both strains of mice, osteosarcomas and hemangiosarcomas were significantly more common after fractionated irradiation, whereas fibrosarcomas and malignant fibrous histiocytomas were significantly more common after single-dose irradiation. Conclusions: This study investigated the tumorigenic effect of acute large doses in comparison with fractionated radiation in which both the dose and delivery schedule were similar to those used in clinical radiation therapy. Differences in tumor histotype after single-dose or fractionated radiation exposures provide novel in vivo evidence for differences in tumor

  19. Differential Impact of Single-Dose Fe Ion and X-Ray Irradiation on Endothelial Cell Transcriptomic and Proteomic Responses

    PubMed Central

    Baselet, Bjorn; Azimzadeh, Omid; Erbeldinger, Nadine; Bakshi, Mayur V.; Dettmering, Till; Janssen, Ann; Ktitareva, Svetlana; Lowe, Donna J.; Michaux, Arlette; Quintens, Roel; Raj, Kenneth; Durante, Marco; Fournier, Claudia; Benotmane, Mohammed A.; Baatout, Sarah; Sonveaux, Pierre; Tapio, Soile; Aerts, An

    2017-01-01

    Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial

  20. Comparative study of the photodynamic effect in tumor and nontumor animal cell lines

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Alexandrova, R.; Shurulinkov, Stanislav; Sabotinov, O.; Minchev, Georgi

    2004-09-01

    In this study we evaluate the cytotoxicity of two photosensitisers with absorption peaks in the green and red part of the spectrum on animal cell lines. The cytotoxicity assessment was performed for a tumor cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, a tumor line LSR-SF-SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin and for normal mouse and bovine cell lines. Up to now the effect of the photodynamic therapy on virus-induced cancers has not been clarified. The cells were treated with 5,10,15,20 - tetra (4-sulfophenyl) porphyrin with main absorption peak at 519 nm and a dye activated with a red light. The cells were seeded in 96-well plates at 2 x 104 cells/well. The cells were exposed to irradiation from a pulsed CuBr vapor laser at 510.6 nm and 578.2 nm and exposure rate 50 mW/cm2, from an Ar-ion laser at 514 nm and 1 mW/cm2 and to 655 nm-irradiation from a semiconductor laser at 10 mW/cm2. The biological activity of the tested compounds was measured by the neutral red uptake cytotoxicity test. The light dose-response curves and light exposures that ensure 50% drop in the treated cells viability in comparison with the cells grown in non-modified medium were obtained for each cell line. The cytotoxic effect of both photosensitisers is most distinguished for the tumor line LSCC-SF-Mc29. The 2-4 times higher viability of the normal cell lines in comparison with the tumor lines is established. The bovine cell lines are more vulnerable than the mouse lines.

  1. Usefulness of Daily Fractionated Administration of Wortmannin Combined With γ-Ray Irradiation in Terms of Local Tumor Response and Lung Metastasis

    PubMed Central

    Masunaga, Shin-ichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Tano, Keizo; Maruhashi, Akira; Ono, Koji

    2013-01-01

    Background To evaluate the usefulness of fractionated administration of wortmannin combined with γ-ray irradiation in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells. Methods B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumor-bearing mice then received γ-ray irradiation after wortmannin treatment through a single or 4 consecutive daily intraperitoneal administrations up to a total dose of 4 mg/kg in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Results Wortmannin raised the sensitivity of Q cells more remarkably than the total cell population in both single and daily administrations. Daily administration of wortmannin elevated the sensitivity of both the total and Q cell populations, but especially the total cell population, compared with single administration. Daily administration, especially combined with MTH, decreased the number of lung metastases. Conclusion Daily fractionated administration of wortmannin in combination with γ-ray irradiation was thought to be more promising than single administration because of its potential to enhance local tumor response and repress lung metastatic potential. PMID:29147327

  2. Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors.

    PubMed

    Katsukawa, Mitsuko; Nakajima, Yusuke; Fukumoto, Akiko; Doi, Daisuke; Takahashi, Jun

    2016-06-01

    Cell replacement therapy holds great promise for Parkinson's disease (PD), but residual undifferentiated cells and immature neural progenitors in the therapy may cause tumor formation. Although cell sorting could effectively exclude these proliferative cells, from the viewpoint of clinical application, there exists no adequate coping strategy in the case of their contamination. In this study, we analyzed a component of proliferative cells in the grafts of human-induced pluripotent stem cell-derived neural progenitors and investigated the effect of radiation therapy on tumor formation. In our differentiating protocol, analyses of neural progenitors (day 19) revealed that the proliferating cells expressed early neural markers (SOX1, PAX6) or a dopaminergic neuron progenitor marker (FOXA2). When grafted into the rat striatum, these immature neurons gradually became postmitotic in the brain, and the rosette structures disappeared at 14 weeks. However, at 4-8 weeks, the SOX1(+)PAX6(+) cells formed rosette structures in the grafts, suggesting their tumorigenic potential. Therefore, to develop a fail-safe therapy against tumor formation, we investigated the effect of radiation therapy. At 4 weeks posttransplantation, when KI67(+) cells comprised the highest ratio, radiation therapy with (137)Cs Gammacell Exactor for tumor-bearing immunodeficient rats showed a significant decrease in graft volume and percentage of SOX1(+)KI67(+) cells in the graft, thus demonstrating the preventive effect of gamma-ray irradiation against tumorigenicity. These results give us critical criteria for the safety of future cell replacement therapy for PD.

  3.  Generation of low-flux X-ray micro-planar beams and their biological effect on a murine subcutaneous tumor model

    PubMed Central

    Hong, Zhengshan; Zenkoh, Junko; Le, Biao; Gerelchuluun, Ariungerel; Suzuki, Kenshi; Moritake, Takashi; Washio, Masakazu; Urakawa, Junji; Tsuboi, Koji

    2015-01-01

    We generated low-flux X-ray micro-planar beams (MPBs) using a laboratory-scale industrial X-ray generator (60 kV/20 mA) with custom-made collimators with three different peak/pitch widths (50/200 μm, 100/400 μm, 50/400 μm). To evaluate normal skin reactions, the thighs of C3H/HeN mice were exposed to 100 and 200 Gy MPBs in comparison with broad beams (20, 30, 40, 50, 60 Gy). Antitumor effects of MPBs were evaluated in C3H/HeN mice with subcutaneous tumors (SCCVII). After the tumors were irradiated with 100 and 200 Gy MPBs and 20 and 30 Gy broad beams, the tumor sizes were measured and survival analyses were performed. In addition, the tumors were excised and immunohistochemically examined to detect γ-H2AX, ki67 and CD34. It was shown that antitumor effects of 200 Gy MPBs at 50/200 μm and 100/400 μm were significantly greater than those of 20 Gy broad beams, and were comparable with 30 Gy broad beams. γ-H2AX-positive cells demonstrated clear stripe-patterns after MPB irradiation; the pattern gradually faded and intermixed over 24 h. The chronological changes in ki67 positivity did not differ between MPBs and broad beams, whereas the CD34-positive area decreased significantly more in MPBs than in broad beams. In addition, it was shown that skin injury after MPB irradiation was significantly milder when compared with broad-beam irradiation at equivalent doses for achieving the same tumor control effect. Bystander effect and tumor vessel injury may be the mechanism contributing to the efficacy of MPBs. PMID:26141370

  4. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging-linear accelerator.

    PubMed

    Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P; Kok, Jan; Lin, Steven H; Broekhuizen, Roel; Ang, Kie-Kian; Bovenschen, Niels; Raaymakers, Bas W; Frank, Steven J

    2016-10-01

    Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Active immunotherapy for mouse breast cancer with irradiated whole-cell vaccine expressing VEGFR2.

    PubMed

    Yan, Heng-Xiu; Cheng, Ping; Wei, Hai-Yan; Shen, Guo-Bo; Fu, Li-Xin; Ni, Jie; Wu, Yang; Wei, Yu-Quan

    2013-04-01

    As tumor-associated antigens are not well characterized for the majority of human tumors, polyvalent vaccines prepared with whole-tumor antigens are an attractive approach for tumor vaccination. Vascular endothelial growth factor receptor-2 (VEGFR2), as a model antigen with which to explore the feasibility of immunotherapy, has shown great promise as a tumor vaccine. However, the efficacy of immunotherapy is often not ideal when used alone. In this study, we explored the therapeutic efficacy of an irradiated AdVEGFR2-infected cell vaccine-based immunotherapy in the weakly immunogenic and highly metastatic 4T1 murine mammary cancer model. An adenovirus encoding the VEGFR2 gene (AdVEGFR2) was constructed. Lethally irradiated, virus-infected 4T1 cells were used as vaccines. Vaccination with lethally irradiated AdVEGFR2-infected 4T1 cells inhibited subsequent tumor growth and pulmonary metastasis compared with challenge inoculations. Angiogenesis was inhibited, and the number of CD8+ T lymphocytes was increased within the tumors. Antitumor activity was also caused by the adoptive transfer of isolated spleen lymphocytes. In vitro, the expression of HMGB1 and HSP70 in the AdVEGFR2‑infected 4T1 cells was increased, and was involved in the activation of tumor antigen-specific T-cell immunity. Our results indicate that the immunotherapy based on irradiated AdVEGFR2-infected whole-cancer cell vaccines may be a potentially effective strategy for 4T1 cancer treatment.

  6. Differential growth of allogeneic bone marrow and leukemia cells in irradiated guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhan, A,K.; Kumar, V.; Bennett, M.

    1979-11-01

    Growth of normal bone marrow and L/sub 2/C leukemia cell grafts was studied in lethally irradiated strain 2 and strain 13 guinea pigs. Allogeneic bone marrow cells proliferated as well as syngeneic cells in both strain 2 and 13 animals. This observation indicates that Ia disparities are not relevant to marrow graft rejection in the guinea pig. Both Ia positive and Ia negative L/sub 2/C leukemia cells of strain 2 origin grew well in the spleen of irradiated strain 2 animals. However, irradiated strain 13 animals showed resistance to the growth of both leukemia cell lines. F/sub 1/ hybrids (2more » x 13) also showed resistance to the growth of the leukemia cells. These observations suggest the existence of an effector system capable of mediating natural resistance to L/sub 2/C cells in unimmunized strain 13 and F/sub 1/ guinea pigs. The nature of antigens recognized by these radiation resistant effector cells are not entirely clear. However, Ia antigens, or tumor-associated antigens dependent upon Ia antigens for immunogenicity, do not seem to be the primary targets in this phenomenon.« less

  7. Effective adoptive transfer of haploidentical tumor-specific T cells in B16-melanoma bearing mice.

    PubMed

    Cui, Nai-peng; Xie, Shao-jian; Han, Jin-sheng; Ma, Zhen-feng; Chen, Bao-ping; Cai, Jian-hui

    2012-03-01

    Adoptive transfer of allogeneic tumor-specific T cells often results in severe graft-versus-host disease (GVHD). Here, we sought to maximize graft-versus-tumor and minimize GVHD by using haploidentical T cells in pre-irradiated B16-melanoma bearing mice. C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0, 5, or 7 Gy total body irradiation (TBI), or 7 Gy TBI plus bone marrow transplantation. Tumor areas were measured every 3 days to assess the influence of irradiation treatment on tumor regression. B16-melanoma bearing mice were irradiated with 7 Gy TBI; sera and spleens were harvested at days 1, 3, 5, 7, 9, 11, and 13 after irradiation. White blood cell levels were measured and transforming growth factor β1 (TGF-b1) and interleukin 10 (IL-10) levels in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were performed to test TGF-b1, IL-10 and Foxp3 mRNA levels and the proportion of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) in spleens. B16-melanoma bearing C57BL/6 mice were irradiated with 7 Gy TBI followed by syngeneic (Syn1/Syn2) or haploidentical (Hap1/Hap2), dendritic cell-induced cytotoxic T lymphocytes (DC-CTLs) treatment, tumor areas and system GVHD were observed every 3 days. Mice were killed 21 days after the DC-CTLs adoptive transfer; histologic analyses of eyes, skin, liver, lungs, and intestine were then performed. Irradiation with 7 Gy TBI on the B16-melanoma-bearing mice did not influence tumor regression compared to the control group; however, it down-regulated the proportion of Tregs in spleens and the TGF-b1 and IL-10 levels in sera and spleens, suggesting inhibition of autoimmunity and intervention of tumor microenvironment. Adoptive transfer of haploidentical DC-CTLs significantly inhibited B16-melanoma growth. GVHD assessment and histology analysis showed no significant difference among the groups. Adoptive transfer of

  8. Photodynamic synchrotron x-ray therapy in Glioma cell using superparamagnetic iron nanoparticle

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Tae; Kim, Ki-Hong; Choi, Gi-Hwan; Jheon, Sanghoon; Park, Sung-Hwan; Kim, Bong-Il; Hyodo, Kazuyuki; Ando, Masami; Kim, Jong-Ki

    2009-06-01

    In order to evaluate cytotoxic effects of secondary Auger electron emission(Photon Activation Therapy:PAT) from alginate-coated iron nanoparticles(Alg-SNP), Alg-SNP-uptaken C6 glioma cell lines were irradiated with 6.89/7.2 Kev synchrotron X-ray. 0-125 Gy were irradiated on three experimental groups including No-SNP group incubating without SNP as control group, 6hr-SNP group incubating with SNP for 6hr and ON-SNP group incubating with SNP overnight. Irradiated cells were stained with Acridine Orange(AO) and Edithium Bromide(EB) to count their viability with fluorescent microscopy in comparison with control groups. AO stained in damaged DNA, giving FL color change in X-ray plus SNP group. EB did not or less enter inside the cell nucleus of control group. In contrast, EB entered inside the cell nucleus of Alg-SNP group which means more damage compared with Control groups. The results of MTT assay demonstrated a X-ray dose-dependent reduction generally in cell viability in the experimental groups. 3 or 9 times increase in cell survival loss rate was observed at 6hr-SNP and ON-SNP groups, respectively compared to No-SNP control group in first experiment that was done to test cell survival rate at relatively lower dose, from 0 to 50 Gy. In second experiment X-ray dose was increased to 125 Gy. Survival loss was sharply decreased in a relatively lower dose from 5 to 25 Gy, and then demonstrated an exponentially decreasing behavior with a convergence until 125 Gy for each group. This observation suggests PAT effects on the cell directly by X-ray in the presence of Alg-SNP occurs within lower X-ray dose, and conventional X-ray radiation effect becomes dominant in higher X-ray dose. The cell viability loss of ON-SNP group was three times higher compared with that of 6hr-SNP group. In conclusion, it is possible to design photodynamic X-ray therapy study using a monochromatic x-ray energy and metal nanoparticle as x-ray sensitizer, which may enable new X-ray PDT to

  9. Neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terasawa, Masao; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-12-12

    Antigen-transporting cells take up pathogens, and then migrate from sites of inflammation to secondary lymphoid tissues to induce an immune response. Among antigen-transporting cells, dendritic cells (DCs) are believed to be the most potent and professional antigen-presenting cells that can stimulate naive T cells. However, the cells that transport antigens, tumor cell antigens in particular, have not been clearly identified. In this study we have analyzed what types of cells transport tumor cell antigens to secondary lymphoid tissues. We show that neutrophils, monocytes and macrophages but not DCs engulf X-irradiated P388 leukemic cells after their injection into the peritoneal cavity,more » and that neutrophils and monocytes but not macrophages migrate to the parathymic lymph nodes (pLN), the blood, and then the spleen. The monocytes in the pLN comprise Gr-1{sup -} and Gr-1{sup +} ones, and some of these cells express CD11c. Overall, this study demonstrates that neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues.« less

  10. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieken, Stefan, E-mail: Stefan.Rieken@med.uni-heidelberg.de; Habermehl, Daniel; Wuerth, Lena

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration onmore » both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.« less

  11. Two tumor models of curative adoptive chemoimmunotherapy using tumor-infiltrated spleen cells with potent antitumor cytotoxicity stimulated by antigen-sharing tumors.

    PubMed

    Laude, M; Russo, K L; Mokyr, M B; Dray, S

    1993-07-01

    Previously we have established curative protocols for adoptive chemoimmunotherapy (ACIT) of mice bearing different plasmacytomas that are known to bear cross-reacting antigens: (a) the cure of mice bearing an early-stage, nonpalpable MOPC-315 tumor by a very low dose of cyclophosphamide (10 mg/kg) and cultured MOPC-315-tumor-infiltrated (TI) spleen cells (25 x 10(6)) and (b) the cure of mice bearing a late-stage, relatively drug-resistant, highly metastatic RPC-5 tumor with cyclophosphamide (100 mg/kg) and cultured RPC-5 TI spleen cells (25 x 10(6) - 50 x 10(6)). In both models, the spleen cells were obtained from mice bearing a late-stage tumor and were cultured for 5 days in the presence of polyethyleneglycol 6000 and autochthonous tumor cells as a source of tumor antigen. Here we show that RPC-5 tumor cells could substitute for MOPC-315 tumor cells in the 5-day culture of MOPC-315 TI spleen cells so that they became curative in ACIT for mice bearing an early-stage MOPC-315 tumor. Similarly, MOPC-315 tumor cells could substitute for RPC-5 tumor cells in the 5-day culture of RPC-5 TI spleen cells so that they became curative in ACIT of mice bearing a late-stage RPC-5 tumor. In addition, RPC-5 TI spleen cells cultured with either MOPC-315 or RPC-5 tumor cells were effective in curing all mice bearing an early-stage MOPC-315 tumor by ACIT. However, MOPC-315 TI spleen cells whether cultured with MOPC-315 or RPC-5 tumor cells, were much less effective than cultured RPC-5 TI spleen cells in curing mice bearing a late-stage RPC-5 tumor by ACIT (although the survival of these mice was extended significantly). Interestingly, whereas RPC-5 TI spleen cells cultured with either MOPC-315 or RPC-5 tumor cells were as effective as MOPC-315 TI spleen cells cultured under the same conditions in lysing MOPC-315 tumor cells in vitro, MOPC-315 TI spleen cells that had been cultured with either MOPC-315 or RPC-5 tumor cells exerted a much weaker in vitro cytotoxic T lymphocyte

  12. Irradiation of Mesenchymal Stromal Cells With Low and High Doses of Alpha Particles Induces Senescence and/or Apoptosis.

    PubMed

    Alessio, Nicola; Esposito, Giuseppe; Galano, Giovanni; De Rosa, Roberto; Anello, Pasquale; Peluso, Gianfranco; Tabocchini, Maria Antonella; Galderisi, Umberto

    2017-09-01

    The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. The effect of radiation therapy combined with natural killer cells against spontaneous murine fibrosarcoma.

    PubMed

    Nakagawa, K; Yoshida, F; Omori, N; Tsunoda, T; Nose, T

    1990-01-01

    The effect of radiation therapy combined with lymphoid cells against spontaneous murine fibrosarcoma (FSa-II) was investigated both in vivo and in vitro. In the in vivo experiment, syngeneic C3H mice were divided into 3 groups. Animals in the first group were injected with 1 x 10(5) tumor cells into the right hind leg. Animals in the second and third groups were injected with 1 x 10(5) tumor cells mixed with 1 x 10(7) normal lymphoid cells (NLC) or effector lymphoid cells (ELC), respectively. ELC were obtained from spleen and lymph nodes of FSa-II-bearing mice and incubated in vitro for 40 hr to eliminate suppressor T cell function. NLC were obtained from normal mice and incubated in the same way. Irradiation was given using 137Cs unit 3 days after cell inoculation. 12 out of 14 mice (85.7%) inoculated with tumor cells mixed with NLC did not show any tumor growth at 60 Gy local irradiation. 12 out of 21 mice (57.1%) inoculated with tumor cells alone and 6 out of 10 (60%) with tumor cells mixed with ELC rejected tumors at the same radiation dose. This synergistic effect with NLC was not observed when NLC was inoculated after irradiation, indicating that lymphoid cells should be in contact with tumor cells before irradiation. In the 51Cr release assay, lymphoid cells obtained from whole body irradiated (WBI) mice showed 17.8% lysis without irradiation and 28.8% lysis at 5 Gy irradiation. Untreated NLC showed almost no cytotoxic effect at the same radiation dose. This synergistic effect disappeared when WBI lymphoid cells were treated with anti asialo GM1 and complement.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration.

    PubMed

    Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E

    2018-03-13

    Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.

  15. Targeting of tumor endothelial cells combining 2 Gy/day of X-ray with Everolimus is the effective modality for overcoming clinically relevant radioresistant tumors

    PubMed Central

    Kuwahara, Yoshikazu; Mori, Miyuki; Kitahara, Shuji; Fukumoto, Motoi; Ezaki, Taichi; Mori, Shiro; Echigo, Seishi; Ohkubo, Yasuhito; Fukumoto, Manabu

    2014-01-01

    Radiotherapy is widely used to treat cancer because it has the advantage of physically and functionally conserving the affected organ. To improve radiotherapy and investigate the molecular mechanisms of cellular radioresistance, we established a clinically relevant radioresistant (CRR) cell line, SAS-R, from SAS cells. SAS-R cells continue to proliferate when exposed to fractionated radiation (FR) of 2 Gy/day for more than 30 days in vitro. A xenograft tumor model of SAS-R was also resistant to 2 Gy/day of X-rays for 30 days. The density of blood vessels in SAS-R tumors was higher than in SAS tumors. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, sensitized microvascular endothelial cells to radiation, but failed to radiosensitize SAS and SAS-R cells in vitro. Everolimus with FR markedly reduced SAS and SAS-R tumor volumes. Additionally, the apoptosis of endothelial cells (ECs) increased in SAS-R tumor tissues when both Everolimus and radiation were administered. Both CD34-positive and tomato lectin-positive blood vessel densities in SAS-R tumor tissues decreased remarkably after the Everolimus and radiation treatment. Everolimus-induced apoptosis of vascular ECs in response to radiation was also followed by thrombus formation that leads to tumor necrosis. We conclude that FR combined with Everolimus may be an effective modality to overcome radioresistant tumors via targeting tumor ECs. PMID:24464839

  16. Alteration of sensitivity of intratumor quiescent and total cells to gamma-rays following thermal neutron irradiation with or without 10B-compound.

    PubMed

    Masunaga, S; Ono, K; Suzuki, M; Sakurai, Y; Kobayashi, T; Takagaki, M; Kinashi, Y; Akaboshi, M

    2000-02-01

    Changes in the sensitivity of intratumor quiescent (Q) and total cells to gamma-rays following thermal neutron irradiation with or without 10B-compound were examined. 5-Bromo-2'-deoxyuridine (BrdU) was injected to SCC VII tumor-bearing mice intraperitoneally 10 times to label all the proliferating (P) tumor cells. As priming irradiation, thermal neutrons alone or thermal neutrons with 10B-labeled sodium borocaptate (BSH) or dl-p-boronophenylalanine (BPA) were administered. The tumor-bearing mice then received a series of gamma-ray radiation doses, 0 through 24 h after the priming irradiation. During this period, no BrdU was administered. Immediately after the second irradiation, the tumors were excised, minced, and trypsinized. Following incubation of tumor cells with cytokinesis blocker, the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells at the time of priming irradiation) was determined using immunofluorescence staining for BrdU. The MN frequency in the total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU before the priming irradiation. To determine the BrdU-labeled cell ratios in the tumors at the time of the second irradiation, each group also included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted subcutaneously 5 days before the priming irradiation. In total cells, during the interval between the two irradiations, the tumor sensitivity to gamma-rays relative to that immediately after priming irradiation decreased with the priming irradiation ranking in the following order: thermal neutrons only > thermal neutrons with BSH > thermal neutrons with BPA. In contrast, in Q cells, during that time the sensitivity increased in the following order: thermal neutrons only < thermal neutrons with BSH < thermal neutrons with BPA. The longer the interval between the two irradiations, the higher was the BrdU-labeled cell

  17. Enhanced susceptibility of irradiated tumor vessels to vascular endothelial growth factor receptor tyrosine kinase inhibition.

    PubMed

    Zips, Daniel; Eicheler, Wolfgang; Geyer, Peter; Hessel, Franziska; Dörfler, Annegret; Thames, Howard D; Haberey, Martin; Baumann, Michael

    2005-06-15

    Previous experiments with PTK787/ZK222584, a specific inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, using irradiated human FaDu squamous cell carcinoma in nude mice, suggested that radiation-damaged tumor vessels are more sensitive to VEGFR inhibition. To test this hypothesis, the tumor transplantation site (i.e., the right hind leg of nude mice) was irradiated 10 days before transplantation of FaDu to induce radiation damage in the host tissue. FaDu tumors vascularized by radiation-damaged blood vessels appeared later, grew at a slower rate, and showed more necrosis and a smaller vessel area per central tumor section than controls. PTK787/ZK222584 at a daily dose of 50 mg/kg body weight had no impact on growth of control tumors. In contrast, tumors vascularized by radiation-damaged vessels responded to PTK787/ZK222584 with longer latency and slower growth rate than controls, and a trend toward further increase in necrosis, indicating that irradiated tumor vessels are more susceptible to VEGFR inhibition than unirradiated vessels. Although not proving causality, expression analysis of VEGF and VEGFR2 shows that enhanced sensitivity of irradiated vessels to a specific inhibitor of VEGFR tyrosine kinases correlates with increased expression of the molecular target.

  18. Action of caffeine on x-irradiated HeLa cells. VII. Evidence that caffeine enhances expression of potentially lethal radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetham, K.L.; Tolmach, L.J.

    1984-12-01

    HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and inmore » caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that x rays do not sensitize cells to caffeine, but rather that caffeine enhanced the expression of potentially lethal radiation-induced damage.« less

  19. Production of interferon-gamma by in vivo tumor-sensitized T cells: Association with active antitumor immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bursuker, I.; Pearce, M.T.

    1990-02-01

    The state of active immunity to Meth A fibrosarcoma in mice immunized with an admixture of Meth A cells and Propionibacterium acnes is associated with possession by the host of spleen cells capable of producing interferon-gamma (IFN-gamma) upon in vitro restimulation with irradiated tumor cells. The ability of spleen cells from immunized mice to produce IFN-gamma in response to irradiated Meth A cells decays as active antitumor immunity is replaced by a state of immunological memory. The IFN-producing cells are L3T4+Ly2+, cyclophosphamide-sensitive and radiosensitive T cells, as determined by their sensitivity to corresponding monoclonal antibodies and complement. The induction ofmore » IFN-gamma production by in vivo tumor-sensitized T cells is tumor specific, in that spleen cells from mice immunized against Meth A fibrosarcoma can produce IFN in response to irradiated Meth A cells but not in response to another syngeneic tumor M109 lung carcinoma.« less

  20. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-04

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  1. PEGylated (NH4)xWO3 nanorods as efficient and stable multifunctional nanoagents for simultaneous CT imaging and photothermal therapy of tumor.

    PubMed

    Macharia, Daniel K; Tian, Qiyun; Chen, Liang; Sun, Yingqi; Yu, Nuo; He, Chuanglong; Wang, Han; Chen, Zhigang

    2017-09-01

    The simultaneous imaging and photothermal therapy of tumors have attracted much attention, and a prerequisite is to obtain multifunctional nanomaterials. Ideally, one kind of nanoparticles with single component can be used as both imaging agent and photothermal agent. Herein, we have developed the PEGylated (NH 4 ) x WO 3 (denoted as (NH 4 ) x WO 3 -PEG) nanorods as multifunctional nanoparticles with single semiconductor component. (NH 4 ) x WO 3 -PEG nanorods with about 30nm diameter and length of several hundred nanometers have been obtained through a solvothermal synthesis-PEGylation two-step route. Under the irradiation of 980-nm laser with intensity of 0.72Wcm -2 , aqueous dispersion of (NH 4 ) x WO 3 -PEG nanorods (0.67-5.44mmol/L) displays high elevation (17.6-34.5°C) of temperature in 400s, accompanied by an excellent long-term photothermal stability. Furthermore, (NH 4 ) x WO 3 -PEG nanorods exhibit as high as 6 times X-ray attenuation ability compared to that of the clinically used iodine-based X-ray computed tomography (CT) contrast agent (Iopromide). More importantly, after PBS solution of (NH 4 ) x WO 3 -PEG nanorods is injected into the tumor of mice, the tumor can be effectively detected by CT imaging. Moreover, cancer cells in vivo can be further destroyed by the photothermal effects of (NH 4 ) x WO 3 -PEG nanorods, under the irradiation of 980-nm laser with the safe intensity of 0.72Wcm -2 for 10min. Therefore, (NH 4 ) x WO 3 -PEG nanorods can be used as a new kind of stable and efficient multifunctional nanoagent with single component for simultaneous CT imaging and photothermal therapy of tumor. Copyright © 2017. Published by Elsevier B.V.

  2. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    PubMed Central

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  3. Intrinsic resistance to the lethal effects of x-irradiation in insect and arachnid cells

    PubMed Central

    Koval, Thomas M.

    1983-01-01

    Twelve cell lines representing 10 genera of three orders (Diptera, Lepidoptera, and Orthoptera) of the class Insecta and one cell line (Acarina) from the class Arachnida were examined to discern their sensitivity to the lethal effects of x-irradiation. Radiosensitivity was measured by a combination of colony formation and population growth curve techniques. Each of these arthropod cell lines is significantly more radioresistant than mammalian cells, though the degree of resistance varies greatly with order. Dipteran cells are 3 to 9 times and lepidopteran cells 52 to 104 times more radioresistant than mammalian cells. Orthopteran and acarine cells are intermediate in radiosensitivity between dipteran and lepidopteran cells. These cells, especially the lepidopteran, should be valuable in determining the molecular nature of repair mechanisms that result in resistance to ionizing radiation. PMID:16593348

  4. Suppressive Effect of Immunization with Mouse Fetal Antigens on Growth of Cells Infected with Rauscher Leukemia Virus and on Plasma-Cell Tumors

    PubMed Central

    Hanna, M. G.; Tennant, R. W.; Coggin, J. H.

    1971-01-01

    The recovery of spleen cells infected with Rauscher leukemia virus (RLV) and grown in Millipore diffusion chambers, the development of RLV-induced splenomegaly, and the cumulative mortality from a transplanted ascites plasma-cell tumor were all suppressed in young adult BALB/c male mice previously primed at 3-weekly intervals with x-irradiated, syngeneic embryo cells. RLV-induced splenomegaly was also suppressed by adoptive transfer of postpartal spleen cells, as well as spleen cells for animals primed with syngeneic embryo cells. Similar suppressions were not observed in mice primed with neonatal or normal syngeneic cells. Further, injection of fetal cells was not effective in suppressing the immune function of normal spleen cells, as measured by ability to elaborate a primary immunoglobulin M response to heterologous erythrocyte antigen. The results of this study add to the broad spectrum of tumors of experimental animals and man known to contain neoantigens common to fetal cells. PMID:4942913

  5. Experimental study on rat NK cell activity improvement by laser acupoint irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Dongxiao; Chen, Xiufeng; Ruan, Buqing; Yang, Feng

    1998-08-01

    To study the improvement of the natural killer (NK) cell activity by semiconductor laser acupoint irradiation, rats were used in this experiment and were injected immunosuppressant in their abdomen. The immunoassay was made after the surface irradiation and inner irradiation at Baihui point by semiconductor laser. The NK cell activity is an important index of immunologic function. The results showed that the NK cell activity after laser acupoint irradiation was enhanced. This enhancement is relatively important in the clinical therapy of tumor.

  6. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    PubMed

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  7. Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    PubMed Central

    Barrio, María Marcela; Abes, Riad; Colombo, Marina; Pizzurro, Gabriela; Boix, Charlotte; Roberti, María Paula; Gélizé, Emmanuelle; Rodriguez-Zubieta, Mariana

    2012-01-01

    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter. PMID:22768350

  8. The immunization site of cytokine-secreting tumor cell vaccines influences the trafficking of tumor-specific T lymphocytes and antitumor efficacy against regional tumors.

    PubMed

    Chang, Chun-Jung; Tai, Kuo-Feng; Roffler, Steve; Hwang, Lih-Hwa

    2004-11-15

    Tumor cells engineered to secrete cytokines, referred to as tumor cell vaccines, can often generate systemic antitumor immunity and, in many cases, cause tumor regression. We compared the efficacy of s.c. immunization or intrahepatic immunization of GM-CSF-expressing tumor cell vaccines on the growth of s.c. or orthotopic liver tumors. A chemically transformed hepatic epithelial cell line, GP7TB, derived from Fischer 344 rats, was used to generate tumor models and tumor cell vaccines. Our results demonstrated that two s.c. injections of an irradiated tumor cell vaccine significantly controlled the growth of s.c. tumors, but was completely ineffective against orthotopic liver tumors. Effector cell infiltration in liver tumors was markedly reduced compared with s.c. tumors. Enhanced apoptosis of some effector cells was observed in the liver tumors compared with the s.c. tumors. Furthermore, the T cells induced by s.c. immunization preferentially migrated to s.c. tumor sites, as demonstrated by adoptive transfer experiments. In contrast, intrahepatic immunization, using parental tumor cells admixed with adenoviruses carrying the GM-CSF gene, yielded significantly better therapeutic effects on the liver tumors than on the s.c. tumors. Adoptive transfer experiments further confirmed that the T cells induced by liver immunization preferentially migrated to the liver tumor sites. Our results demonstrate that distinct T cell populations are induced by different immunization routes. Thus, the homing behavior of T cells depends on the route of immunization and is an important factor determining the efficacy of immunotherapy for regional tumors.

  9. Study of HeLa cells clone survival after X-ray irradiation in the presence of cisplatin

    NASA Astrophysics Data System (ADS)

    Baulin, A. A.; Sukhikh, E. S.; Vasilyev, S. A.; Sukhikh, L. G.; Sheino, I. N.

    2017-09-01

    Radiation therapy in the presence of heavy elements nuclei (Z > 53) is widely developed these days. The presence of such nuclei in cancer cells results in the local increase of energy release from primary photon beam thus increasing relative biological efficiency. In this paper we present the preliminary results of the cell survival study while irradiating cells by X-Ray photon beam in the presence of cisplatin (Pt, Z = 78). The preliminary results show the decrease of the cell survival in the presence of both radiation and cisplatin.

  10. Whole-body irradiation increases the magnitude and persistence of adoptively transferred T cells associated with tumor regression in a mouse model of prostate cancer

    PubMed Central

    Ward-Kavanagh, Lindsay K.; Zhu, Junjia; Cooper, Timothy K.; Schell, Todd D.

    2014-01-01

    Adoptive immunotherapy has demonstrated efficacy in a subset of clinical and preclinical studies, but the T cells used for therapy often are rendered rapidly non-functional in tumor-bearing hosts. Recent evidence indicates that prostate cancer can be susceptible to immunotherapy, but most studies using autochthonous tumor models demonstrate only short-lived T-cell responses in the tolerogenic prostate microenvironment. Here, we assessed the efficacy of sublethal whole-body irradiation (WBI) to enhance the magnitude and duration of adoptively transferred CD8+ T cells in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We demonstrate that WBI promoted high-level accumulation of granzyme B (GzB)-expressing donor T cells both in lymphoid organs and in the prostate of TRAMP mice. Donor T cells remained responsive to vaccination in irradiated recipients, but a single round of WBI-enhanced adoptive immunotherapy failed to impact significantly the existing disease. Addition of a second round of immunotherapy promoted regression of established disease in half of the treated mice, with no progressions observed. Regression was associated with long-term persistence of effector/memory phenotype CD8+ donor cells. Administration of the second round of adoptive immunotherapy led to reacquisition of GzB expression by persistent T cells from the first transfer. These results indicate that WBI conditioning amplifies tumor-specific T cells in the TRAMP prostate and lymphoid tissue, and suggest that the initial treatment alters the tolerogenic microenvironment to increase antitumor activity by a second wave of donor cells. PMID:24801834

  11. A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue.

    PubMed

    Irvine, Karen-Amanda; Blakemore, William F

    2007-01-01

    This study was designed to investigate whether the residual, dysfunctional oligodendrocyte progenitor cells (OPCs) observed following X-irradiation of the mouse spinal cord [D. M. Chari et al. (2003) Exp. Neurol., 198, 145-153], the presence of which prevented the endogenous repopulation of these areas from normal tissue, reflects a general response of OPCs in the mouse central nervous system (CNS) to X-irradiation. The brains of adult mice were exposed to 40 Gy of X-irradiation and the effect of X-irradiation on the OPCs was assessed up to 4 weeks post-irradiation using anti-NG2 antibodies. X-irradiation resulted in almost complete depletion of OPCs within the telencephalon (cortex, corpus callosum and hippocampus) by 7 days post-irradiation, which was followed by progressive repopulation of OPCs from non-irradiated areas of the cortex. By contrast, within the lower brain centres (the diencephalon and mesencephalon) OPC loss occurred much more slowly so that 26% of the OPCs still remained 4 weeks after X-irradiation. The consequence of this heterogeneous response to X-irradiation was that whereas transplanted and endogenous OPCs rapidly established themselves in the OPC-depleted telencephalon this did not occur in the areas where there was incomplete depletion of endogenous OPCs. Our findings confirm not only the requirement for almost complete OPC depletion in order to establish transplanted OPCs in normal tissue but also highlight a heterogeneity of progenitor populations in different areas of the mouse CNS.

  12. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiatedmore » fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.« less

  13. Differential Activation of CD8+ Tumor-Specific Tc1 and Tc2 Cells by an IL-10-Producing Murine Plasmacytoma

    PubMed Central

    Pauels, Hans-Gerd; Becker, Christian; Kölsch, Eckehart

    1998-01-01

    The involvement of counteractive CD8+ T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model. CD8+ Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cells in vivo and in vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinduced CD8+ T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γ as a suppressive factor. Whereas most longterm cultivated CD8+ ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primary in vitro Tc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10. CD8+ Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γ or IL-12. In contrast, ADJ-PC- 5-specific CD8+ Tc cells from immunized mice are IFN-γ producing Tc1 cells. Since the primary in vitro Tc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γ these Tc1 cells behave similar to the suppressive CD8+ T cells that are induced during early stages of ADJ-PC-5 tumorigenesis. PMID:9814607

  14. Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis

    NASA Astrophysics Data System (ADS)

    Garcia-Barros, Monica; Paris, Francois; Cordon-Cardo, Carlos; Lyden, David; Rafii, Shahin; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2003-05-01

    About 50% of cancer patients receive radiation therapy. Here we investigated the hypothesis that tumor response to radiation is determined not only by tumor cell phenotype but also by microvascular sensitivity. MCA/129 fibrosarcomas and B16F1 melanomas grown in apoptosis-resistant acid sphingomyelinase (asmase)-deficient or Bax-deficient mice displayed markedly reduced baseline microvascular endothelial apoptosis and grew 200 to 400% faster than tumors on wild-type microvasculature. Thus, endothelial apoptosis is a homeostatic factor regulating angiogenesis-dependent tumor growth. Moreover, these tumors exhibited reduced endothelial apoptosis upon irradiation and, unlike tumors in wild-type mice, they were resistant to single-dose radiation up to 20 grays (Gy). These studies indicate that microvascular damage regulates tumor cell response to radiation at the clinically relevant dose range.

  15. Characterization of Treefoil Peptide Genes in Iron-Ion or X-Irradiated Human Cells

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Harrison, G. H.; Xu, J. F.; Zhou, X. F.

    1999-01-01

    The gastrointestinal (GI) tract is especially sensitive to ionizing radiation, probably because of its high rate of cell turn over. Most of the data in the literature concerns the histological/anatomical description of damage rather than functional studies. In fact, previous reports in humans have shown that, at doses of 2 Gy or more, functional abnormalities appear indicating that in radiation sensitive tissues the effects of radiation are not limited to cell death. GI functions are controlled in particular by GI peptides. One hypothesis is that ionizing radiation may modulate the synthesis and release of these peptides and consequently may contribute largely to abnormalities in GI function. However, no previous studies have been concerned with GI-specific gene expression in irradiated GI tissues. The family of human trefoil peptides comprises three members thus far, all of which are expressed in specific regions of the GI tract. In addition, two trefoil peptides, pS2 (TFFI) and HITF (TFF2) are expressed in breast tissue. Their exact function in GI and breast tissues is unclear but mucosal integrity, repair, mucin secretion and responsiveness to hormones have been shown. We recently isolated and characterized pS2 as a novel p53- and estrogen receptor-independent gene whose MRNA expression in several cells lines was found to be delayed 4 to 7 days after irradiation with X-rays, fission neutrons or 1 GeV/n Fe-ions. The aim of the present study was to determine whether pS2 and HITF have a similar induction kinetics in irradiated gastric and breast cell lines, and whether they have the phorbol ester (TPA) responsive element (TRE).

  16. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.

    PubMed

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.

  17. COMPARISON OF EFFECTS OF DEUTERIUM OXIDE AND X-RAY IRRADIATION ON MULTIPLICATION OF POLIOVIRUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kritchevsky, D.; Manson, L.A.; Hartzell, R.W. Jr.

    1963-01-01

    An attenuated strain of poliomyelitis virus (CHAT) will not grow in monkey kidney cells at 40 un. Concent 85% C. When deuterium oxide (25 to 40%) is present in the medium, replication of CHAT virus will take place at 40 un. Concent 85% C. Since both deuterium oxide treatment and irradiation with x rays yield giant cells, the 2 treatments have been compared for their ability to support the growth of CHAT poliovirus at 40 un. Concent 85% C. At several levels of x irradiation, monkey kidney cells will not support the growth of CHAT virus at 40 un. Concentmore » 85% C. When D/sub 2/O is added to he medium of the x- irradiated cells at 40 un. Concent 85% C, replication of CHAT virus is observed. The effect is not due to cell size or number. (auth)« less

  18. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells.

    PubMed

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-11-16

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.

  19. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells

    PubMed Central

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-01-01

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets. PMID:29144507

  20. Effect of anemia on tumor radiosensitivity under normo and hyperbaric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, A.; Stewart, F.A.; Smith, K.A.

    1987-11-01

    The effect of chronic anemia on tumor radiosensitivity in a murine tumor has been investigated. Anemia was induced by bilateral kidney irradiation given several months before tumor implantation. Anemic, anemic transfused, and normal non-anemic age-matched tumor bearing animals were irradiated with X rays (2 F/24 hr) either in air, air plus misonidazole, or under hyperbaric oxygen. The most resistant response was that of tumors grown in normal mice treated in air. Anemia produced an increase in radiosensitivity which was further enhanced by red blood cell replacement. The most sensitive overall response was seen in the anemic-transfused group treated with HBO.

  1. Stereotaxic Irradiation-Procedure of Brain Tumors and Pituitary Adenomas by Means of Radio-Isotopes and its Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundinger, F.; Riechert, T.

    1962-01-01

    The techniques, results, and complications of stereotactic implantation of P/sup 32/, Co/sup 60/, Ta/sup 182/, Ir/sup 192/, and Au/sup 198/ in the brain of 196 patients for radiotherapy of intracranial tumors are described. A stereotactic instrument is described and illustrated which permits implantation of the radioisotopes to within 0.5 mm of the desired site. There was a clear relation between the length of survival and the kind of radioisotope applied, localization of the tumor, and amount of the tumor dosage. With glioblastomas, for instance, longest survival was noted in those with frontal localization, following Co/sup 60/ irradiation, and an averagemore » tumor dosage of 10000 to 13000 r showed best results. Similar results, with even longer survival periods, were achieved in other dedifferentiated gliomas, in which the combination of intraoperative Ta/sup 182/ or Ir/sup 192/ implantation with a postoperative interstitial Co/sup 60/ irradiation achieved the best results, in comparison with a combination of operation and x-ray therapy. The survival rate, which is nearly twice as high as in x-ray treatment, shows a significant relation to the average tumor dosage and tumor localization. The period of treatment was also shortened by 65-75% compared to the time required for fractionated x-ray therapy. In 68% of the stereotaxic hypophysis operations, according to the size of the tumor, a total activity of 25 to 55 mc of a macromolecular suspension of Au/sup 198/ was implanted which was adsorbed on small graphite particles (50 to 60 mu ). In the other cases small seeds of P/sup 32/ were placed in the tumor. The long-term results show that visual acuity had improved significantly following secondary stereotaxic irradiation, or remained unaltered without change, in comparison to those patients that had been treated by operation only. On the other hand, the percentage of unimproved and deteriorated cases is much higher in the operated group. The operative

  2. IL-6 Mediates Macrophage Infiltration after Irradiation via Up-regulation of CCL2/CCL5 in Non-small Cell Lung Cancer.

    PubMed

    Wang, Xin; Yang, Xiaodong; Tsai, Ying; Yang, Li; Chuang, Kuang-Hsiang; Keng, Peter C; Lee, Soo Ok; Chen, Yuhchyau

    2017-01-01

    Radiotherapy is effective in reducing primary tumors, however, it may enhance macrophage infiltration to tumor sites, accelerating tumor progression in several ways. We investigated whether radiation can increase macrophage infiltration into non-small cell lung carcinoma (NSCLC) cells. Analysis of in vitro macrophage (differentiated THP-1 cells) migration to either nonirradiated or irradiated tumor cells showed increased migration to the irradiated tumor cells. Because the IL-6 levels in A549 and H157 cells were significantly increased after irradiation, we then investigated whether this increased IL-6 level contributes to radiation-induced macrophage migration. Radiation-induced macrophage infiltration was reduced when IL-6 was knocked down in tumor cells, indicating a positive IL-6 role in this process. To validate this in vitro result, an orthotopic mouse model was developed using a luciferase-tagged H157siIL-6/scramble control (sc) cell set. After tumors developed, the lungs were irradiated, and infiltration of endogenous macrophages and tail-vein injected fluorescent macrophages to tumor sites was investigated. In both groups, increased macrophage infiltration was observed in H157sc cell-derived xenografts compared to H157siIL-6 cell-derived xenografts, confirming the positive IL-6 role in the radiation-induced macrophage infiltration process. In mechanistic dissection studies, radiation-induced up-regulation of CCL2 and CCL5 by IL-6 was detected, and blocking the action of CCL2/CCL5 molecules significantly reduced the number of migrated macrophages to tumor cells after irradiation. These results demonstrate that targeting the IL-6 signaling or CCL2/CCL5 molecules in combination with conventional radiotherapy potentially blocks undesired radiation-induced macrophage infiltration.

  3. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  4. Effect of time between x-irradiation and chemotherapy on the growth of three solid mouse tumours. VI. BCNU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelieveld, P.; Twentyman, P.R.; Kallman, R.F.

    1979-09-01

    Experiments have been carried out to determine the effect of different time intervals between the administration of x-irradiation (1200 rad) and BCNU (15 mg/kg) on the growth delay produced in three mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2X (for KHT) or 4X (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administered bymore » the intraperitoneal route either 24, 6, or 2 hr before radiation. All irradiations were carried out in unanesthetized mice. The growth delays due to the drug alone were 2,6, and 11 days for the RIF-1, EMT6, and KHT tumors, respectively. No consistent general pattern emerged from the results of combination treatments. For the RIF-1 tumor, the growth delays following combination treatments were generally less than predicted by the simple addition of the growth delays for the single modalities. For EMT6 this was true when BCNU was administered immediately before x-rays, but not for other timings. In the KHT tumor an unexpectedly high incidence of long-term tumor controls was seen in the group which received BCNU at 2 hr before x-rays. In addition to the single dose studies (above), fractionated regimens in which radiation and BCNU were combined in several different ways were tested with the RIF-1 tumor. None of the combination schedules tested showed a greater-than-additive effect.« less

  5. Single dose x irradiation and concomitant hyperthermia on a murine fibroscarcoma. [Sensitizing effects of hyperthermia on tumors in mice subjected to local radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, E.W.; Alfieri, A.A.; Kim, J.H.

    1978-12-01

    The objectives of this study were to quantitate the effects of local tumor hyperthermia (LTH) and concomitant x irradiation (RAD) on a moderately radioresistant murine fibrosarcoma in situ. Comparisons were made to the combined treatment response on the Ridgway osteogenic sarcoma, a radiosensitive tumor previously used in this laboratory and to establish the Meth-A fibrosarcoma as a model system for combined modality studies. 1.0 cm/sup 3/ tumors were exposed to single doses of RAD ranging from 0.5 to 3.8 krad alone or 0.5 to 2.3 krad in combination with LTH (water bath at 43.1 +- .05 C for 20 minutes)more » applied immediately postirradiation. LTH significantly enhanced the action of radiation as measured by tumor volume analysis, mean survival time and cures. The ratio of radiation doses vs. RAD + LTH required to produce an equivalent response ranged from 1.4 to 2.5 depending upon the endpoints evaluated. These findings are consistent with single dose studies on the radiosensitive Ridgway osteogenic sarcoma and suggest that the tumoricidal effectiveness of combination radiation and hyperthermia cannot be predicted on the basis of the radiation alone responsiveness of tumor.« less

  6. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Azusa; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Chen, Yonghong

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularitymore » for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.« less

  7. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isom, H.C.; Mummaw, J.; Kreider, J.W.

    1983-04-30

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virusmore » 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells.« less

  8. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition

    PubMed Central

    2012-01-01

    Background It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. Mcl-1 is a critical survival protein in a variety of cell lineages and is critically regulated via ubiquitination. Methods The Mcl-1, Bcl-xL and USP9X expression patterns in human lung and colon adenocarcinomas were evaluated via immunohistochemistry. Interaction between USP9X and Mcl-1 was demonstrated by immunoprecipitation-western blotting. The protein expression profiles of Mcl-1, Bcl-xL and USP9X in multiple cancer cell lines were determined by western blotting. Annexin-V staining and cleaved PARP western blotting were used to assay for apoptosis. The cellular toxicities after various treatments were measured via the XTT assay. Results In our current analysis of colon and lung cancer samples, we demonstrate that Mcl-1 and Bcl-xL are overexpressed and also co-exist in many tumors and that the expression levels of both genes correlate with the clinical staging. The downregulation of Mcl-1 or Bcl-xL via RNAi was found to increase the sensitivity of the tumor cells to chemotherapy. Furthermore, our analyses revealed that USP9X expression correlates with that of Mcl-1 in human cancer tissue samples. We additionally found that the USP9X inhibitor WP1130 promotes Mcl-1 degradation and increases tumor cell sensitivity to chemotherapies. Moreover, the combination of WP1130 and ABT-737, a well-documented Bcl-xL inhibitor, demonstrated a chemotherapeutic synergy and promoted apoptosis in different tumor cells. Conclusion Mcl-1, Bcl-xL and USP9X overexpression are tumor survival mechanisms protective against chemotherapy. USP9X inhibition increases tumor cell sensitivity to various chemotherapeutic agents including Bcl-2/Bcl-xL inhibitors. PMID:23171055

  9. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blotmore » and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.« less

  10. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution.

    PubMed

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-08-18

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.

  11. Cranial irradiation increases tumor growth in experimental breast cancer brain metastasis.

    PubMed

    Hamilton, Amanda M; Wong, Suzanne M; Wong, Eugene; Foster, Paula J

    2018-05-01

    Whole-brain radiotherapy is the standard of care for patients with breast cancer with multiple brain metastases and, although this treatment has been essential in the management of existing brain tumors, there are many known negative consequences associated with the irradiation of normal brain tissue. In our study, we used in vivo magnetic resonance imaging analysis to investigate the influence of radiotherapy-induced damage of healthy brain on the arrest and growth of metastatic breast cancer cells in a mouse model of breast cancer brain metastasis. We observed that irradiated, but otherwise healthy, neural tissue had an increased propensity to support metastatic growth compared with never-irradiated controls. The elucidation of the impact of irradiation on normal neural tissue could have implications in clinical patient management, particularly in patients with residual systemic disease or with residual radio-resistant brain cancer. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Enhanced antitumor reactivity of tumor-sensitized T cells by interferon alfa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vander Woude, D.L.; Wagner, P.D.; Shu, S.

    Tumor-draining lymph node cells from mice bearing the methylcholanthrene-induced MCA 106 tumors can be sensitized in vitro to acquire antitumor reactivity. We examined the effect of interferon alfa on the function of cells that underwent in vitro sensitization in adoptive immunotherapy. Interferon alfa increased the antitumor reactivity of in vitro sensitized cells in the treatment of MCA 106 pulmonary metastases. This effect was evident in irradiated mice, indicating that a host response to the interferon alfa was not required. Interferon alfa treatment increased class I major histocompatibility complex antigen expression on tumor cells and increased their susceptibility to lysis bymore » in vitro sensitized cells. These results suggest that interferon alfa enhancement of adoptive immunotherapy was mediated by its effect on tumor cells. Interferon alfa may be a useful adjunct to the adoptive immunotherapy of human cancer.« less

  13. Luminescence properties after X-ray irradiation for dosimetry

    NASA Astrophysics Data System (ADS)

    Hong, Duk-Geun; Kim, Myung-Jin

    2016-05-01

    To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.

  14. Non-thermal cytocidal effect of infrared irradiation on cultured cancer cells using specialized device.

    PubMed

    Tanaka, Yohei; Matsuo, Kiyoshi; Yuzuriha, Shunsuke; Yan, Huimin; Nakayama, Jun

    2010-06-01

    As infrared penetrates the skin, thermal effects of infrared irradiation on cancer cells have been investigated in the field of hyperthermia. We evaluated non-thermal effects of infrared irradiation using a specialized device (1100-18000 nm with filtering of wavelengths between 1400 and 1500 nm and contact cooling) on cancer cells. In in vitro study, five kinds of cultured cancer cell lines (MCF7 breast cancer, HeLa uterine cervical cancer, NUGC-4 gastric cancer, B16F0 melanoma, and MDA-MB435 melanoma) were irradiated using the infrared device, and then the cell proliferation activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Proliferation of all the cancer cell lines was significantly suppressed by infrared irradiation. Total infrared output appeared to be correlated with cell survival. Increased temperature during infrared irradiation appeared not to play a role in cell survival. The maximum temperature elevation in the wells after each shot in the 20 and 40 J/cm(2) culture was 3.8 degrees C and 6.9 degrees C, respectively. In addition, we have shown that infrared irradiation significantly inhibited the tumor growth of MCF7 breast cancer transplanted in severe combined immunodeficiency mice and MDA-MB435 melanoma transplanted in nude mice in vivo. Significant differences between control and irradiated groups were observed in tumor volume and frequencies of TUNEL-positive and Ki-67-positive cells. These results indicate that infrared, independent of thermal energy, can induce cell killing of cancer cells. As this infrared irradiation schedule reduces discomfort and side effects, reaches the deep subcutaneous tissues, and facilitates repeated irradiations, it may have potential as an application for treating various forms of cancer.

  15. Gene therapy with autologous, interleukin 2-secreting tumor cells in patients with malignant melanoma.

    PubMed

    Palmer, K; Moore, J; Everard, M; Harris, J D; Rodgers, S; Rees, R C; Murray, A K; Mascari, R; Kirkwood, J; Riches, P G; Fisher, C; Thomas, J M; Harries, M; Johnston, S R; Collins, M K; Gore, M E

    1999-05-20

    We vaccinated metastatic melanoma patients with irradiated, autologous melanoma cells genetically engineered to secrete interleukin 2 (IL-2) to investigate whether an anti-tumor immune response would be induced. Melanoma cell cultures were established from surgical specimens and were engineered to secrete IL-2 by infection with recombinant retrovirus. Twelve patients were vaccinated subcutaneously one, two, or three times with approximately 10(7) irradiated, autologous, IL-2-secreting tumor cells. Treatment was well tolerated, with local reactions at 11 of 24 injection sites and minor systemic symptoms of fever and headache after 6 injections. One patient developed anti-tumor DTH after the first vaccination and showed an increased response after the second vaccination. Anti-autologous tumor CTLs could be detected prevaccination in the peripheral blood of seven patients and their activity increased after vaccination in four patients. No UICC-defined clinical responses were seen, but three patients had stable disease for 7-15 months, one of whom has not yet progressed (15+ months). Thus, patient vaccination with autologous, genetically engineered tumor cells is feasible and safe. Anti-tumor DTH and CTLs can be induced in some patients with such a vaccine.

  16. Effect of caffeine on the expression of a major X-ray induced protein in human tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E.N.; Boothman, D.A.

    1991-03-01

    We have examined the effect of caffeine on the concomitant processes of the repair of potentially lethal damage (PLD) and the synthesis of X-ray-induced proteins in the human malignant melanoma cell line, Ul-Mel. Caffeine administered at a dose of 5mM after X radiation not only inhibited PLD repair but also markedly reduced the level of XIP269, a major X-ray-induced protein whose expression has been shown to correlate with the capacity to repair PLD. The expression of the vast majority of other cellular proteins, including seven other X-ray-induced proteins, remained unchanged following caffeine treatment. A possible role for XIP269 in cellmore » cycle delay following DNA damage by X irradiation is discussed.« less

  17. [Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice].

    PubMed

    Wang, Shui-Ming; Wang, De-Wen; Peng, Rui-Yun; Gao, Ya-Bing; Yang, Yi; Hu, Wen-Hua; Chen, Hao-Yu; Zhang, You-Ren; Gao, Yan

    2003-08-01

    To explore the effect of electromagnetic pulse (EMP) irradiation on structure and function of Leydig cells in mice. One hundred and fourteen male Kunming mice were randomly divided into irradiated and control group, the former radiated generally by 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP respectively five times within two minutes. Pathological changes of Leydig cells were observed by light and electron microscope. Serum testosterone (T), luteinizing hormone (LH) and estradiol (E2) were measured dynamically by radioimmunoassay at 6 h, 1 d, 3 d, 7 d, 14 d and 28 d after irradiation. Main pathological changes were edema and vacuolation, swelling of cytoplasmic mitochondria, reduce of lipid droplets, pale staining of most of lipid droplets, and partial or complete cavitation of lipid droplets in Leydig cells within 28 days after EMP radiation. Compared with normal controls, serum T decreased in all in different degrees within 28 days, and dropped significantly at 6 h-14 d, 6 h-7 d and 1 d-28 d after 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP irradiation(P < 0.05 or P < 0.01). EMP irradiation caused no significant changes in serum LH and E2. Leydig cells are among those that are the most susceptible to EMP irradiation. EMP irradiation may cause significant injury in structure and function of Leydig cells in mice, whose earlier and continuous effect is bound to affect sexual function and sperm production.

  18. Radiation Dose Uncertainty and Correction for a Mouse Orthotopic and Xenograft Irradiation Model

    PubMed Central

    Gan, Gregory N.; Altunbas, Cem; Morton, John J.; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    Purpose In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Materials and Methods Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Results Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on 2 different animal irradiation days was 514±37 cGy (range: 437–545). Exit dose measurements taken from 7 radiochromic films on two separate days were 341±21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368±9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Conclusion Variations related to the irradiation model can lead to significant under or over- dosing in vivo which can affect tumor control and/or biologic endpoints that are dose dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses. PMID:26689828

  19. Radiation dose uncertainty and correction for a mouse orthotopic and xenograft irradiation model.

    PubMed

    Gan, Gregory N; Altunbas, Cem; Morton, John J; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on two different animal irradiation days was 514 ± 37 cGy (range: 437-545). Exit dose measurements taken from seven radiochromic films on two separate days were 341 ± 21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368 ± 9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Variations related to the irradiation model can lead to significant under or overdosing in vivo which can affect tumor control and/or biologic endpoints that are dose-dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses.

  20. Irradiation of breast cancer cells enhances CXCL16 ligand expression and induces the migration of natural killer cells expressing the CXCR6 receptor.

    PubMed

    Yoon, Mee Sun; Pham, Chanh Tin; Phan, Minh-Trang Thi; Shin, Dong-Jun; Jang, Youn-Young; Park, Min-Ho; Kim, Sang-Ki; Kim, Seokho; Cho, Duck

    2016-12-01

    Few studies have examined the migration pattern of natural killer (NK) cells, especially after radiation treatment for cancer. We investigated whether irradiation can modulate the expression of chemokines in cancer cells and the migration of NK cells to irradiated tumor cells. The expression of chemokine receptors (CXCR3, CXCR4 and CXCR6) on interleukin-2 (IL-2)/IL-15-activated NK cells was assessed using flow cytometry. Related chemokine ligands (CXCL11, CXCL12 and CXCL16) in human breast cancer cell lines (MCF7, SKBR3 and MDA-MB231) irradiated at various doses were assessed using reverse transcription-polymerase chain reaction (RT-PCR), fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA). The cell-free culture supernatant was collected 96 h after irradiation of breast cancer cell lines for migration and blocking assays. The activated NK cells expressed CXCR6. Expression of the CXCR6 ligand CXCL16 increased in a time- and dose-dependent manner in all analyzed cancer cell lines. CXCL16 expression was statistically significantly enhanced in all breast cancer cell lines on day 3 after 20 Gy irradiation. Activated NK cells migration correlated with CXCL16 concentration (R 2  = 0.91; P <0.0001). Significantly enhanced migration of NK cells to irradiated cancer cells was observed for a dose of 20 Gy in MCF7 (P = 0.043) and SKBR3 (P = 0.043) cells, but not in MDA-MB231 (P = 0.225) cells. A blocking assay using a CXCR6 antibody showed a significant decrease in the migration of activated NK cells in all cancer cell lines. Our data indicate that irradiation induces CXCL16 chemokine expression in cancer cells and enhances the migration of activated NK cells expressing CXCR6 to irradiated breast cancer cells. These results suggest that radiation would improve the anti-tumor effect of NK cells through enhanced migration of NK cells to tumor site for the treatment of patients with breast cancer. Copyright © 2016

  1. Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells

    PubMed Central

    Lim, Sara N.; Pradhan, Anil K.; Barth, Rolf F.; Nahar, Sultana N.; Nakkula, Robin J.; Yang, Weilian; Palmer, Alycia M.; Turro, Claudia; Weldon, Michael; Bell, Erica Hlavin; Mo, Xiaokui

    2015-01-01

    The purposes of this study were (i) to investigate the differences in effects between 160-kV low-energy and 6-MV high-energy X-rays, both by computational analysis and in vitro studies; (ii) to determine the effects of each on platinum-sensitized F98 rat glioma and murine B16 melanoma cells; and (iii) to describe the in vitro cytotoxicity and in vivo toxicity of a Pt(II) terpyridine platinum (Typ-Pt) complex. Simulations were performed using the Monte Carlo code Geant4 to determine enhancement in absorption of low- versus high-energy X-rays by Pt and to determine dose enhancement factors (DEFs) for a Pt-sensitized tumor phantom. In vitro studies were carried out using Typ-Pt and again with carboplatin due to the unexpected in vivo toxicity of Typ-Pt. Cell survival was determined using clonogenic assays. In agreement with computations and simulations, in vitro data showed up to one log unit reduction in surviving fractions (SFs) of cells treated with 1–4 µg/ml of Typ-Pt and irradiated with 160-kV versus 6-MV X-rays. DEFs showed radiosensitization in the 50–200 keV range, which fell to approximate unity at higher energies, suggesting marginal interactions at MeV energies. Cells sensitized with 1–5 or 7 µg/ml of carboplatin and then irradiated also showed a significant decrease (P < 0.05) in SFs. However, it was unlikely this was due to increased interactions. Theoretical and in vitro studies presented here demonstrated that the tumoricidal activity of low-energy X-rays was greater than that of high-energy X-rays against Pt-sensitized tumor cells. Determining whether radiosensitization is a function of increased interactions will require additional studies. PMID:25266332

  2. Maternal effects and cancer risk in the progeny of mice exposed to X-rays before conception.

    PubMed

    Dasenbrock, Clemens; Tillmann, Thomas; Ernst, Heinrich; Behnke, Wolfgang; Kellner, Rupert; Hagemann, Gerd; Kaever, Volkhard; Kohler, Manfred; Rittinghausen, Susanne; Mohr, Ulrich; Tomatis, Lorenzo

    2005-04-01

    To investigate in an animal model whether preconceptual X-ray exposure leads to an altered tumor rate and spectrum in the offspring, a transgeneration carcinogenesis study was carried out. Female mice received X-ray irradiation (2 x 2 Gray) 2 weeks prior to mating with untreated males. After weaning, half of the descendants were exposed for 6 months to the immunomodulating and tumor-promoting compound cyclosporine A (CsA) by diet, the others remained untreated. The animals were maintained for their entire lifespan, terminal sacrifices were carried out after 28 months. Complete autopsy was performed, and three protocol organs (lung, liver and spleen) were examined histologically, together with any suspicious lesions in other organs. Fertility and the lifetime of the maternal mice were reduced by the X-ray irradiation, and their incidence of lung and liver tumors was increased as compared to non-irradiated mice. The descendants of all groups revealed comparable body weights and mortality rates. The incidence of hematopoietic/lymphoreticular tissue tumors increased in the female hybrids by 6 months of CsA-treatment. A higher incidence of lung and liver tumors in the sham-treated male progeny of irradiated mothers was detected, pointing to a possible germ cell-transmitted alteration initiated by the preconceptual maternal X-ray exposure.

  3. Extracorporeal irradiation for malignant bone tumors.

    PubMed

    Hong, A; Stevens, G; Stalley, P; Pendlebury, S; Ahern, V; Ralston, A; Estoesta, E; Barrett, I

    2001-06-01

    Extracorporeal irradiation (ECI) has been used selectively in the management of primary malignant bone tumors since 1996. We report our techniques for ECI and the short-term oncologic and orthopedic outcomes. Sixteen patients with primary malignant bone tumors were treated with ECI from 1996 to 2000. The median age was 14 years. The histologic diagnoses were Ewing's sarcoma (11), osteosarcoma (4) and chondrosarcoma (1). The treated sites were femur (7), tibia (4), humerus (2), ilium (2), and sacrum (1). Following induction chemotherapy in Ewing's sarcomas and osteosarcoma, en bloc resection of the tumor and tumor-bearing bone was performed. A single dose of 50 Gy was delivered to the bone extracorporeally using either a linear accelerator (9 cases) or a blood product irradiator (7 cases). The orthopedic outcome was recorded using a standard functional scale. At a median follow-up of 19.5 months, there were no cases of local recurrence or graft failure. One patient required amputation due to chronic osteomyelitis. For the 10 patients with follow-up greater than 18 months, the functional outcomes were graded good to excellent. The short-term oncologic and orthopedic results are encouraging and suggest that ECI provides a good alternative for reconstruction in limb conservative surgery in selected patients. This technique should only be used in a multidisciplinary setting, where careful follow-up is available to assess the long-term outcomes.

  4. Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study.

    PubMed

    Yuan, Hong; Zhang, Lei; Frank, Jonathan E; Inscoe, Christina R; Burk, Laurel M; Hadsell, Mike; Lee, Yueh Z; Lu, Jianping; Chang, Sha; Zhou, Otto

    2015-09-01

    Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative

  5. A reevaluation of X-irradiation-induced phocomelia and proximodistal limb patterning.

    PubMed

    Galloway, Jenna L; Delgado, Irene; Ros, Maria A; Tabin, Clifford J

    2009-07-16

    Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a marked increase in incidence in the early 1960s due to the tragic toxicological effects of the drug thalidomide, which had been prescribed as a mild sedative. This human birth defect is mimicked in developing chick limb buds exposed to X-irradiation. Both X-irradiation and thalidomide-induced phocomelia have been interpreted as patterning defects in the context of the progress zone model, which states that a cell's proximodistal identity is determined by the length of time spent in a distal limb region termed the 'progress zone'. Indeed, studies of X-irradiation-induced phocomelia have served as one of the two major experimental lines of evidence supporting the validity of the progress zone model. Here, using a combination of molecular analysis and lineage tracing in chick, we show that X-irradiation-induced phocomelia is fundamentally not a patterning defect, but rather results from a time-dependent loss of skeletal progenitors. Because skeletal condensation proceeds from the shoulder to fingers (in a proximal to distal direction), the proximal elements are differentially affected in limb buds exposed to radiation at early stages. This conclusion changes the framework for considering the effect of thalidomide and other forms of phocomelia, suggesting the possibility that the aetiology lies not in a defect in the patterning process, but rather in progenitor cell survival and differentiation. Moreover, molecular evidence that proximodistal patterning is unaffected after X-irradiation does not support the predictions of the progress zone model.

  6. Enhancement of Tumor-Specific T Cell–Mediated Immunity in Dendritic Cell–Based Vaccines by Mycobacterium tuberculosis Heat Shock Protein X

    PubMed Central

    Jung, In Duk; Shin, Sung Jae; Lee, Min-Goo; Kang, Tae Heung; Han, Hee Dong; Lee, Seung Jun; Kim, Woo Sik; Kim, Hong Min; Park, Won Sun; Kim, Han Wool; Yun, Cheol-Heui; Lee, Eun Kyung; Wu, T.-C.

    2014-01-01

    Despite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4+ and CD8+ T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)–expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors. PMID:24990079

  7. Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation

    PubMed Central

    Ho, Vincent T.; Vanneman, Matthew; Kim, Haesook; Sasada, Tetsuro; Kang, Yoon Joong; Pasek, Mildred; Cutler, Corey; Koreth, John; Alyea, Edwin; Sarantopoulos, Stefanie; Antin, Joseph H.; Ritz, Jerome; Canning, Christine; Kutok, Jeffery; Mihm, Martin C.; Dranoff, Glenn; Soiffer, Robert

    2009-01-01

    Through an immune-mediated graft-versus-leukemia effect, allogeneic hematopoietic stem cell transplantation (HSCT) affords durable clinical benefits for many patients with hematologic malignancies. Nonetheless, subjects with high-risk acute myeloid leukemia or advanced myelodysplasia often relapse, underscoring the need to intensify tumor immunity within this cohort. In preclinical models, allogeneic HSCT followed by vaccination with irradiated tumor cells engineered to secrete GM-CSF generates a potent antitumor effect without exacerbating the toxicities of graft-versus-host disease (GVHD). To test whether this strategy might be similarly active in humans, we conducted a Phase I clinical trial in which high-risk acute myeloid leukemia or myelodysplasia patients were immunized with irradiated, autologous, GM-CSF-secreting tumor cells early after allogeneic, nonmyeloablative HSCT. Despite the administration of a calcineurin inhibitor as prophylaxis against GVHD, vaccination elicited local and systemic reactions that were qualitatively similar to those previously observed in nontransplanted, immunized solid-tumor patients. While the frequencies of acute and chronic GVHD were not increased, 9 of 10 subjects who completed vaccination achieved durable complete remissions, with a median follow-up of 26 months (range 12–43 months). Six long-term responders showed marked decreases in the levels of soluble NKG2D ligands, and 3 demonstrated normalization of cytotoxic lymphocyte NKG2D expression as a function of treatment. Together, these results establish the safety and immunogenicity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic HSCT, and raise the possibility that this combinatorial immunotherapy might potentiate graft-versus-leukemia in patients. PMID:19717467

  8. Cell irradiation setup and dosimetry for radiobiological studies at ELBE

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Beyreuther, E.; Lessmann, E.; Wagner, W.; Pawelke, J.

    2009-07-01

    The radiation source ELBE delivers different types of secondary radiation, which is used for cell irradiation studies in radiobiological research. Thereby an important issue is the determination of the biological effectiveness of photon radiation as a function of photon energy by using low-energetic, monochromatic channeling radiation (10-100 keV) and high-energetic bremsstrahlung (up to 40 MV). Radiobiological studies at the research facility ELBE demand special technical and dosimetric prerequisites. Therefore, a cell irradiation system (CIS) has been designed, constructed and installed at the beam line. The CIS allows automatic irradiation of a larger cell sample number and the compensation of spatial inhomogeneity of the dose distribution within the beam spot. The recently introduced GafChromic ® EBT radiochromic film model has been used to verify the cell irradiation dose deposition achieving a dose uncertainty of <5%. Both, the installed cell irradiation system and the developed dosimetric procedure based on the use of the EBT film have been experimentally tested at ELBE. The biological effectiveness of 34 MV bremsstrahlung with respect to 200 kV X-rays from a conventional X-ray tube has been determined. An RBE value of 0.75 has been measured in good agreement with literature.

  9. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation.

    PubMed

    Kiro, N E; Hamblin, M R; Abrahamse, H

    2017-06-01

    Breast and cervical cancers are dangerous threats with regard to the health of women. The two malignancies have reached the highest record in terms of cancer-related deaths among women worldwide. Despite the use of novel strategies with the aim to treat and cure advanced stages of cancer, post-therapeutic relapse believed to be caused by cancer stem cells is one of the challenges encountered during tumor therapy. Therefore, further attention should be paid to cancer stem cells when developing novel anti-tumor therapeutic approaches. Low-intensity laser irradiation is a form of phototherapy making use of visible light in the wavelength range of 630-905 nm. Low-intensity laser irradiation has shown remarkable results in a wide range of medical applications due to its biphasic dose and wavelength effect at a cellular level. Overall, this article focuses on the cellular responses of healthy and cancer cells after treatment with low-intensity laser irradiation alone or in combination with a photosensitizer as photodynamic therapy and the influence that various wavelengths and fluencies could have on the therapeutic outcome. Attention will be paid to the biomodulative effect of low-intensity laser irradiation on cancer stem cells.

  10. Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy.

    PubMed

    Lim, Seon Ah; Kim, Tae-Jin; Lee, Jung Eun; Sonn, Chung Hee; Kim, Kwanghee; Kim, Jiyoung; Choi, Jong Gwon; Choi, Il-Kyu; Yun, Chae-Ok; Kim, Jae-Hong; Yee, Cassian; Kumar, Vinay; Lee, Kyung-Mi

    2013-04-15

    Adoptive natural killer (NK) cell therapy may offer an effective treatment regimen for cancer patients whose disease is refractory to conventional therapy. NK cells can kill a wide range of tumor cells by patterned recognition of target ligands. We hypothesized that tumor targets sensitive to NK lysis would drive vigorous expansion of NK cells from human peripheral blood mononuclear cells (PBMC). Here, we provide the basis for developing a novel ex vivo expansion process. By screening class I-negative or -mismatched tumor cell lines we identified a Jurkat T-lymphoblast subline termed KL-1, which was highly effective in specifically expanding NK cells. KL-1 addition to PBMC cultures achieved approximately 100-fold expansion of NK cells with nearly 90% purity, accompanied by reciprocal inhibition of T-cell growth. Marked elevations in expression of activation receptors, natural cytotoxicity receptors (NKp30, NKp44), and adhesion molecules (CD11a, ICAM-1) were associated with high tumor-lytic capacity, in both in vitro and in vivo models. KL-1-mediated expansion of NK cells was contact dependent and required interactions with CD16, the Fcγ receptor on NK cells, with ligands that are expressed on B cells. Indeed, B-cell depletion during culture abrogated selective NK cell expansion, while addition of EBV-transformed B cells further augmented NK expansion to approximately 740-fold. Together, our studies define a novel method for efficient activation of human NK cells that employs KL-1-lysed tumor cells and cocultured B cells, which drive a robust expansion of potent antitumor effector cells that will be useful for clinical evaluation. ©2012 AACR.

  11. Recent developments in testicular germ cell tumor research.

    PubMed

    van de Geijn, Gert-Jan M; Hersmus, Remko; Looijenga, Leendert H J

    2009-03-01

    Testicular germ cell tumors of adolescents and adults (TGCTs; the so-called type II variant) are the most frequent malignancies found in Caucasian males between 20 and 40 years of age. The incidence has increased over the last decades. TGCTs are divided into seminomas and nonseminomas, the latter consisting of the subgroups embryonal carcinoma, yolk-sac tumor, teratoma, and choriocarcinoma. The pathogenesis starts in utero, involving primordial germ cells/gonocytes that are blocked in their differentiation, and develops via the precursor lesion carcinoma in situ toward invasiveness. TGCTs are totipotent and can be considered as stem cell tumors. The developmental capacity of their cell of origin, the primordial germ cells/gonocyte, is demonstrated by the different tumor histologies of the invasive TGCTs. Seminoma represents the germ cell lineage, and embryonal carcinoma is the undifferentiated component, being the stem cell population of the nonseminomas. Somatic differentiation is seen in the teratomas (all lineages), whereas yolk-sac tumors and choriocarcinoma represent extra-embryonal differentiation. Seminomas are highly sensitive to irradiation and (DNA damaging) chemotherapy, whereas most nonseminomatous elements are less susceptible to radiation, although still sensitive to chemotherapy, with the exception of teratoma. To allow early diagnosis and follow up, appropriate markers are mandatory to discriminate between the different subgroups. In this review, a summary will be given related to several recent developments in TGCT research, especially selected because of their putative clinical impact.

  12. Isolation and characterization of circulating tumor cells from human gastric cancer patients.

    PubMed

    Yuan, Dandan; Chen, Liang; Li, Mingxing; Xia, Hongwei; Zhang, Yuchen; Chen, Tie; Xia, Rui; Tang, Qiulin; Gao, Fabao; Mo, Xianming; Liu, Ming; Bi, Feng

    2015-04-01

    Circulating tumor cells (CTCs) have been proved to be responsible for tumor metastasis and resistant to anticancer therapies. This study aims to isolate and characterize circulating tumor cells from human gastric cancer patients, and investigate characteristic differences between gastric CTCs and gastric cancer cell lines. We analyzed 31 cases of gastric cancer patients using anti-CD45 antibody-conjugated magnetic microbeads negative separation, combined with fluorescence activated cell sorter CD44 positive screening. Abilities of tumor formation, metastasis, invasion, migration, irradiation and drug sensitivity of CTCs and gastric cancer cell lines were detected and compared. Of all the 31 patients, CD44(+)/CD45(-)CTCs were isolated in 14 patients, of which 3 cases were stage IIA, 2 cases stage IIB, 2 cases stage IIIC and 7 cases stage IV. The malignant behavior was demonstrated by both clonogenetic assay and tumor xenograft in nude mice. Compared with human gastric cancer cell lines, the migration and invasion abilities of CTCs increased to 3.21-12.6-fold and 2.3-6.7-fold, respectively (all p values <0.05). In addition, the metastatic potential of CTCs is much higher in vivo than that of the control. Furthermore, CTCs were found to be relatively sensitive to FU, cisplatin and paclitaxel, but relatively resistant to irradiation, oxaliplatin, cetuximab and trastuzumab. CD44(+)/CD45(-) gastric CTCs were isolated and found to exhibit stronger malignant behavior when compared with human gastric cancer cell lines. Furthermore, CTCs cultured in vitro have potential implications in drug sensitivity screening for the future anticancer treatments.

  13. Giant cell tumor of the sixth thoracic vertebra: case report.

    PubMed

    Ben Nsir, Atef; Said, Imed Ben; Badri, Mohamed; Boughamoura, Mohamed; Jemel, Hafedh

    2015-01-01

    Giant cell tumor is an uncommon but most aggressive benign tumour of the spine with unpredictable outcome and challenging treatment. Spinal giant cell tumors located above the sacrum are rare and treatment recommendations are still unclear. We report a rare case of this lesion in an adult and discuss the management and outcome of such uncommon tumors. A 31-year-old woman presented with progressive motor weakness of both lower limbs with back pain during the past month, associated with sphincter disturbances for the past two days. She was diagnosed with a lytic heterogeneously enhancing mass depending mainly on the T6 posterior arch with small vertebral body involvement. The tumor extent reached surrounding soft tissue and the spinal canal with marked spinal cord compression. A posterior approach was realized as an emergency. Histological examination showed evidence of a giant cell tumor and a complementary irradiation was used. The patient improved well post operatively. There was no recurrence or metastasis over 5 years of follow-up.

  14. Periarteritis nodosa in rats treated with chronic excess sodium chlorides (NaCl) after X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Nakagawa, Y.; Ito, A.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions,more » elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.« less

  15. Periarteritis nodosa in rats treated with chronic excess sodium chloride (NaCl) after X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Nakagawa, Y.; Ito, A.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically, these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions,more » elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.« less

  16. Defect studies in one MeV electron irradiated GaAs and in Al/sub x Ga/sub l-x As P-N junction solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1984-01-01

    Deep level transient spectroscopy reveals that the main electron traps for one-MeV electron irradiated GaAs cells are E9c)-0.31, E(c)-0.90 eV, and the main hole trap is due to the level. Electron trap density was found to vary from 3/tens-trillion ccm for 2/one quadrillion cm 3/3.7 quadrillion cm for 21 sextillion cm electron fluence for electron fluence; a similar result was also obtained for the hole trap density. As for the grown-in defects in the Al(x)Ga(1-x)As p-n junciton cells, only two electron traps with energies of E(c)-0.20 and E(c)-0.34 eV were observed in samples with x = 0.17, and none was found for x 0.05. Auger analysis on the Al(x)Ga(1-x) As window layer of the GaAs solar cell showed a large amount of oxygen and carbon contaminants near the surface of the AlGaAs epilayer. Thermal annealing experiment performed at 250 C for up to 100 min. showed a reduction in the density of both electron traps.

  17. Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study

    PubMed Central

    SUETENS, ANNELIES; MOREELS, MARJAN; QUINTENS, ROEL; CHIRIOTTI, SABINA; TABURY, KEVIN; MICHAUX, ARLETTE; GRÉGOIRE, VINCENT; BAATOUT, SARAH

    2014-01-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy. PMID:24504141

  18. THE SIGNIFICANCE OF SCOLIOSIS IN POST-IRRADIATED WILMS'S TUMOR AND NEUROBLASTOMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, P.; Duthie, R.B.; Young, L.W.

    1962-10-01

    Radiographic changes in the vertebrae are described that were observed following orthovoltage therapeutic irradiation in the treatment of Wilms's tumor, neuroblastoma, and medulloblastoma. Historical data and treatment faetors are tabulated for 17 cases. Observations on the incidence and severity of scoliosis and accompanying bony changes in l3 cases are presented. A review of the findings showed that the degree of scoliosis that developed was not related to the the fields of irradiation, whether they were unilateral or bilateral, and that the osseous changes in the vertebrae, pelvis, or ribs. The use of irradiation with surgery in the treatment of Wilms'smore » tumor is discussed. Radiological techniques are described to deliver maximum doses to the tumor and minimum doses to the surrounding normal structures in the treatment of these tumors. (C.H.)« less

  19. Mucosal pathology of an experimental otitis media with effusion after X-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Y.; Nakai, Y.; Ikeoka, H.

    1987-07-01

    Ten guinea pigs were irradiated with 30 Gy of x-radiation. Five were killed on the eighth day after irradiation, and the remainder were killed at the sixteenth day after irradiation. At the time of death, examination was made of the ciliary activity and the fine structure of the middle ear mucosa. Serous effusion was found in each tympanic cavity of all animals. It was shown also that the guinea pig, when irradiated with 30 Gy of x-radiation, exhibits pathologic abnormalities similar to those in humans with otitis media with effusion: degeneration of cilia or ciliated cells and changes in themore » vascular system (capillary injury and increased capillary permeability). Functional examinations showed that x-ray irradiation has delayed effects on ciliary activity, and the effects are much greater at the sixteenth day than at the eighth day. We speculate that the accumulation of effusion can be, at least partially, a consequence of ciliary dysfunction. The induction of sterile effusion by the use of x-ray irradiation provides a unique animal model for chronic otitis media with effusion of the serous type.« less

  20. Experimental evidence for killing the resistant cells and raising the efficacy and decreasing the toxicity of cytostatics and irradiation by mixtures of the agents of the passive antitumor defense system in the case of various tumor and normal cell lines in vitro.

    PubMed

    Kulcsár, Gyula

    2009-02-01

    Despite the substantial decline of the immune system in AIDS, only a few kinds of tumors increase in incidence. This shows that the immune system has no absolute role in the prevention of tumors. Therefore, the fact that tumors do not develop in the majority of the population during their lifetime indicates the existence of other defense system(s). According to our hypothesis, the defense is made by certain substances of the circulatory system. Earlier, on the basis of this hypothesis, we experimentally selected 16 substances of the circulatory system and demonstrated that the mixture of them (called active mixture) had a cytotoxic effect (inducing apoptosis) in vitro and in vivo on different tumor cell lines, but not on normal cells and animals. In this paper, we provide evidence that different cytostatic drugs or irradiation in combination with the active mixture killed significantly more cancer cells, compared with either treatments alone. The active mixture decreased, to a certain extent, the toxicity of cytostatics and irradiation on normal cells, but the most important result was that the active mixture destroyed the multidrug-resistant cells. Our results provide the possibility to improve the efficacy and reduce the side-effects of chemotherapy and radiation therapy and to prevent the relapse by killing the resistant cells.

  1. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning

    PubMed Central

    Pegram, Hollie J.; Lee, James C.; Hayman, Erik G.; Imperato, Gavin H.; Tedder, Thomas F.; Sadelain, Michel

    2012-01-01

    Adoptive cell therapy with tumor-targeted T cells is a promising approach to cancer therapy. Enhanced clinical outcome using this approach requires conditioning regimens with total body irradiation, lymphodepleting chemotherapy, and/or additional cytokine support. However, the need for prior conditioning precludes optimal application of this approach to a significant number of cancer patients intolerant to these regimens. Herein, we present preclinical studies demonstrating that treatment with CD19-specific, chimeric antigen receptor (CAR)–modified T cells that are further modified to constitutively secrete IL-12 are able to safely eradicate established disease in the absence of prior conditioning. We demonstrate in a novel syngeneic tumor model that tumor elimination requires both CD4+ and CD8+ T-cell subsets, autocrine IL-12 stimulation, and subsequent IFNγ secretion by the CAR+ T cells. Importantly, IL-12–secreting, tumor-targeted T cells acquire intrinsic resistance to T regulatory cell–mediated inhibition. Based on these preclinical data, we anticipate that adoptive therapy using CAR-targeted T cells modified to secrete IL-12 will obviate or reduce the need for potentially hazardous conditioning regimens to achieve optimal antitumor responses in cancer patients. PMID:22354001

  2. Uptake and photodynamic activity of porphycenes in tumor cells implanted on the chick chorioallantoic membrane (CAM)

    NASA Astrophysics Data System (ADS)

    Davidi, Ronit; Gottfried, Varda; Kimel, Sol

    1996-01-01

    The chick chorioallantoic membrane (CAM) is a convenient model for the study of photodynamic therapy (PDT). This membrane has a rich vasculature, which mimics the tumor neovasculature, and can also serve as a host for implanted tumors. The transparency of the CAM enables in-vivo monitoring of vascular changes during and post PDT, without the need to sacrifice test animals at each time point. Video documentation and analysis of events occurring during and after irradiation permit the quantification of changes in vessel morphology, blood perfusion and tumor development. The compounds tested in this study belong to a family of potential sensitizers -- the porphycenes. These are phorphyrin isomers based on a 16-membered macrocycle, in which the four methine moieties linking the pyrrole rings have been replaced by two direct bonds and two ethine bridges. Experiments were performed on blood vessels of the intact CAM and on recurrent human melanoma cells implanted on the CAM. Tumor selectivity was demonstrated by measuring drug uptake using fluorescence methods. A sensitizer injected systemically into the embryo yolk sac could be detected in the blood vessels 30 min after injection; 1 h later the sensitizer had preferentially accumulated in the tumor. Tumors were irradiated at the optimal uptake time (after 1 h) for 16 min with a 20 mW HeNe laser. Video image analysis showed that 96 h after irradiation tumors had decreased to 5% of their original size. In contrast, non-irradiated control tumors on the same CAM, continued to proliferate and grew to more than twice their original size. In addition, we observed a difference in the damage mechanism after systemic compared to topical administration. Topical application followed by irradiation caused fast necrosis of tumors, which might suggest direct damage to tumor cells, whereas after systemic administration, PDT damage was manifested by slower necrosis, presumably caused by vascular destruction.

  3. Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts.

    PubMed

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; Deweese, Theodore L; Herman, Joseph M

    2012-04-01

    We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.

  4. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas.

    PubMed

    Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J; Morioka, Takamitsu; Kaminishi, Mutsumi; Shang, Yi; Nishimura, Mayumi; Shimada, Yoshiya; Tachibana, Akira; Kakinuma, Shizuko

    2015-09-01

    Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2a and Ikaros are a prominent feature of young adult irradiation-induced T-cell lymphoma, tumors arising after irradiation from infancy suffer a second hit in Pten by mis-segregation or recombination. This is the first report showing an influence of age-at-exposure on genomic alterations of tumor suppressor genes and their relative involvement in radiation-induced T-cell lymphoma. These data are important for considering the risks

  5. Effects of X-ray irradiation on different stages of Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) and DNA damage

    NASA Astrophysics Data System (ADS)

    Avan Aksoy, Hatice; Yazıcı, Nizamettin; Erel, Yakup

    2017-01-01

    The corn stalk borer, Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) is an important corn pest in the Mediterranean countries. In this study, we investigated the influence of X-ray irradiation on different developmental stages, reproduction and DNA damage to the insect. Eggs (0-24 h old), larvae (5th instar), pupae (5 days after pupation) and adults (24 h after emergence) were irradiated with X-ray irradiation at target doses of 0 (control), 50, 100, 150 and 200 Gy. Eggs irradiated at all doses did not hatch. When 5th instar were irradiated pupation and adult emergence significantly decreased. Fecundity of adults from irradiated pupae was inhibited and no eggs were laid. Moreover, adult longevity decreased after irradiation compared to control. Larvae, pupae, and adults of S. nonagrioides were studied using the single-cell gel electrophoresis (DNA comet) directly after irradiation. X-ray irradiated larvae, pupae, and adults showed typical DNA fragmentation in a dose-dependent manner compared with cells from non-irradiated groups. The amount of DNA damage increased as doses increased and possibly could be used to estimate dose applied in commercial phytosanitary irradiation treatments. Furthermore, irradiation would be an effective phytosanitary treatment for shipped commodities at risk infestation with S. nonagrioides.

  6. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappamore » B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.« less

  7. Oxygen and differentiation status modulate the effect of X-ray irradiation on physiology and mitochondrial proteome of human neuroblastoma cells.

    PubMed

    Džinić, Tamara; Hartwig, Sonja; Lehr, Stefan; Dencher, Norbert A

    2016-12-01

    Cytotoxic effects, including oxidative stress, of low linear energy transfer (LET)-ionizing radiation are often underestimated and studies of their mechanisms using cell culture models are widely conducted with cells cultivated at atmospheric oxygen that does not match its physiological levels in body tissues. Also, cell differentiation status plays a role in the outcome of experiments. We compared effects of 2 Gy X-ray irradiation on the physiology and mitochondrial proteome of nondifferentiated and human neuroblastoma (SH-SY5Y) cells treated with retinoic acid cultivated at 21% and 5% O 2 . Irradiation did not affect the amount of subunits of OxPhos complexes and other non-OxPhos mitochondrial proteins, except for heat shock protein 70, which was increased depending on oxygen level and differentiation status. These two factors were proven to modulate mitochondrial membrane potential and the bioenergetic status of cells. We suggest, moreover, that oxygen plays a role in the differentiation of human SH-SY5Y cells.

  8. [A case of bilateral testicular tumors showing remarkable regression of huge metastatic tumors after VAB-6 combined chemotherapy].

    PubMed

    Nakashima, T; Nakajima, K; Yokoyama, O; Sugata, T; Tokunaga, S; Nitta, M; Hisazumi, H

    1988-10-01

    A case of bilateral testicular seminomas with abdominal huge metastatic tumors is presented. The patient is a 23-year-old male. An abdominal huge mass was found incidentally by a physician. CT scan and ultrasonography revealed the presence of the tumor in the left retroperitoneal space and biopsy specimen of the abdominal tumor was diagnosed as seminoma. On March 7, 1985, he was referred to our clinic. Bilateral testicular tumors were detected on palpation and ultrasonography. Bilateral orchiectomy was performed. Histological diagnosis was pure seminoma. After four sessions of VAB-6 combined chemotherapy, the abdominal tumor, 14.1 x 12.3 cm in size, decreased to 5.7 x 4.4 cm ( a regression rate of 85.5%). Retroperitoneal lymph-node dissection was undertaken, but the abdominal tumor could not be resected completely. Histological examination of the resected tumor revealed complete necrosis of the tumor tissue. After the operation, one session of the chemotherapy and irradiation were added. A total of 109 cases of bilateral testicular germ cell tumors in Japan was reviewed.

  9. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells.

    PubMed

    Le, M; Mothersill, C E; Seymour, C B; Ahmad, S B; Armstrong, A; Rainbow, A J; McNeill, F E

    2015-08-21

    The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  10. Increased γ-H2A.X Intensity in Response to Chronic Medium-Dose-Rate γ-Ray Irradiation

    PubMed Central

    Sugihara, Takashi; Murano, Hayato; Tanaka, Kimio

    2012-01-01

    Background The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. Methodology/Principal Findings We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G1 phase, although no significant difference was observed in G2/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G1 phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G1 phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Conclusions Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by

  11. Increased γ-H2A.X intensity in response to chronic medium-dose-rate γ-ray irradiation.

    PubMed

    Sugihara, Takashi; Murano, Hayato; Tanaka, Kimio

    2012-01-01

    The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G(1) phase, although no significant difference was observed in G(2)/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G(1) phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G(1) phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by HDR γ-ray irradiation.

  12. [Effect of low-dose focused ultrasound pre-irradiation versus microbubbles for enhancing high-intensity focused ultrasound ablation of VX2 hepatic tumor in rabbits].

    PubMed

    Zhang, Yi; Yang, Chao; Zou, Jian-Zhong; Chen, Fei; Ou, Xia; Zou, Hai-Rong; Wang, Yan

    2016-10-20

    To compare the effect of low-dose focused ultrasound pre-irradiation and microbubbles for enhancing the ablation effect of high intensity focused ultrasound (HIFU) on VX 2 hepatic tumor in rabbits. Fifty-five rabbits bearing VX 2 hepatic tumor were randomly divided into low-dose pre-irradiation + HIFU ablation group, microbubbles+HIFU ablation group, and HIFU ablation group for corresponding treatments. The pathological changes in the tumors after low-dose irradiation, time for HIFU ablation, tumor volume with coagulative necrosis, energy efficiency factor (EEF), pathological changes in the ablated tumor, and sound channel of HIFU ablation were observed. Tumor cell edema, vacuolar changes in the cytoplasm and tumor interstitial vascular congestion were observed 24 h after low-dose pre-irradiation. The ablation time were significantly shorter, coagulative necrosis volume was larger, and EEF was lower in low-dose irradiation + HIFU ablation group and microbubbles+HIFU ablation group than in simple HIFU ablation group (P<0.05), but the differences between the former two groups were not significant. The effectiveness and stability of the synergistic effect of low-dose pre-irradiation were inferior to microbubbles, but the former ensured a better safety of the sound channel. Low-dose irradiation has comparable synergistic effect in HIFU with microbubbles with such advantages as non-invasiveness, high concentration and good safety, and can be a potentially new method to enhance the efficiency of HIFU.

  13. Effect of radiation on cell proliferation and tumor hypoxia in HPV-positive head and neck cancer in vivo models.

    PubMed

    Sørensen, Brita Singers; Busk, Morten; Horsman, Michael R; Alsner, Jan; Overgaard, Jens; Kyle, Alastair H; Minchinton, Andrew I

    2014-11-01

    Human papilloma virus-associated head and neck squamous cell carcinomas (HNSCC) represent a distinct subgroup of HNSCC characterized by a favorable prognosis and a distinct molecular biology. There is a range of unresolved questions regarding the different biology and clinical outcome of HPV-positive HNSCC. The purpose of the present project was to obtain insight into the biology of treatment responsiveness of HPV-related HNSCC. Tumor xenografts were established from HPV-negative (FaDuDD,) and HPV-positive (UD2 and UMSCC47) HNSCC cell lines. Tumors were treated with 10 Gy or 20 Gy and the effect on the tumor microenvironment was studied at different time points after treatment. Cryosections were imaged for cell proliferation, hypoxia, vessel density and vessel perfusion. In the HPV-positive tumor models the levels of cell proliferation decreased significantly following irradiation. This was not seen in the HPV-negative model (FaDuDD). Furthermore, it was found that the tumor hypoxic fraction decreased over time after treatment in irradiated HPV-positive tumors and not in the HPV-negative tumors. The radiosensitivity previously observed in vitro could be applied in vivo in respect to a radiation-induced decrease in proliferating cells. A decreasing hypoxic fraction following irradiation in the HPV-positive tumors could explain the lack of benefit from hypoxic modifiers observed in patients. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. T cells enhance gold nanoparticle delivery to tumors in vivo.

    PubMed

    Kennedy, Laura C; Bear, Adham S; Young, Joseph K; Lewinski, Nastassja A; Kim, Jean; Foster, Aaron E; Drezek, Rebekah A

    2011-04-04

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  15. T cells enhance gold nanoparticle delivery to tumors in vivo

    NASA Astrophysics Data System (ADS)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  16. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair.

    PubMed

    Sunada, Shigeaki; Kanai, Hideki; Lee, Younghyun; Yasuda, Takeshi; Hirakawa, Hirokazu; Liu, Cuihua; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2016-09-01

    High-linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined effect of an NHEJ inhibitor (NU7441) at a non-toxic concentration and carbon ions. NU7441-treated non-small cell lung cancer (NSCLC) A549 and H1299 cells were irradiated with X-rays and carbon ions (290 MeV/n, 50 keV/μm). Cell survival was measured by clonogenic assay. DNA DSB repair, cell cycle distribution, DNA fragmentation and cellular senescence induction were studied using a flow cytometer. Senescence-associated protein p21 was detected by western blotting. In the present study, 0.3 μM of NU7441, nontoxic to both normal and tumor cells, caused a significant radio-sensitization in tumor cells exposed to X-rays and carbon ions. This concentration did not seem to cause inhibition of DNA DSB repair but induced a significant G2/M arrest, which was particularly emphasized in p53-null H1299 cells treated with NU7441 and carbon ions. In addition, the combined treatment induced more DNA fragmentation and a higher degree of senescence in H1299 cells than in A549 cells, indicating that DNA-PK inhibitor contributes to various modes of cell death in a p53-dependent manner. In summary, NSCLC cells irradiated with carbon ions were radio-sensitized by a low concentration of DNA-PK inhibitor NU7441 through a strong G2/M cell cycle arrest. Our findings may contribute to further effective radiotherapy using heavy ions. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. The timing of surgery after neoadjuvant radiotherapy influences tumor dissemination in a preclinical model

    PubMed Central

    Leroi, Natacha; Sounni, Nor Eddine; Van Overmeire, Eva; Blacher, Silvia; Marée, Raphael; Van Ginderachter, Jo; Lallemand, François; Lenaerts, Eric; Coucke, Philippe; Noel, Agnès; Martinive, Philippe

    2015-01-01

    Neoadjuvant radiotherapy (neoRT) used in cancer treatments aims at improving local tumor control and patient overall survival. The neoRT schedule and the timing of the surgical treatment (ST) are empirically based and influenced by the clinician's experience. The current study examines how the sequencing of neoRT and ST affects metastatic dissemination. In a breast carcinoma model, tumors were exposed to different neoRT schedules (2x5Gy or 5x2Gy) followed by surgery at day 4 or 11 post-RT. The impact on the tumor microenvironment and lung metastases was evaluated through immunohistochemical and flow cytometry analyses. After 2x5Gy, early ST (at day 4 post-RT) led to increased size and number of lung metastases as compared to ST performed at day 11. Inversely, after 5x2Gy neoRT, early ST protected the mice against lung metastases. This intriguing relationship between tumor aggressiveness and ST timing could not be explained by differences in classical parameters studied such as hypoxia, vessel density and matrix remodeling. The study of tumor-related inflammation and immunity reveals an increased circulating NK cell percentage following neoRT as compared to non irradiated mice. Then, radiation treatment and surgery were applied to tumor-bearing NOD/SCID mice. In the absence of NK cells, neoRT appears to increase lung metastatic dissemination as compared to non irradiated tumor-bearing mice. Altogether our data demonstrate that the neoRT schedule and the ST timing affect metastasis formation in a pre-clinical model and points out the potential role of NK cells. These findings highlight the importance to cautiously tailor the optimal window for ST following RT. PMID:26440148

  18. Carbon ions induce autophagy effectively through stimulating the unfolded protein response and subsequent inhibiting Akt phosphorylation in tumor cells

    PubMed Central

    Jin, Xiaodong; Li, Feifei; Zheng, Xiaogang; Liu, Yan; Hirayama, Ryoichi; Liu, Xiongxiong; Li, Ping; Zhao, Ting; Dai, Zhongying; Li, Qiang

    2015-01-01

    Heavy ion beams have advantages over conventional radiation in radiotherapy due to their superb biological effectiveness and dose conformity. However, little information is currently available concerning the cellular and molecular basis for heavy ion radiation-induced autophagy. In this study, human glioblastoma SHG44 and cervical cancer HeLa cells were irradiated with carbon ions of different linear energy transfers (LETs) and X-rays. Our results revealed increased LC3-II and decreased p62 levels in SHG44 and HeLa cells post-irradiation, indicating marked induction of autophagy. The autophagic level of tumor cells after irradiation increased in a LET-dependent manner and was inversely correlated with the sensitivity to radiations of various qualities. Furthermore, we demonstrated that high-LET carbon ions stimulated the unfolded protein response (UPR) and mediated autophagy via the UPR-eIF2α-CHOP-Akt signaling axis. High-LET carbon ions more severely inhibited Akt-mTOR through UPR to effectively induce autophagy. Thus, the present data could serve as an important radiobiological basis to further understand the molecular mechanisms by which high-LET radiation induces cell death. PMID:26338671

  19. Depression of T lymphocyte function in chimpanzees receiving thymectomy and irradiation. [X Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertsen, R.B.; Metzgar, R.S.

    1978-03-01

    In studies analogous to those in which the thymus dependency of immune functions in murine systems was determined, three chimpanzees were thymectomized, splenectomized, exposed to lethal doses of whole body x-irradiation with limited bone marrow shielding, and subsequently evaluated for lymphocyte markers and functions over a period of years. In the oldest animal studied (Irena, 7.2 years at surgery), the percentage of peripheral blood T cells decreased to about 60% of control values and remained at that level for approximately 1/sup 1///sub 2/ years before returning to normal. In the two youngest chimpanzees T cell rosette values dropped to 15more » to 40% of control values after irradiation. T cell percentages in one of these young chimpanzees returned to about 75% of the controls 2/sup 1///sub 2/ years after x-irradiation. Phytohemagglutinin and concanavalin A mitogen responses were less affected in the oldest chimpanzee. However, even in the oldest animal, the responses to phytohemagglutinin and concanavalin A began to show a gradual and consistent decline 1/sup 1///sub 2/ years after irradiation. Mixed leukocyte culture responsiveness was most affected by the experimental procedures, being greatly reduced in all three chimpanzees during varying time intervals. In general, the effects of the experimental procedures used to produce T cell deficiencies varied with the age of the chimpanzee at surgery, the time after irradiation when the animal was tested, and the lymphocyte marker or function studied.« less

  20. Abscopal Effects With Hypofractionated Schedules Extending Into the Effector Phase of the Tumor-Specific T-Cell Response.

    PubMed

    Zhang, Xuanwei; Niedermann, Gabriele

    2018-05-01

    Hypofractionated radiation therapy (hRT) combined with immune checkpoint blockade can induce T-cell-mediated local and abscopal antitumor effects. We had previously observed peak levels of tumor-infiltrating lymphocytes (TILs) between days 5 and 8 after hRT. Because TILs are regarded as radiosensitive, hRT schedules extending into this period might be less immunogenic, prompting us to compare clinically relevant, short and extended schedules with equivalent biologically effective doses combined with anti-programmed cell death 1 (PD1) antibody treatment. In mice bearing 2 B16-CD133 melanoma tumors, the primary tumor was irradiated with 3 × 9.18 Gy in 3 or 5 days or with 5 × 6.43 Gy in 10 days; an anti-PD1 antibody was given weekly. The mice were monitored for tumor growth and survival. T-cell responses were determined on days 8 and 15 of treatment. The role of regional lymph nodes was studied by administering FTY720, which blocks lymph node egress of activated T cells. Tumor growth measurements after combination treatment using short or extended hRT and control treatment were also performed in the wild-type B16 melanoma and 4T1 breast carcinoma models. In the B16-CD133 model, growth inhibition of irradiated primary and nonirradiated secondary tumors and overall survival were similar with all 3 hRT/anti-PD1 combinations, superior to hRT and anti-PD1 monotherapy, and was strongly dependent on CD8 + T cells. TIL infiltration and local and systemic tumor-specific CD8 + T-cell responses were also similar, regardless of whether short or extended hRT was used. Administration of FTY720 accelerated growth of both primary and secondary tumors, strongly reduced their TIL infiltration, and increased tumor-specific CD8 + T cells in the lymph nodes draining the irradiated tumor. In the 4T1 model, local and abscopal tumor control was also similar, regardless of whether short or extended hRT was used, although the synergy between hRT and anti-PD1 was weaker. No

  1. Circulating tumor cells in patients with testicular germ cell tumors.

    PubMed

    Nastały, Paulina; Ruf, Christian; Becker, Pascal; Bednarz-Knoll, Natalia; Stoupiec, Małgorzata; Kavsur, Refik; Isbarn, Hendrik; Matthies, Cord; Wagner, Walter; Höppner, Dirk; Fisch, Margit; Bokemeyer, Carsten; Ahyai, Sascha; Honecker, Friedemann; Riethdorf, Sabine; Pantel, Klaus

    2014-07-15

    Germ cell tumors (GCTs) represent the most frequent malignancies among young men, but little is known about circulating tumor cells (CTCs) in these tumors. Considering their heterogeneity, CTCs were investigated using two independent assays targeting germ cell tumor and epithelial cell-specific markers, and results were correlated with disease stage, histology, and serum tumor markers. CTCs were enriched from peripheral blood (n = 143 patients) and testicular vein blood (TVB, n = 19 patients) using Ficoll density gradient centrifugation. For CTC detection, a combination of germ cell tumor (anti-SALL4, anti-OCT3/4) and epithelial cell-specific (anti-keratin, anti-EpCAM) antibodies was used. In parallel, 122 corresponding peripheral blood samples were analyzed using the CellSearch system. In total, CTCs were detected in 25 of 143 (17.5%) peripheral blood samples, whereas only 11.5% of patients were CTC-positive when considering exclusively the CellSearch assay. The presence of CTCs in peripheral blood correlated with clinical stage (P < 0.001) with 41% of CTC positivity in patients with metastasized tumors and 100% in patients with relapsed and chemotherapy-refractory disease. Histologically, CTC-positive patients suffered more frequently from nonseminomatous primary tumors (P < 0.001), with higher percentage of yolk sac (P < 0.001) and teratoma (P = 0.004) components. Furthermore, CTC detection was associated with elevated serum levels of α-fetoprotein (AFP; P = 0.025), β-human chorionic gonadotropin (βHCG; P = 0.002), and lactate dehydrogenase (LDH; P = 0.002). Incidence and numbers of CTCs in TVB were much higher than in peripheral blood. The inclusion of germ cell tumor-specific markers improves CTC detection in GCTs. CTCs occur frequently in patients with more aggressive disease, and there is a gradient of CTCs with decreasing numbers from the tumor-draining vein to the periphery. ©2014 American Association for Cancer Research.

  2. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    PubMed

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  3. Effect of polychromatic visible light on proliferation of tumor cells under conditions in vitro and in vivo—after implantation to experimental animals

    NASA Astrophysics Data System (ADS)

    Knyazev, N. A.; Samoilova, K. A.; Filatova, N. A.; Galaktionova, A. A.

    2009-06-01

    The question of the character of effect of visible and near infrared (IR) radiation of Sun and artificial sources on growth of malignant tumors remains open due to controversy and a relatively small amount of available data, which restricts use of this most important environmental and the efficient physiotherapeutic factors at various human pathological states and first of all at the rehabilitation of oncological patients after radical methods of cancer treatment (surgical removal of tumor, intensive medication and radiation therapy), when immunomodulatory antiinflamatory, wound-healing and analgesic properties of visible and near IR light can be drawn. In the present work, using polychromatic visible light, close to this dominant component of the terrestrial solar radiation (380-750 nm, 40 mW/cm2) we irradiated tumor cells of the murine hepatoma (MH-22a line) under conditions in vitro (the monolayer of cells in Petri dishes) and in vivo (after subcutaneous implantation of these cells to mice of the C3HA line). A high resistance of the MH-22a cells to polychromatic visible radiation has been established under conditions in vitro: irradiation at dose 24 J/cm2 did not inhibit their proliferation whereas a dose of 9.6 J/cm2, stimulated statistically significantly proliferation of the cells (by 24-40%). However, stimulation of the tumor cell proliferation, did not develop under conditions in vivo, when mice were irradiated (9.6 J/cm2)—daily for 5 days before the implantation of tumor cells and for 5 days after implantation (in the latter case there was a probability of transcutaneous irradiation of tumor cells). By implanting to the animals of tumor cells at various concentrations (from 2ṡ105 to 25ṡ103 cells per mouse), we did not revealed at any of 10 terms of observations for 41-45 days both an increase of incidence of the tumor development and acceleration of tumor growth as well as a decrease of the animals survival as compared with group of non-irradiated

  4. HMB-45 negative clear cell perivascular epithelioid cell tumor of the skin.

    PubMed

    Pusiol, Teresa; Morichetti, Doriana; Zorzi, Maria Grazia; Dario, Surace

    2012-01-01

    The first case of cutaneous clear cell perivascular epithelioid cell tumor (PEComa) with negative HMB-45 marker is presented. The tumor was a nodule 3x2 cm in size, located on the right foot in a 60-year-old man. The lesion consisted of large irregularly shaped cells with clear cytoplasm, negative for S-100 protein, HMB-45, Melan-A, pancytokeratin, epithelial membrane antigen and CAM5.2. Multifocal positivity for desmin, microphthalmia transcription factor and tyrosinase was found. The diagnosis of cutaneous PEComa of clear cell type was made. Clear cell change is a very unusual finding in PEComa and may pose problems in diagnostic differentiation from other clear cell cutaneous lesions that may be excluded with immunohistochemistry. In our case, the HMB-45 negativity may be explained by extensive clear cell change. Additional studies are necessary to accept the clear cell cutaneous HMB-45 negative PEComa as a new variant of perivascular epithelioid cell tumor.

  5. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells.

    PubMed

    Puspitasari, Irma M; Yamazaki, Chiho; Abdulah, Rizky; Putri, Mirasari; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi

    2017-01-01

    The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G 1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G 1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0

  6. Role of autophagy in high linear energy transfer radiation-induced cytotoxicity to tumor cells

    PubMed Central

    Jin, Xiaodong; Liu, Yan; Ye, Fei; Liu, Xiongxiong; Furusawa, Yoshiya; Wu, Qingfeng; Li, Feifei; Zheng, Xiaogang; Dai, Zhongying; Li, Qiang

    2014-01-01

    Heavy-ion radiotherapy has a potential advantage over conventional radiotherapy due to improved dose distribution and a higher biological effectiveness in cancer therapy. However, there is a little information currently available on the cellular and molecular basis for heavy-ion irradiation-induced cell death. Autophagy, as a novel important target to improve anticancer therapy, has recently attracted considerable attention. In this study, the effect of autophagy induced by high linear energy transfer (LET) carbon ions was examined in various tumor cell lines. To our knowledge, our study is the first to reveal that high-LET carbon ions could induce autophagy in various tumor cells effectively, and the autophagic level in the irradiated cells increased in a dose- and LET-dependent manner. The ability of carbon ions to inhibit the activation of the PI3K/Akt pathway rose with increasing their LET. Moreover, modulation of autophagy in tumor cells could modify their sensitivity to high-LET radiation, and inhibiting autophagy accelerated apoptotic cell death, resulting in an increase in radiosensitivity. Our data imply that targeting autophagy might enhance the effectiveness of heavy-ion radiotherapy. PMID:24731006

  7. The lethal interaction of x ray and penicillin induced lesions following x-irradiation of Escherichia coli B/r in the presence of hypoxic cell sensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillies, N.E.; Obioha, F.I.

    When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality.

  8. Irradiation at Different Fetal Stages Results in Different Translocation Frequencies in Adult Mouse Thyroid Cells

    DOE PAGES

    Hamasaki, K.; Landes, R. D.; Noda, A.; ...

    2016-10-01

    While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The

  9. Research of ALA combined with HpD-PDT which induced s180 ascitic tumor cells, death or apoptosis on cytology

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Yan, Min; Zhang, Hui-Guo; Li, Enling; Luo, Hongyu

    2005-07-01

    To ascertain the adequate dosage of ALA combined with HpD-PDT which induced tumor cell death or apoptosis on cytology. And to study the different effect of ALA-PDT and HPD-PDT used only. Rat ascitic tumor cells(S180) were randomly divided into several groups and incubated with ALA(20μg/ml 、40μg/ml、80μg/ml 、160μg/ml)、HPD(2.5μg/ml、5μg/ml、10μg/ml)and their combination dosages. 630nm light (total output 2W) was delivered to tumor cells at a constant fluence rate: 200mw/cm2 and a constant irradiated time period: 20 minutes. We set 3 groups (no photosensitizers or no irradiation or neither) to be the control groups. We used inversion microscopy to observe the morphological change of tumor cells and flow cytometry technology to detect the death or apoptosis of tumor cells during the experiment. ..

  10. SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A

    2014-06-01

    Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less

  11. X-ray-induced apoptosis of BEL-7402 cell line enhanced by extremely low frequency electromagnetic field in vitro.

    PubMed

    Jian, Wen; Wei, Zhao; Zhiqiang, Cheng; Zheng, Fang

    2009-02-01

    This study was designed to test whether extremely low frequency electromagnetic field (ELF-EMF) could enhance the apoptosis-induction effect of X-ray radiotherapy on liver cancer cell line BEL-7402 in vitro. EMF exposure was performed inside an energized solenoid coil. X-ray irradiation was performed using a linear accelerator. Apoptosis rates of BEL-7402 cells were analyzed using Annexin V-Fit Apoptosis Detection kit. Apoptosis rates of EMF group and sham EMF group were compared when combined with X-ray irradiation. Our results suggested that the apoptosis rate of BEL-7402 cells exposed to low doses of X-ray irradiation could be significantly increased by EMF. More EMF exposures obtain significantly higher apoptosis rates than fewer EMF exposures when combined with 2 Gy X-ray irradiation. These findings suggested that ELF-EMF could augment the cell apoptosis effects of low doses of X-ray irradiation on BEL-7402 cells in a synergistic and cumulative way. Copyright 2008 Wiley-Liss, Inc.

  12. Different responses of tumor and normal cells to low-dose radiation

    PubMed Central

    Liu, Ning; Wang, Hao; Shang, Qingjun; Jiang, Peng; Zhang, Yuanmei

    2013-01-01

    Aim of the study We demonstrated stimulation of both erythrocyte immune function and superoxide dismutase activity in tumor-bearing mice in response to whole-body 75 mGy X-rays. In addition, we enhanced the chemotherapeutic effect by exposing tumor-bearing mice to low-dose radiation (LDR). This study aims to investigate the different responses of tumor cells and normal cells to LDR. Material and methods Survival fraction, micronucleus frequency, and cell cycle of Lewis cells and primary human fibroblast AG01522 cells were measured. S180 sarcoma cells were implanted in mice, and tumor sizes were measured in vivo. Results In response to LDR exposure in vitro, a stimulating effect was observed in AG01522 cells but not in Lewis cells. Low-dose radiation did not cause an adaptive response in the Lewis cell cycle. Lack of an LDR-induced radioadaptive response in tumor cells was observed in tumor-bearing mouse models. Furthermore, a higher apoptotic effect and lower expression of the anti-apoptosis gene Bcl-2 were found in tumor cells of tumor-bearing mice exposed to D1 + D2 than those in tumor cells of tumor-bearing mice exposed to D2 alone. Conclusions Different responses of tumor cells and normal cells to LDR were found. Low-dose radiation was found to stimulate the growth of normal cells but not of tumor cells in vitro and in vivo, which is a very important and clinically relevant phenomenon. PMID:24592123

  13. The transcription factor Wilms tumor 1 confers resistance in myeloid leukemia cells against the proapoptotic therapeutic agent TRAIL (tumor necrosis factor α-related apoptosis-inducing ligand) by regulating the antiapoptotic protein Bcl-xL.

    PubMed

    Bansal, Hima; Seifert, Theresea; Bachier, Carlos; Rao, Manjeet; Tomlinson, Gail; Iyer, Swaminathan Padmanabhan; Bansal, Sanjay

    2012-09-21

    Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias.

  14. Beneficial Effects of X-Irradiation on Recovery of lesioned Mammalian Central Nervous Tissue

    NASA Astrophysics Data System (ADS)

    Kalderon, Nurit; Alfieri, Alan A.; Fuks, Zvi

    1990-12-01

    We examined the potential of x-irradiation, at clinical dose levels, to manipulate the cellular constituents and thereby change the consequences of transection injury to adult mammalian central nervous tissue (rat olfactory bulb). Irradiation resulted in reduction or elimination of reactive astrocytes at the site of incision provided that it was delivered within a defined time window postinjury. Under conditions optimal for the elimination of gliosis (15-18 days postinjury), irradiation of severed olfactory bulbs averted some of the degenerative consequences of lesion. We observed that irradiation was accompanied by prevention of tissue degeneration around the site of lesion, structural healing with maintenance of the typical cell lamination, and rescue of some axotomized mitral cells (principal bulb neurons). Thus radiation resulted in partial preservation of normal tissue morphology. It is postulated that intrusive cell populations are generated in response to injury and reactive astrocytes are one such group. Our results suggest that selective elimination of these cells by irradiation enabled some of the regenerative processes that are necessary for full recovery to maintain their courses. The cellular targets of these cells, their modes of intervention in recovery, and the potential role of irradiation as a therapeutic modality for injured central nervous system are discussed.

  15. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2more » inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.« less

  16. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    PubMed

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta.

    PubMed

    Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung

    2007-03-01

    CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.

  18. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    PubMed Central

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS: Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS: We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response. PMID:22496923

  19. Dependency of the effect of a vascular disrupting agent on sensitivity to tirapazamine and gamma-ray irradiation upon the timing of its administration and tumor size, with reference to the effect on intratumor quiescent cells.

    PubMed

    Masunaga, Shin-ichiro; Nagasawa, Hideko; Nagata, Kenji; Suzuki, Minoru; Uto, Yoshihiro; Hori, Hitoshi; Kinashi, Yuko; Ono, Koji

    2007-01-01

    The effect of vascular disrupting agent ZD6126 with time on the sensitivity to the hypoxic cytotoxin tirapazamine (TPZ) and gamma-rays was examined in large and small solid tumors. Mice bearing SCC VII tumors 1 or 1.5 cm in diameter received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all proliferating (P) cells, followed by injection with or without ZD6126. In the absence of ZD6126, or 1 or 24 h following ZD6126 injection, the response to TPZ or gamma-ray irradiation in quiescent (Q) cells was assessed in terms of induced micronucleus (MN) frequency using immunofluorescence staining for BrdU. The MN frequency in the total cell population was determined from the tumors not pretreated with BrdU. Another group of tumor-bearing mice received a series of test doses of gamma-rays while alive or after tumor clamping to obtain hypoxic fractions (HFs) in the tumors. One hour after ZD6126 injection, both small and large tumors showed lower and higher sensitivity, and 24 h after, higher and lower sensitivity, to gamma-rays and TPZ, respectively, than the tumors not treated with ZD6126. Further, they showed larger and smaller HFs 1 and 24 h after ZD6126 injection, respectively. Without ZD6126 and 1 h after injection, small tumors were more sensitive to gamma-rays and less sensitive to TPZ than large tumors, probably due to the smaller HFs than large tumors. In contrast, 24 h after the injection, these differences in sensitivity and the HF between small and large tumors were reversed. The changes in sensitivity and the size of the HF were more marked in the total cell population than in Q cells. Following ZD6126 treatment, in terms of tumor control, especially large tumors and total tumor cell population, administering TPZ 1 h later and gamma-ray irradiation 24 h later were effective. Intratumor physiologic factors such as the size of the HF, depending on the time after ZD6126 injection, have to be taken into account when combining another treatment with ZD6126.

  20. Radioprotective activity of glutathione on cognitive ability in X-ray radiated tumor-bearing mice.

    PubMed

    Lu, Lina; Li, Zongli; Zuo, Yanhua; Zhao, Libo; Liu, Bin

    2018-05-30

    The use of X-ray for therapeutics always raises the problem of radiation hazards to living beings. In this research, we explored the radioprotective activity of glutathione (GSH) on cognitive ability of X-ray radiated tumor-bearing mice. Forty C57BL/6 mice were chosen to establish the GL261 glioma model and randomly divided into four groups: Model group, X-ray group, Pre-GSH group and Pos-GSH group. Morris water maze test was used to test cognitive ability. Moreover, histopathological observation of hippocampus was observed by hematoxylin and eosin (HE) staining. The protein expression of choline acetyl transferase (ChAT) was measured by western blot, simultaneously the contents of acetylcholinesterase (Ach), superoxide dismutase (SOD), methane dicarboxylic aldehyde (MDA),TNF-α and IL-6 were detected by the respective kit. There was a significant difference in X-ray group of the escape latency from the Model group (P<0.05). Besides, HE staining revealed that nucleus in hippocampus cells were pyknotic, glial cells were hyperplastic and the nerve cells were swelling in X-ray group. In X-ray group the expression of ChAT and Ache were decreased versus Model group. Finally, the cognitive ability in Pre-GSH and Pos-GSH group was enhanced than X-ray group, in which the cognitive ability of Pos-GSH group was higher than the Pre-GSH group. X-ray impaired the brain tissues and cognitive ability of tumor-bearing mice. The damages of brain tissues were alleviated by Pre-GSH and Pos-GSH protection and the efficacy of Pos-GSH protection was superior to Pre-GSH protection. Abbreviation Ach: Acetylcholinesterase; GSH: Glutathione; HE: Hematoxylin and eosin; MDA: methane dicarboxylic aldehyde; SOD: Superoxide dismutase; TV: Tumor volume; TW: Tumor weight.

  1. Role of Interleukin-6 in the Radiation Response of Liver Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Miao-Fen, E-mail: miaofen@adm.cgmh.org.tw; College of Medicine, Chang Gung University, Taiwan; Hsieh, Ching-Chuan

    2012-12-01

    Purpose: To investigate the role of interleukin (IL)-6 in biological sequelae and tumor regrowth after irradiation for hepatic malignancy, which are critical for the clinical radiation response of liver tumors. Methods and Materials: The Hepa 1-6 murine hepatocellular cancer cell line was used to examine the radiation response by clonogenic assays and tumor growth delay in vivo. After irradiation in a single dose of 6 Gy in vitro or 15 Gy in vivo, biological changes including cell death and tumor regrowth were examined by experimental manipulation of IL-6 signaling. The effects of blocking IL-6 were assessed by cells preincubated inmore » the presence of IL-6-neutralizing antibody for 24 hours or stably transfected with IL-6-silencing vectors. The correlations among tumor responses, IL-6 levels, and myeloid-derived suppressor cells (MDSC) recruitment were examined using animal experiments. Results: Interleukin-6 expression was positively linked to irradiation and radiation resistance, as demonstrated by in vitro and in vivo experiments. Interleukin-6-silencing vectors induced more tumor inhibition and DNA damage after irradiation. When subjects were irradiated with a sublethal dose, the regrowth of irradiated tumors significantly correlated with IL-6 levels and MDSC recruitment in vivo. Furthermore, blocking of IL-6 could overcome irradiation-induced MDSC recruitment and tumor regrowth after treatment. Conclusion: These data demonstrate that IL-6 is important in determining the radiation response of liver tumor cells. Irradiation-induced IL-6 and the subsequent recruitment of MDSC could be responsible for tumor regrowth. Therefore, treatment with concurrent IL-6 inhibition could be a potential therapeutic strategy for increasing the radiation response of tumors.« less

  2. Development of a four-dimensional Monte Carlo dose calculation system for real-time tumor-tracking irradiation with a gimbaled X-ray head.

    PubMed

    Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Miyabe, Yuki; Mukumoto, Nobutaka; Matsuo, Yukinori; Sawada, Akira; Kokubo, Masaki; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-03-01

    To develop a four-dimensional (4D) dose calculation system for real-time tumor tracking (RTTT) irradiation by the Vero4DRT. First, a 6-MV photon beam delivered by the Vero4DRT was simulated using EGSnrc. A moving phantom position was directly measured by a laser displacement gauge. The pan and tilt angles, monitor units, and the indexing time indicating the phantom position were also extracted from a log file. Next, phase space data at any angle were created from both the log file and particle data under the dynamic multileaf collimator. Irradiation both with and without RTTT, with the phantom moving, were simulated using several treatment field sizes. Each was compared with the corresponding measurement using films. Finally, dose calculation for each computed tomography dataset of 10 respiratory phases with the X-ray head rotated was performed to simulate the RTTT irradiation (4D plan) for lung, liver, and pancreatic cancer patients. Dose-volume histograms of the 4D plan were compared with those calculated on the single reference respiratory phase without the gimbal rotation [three-dimensional (3D) plan]. Differences between the simulated and measured doses were less than 3% for RTTT irradiation in most areas, except the high-dose gradient. For clinical cases, the target coverage in 4D plans was almost identical to that of the 3D plans. However, the doses to organs at risk in the 4D plans varied at intermediate- and low-dose levels. Our proposed system has acceptable accuracy for RTTT irradiation in the Vero4DRT and is capable of simulating clinical RTTT plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Tumors and other diseases following childhood x-ray treatment for ringworm of the scalp (Tinea capitis).

    PubMed

    Shore, Roy E; Moseson, Miriam; Harley, Naomi; Pasternack, Bernard S

    2003-10-01

    The objective of the study is to characterize the risk of tumors from radiation exposure to the head and neck. A cohort of 2,224 children given x-ray treatment and 1,380 given only topical medications for ringworm of the scalp (tinea capitis) during 1940-1959 have been followed up for a median of 39 y to determine tumor incidence. Follow-ups were by mail/telephone questionnaire, with 84-88% of the original cohort followed and with medical verification of diseases of interest. Sixteen intracranial tumors [7 brain cancers, 4 meningiomas, and 5 acoustic neuromas (vestibular schwannomas)] occurred in the x-irradiated group following an average brain dose of about 1.4 Gy, compared to 1 acoustic neuroma in the control group. The standardized incidence ratio (SIR) for brain cancer was 3.0 [95% confidence interval (CI): 1.3, 5.9]. Even though the dose to the thyroid gland was only about 60 mGy, 2 thyroid cancers were found in the irradiated group vs. none among controls, and 11 vs. 1 thyroid adenomas were found in the respective groups. Following an average dose of about 4 Gy to cranial marrow, 8 cases of leukemia (SIR = 3.2, CI: 1.5, 6.1) were observed in the irradiated group and 1 in the control group. There was also a suggestive excess of blood dyscrasias. There was no difference between the groups in the frequency of other cancers of the head and neck (excluding nonmelanoma skin cancer) or in total mortality.

  4. INFLUENCE OF X-RAY IRRADIATION AND STREPTOMYCIN ADMINISTRATION ON EXPERIMENTAL TUBERCULOUS LESIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komatsuda, H.

    1959-01-01

    Experimental tuberculous lesions were produced by a separate inoculation of Mycobacterium tuberculosis var. bovis and var. hominis in the subcutaineous tissue of the rabbit's back. Then a single x-ray dose of 1,000 r or an injection of streptomycin was administered. The course of these lesions was examined macroscopically and microscopically. When irradiated, repair of the lesions was poor, with thickened outer membranous layer and increased cell infiltration. Bilateral irradiation had a more unfavorable effect than single irradiation. The group treated with streptomycin had a better outcome. (Abstr. Japan. Med., 1: No. 1, 1960)

  5. The potential value of the neutral comet assay and the expression of genes associated with DNA damage in assessing the radiosensitivity of tumor cells.

    PubMed

    Jayakumar, Sundarraj; Bhilwade, Hari N; Pandey, Badri N; Sandur, Santosh K; Chaubey, Ramesh C

    2012-10-09

    The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation. © 2012 Elsevier B.V. All rights reserved.

  6. Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors.

    PubMed

    Yang, Weilian; Huo, Tianyao; Barth, Rolf F; Gupta, Nilendu; Weldon, Michael; Grecula, John C; Ross, Brian D; Hoff, Benjamin A; Chou, Ting-Chao; Rousseau, Julia; Elleaume, Hélène

    2011-02-01

    The purpose of this study was to further evaluate the therapeutic efficacy of convection enhanced delivery (CED) of carboplatin in combination with radiotherapy for treatment of the F98 rat glioma. Tumor cells were implanted stereotactically into the brains of syngeneic Fischer rats, and 13 or 17 d. later carboplatin (20 μg/10 μl) was administered by either CED over 30 min or by Alzet osmotic pumps (0.5 μg/μl/h for 168 h.) beginning at 7 d after tumor implantation. Rats were irradiated with a 15 Gy fractionated dose (5 Gy × 3) of 6 MV photons to the whole brain beginning on the day after drug administration. Other groups of rats received either carboplatin or X-irradiation alone. The tumor carboplatin concentration following CED of 20 μg in 10 μl was 10.4 μg/g, which was equal to that observed following i.v. administration of 100 mg/kg b.w. Rats bearing small tumors, treated with carboplatin and X-irradiation, had a mean survival time (MST) of 83.4 d following CED and 111.8 d following pump delivery with 40% of the latter surviving >180 d (i.e. cured) compared to 55.2 d for CED and 77.2 d. for pump delivery of carboplatin alone and 31.8 d and 24.2 d, respectively, for X-irradiated and untreated controls. There was no microscopic evidence of residual tumor in the brains of all long-term survivors. Not surprisingly, rats with large tumors had much shorter MSTs. Only modest increases in MSTs were observed in animals that received either oral administration or CED of temozolomide plus X-irradiation (23.2 d and 29.3 d) compared to X-irradiation alone. The present survival data, and those previously reported by us, are among the best ever obtained with the F98 glioma model. Initially, they could provide a platform for a Phase I clinical trial to evaluate the safety and potential therapeutic efficacy of CED of carboplatin in patients with recurrent glioblastomas, and ultimately a Phase II trial of carboplatin in combination with radiation therapy.

  7. Purified Dendritic Cell-Tumor Fusion Hybrids Supplemented with Non-Adherent Dendritic Cells Fraction Are Superior Activators of Antitumor Immunity

    PubMed Central

    Wang, Yucai; Liu, Yunyan; Zheng, Lianhe

    2014-01-01

    Background Strong evidence supports the DC-tumor fusion hybrid vaccination strategy, but the best fusion product components to use remains controversial. Fusion products contain DC-tumor fusion hybrids, unfused DCs and unfused tumor cells. Various fractions have been used in previous studies, including purified hybrids, the adherent cell fraction or the whole fusion mixture. The extent to which the hybrids themselves or other components are responsible for antitumor immunity or which components should be used to maximize the antitumor immunity remains unknown. Methods Patient-derived breast tumor cells and DCs were electro-fused and purified. The antitumor immune responses induced by the purified hybrids and the other components were compared. Results Except for DC-tumor hybrids, the non-adherent cell fraction containing mainly unfused DCs also contributed a lot in antitumor immunity. Purified hybrids supplemented with the non-adherent cell population elicited the most powerful antitumor immune response. After irradiation and electro-fusion, tumor cells underwent necrosis, and the unfused DCs phagocytosed the necrotic tumor cells or tumor debris, which resulted in significant DC maturation. This may be the immunogenicity mechanism of the non-adherent unfused DCs fraction. Conclusions The non-adherent cell fraction (containing mainly unfused DCs) from total DC/tumor fusion products had enhanced immunogenicity that resulted from apoptotic/necrotic tumor cell phagocytosis and increased DC maturation. Purified fusion hybrids supplemented with the non-adherent cell population enhanced the antitumor immune responses, avoiding unnecessary use of the tumor cell fraction, which has many drawbacks. Purified hybrids supplemented with the non-adherent cell fraction may represent a better approach to the DC-tumor fusion hybrid vaccination strategy. PMID:24466232

  8. Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation

    NASA Astrophysics Data System (ADS)

    Jain, J.; Moreno, J.; Andaur, R.; Armisen, R.; Morales, D.; Marcelain, K.; Avaria, G.; Bora, B.; Davis, S.; Pavez, C.; Soto, L.

    2017-08-01

    Plasma focus devices may arise as useful source to perform experiments aimed to study the effects of pulsed radiation on human cells in vitro. In the present work, a table top hundred joules plasma focus device, namely "PF-400J", was adapted to irradiate colorectal cancer cell line, DLD-1. For pulsed x-rays, the doses (energy absorbed per unit mass, measured in Gy) were measured using thermoluminescence detectors (TLD-100 dosimeters). The neutron fluence and the average energy were used to estimate the pulsed neutron doses. Fifty pulses of x-rays (0.12 Gy) and fifty pulses of neutrons (3.5 μGy) were used to irradiate the cancer cells. Irradiation-induced DNA damage and cell death were assessed at different time points after irradiation. Cell death was observed using pulsed neutron irradiation, at ultralow doses. Our results indicate that the PF-400J can be used for in vitro assessment of the effect of pulsed radiation in cancer cell research.

  9. Vaccine of engineered tumor cells secreting stromal cell-derived factor-1 induces T-cell dependent antitumor responses.

    PubMed

    Shi, Meiqing; Hao, Siguo; Su, Liping; Zhang, Xueshu; Yuan, Jinying; Guo, Xuling; Zheng, Changyu; Xiang, Jim

    2005-08-01

    The CXC chemokine SDF-1 has been characterized as a T-cell chemoattractant both in vitro and in vivo. To determine whether SDF-1 expression within tumors can influence tumor growth, we transfected an expression vector pCI-SDF-1 for SDF-1 into J558 myeloma cells and tested their ability to form tumors in BALB/c. Production of biologically active SDF-1 (1.2 ng/mL) was detected in the culture supernatants of cells transfected with the expression vector pCI-SDF-1. J558 cells gave rise to a 100% tumor incidence, whereas SDF-1-expressing J558/SDF-1 tumors invariably regressed in BALB/c mice and became infiltrated with CD4(+) and CD8(+) T cells. Regression of the J558/SDF-1 tumors was dependent on both CD4(+) and CD8(+) T-cells. Our data also indicate that TIT cells containing both CD4(+) and CD8(+) T-cells within J558/SDF-1 tumors express the SDF-1 receptor CXCR4, and that SDF-1 specifically chemoattracts these cells in vitro. Furthermore, immunization of mice with engineered J558/SDF-1 cells elicited the most potent protective immunity against 0.5 x 10(6) cells J558 tumor challenge in vivo, compared to immunization with the J558 alone, and this antitumor immunity mediated by J558/SDF-1 tumor cell vaccination in vivo appeared to be dependent on CD8(+) CTL. Thus, SDF-1 has natural adjuvant activities that may augment antitumor responses through their effects on T-cells and thereby could be important in gene transfer immunotherapies for some cancers.

  10. Skeletal effects of megavoltage irradiation in survivors of Wilms' tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaston, D.K.; Libshitz, H.I.; Chan, R.C.

    1979-09-01

    The skeletal effects of megavoltage irradiation (/sup 60/Co) in 25 long term survivors of Wilms' tumor are described. In general, the changes seen with megavoltage irradiation are as frequent but not as severe as those previously reported after orthovoltage irradiation. Vertebral body changes generally occur within 5 years after irradiation. Scoliosis and/or kyphosis do not usually develop until after five years postirradiation. Kyphotic curves tend to progress after the adolescent growth spurt while scoliotic curves do not. Other bony and nonosseous changes are detailed.

  11. Analysis of esophageal cancer cell lines exposed to X-ray based on radiosensitivity influence by tumor necrosis factor-α.

    PubMed

    Wang, Buhai; Ge, Yizhi; Gu, Xiang

    2016-10-06

    Assess the effects of tumor necrosis factor-α (TNF-α) in enhancing the radiosensitivity of esophageal cancer cell line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF-α treatment. MTT assay was used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing effects of TNF-α were detected by cell colony formation assay. Western blotting was applied to observe the expression of NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF-κB protein was stated between only rhTNF-α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-3 protein content expression just works opposite. Three kinds of cells in the NF-κB protein were similar without rhTNF-α. Then SEG1 NF-κB protein content was reduced more than other two kinds. We concluded that the cells treated with TNF-α showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray exposure. TNF-α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former.

  12. Intraoperative Spillage of Favorable Histology Wilms Tumor Cells: Influence of Irradiation and Chemotherapy Regimens on Abdominal Recurrence. A Report From the National Wilms Tumor Study Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.ed; Li, Sierra M.; Breslow, Norman E.

    Purpose: We undertook this study to determine (1) the frequency with which spilled tumor cells of favorable histology produced intra-abdominal disease in patients treated with differing chemotherapy regimens and abdominal radiation therapy (RT) and (2) the patterns of relapse and outcomes in such patients. Methods and Materials: The influence of RT dose (0, 10, and 20 Gy), RT fields (flank, whole abdomen), and chemotherapy with dactinomycin and vincristine (2 drugs) vs. added doxorubicin (three drugs) on intra-abdominal tumor recurrence rates was analyzed by logistic regression in 450 patients. Each patient was considered at risk for two types of failure: flankmore » and subdiaphragmatic beyond-flank recurrence, with the correlation between the two outcomes accounted for in the analyses. Results: The crude odds ratio for the risk of recurrence relative to no RT was 0.35 (0.15-0.78) for 10Gy and 0.08 (0.01-0.58) for 20Gy. The odds ratio for the risk of recurrence for doxorubicin to two drugs after adjusting for RT was not significant. For Stage II patients (NWTS-4), the 8-year event rates with and without spillage, respectively, were 79% and 87% for relapse-free survival (p = 0.07) and 90% and 95% for overall survival (p = 0.04). Conclusions: Irradiation (10 Gy or 20 Gy) reduced abdominal tumor recurrence rates after tumor spillage. Tumor spillage in Stage II patients reduced relapse-free survival and overall survival, but only the latter was of statistical significance. These data provide a basis for assessing the risks vs. benefits when considering treatment for children with favorable histology Wilms tumor and surgical spillage.« less

  13. RITA enhances irradiation-induced apoptosis in p53-defective cervical cancer cells via upregulation of IRE1α/XBP1 signaling.

    PubMed

    Zhu, Hong; Abulimiti, Muyasha; Liu, Huan; Su, Xiang-Jiang; Liu, Cai-Hong; Pei, Hai-Ping

    2015-09-01

    Radiation therapy is the most widely used treatment for patients with cervical cancer. Recent studies have shown that endoplasmic reticulum (ER) stress induces apoptosis and sensitizes tumor cells to radiotherapy, which reportedly induces ER stress in cells. Classical key tumor suppressor p53 is involved in the response to a variety of cellular stresses, including those incurred by ionizing irradiation. A recent study demonstrated that small-molecule RITA (reactivation of p53 and induction of tumor cell apoptosis) increased the radiosensitivity of tumor cells expressing mutant p53 (mtp53). In the present study, we explored the effects and the underlying mechanisms of RITA in regards to the radiosensitivity and ER stress in mtp53-expressing human cervix cancer cells. Treatment with 1 µM of RITA for 24 h before irradiation markedly decreased survival and increased apoptosis in C-33A and HT-3 cells; the effects were not significantly altered by knockdown of p53. In the irradiated C-33A and HT-3 cells, RITA significantly increased the expression of IRE1α, the spliced XBP1 mRNA level, as well as apoptosis; the effects were abolished by knockdown of IRE1α. Transcriptional pulse-chase assays revealed that RITA significantly increased the stability of IRE1α mRNA in the irradiated C-33A and HT-3 cells. In contrast, the same RITA treatment did not show any significant effect on sham-irradiated cells. In conclusion, the present study provides initial evidence that RITA upregulates the expression level of IRE1α by increasing the stability of IRE1α mRNA in irradiated mtp53-expressing cervical cancer cells; the effect leads to enhanced IRE1α/XBP1 ER stress signaling and increased apoptosis in the cells. The present study offers novel insight into the pharmacological potential of RITA in the radiotherapy for cervical cancer.

  14. The Transcription Factor Wilms Tumor 1 Confers Resistance in Myeloid Leukemia Cells against the Proapoptotic Therapeutic Agent TRAIL (Tumor Necrosis Factor α-related Apoptosis-inducing Ligand) by Regulating the Antiapoptotic Protein Bcl-xL*

    PubMed Central

    Bansal, Hima; Seifert, Theresea; Bachier, Carlos; Rao, Manjeet; Tomlinson, Gail; Iyer, Swaminathan Padmanabhan; Bansal, Sanjay

    2012-01-01

    Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias. PMID:22898820

  15. Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartson-Eaton, M.; Malcolm, A.W.; Hahn, G.M.

    1984-07-01

    CHO cells subline HA-1 were made thermotolerant by a priming heat treatment(43/sup 0/C, 30 min). Later, 4, 16, or 24 hr, they were either irradiated or heated (43/sup 0/C, 30 min) and irradiated. Thermotolerance had no effect on the radiation sensitivity of the cells as measured by the D/sub 0/ value of the clonogenic survival curve. However the N value of the curve (width of shoulder) showed a significant increase at 24 hr, indicating an increased capacity to accumulate sublethal damage. The same priming treatment was given to RIF-1 tumors growing in C3H mice. Later, 24 hr, when the tumorsmore » were either irradiated or heated (43/sup 0/C, 30 min) and irradiated, it was found that thermotolerance had no effect on the radiosensitivity of the cells as measured by in vitro assay. However, thermal radiosensitization was not apparent 24 hr after the priming treatment.« less

  16. Bcl-xL mediates therapeutic resistance of a mesenchymal breast cancer cell subpopulation

    PubMed Central

    Keitel, Ulrike; Scheel, Andreas; Thomale, Jürgen; Halpape, Rovena; Kaulfuß, Silke; Scheel, Christina; Dobbelstein, Matthias

    2014-01-01

    The transition from an epithelial to a mesenchymal phenotype (EMT) confers increased invasiveness and clonogenic potential to tumor cells. We used a breast epithelium-derived cell culture model to evaluate the impact of EMT on the cellular sensitivity towards chemotherapeutics and apoptotic stimuli. Cells that had passed through an EMT acquired resistance towards chemotherapeutics and death ligands. Mechanistically, we found that the levels of the apoptosis inhibitor Bcl-xL were strongly enhanced in mesenchymal versus epithelial cells, whereas the pro-apoptotic proteins Bim and Puma were diminished. Clinical samples from breast cancer showed enhanced Bcl-xL staining in cells that had dispersed into the desmoplastic stroma, as compared to cells that were part of large tumor cell aggregates, suggesting increased Bcl-xL expression when cells invade the stroma. Bcl-xL was necessary for apoptotic resistance in mesenchymal cells, and its expression was sufficient to confer such resistance to epithelial cells. To antagonize Bcl-xL, BH3-mimetics were used. They successfully interfered with the proliferation and survival of mesenchymal cells, and also inhibited the growth of xenograft tumors raised from the mesenchymal subpopulation. We conclude that enhanced Bcl-xL levels confer resistance to cells upon EMT, and that Bcl-xL represents a promising target for therapy directed against invasive cancer cells. PMID:25473892

  17. Improved normal tissue protection by proton and X-ray microchannels compared to homogeneous field irradiation.

    PubMed

    Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J

    2015-09-01

    The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Polychromatic Light (480-3400 nm) Upregulates Sensitivity of Tumor Cells to Lysis by Natural Killers.

    PubMed

    Knyazev, Nickolay A; Samoilova, Kira A; Abrahamse, Heidi; Filatova, Natalia A

    2016-09-01

    This study evaluates the participation of immunological mechanisms of downregulation of murine hepatoma cells MH22a after direct exposure to polychromatic polarized light. Previous studies have shown that exposure to a combination of visible (VIS) and infrared (IR) light leads to decreased tumorigenicity of the murine hepatoma cells MH22a, which correlated with an increase in the amount of cells with reorganized cytoskeleton in the submembrane region. The mechanism of tumor inhibition and elimination has not been determined. Polychromatic light (480-3400 nm) has been used at doses of 4.8 and 9.6 J/cm(2) to determine the sensitivity of murine MH22a cells and human erythroleukemia cells K562 exposed to this light, to lysis by effector cells of innate immunity (NK cells), and enhancement of the glycocalyx of the studied tumor cells. This was determined using flow cytometry, the H(3)-uridine cytotoxic test followed by spectrophotometry. VIS-IR light increases the sensitivity of MH-22a cells at a dose 4.8 J/cm(2) and K562 cells at 9.6 J/cm(2). The enhancement of sensitivity of tumor cells to NK lysis changed their ability to absorb alcian blue, reflecting a change in the expression of the glycocalyx. Increasing the sensitivity of the murine tumor cells MH22a and human K562 irradiated VIS-IR light correlated with a change in the expression of their glycocalyx. The results of the present study demonstrate that the reduction of tumorigenicity of irradiated tumor cells is due to their sensitivity to lysis by NK cells of the immune system.

  19. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules

    PubMed Central

    Yu, Jie; Javier, David; Yaseen, Mohammad A.; Nitin, Nitin; Richards-Kortum, Rebecca; Anvari, Bahman; Wong, Michael S.

    2010-01-01

    New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use is very difficult to carry out. We report the three-step room-temperature synthesis of ~120-nm capsules loaded with ICG within salt-crosslinked polyallylamine aggregates, and coated with anti-epidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression, and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm2. These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using non-covalent chemistry. PMID:20092330

  20. Influence of tumors on protective anti-tumor immunity and the effects of irradiation

    PubMed Central

    Foulds, Gemma A.; Radons, Jürgen; Kreuzer, Mira; Multhoff, Gabriele; Pockley, Alan G.

    2012-01-01

    Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer. PMID:23378947

  1. Remnant living cells that escape cell loss in late-stage tumors exhibit cancer stem cell-like characteristics

    PubMed Central

    Chen, Y-L; Wang, S-Y; Liu, R-S; Wang, H-E; Chen, J-C; Chiou, S-H; Chang, C A; Lin, L-T; Tan, D T W; Lee, Y-J

    2012-01-01

    A balance between cell proliferation and cell loss is essential for tumor progression. Although up to 90% of cells are lost in late-stage carcinomas, the progression and characteristics of remnant living cells in tumor mass are unclear. Here we used molecular imaging to track the progression of living cells in a syngeneic tumor model, and ex vivo investigated the properties of this population at late-stage tumor. The piggyBac transposon system was used to stably introduce the dual reporter genes, including monomeric red fluorescent protein (mRFP) and herpes simplex virus type-1 thymidine kinase (HSV1-tk) genes for fluorescence-based and radionuclide-based imaging of tumor growth in small animals, respectively. Iodine-123-labeled 5-iodo-2′-fluoro-1-beta-&#x1D49F;-arabinofuranosyluracil was used as a radiotracer for HSV1-tk gene expression in tumors. The fluorescence- and radionuclide-based imaging using the single-photon emission computed tomography/computed tomography revealed that the number of living cells reached the maximum at 1 week after implantation of 4T1 tumors, and gradually decreased and clustered near the side of the body until 4 weeks accompanied by enlargement of tumor mass. The remnant living cells at late-stage tumor were isolated and investigated ex vivo. The results showed that these living cells could form mammospheres and express cancer stem cell (CSC)-related biomarkers, including octamer-binding transcription factor 4, SRY (sex-determining region Y)-box 2, and CD133 genes compared with those cultured in vitro. Furthermore, this HSV1-tk-expressing CSC-like population was sensitive to ganciclovir applied for the suicide therapy. Taken together, the current data suggested that cells escaping from cell loss in late-stage tumors exhibit CSC-like characteristics, and HSV1-tk may be considered a theranostic agent for targeting this population in vivo. PMID:23034334

  2. Giant cell tumor of the spine.

    PubMed

    Ozaki, Toshifumi; Liljenqvist, Ulf; Halm, Henry; Hillmann, Axel; Gosheger, Georg; Winkelmann, Winfried

    2002-08-01

    Six patients with giant cell tumor of the spine had surgery between 1981 and 1995. Three lesions were located in the scrum, two lesions were in the thoracic spine, and one lesion was in the lumbar spine. Preoperatively, all patients had local pain and neurologic symptoms. Two patients had cement implanted after curettage or intralesional excision of the sacral tumor; one patient had a local relapse. After the second curettage and cement implantation, the tumor was controlled. One patient with a sacral lesion had marginal excision and spondylodesis; no relapse developed. Two patients with thoracic lesions had planned marginal excision and spondylodesis; the margins finally became intralesional, but no relapse developed. One patient with a lumbar lesion had incomplete removal of the tumor and received postoperative irradiation. At the final followup (median, 69 months), five of six patients were disease-free and one patient died of disease progression. Two of the five surviving patients had pain after standing or neurologic problems. Although some contamination occurred, planning a marginal excision of the lesion seems beneficial for vertebral lesions above the sacrum. Total sacrectomy of a sacral lesion seems to be too invasive when cement implantation can control the lesion.

  3. Proteolysis during Tumor Cell Extravasation In Vitro: Metalloproteinase Involvement across Tumor Cell Types

    PubMed Central

    Voura, Evelyn B.; English, Jane L.; Yu, Hoi-Ying E.; Ho, Andrew T.; Subarsky, Patrick; Hill, Richard P.; Hojilla, Carlo V.; Khokha, Rama

    2013-01-01

    To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment. PMID:24194929

  4. Tumor-Mediated Suppression of Dendritic Cell Vaccines

    DTIC Science & Technology

    2005-03-01

    presence of 10 ng/ml of TGF-P for 6 days. (A) DCs were incubated with 2x10 5 splenic T cells isolated from C57/ BL6 mice for 5 days with the addition...intensity (MFI) at 37°C minus 4°C. D, DCs were incubated with 2 X 105 splenic T cells isolated from C57/ BL6 mice for 5 days with the addition of [3H...or MCA-106 fibrosarcoma 1863 TGF-13 NEUTRALIZING ANTIBODY AND DCs yields equally effective vaccines against B16 tumors in mice. J. Surg., 68: 79-91, 20

  5. Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines.

    PubMed

    Gerelchuluun, Ariungerel; Hong, Zhengshan; Sun, Lue; Suzuki, Kenshi; Terunuma, Toshiyuki; Yasuoka, Kiyoshi; Sakae, Takeji; Moritake, Takashi; Tsuboi, Koji

    2011-01-01

    To clarify the properties of clinical high-energy protons by comparing with clinical high-energy X-rays. Human tumor cell lines, ONS76 and MOLT4, were irradiated with 200 MeV protons or 10 MV X-rays. In situ DNA double-strand breaks (DDSB) induction was evaluated by immunocytochemical staining of phosphorylated histone H2AX (γ-H2AX). Apoptosis was measured by flow-cytometry after staining with Annexin V. The relative biological effectiveness (RBE) was obtained by clonogenic survival assay. DDSB induction was significantly higher for protons than X-rays with average ratios of 1.28 (ONS76) and 1.59 (MOLT4) at 30 min after irradiation. However the differences became insignificant at 6 h. Also, apoptosis induction in MOLT4 cells was significantly higher for protons than X-rays with an average ratio of 2.13 at 12 h. However, the difference became insignificant at 20 h. RBE values of protons to X-rays at 10% survival were 1.06 ± 0.04 and 1.02 ± 0.15 for ONS76 and MOLT4, respectively. Cell inactivation may differ according to different timings and/or endpoints. Proton beams demonstrated higher cell inactivation than X-rays in the early phases. These data may facilitate the understanding of the biological properties of clinical proton beams.

  6. Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweigert, S.E.; Carroll, D.

    1990-11-01

    Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detectedmore » directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.« less

  7. Influence of caffeine on X-ray-induced killing and mutation in V79 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, S.B.; Bhattacharyya, N.; Chatterjee, S.

    1987-02-01

    Effects produced by caffeine on X-irradiated Chinese hamster V79 cells depended on the growth conditions of the cells. For exponentially growing cells, nontoxic concentrations of caffeine decreased the shoulder width from the survival curve, but the slope remained unchanged. The yield of mutants under the same conditions also remained unaffected. In case of density-inhibited cells, delaying trypsinization for 24 h after X irradiation increased the survival and decreased the yield of mutants. The presence of caffeine during this incubation period inhibited such recovery and significantly increased the yield of X-ray-induced mutants.

  8. Genetic tagging of tumor cells with retrovirus vectors: Clonal analysis of tumor growth and metastasis in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korczak; Robson, I.B.; Lamarche, C.

    1988-08-01

    Retrovirus vector infection was used to introduce large numbers of unique genetic markers into tumor cell populations for the purpose of analyzing comparative changes in the clonal composition of metastatic versus that of nonmetastatic tumors during their progressive growth in vivo. The cell lines were SP1, a nonmetastatic, aneuploid mouse mammary adenocarcinoma, and SP1HU9L, a metastatic variant of SP1. Cells were infected with ..delta..e..delta..rhoMoTn, a replication-defective retrovirus vector which possesses the dominant selectable neo gene and crippled long terminal repeats. G418/sup r/ colonies were obtained at a frequency of 4 x 10/sup -3/. Southern blot analysis of a number ofmore » clones provided evidence of random and heritable integration of one or two copies of the proviral DNA. Clonal equation of primary tumor growth and the nature of lineage relationships among spontaneous metastases and primary tumors were analyzed by subcutaneously injecting 10/sup 5/ cells from a pooled mixture of 3.6 x 10/sup 2/ G418/sup r/ SP1HU9L or 10/sup 4/ G418/sup r/ SP1 colonies into syngeneic CBA/J mice. The most striking finding was the relative clonal homogeneity of advanced primary tumors; they invariably consisted of a small number (less than 10) of distinct clones despite the fact that hundreds of thousands of uniquely marked clones had been injected.« less

  9. Scanning and transmission electron microscopy of the damage to small intestinal mucosa following X irradiation or hyperthermia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, K.E.; Hume, S.P.; Marigold, J.C.

    Scanning and transmission electron microscopy (S.E.M. and T.E.M.) and resin histology have been used to investigate the effects on mouse small intestinal villi of heating at 43 degrees C for 20 minutes and of irradiation with 10 Gy X-rays. Damage after irradiation included conical villi and giant cells. Damage after heating included the production of conical and rudimentary villi and the stacking of enterocytes. Individual cells showed signs of abnormalities in their cell membranes, nuclei and cytoplasmic components. The differences in the response after irradiation and hyperthermia are linked to the fact that heating has a primary effect on villousmore » structure, whereas irradiation mainly affects the proliferative pool of crypt cells.« less

  10. Perivascular epithelioid cell tumor (PEComa) of abdominal cavity from falciform ligament: a case report.

    PubMed

    Choi, Cheol Woong; Kim, Tae Oh; Kim, Kyung Yeob; Lee, Sun Mi; Kim, Gwang Ha; Kang, Dae Hwan; Song, Geun Am; Kim, Suk; Kim, Dae Hwan

    2009-04-01

    We present a case of perivascular epithelioid cell tumors (PEComas) in the abdominal cavity at the falciform ligament. A 30-yr-old Korean man visited to hospital for the evaluation of a growing, palpable abdominal mass. He had felt the mass growing over 6 months. There was no family or personal history of tuberous sclerosis. The resected specimen showed a mass of 8.0x7.0x5.5 cm in size. Histological examination showed sheets of spindle-to-epithelioid cells with clear-to-eosinophilic cytoplasm. Immunohistochemically, tumor cells were positive for HMB-4 (gp100) and smooth muscle actin. They were also positive for the S-100, which is a marker of neurogenic and melanocytic tumors. Patient was treated with radical resection of tumor without any adjuvant therapy. He is well and on follow-up visits without tumor recurrence.

  11. An artemisinin-mediated ROS evolving and dual protease light-up nanocapsule for real-time imaging of lysosomal tumor cell death.

    PubMed

    Huang, Liwei; Luo, Yingping; Sun, Xian; Ju, Huangxian; Tian, Jiangwei; Yu, Bo-Yang

    2017-06-15

    Lysosomes are critical organelles for cellular homeostasis and can be used as potential targets to kill tumor cells from inside. Many photo-therapeutic methods have been developed to overproduce reactive oxygen species (ROS) to trigger lysosomal membrane permeabilization (LMP)-associated cell death pathway. However, these technologies rely on extra irradiation to activate the photosensitizers, which limits the applications in treating deep seated tumors and widespread metastatic lesions. This work reports a multifunctional nanocapsule to achieve targeted lysosomal tumor cell death without irradiation and real-time monitoring of drug effect through encapsulating artemisinin and dual protease light-up nanoprobe in a folate-functionalized liposome. The nanocapsule can be specifically uptaken by tumor cells via folate receptor-mediated endocytosis to enter lysosomes, in which artemisinin reacts with ferrous to generate ROS for LMP-associated cell death. By virtue of confocal fluorescence imaging, the artemisinin location in lysosome, ROS-triggered LMP and ultimate cell apoptosis can be visualized with the cathepsin B and caspase-3 activatable nanoprobe. Notably, the artemisinin-mediated ROS evolving for tumor therapy and real-time therapeutic monitoring were successfully implemented by living imaging in tumor-bearing mice, which broaden the nanocapsule for in vivo theranostics and may offer new opportunities for precise medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Long-term cognitive effects of human stem cell transplantation in the irradiated brain.

    PubMed

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L

    2014-09-01

    Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function.

  13. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset.

    PubMed

    Gualde, N; Goodwin, J S

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [3H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [3H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  14. In vitro effects of tetraiodothyroacetic acid combined with X-irradiation on basal cell carcinoma cells.

    PubMed

    Leith, John T; Davis, Paul J; Mousa, Shaker A; Hercbergs, Aleck A

    2017-02-16

    We investigated radiosensitization in an untreated basal cell carcinoma (TE.354.T) cell line and post-pretreatment with tetraiodothyroacetic acid (tetrac) X 1 h at 37°C, 0.2 and 2.0 µM tetrac. Radioresistant TE.354.T cells were grown in modified medium containing fibroblast growth factor-2, stem cell factor-1 and a reduced calcium level. We also added reproductively inactivated (30 Gy) "feeder cells" to the medium. The in vitro doubling time was 34.1 h, and the colony forming efficiency was 5.09 percent. These results were therefore suitable for clonogenic radiation survival assessment. The 250 kVp X-ray survival curve of control TE.354.T cells showed linear-quadratic survival parameters of α X-ray = 0.201 Gy -1 and β X-ray = 0.125 Gy -2 . Tetrac concentrations of either 0.2 or 2.0 µM produced α X-ray and β X-ray parameters of 2.010 and 0.282 Gy -1 and 2.050 and 0.837 Gy -2 , respectively. The surviving fraction at 2 Gy (SF 2 ) for control cells was 0.581, while values for 0.2 and 2.0 µM tetrac were 0.281 and 0.024. The SF 2 data show that tetrac concentrations of 0.2 and 2.0 µM sensitize otherwise radioresistant TE.354.T cells by factors of 2.1 and 24.0, respectively. Thus, radioresistant basal cell carcinoma cells may be radiosensitized pharmacologically by exposure to tetrac.

  15. Combining heavy ion radiation and artificial microRNAs to target the homologous recombination repair gene efficiently kills human tumor cells.

    PubMed

    Zheng, Zhiming; Wang, Ping; Wang, Hongyan; Zhang, Xiangming; Wang, Minli; Cucinotta, Francis A; Wang, Ya

    2013-02-01

    Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles

    PubMed Central

    Hu, Chenxia; Niestroj, Martin; Yuan, Daniel; Chang, Steven; Chen, Jie

    2015-01-01

    Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain). Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension) form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs) with thio-PEG (polyethylene glycol) and thio-glucose, the resulting functionalized GNPs (Glu-GNPs) were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients) was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line) were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design

  17. Synthesis of Creatine in X-irradiated Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerurkar, M. K.; Sahasrabudhe, M. B.

    1960-01-01

    BS>Synthesis and excretion of creatine and creatinine in total-body x- irradiated (600 n) rats were investigated. Irradiated rats exhibited a marked creatinuria, whereas creatinine excretion was only slightly increased in comparison to that of non-irradiated control animals. The increased creatine excretion after irradiation was ascribed to accelerated synthesis in the liver and greater release from the muscle. In vitro studies on the synthesis of creatine in liver homogenates revealed that the synthetic activity decreased immediately after irradiation but at later intervals showed a marked rise. The immediate fall in the creatine synthesis was not due to decreased availability of ATPmore » or glutathione. Administration of nicotinamide to animals, to inhibit the new creatine synthesis in the liver. indicated that although the creatine formation in the liver of x-irradiated rats was elevated. it could not account for more than a small fraction of the creatinuria observed. Most of the urinary creatine originated from the muscle, probably because of the impaired reconversion of creatine to phosphocreatine. Since the muscle ATP-creatine transphosphorylase activity was not affected by irradiation, it is suggested that the mobilization of muscle creatine to cause creatinuria is probably due to the diminution of glycolysis in the muscle of irradiated animals.« less

  18. Sertoli-Leydig cell tumor

    MedlinePlus

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The Sertoli cells are normally located in the male reproductive glands (the testes). They feed sperm cells. The Leydig cells, also ...

  19. Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Rood, Kyle D.; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Sengupta, Shramik; Viator, John A.

    2011-03-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are inadequately sensitive. Patients must wait until secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and flow through the blood or lymph system can provide data for diagnosing and monitoring cancer. Our group utilizes the photoacoustic effect to detect metastatic melanoma cells, which contain the pigmented granule melanin. As a rapid laser pulse irradiates melanoma, the melanin undergoes thermo-elastic expansion and ultimately creates a photoacoustic wave. Thus, melanoma patient's blood samples can be enriched, leaving the melanoma in a white blood cell (WBC) suspension. Irradiated melanoma cells produce photoacoustic waves, which are detected with a piezoelectric transducer, while the optically transparent WBCs create no signals. Here we report an isolation scheme utilizing two-phase flow to separate detected melanoma from the suspension. By introducing two immiscible fluids through a t-junction into one flow path, the analytes are compartmentalized. Therefore, the slug in which the melanoma cell is located can be identified and extracted from the system. Two-phase immiscible flow is a label free technique, and could be used for other types of pathological analytes.

  20. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Zhiming; Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia; Wang Ping

    2013-02-01

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials:more » Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.« less

  1. Mechanisms of taste bud cell loss after head and neck irradiation

    PubMed Central

    Nguyen, Ha M.; Reyland, Mary E.; Barlow, Linda A.

    2012-01-01

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on a progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of X-ray irradiation to the head and neck, and analyzed taste epithelium at 1–21 days post-irradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1–3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5–7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5–6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using BrdU birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1–2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. By contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement underlies taste loss after irradiation. PMID:22399770

  2. A Reevaluation of X-Irradiation Induced Phocomelia and Proximodistal Limb Patterning

    PubMed Central

    Galloway, Jenna L.; Delgado, Irene; Ros, Maria A.; Tabin, Clifford J.

    2009-01-01

    Phocomelia is a devastating, rare congenital limb malformation in which the long bones are shorter than normal, with the upper portion of the limb being most severely affected. In extreme cases, the hands or fingers are attached directly to the shoulder and the most proximal elements (those closest to the shoulder) are entirely missing. This disorder, previously known in both autosomal recessive and sporadic forms, showed a dramatic increase in incidence in the early 1960’s due to the tragic toxicological effects of the drug thalidomide, which had been prescribed as a mild sedative1, 2. This human birth defect is mimicked in developing chick limb buds exposed to X-irradiation3-5. Both X-irradiation5 and thalidomide-induced phocomelia5, 6 have been interpreted as patterning defects in the context of the Progress Zone Model, which states that a cell’s proximodistal (PD) identity is determined by the length of time spent in a distal limb region termed the “Progress Zone” 7. Indeed, studies of X-irradiation induced phocomelia have served as one of the two major experimental lines of evidence supporting the validity of the Progress Zone Model. Here, using a combination of molecular analysis and lineage tracing, we show that X-irradiation-induced phocomelia is fundamentally not a patterning defect, but rather results from a time-dependent loss of skeletal progenitors. As skeletal condensation proceeds from the shoulder to fingers (in a proximal to distal direction), the proximal elements are differentially affected in limb buds exposed to radiation at early stages. This conclusion changes the framework for considering the effect of thalidomide and other forms of phocomelia, suggesting the possibility that the etiology lies not in a defect in the patterning process, but rather in progenitor cell survival and differentiation. Moreover, molecular evidence that PD patterning is unaffected following X-irradiation does not support the predictions of the Progress Zone

  3. Heavy-ion conformal irradiation in the shallow-seated tumor therapy terminal at HIRFL.

    PubMed

    Li, Qiang; Dai, Zhongying; Yan, Zheng; Jin, Xiaodong; Liu, Xinguo; Xiao, Guoqing

    2007-11-01

    Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

  4. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), andmore » OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.« less

  5. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    PubMed Central

    Man, Yan-gao; Stojadinovic, Alexander; Mason, Jeffrey; Avital, Itzhak; Bilchik, Anton; Bruecher, Bjoern; Protic, Mladjan; Nissan, Aviram; Izadjoo, Mina; Zhang, Xichen; Jewett, Anahid

    2013-01-01

    It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness. PMID:23386907

  6. Contrast-enhanced ultrasound evaluation of pancreatic cancer xenografts in nude mice after irradiation with sub-threshold focused ultrasound for tumor ablation

    PubMed Central

    Wang, Rui; Guo, Qian; Chen, Yi Ni; Hu, Bing; Jiang, Li Xin

    2017-01-01

    We evaluated the efficacy of contrast-enhanced ultrasound for assessing tumors after irradiation with sub-threshold focused ultrasound (FUS) ablation in pancreatic cancer xenografts in nude mice. Thirty tumor-bearing nude mice were divided into three groups: Group A received sham irradiation, Group B received a moderate-acoustic energy dose (sub-threshold), and Group C received a high-acoustic energy dose. In Group B, B-mode ultrasound (US), color Doppler US, and dynamic contrast-enhanced ultrasound (DCE-US) studies were conducted before and after irradiation. After irradiation, tumor growth was inhibited in Group B, and the tumors shrank in Group C. In Group A, the tumor sizes were unchanged. In Group B, contrast-enhanced ultrasound (CEUS) images showed a rapid rush of contrast agent into and out of tumors before irradiation. After irradiation, CEUS revealed contrast agent perfusion only at the tumor periphery and irregular, un-perfused volumes of contrast agent within the tumors. DCE-US perfusion parameters, including peak intensity (PI) and area under the curve (AUC), had decreased 24 hours after irradiation. PI and AUC were increased 48 hours and 2weeks after irradiation. Time to peak (TP) and sharpness were increased 24 hours after irradiation. TP decreased at 48 hours and 2 weeks after irradiation. CEUS is thus an effective method for early evaluation after irradiation with sub-threshold FUS. PMID:28402267

  7. SIDE-EFFECTS OF COMBINED RADIATION AND CHEMOTHERAPY IN THE TREATMENT OF MALIGNANT TUMORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottoman, R.E.; Langdon, E.A.; Rochlin, D.B.

    1963-12-01

    A study was made of the effects of 5-fluorouracil (FU) and x irradiation, separately and in combination, upon multiple metastatic tumors within individual patients. Fourteen cases satisfied the criteria for a controlled study. In 4, the effects of irradiation alone were greater than the combination, in 4 the effects were equal, and in 6 the effects of irradiation were less than those of combination therapy. This study failed to demonstrate a significant alteration in the tumor response by the addition of FU to x irradiation. Four instances of unusual reactions in previously irradiated skin were noted following FU administration. (auth)

  8. Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells

    PubMed Central

    Alotaibi, Moureq; Sharma, Khushboo; Saleh, Tareq; Povirk, Lawrence F.; Hendrickson, Eric A.; Gewirtz, David A.

    2016-01-01

    Radiotherapy continues to be a primary modality in the treatment of cancer. DNA damage induced by radiation can promote apoptosis as well as both autophagy and senescence, where autophagy and senescence can theoretically function to prolong tumor survival. A primary aim of this work was to investigate the hypothesis that autophagy and/or senescence could be permissive for DNA repair, thereby facilitating tumor cell recovery from radiation-induced growth arrest and/or cell death. In addition, studies were designed to elucidate the involvement of autophagy and senescence in radiation sensitization by PARP inhibitors and the re-emergence of a proliferating tumor cell population. In the context of this work, the relationship between radiation-induced autophagy and senescence was also determined. Studies were performed using DNA repair proficient HCT116 colon carcinoma cells and a repair deficient Ligase IV (−/−) isogenic cell line. Irradiation promoted a parallel induction of autophagy and senescence that was strongly correlated with the extent of persistent H2AX phosphorylation in both cell lines; however inhibition of autophagy failed to suppress senescence, indicating that the two responses were dissociable. Irradiation resulted in a transient arrest in the HCT116 cells while arrest was prolonged in the Ligase IV (−/−) cells; however, both cell lines ultimately recovered proliferative function, which may reflect maintenance of DNA repair capacity. The PARP inhibitors (Olaparib) and (Niraparib) increased the extent of persistent DNA damage induced by radiation as well as the extent of both autophagy and senescence; neither cell line underwent significant apoptosis by radiation alone or in the presence of the PARP inhibitors. Inhibition of autophagy failed to attenuate radiation sensitization, indicating that autophagy was not involved in the action of the PARP inhibitors. As with radiation alone, despite sensitization by PARP inhibition, proliferative

  9. Radiation induction of drug resistance in RIF-1: Correlation of tumor and cell culture results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moulder, J.E.; Hopwood, L.E.; Volk, D.M.

    1991-02-01

    The RIF-1 tumor line contains cells that are resistant to various anti-neoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), adriamycin (ADR), and etoposide (VP16). The frequency of these drug-resistant cells is increased after irradiation. The frequency of drug-resistant cells and the magnitude of radiation-induced drug resistance are different in cell culture than in tumors. The dose-response and expression time relationships for radiation induction of drug resistance observed in RIF-1 tumors are unusual.We hypothesize that at high radiation doses in vivo, we are selecting for cells that are both drug resistant and radiation resistant due to microenvironmental factors, whereas at low radiationmore » doses in vivo and all radiation doses in vitro, we are observing true mutants. These studies indicate that there can be significant differences in drug-resistance frequencies between tumors and their cell lines of origin, and that radiation induction of drug resistance depends significantly on whether the induction is done in tumors or in cell culture. These results imply that theories about the induction of drug resistance that are based on cell culture studies may be inapplicable to the induction of drug resistance in tumors.« less

  10. Escape From Tumor Cell Dormancy

    DTIC Science & Technology

    2011-10-01

    addressed using a novel organotypic bioreactor in which tumor cells can be followed for weeks to months, the process of seeding, dormancy and...and Kupffer cells (months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for fluorescence (months 1-6) 5. label tumor... cells for mass reporting (months 3-9) Objective 2: 1. generate liver organ bioreactors for tumor cell seeding (months 3-24) 2. seed organotypic

  11. ECG CHANGES AFTER X-RAY IRRADIATION OF THE HEART REGION (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gral, T.; Gral, J.

    1963-03-01

    The problem of radioinduced damage of the myocardium after irradiation of the heart region for mammary carcinoma or intrathoracic tumors is discussed. Analysis of patient material, including 34 cases with mammary carcinomas on the left side and 14 cases with intrathoracic tumors, showed considerable ECG-changes (ECG = electrocardiogram) in 18 and in 6 cases, respectively. Because of these results, it is assumed that damage of the myocardium caused by irradiation is possible during tangential irradiation of mammary carcinomas on the left side. This could be of importance in the future wellbeing of the patients. (auth)

  12. Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro.

    PubMed

    Sekhejane, Palesa R; Houreld, Nicolette N; Abrahamse, Heidi

    2011-08-01

    This study investigated the effect of low-intensity laser irradiation (LILI) on pro-inflammatory cytokines involved in wound healing processes in diabetes and hypoxia. Diabetes is associated with impaired wound healing and a prolonged inflammatory phase. Pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6 are elevated in diabetes. LILI has been reported to accelerate wound healing and decrease inflammatory cytokines. A human skin fibroblast cell line (WS1) was used in vitro. Cells were exposed to various insults, namely, wounding, and a diabetic or hypoxic environment. Experimental cells were exposed to an energy density of 5  J/cm(2) using a continuous wave 636-nm diode laser at an average power of 95  mW, an illuminated area of 9.05  cm(2), and an irradiance of 11 mW/cm(2) (irradiation time, 476  sec). The effect of laser irradiation on cytokine expression was examined at 1 or 24  h post-irradiation. Cellular morphology, viability, proliferation, and cytokine expression (IL-1β, IL-6, and TNF-α) were investigated. Translocation of nuclear factor-kappa B (NF-κB) was also determined. There was a higher rate of migration in irradiated wounded cultures, and irradiated hypoxic cells showed an improvement in cellular morphology. All cell models showed an increase in proliferation. Normal wounded cells showed a decrease in apoptosis, TNF-α, and IL-1β. Diabetic wounded cells showed an increase in viability and a decrease in apoptosis and IL-1β, whereas hypoxic cells showed an increase in viability and IL-6, and a decrease in apoptosis and TNF-α. NF-κB was translocated into the nucleus post-irradiation. Phototherapy resulted in hastened wound closure, increased proliferation, and normalization of cellular function. The decrease in the different pro-inflammatory cytokines and NF-κB translocation was model and time dependent. Overall, laser irradiation resulted in a reduction in inflammatory cytokines and

  13. Late orthopedic effects in children with Wilms' tumor treated with abdominal irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rate, W.R.; Butler, M.S.; Robertson, W.W. Jr.

    1991-01-01

    Between 1970 and 1984, 31 children with biopsy-proven Wilms' tumor received nephrectomy, chemotherapy, and abdominal irradiation and were followed beyond skeletal maturity. Three patients (10%) developed late orthopedic abnormalities requiring intervention. Ten children received orthovoltage irradiation, and all cases requiring orthopedic intervention or developing a scoliotic curve of greater than 20 degrees were confined to this group, for a complication frequency of 50%. Those children who developed a significant late orthopedic abnormality (SLOA) as defined were treated to a higher median dose (2,890 cGy) and a larger field size (150 cm2) than those who did not (2,580 cGy and 120more » cm2). Age at irradiation, sex, and initial stage of disease did not appear to influence the risk of developing an SLOA. No child who received megavoltage irradiation developed an SLOA despite treatment up to 4,000 cGy or to field sizes of 400 cm2. We conclude that modern radiotherapy techniques rarely lead to significant late orthopedic abnormalities previously associated with abdominal irradiation in children with Wilms' tumor.« less

  14. Targeted microbubbles with ultrasound irradiation and PD-1 inhibitor to increase antitumor activity in B-cell lymphoma.

    PubMed

    Zheng, Shiya; Song, Dan; Jin, Xiaoxiao; Zhang, Haijun; Aldarouish, Mohanad; Chen, Yan; Wang, Cailian

    2018-02-01

    Severe cardiac toxicity of doxorubicin and an immunosuppressive tumor micro-environment become main obstacles for the effective treatment of B-cell lymphoma. In this research, rituximab-conjugated and doxorubicin-loaded microbubbles (RDMs) were designed for exploring a combination approach of targeted microbubbles with ultrasound (US) irradiation and PD-1 inhibitor to overcome obstacles mentioned above. In vivo studies were performed on SU-DHL-4 cell-grafted mice and ex vivo studies were performed on CD20 + human SU-DHL-4 cells and human T cells. A greater therapeutic effect and higher expression of PD-L1 protein expression were obtained with RDMs with US irradiation in vivo. A significant inhibitory effect on SU-DHL-4 B-cell lymphoma cells was observed after treated by RDMs with US irradiation and PD-1 inhibitor ex vivo. Combination of RDMs with US irradiation and PD-1 inhibitor could be a promising therapeutic strategy for B-cell lymphoma.

  15. Temperature dependence of damage coefficient in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.

  16. Tumor stem cells: A new approach for tumor therapy (Review)

    PubMed Central

    MENG, MIN; ZHAO, XIN-HAN; NING, QIAN; HOU, LEI; XIN, GUO-HONG; LIU, LI-FENG

    2012-01-01

    Recent studies have demonstrated the existence of a minority of tumor cells possessing the stem cell properties of self-renewal and differentiation in leukemia and several solid tumors. However, these cells do not possess the normal regulatory mechanisms of stem cells. Following transplantation, they are capable of initiating tumorigenesis and are therefore known as ‘tumor stem cells’. Cellular origin analysis of tumor stem cells has resulted in three hypotheses: Embryonal rest hypothesis, anaplasia and maturation arrest. Several signaling pathways which are involved in carcinogenesis, including Wnt/β-catenin, Notch and Oct-4 signaling pathways are crucial in normal stem cell self-renewal decisions, suggesting that breakdown in the regulation of self-renewal may be a key event in the development of tumors. Thus, tumors can be regarded as an abnormal organ in which stem cells have escaped from the normal constraints on self-renewal, thus, leading to abnormally differentiated tumor cells that lose the ability to form tumors. This new model for maligancies has significance for clinical research and treatment. PMID:22844351

  17. NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy?

    PubMed Central

    Huergo-Zapico, Leticia; Parodi, Monica; Pedrazzi, Marco; Mingari, Maria Cristina; Sparatore, Bianca; Gonzalez, Segundo; Olive, Daniel; Bottino, Cristina

    2016-01-01

    Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue. PMID:27294158

  18. Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors.

    PubMed

    Badie, B; Kramar, M H; Lau, R; Boothman, D A; Economou, J S; Black, K L

    1998-05-01

    Patients with malignant gliomas continue to have very poor prognosis even after surgical resection, radiation and chemotherapy. Because these tumors often have alterations in the p53 tumor suppressor gene, which plays a key role in the cellular response to DNA damaging agents, we investigated the role of p53 gene therapy in conjunction with ionizing radiation in a rat brain tumor model. Exposure of cultured rat 9L gliosarcoma cells, which contain a mutant p53 gene, to a recombinant adenovirus-vector bearing the wild-type p53 gene (Adp53), induced apoptosis within 24 hours. Although ionizing radiation had no additional effect on apoptosis within this time frame, it caused G1 arrest in non-apoptotic cells after Adp53 therapy. In contrast, wild-type 9L cells demonstrated little G1 arrest after X-irradiation. When animals bearing brain tumors were irradiated after intratumoral Adp53 injections, more than 85% reduction in tumor size was noted. Moreover, the group of rats receiving both radiation and Adp53 therapy had a significant increase in survival as compared to animals receiving either therapy alone. These results support the use of p53 gene therapy as an adjunct to radiation in treatment of malignant brain tumors.

  19. Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells.

    PubMed

    Oberg, Hans H; Kellner, Christian; Gonnermann, Daniel; Sebens, Susanne; Bauerschlag, Dirk; Gramatzki, Martin; Kabelitz, Dieter; Peipp, Matthias; Wesch, Daniela

    2018-01-01

    An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2) 2 xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2) 2 xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2) 2 xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2) 2 xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2) 2 xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2) 2 xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant

  20. Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells

    PubMed Central

    Oberg, Hans H.; Kellner, Christian; Gonnermann, Daniel; Sebens, Susanne; Bauerschlag, Dirk; Gramatzki, Martin; Kabelitz, Dieter; Peipp, Matthias; Wesch, Daniela

    2018-01-01

    An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)2xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)2xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)2xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)2xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)2xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)2xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of

  1. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles

    PubMed Central

    Ma, Jingwei; Zhang, Yi; Tang, Ke; Zhang, Huafeng; Yin, Xiaonan; Li, Yong; Xu, Pingwei; Sun, Yanling; Ma, Ruihua; Ji, Tiantian; Chen, Junwei; Zhang, Shuang; Zhang, Tianzhen; Luo, Shunqun; Jin, Yang; Luo, Xiuli; Li, Chengyin; Gong, Hongwei; Long, Zhixiong; Lu, Jinzhi; Hu, Zhuowei; Cao, Xuetao; Wang, Ning; Yang, Xiangliang; Huang, Bo

    2016-01-01

    Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparticles (T-MPs) containing anti-tumor drugs. TRCs, by virtue of being more deformable than differentiated cancer cells, preferentially take up T-MPs that release anti-tumor drugs after entering cells, which in turn lead to death of TRCs. The underlying mechanisms include interfering with drug efflux and promoting nuclear entry of the drugs. Our findings demonstrate the importance of tumor cell softness in uptake of T-MPs and effectiveness of a novel approach in reversing drug resistance of TRCs with promising clinical applications. PMID:27167569

  2. Proteomic analysis of effects by x-rays and heavy ion in HeLa cells.

    PubMed

    Bing, Zhitong; Yang, Guanghui; Zhang, Yanan; Wang, Fengling; Ye, Caiyong; Sun, Jintu; Zhou, Guangming; Yang, Lei

    2014-06-01

    Carbon ion therapy may be better against cancer than the effects of a photon beam. To investigate a biological advantage of carbon ion beam over X-rays, the radioresistant cell line HeLa cells were used. Radiation-induced changes in the biological processes were investigated post-irradiation at 1 h by a clinically relevant radiation dose (2 Gy X-ray and 2 Gy carbon beam). The differential expression proteins were collected for analysing biological effects. The radioresistant cell line Hela cells were used. In our study, the stable isotope labelling with amino acids (SILAC) method coupled with 2D-LC-LTQ Orbitrap mass spectrometry was applied to identity and quantify the differentially expressed proteins after irradiation. The Western blotting experiment was used to validate the data. A total of 123 and 155 significantly changed proteins were evaluated with treatment of 2 Gy carbon and X-rays after radiation 1 h, respectively. These deregulated proteins were found to be mainly involved in several kinds of metabolism processes through Gene Ontology (GO) enrichment analysis. The two groups perform different response to different types of irradiation. The radioresistance of the cancer cells treated with 2 Gy X-rays irradiation may be largely due to glycolysis enhancement, while the greater killing effect of 2 Gy carbon may be due to unchanged glycolysis and decreased amino acid metabolism.

  3. Comparison of DSB effects of the beta particles of iodine-131 and 6 MV X-ray at a dose of 2 Gy in the presence of 2-Methoxyestradiol, IUdR, and TPT in glioblastoma spheroids

    NASA Astrophysics Data System (ADS)

    Neshasteh-Riz, Ali; Eyvazzadeh, Nazila; Koosha, Fereshteh; Cheraghi, Susan

    2017-02-01

    Glioblastoma is one of the lethal brain tumors and one of the resistant tumors against radiotherapy. Multiple treatment methods and different types of radiation and Radiosensitizers drugs have been combined to optimize the efficacy of radiotherapy. Radiosensitizers are employed to reinforce tumor cell killing and have much fewer effects on the normal tissue. Inducing DNA double strand break in tumoral cells is a major goal of radiation sensitivity. In this study, the level of DNA double strand break in glioblastoma spheroids irradiated by 2 Gy beta particles of iodine-131 and 6 MV X-rays in the presence of 2-Methoxyestradiol (2ME2), iodo-deoxy-uridine (IUdR) and Topotecan (TPT) was measured using the PicoGreen method. Spheroids of the U87MG cell line were cultured to reach a 300 μm diameter. In the phase one of the study, the spheroids were treated in four groups individually, including 2 Gy of iodine-131, TPT+iodine-131, IUdR+iodine-131, IUdR+2ME2+iodine-131. In the next phase, the cells were treated with 2 Gy of 6 MV X-ray, TPT+6 MV X-ray, IUdR+6 MV X-ray, TPT+IUdR+6 MV X-ray. DSB lesions were measured by the Pico Green assay. The amount of DSB lesions in groups irradiated with iodine-131 individually was greater than the group irradiated with 6 MV X-ray (p<0.05). DNA double strand breaks became more significant in combination with TPT. However, the amount of DSBs in the two independent groups of TPT+IUdR+2ME2+iodine-131 and TPT+IUdR+2ME2+6 MV X-ray was approximately in the same range (P>0.05). The level of DNA double strand breaks in cells irradiated with Iodine-131 was higher than cells irradiated with 6 MV X-ray at the same dose and Topotecan had a positive effect on inducing the damage. The role of 2ME2+IUdR in increasing the damage caused by beta particles of iodine-131 was not significant. Iodine-131 could lead to major DSB damage than 6 MV X-ray at the same dose due to its cross fire effect and spatial distribution of energy in different angels. This

  4. A Multimodal Approach Including Craniospinal Irradiation Improves the Treatment Outcome of High-risk Intracranial Nongerminomatous Germ Cell Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jun Won; Kim, Woo Chul; Cho, Jae Ho

    2012-11-01

    Purpose: To evaluate whether a multimodal approach including craniospinal irradiation (CSI) improves treatment outcome in nongerminomatous germ cell tumor (NGGCT) patients. Methods and Materials: We reviewed the records of 32 patients with NGGCTs. Fourteen patients belonged to the intermediate prognosis group (immature teratoma, teratoma with malignant transformation, and mixed tumors mainly composed of germinoma or teratoma), and 18 patients belonged to the poor prognosis group (other highly malignant tumors). Patients with pure germinoma or mature teratoma were excluded from this study. Nineteen patients were treated with a combination of surgery, chemotherapy, and radiotherapy (RT); 9 patients received chemotherapy plus RT;more » 3 patients received surgery plus RT; and 1 patient received RT alone. Twenty-seven patients received CSI with a median of 36 Gy (range, 20-41 Gy) plus focal boost of 18-30.6 Gy, and 5 patients received whole-brain RT (WBRT) (20-36 Gy) or focal RT (50.4-54 Gy). The rate of total and subtotal resection was 71.9%. The median follow-up for surviving patients was 121 months. Results: Treatment failed in 7 patients. Three of the 5 patients who received focal RT or WBRT had local failure. Four cerebrospinal fluid (CSF) failures occurred after CSI. No failure occurred in the intermediate prognosis group. Ten-year recurrence-free survival (RFS) and overall survival (OS) for all patients were 77.6% and 74.6%, respectively. Ten-year RFS for the intermediate and poor prognosis groups were 100% and 61.1%, respectively (p = 0.012). OS for the two groups were 85.1% and 66.7%, respectively (p = 0.215). Tumor histology and CSI were significant prognostic factors for RFS, and CSI was significantly associated with OS. Conclusions: A multimodal approach was effective for treating NGGCTs. CSI should be considered for patients with poor prognostic histology.« less

  5. Correlations between radiation-induced double strand breaks, cell division delay, and cyclin-dependent signaling in x-irradiated NIH3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Cariveau, Mickael J.

    2005-07-01

    Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.

  6. Non-invasive Photodynamic Therapy in Brain Cancer by Use of Tb3+-Doped LaF3 Nanoparticles in Combination with Photosensitizer Through X-ray Irradiation: A Proof-of-Concept Study

    NASA Astrophysics Data System (ADS)

    Chen, Min-Hua; Jenh, Yi-Jhen; Wu, Sheng-Kai; Chen, Yo-Shen; Hanagata, Nobutaka; Lin, Feng-Huei

    2017-01-01

    The use of photodynamic therapy (PDT) in the treatment of brain cancer has produced exciting results in clinical trials over the past decade. PDT is based on the concept that a photosensitizer exposed to a specific light wavelength produces the predominant cytotoxic agent, to destroy tumor cells. However, delivering an efficient light source to the brain tumor site is still a challenge. The light source should be delivered by placing external optical fibers into the brain at the time of surgical debulking of the tumor. Consequently, there exists the need for a minimally invasive treatment for brain cancer PDT. In this study, we investigated an attractive non-invasive option on glioma cell line by using Tb3+-doped LaF3 scintillating nanoparticles (LaF3:Tb) in combination with photosensitizer, meso-tetra(4-carboxyphenyl)porphyrin (MTCP), followed by activation with soft X-ray (80 kVp). Scintillating LaF3:Tb nanoparticles, with sizes of approximately 25 nm, were fabricated. The particles have a good dispersibility in aqueous solution and possess high biocompatibility. However, significant cytotoxicity was observed in the glioma cells while the LaF3:Tb nanoparticles with MTCP were exposed under X-ray irradiation. The study has demonstrated a proof of concept as a non-invasive way to treat brain cancer in the future.

  7. Round Cell Tumors: Classification and Immunohistochemistry.

    PubMed

    Sharma, Shweta; Kamala, R; Nair, Divya; Ragavendra, T Raju; Mhatre, Swapnil; Sabharwal, Robin; Choudhury, Basanta Kumar; Rana, Vivek

    2017-01-01

    Round cell tumors as the name suggest are comprised round cells with increased nuclear-cytoplasmic ratio. This group of tumor includes entities such as peripheral neuroectodermal tumor, rhabdomyosarcoma, synovial sarcoma, non-Hodgkin's lymphoma, neuroblastoma, hepatoblastoma, Wilms' tumor, and desmoplastic small round cell tumor. These round cells tumors are characterized by typical histological pattern, immunohistochemical, and electron microscopic features that can help in differential diagnosis. The present article describes the classification and explains the histopathology and immunohistochemistry of some important round cell tumors.

  8. Pyruvate kinase M2 interacts with DNA damage-binding protein 2 and reduces cell survival upon UV irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiao; Wang, Mingsong; Mei, Ju, E-mail: jumei_xinhua@163.com

    Pyruvate Kinase M2 (PKM2) is highly expressed in many solid tumors and associated with metabolism reprogramming and proliferation of tumors. Here, we report that PKM2 can bind to DNA Damage-Binding Protein 2 (DDB2), which is necessary for global nucleotide excision repair of UV induced DNA damage. The binding is promoted by UV irradiation and K433 acetylation of PKM2. Over expression of PKM2 facilitates phosphorylation of DDB2 and impairs DDB2-DDB1 binding. Furthermore, knocking down of PKM2 increases cell survival upon UV irradiation, while over expression of PKM2 reduces cell survival and over expression of DDB2-DDB1 reverts this effect. These results revealmore » a previously unknown regulation of PKM2 on DDB2 and provide a possible mechanism for UV induced tumorigenesis. - Highlights: • PKM2 interacts with DDB2. • UV irradiation increases PKM2-DDB2 binding via up regulation of PKM2 K433 acetylation. • PKM2 facilitates DDB2 phosphorylation and impairs DDB2-DDB1 binding. • PKM2 reduces cell survival upon UV irradiation.« less

  9. High-Dose, Single-Fraction Irradiation Rapidly Reduces Tumor Vasculature and Perfusion in a Xenograft Model of Neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay

    Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis ofmore » tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.« less

  10. Using X-Ray In-Line Phase-Contrast Imaging for the Investigation of Nude Mouse Hepatic Tumors

    PubMed Central

    Zhang, Lu; Luo, Shuqian

    2012-01-01

    The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI). The projection images' texture feature based on gray level co-occurrence matrix (GLCM) and dual-tree complex wavelet transforms (DTCWT) were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM). Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA) of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors. PMID:22761929

  11. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.

    PubMed

    Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu

    2011-11-01

    Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and

  12. General Information about Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

    MedlinePlus

    ... Islet Cell Tumors) Treatment (PDQ®)–Patient Version General Information About Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Go ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures.

    PubMed

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania; Straten, Per thor; Andersen, Mads Hald; Svane, Inge Marie

    2012-01-01

    Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded TILs from MM and HNSCC demonstrate a heterogeneous composition in frequency and magnitude of tumor associated antigen specific populations by Elispot IFNγ quantitation. TILs from MM and HNSCC shared reactivity towards NY ESO-1, cyclin B1 and Bcl-x derived peptides. Additionally we show that dominating T-cell clones and functionality persists through out expansion among an oligoclonal composition of T-cells. Our findings mirror prior results on the oligoclonal composition of TIL cultures, further indicating a potential for a broader repertoire of specific effector cells recognizing the heterogeneous tumors upon adoptive transfer; increasing the probability of tumor control by minimizing immune evasion by tumor cell escape variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Influence of tumor cell proliferation and sex-hormone receptors on effectiveness of radiation therapy for dogs with incompletely resected meningiomas.

    PubMed

    Théon, A P; Lecouteur, R A; Carr, E A; Griffey, S M

    2000-03-01

    To assess the influence of tumor cell proliferation and sex-hormone receptors on the efficacy of megavoltage irradiation for dogs with incompletely resected meningiomas. Longitudinal clinical trial. 20 dogs with incompletely resected intracranial meningiomas. Dogs were treated with 48 Gy of radiation administered 3 times per week on an alternate-day schedule of 4 Gy/fraction for 4 weeks, using bilateral parallel-opposed fields. Tumor proliferative fraction measured by immunohistochemical detection of proliferating cell nuclear antigen (PFPCNA index) ranged from 10 to 42% (median, 24%). Progesterone receptor immunoreactivity was detected in 70% of tumors. Estrogen receptor immunoreactivity was not detected. An inverse correlation was found between detection of progesterone receptors and the PFPCNA index. The overall 2-year progression-free survival (PFS) rate was 68%. The only prognostic factor that significantly affected PFS rate was the PFPCNA index. The 2-year PFS was 42% for tumors with a high PFPCNA index (value > or = 24%) and 91% for tumors with a low PFPCNA index (value < 24%). Tumors with a high PFPCNA index were 9.1 times as likely to recur as were tumors with a low PFPCNA index. This study confirms the value of irradiation for dogs with incompletely resected meningiomas. Prognostic value of the PFPCNA index suggests-that duration of treatment and interval from surgery to start of irradiation may affect outcome. Loss of progesterone receptors in some tumors may be responsible for an increase in PFPCNA index and may indirectly affect prognosis after radiation therapy.

  15. Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver.

    PubMed

    Decker, Ningling Kang; Abdelmoneim, Soha S; Yaqoob, Usman; Hendrickson, Helen; Hormes, Joe; Bentley, Mike; Pitot, Henry; Urrutia, Raul; Gores, Greg J; Shah, Vijay H

    2008-10-01

    Tumor progression is regulated through paracrine interactions between tumor cells and stromal cells in the microenvironment, including endothelial cells and myofibroblasts. Nitric oxide (NO) is a key molecule in the regulation of tumor-microenvironment interactions, although its precise role is incompletely defined. By using complementary in vitro and in vivo approaches, we studied the effect of endothelial NO synthase (eNOS)-derived NO on liver tumor growth and metastasis in relation to adjacent stromal myofibroblasts and matrix because liver tumors maintain a rich, vascular stromal network enriched with phenotypically heterogeneous myofibroblasts. Mice with an eNOS deficiency developed liver tumors more frequently in response to carcinogens compared with control animals. In a surgical model of pancreatic cancer liver metastasis, eNOS overexpression in the tumor microenvironment attenuated both the number and size of tumor implants. NO promoted anoikis of tumor cells in vitro and limited their invasive capacity. Because tumor cell anoikis and invasion are both regulated by myofibroblast-derived matrix, we explored the effect of NO on tumor cell protease expression. Both microarray and Western blot analysis revealed eNOS-dependent down-regulation of the matrix protease cathepsin B within tumor cells, and silencing of cathepsin B attenuated tumor cell invasive capacity in a similar manner to that observed with eNOS overexpression. Thus, a NO gradient within the tumor microenvironment influences tumor progression through orchestrated molecular interactions between tumor cells and stroma.

  16. Autologous tumor cells engineered to express bacterial antigens.

    PubMed

    Ramiya, Vijayakumar K; Jerald, Maya M; Lawman, Patricia D; Lawman, Michael J P

    2014-01-01

    Cancer immunotherapies are emerging as promising treatment modalities in the management of the disease. As a result, cancer vaccines are considered to be immensely crucial in preventing recurrence, a well-known nemesis in cancer patients because they have the potential to activate memory antitumor immunity. Due to poor antigenicity and self-tolerance, most tumor antigens require interventional vaccine therapies to provide an adequate "danger" signal to the immune system in order to activate a robust, clinically meaningful antitumor immunity. It has been postulated that this requirement may be achieved by providing bacterial and/or viral immunogens to prime this type of immune response. Briefly, we provide here a method of transfecting whole tumor cells with plasmid DNA encoding an immunogenic bacterial protein such as Emm55, which was derived from Streptococcus pyogenes (S. pyogenes). Subsequent inactivation of the transfected cells by irradiation (100 Gray) prevents replication. This type of whole-cell vaccine, e.g., ImmuneFx™, has demonstrated activity in a murine neuroblastoma model, in canine lymphoma patients with naturally occurring disease, and in many cancer types in companion animals. The protocols described in this chapter provide the necessary materials and methodologies to manufacture such a vaccine.

  17. Mechanisms of taste bud cell loss after head and neck irradiation.

    PubMed

    Nguyen, Ha M; Reyland, Mary E; Barlow, Linda A

    2012-03-07

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.

  18. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo

    PubMed Central

    Brönnimann, Daniel; Bouchet, Audrey; Schneider, Christoph; Potez, Marine; Serduc, Raphaël; Bräuer-Krisch, Elke; Graber, Werner; von Gunten, Stephan; Laissue, Jean Albert; Djonov, Valentin

    2016-01-01

    Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25–100 μm wide) and minibeams (200–800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a+ thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool. PMID:27640676

  19. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo.

    PubMed

    Brönnimann, Daniel; Bouchet, Audrey; Schneider, Christoph; Potez, Marine; Serduc, Raphaël; Bräuer-Krisch, Elke; Graber, Werner; von Gunten, Stephan; Laissue, Jean Albert; Djonov, Valentin

    2016-09-19

    Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25-100 μm wide) and minibeams (200-800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a(+) thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool.

  20. Comparative study of spermatogonial survival after X-ray exposure, high LET (HZE) irradiation or spaceflight

    NASA Technical Reports Server (NTRS)

    Sapp, W. J.; Williams, C. S.; Williams, J. W.; Philpott, D. E.; Kato, K.; Miquel, J. M.; Serova, L.

    1992-01-01

    Spermatogonial cell loss has been observed in rats flown on Space Lab 3, Cosmos 1887, Cosmos 2044 and in mice following irradiation with X-ray or with HZE particle beams. Spermatogonial loss is determined by cell counting in maturation stage-6 seminferous tubules. With the exception of iron, laboratory irradiation experiments (with mice) revealed a similar pattern of spermatogonial loss proportional to the radiation dose at levels less than 0.1 Gy. Helium and argon irradiation resulted in a 5-percent loss of spermatogonia after only 0.01 Gy exposure. Significant spermatogonial loss (45 percent) occurred at this radiation level with iron particle beams. The loss of spermatogonia during each spaceflight was less than 10 percent when compared to control (nonflight) animals.

  1. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, H.; Seon, B.K.

    1987-05-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Asciticmore » and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.« less

  2. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    PubMed

    Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  3. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

    PubMed Central

    Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246

  4. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    PubMed

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  5. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    PubMed Central

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772

  6. Feasibility of carbon-ion radiotherapy for re-irradiation of locoregionally recurrent, metastatic, or secondary lung tumors.

    PubMed

    Hayashi, Kazuhiko; Yamamoto, Naoyoshi; Karube, Masataka; Nakajima, Mio; Tsuji, Hiroshi; Ogawa, Kazuhiko; Kamada, Tadashi

    2018-05-01

    Intrathoracic recurrence after carbon-ion radiotherapy for primary or metastatic lung tumors remains a major cause of cancer-related deaths. However, treatment options are limited. Herein, we report on the toxicity and efficacy of re-irradiation with carbon-ion radiotherapy for locoregionally recurrent, metastatic, or secondary lung tumors. Data of 95 patients with prior intrathoracic carbon-ion radiotherapy who were treated with re-irradiation with carbon-ion radiotherapy at our institution between 2006 and 2016 were retrospectively analyzed. Seventy-three patients (76.8%) had primary lung tumors and 22 patients (23.2%) had metastatic lung tumors. The median dose of initial carbon-ion radiotherapy was 52.8 Gy (relative biological effectiveness) and the median dose of re-irradiation was 66.0 Gy (relative biological effectiveness). None of the patients received concurrent chemotherapy. The median follow-up period after re-irradiation was 18 months. In terms of grade ≥3 toxicities, one patient experienced each of the following: grade 5 bronchopleural fistula, grade 4 radiation pneumonitis, grade 3 chest pain, and grade 3 radiation pneumonitis. The 2-year local control and overall survival rates were 54.0% and 61.9%, respectively. In conclusion, re-irradiation with carbon-ion radiotherapy was associated with relatively low toxicity and moderate efficacy. Re-irradiation with carbon-ion radiotherapy might be an effective treatment option for patients with locoregionally recurrent, metastatic, or secondary lung tumors. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.

    PubMed

    Townley, Helen E; Rapa, Elizabeth; Wakefield, Gareth; Dobson, Peter J

    2012-05-01

    We report significant and controlled cell death using novel x-ray-activatable titania nanoparticles (NPs) doped with lanthanides. Preferential incorporation of such materials into tumor tissue can enhance the effect of radiation therapy. Herein, the incorporation of gadolinium into the NPs is designed to optimize localized energy absorption from a conventional medical x-ray. This result is further optimized by the addition of other rare earth elements. Upon irradiation, energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species (ROS). The authors report significant and controlled cell death using x-ray-activated titania nanoparticles doped with lanthanides as enhancers. Upon irradiation X-ray energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Escape from Tumor Cell Dormancy

    DTIC Science & Technology

    2012-10-01

    bioreactor has been developed (oxygen sensing) to improve monitoring of the physiological status of the cultures ; as cells are stimulated by inflammation...therapeutics but of prevention and possibly lifestyle avoidance. Herein, these issues are addressed using a novel organotypic bioreactor in which tumor cells ...months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for fluorescence (months 1-6) 5. label tumor cells for mass

  9. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    PubMed

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  10. Annealing results on low-energy proton-irradiated GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Kachare, R.; Anspaugh, B. E.; O'Meara, L.

    1988-01-01

    AlGaAs/GaAs solar cells with an approximately 0.5-micron-thick Al(0.85)Ga(0.15)As window layer were irradiated using normal and isotropic incident protons having energies between 50 and 500 keV with fluence up to 1 x 10 to the 12th protons/sq cm. The irradiated cells were annealed at temperatures between 150 and 300 C in nitrogen ambient. The annealing results reveal that significant recovery in spectral response at longer wavelengths occurred. However, the short-wavelength spectral response showed negligible annealing, irrespective of the irradiation energy and annealing conditions. This indicates that the damage produced near the AlGaAs/GaAs interface and the space-charge region anneals differently than damage produced in the bulk. This is explained by using a model in which the as-grown dislocations interact with irradiation-induced point defects to produce thermally stable defects.

  11. Membrane-derived second messenger regulates x-ray-mediated tumor necrosis factor alpha gene induction.

    PubMed Central

    Hallahan, D E; Virudachalam, S; Kuchibhotla, J; Kufe, D W; Weichselbaum, R R

    1994-01-01

    Cells adapt to adverse environmental conditions through a wide range of responses that are conserved throughout evolution. Physical agents such as ionizing radiation are known to initiate a stress response that is triggered by the recognition of DNA damage. We have identified a signaling pathway involving the activation of phospholipase A2 and protein kinase C in human cells that confers x-ray induction of the tumor necrosis factor alpha gene. Treatment of human cells with ionizing radiation or H2O2 was associated with the production of arachidonic acid. Inhibition of phospholipase A2 abolished radiation-mediated arachidonate production as well as the subsequent activation of protein kinase C and tumor necrosis factor alpha gene expression. These findings demonstrate that ionizing radiation-mediated gene expression in human cells is regulated in part by extranuclear signal transduction. One practical application of phospholipase A2 inhibitors is to ameliorate the adverse effects of radiotherapy associated with tumor necrosis factor alpha production. Images PMID:8197153

  12. EVOLUTION OF SARCOMA 37 IN CF1 RATS. BIOLOGICAL ASPECTS OF THE SPONTANEOUS CURE OF TUMORS STUDIED AFTER IRRADIATION AND ADMINISTRATION OF IMMUNE SERUM. Evolucao do sarcoma 37 em muganhos CF1. Aspectos biologicos da cura espontianea do tumor estudados apos irradiacao e administracao de soro imune (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clode, William H.

    Transplants of sarcoma 37 were studied in regard to spontaneous regression of the tumor after irradiation and after the administration of immune serum. The following results were obtained: 1. Of 809 animals, 99% developed the tumor after transplantation; 2. The number of cells transplanted did not influence the growth rate, the percentage of spontaneous regressions, or the life spans of the animals; 3. Reimplantation of the tumor into mice which had previously rejected the tumor resulted in very few successful transplants; 4. The resistance of these mice to further attempts at implantation could not be altered by previous irradiation; 5.more » Animals transplanted for the first time suffer a faster evolution of the tumor, shortened life span, and a diminution of spontaneous regressions if they have been irradiated prior to transplantation (400r whole body); and, 6. Resistance to tumor growth could not be transferred passively in serum of mice which had rejected the tumor.« less

  13. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  14. Intensity-Modulated and 3D-Conformal Radiotherapy for Whole-Ventricular Irradiation as Compared With Conventional Whole-Brain Irradiation in the Management of Localized Central Nervous System Germ Cell Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Michael Jenwei, E-mail: michaelchen@einstein.b; Silva Santos, Adriana da; Sakuraba, Roberto Kenji

    Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluatedmore » at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.« less

  15. NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8+ T cells for tumor promotion.

    PubMed

    Li, Liwen; Han, Lei; Sun, Fan; Zhou, Jingjiao; Ohaegbulam, Kim C; Tang, Xudong; Zang, Xingxing; Steinbrecher, Kris A; Qu, Zhaoxia; Xiao, Gutian

    2018-01-01

    Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8 + cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated. Here, using an endogenous lung cancer model we uncover a direct crosstalk between TAMs and CTLs. TAMs suppress CTLs through the T-cell inhibitory molecule B7x (B7-H4/B7S1) in a cell-cell contact manner, whereas CTLs kill TAMs in a tumor antigen-specific manner. Remarkably, TAMs secrete the known T-cell suppressive cytokine interleukin-10 (IL-10) to activate, but not to repress, CTLs. Notably, one major role of cell-intrinsic NF-κB RelA is to drive TAMs to suppress CTLs for tumor promotion. It induces B7x expression in TAMs directly, and restricts IL-10 expression indirectly by repressing expression of the NF-κB cofactor Bcl3 and subsequent Bcl3/NF-κB1-mediated transcription of IL-10. It also renders TAMs resistant to CTLs by up-regulating anti-apoptotic genes. These studies help understand how immunity is shaped in lung tumorigenesis, and suggest a RelA-targeted immunotherapy for this deadliest cancer.

  16. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature

    PubMed Central

    Geng, Ling; Rachakonda, Girish; Morré, D. James; Morré, Dorothy M.; Crooks, Peter A.; Sonar, Vijayakumar N.; Roti, Joseph L. Roti; Rogers, Buck E.; Greco, Suellen; Ye, Fei; Salleng, Kenneth J.; Sasi, Soumya; Freeman, Michael L.; Sekhar, Konjeti R.

    2009-01-01

    There is a need for novel strategies that target tumor vasculature, specifically those that synergize with cytotoxic therapy, in order to overcome resistance that can develop with current therapeutics. A chemistry-driven drug discovery screen was employed to identify novel compounds that inhibit endothelial cell tubule formation. Cell-based phenotypic screening revealed that noncytotoxic concentrations of (Z)-(±)-2-(1-benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2. 2.2]octan-3-ol (analog I) and (Z)-(±)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (analog II) inhibited endothelial cell migration and the ability to form capillary-like structures in Matrigel by ≥70%. The ability to undergo neoangiogenesis, as measured in a window-chamber model, was also inhibited by 70%. Screening of biochemical pathways revealed that analog II inhibited the enzyme ENOX1 (EC50 = 10 μM). Retroviral-mediated shRNA suppression of endothelial ENOX1 expression inhibited cell migration and tubule formation, recapitulating the effects observed with the small-molecule analogs. Genetic or chemical suppression of ENOX1 significantly increased radiation-mediated Caspase3-activated apoptosis, coincident with suppression of p70S6K1 phosphorylation. Administration of analog II prior to fractionated X-irradiation significantly diminished the number and density of tumor microvessels, as well as delayed syngeneic and xenograft tumor growth compared to results obtained with radiation alone. Analysis of necropsies suggests that the analog was well tolerated. These results suggest that targeting ENOX1 activity represents a novel therapeutic strategy for enhancing the radiation response of tumors.—Geng, L., Rachakonda, G., Morré, D. J., Morré, D. M., Crooks, P. A., Sonar, V. N., Roti Roti, J. L., Rogers, B. E., Greco, S., Ye, F., Salleng, K. J., Sasi, S., Freeman, M. L., Sekhar, K. R. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while

  17. EFFECT OF X-IRRADIATION ON THE CELLULAR AND HUMORAL RESPONSES TO ANTIGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speirs, R.S.

    1962-01-01

    Mice were immunized by 6 subcutaneous injections of tetanus toxoid before exposure to 500 r x radiation. At various times after irradiation the animals were challenged with intraperitoneal injections of tetanus toxoid and serum antibody titers were determined. Results indicate that the time of irradiation in relation to antigen injection greatly influences the cellular response as well as antibody production. High radiation doses prior to antigen injection reduce the number of cells capable of responding and also inhibit the production of antibody. As the animals recovered from the effects of irradiation the production of antibody appeared to reflect the capacitymore » of the eosinophils to respond. It was concluded that eosinophils play an intermediate role in the cellular everts that lead to the production of antibody. (C.H.)« less

  18. Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance.

    PubMed

    Gallez, Bernard; Neveu, Marie-Aline; Danhier, Pierre; Jordan, Bénédicte F

    2017-08-01

    Tumor hypoxia has long been considered as a detrimental factor for the response to irradiation. In order to improve the sensitivity of tumors cells to radiation therapy, tumor hypoxia may theoretically be alleviated by increasing the oxygen delivery or by decreasing the oxygen consumption by tumor cells. Mathematical modelling suggested that decreasing the oxygen consumption should be more efficient than increasing oxygen delivery in order to alleviate tumor hypoxia. In this paper, we review several promising strategies targeting the mitochondrial respiration for which alleviation of tumor hypoxia and increase in sensitivity to irradiation have been demonstrated. Because the translation of these approaches into the clinical arena requires the use of pharmacodynamics biomarkers able to identify shift in oxygen consumption and tumor oxygenation, we also discuss the relative merits of imaging biomarkers (Positron Emission Tomography and Magnetic Resonance) that may be used for therapeutic guidance. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Structure of the replication fork in ultraviolet light-irradiated human cells.

    PubMed Central

    Cordeiro-Stone, M; Schumacher, R I; Meneghini, R

    1979-01-01

    The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork. PMID:233582

  20. Structure of the replication fork in ultraviolet light-irradiated human cells.

    PubMed

    Cordeiro-Stone, M; Schumacher, R I; Meneghini, R

    1979-08-01

    The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork.

  1. Isolation and initial characterization of thermoresistant RIF tumor cell strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, G.M.; van Kersen, I.

    1988-04-01

    Heat-resistant cell strains were obtained from RIF-1 mouse tumor cells by repeated heatings of cells derived from survivors of previous heating cycles (60 min; 45/sup 0/C). Twenty thermally resistant (TR) strains were derived from single cells that had survived 11 heating and regrowth cycles. These were then analyzed for appropriate characteristics in vitro and in vivo. In vitro we looked for: marked heat resistance; high plating efficiency; growth rate similar to that of RIF-1 cells; and no obvious morphological abnormalities. In syngeneic hosts, we looked for: ability of the cells to form tumors whose growth rates were similar to thatmore » of RIF-1 tumors; high cellular heat resistance; good plating efficiency of tumor-derived cells; and low immunogenicity. Five strains having these desired characteristics were analyzed for survival kinetics. The heat-resistant phenotype was found to be stable in vitro, although partial reversion in vivo was seen occasionally. The break in the Arrhenius plot was found to occur at 45/sup 0/C in TR strains versus 43/sup 0/C in RIF-1. All TR strains and the RIF-1 line developed similar levels of thermotolerance (as defined by slope ratios) when given isosurvival heat exposures. X-ray responses of TR and RIF-1 cells were indistinguishable both with respect to survival and to heat-induced radiosensitization. While the number of live cells required to give tumor takes in 50% of the recipients for TR strains was appreciably higher than that for RIF-1 cells, radiation-killed cells from none of the strains were able to immunize efficiently against subsequent challenges by live cells.« less

  2. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    PubMed

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  3. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression.

    PubMed

    Ji, Xiangming; Qian, Jun; Rahman, S M Jamshedur; Siska, Peter J; Zou, Yong; Harris, Bradford K; Hoeksema, Megan D; Trenary, Irina A; Heidi, Chen; Eisenberg, Rosana; Rathmell, Jeffrey C; Young, Jamey D; Massion, Pierre P

    2018-05-23

    Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.

  4. Metastatic potential of tumor-initiating cells in solid tumors.

    PubMed

    Adhikari, Amit S; Agarwal, Neeraj; Iwakuma, Tomoo

    2011-01-01

    The lethality of cancer is mainly caused by its properties of metastasis, drug resistance, and subsequent recurrence. Understanding the mechanisms governing these properties and developing novel strategies to overcome them will greatly improve the survival of cancer patients. Recent findings suggest that tumors are comprised of heterogeneous cell populations, and only a small fraction of these are tumorigenic with the ability to self-renew and produce phenotypically diverse tumor cell populations. Cells in this fraction are called tumor-initiating cells (TICs) or cancer stem cells (CSCs). TICs have been identified from many types of cancer. They share several similarities with normal adult stem cells including sphere-forming ability, self-renewability, and expression of stem cell surface markers and transcription factors. TICs have also been proposed to be responsible for cancer metastasis, however, scarce evidence for their metastatic potential has been provided. In this review article, we have attempted to summarize the studies which have examined the metastatic potential of TICs in solid tumors.

  5. In Vitro Model of Tumor Cell Extravasation

    PubMed Central

    Jeon, Jessie S.; Zervantonakis, Ioannis K.; Chung, Seok; Kamm, Roger D.; Charest, Joseph L.

    2013-01-01

    Tumor cells that disseminate from the primary tumor and survive the vascular system can eventually extravasate across the endothelium to metastasize at a secondary site. In this study, we developed a microfluidic system to mimic tumor cell extravasation where cancer cells can transmigrate across an endothelial monolayer into a hydrogel that models the extracellular space. The experimental protocol is optimized to ensure the formation of an intact endothelium prior to the introduction of tumor cells and also to observe tumor cell extravasation by having a suitable tumor seeding density. Extravasation is observed for 38.8% of the tumor cells in contact with the endothelium within 1 day after their introduction. Permeability of the EC monolayer as measured by the diffusion of fluorescently-labeled dextran across the monolayer increased 3.8 fold 24 hours after introducing tumor cells, suggesting that the presence of tumor cells increases endothelial permeability. The percent of tumor cells extravasated remained nearly constant from1 to 3 days after tumor seeding, indicating extravasation in our system generally occurs within the first 24 hours of tumor cell contact with the endothelium. PMID:23437268

  6. Enrichment of circulating tumor cells from a large blood volume using leukapheresis and elutriation: proof of concept.

    PubMed

    Eifler, Robert L; Lind, Judith; Falkenhagen, Dieter; Weber, Viktoria; Fischer, Michael B; Zeillinger, Robert

    2011-03-01

    The aim of this study was to determine the applicability of a sequential process using leukapheresis, elutriation, and fluorescence-activated cell sorting (FACS) to enrich and isolate circulating tumor cells from a large blood volume to allow further molecular analysis. Mononuclear cells were collected from 10 L of blood by leukapheresis, to which carboxyfluorescein succinimidyl ester prelabeled CaOV-3 tumor cells were spiked at a ratio of 26 to 10⁶ leukocytes. Elutriation separated the spiked leukapheresates primarily by cell size into distinct fractions, and leukocytes and tumor cells, characterized as carboxyfluorescein succinimidyl ester positive, EpCAM positive and CD45 negative events, were quantified by flow cytometry. Tumor cells were isolated from the last fraction using FACS or anti-EpCAM coupled immunomagnetic beads, and their recovery and purity determined by fluorescent microscopy and real-time PCR. Leukapheresis collected 13.5 x 10⁹ mononuclear cells with 87% efficiency. In total, 53 to 78% of spiked tumor cells were pre-enriched in the last elutriation fraction among 1.6 x 10⁹ monocytes. Flow cytometry predicted a circulating tumor cell purity of ~90% giving an enrichment of 100,000-fold following leukapheresis, elutriation, and FACS, where CaOV-3 cells were identified as EpCAM positive and CD45 negative events. FACS confirmed this purity. Alternatively, immunomagnetic bead adsorption recovered 10% of tumor cells with a median purity of 3.5%. This proof of concept study demonstrated that elutriation and FACS following leukapheresis are able to enrich and isolate tumor cells from a large blood volume for molecular characterization. Copyright © 2010 International Clinical Cytometry Society.

  7. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; 21st Century Center of Excellence Program for Biomedical Research Using Accelerator Technology, Maebashi, Gunma

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependentmore » kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.« less

  8. TUBERCULOSIS AND LETHAL AS WELL AS SUBLETHAL WHOLE-BODY X-RAY IRRADIATION OF GUINEA PIGS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabler, E.

    1964-02-01

    Lethally total-body-x-ray-irradiated (550 r) and simultaneously Tb- infected guinea pigs died earlier (1.5 to 3.2 days) than lethally irradiated control animals. A tuberculous focus formation could not be found microscopically or macroscopically in these guinea pigs or in sublethally irradiated and simultaneously infected animals. However, in tubcrculous control animals, which were killed at this time, specific foci could be found in liver, spleen, and lungs. Using sublethal irradiation (300 r) and simultaneous Tb inoculation half of the animals died a radiation death and the rest died of tuberculosis. It was found that 86.4% of the animals die a radiation deathmore » and 13.5% because of tuberculosis when irradiated sublethally 30 days after infection. The greatest tuberculosis foci in these animais appeared in lungs, spleen, and especially in the liver ( destroyed iiver''). Tuberculous giant cells of the Langhans-type were missing in case of irradiation and simultaneous tuberculosis. They appeared again about 20 to 30 days after irradiation. The native resistance to tuberculosis was very reduced in cases of simultaneous exposure; radioinduced cell shortage and cell damage permit tuberculous focus formation only after overcoming the acute radiation syndrome in case of sublethal irradiations. (auth)« less

  9. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    PubMed

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian Junqiang; Ning Shouchen; Knox, Susan J., E-mail: sknox@stanford.ed

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5more » Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.« less

  11. LIGHT SCATTERING PROPERTIES OF GLIADIN AFTER X-RAY IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.

    1962-01-01

    The gliadin portion of wheat gluten prepared in 60% ethanol solution was investigated for its light scattering properties after x irradiation. Results show that the effect of irradiation depends on the quality of the sample, such as dry or wet. The average molecular weight of liadin decreased in accordance with the time of irradiation. The longer the irradiated time, the more SH groups were setfree. (P.C.H.)

  12. Disk irradiation and light curves of x ray novae

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Wheeler, J. C.; Mineshige, S.

    1994-01-01

    We study the disk instability and the effect of irradiation on outbursts in the black hole X-ray nova system. In both the optical and soft X-rays, the light curves of several X-ray novae, A0620-00, GH 2000+25, Nova Muscae 1991 (GS 1124-68), and GRO J0422+32, show a main peak, a phase of exponential decline, a secondary maximum or reflare, and a final bump in the late decay followed by a rapid decline. Basic disk thermal limit cycle instabilities can account for the rapid rise and overall decline, but not the reflare and final bump. The rise time of the reflare, about 10 days, is too short to represent a viscous time, so this event is unlikely to be due to increased mass flow from the companion star. We explore the possibility that irradiation by X-rays produced in the inner disk can produce these secondary effects by enhancing the mass flow rate within the disk. Two plausible mechanisms of irradiation of the disk are considered: direct irradiation from the inner hot disk and reflected radiation from a corona or other structure above the disk. Both of these processes will be time dependent in the context of the disk instability model and result in more complex time-dependent behavior of the disk structure. We test both disk instability and mass transfer burst models for the secondary flares in the presence of irradiation.

  13. Leydig cell tumor

    MedlinePlus

    Tumor - Leydig cell; Testicular tumor - Leydig; Testicular neoplasm ... your provider if you have symptoms of testicular cancer. ... Philadelphia, PA: Elsevier Saunders; 2014:chap 86. National Cancer ... cancer treatment (PDQ) - health professional version. www.cancer. ...

  14. WE-FG-BRA-01: Cancer Treatment Utilizing Photo-Activation of Psoralen with KV X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, M; Yoon, S; Meng, B

    Purpose: This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with immunogenic anti-cancer potential. Psoralen therapies have been limited due to the requirement for psoralen activation by UVA light. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and reradiate (phosphoresce) at UV wavelengths. Methods: The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed tomore » X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry to investigate treatment induced apoptosis. Methylene blue staining, and WST assays were also used. X-PACT was then evaluated in an in-vivo pilot study on BALBc mice with syngeneic 4T1 tumors, including control arms for X-PACT components. Analysis focused on tumor growth delay. Results: A multivariable regression analysis of 36 independent in-vitro irradiation experiments demonstrated that X-PACT induces significant tumor cell apoptosis and cytotoxicity on all three tumor cell lines in-vitro (p<0.0001). Neither psoralen nor phosphor alone had a strongly significant effect. The in-vivo studies show a pronounced tumor growth delay when compared to controls (42% reduction at 25 days, p=0.0002). Conclusions: These studies demonstrate for the first time a therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation generate UVA light in-situ (including deep seated lesions) which in-turn photo-activates powerful anticancer therapeutics

  15. Evaluation of a combination tumor treatment using thermo-triggered liposomal drug delivery and carbon ion irradiation.

    PubMed

    Kokuryo, Daisuke; Aoki, Ichio; Yuba, Eiji; Kono, Kenji; Aoshima, Sadahito; Kershaw, Jeff; Saga, Tsuneo

    2017-07-01

    The combination of radiotherapy with chemotherapy is one of the most promising strategies for cancer treatment. Here, a novel combination strategy utilizing carbon ion irradiation as a high-linear energy transfer (LET) radiotherapy and a thermo-triggered nanodevice is proposed, and drug accumulation in the tumor and treatment effects are evaluated using magnetic resonance imaging relaxometry and immunohistology (Ki-67, n = 15). The thermo-triggered liposomal anticancer nanodevice was administered into colon-26 tumor-grafted mice, and drug accumulation and efficacy was compared for 6 groups (n = 32) that received or did not receive the radiotherapy and thermo trigger. In vivo quantitative R 1 maps visually demonstrated that the multimodal thermosensitive polymer-modified liposomes (MTPLs) can accumulate in the tumor tissue regardless of whether the region was irradiated by carbon ions or not. The tumor volume after combination treatment with carbon ion irradiation and MTPLs with thermo-triggering was significantly smaller than all the control groups at 8 days after treatment. The proposed strategy of combining high-LET irradiation and the nanodevice provides an effective approach for minimally invasive cancer treatment. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo.

    PubMed

    Luo, Judong; Zhu, Wei; Tang, Yiting; Cao, Han; Zhou, Yuanyuan; Ji, Rong; Zhou, Xifa; Lu, Zhongkai; Yang, Hongying; Zhang, Shuyu; Cao, Jianping

    2014-03-25

    Cervical cancer is the third most common type of cancer in women worldwide and radiotherapy remains its predominant therapeutic treatment. Artesunate (ART), a derivative of artemisinin, has shown radiosensitization effect in previous studies. However, such effects of ART have not yet been revealed for cervical cancer cells. The effect of ART on radiosensitivity of human cervical cancer cell lines HeLa and SiHa was assessed using the clonogenic assay. Cell cycle progression and apoptosis alterations were analyzed by flow cytometry. For in vivo study, HeLa or SiHa cells were inoculated into nude mice to establish tumors. Tissues from xenografts were obtained to detect the changes of microvessel density, apoptosis and cell cycle distribution. Microarray was used to analyze differentially expressed genes. ART increased the radiosensitivity of HeLa cells (SER=1.43, P<0.001) but not of SiHa cells. Apoptosis and the G2-M phase transition induced by X-ray irradiation (IR) were enhanced by ART via increased Cyclin B1 expression in HeLa cells. Tumor growth of xenografts from HeLa but not SiHa cells was significantly inhibited by irradiation combined with ART (tumor volume reduction of 72.34% in IR+ART group vs. 41.22% in IR group in HeLa cells and 48.79% in IR+ART group vs. 44.03% in IR alone group in SiHa cells). Compared with the irradiated group, cell apoptosis was increased and the G2/M cell cycle arrest was enhanced in the group receiving irradiation combined with ART. Furthermore, compared with radiation alone, X-ray irradiation plus ART affected the expression of 203 genes that function in multiple pathways including RNA transport, the spliceosome, RNA degradation and p53 signaling. ART potently abrogates the G2 checkpoint control in HeLa cells. ART can induce radiosensitivity of HeLa cells in vitro and in vivo.

  17. Oncolytic vesicular stomatitis virus induces apoptosis in U87 glioblastoma cells by a type II death receptor mechanism and induces cell death and tumor clearance in vivo.

    PubMed

    Cary, Zachary D; Willingham, Mark C; Lyles, Douglas S

    2011-06-01

    Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for

  18. A radiotherapy technique to limit dose to neural progenitor cell niches without compromising tumor coverage

    PubMed Central

    Redmond, Kristin J.; Achanta, Pragathi; Grossman, Stuart A.; Armour, Michael; Reyes, Juvenal; Kleinberg, Lawrence; Tryggestad, Erik; Quinones-Hinojosa, Alfredo

    2015-01-01

    Radiation therapy (RT) for brain tumors is associated with neurocognitive toxicity which may be a result of damage to neural progenitor cells (NPCs). We present a novel technique to limit the radiation dose to NPC without compromising tumor coverage. A study was performed in mice to examine the rationale and another was conducted in humans to determine its feasibility. C57BL/6 mice received localized radiation using a dedicated animal irradiation system with on-board CT imaging with either: (1) Radiation which spared NPC containing regions; (2) Radiation which did not spare these niches; or (3) Sham irradiation. Mice were sacrificed 24 h later and the brains were processed for immunohistochemical Ki-67 staining. For the human component of the study, 33 patients with primary brain tumors were evaluated. Two intensity modulated radiotherapy (IMRT) plans were retrospectively compared: a standard clinical plan and a plan which spares NPC regions while maintaining the same dose coverage of the tumor. The change in radiation dose to the contralateral NPC-containing regions was recorded. In the mouse model, non-NPC-sparing radiation treatment resulted in a significant decrease in the number of Ki67+ cells in dentate gyrus (DG) (P = 0.008) and subventricular zone (SVZ) (P = 0.005) compared to NPC-sparing radiation treatment. In NPC-sparing clinical plans, NPC regions received significantly lower radiation dose with no clinically relevant changes in tumor coverage. This novel radiation technique should significantly reduce radiation doses to NPC containing regions of the brain which may reduce neurocognitive deficits following RT for brain tumors. PMID:21327710

  19. Application of carbon-ion beams or gamma-rays on primary tumors does not change the expression profiles of metastatic tumors in an in vivo murine model.

    PubMed

    Tamaki, Tomoaki; Iwakawa, Mayumi; Ohno, Tatsuya; Imadome, Kaori; Nakawatari, Miyako; Sakai, Minako; Tsujii, Hirohiko; Nakano, Takashi; Imai, Takashi

    2009-05-01

    To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.

  20. Vascular CD39/ENTPD1 Directly Promotes Tumor Cell Growth by Scavenging Extracellular Adenosine Triphosphate12

    PubMed Central

    Feng, Lili; Sun, Xiaofeng; Csizmadia, Eva; Han, Lihui; Bian, Shu; Murakami, Takashi; Wang, Xin; Robson, Simon C; Wu, Yan

    2011-01-01

    Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5′-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X7 receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X7 expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management. PMID:21390184

  1. Tumor cell migration in complex microenvironments

    PubMed Central

    Polacheck, William J.; Zervantonakis, Ioannis K.; Kamm, Roger D.

    2012-01-01

    Tumor cell migration is essential for invasion and dissemination from primary solid tumors and for the establishment of lethal secondary metastases at distant organs. In vivo and in vitro models enabled identification of different factors in the tumor microenvironment that regulate tumor progression and metastasis. However, the mechanisms by which tumor cells integrate these chemical and mechanical signals from multiple sources to navigate the complex microenvironment remain poorly understood. In this review, we discuss the factors that influence tumor cell migration with a focus on the migration of transformed carcinoma cells. We provide an overview of the experimental and computational methods that allow the investigation of tumor cell migration, and we highlight the benefits and shortcomings of the various assays. We emphasize that the chemical and mechanical stimulus paradigms are not independent and that crosstalk between them motivates the development of new assays capable of applying multiple, simultaneous stimuli and imaging the cellular migratory response in real-time. These next-generation assays will more closely mimic the in vivo microenvironment to provide new insights into tumor progression, inform techniques to control tumor cell migration, and render cancer more treatable. PMID:22926411

  2. Carbon ion radiotherapy performed as re-irradiation using active beam delivery in patients with tumors of the brain, skull base and sacral region.

    PubMed

    Combs, Stephanie E; Kalbe, Adriana; Nikoghosyan, Anna; Ackermann, Benjamin; Jäkel, Oliver; Haberer, Thomas; Debus, Jürgen

    2011-01-01

    To asses carbon ion radiation therapy (RT) performed as re-irradiation in 28 patients with recurrent tumors. Twenty-eight patients were treated with carbon ion RT as re-irradiation for recurrent chordoma and chondrosarcoma of the skull base (n=16 and n=2), one chordoma and one chondrosarcoma of the os sacrum, high-risk meningioma (n=3), adenoid-cystic carcinoma (n=4) as well as one SCCHN. All patients were treated using active raster scanning, and treatment planning was performed on CT- and MRI-basis. All patients were followed prospectively during follow-up. In all patients re-irradiation could be applied safely without interruptions. For skull base tumors, local tumor control after re-irradiation was 92% at 24 months and 64% at 36 months. Survival after re-irradiation was 86% at 24 months, and 43% at 60 months. In all three meningiomas treated with C12 for re-irradiation, the tumor recurrence was located within the former RT-field. Two patients developed tumor progression at 6 months, and in one patient the tumor remained stable for 67 months. In patients with head-and-neck tumors, three patients developed local tumor progression at 12, 24 and 29 months after re-irradiation. Median local progression-free survival was 24 months. For sacral tumors, re-irradiation offered palliation with tumor control for 24 and 36 months. Due to the physical characteristics particle therapy offers a new treatment modality in cases with tumor recurrences. With carbon ions, the additional biological benefits may be exploited for long-term tumor control. Further evaluation in a larger patients' cohort will be performed in the future. Copyright © 2010. Published by Elsevier Ireland Ltd.

  3. X-ray-induced bystander responses reduce spontaneous mutations in V79 cells

    PubMed Central

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomita, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10–5 (background level), and the frequency decreased to 5.3 × 10–6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. PMID:23660275

  4. Induction of DNA-strand breaks after X-irradiation in murine bone cells of various differentiation capacities

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hellweg, Christine E.; Kirchner, Simone; Baumstark-Khan, Christa

    survival curve of MLO-Y4 shows a broad shoulder, suggesting a high repair capacity or a high DNA damage or misrepair tolerance. The quantitative acquisition of DNA-strand breaks was performed by fluorescent analysis of DNA unwinding and revealed a high level of DNA damage immediately after X-irradiation, which increases dose dependently. In conclusion, the cell line with the highest differentiation level (MLO-Y4) displays lower radiation sensitivity, regarding the shoulder width of the dose-effect curve, compared to the less differentiated osteoblast cell lines.

  5. X-ray Irradiation Induced Reversible Resistance Change in Pt/TiO 2 /Pt Cells

    DOE PAGES

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; ...

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. But, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO 2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few ordersmore » of magnitude, depending on the intensity of impinging X-rays. Furthermore, we found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. In understanding X-ray-controlled reversible resistance changes we can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.« less

  6. X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells.

    PubMed

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; D'Aquila, Kenneth; Kim, Seong Keun; Kim, Jiyoon; Song, Seul Ji; Hwang, Cheol Seong; Eastman, Jeffrey A; Freeland, John W; Hong, Seungbum

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

  7. Capture of circulating tumor cells using photoacoustic flowmetry and two phase flow

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Rood, Kyle D.; Bhattacharyya, Kiran; DeSouza, Thiago; Sengupta, Shramik; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Viator, John A.

    2012-06-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are unable to detect early onset of metastatic disease. Patients must wait until macroscopic secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and travel through the blood or lymph system can provide data for diagnosing and monitoring metastatic disease. By irradiating enriched blood samples spiked with cultured melanoma cells with nanosecond duration laser light, we induced photoacoustic responses in the pigmented cells. Thus, we can detect and enumerate melanoma cells in blood samples to demonstrate a paradigm for a photoacoustic flow cytometer. Furthermore, we capture the melanoma cells using microfluidic two phase flow, a technique that separates a continuous flow into alternating microslugs of air and blood cell suspension. Each slug of blood cells is tested for the presence of melanoma. Slugs that are positive for melanoma, indicated by photoacoustic waves, are separated from the cytometer for further purification and isolation of the melanoma cell. In this paper, we evaluate the two phase photoacoustic flow cytometer for its ability to detect and capture metastastic melanoma cells in blood.

  8. Mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor in a ferret

    PubMed Central

    INOUE, Saki; YONEMARU, Kayoko; YANAI, Tokuma; SAKAI, Hiroki

    2014-01-01

    A 5-year-old male ferret presented with an enlarged canalicular testis in the left inguinal region. Microscopically, the enlarged testis consisted of a diffuse intimately admixed proliferation of c-kit-positive germ cell-like and Wilms tumor-1 protein-positive Sertoli cell-like components, but no Call-Exner body was detected. In addition, the compact proliferation of steroidogenic acute regulatory protein-intense positive interstitial cells was identified in a separate peripheral area of the mass. Based on histopathological and immunohistochemical findings, the tumor was diagnosed as a mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor. PMID:25311985

  9. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  10. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells.

    PubMed

    Ioannides, C G; Freedman, R S; Platsoucas, C D; Rashed, S; Kim, Y P

    1991-03-01

    CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.

  11. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    PubMed

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4 + CD49b + LAG-3 + T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25 + Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10 + Foxp3 - CD4 + T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  12. Total body irradiation in a patient with fragile X syndrome for acute lymphoblastic leukemia in preparation for stem cell transplantation: A case report and literature review.

    PubMed

    Collins, D T; Mannina, E M; Mendonca, M

    2015-10-01

    Fragile X syndrome (FXS) is a congenital disorder caused by expansion of CGG trinucleotide repeat at the 5' end of the fragile X mental retardation gene 1 (FMR1) on the X chromosome that leads to chromosomal instability and diminished serum levels of fragile X mental retardation protein (FMRP). Afflicted individuals often have elongated features, marfanoid habitus, macroorchidism and intellectual impairment. Evolving literature suggests the condition may actually protect from malignancy while chromosomal instability would presumably elevate the risk. Increased sensitivity to ionizing radiation should also be predicted by unstable sites within the DNA. Interestingly, in this report, we detail a patient with FXS diagnosed with acute lymphoblastic leukemia treated with induction followed by subsequent cycles of hyper-CVAD (cyclophosphamide, vincristine, doxorubicin, dexamethasone) with a complete response who then was recommended to undergo peripheral stem cell transplantation. The patient underwent total body irradiation (TBI) as a component of his conditioning regimen and despite the concern of his clinicians, developed minimal acute toxicity and successful engraftment. The pertinent literature regarding irradiation of patients with FXS is also reviewed. © 2015 Wiley Periodicals, Inc.

  13. Comparison of gene expression response to neutron and x-ray irradiation using mouse blood.

    PubMed

    Broustas, Constantinos G; Xu, Yanping; Harken, Andrew D; Garty, Guy; Amundson, Sally A

    2017-01-03

    In the event of an improvised nuclear device detonation, the prompt radiation exposure would consist of photons plus a neutron component that would contribute to the total dose. As neutrons cause more complex and difficult to repair damage to cells that would result in a more severe health burden to affected individuals, it is paramount to be able to estimate the contribution of neutrons to an estimated dose, to provide information for those making treatment decisions. Mice exposed to either 0.25 or 1 Gy of neutron or 1 or 4 Gy x-ray radiation were sacrificed at 1 or 7 days after exposure. Whole genome microarray analysis identified 7285 and 5045 differentially expressed genes in the blood of mice exposed to neutron or x-ray radiation, respectively. Neutron exposure resulted in mostly downregulated genes, whereas x-rays showed both down- and up-regulated genes. A total of 34 differentially expressed genes were regulated in response to all ≥1 Gy exposures at both times. Of these, 25 genes were consistently downregulated at days 1 and 7, whereas 9 genes, including the transcription factor E2f2, showed bi-directional regulation; being downregulated at day 1, while upregulated at day 7. Gene ontology analysis revealed that genes involved in nucleic acid metabolism processes were persistently downregulated in neutron irradiated mice, whereas genes involved in lipid metabolism were upregulated in x-ray irradiated animals. Most biological processes significantly enriched at both timepoints were consistently represented by either under- or over-expressed genes. In contrast, cell cycle processes were significant among down-regulated genes at day 1, but among up-regulated genes at day 7 after exposure to either neutron or x-rays. Cell cycle genes downregulated at day 1 were mostly distinct from the cell cycle genes upregulated at day 7. However, five cell cycle genes, Fzr1, Ube2c, Ccna2, Nusap1, and Cdc25b, were both downregulated at day 1 and upregulated at day 7. We

  14. Evolution of cooperation among tumor cells.

    PubMed

    Axelrod, Robert; Axelrod, David E; Pienta, Kenneth J

    2006-09-05

    The evolution of cooperation has a well established theoretical framework based on game theory. This approach has made valuable contributions to a wide variety of disciplines, including political science, economics, and evolutionary biology. Existing cancer theory suggests that individual clones of cancer cells evolve independently from one another, acquiring all of the genetic traits or hallmarks necessary to form a malignant tumor. It is also now recognized that tumors are heterotypic, with cancer cells interacting with normal stromal cells within the tissue microenvironment, including endothelial, stromal, and nerve cells. This tumor cell-stromal cell interaction in itself is a form of commensalism, because it has been demonstrated that these nonmalignant cells support and even enable tumor growth. Here, we add to this theory by regarding tumor cells as game players whose interactions help to determine their Darwinian fitness. We marshal evidence that tumor cells overcome certain host defenses by means of diffusible products. Our original contribution is to raise the possibility that two nearby cells can protect each other from a set of host defenses that neither could survive alone. Cooperation can evolve as by-product mutualism among genetically diverse tumor cells. Our hypothesis supplements, but does not supplant, the traditional view of carcinogenesis in which one clonal population of cells develops all of the necessary genetic traits independently to form a tumor. Cooperation through the sharing of diffusible products raises new questions about tumorigenesis and has implications for understanding observed phenomena, designing new experiments, and developing new therapeutic approaches.

  15. The Chinese Herbal Mixture Tien-Hsien Liquid Augments the Anticancer Immunity in Tumor Cell–Vaccinated Mice

    PubMed Central

    Yang, Pei-Ming; Du, Jia-Ling; Wang, George Nian-Kae; Chia, Jean-San; Hsu, Wei-Bin; Pu, Pin-Ching; Sun, Andy; Chiang, Chun-Pin; Wang, Won-Bo

    2016-01-01

    Background. The Chinese herbal mixture, Tien-Hsien liquid (THL), has been used as an anticancer dietary supplement for more than 20 years. Our previous studies have shown that THL can modulate immune responseand inhibit tumor growth. In this study, we further evaluated the effect of THL on anticancer immune response in mice vaccinated with γ-ray-irradiated tumor cells. Methods. The antitumor effect of THL was determined in mice vaccinated with low-tumorigenic CT-26-low colon cancer cells or γ-ray-irradiated high-tumorigenic CT-26-high colon cancer cells. The number of natural killer (NK) cells and T lymphocytes in the spleen was analyzed by flow cytometry. The tumor-killing activities of NK cells and cytotoxic T lymphocytes (CTLs) were analyzed by flow cytometry using YAC-1 and CT-26-high cells, respectively, as target cells. The levels of IFN-γ, IL-2, and TNF-α were determined by ELISA. Results. THL suppressed the growth of CT-26-high tumor in mice previously vaccinated with low-tumorigenic CT-26-low cells or γ-irradiated CT-26-high cells. THL increased the populations of NK cells and CD4+ T lymphocytes in the spleen and enhanced the tumor-killing activities of NK cells and CTL in mice vaccinated with γ-irradiated CT-26-high cells. THL increased the production of IFN-γ, IL-2, and TNF-α in mice vaccinated with γ-irradiated CT-26-high cells. Conclusion. THL can enhance the antitumor immune responses in mice vaccinated with killed tumor cells. These results suggest that THL may be used as a complementary medicine for cancer patients previously treated with killed tumor cell vaccines, radiotherapy, or chemotherapy. PMID:27252074

  16. Detection of irradiation induced reactive oxygen species production in live cells

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Zhu, Debin

    2006-09-01

    Reactive oxygen species (ROS) is thought to play an important role in cell signaling of apoptosis, necrosis, and proliferation. Light irradiation increases mitochondrial reactive oxygen species (ROS) production and mediates its intracellular signaling by adjusting the redox potential in tumor cells. Mitochondria are the main source of ROS in the living cell. Superoxide anions (0 II - are likely the first ROS generated in the mitochondria following radiation damage, and then convert to hydrogen peroxide (H II0 II), hydroxyl radical (•OH), and singlet oxygen (10 II), etc. Conventional methods for research ROS production in mitochondria mostly use isolated mitochondria rather than mitochondria in living cells. In this study, a highly selective probe to detect mitochondrial 0 II - in live cells, MitoSOX TM Red, was applied to quantify the mitochondrial ROS production in human lung adenocarcinoma cells (ASTC-a-1) with laser scanning microscope (LSM) after ultraviolet C (UVC) and He-Ne laser irradiation. Dichiorodihydrofluoresein diacetate (DCFHDA), a common used fluorescent probe for ROS detection without specificity, were used as a comparison to image the ROS production. The fluorescent image of MItoSOX TM Red counterstained with MitoTracker Deep Red 633, a mitochondria selective probe, shows that the mitochondrial ROS production increases distinctly after UVC and He-Ne laser irradiation. DCFH-DA diffuses labeling throughout the cell though its fluorescence increases markedly too. In conclusion, the fluorescent method with MitoSOX TM Red reagent is proved to be a promising technique to research the role of ROS in radiation induced apoptosis.

  17. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    PubMed

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype. Copyright 2004 Wiley-Liss, Inc.

  18. Silicon solar cell characterization at low temperatures and low illumination as a function of particulate irradiation

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Little, S. A.; Peacock, C. L., Jr.

    1983-01-01

    Various configurations of back surface reflector silicon solar cells including small (2 x 2) cm and large (approx. 6 x 6) cm cells with conventional and wraparound contacts were subjected to 1 MeV electron irradiation and characterized under both Earth orbital and deep space conditions of temperatures and illuminations. Current-Voltage (I-V) data were generated from +65 C to -150 C and at incident illuminations from 135.3 mW/sq cm to 5.4 mW/sq cm for these cells. Degradation in cell performance which is manifested only under deep space conditions is emphasized. In addition, the effect of particle irradiation on the high temperature and high intensity and low temperature and low intensity performance of the cells is described. The cells with wraparound contacts were found to have lower efficiencies at Earth orbital conditions than the cells with conventional contacts.

  19. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  20. Palate morphogenesis in mouse embryos after x-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callas, Gerald; Walker, Bruce E.

    1963-01-01

    The development of cleft palate was investigated by irradiating pregnant female C57BL and A/Jax mice on the 11 1/3 day of gestation with 300-r, whole-body doses and examining the fetuses at subsequent intervals. When palate stage was compared with chronological age, morphological rating, or embryonic weight, it was obvious that intermediate stages of palate closure persisted in x-irradiated embryos long after such stages had been passed in normal embryos. Thus, movement of the palatine shelves from the sagittal to the horizontal plane was retarded by x irradiation. Measurements of head and palate did not show any consistent disproportionality of palatemore » growth in the xirradiated embryos except that which resulted from retardation of shelf movement. X irradiation affected A/Jax strain litters more severely than C57BL strain litters according to cleft palate frequency and average palate stage at 18 1/3 days postconception. Cleft palate was seen in 73.1% of strain C57BL fetuses and in 99.5% of A/Jax fetuses. A variety of malformations other than cleft palate were also observed in the offspring of treated mice. Morphologic analysis of cleft palate development after xray treatment gave essentially the same results as comparable analyses of cleft palates produced by cortisone, hypervitaminosis A, and riboflavin deficiency. (TCO)« less

  1. Effects of irradiation on human leukocyte antigen class I expression in human papillomavirus positive and negative base of tongue and mobile tongue squamous cell carcinoma cell lines.

    PubMed

    Haeggblom, Linnea; Nordfors, Cecilia; Tertipis, Nikolaos; Bersani, Cinzia; Ramqvist, Torbjörn; Näsman, Anders; Dalianis, Tina

    2017-03-16

    Human papillomavirus (HPV) infection is a risk factor for oropharyngeal cancer, besides smoking and alcohol. Patients with HPV-positive tumors have a better prognosis than those with HPV-negative tumors. Furthermore, patients with HPV-positive tumors, with high CD8+ tumor infiltrating lymphocyte counts or absent/low human leukocyte antigen (HLA) class I expression have the best outcome. The latter is paradoxical, since HLA class I expression is important for tumor recognition. Below, the hypothesis that radiation therapy increases HLA class I expression was tested. HPV16 positive head and neck cancer cell lines UPCI-SCC-154, UPCI-SCC-090 and UM-SCC-47, and the HPV-negative cancer cell line UT-SCC-14, were treated with 2-10 Gray (Gy) and tested for HLA class I expression, cell cycle changes and apoptosis by flow cytometry. HPV16 E5, E7 and HLA-A mRNA expression was tested by quantitative PCR. A dose of 10 Gy resulted in a tendency of increased HLA class I cell surface expression for all cell lines and reached statistical significance for UPCI-SCC-154 and UPCI-SCC-090. There were, however, no significant changes in HLA-A mRNA expression in any of the cell lines, or HPV16 E5, or E7 mRNA expression for UPCI-SCC-47 and UPCI-SCC-154, while for UPCI-SCC-090 HPV16 E5 mRNA decreased. In all cell lines there was a shift towards G2/M phase and increased apoptosis after irradiation with 10 Gy. To conclude, irradiation with 10 Gy increased HLA class I expression in the HPV-positive cell lines UPCI-SCC-154 and UPCI-SCC-090. A similar tendency was observed for HPV-positive UM-SCC-47 and HPV-negative UT-SCC-14.

  2. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Mayumi; Imadome, Kaori; Shoji, Yoshimi

    2015-09-01

    Purpose: To investigate the mechanisms underlying the inhibition of cancer cell migration and invasion by carbon (C)-ion irradiation. Methods and Materials: Human pancreatic cancer cells MIAPaCa-2, AsPC-1, and BxPC-3 were treated by x-ray (4 Gy) or C-ion (0.5, 1, 2, or 4 Gy) irradiation, and their migration and invasion were assessed 2 days later. The levels of guanosine triphosphate (GTP)-bound Rac1 and RhoA were determined by the active GTPase pull-down assay with or without a proteasome inhibitor, and the binding of E3 ubiquitin ligase to GTP-bound Rac1 was examined by immunoprecipitation. Results: Carbon-ion irradiation reduced the levels of GTP-bound Rac1 and RhoA, 2more » major regulators of cell motility, in MIAPaCa-2 cells and GTP-bound Rac1 in AsPC-1 and BxPC-3 cells. Proteasome inhibition reversed the effect, indicating that C-ion irradiation induced Rac1 and RhoA degradation via the ubiquitin (Ub)-proteasome pathway. E3 Ub ligase X-linked inhibitor of apoptosis protein (XIAP), which directly targets Rac1, was selectively induced in C-ion–irradiated MIAPaCa-2 cells and coprecipitated with GTP-bound Rac1 in C-ion–irradiated cells, which was associated with Rac1 ubiquitination. Cell migration and invasion reduced by C-ion radiation were restored by short interfering RNA–mediated XIAP knockdown, indicating that XIAP is involved in C-ion–induced inhibition of cell motility. Conclusion: In contrast to x-ray irradiation, C-ion treatment inhibited the activity of Rac1 and RhoA in MIAPaCa-2 cells and Rac1 in AsPC-1 and BxPC-3 cells via Ub-mediated proteasomal degradation, thereby blocking the motility of these pancreatic cancer cells.« less

  3. ME-10TUMOR MICROENVIRONMENT INFILTRATING MYELOID DERIVED SUPPRESSOR CELLS INHIBIT ANTI-TUMOR T CELL RESPONSES

    PubMed Central

    Kamran, Neha; Ayala, Mariela; Li, Youping; Assi, Hikmat; Candolfi, Marianela; Dzaman, Marta; Lowenstein, Pedro; Castro, Maria

    2014-01-01

    MDSCs represent a population of immature myeloid cells at various stages of differentiation that inhibit anti-tumor T cell-mediated responses. We demonstrate the accumulation of MDSCs in GL26 induced glioma and B16 melanoma bearing mice. Absolute numbers of Ly-6G+ (Gr-1high) MDSCs showed a 200 fold increase within the tumor microenvironment (TME) 28 days post-tumor implantation. The numbers of Ly-6C+ (Gr-1low) MDSCs also showed a similar trend within the TME. While this massive influx of MDSCs was noted within intracranial tumors, MDSC levels did not increase in the dLNs, spleen or bone marrow (BM) of intracranial tumor bearing mice. MDSCs numbers were significantly elevated in the blood of GL26 intracranial tumor bearing mice at 28 days. Mice bearing B16 tumors in the flank showed a ∼5 fold increased influx of Ly-6G+ MDSCs while the Ly6C+ MDSCs increased marginally by 1.1 fold within the tumor mass. Levels of circulating MDSCs also increased by ∼10 fold, while the levels of splenic MDSCs did not change. While both Ly-6G+ and Ly6C+ MDSCs isolated from the brain TME of GL26 intracranial tumor bearing mice inhibited antigen-specific T cell proliferation, Ly6C+ MDSC were found to be more efficient. Ly6G+ or Ly6C+ MDSCs from the bone marrow of intracranial tumor bearing mice failed to suppress antigen-specific T cell proliferation. Splenic and bone marrow MDSCs from naïve mice also did not inhibit antigen-specific T cell proliferation suggesting that TME derived factors may activate MDSCs to exert their immune-suppressive properties. Microarray analysis of glioma cell lines showed elevated levels of CXCL1 mRNA and splenic MDSCs from GL26 tumor mice showed upregulation of the CXCR2 mRNA. Preliminary experiments indicate that CXCR2 signaling mediates MDSC chemotaxis. Overall, our data suggests that strategies that inhibit MDSC recruitment to the TME and/or block their activity could enhance the T cell mediated tumor clearance.

  4. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    PubMed

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Supercrystallization of KCl from solution irradiated by soft X-rays

    NASA Astrophysics Data System (ADS)

    Janavičius, A. J.; Rinkūnas, R.; Purlys, R.

    2016-10-01

    The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.

  6. Identification of Metastatic Tumor Stem Cell

    DTIC Science & Technology

    2010-09-01

    addition to a tumor stem cell , an existence of a metastatic stem cell is predicted. Despite the critical importance of the concept, this idea has not been...isolating stem cell population from a unique set of breast tumor cell lines and by examining their metastatic behavior in an animal model. The overall...will (i) isolate stem - cell population from non-metastatic and metastatic cells of a pair of syngenic breast tumor cell lines, and test their metastatic

  7. Biodistribution and tumor uptake of C60(OH) x in mice

    NASA Astrophysics Data System (ADS)

    Ji, Zhi Qiang; Sun, Hongfang; Wang, Haifang; Xie, Qunying; Liu, Yuangfang; Wang, Zheng

    2006-02-01

    Radiolabeling of fullerol, 125I-C60(OH) x , was performed by the traditional chloramine-T method. The C-I covalent bond in I-C60(OH) x was characterized by X-ray photoelectron spectroscopy (XPS) that was sufficiently stable for in vivo study. Laser light scattering spectroscopy clearly showed that C60(OH) x aggregated to large nanoparticle clumps with a wide range of distribution. The clumps formed were also visualized by transmission electron microscope (TEM). We examined the biodistribution and tumor uptake of C60(OH) x in five mouse bearing tumor models, including mouse H22 hepatocarcinoma, human lung giantcellcarcinoma PD, human colon cancer HCT-8, human gastric cancer MGC803, and human OS732 osteosarcoma. The accumulation ratios of 125I-C60(OH) x in mouse H22 hepatocarcinoma to that in normal muscle tissue (T/N) and blood (T/B) at 1, 6, 24 and 72 h, reveal that 125I-C60(OH) x gradually accumulates in H22 tumor, and retains for a quite long period (e.g., T/N 3.41, T/B 3.94 at 24 h). For the other four tumor models, the T/N ratio at 24 h ranges within 1.21-6.26, while the T/B ratio ranges between 1.23 and 4.73. The accumulation of C60(OH) x in tumor is mostly due to the enhanced permeability and retention effect (EPR) and the phagocytosis of mononuclear phagocytes. Hence, C60(OH) x might serve as a photosensitizer in the photodynamic therapy of some kinds of tumor.

  8. [Relationship between sensitivity of tumor cells to chemotherapeutic agent in vivo and in vitro: experiment with mouse lymphoma cells].

    PubMed

    Li, Chuan-gang; Li, Mo-lin; Shu, Xiao-hong; Jia, Yu-jie; Liu, Yong-ji; Li, Ming

    2007-06-12

    To study the relationship of the sensitivity of tumor cells to chemotherapeutic agent between in vivo and in vitro. Mouse lymphoma cells of the line E14 were cultured and melphalan resistant EL4 cell line (EL4/melphalan) was established by culturing EL4 cells with continuous low-concentration and intermittent gradually-increasing-concentration of melphalan in vitro. MTT assay was used to evaluate the drug sensitivity and the resistance index of the EL4/melphalan cells to melphalan was calculated. EL4/melphalan and EL4 cells of the concentration of 5 x 10(8)/L were inoculated separately into 20 C57BL/6 mice subcutaneously. 12 days later, the EL4 and EL4/melphalan tumor-bearing mice were randomly divided into 2 groups respectively, 5 mice in each group. Treatment groups were given 7.5 mg/kg melphalan intraperitoneally, and control groups were given the same volume of normal saline. The tumor size was observed every other day. Compared with the EL4 cells, the EL4/melphalan cells had no obvious changes morphologically. They could grow in RPMI 1640 medium containing 5 mg/ml melphalan. The resistance index was 2.87 against melphalan. After the treatment of melphalan of the dose 7.5 mg/kg, the tumor sizes of the treatment groups and control groups inoculated with both EL4 cells and the EL4/melphalan cells gradually decreased at the similar speed, and about one week later all tumors disappeared. However, the tumors of the control groups grew progressively and all the mice died at last. The chemotherapeutic effects of tumors in vivo have nothing to do with the effects of the chemotherapeutic agents on tumor cells in vitro. The tumor cells resistant to melphalan in vitro remain sensitive to the drug in vivo.

  9. Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells.

    PubMed

    Kulzer, Lorenz; Rubner, Yvonne; Deloch, Lisa; Allgäuer, Andrea; Frey, Benjamin; Fietkau, Rainer; Dörrie, Jan; Schaft, Niels; Gaipl, Udo S

    2014-10-01

    Despite the transient immunosuppressive properties of local radiotherapy (RT), this classical treatment modality of solid tumors is capable of inducing immunostimulatory forms of tumor-cell death. The resulting 'immunotoxicity' in the tumor, but not in healthy tissues, may finally lead to immune-mediated destruction of the tumor. However, little is known about the best irradiation scheme in this setting. This study examines the immunological effects of differently irradiated human colorectal tumor cells on human monocyte-derived dendritic cells (DC). Human SW480 tumor cells were irradiated with a norm-fractionation scheme (5 × 2 Gy), a hypo-fractionated protocol (3 × 5 Gy), and with a high single irradiation dose (radiosurgery; 1 × 15 Gy). Subsequently, human immature DC (iDC) were co-incubated with supernatants (SN) of these differently treated tumor cells. Afterwards, DC were analyzed regarding the expression of maturation markers, the release of cytokines, and the potential to stimulate CD4(+) T-cells. The co-incubation of iDC with SN of tumor cells exposed to norm- or hypo-fractionated RT resulted in a significantly increased secretion of the immune activating cytokines IL-12p70, IL-8, IL-6, and TNFα, compared to iDC co-incubated with SN of tumor cells that received a high single irradiation dose or were not irradiated. In addition, DC-maturation markers CD80, CD83, and CD25 were also exclusively elevated after co-incubation with the SN of fractionated irradiated tumor cells. Furthermore, the SN of tumor cells that were irradiated with norm- or hypo-fractionated RT triggered iDC to stimulate CD4(+) T-cells not only in an allogenic, but also in an antigen-specific manner like mature DC. Collectively, these results demonstrate that norm- and hypo-fractionated RT induces a fast human colorectal tumor-cell death with immunogenic potential that can trigger DC maturation and activation in vitro. Such findings may contribute to the improvement of

  10. Luteolin as reactive oxygen generator by X-ray and UV irradiation

    NASA Astrophysics Data System (ADS)

    Toyama, Michiru; Mori, Takashi; Takahashi, Junko; Iwahashi, Hitoshi

    2018-05-01

    Non-toxic X-ray-responsive substances can be used in the radiosensitization of cancer, like porphyrin mediated radiotherapy. However, most X-ray-responsive substances are toxic. To find novel non-toxic X-ray-responsive substances, we studied the X-ray and UV reactivity of 40 non-toxic compounds extracted from plants. Dihydroethidium was used as an indicator to detect reactive oxygen species (ROS) generated by the compounds under X-ray or UV irradiation. We found that 13 of the investigated compounds generated ROS under X-ray irradiation and 17 generated ROS under UV irradiation. Only 4 substances generated ROS under both X-ray and UV. In particular, luteolin exhibited the highest activity among the investigated compounds; therefore, the ROS generated by luteolin were thoroughly characterized. To identify the ROS, we employed a combination of ROS detection reagents and their quenchers. O2·- generation by luteolin was monitored using dihydroethidium and superoxide dismutase (as an O2·- quencher). OH· and 1O2 generation was determined using aminophenyl fluorescein with ethanol (OH· quencher) and Singlet Oxygen Sensor Green® with NaN3 (1O2 quencher), respectively. Generation of O2·- under X-ray and UV irradiation was observed; however, no OH· or 1O2 was detected. The production of ROS from luteolin is surprising, because luteolin is a well-known antioxidant.

  11. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    PubMed

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  12. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma.

    PubMed

    Kakinuma, Shizuko; Nishimura, Mayumi; Amasaki, Yoshiko; Takada, Mayumi; Yamauchi, Kazumi; Sudo, Satomi; Shang, Yi; Doi, Kazutaka; Yoshinaga, Shinji; Shimada, Yoshiya

    2012-09-01

    Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-induced point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    PubMed

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  14. Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs

    NASA Astrophysics Data System (ADS)

    Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko

    2009-02-01

    Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.

  15. Charged-Iron-Particles Found in Galactic Cosmic Rays are Potent Inducers of Epithelial Ovarian Tumors.

    PubMed

    Mishra, Birendra; Lawson, Gregory W; Ripperdan, Ryan; Ortiz, Laura; Luderer, Ulrike

    2018-05-21

    Astronauts traveling in deep space are exposed to high-charge and energy (HZE) particles from galactic cosmic rays. We have previously determined that irradiation of adult female mice with iron HZE particles induces DNA double-strand breaks, oxidative damage and apoptosis in ovarian follicles, causing premature ovarian failure. These effects occur at lower doses than with conventional photon irradiation. Ovarian failure with resultant loss of negative feedback and elevated levels of gonadotropin hormones is thought to play a role in the pathophysiology of ovarian cancer. Therefore, we hypothesized that charged-iron-particle irradiation induces ovarian tumorigenesis in mice. In this study, three-month-old female mice were exposed to 0 cGy (sham) or 50 cGy iron ions and aged to 18 months. The 50 cGy irradiated mice had increased weight gain with age and lack of estrous cycling, consistent with ovarian failure. A total of 47% and 7% of mice irradiated with 50 cGy had unilateral and bilateral ovarian tumors, respectively, whereas 14% of mice in the 0 cGy group had unilateral tumors. The tumors contained multiple tubular structures, which were lined with cells positive for the epithelial marker cytokeratin, and had few proliferating cells. In some tumors, packets of cells between the tubular structures were immunopositive for the granulosa cell marker FOXL2. Based on these findings, tumors were diagnosed as tubular adenomas or mixed tubular adenoma/granulosa cell tumors. In conclusion, charged-iron-particle-radiation induces ovarian tumors in mice, raising concerns about ovarian tumors as late sequelae of deep space travel in female astronauts.

  16. SU-F-T-670: From the OR to the Radiobiology Lab: The Journey of a Small X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, J; The University of Sydney, Sydney, NSW; The University of Newcastle, Newcastle, NSW

    Purpose: Irradiation of small animal tumor models within laboratories is vital to radiobiological experiments. Often the animals are not able to be brought back into the lab after being taken out for irradiation. Cell biology laboratories benefit from irradiation capability available around the clock without regard to patient load in an associated radiotherapy clinic. Commercial systems are available, but bulky and expensive. Methods: An intraoperative kV irradiation system (IntraBeam™) designed to deliver spherical dose distributions to surgical cavities has been repurposed for the irradiation of cell plates and small laboratory animals. An applicator has been altered to allow for simple,more » open fields. Special collimators are being developed. BEAMnrc Monte Carlo simulations with the “NRC swept BEAM” source model have been performed to characterize the dose distributions, to develop optimal collimators and as basis for dose prescription. Measurements with radiochromic film and with an ionization chamber were performed to characterize the beam and to validate the simulations. Results: Using its highest setting (50 kV and 40 µA) the x-ray unit is capable of delivering dose rates over 1 Gy/min homogeneously to standard cell plates even without an optimized collimator. Smaller areas (tumors in animals) can be irradiated with significantly higher dose rates (> 20 Gy/min) depending on distance of the source to the tumor. The HVL was found to be 0.21 mm Al which means the shielding requirements for the device are easily achievable in the lab. Conclusion: A mobile irradiation facility is feasible. It will allow easier access to radiation for radiobiology experiments. The modified system is versatile in that for cell plates homogenous irradiations can be achieved through distance from the source, while for high dose rate small field irradiations the source can be brought in close proximity to the target.« less

  17. Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure.

    PubMed

    Ramos Silva, Camila; Cabral, Fernanda Viana; de Camargo, Claudinei Francisco Morais; Núñez, Silvia Cristina; Mateus Yoshimura, Tania; de Lima Luna, Arthur Cássio; Maria, Durvanei Augusto; Ribeiro, Martha Simões

    2016-12-01

    Ionizing radiation (IR) induces DNA damage and low-level laser therapy (LLLT) has been investigated to prevent or repair detrimental outcomes resulting from IR exposure. Few in vitro studies, however, explore the biological mechanisms underlying those LLLT benefits. Thus, in this work, fibroblasts and tumor cells are submitted to IR with doses of 2.5 Gy and 10 Gy. After twenty-four-h, the cells are exposed to LLLT with fluences of 30 J cm -2 , 90 J cm -2 , and 150 J cm -2 . Cellular viability, cell cycle phases, cell proliferation index and senescence are evaluated on days 1 and 4 after LLLT irradiation. For fibroblasts, LLLT promotes - in a fluence-dependent manner - increments in cell viability and proliferation, while a reduction in the senescence was observed. Regarding tumor cells, no influences of LLLT on cell viability are noticed. Whereas LLLT enhances cell populations in S and G 2 /M cell cycle phases for both cellular lines, a decrease in proliferation and increase in senescence was verified only for tumor cells. Putting together, the results suggest that fibroblasts and tumor cells present different responses to LLLT following exposure to gamma-radiation, and these promising results should stimulate further investigations. Senescence of tumor cells and fibroblasts on the 4 th day after ionizing radiation (IR) and low-level laser therapy (LLLT) exposures. The number of senescent cells increased significantly for tumor cells (a) while for fibroblasts no increment was observed (b). The blue collor indicates senescence activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mesenchymal stem cells in tumor development

    PubMed Central

    Cuiffo, Benjamin G.; Karnoub, Antoine E.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma. PMID:22863739

  19. Nicaraven reduces cancer metastasis to irradiated lungs by decreasing CCL8 and macrophage recruitment.

    PubMed

    Yan, Chen; Luo, Lan; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng

    2018-04-01

    Radiotherapy for cancer patients damages normal tissues, thereby inducing an inflammatory response and promoting cancer metastasis. We investigated whether nicaraven, a compound with radioprotective and anti-inflammatory properties, could attenuate radiation-induced cancer metastasis to the lungs of mice. Nicaraven and amifostine, another commercial radioprotective agent, had limited effects on both the radiosensitivity of Lewis lung carcinoma cells in vitro and radiation-induced tumor growth inhibition in vivo. Using experimental and spontaneous metastasis models, we confirmed that thorax irradiation with 5 Gy X-rays dramatically increased the number of tumors in the lungs. Interestingly, the number of tumors in the lungs was significantly reduced by administering nicaraven but not by administering amifostine daily after radiation exposure. Furthermore, nicaraven administration effectively inhibited CCL8 expression and macrophage recruitment in the lungs 1 day after thorax irradiation. Our data suggest that nicaraven attenuates radiation-induced lung metastasis, likely by regulating the inflammatory response after radiation exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Nuclear receptors in pancreatic tumor cells.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Kostakis, Ioannis D; Nikolidakis, Lampros; Kostakis, Alkiviadis; Kouraklis, Gregory

    2014-12-01

    This review focuses on nuclear receptors expressed in pancreatic cancer. An extensive search of articles published up to March 2013 was conducted using the MEDLINE database. The key words used were "pancreatic cancer", "molecular receptors" and "growth factors". A total of 112 articles referred to pancreatic cancer, molecular receptors and/or growth factors were included. Receptors of growth factors, such as the epithelial growth factor receptor, insulin-like growth factor-1 receptor, vascular endothelial growth factor receptor and others, such as integrin α5β1, somatostatin receptors, the death receptor 5, claudin, notch receptors, mesothelin receptors, follicle-stimulating hormone receptors, the MUC1 receptor, the adrenomedullin receptor, the farnesoid X receptor, the transferrin receptor, sigma-2 receptors, the chemokine receptor CXCR4, the urokinase plasminogen activator receptor, the ephrine A2 receptor, the GRIA3 receptor, the RON receptor and the angiotensin II receptor AT-1 are expressed in pancreatic tumor cells. These molecules are implicated in tumor growth, apoptosis, angiogenesis, metastasis etc. After identifying the molecular receptors associated with the pancreatic cancer, many more target molecules playing important roles in tumor pathophysiology and senescence-associated signal transduction in cancer cells will be identified. This may have a significant influence on diagnosis, therapy and prognosis of pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. THE EFFECT OF X IRRADIATION AND CYSTEAMINE ON THE BARBITURATE SLEEPING TIME IN RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varagic, V.; Stepanovic, S.; Hajdukovic, S.

    Whole-body x irradiation with 600 and 800 r prolongs barbiturate sleeping time in the rat. In the head-irradiated animals (with the same doses) no prolongation of barbiturate sleeping time was observed. Irradintion of the animal with the head shielded produced the same effect as irradiation of the whole body. Cysteamine depressed or even blocked the prolonging action of x irradiation on barbiturate sleeping time. This action of cysteamine was evident 24 hr after irradiation and was still present 30 days after irradiation. The prolonging effect of x irradiation was significant as early as 24 hr after exposure but was moremore » pronounced 14, 21, and 30 days after irradiation. This suggests that even the primary event which takes place immediately after absorption of radiation energy produces a change in reactivity to barbiturates. The results obtained with headirradiated animals indicate that the reactivity of the central nervous system to barbiturates is not significantly changed. Therefore, x irradiation may produce some change in the detoxication process of barbiturates in the liver. Or, some biologically active substance might be released which contributes to the prolongation of the effect of barbiturates. Possibly 5-hydroxytryptamine liberated by x irradiation from intestine might contribute to the prolongation of the barbiturate hypnosis. (H.H.D.)« less

  2. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice.

    PubMed

    Liu, Chengwen; Lou, Yanyan; Lizée, Gregory; Qin, Hong; Liu, Shujuan; Rabinovich, Brian; Kim, Grace J; Wang, Yi-Hong; Ye, Yang; Sikora, Andrew G; Overwijk, Willem W; Liu, Yong-Jun; Wang, Gang; Hwu, Patrick

    2008-03-01

    A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitating effective antitumor immune responses, mice bearing established subcutaneous B16 melanoma tumors were administered TLR9-activated pDCs directly into the tumor. We found that TLR9-activated pDCs induced robust, spontaneous CTL cross-priming against multiple B16 tumor antigens, leading to the regression of both treated tumors and untreated tumors at distant contralateral sites. This T cell cross-priming was mediated by conventional DCs (cDCs) and was completely dependent upon the early recruitment and activation of NK cells at the tumor site. NK cell recruitment was mediated by CCR5 via chemokines secreted by pDCs, and optimal IFN-gamma production by NK cells was mediated by OX40L expressed by pDCs. Our data thus demonstrated that activated pDCs are capable of initiating effective and systemic antitumor immunity through the orchestration of an immune cascade involving the sequential activation of NK cells, cDCs, and CD8(+) T cells.

  3. Optically stimulated luminescence in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass

    NASA Astrophysics Data System (ADS)

    Nanto, H.; Nakagawa, R.; Takei, Y.; Hirasawa, K.; Miyamoto, Y.; Masai, H.; Kurobori, T.; Yanagida, T.; Fujimoto, Y.

    2015-06-01

    An intense optically stimulated luminescence (OSL) was observed, for the first time, in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass. It was found that the peak wavelength of OSL emission spectrum and its stimulation spectrum is about 400 nm and 600 nm, respectively. The OSL intensity is depended on the SnO contents (x=0.05-1.5) and the most intense OSL was observed in 1.0 mol% SnO doped glass. It was found that the OSL intensity is increased with increasing x-ray absorbed dose. Fairly good fading characteristics were observed in the x-ray irradiated glass, showing that this glass is useful as a candidate for OSL sensor materials for ionizing radiation monitoring.

  4. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    PubMed

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  5. Giant cell tumor of the spenoid bone.

    PubMed

    Gupta, O P; Samant, H C; Bhatia, P L; Agarwal, A K; Pant, G C

    1975-01-01

    The clinical features of the giant cell tumor of the sphenoid bone have been discussed and a case report has been added to the fourteen cases reported in the literature. Such cases may first report to an ophthalmologist, an otolaryngologist, a neurologist, or an internist. They should consider this condition in a patient who complains of headache, ocular symptoms such as diplopia, and diminution of vision progressing to complete blindness. The presence of multiple cranial nerve palsies involving II, III, IV, V, and VI nerves in various combinations and the sellar erosion in the lateral x-ray of the skull are quite suggestive of this tumor which should be confirmed by biopsy. The telecobalt therapy appears to give the best results.

  6. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  7. Fusion with human lung cancer cells elongates the life span of human umbilical endothelial cells and enhances the anti-tumor immunity.

    PubMed

    Mu, Xiyan; Fang, Chunju; Zhou, Jing; Xi, Yufeng; Zhang, Li; Wei, Yuquan; Yi, Tao; Wu, Yang; Zhao, Xia

    2016-01-01

    Human umbilical endothelial cells (HUVECs) have been proved as an effective whole-cell vaccine inhibiting tumor angiogenesis. However, HUVECs divide a very limited number of passages before entering replicative senescence, which limits its application for clinical situation. Here, we fused HUVECs with human pulmonary adenocarcinoma cell line A549s and investigated the anti-tumor immunity of the hybrids against mice Lewis lung cancer. HUVECs were fused with A549s using polyethylene glycol and were sorted by flow cytometry. The fusion cells (HUVEC-A549s) were confirmed by testing the expression of telomerase and VE-cadherin, the senescence-associated β-galactosidase activity, and tube formation ability. HUVEC-A549s were then irradiated and injected into the C57BL/6 mice of protective, therapeutic, and metastatic models. The mechanism of the anti-tumor immunity was explored by analyzing mice sera, spleen T lymphocytes, tumor microenvironment, and histological changes. HUVEC-A549s coexpressed tumor and endothelial markers and maintained the vascular function of tube forming at passage 30 without showing signs of senescence. HUVEC-A549s could induce protective and therapeutic anti-tumor activity for LL(2) model and presented stronger activity against metastasis than HUVECs. Both humoral and cellular immunity were participated in the anti-angiogenic activity, as HUVECs-neutralizing IgG and HUVECs-toxic lymphocytes were increased. Angiogenic mediators (VEGF and TGF-β) and tumor microenvironment cells MDSCs and Tregs were also diminished. Our findings might provide a novel strategy for HUVECs-related immunotherapy, and this vaccine requires lower culture condition than primary HUVECs while enhancing the anti-tumor immunity.

  8. Orthovoltage X-rays for Postoperative Treatment of Resected Basal Cell Carcinoma in the Head and Neck Area.

    PubMed

    Duinkerken, Charlotte W; Lohuis, Peter J F M; Crijns, Marianne B; Navran, Arash; Haas, Rick L M; Hamming-Vrieze, Olga; Klop, W Martin C; van den Brekel, Michiel W M; Al-Mamgani, Abrahim

    Surgery is the golden standard for treating basal cell carcinomas. In case of positive tumor margins or recurrent disease, postoperative adjuvant or salvaging therapy is suggested to achieve good local control. To retrospectively report on local control and toxicity of postoperative radiotherapy by means of orthovoltage X-rays for residual or recurrent basal cell carcinoma after surgery in the head and neck area. Sixty-six surgically resected residual or recurrent basal cell carcinomas of the head and neck region were irradiated postoperatively by means of orthovoltage X-rays at the Netherlands Cancer Institute between January 2000 and February 2015. After a median follow-up duration of 30.5 months, only 5 recurrences were reported. The 5-year local control rates at 1, 3, and 5 years were 100%, 87%, and 87%, respectively. The 5-year local control rate was 92% for immediate postoperative radiotherapy of incompletely resected basal cell carcinomas, 90% for recurrences after 1 previously performed excision, and 71% for multiple recurrences, namely, a history of more than 1 excision ( P = .437). Acute toxicity healed spontaneously within 3 months. Late toxicities were mild. Radiotherapy by means of orthovoltage X-ray is an excellent alternative for re-excision in case of incompletely resected or recurrent basal cell carcinomas that are at risk of serious functional and cosmetic impairments after re-excision, with a 5-year local control rate of 87% and a low toxicity profile.

  9. Radiosensitization of Hypoxic Tumor Cells by Depletion of Intracellular Glutathione

    NASA Astrophysics Data System (ADS)

    Bump, Edward A.; Yu, Ning Y.; Brown, J. Martin

    1982-08-01

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  10. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bump, E.A.; Yu, N.Y.; Brown, J.M.

    1982-08-06

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  11. X-ray versus gamma irradiation effects on polymers

    NASA Astrophysics Data System (ADS)

    Croonenborghs, B.; Smith, M. A.; Strain, P.

    2007-11-01

    Today, the most common methods used for medical device sterilisation are by gaseous ethylene oxide and by electron beam or gamma irradiation. With X-ray sterilisation about to enter the market, its material compatibility needs to be assessed at doses typically encountered during a sterilisation process. This paper reports on a study that compares the effects of exposing different types of plastics that are commonly used in medical devices to 60Co or to 5 MeV X-rays. The dose rate for both irradiation modalities was of the same order of magnitude. Under these conditions, both types of radiation are found to have similar effects on polymer properties.

  12. Escape from Tumor Cell Dormancy

    DTIC Science & Technology

    2011-10-01

    feature of the bioreactor has been developed (oxygen sensing) to improve monitoring of the physiological status of the cultures ; as cells are stimulated...Herein, these issues are addressed using a novel organotypic bioreactor in which tumor cells can be followed for weeks to months, the process of seeding... cells (months 1-6) 3. isolate human stellate and Kupffer cells (months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for

  13. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  14. Irradiation of Pediatric High-Grade Spinal Cord Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tendulkar, Rahul D.; Pai Panandiker, Atmaram S., E-mail: atmaram.pai-panandiker@stjude.or; Wu Shengjie

    2010-12-01

    Purpose: To report the outcome using radiation therapy (RT) for pediatric patients with high-grade spinal cord tumors. Methods and Materials: A retrospective chart review was conducted that included 17 children with high-grade spinal cord tumors treated with RT at St. Jude Children's Research Hospital between 1981 and 2007. Three patients had gross total resection, 11 had subtotal resection, and 3 underwent biopsy. The tumor diagnosis was glioblastoma multiforme (n = 7), anaplastic astrocytoma (n = 8), or anaplastic oligodendroglioma (n = 2). Seven patients received craniospinal irradiation (34.2-48.6 Gy). The median dose to the primary site was 52.2 Gy (range,more » 38-66 Gy). Results: The median progression-free and overall survivals were 10.8 and 13.8 months, respectively. Local tumor progression at 12 months (79% vs. 30%, p = 0.02) and median survival (13.1 vs. 27.2 months, p = 0.09) were worse for patients with glioblastoma multiforme compared with anaplastic astrocytoma or oligodendroglioma. The median overall survival was shorter for patients when failure included neuraxis dissemination (n = 8) compared with local failure alone (n = 5), 9.6 vs. 13.8 months, p = 0.08. Three long-term survivors with World Health Organization Grade III tumors were alive with follow-up, ranging from 88-239 months. Conclusions: High-grade spinal cord primary tumors in children have a poor prognosis. The propensity for neuraxis metastases as a component of progression after RT suggests the need for more aggressive therapy.« less

  15. Bcl-2 inhibitors potentiate the cytotoxic effects of radiation in Bcl-2 overexpressing radioresistant tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Takamitsu; Omura-Minamisawa, Motoko; Chao Cheng

    Purpose: Bcl-2, an inhibitor of apoptosis frequently shows elevated expression in human tumors, thus resulting in resistance to radiation therapy. Therefore, inhibiting Bcl-2 function may enhance the radiosensitivity of tumor cells. Tetrocarcin A (TC-A) and bcl-2 antisense oligonucleotides exhibit antitumor activity by inhibiting Bcl-2 function and transcription, respectively. We investigated whether these antitumor agents would enhance the cytotoxic effects of radiation in tumor cells overexpressing Bcl-2. Methods and materials: We used HeLa/bcl-2 cells, a stable Bcl-2-expressing cell line derived from wild-type HeLa (HeLa/wt) cells. Cells were incubated with TC-A and bcl-2 antisense oligonucleotides for 24 h after irradiation, and cellmore » viability was then determined. Apoptotic cells were quantified by flow cytometric assay. Results: The HeLa/bcl-2 cells were more resistant to radiation than HeLa/wt cells. At concentrations that are not inherently cytotoxic, both TC-A and bcl-2 antisense oligonucleotides increased the cytotoxic effects of radiation in HeLa/bcl-2 cells, but not in HeLa/wt cells. However, in HeLa/bcl-2 cells, additional treatment with TC-A in combination with radiation did not significantly increase apoptosis. Conclusions: The present results suggest that TC-A and bcl-2 antisense oligonucleotides reduce radioresistance of tumor cells overexpressing Bcl-2. Therefore, a combination of radiotherapy and Bcl-2 inhibitors may prove to be a useful therapeutic approach for treating tumors that overexpress Bcl-2.« less

  16. Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells.

    PubMed

    Faget, Julien; Biota, Cathy; Bachelot, Thomas; Gobert, Michael; Treilleux, Isabelle; Goutagny, Nadège; Durand, Isabelle; Léon-Goddard, Sophie; Blay, Jean Yves; Caux, Christophe; Ménétrier-Caux, Christine

    2011-10-01

    In breast carcinomas, patient survival seems to be negatively affected by the recruitment of regulatory T cells (T(reg)) within lymphoid aggregates by CCL22. However, the mechanisms underpinning this process, which may be of broader significance in solid tumors, have yet to be described. In this study, we determined how CCL22 production is controlled in tumor cells. In human breast carcinoma cell lines, CCL22 was secreted at low basal levels that were strongly increased in response to inflammatory signals [TNF-α, IFN-γ, and interleukin (IL)-1β], contrasting with CCL17. Primary breast tumors and CD45(+) infiltrating immune cells appeared to cooperate in driving CCL22 secretion, as shown clearly in cocultures of breast tumor cell lines and peripheral blood mononuclear cells (PBMC) or their supernatants. We determined that monocyte-derived IL-1β and TNF-α are key players as monocyte depletion or neutralization of these cytokines attenuated secretion of CCL22. However, when purified monocytes were used, exogenous human IFN-γ was also required to generate this response suggesting a role for IFN-γ-producing cells within PBMCs. In this setting, we found that human IFN-γ could be replaced by the addition of (i) IL-2 or K562-activated natural killer (NK) cells or (ii) resting NK cells in the presence of anti-MHC class I antibody. Taken together, our results show a dialogue between NK and tumor cells leading to IFN-γ secretion, which in turn associates with monocyte-derived IL-1β and TNF-α to drive production of CCL22 by tumor cells and subsequent recruitment of T(reg). As one validation of this conclusion in primary breast tumors, we showed that NK cells and macrophages tend to colocalize within tumors. In summary, our findings suggest that at early times during tumorigenesis, the detection of tumor cells by innate effectors (monocytes and NK cells) imposes a selection for CCL22 secretion that recruits T(reg) to evade this early antitumor immune response.

  17. Building lab-scale x-ray tube based irradiators

    USDA-ARS?s Scientific Manuscript database

    The construction of economical x-ray tube based irradiators in a variety of configurations is described using 1000 Watt x-ray tubes. Single tube, double tube, and four tube designs are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small s...

  18. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  19. Ovarian Germ Cell Tumors Treatment

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  20. Uptake routes of tumor-antigen MAGE-A3 by dendritic cells determine priming of naïve T-cell subtypes.

    PubMed

    Moeller, Ines; Spagnoli, Giulio C; Finke, Jürgen; Veelken, Hendrik; Houet, Leonora

    2012-11-01

    Induction of tumor-antigen-specific T cells in active cancer immunotherapy is generally difficult due to the very low anti-tumoral precursor cytotoxic T cells. By improving tumor-antigen uptake and presentation by dendritic cells (DCs), this problem can be overcome. Focusing on MAGE-A3 protein, frequently expressed in many types of tumors, we analyzed different DC-uptake routes after additional coating the recombinant MAGE-A3 protein with either a specific monoclonal antibody or an immune complex formulation. Opsonization of the protein with antibody resulted in increased DC-uptake compared to the uncoated rhMAGE-A3 protein. This was partly due to Fcγ receptor-dependent internalization. However, unspecific antigen internalization via macropinocytosis also played a role. When analyzing DC-uptake of MAGE-A3 antigen expressed in multiple myeloma cell line U266, pretreatment with proteasome inhibitor bortezomib resulted in increased apoptosis compared to γ-irradiation. Bortezomib-mediated immunogenic apoptosis, characterized by elevated surface expression of hsp90, triggered higher phagocytosis of U266 cells by DCs involving specific DC-derived receptors. We further investigated the impact of antigen delivery on T-cell priming. Induction of CD8(+) T-cell response was favored by stimulating naïve T cells with either antibody-opsonized MAGE-A3 protein or with the bortezomib-pretreated U266 cells, indicating that receptor-mediated uptake favors cross-presentation of antigens. In contrast, CD4(+) T cells were preferentially induced after stimulation with the uncoated protein or protein in the immune complex, both antigen formulations were preferentially internalized by DCs via macropinocytosis. In summary, receptor-mediated DC-uptake mechanisms favored the induction of CD8(+) T cells, relevant for clinical anti-tumor response.

  1. TLR9-ERK-mTOR signaling is critical for autophagic cell death induced by CpG oligodeoxynucleotide 107 combined with irradiation in glioma cells

    PubMed Central

    Li, Xiaoli; Cen, Yanyan; Cai, Yongqing; Liu, Tao; Liu, Huan; Cao, Guanqun; Liu, Dan; Li, Bin; Peng, Wei; Zou, Jintao; Pang, Xueli; Zheng, Jiang; Zhou, Hong

    2016-01-01

    Synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN) function as potential radiosensitizers for glioma treatment, although the underlying mechanism is unclear. It was observed that CpG ODN107, when combined with irradiation, did not induce apoptosis. Herein, the effect of CpG ODN107 + irradiation on autophagy and the related signaling pathways was investigated. In vitro, CpG ODN107 + irradiation induced autophagosome formation, increased the ratio of LC3 II/LC3 I, beclin 1 and decreased p62 expression in U87 cells. Meanwhile, CpG ODN107 also increased LC3 II/LC3 I expression in U251 and CHG-5 cells. In vivo, CpG ODN107 combined with local radiotherapy induced autophagosome formation in orthotopic transplantation tumor. Investigation of the molecular mechanisms demonstrated that CpG ODN107 + irradiation increased the levels of TLR9 and p-ERK, and decreased the level of p-mTOR in glioma cells. Further, TLR9-specific siRNA could affect the expressions of p-ERK and autophagy-related proteins in glioma cells. Taken together, CpG ODN107 combined with irradiation could induce autophagic cell death, and this effect was closely related to the TLR9-ERK-mTOR signaling pathway in glioma cells, providing new insights into the investigation mechanism of CpG ODN. PMID:27251306

  2. Granulosa cell tumor of the contralateral testis in a man with a history of cryptorchism.

    PubMed

    Guzzo, Thomas; Gerstein, Matthew; Mydlo, Jack H

    2004-01-01

    We report a case of adult-type testicular granulosa cell tumor in a 33-year-old man with a history of cryptorchism of the contralateral testis as well as Crohn's disease. The tumor was identified as a 1 x 1 x 1 cm mass on baseline ultrasound evaluation. CT evaluation of the patient revealed extensive mesenteric adenopathy, most likely secondary to his history of Crohn's disease. Copyright 2004 S. Karger AG, Basel

  3. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  4. Dietary Antioxidants Protect Hematopoietic Cells and Improve Animal Survival after Total-Body Irradiation

    PubMed Central

    Wambi, Chris; Sanzari, Jenine; Wan, X. Steven; Nuth, Manunya; Davis, James; Ko, Ying-Hui; Sayers, Carly M.; Baran, Matthew; Ware, Jeffrey H.; Kennedy, Ann R.

    2009-01-01

    The purpose of this study was to determine whether a dietary supplement consisting of L-selenomethionine, vitamin C, vitamin E succinate, α-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-β1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants. PMID:18363433

  5. Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy

    PubMed Central

    Crittenden, Marka R.; Baird, Jason; Friedman, David; Savage, Talicia; Uhde, Lauren; Alice, Alejandro; Cottam, Benjamin; Young, Kristina; Newell, Pippa; Nguyen, Cynthia; Bambina, Shelly; Kramer, Gwen; Akporiaye, Emmanuel; Malecka, Anna; Jackson, Andrew; Gough, Michael J.

    2016-01-01

    Radiation therapy provides a means to kill large numbers of cancer cells in a controlled location resulting in the release of tumor-specific antigens and endogenous adjuvants. However, by activating pathways involved in apoptotic cell recognition and phagocytosis, irradiated cancer cells engender suppressive phenotypes in macrophages. We demonstrate that the macrophage-specific phagocytic receptor, Mertk is upregulated in macrophages in the tumor following radiation therapy. Ligation of Mertk on macrophages results in anti-inflammatory cytokine responses via NF-kB p50 upregulation, which in turn limits tumor control following radiation therapy. We demonstrate that in immunogenic tumors, loss of Mertk is sufficient to permit tumor cure following radiation therapy. However, in poorly immunogenic tumors, TGFb inhibition is also required to result in tumor cure following radiation therapy. These data demonstrate that Mertk is a highly specific target whose absence permits tumor control in combination with radiation therapy. PMID:27602953

  6. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  7. The anti-tumor effect of bee honey in Ehrlich ascite tumor model of mice is coincided with stimulation of the immune cells.

    PubMed

    Attia, W Y; Gabry, M S; El-Shaikh, K A; Othman, G A

    2008-01-01

    Honey is thought to exhibit a broad spectrum of therapeutic properties including antibacterial, antifungal, cytostatic and anti-inflammatory activity and has been used for the treatment of gastric ulcers, burns, and for storage of skin grafts. The present study investigated the antitumor effect of bee honey against Ehrlich ascites tumor in mice and the possible mode of antitumor action. Peroral administration of mice with honey (10, 100 or 1000 mg/ 100 g BW) every other day for 4 weeks before intraperitoneal inoculation with Ehrlich ascites tumor (EAT, 1 x 10(6) cells) increased the number bone marrow cells as well as peritoneal macrophages, but not peripheral blood leukocytes nor splenocytes. The phagocytic function of macrophages as well as the T- and B-cell functions were also increased. Honey pre-treatment also recovered the total lipids, total proteins, as well as liver and kidney enzyme activities in EAT-bearing mice. In vitro studies on EAT cells demonstrated inhibitory effect of honey on tumor cell proliferation, viability % of tumor cells as well as the size of solid tumor. The present results indicate that the preventive treatment with honey is considerably effective against EAT in mice both in vivo and in vitro. The antitumor activity of honey may occur through the activation of macrophages, T-cells and B-cells.

  8. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at; Fullár, Alexandra, E-mail: fullarsz@gmail.com; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factormore » κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.« less

  9. Mechanistic investigation of doxycycline photosensitization by picosecond-pulsed and continuous wave laser irradiation of cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, C.R.; Hefetz, Y.; Gillies, R.

    1990-04-15

    In order to elucidate the photophysical mechanisms of cellular phototoxicity sensitized by doxycycline, MGH-U1 human bladder carcinoma cells in vitro were treated with 20.7 microM doxycycline and irradiated with either a pulsed (lambda = 355 nm, pulse duration = 24 ps) or a continuous wave (lambda = 351 nm) laser. Cumulative radiant exposure and irradiance were systematically varied in experiments with both lasers. Phototoxicity was assessed by epifluorescence microscopy of unfixed cells using rhodamine 123 labeling of mitochondria. With the continuous wave source, the cumulative radiant exposure required for induction of phototoxic injury was independent of irradiance. With the 24-ps-pulsedmore » source, a significantly lower cumulative radiant exposure was required to induce the phototoxicity when the peak irradiance was 5.8 x 10(7) or 1.3 x 10(8) watts cm-2 compared with when peak irradiance was either lower (6.0 x 10(6) watts cm-2) or higher (7.6 x 10(8) watts cm-2). The measured fluorescence lifetimes of doxycycline in buffered saline solution were longer than the laser pulse duration of 24 ps. The increased efficiency of photosensitization at the optimal peak irradiance in the ps domain appears to result from sequential multiphoton absorption involving higher excited states of the singlet manifold. At the highest irradiance studied, on the other hand, reduced efficiency of photosensitization is attributed to increased photodegradation of doxycycline from higher excited states by processes such as photoionization. A model consistent with these observations is presented along with calculations, based on simple rate equations, that fit the essentials of the proposed model.« less

  10. Nanoscale dose deposition in cell structures under X-ray irradiation treatment assisted with nanoparticles: An analytical approach to the relative biological effectiveness.

    PubMed

    Melo-Bernal, W; Chernov, V; Chernov, G; Barboza-Flores, M

    2018-08-01

    In this study, an analytical model for the assessment of the modification of cell culture survival under ionizing radiation assisted with nanoparticles (NPs) is presented. The model starts from the radial dose deposition around a single NP, which is used to describe the dose deposition in a cell structure with embedded NPs and, in turn, to evaluate the number of lesions formed by ionizing radiation. The model is applied to the calculation of relative biological effectiveness values for cells exposed to 0.5mg/g of uniformly dispersed NPs with a radius of 10nm made of Fe, I, Gd, Hf, Pt and Au and irradiated with X-rays of energies 20keV higher than the element K-shell binding energy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  12. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-13-1-0461 TITLE: Targeting Tumor Oct4 to Deplete Prostate Tumor- and Metastasis-Initiating Cells PRINCIPAL INVESTIGATOR: Daotai...29 2016 4. TITLE AND SUBTILE Targeting Tumor Oct4 to Deplete Prostate Tumor- and Metastasis-Initiating Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER...the c-MYC oncogene. POU5F1B is a pseudogene of embryonic Oct4 (POU5F1). A recent study found that tumor Oct4 found in prostate cancer cells is due

  13. Cell migration in microengineered tumor environments.

    PubMed

    Um, Eujin; Oh, Jung Min; Granick, Steve; Cho, Yoon-Kyoung

    2017-12-05

    Recent advances in microengineered cell migration platforms are discussed critically with a focus on how cell migration is influenced by engineered tumor microenvironments, the medical relevance being to understand how tumor microenvironments may promote or suppress the progression of cancer. We first introduce key findings in cancer cell migration under the influence of the physical environment, which is systematically controlled by microengineering technology, followed by multi-cues of physico-chemical factors, which represent the complexity of the tumor environment. Recognizing that cancer cells constantly communicate not only with each other but also with tumor-associated cells such as vascular, fibroblast, and immune cells, and also with non-cellular components, it follows that cell motility in tumor microenvironments, especially metastasis via the invasion of cancer cells into the extracellular matrix and other tissues, is closely related to the malignancy of cancer-related mortality. Medical relevance of forefront research realized in microfabricated devices, such as single cell sorting based on the analysis of cell migration behavior, may assist personalized theragnostics based on the cell migration phenotype. Furthermore, we urge development of theory and numerical understanding of single or collective cell migration in microengineered platforms to gain new insights in cancer metastasis and in therapeutic strategies.

  14. THE PROLIFERATION IN VITRO OF TISSUE TAKEN FROM TUBERS OF HELIANTHUS TUBEROSUS IRRADIATED WITH X-RAYS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonard, R.

    1959-06-22

    ABS>The irradiation of tubers of Helianthus tuberosus (Jerusalem Artichoke) with x rays causes latent changes in their cells which are expressed later when one makes use of their tissues in an in vitro culture. (tr-auth)

  15. Effect of a topical vasodilator on tumor hypoxia and tumor oxygen guided radiotherapy using EPR oximetry.

    PubMed

    Hou, Huagang; Abramovic, Zrinka; Lariviere, Jean P; Sentjurc, Marjeta; Swartz, Harold; Khan, Nadeem

    2010-05-01

    We sought to reduce tumor hypoxia by topical application of a vasodilator, benzyl nicotinate (BN), and investigated its effect on the growth of tumors irradiated at times when tumor pO(2) increased. EPR oximetry was used to follow the changes in the tissue pO(2) of subcutaneous radiation-induced fibrosarcoma (RIF-1) tumors during topical applications of 1.25-8% BN formulations for 5 consecutive days. The RIF-1 tumors were hypoxic with a tissue pO(2) of 4.6-7.0 mmHg. A significant increase in tumor pO(2) occurred 10-30 min after BN application. The formulation with the minimal BN concentration that produced a significant increase in tumor pO(2) was used for the radiation study. The tumors were irradiated (4 Gy x 5) at the time of the maximum increase in pO(2) observed with the 2.5% BN formulation. The tumors with an increase in pO(2) of greater than 2 mmHg from the baseline after application of BN on day 1 had a significant growth inhibition compared to the tumors with an increase in pO(2) of less than 2 mmHg. The results indicate that the irradiation of tumors at the time of an increase in pO(2) after the topical application of the 2.5% BN formulation led to a significant growth inhibition. EPR oximetry provided dynamic information on the changes in tumor pO(2), which could be used to identify responders and non-responders and schedule therapy during the experiments.

  16. Augmentation of immune cell activity against tumor cells by Rauwolfia radix.

    PubMed

    Jin, Guang-Bi; Hong, Tie; Inoue, Satoshi; Urano, Tomohiko; Cho, Shigefumi; Otsu, Koji; Kitahara, Maya; Ouchi, Yasuyoshi; Cyong, Jong-Chol

    2002-08-01

    In this study, we investigated the effect of Rauwolfia radix on heat shock protein (HSP) 70 expression and cytotoxicity against tumor cells in activated human T cells. When activated T cells were cultured with Rauwolfia radix for 18 h, HSP70 expression after heat shock was remarkably increased, and cytotoxicity against T98G tumor cells was augmented. Moreover, Rauwolfia radix also enhanced the cytotoxicity of heat shocked activated T cells against Molt-4 and T98G tumor cells. Secretions of interferon-gamma (IFN-gamma) and tumor necrosis alpha (TNF-alpha), due to Concanavalin A (Con A) stimulation, were increased by Rauwolfia radix in activated T cells. To investigate the antitumor effect in vivo, EL-4 tumor-bearing mice were administered with Rauwolfia radix in drinking water. The survival period of the Rauwolfia radix treatment group was significantly prolonged compared with that of the control group. Reserpine, the major active ingredient of Rauwolfia radix, also enhanced the cytotoxicity of activated T cells against Molt-4 and T98G tumor cells, and prolonged the survival period of EL-4 tumor-bearing mice. Taken together, our results suggest that Rauwolfia radix can enhance the activity of immune cells against tumor cells.

  17. Onion-like nanoscale structures and fullerene-type cages formed by electron irradiation on turbostratic B{sub x}C{sub 1{minus}x} (x<0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golberg, D.; Bando, Y.; Kurashima, K.

    Flakes of CVD grown B{sub x}C{sub 1{minus}x} (x<0.2) films were exposed to intense electron irradiation (flux density up to {approximately}100 A/cm{sup 2}) in a 300 kV high resolution electron microscope equipped with a field emission gun. The starting flakes revealed a turbostratic B{sub x}C{sub 1{minus}x} structure. The composition of the starting materials and irradiated products was determined by using electron energy loss spectroscopy (EELS). Depending on the electron dose applied, irradiation of the turbostratic material led to formation of soap-bubble-like irregularly-shaped objects (linear dimensions of {approximately}2--5 nm), onion- and semi-onion-like structures (d{approximately}10nm), nested fullerenes (3--14 shells) and elementary fullerene-type cagesmore » (d{approximately}0.7 nm). It is thought that these curled and closed nanostructures arise from a continuous bending of the hexagonal B{sub x}C{sub 1{minus}x} sheets under electron irradiation. Finally, some possible structural models of B{sub x}C{sub 1{minus}x} fullerenes are considered.« less

  18. Effect of electron irradiation on superconductivity in single crystals of Ba ( Fe 1 – x Ru x ) 2 As 2 ( x = 0.24 )

    DOE PAGES

    Prozorov, R.; Kończykowski, M.; Tanatar, M. A.; ...

    2014-11-18

    A single crystal of isovalently substituted Ba(Fe 1-xRu x) 2As 2 (x=0.24) is sequentially irradiated with 2.5 MeV electrons up to a maximum dose of 2.1×10 19 e -/cm 2. The electrical resistivity is measured in situ at T=22 K during the irradiation and ex situ as a function of temperature between subsequent irradiation runs. Upon irradiation, the superconducting transition temperature T c decreases and the residual resistivity ρ0 increases. We find that electron irradiation leads to the fastest suppression of T c compared to other types of artificially introduced disorder, probably due to the strong short-range potential of themore » pointlike irradiation defects. As a result, a more detailed analysis within a multiband scenario with variable scattering potential strength shows that the observed T c versus ρ 0 is fully compatible with s ± pairing, in contrast to earlier claims that this model leads to a too rapid suppression of T c with scattering.« less

  19. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  20. Role of Axumin PET Scan in Germ Cell Tumor

    ClinicalTrials.gov

    2018-05-01

    Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos

  1. [Isolation of circulating tumor cells in blood by means of "Isolation by SizE of Tumor cells (ISET)"].

    PubMed

    Liadov, V K; Skrypnikova, M A; Popova, O P

    2014-01-01

    There is evidence of the importance of circulating tumor cells in bloodstream as a factor of poor prognosis of cancer. The optimum method for isolating and studying of these cells is not defined. The most common methods are either based on the isolation of tumor genetic material from blood or on immune-mediated isolation of epithelial tumor cells. The first group of methods is characterized by a lack of specificity, while the latter do not allow identifying a pool of cells undergone in bloodstream epithelial-mesenchymal transformation. There is presented an overview of results of clinical trials of a new technique of isolation of tumor cells from bloodstream based on the patients' blood filtration through a membrane with defined pore sizes (ISET-Isolation by SizE of Tumor cells).

  2. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. II. Results obtained after induction of breaks in chromosome 1 by X-irradiation.

    PubMed

    Burgerhout, W G; Smit, S L; Jongsma, A P

    1977-01-01

    The position of genes coding for PGD, PPH1, UGPP, GuK1, PGM1, Pep-C, and FH on human chromosome 1 was investigated by analysis of karyotype and enzyme phenotypes in man-Chinese hamster somatic cell hybrids carrying aberrations involving chromosome 1. Suitable hybrid cell lines were obtained by X-irradiation of hybrid cells carrying an intact chromosome 1 and by fusion of human cells from a clonal population carrying a translocation involving chromosome 1 with Chinese hamster cells. The latter human cell population had been isolated following X-irradiation of primary Lesch-Nyhan fibroblasts. In addition, products of de novo chromosome breakage in the investigated hybrid lines were utilized. By integrating the results of these analyses with earlier findings in our laboratory, the following positions of genes are deduced: PGD and PPH1 in 1p36 leads to 1p34; PGM1 in 1p32; UGPP in 1q21 leads to 1q23; GuK1 in 1q31 leads to 1q42; Pep-C in 1q42; and FH in 1qter leads to 1q42.

  3. Action of caffeine on x-irradiated HeLa cells. V. Identity of the sector of cells that expresses potentially lethal damage in G/sub 1/ and G/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetham, K.L.; Tolmach, L.J.

    1982-07-01

    When HeLa S3 cells are irradiated in early G/sub 1/ with 4 Gy of 220-kV x rays and are then incubated in growth medium containing up to 5 mM caffeine, survival is reduced (as reported previously), reaching a concentration-dependent plateau. Cell killing presumably occurs as a result of the fixation of a portion of the potentially lethal damage the cells contain. These cells respond to continued treatment with caffeine at concentrations greater than 2 mM during S, but less so than during G/sub 1/. When they reach G/sub 2/ arrest, however, extensive cell killing again occurs (reported previously), presumably alsomore » the result of potentially lethal damage fixation. G/sub 1/-irradiated cultures that are treated with caffeine either continuously at a concentration in the range 1 to 5 mM, or at 10 mM for 8 hr and subsequently with the low concentration, achieve the same survival level in G/sub 2/, provided that the potentially lethal damage is not repaired during G/sub 1/ and S. Repair seems to be completely inhibited in the presence of 3 to 4 mM caffeine. The results indicate that fixation of potentially lethal damage occurs in the same sector of cells in G/sub 1/ and G/sub 2/, suggesting that the same cellular lesion gives rise to cell killing in the two phases.« less

  4. Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe 1 - x Co x ) 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo

    2013-08-01

    Irradiation with 1.4 GeV 208 Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe 1 - x Co x ) 2 As 2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x = 0.108 and x = 0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of B Φ = 6 T and 6.5 T with doses 2.22 × 10 11 d /cm 2 and 2.4 × 10 11 d /cm 2 ,more » respectively, suppresses the superconducting T c by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δ λ ( T ) = A T n . Irradiation increases the magnitude of the prefactor A and decreases the exponent n , similar to the effect of irradiation in optimally-doped samples. This finding supports universal s ± pairing in Ba(Fe 1 - x Co x ) 2 As 2 compounds for the entire Co doping range.« less

  5. Effect of treatment in fractionated schedules with the combination of x-irradiation and six cytotoxic drugs on the RIF-1 tumor and normal mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelieveld, P.; Scoles, M.A.; Brown, J.M.

    1985-01-01

    RIF-1 tumors, implanted syngeneically in the gastrocnemius muscles of the right hind legs of C3H/Km mice, were treated either with X ray alone, drug alone, or drug and X ray combined. The drugs tested were bleomycin, BCNU, cis-diamminedichloro platinum, adriamycin, cyclophosphamide, and actinomycin-D. All drugs were administered either in the maximum tolerated dose or a dose that causes minimal tumor growth delay. Both drugs and X rays were administered either as a single dose or in five daily fractions. In addition to the single modality controls, seven different schedules of combined modalities were tested. Tumors were measured periodically after treatmentmore » in order that the day at which each tumor reached 4 times its initial cross-sectional area, i.e., its size at the time of treatment, could be determined. The effect of treatment on tumors was based upon excess growth delay (GD), i.e., T400% (treated)-T400% (untreated control). Treatment effects for the same combined modality schedules were also determined for normal skin, using the early skin reaction as an endpoint. Dose effect factors (DEF) were computed for all combined modality schedules and were based upon calculated radiation dose equivalents. We also calculated supra-additivity ratios, SR/sub I/ and SR/sub II/, therapeutic gain factors and adjusted therapeutic gain factors. The only drugs to produce significant supra-additivity with X rays were cis-Pt and cyclo.« less

  6. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  7. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    PubMed Central

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637

  8. Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions.

    PubMed

    Antonovic, L; Brahme, A; Furusawa, Y; Toma-Dasu, I

    2013-01-01

    Light-ion radiation therapy against hypoxic tumors is highly curative due to reduced dependence on the presence of oxygen in the tumor at elevated linear energy transfer (LET) towards the Bragg peak. Clinical ion beams using spread-out Bragg peak (SOBP) are characterized by a wide spectrum of LET values. Accurate treatment optimization requires a method that can account for influence of the variation in response for a broad range of tumor hypoxia, absorbed doses and LETs. This paper presents a parameterization of the Repairable Conditionally-Repairable (RCR) cell survival model that can describe the survival of oxic and hypoxic cells over a wide range of LET values, and investigates the relationship between hypoxic radiation resistance and LET. The biological response model was tested by fitting cell survival data under oxic and anoxic conditions for V79 cells irradiated with LETs within the range of 30-500 keV/µm. The model provides good agreement with experimental cell survival data for the range of LET investigated, confirming the robustness of the parameterization method. This new version of the RCR model is suitable for describing the biological response of mixed populations of oxic and hypoxic cells and at the same time taking into account the distribution of doses and LETs in the incident beam and its variation with depth in tissue. The model offers a versatile tool for the selection of LET and dose required in the optimization of the therapeutic effect, without severely affecting normal tissue in realistic tumors presenting highly heterogeneous oxic and hypoxic regions.

  9. Effects of irradiation combined with cis-diamminedichloroplatinum (CDDP) suppository in rabbit VX2 rectal tumors.

    PubMed

    Wakatsuki, Kazuo; Oda, Kenji; Koda, Keiji; Seike, Kazuhiro; Takiguchi, Nobuhiro; Saito, Norio; Miyazaki, Masaru

    2005-03-01

    To decrease local recurrence and increase disease free survival, various preoperative therapies for patients with advanced rectal cancer have been studied. Cis-diamminedichloroplatinum (II) (CDDP) has become one of the most widely used cancer chemotherapeutic drugs. It has also been found to have radiosensitizing properties. In this experimental study, the efficacy of chemoradiotherapy using a novel CDDP suppository, and one with mixed micelles, was examined in a rabbit VX2 rectal tumor model. Rabbits were divided into four groups: control group, irradiation (R) group, CDDP suppository plus irradiation (CR) group, and mixed micelles plus CDDP suppository plus irradiation (CMR) group. Tumor growth ratios were reduced significantly in the CR and CMR groups as compared with the ratio in the control group. Microscopically, response rates of main tumors were 0%, 33.3%, 70.0%, and 91. 7%, respectively. The number of metastatic lymph nodes in the CR and CMR groups decreased significantly compared to the control group and the R group. The microscopic response rates of metastatic lymph nodes were 0%, 11.1%, 40.0%, and 41.7%, respectively. Lung metastases were observed in three rabbits in the R group, and in one rabbit in the CMR group. Tissue platinum concentrations both in tumors and in regional lymph nodes increased significantly when mixed micelles were used. Chemoradiotherapy using the CDDP suppository and mixed micelles was effective for local control in the rabbit VX2 rectal tumor model.

  10. The NAD+ precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation.

    PubMed

    Weidele, Kathrin; Beneke, Sascha; Bürkle, Alexander

    2017-04-01

    NAD + is an essential cofactor for enzymes catalyzing redox-reactions as well as an electron carrier in energy metabolism. Aside from this, NAD + consuming enzymes like poly(ADP-ribose) polymerases and sirtuins are important regulators involved in chromatin-restructuring processes during repair and epigenetics/transcriptional adaption. In order to replenish cellular NAD + levels after cleavage, synthesis starts from precursors such as nicotinamide, nicotinamide riboside or nicotinic acid to match the need for this essential molecule. In the present study, we investigated the impact of supplementation with nicotinic acid on resting and proliferating human mononuclear blood cells with a focus on DNA damage and repair processes. We observed that nicotinic acid supplementation increased NAD + levels as well as DNA repair efficiency and enhanced genomic stability evaluated by micronucleus test after x-ray treatment. Interestingly, resting cells displayed lower basal levels of DNA breaks compared to proliferating cells, but break-induction rates were identical. Despite similar levels of p53 protein upregulation after irradiation, higher NAD + concentrations led to reduced acetylation of this protein, suggesting enhanced SIRT1 activity. Our data reveal that even in normal primary human cells cellular NAD + levels may be limiting under conditions of genotoxic stress and that boosting the NAD + system with nicotinic acid can improve genomic stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ewing's sarcoma of bone tumor cells produces MCSF that stimulates monocyte proliferation in a novel mouse model of Ewing's sarcoma of bone.

    PubMed

    Margulies, B S; DeBoyace, S D; Damron, T A; Allen, M J

    2015-10-01

    Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Ewing's Sarcoma of Bone Tumor Cells Produce MCSF that Stimulates Monocyte Proliferation in a Novel Mouse Model of Ewing's Sarcoma of Bone

    PubMed Central

    Margulies, BS; DeBoyace, SD; Damron, TA; Allen, MJ

    2015-01-01

    Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. PMID:26051470

  13. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  14. Inhibition of X-linked inhibitor of apoptosis protein enhances anti-tumor potency of pure total flavonoids on the growth of leukemic cells

    PubMed Central

    Wu, Liqiang; Zhang, Xiuxia; Lin, Xiaojie; Wang, Bo; Huang, Chang; Qin, Yao; Lin, Shengyun

    2018-01-01

    Flavonoids, a vast group of polyphenols widely distributed in plants, are known to possess a range of biological activities and potential anti-tumor effects. X-linked inhibitor of apoptosis protein (XIAP) promotes the progression of leukemia by preventing tumor cells undergoing apoptosis. The present study investigated the potential effects and underlying mechanisms of pure total flavonoids from Citrus paradisi Macfad (PTFC) on human U937 cells, and explored the effects of short hairpin (sh)RNA-mediated XIAP knockdown on the anti-cancer effects of PTFC. Western blotting was used to determine level of apoptosis-associated effectors following PTFC treatment. A lentiviral vector of RNA interference of XIAP gene was constructed to downregulate XIAP expression. MTT assay and flow cytometry were used to determine the effects of PTFC separately or combined with XIAP-shRNA on inhibition and apoptosis of U937 cells, respectively. Treatment with PTFC effectively inhibited leukemic cell proliferation in a dose- and time-dependent manner. PTFC induced apoptosis of U937 cells in a dose-dependent manner, at a particular concentration range, by decreasing XIAP expression levels and activating caspases-3, −7 and −9. PTFC treatment combined with XIAP-shRNA additionally demonstrated a marked increase in cell apoptosis, compared with PTFC or XIAP-shRNA alone (P<0.05). Therefore, these findings suggest that PTFC inhibits growth and induces apoptosis in U937 cells in vitro. Furthermore, suppression of XIAP expression enhances these effects. PMID:29434799

  15. Beta-glucosidase activity of ER-bodies in Arabidopsis thaliana seedlings under clinorotation and after X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Romanchuk, Svitlana

    Realization of long-term space flight requires the life support bioregenerative systems, an indispensable component of which are plants as a source of oxygen, water and food. Although it is well known now that plants adopt to spaceflight factors, in particular to microgravity, by changing some their patterns at the cellular, physiological, biochemical and molecular levels, many questions on cause and effect of these changes are still open. In addition, it is necessary to find the plant species which will be the most suited to the conditions in a space craft cabin. Plants of the family Brassicaceae are known to be resistant to a variety of abiotic stresses, including irradiation. Among them there are many cultivated plants with which we encounter every day: cabbage, radish, mustard, rapeseed, etc., and Arabidopsis thaliana - a convenient model object. The family Brassicaceae to be characterized by the presence of ER-bodies in plant cells, which are derivative of granular endoplasmic reticulum. Earlier, an enzyme beta-glucosidase (beta-D-glucoside glucohydrolase; EC 3.2.1.21) with an ER retention signal has been shown to accumulate selectively in such bodies in response to different unfavorable factors. Recently, we reported that formation of ER-bodies in A. thaliana seedling roots is sensitive to the clinorotation and X-ray irradiation, as their quantity and size in creased under the influence of these factors in comparison with control.begin{itemize} Therefore, we determined the beta-glucosidase activity in A. thaliana (line Columbia) seedlings grown in the stationary conditions and under clinorotation (a); and after X-ray irradiation (b): a) 3- and 7-day-old seedlings grown on a slow horizontal clinostat (2rpm); b) 3-day-old seedlings were treated with X-ray radiation dose of 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10 and 12 Gray. For the first time, an increase in beta-glucosidase activity, which is the main component of the ER-bodies in A. thaliana seedlings, were found

  16. CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO

    PubMed Central

    Masurovsky, Edmund B.; Bunge, Mary Bartlett; Bunge, Richard P.

    1967-01-01

    Long-term organotypic cultures of rat dorsal root ganglia were exposed to a single 40 kR dose of 184 kvp X-rays and studied in the living and fixed states by light or electron microscopy at 1–14 day intervals thereafter. Within the first 4 days following irradiation, over 30% of the neurons display chromatolytic reactions (eccentric nuclei, peripheral dispersal of Nissl substance, central granular zone) as well as abnormal nucleolar changes and dissociation of ribosomes from endoplasmic reticulum cisternae. Some satellite cells undergo retraction or acute degeneration, leaving only basement membrane to cover the neuron in these areas. 8 days after irradiation, neurons also exhibit (a) areas in which ribosomes are substantially reduced, (b) regions of cytoplasmic sequestration, (c) extensive vacuolization of granular endoplasmic reticulum and Golgi complex, and (d) diversely altered mitochondria (including the presence of ribosome-like particles or association with abnormal glycogen and lipid deposits). Nucleolar components become altered or reoriented and may form abnormal projections and ringlike configurations. Sizeable areas of the neuronal soma are now denuded of satellite cells; underlying these areas, nerve processes are found abnormally invaginated into the neuronal cytoplasm. By the 14th day following irradiation, most neurons display marked degenerative changes including extensive regions of ribosome depletion, sequestration, vacuolization, autolysis, and, in some areas, swirls of filaments, myelin figures, and heterogeneous dense bodies. These observations demonstrate that X-irradiation produces profound cytopathological changes in nervous tissue isolated from the host and that many of these changes resemble the effects of radiation on nervous tissue in vivo. PMID:10976234

  17. PROTECTION OF MICE AGAINST IRRADIATION AND TETANUS BY HOMOLOGOUS BONE MARROW CELLS FROM HYPERIMMUNIZED DONORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoloff, I.L.; Weiss, A.J.

    1963-07-01

    Female mice of inbred strains (101 x C3H, BDF, C57B1, Balb/C, C3H, CBA, and LAF) were immunized with 0.2 ml of alum-precipitated tetanus toxoid subcutaneously, followed in 3 weeks by 0.2 ml of fluid toxoid intravenously. Four days after the last injection the marrow was mechanically dispersed and 10- 20 million marrow cells were inoculated intravenously into mice that had received on the previous day a lethal dose of whole-body x irradiation. The LD/sub 96/ for 30 days of each host strain was: BDF, 950 r; LAF, 950 r; 101 x C3H, 900 r; Balb/C, 800 r; C3H, 800 r;more » C57B1, 800 r; and CBA, 700 r. Mice in which isologous bone marrow cells from hyperimmunized donors were transferred to irradiated hosts showed a high degree of protection against irradiation in all strains studied. The percentage of 30-day irradiation survivors follows: C3H, 100%; 101 x C3H, 100%; CBA, 90%; BDF, 90%; Balb/C, 60%; and C57B1, 70%. There were no survivors among groups irradiated but not protected with bone marrow. The percentage of 7- day survivors after toxin challenge for each of 4 different strains receiving isologous cells from hyperimmunized donors ranged between 87 and 100%. Normal mice, similar in weight to the experimental groups (called toxin controls) all died of tetanus within 48 hr of challenge with toxin. Other results showed that homologous disease does not interfere significantly with the in vivo neutralization of tetanus toxin by antitoxin. It was concluded that homologous disease is a clinical entity which, in some donor-host combinations, is associated with a host-vs-graft reaction and, in one strain combination so far tested, is associated with a graft-vshost reaction. The experiments showed that the genetic relation between donor and host is a factor in determining which type of immunologic reaction may occur. (TCO)« less

  18. Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    PubMed Central

    Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.

    2015-01-01

    Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581

  19. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma.

    PubMed

    Ford, Catriona A; Petrova, Sofia; Pound, John D; Voss, Jorine J L P; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L; Gallimore, Awen M; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E; Dunbar, Donald R; Murray, Paul G; Ruckerl, Dominik; Allen, Judith E; Hume, David A; van Rooijen, Nico; Goodlad, John R; Freeman, Tom C; Gregory, Christopher D

    2015-03-02

    Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Identifying Tumor Progenitor Cells | Center for Cancer Research

    Cancer.gov

    All cells within a tumor are not identical. In fact, only a small subset appears to be capable of actually generating the tumor. These tumor-initiating cells tend to resemble normal stem cells, which have the unique ability to give rise to differentiated cells while simultaneously producing additional undifferentiated stem cells. Most chemotherapeutics affect the bulk of a tumor but spare the stem-like cells, allowing the tumor to re-grow once chemotherapy is stopped. If, however, the cancer-initiating cells could be successfully targeted, cancer recurrence could be prevented.

  1. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction

    PubMed Central

    Danilin, Sabrina; Merkel, Alyssa R.; Johnson, Joshua R.; Johnson, Rachelle W.; Edwards, James R.; Sterling, Julie A.

    2012-01-01

    Myeloid-derived suppressor cells (MDSCs), identified as Gr1+CD11b+ cells in mice, expand during cancer and promote tumor growth, recurrence and burden. However, little is known about their role in bone metastases. We hypothesized that MDSCs may contribute to tumor-induced bone disease, and inoculated breast cancer cells into the left cardiac ventricle of nude mice. Disease progression was monitored weekly by X-ray and fluorescence imaging and MDSCs expansion by fluorescence-activated cell sorting. To explore the contribution of MDSCs to bone metastasis, we co-injected mice with tumor cells or PBS into the left cardiac ventricle and Gr1+CD11b+ cells isolated from healthy or tumor-bearing mice into the left tibia. MDSCs didn’t induce bone resorption in normal mice, but increased resorption and tumor burden significantly in tumor-bearing mice. In vitro experiments showed that Gr1+CD11b+ cells isolated from normal and tumor-bearing mice differentiate into osteoclasts when cultured with RANK ligand and macrophage colony-stimulating factor, and that MDSCs from tumor-bearing mice upregulate parathyroid hormone-related protein (PTHrP) mRNA levels in cancer cells. PTHrP upregulation is likely due to the 2-fold increase in transforming growth factor β expression that we observed in MDSCs isolated from tumor-bearing mice. Importantly, using MDSCs isolated from GFP-expressing animals, we found that MDSCs differentiate into osteoclast-like cells in tumor-bearing mice as evidenced by the presence of GFP+TRAP+ cells. These results demonstrate that MDSCs expand in breast cancer bone metastases and induce bone destruction. Furthermore, our data strongly suggest that MDSCs are able to differentiate into osteoclasts in vivo and that this is stimulated in the presence of tumors. PMID:23264895

  2. Effect of LED irradiation on the expression of MMP-3 and MMP-13 in SW1353 cells in vitro

    NASA Astrophysics Data System (ADS)

    Zeng, Chang-chun; Guo, Zhou-yi; Zhang, Feng-xue; Deng, Wen-di; Liu, Song-hao

    2007-05-01

    Matrix Metalloproteinase (MMP) plays an active role in remodeling cartilage in osteoarthritic cartilage. To find an effective method of prevention of osteoclasia, this in vitro study focuses on the expression of MMP-3 and MMP-13 in the SW1353 cells by LED irradiation. The human chondrosarcoma cell line SW1353 were stimulated with the proinflammatory cytokine IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and were received the irradiation of LED (632nm, 4mW/cm2). The cell count was assessed over a 96-hour period by using Trypan blue dye exclusion assay, and the cell activity was evaluated with a Cell Counting Kit-8 Assays. The subsequent expression of MMP-3 and MMP-13 was quantified. Results of this experiment showed that the cultural cell activity was decreased, and the expression of MMP-3 and MMP-13 was increased by being stimulated with IL-1beta or TNF-alpha. After received LED irradiation, the death rate of cultural cell was increased and the expression of MMP-3 and MMP-13 was decreased significantly. The present study concluded that particular LED irradiation stimulates SW1353 cell proliferation activity and inhibit the MMP-3 and MMP-13 enzymatic activity. These findings might be clinically relevant, indicating that the low power laser irradiation treatment is likely to achieve the repair of articular cartilage in clinic.

  3. Effects of whole-body x irradiation on the biogenesis of creatine in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thyagarajan, P.; Vakil, U.K.; Sreenivasan, A.

    1977-06-01

    Influences of whole-body x irradiation on various aspects of creatine metabolism have been studied. Exposures to sublethal or lethal doses of x radiation results in excessive urinary excretion as well as higher accumulation of creatine in the skeletal muscle of x-irradiated rats. A sudden fall in CPK activity in muscle with a concomitant rise in serum suggests that changes in serum and tissue CPK activity are of an adaptive nature in rats exposed to sublethal doses of x radiation. In vitro studies on creatine synthesis shows that transaminidase and methyl transferase activities in kidneys and liver, respectively, are decreased onmore » the 5th day in the x-irradiated, are decreased on the 5th day in the x-irradiated rat. However, on the 8th day, the enzyme activities are restored to normal.« less

  4. Investigation of change of tumor optical properties after laser-induced plasmon-resonant photothermal treatment of transplanted tumors in rats

    NASA Astrophysics Data System (ADS)

    Genin, Vadim D.; Genina, Elina A.; Bucharskaya, Alla B.; Tuchin, Valery V.; Khlebtsov, Nikolay G.; Terentyuk, Georgy S.; Bashkatov, Alexey N.

    2018-04-01

    The paper presents the investigation of change of tumor optical properties of the rat tumor doped by gold nanoparticles after laser-induced plasmon-resonant photothermal treatment. To obtain the model tumors the rats have been implanted by suspension of alveolar kidney cancer cells. An hour before the experiment the animals have been injected by the suspension of gold nanorods intratumorally. For irradiation a diode laser with wavelength 808 nm has been used. After the irradiation the tumor has been removed and sliced. Spectra of total and collimated transmission and diffuse reflectance of the samples of different layers of the tumors have been measured in the wavelength range 350-2500 nm. Absorption, scattering, reduced scattering coefficients and scattering anisotropy factor of tumor tissues have been calculated with inverse adding-doubling method. The results of the experiment have shown that after doping the tumor tissue by the plasmon resonant nanoparticles and NIR laser irradiating, there is the decreases of absorption as well as scattering properties of the tumor and surrounding tissues. However, despite the sufficiently high temperature on the surface (about 80°C), the changes in the center of the tumor are insignificant.

  5. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance.

    PubMed

    Schmidt, Felix; Efferth, Thomas

    2016-06-16

    Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1) single cell isolation (e.g., by laser-capture microdissection), fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase), and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems). Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.

  6. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  7. Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries.

    PubMed

    Villano, J Lee; Propp, Jennifer M; Porter, Kimberly R; Stewart, Andrew K; Valyi-Nagy, Tibor; Li, Xinyu; Engelhard, Herbert H; McCarthy, Bridget J

    2008-04-01

    The exact incidence of pineal germ-cell tumors is largely unknown. The tumors are rare, and the number of patients with these tumors, as reported in clinical series, has been limited. The goal of this study was to describe pineal germ-cell tumors in a large number of patients, using data from available brain tumor databases. Three different databases were used: Surveillance, Epidemiology, and End Results (SEER) database (1973-2001); Central Brain Tumor Registry of the United States (CBTRUS; 1997-2001); and National Cancer Data Base (NCDB; 1985-2003). Tumors were identified using the International Classification of Diseases for Oncology, third edition (ICD-O-3), site code C75.3, and categorized according to histology codes 9060-9085. Data were analyzed using SAS/STAT release 8.2, SEER*Stat version 5.2, and SPSS version 13.0 software. A total of 1,467 cases of malignant pineal germ-cell tumors were identified: 1,159 from NCDB, 196 from SEER, and 112 from CBTRUS. All three databases showed a male predominance for pineal germ-cell tumors (>90%), and >72% of patients were Caucasian. The peak number of cases occurred in the 10- to 14-year age group in the CBTRUS data and in the 15- to 19-year age group in the SEER and NCDB data, and declined significantly thereafter. The majority of tumors (73%-86%) were germinomas, and patients with germinomas had the highest survival rate (>79% at 5 years). Most patients were treated with surgical resection and radiation therapy or with radiation therapy alone. The number of patients included in this study exceeds that of any study published to date. The proportions of malignant pineal germ-cell tumors and intracranial germ-cell tumors are in range with previous studies. Survival rates for malignant pineal germ-cell tumors are lower than results from recent treatment trials for intracranial germ-cell tumors, and patients that received radiation therapy in the treatment plan either with surgery or alone survived the longest.

  8. Alpha Particles Induce Autophagy in Multiple Myeloma Cells.

    PubMed

    Gorin, Jean-Baptiste; Gouard, Sébastien; Ménager, Jérémie; Morgenstern, Alfred; Bruchertseifer, Frank; Faivre-Chauvet, Alain; Guilloux, Yannick; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2015-01-01

    Radiation emitted by the radionuclides in radioimmunotherapy (RIT) approaches induce direct killing of the targeted cells as well as indirect killing through the bystander effect. Our research group is dedicated to the development of α-RIT, i.e., RIT using α-particles especially for the treatment of multiple myeloma (MM). γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by (213)Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of (213)Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation. Murine 5T33 and human LP-1 MM cell lines were used to study the effects of such α-particles. We first examined the effects of (213)Bi on proliferation rate, double-strand DNA breaks, cell cycle, and cell death. Then, we investigated autophagy after (213)Bi irradiation. Finally, a coculture of dendritic cells (DCs) with irradiated tumor cells or their culture media was performed to test whether it would induce DC activation. We showed that (213)Bi induces DNA double-strand breaks, cell cycle arrest, and autophagy in both cell lines, but we detected only slight levels of early apoptosis within the 120 h following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented (213)Bi-induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s); however, no increase in membrane or extracellular expression of danger-associated molecular patterns was observed after irradiation. This study demonstrates that (213)Bi induces mainly necrosis in MM cells, low levels of apoptosis, and autophagy that might be involved in tumor cell death.

  9. Heat-directed tumor cell fusion.

    PubMed

    Brade, Anthony M; Szmitko, Paul; Ngo, Duc; Liu, Fei-Fei; Klamut, Henry J

    2003-03-20

    In previous studies we demonstrated that a modified human HSP70b promoter (HSE.70b) directs high levels of gene expression to tumor cells after mild hyperthermia treatment in the range of 41.5-44 degrees C. This transcriptional targeting system exhibits low basal activity at 37 degrees C, is highly induced (950-fold) after mild heat treatment (43 degrees C/30 min), and returns to basal activity levels within 12-24 hours of activation. Here we describe heat-directed targeting of an activated form of the Gibbon ape leukemia virus env protein (GALV FMG) to tumor cells. GALV FMG mediates cell-cell fusion, and when expressed in tumor cells can produce bystander effects of up to 1:200. Transient transfection of a HSE70b.GALV FMG minigene caused extensive syncytia formation in HeLa and HT-1080 cells following mild heat treatment (44 degrees C/30 min). Stable transfection into HT-1080 cells produced a cell line (HG5) that exhibits massive syncytia formation and a 60% reduction in viability relative to a vector-only control (CI1) following heat treatment in vitro. Mild hyperthermia also resulted in syncytia formation, necrosis, and complete macroscopic regression of HG5 xenograft tumors grown in the footpads of mice with severe combined immunodeficiency disorders (SCID). Median survival increased from 12.5 (in heated CI1 controls) to 52 days after a single heat treatment. Heat-directed tumor cell fusion may prove to be a highly beneficial adjunct to existing cancer treatment strategies that take advantage of the synergistic interaction between mild hyperthermia and radiation or chemotherapeutic drugs.

  10. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  11. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer

    PubMed Central

    Gupta, Harshita B; Clark, Curtis A; Yuan, Bin; Sareddy, Gangadhara; Pandeswara, Srilakshmi; Padron, Alvaro S; Hurez, Vincent; Conejo-Garcia, José; Vadlamudi, Ratna; Li, Rong; Curiel, Tyler J

    2016-01-01

    As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor-initiating cells (TICs) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg ovarian carcinoma cells, TICs express more PD-L1 versus non-TICs. Silencing PD-L1 in B16 and ID8agg cells by shRNA (‘PD-L1lo’) reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development, immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene expression and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel signaling effects on cancer pathogenesis and treatment responses. PMID:28798885

  12. Senescence of nickel-transformed cells by an X chromosome: Possible epigenetic control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, C.B.; Xin Wei Wang; Bhamra, R.K.

    1991-02-15

    Transfer of a normal Chinese hamster X chromosome (carried in a mouse A9 donor cell line) to a nickel-transformed Chinese hamster cell line with an Xq chromosome deletion resulted in senescense of these previously immortal cells. At early passages of the A9/CX donor cells, the hamster X chromosome was highly active, inducing senescence in 100% of the colonies obtained after its transfer into the nickel-transformed cells. However, senescence was reduced to 50% when Chinese hamster X chromosomes were transferred from later passage A9 cells. Full senescing activity of the intact hamster X chromosome was restored by treatment of the donormore » mouse cells with 5-azacytidine, which induced demethylation of DMA. These results suggest that a senescence gene or genes, which may be located on the Chinese hamster X chromosome, can be regulated by DNA methylation, and that escape from senescence and possibly loss of tumor suppressor gene activity can occur by epigenetic mechanisms.« less

  13. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells

    PubMed Central

    Burgett, Monica E.; Lathia, Justin D.; Roth, Patrick; Nowacki, Amy S.; Galileo, Deni S.; Pugacheva, Elena; Huang, Ping; Vasanji, Amit; Li, Meizhang; Byzova, Tatiana; Mikkelsen, Tom; Bao, Shideng; Rich, Jeremy N.; Weller, Michael; Gladson, Candece L.

    2016-01-01

    The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting. PMID:27270311

  14. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Ruiz, María E., E-mail: mrruiz@unav.es; Radiation Oncology, University Clinic, University of Navarra, Pamplona; Garasa, Saray

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using amore » Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  15. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium.

    PubMed

    Rodriguez-Ruiz, María E; Garasa, Saray; Rodriguez, Inmaculada; Solorzano, Jose Luis; Barbes, Benigno; Yanguas, Alba; Teijeira, Alvaro; Etxeberria, Iñaki; Aristu, José Javier; Halin, Cornelia; Melero, Ignacio; Rouzaut, Ana

    2017-02-01

    The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Depletion of regulatory T cells by anti-ICOS antibody enhances anti-tumor immunity of tumor cell vaccine in prostate cancer.

    PubMed

    Mo, Lijun; Chen, Qianmei; Zhang, Xinji; Shi, Xiaojun; Wei, Lili; Zheng, Dianpeng; Li, Hongwei; Gao, Jimin; Li, Jinlong; Hu, Zhiming

    2017-10-13

    ICOS + Treg cells exert important immunosuppressive effects in tumor immunity. We adopt a combination approach of ICOS + Treg cells depletion with tumor cell vaccine to evaluate anti-tumor immunity in mouse prostate cancer model. Streptavidin (SA)-mGM-CSF surface-modified RM-1 cells were prepared as the vaccine and the mouse subcutaneous prostate tumor model was used to evaluate the immunity. Tumor growth, flow cytometry, immunohistochemistry, immunofluorescence and enzyme linked immunosorbent assay (ELISA) were performed to evaluate the therapeutic effects. Our results demonstrated that SA-mGM-CSF vaccine was prepared successfully and tumor growth was inhibited. The tumor size in the combination group was much smaller than that in the vaccine with IgG mAb group. The portions of dendritic cells, CD8 + and CD4 + T cells in the mice blood and tumor tissues were increased after treatment with vaccine. There were more immune-suppressing Tregs infiltrated into tumor after treatment with tumor cell vaccine, and ICOS blocking could deplete the infiltrated Tregs, and T lymphocytes increased more dramatically in the combination therapy group. The concentrations of interferon-γ were increased in all vaccine group, the concentrations of Interleukin-10 and Interleukin-4 were much lower in the combination group. Our study demonstrated that ICOS blocking could deplete the tumor-infiltrated ICOS + Treg cells. Combining GM-CSF surface-modified RM-1 cell vaccine with Anti-ICOS antibody could induce better antitumor immunity than a vaccine alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Unusually large stromal tumor of the rectum causing obstruction].

    PubMed

    Hornok, L; Lestár, B; Nagy, P; Ritter, L; László, S; Kiss, J

    2000-06-01

    A male, 74 years old patient with perineal, sacral pain and with defecation disorders attended the outpatient clinic of HIETE. The origine of the complains was a retrorectal, fist like, rectum narrowing tumor. The tumor was covered by normal mucosa from rectal side. Preoperative examinations--endoscopy, CT, MRI transrectal US--detected a tumor with size 7 x 6 x 5 cm, growing from the muscular wall of the rectum, with no connection with the surrounding tissues. Deep biopsy revealed malignant mesenchymal tumor. After preoperative irradiation abdominoperineal rectum amputation was performed. The recovery was uneventful. The definitive hystological examination proved a gastrointestinal stromal tumor (GIST). This type of tumor rarely occurs in the large intestine or in the rectum, that why the publishing can be interesting.

  18. Targeting and destroying tumor vasculature with a near-infrared laser-activated "nanobomb" for efficient tumor ablation.

    PubMed

    Gao, Wen; Li, Shuangshuang; Liu, Zhenhua; Sun, Yuhui; Cao, Wenhua; Tong, Lili; Cui, Guanwei; Tang, Bo

    2017-09-01

    Attacking the supportive vasculature network of a tumor offers an important new avenue for cancer therapy. Herein, a near-infrared (NIR) laser-activated "nanobomb" was developed as a noninvasive and targeted physical therapeutic strategy to effectively disrupt tumor neovasculature in an accurate and expeditious manner. This "nanobomb" was rationally fabricated via the encapsulation of vinyl azide (VA) into c(RGDfE) peptide-functionalized, hollow copper sulfide (HCuS) nanoparticles. The resulting RGD@HCuS(VA) was selectively internalized into integrin α v β 3 -expressing tumor vasculature endothelial cells and dramatically increased the photoacoustic signals from the tumor neovasculature, achieving a maximum signal-to-noise ratio at 4 h post-injection. Upon NIR irradiation, the local temperature increase triggered VA to release N 2 bubbles rapidly. Subsequently, these N 2 bubbles could instantly explode to destroy the neovasculature and further induce necrosis of the surrounding tumor cells. A single-dose injection of RGD@HCuS(VA) led to complete tumor regression after laser irradiation, with no tumor regrowth for 30 days. More importantly, high-resolution photoacoustic angiography, combined with excellent biodegradability, facilitated the precise destruction of tumor neovasculature by RGD@HCuS(VA) without damaging normal tissues. These results demonstrate the great potential of this "nanobomb" for clinical translation to treat cancer patients with NIR laser-accessible orthotopic tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. DNA Tumor Viruses and Cell Metabolism

    PubMed Central

    Mushtaq, Muhammad; Darekar, Suhas

    2016-01-01

    Viruses play an important role in cancerogenesis. It is estimated that approximately 20% of all cancers are linked to infectious agents. The viral genes modulate the physiological machinery of infected cells that lead to cell transformation and development of cancer. One of the important adoptive responses by the cancer cells is their metabolic change to cope up with continuous requirement of cell survival and proliferation. In this review we will focus on how DNA viruses alter the glucose metabolism of transformed cells. Tumor DNA viruses enhance “aerobic” glycolysis upon virus-induced cell transformation, supporting rapid cell proliferation and showing the Warburg effect. Moreover, viral proteins enhance glucose uptake and controls tumor microenvironment, promoting metastasizing of the tumor cells. PMID:27034740

  20. The treatment of tumors by the induction of anemia and irradiation in hyperbaric oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sealy, R.; Jacobs, P.; Wood, L.

    1989-08-01

    Because increased effects have been achieved when murine tumors are irradiated after a period of hypoxia and because of anecdotal clinical experiences of an improved result after irradiation of previously anemic patients in hyperbaric oxygen, the relationship between irradiation and increased survival was investigated in seventy-two patients with advanced head and neck or cervical cancer. Anemia was achieved by means of a two-stage isovolemic venesection maintained for seventy-two hours, hemoglobin was returned to a normal level, and treatment in hyperbaric oxygen was started. Marked tumor shrinkage after the induction of anemia and before radiotherapy was seen and was probably disease,more » site, and hemoglobin level related. As a result, a possible new approach to cancer therapy is suggested. After completion of therapy, the 1-year disease-free survival for patients with head and neck and cervical cancer was not improved, but the 21-month survival for cervical cancer was improved. Further studies are strongly urged.« less

  1. Immunochemoradiotherapy for patients with oral squamous cell carcinoma: augmentation of OK-432-induced helper T cell 1 response by 5-FU and X-ray irradiation.

    PubMed

    Tano, Tomoyuki; Okamoto, Masato; Kan, Shin; Bando, Takashi; Goda, Hiroyuki; Nakashiro, Koh-ichi; Shimodaira, Shigetaka; Koido, Shigeo; Homma, Sadamu; Fujita, Tomonobu; Sato, Mitsunobu; Yamashita, Naomi; Hamakawa, Hiroyuki; Kawakami, Yutaka

    2013-07-01

    Eighty-one patients with oral squamous cell carcinoma (OSCC) received oral fluoropyrimidine UFT and radiotherapy (RT) with or without an immunotherapeutic agent OK-432. Both overall survival and progression-free survival of patients who received RT + UFT + OK-432 were significantly longer than those of patients who received RT + UFT (P = .0075 and P = .0175, respectively). Clinical response was also more favorable in RT + UFT + OK-432 group than in RT + UFT group (P = .0066). Next, in vitro experiments were conducted to examine the effect of 5-fluorouracil (5-FU) and X-ray irradiation in OK-432-induced immunity. Human peripheral blood mononuclear cells stimulated with OK-432 produced helper T cell 1 (Th1)-type cytokines as well as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), which are produced by Th2 and regulatory T cells (Tregs), respectively, and are inhibitory in antitumor immunity. OK-432-induced IL-10 and TGF-β but not Th1 cytokines were significantly inhibited by 5-FU and/or X-ray. 5-FU and X-ray also inhibited the expression of mRNAs for GATA-3 and Foxp3, which are transcription factors for Th2 and Tregs, respectively, but not for T-bet, a transcription factor for Th1. In addition, 5-FU and X-ray decreased the expression of mRNAs for suppressor of cytokine signaling 1 (SOCS1) and SOCS3. Antisense oligonucleotides for SOCS1 and SOCS3 markedly reduced OK-432-induced IL-10 and TGF-β. This is the first report clearly demonstrating that OK-432-based immunotherapy significantly enhanced the therapeutic effects of chemoradiotherapy in patients with OSCC as well as elucidating the mechanism of the synergistic effect of immunochemoradiotherapy in which 5-FU and radiation enhanced OK-432-induced Th1 response mediated by the inhibition of SOCS1 and SOCS3 gene expression.

  2. Annealing Effect on (FAPbI3)1−x(MAPbBr3)x Perovskite Films in Inverted-Type Perovskite Solar Cells

    PubMed Central

    Chen, Lung-Chien; Wu, Jia-Ren; Tseng, Zhong-Liang; Chen, Cheng-Chiang; Chang, Sheng Hsiung; Huang, Jun-Kai; Lee, King-Lien; Cheng, Hsin-Ming

    2016-01-01

    This study determines the effects of annealing treatment on the structure and the optical and electronic behaviors of the mixed (FAPbI3)1−x(MAPbBr3)x perovskite system. The experimental results reveal that (FAPbI3)1−x(MAPbBr3)x (x ~ 0.2) is an effective light-absorbing material for use in inverted planar perovskite solar cells owing to its large absorbance and tunable band gap. Therefore, good band-matching between the (FAPbI3)1−x(MAPbBr3)x and C60 in photovoltaic devices can be controlled by annealing at various temperatures. Accordingly, an inverted mixed perovskite solar cell with a record efficiency of 12.0% under AM1.5G irradiation is realized. PMID:28773874

  3. Simulating Heterogeneous Tumor Cell Populations

    PubMed Central

    Bar-Sagi, Dafna; Mishra, Bud

    2016-01-01

    Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2—diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior. PMID:28030620

  4. DLTS analysis of radiation-induced defects in one-MeV electron irradiated germanium and Alsub0.17Gasub0.83As solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. B.; Choi, C. G.; Loo, R. Y.

    1985-01-01

    The radiation-induced deep-level defects in one-MeV electron-irradiated germanium and AlxGal-xAs solar cell materials using the deep-level transient spectroscopy (DLTS) and C-V techniques were investigated. Defect and recombination parameters such as defect density and energy levels, capture cross sections and lifetimes for both electron and hole traps were determined. The germanium and AlGaAs p/n junction cells were irradiated by one-MeV electrons. The DLTS, I-V, and C-V measurements were performed on these cells. The results are summarized as follows: (1) for the irradiated germanium samples, the dominant electron trap was due to the E sub - 0.24 eV level with density around 4x10 to the 14th power 1/cu cm, independent of electron fluence, its origin is attributed to the vacancy-donor complex defect formed during the electron irradiation; (2) in the one-MeV electron irradiated Al0.17Ga0.83 as sample, two dominant electron traps with energies of Ec-0.19 and -0.29 eV were observed, the density for both electron traps remained nearly constant, independent of electron fluence. It is shown that one-MeV electron irradiation creates very few or no new deep-level traps in both the germanium and AlxGa1-xAs cells, and are suitable for fabricating the radiation-hard high efficiency multijunction solar cells for space applications.

  5. [Prevalence and clinicopathological characteristics of giant cell tumors].

    PubMed

    Estrada-Villaseñor, E G; Linares-González, L M; Delgado-Cedillo, E A; González-Guzmán, R; Rico-Martínez, G

    2015-01-01

    The frequency of giant cell tumors reported in the literature is very variable. Considering that our population has its own features, which distinguish it from the Anglo-Saxon and Asian populations, we think that both the frequency and the clinical characteristics of giant cell tumors in our population are different. The major aim of this paper was to determine the frequency and clinicopathological characteristics of giant cell tumors of the bone. A cross-sectional descriptive study was conducted of the cases diagnosed at our service as giant cell tumors of the bone from January to December 2013. The electronic clinical records, radiologic records and histologic slides from each case were reviewed. Giant cell tumors represented 17% of total bone tumors and 28% of benign tumors. Patients included 13 females and 18 males. The most frequent locations of giant cell tumors were: the proximal tibia, 9 cases (29%), and the distal femur, 6 cases (19%). Forty-five percent of giant cell tumors were associated with aneurysmal bone cyst (ABC) (14 cases) and one case (3%) was malignant. The frequency of giant cell tumors in this case series was intermediate, that is, higher than the one reported in Anglo-Saxon countries (usually low), but without reaching the frequency rates reported in Asian countries (high).

  6. High-Dose Chemotherapy, Total-Body Irradiation, and Autologous Stem Cell Transplantation or Bone Marrow Transplantation in Treating Patients With Hematologic Cancer or Solid Tumors

    ClinicalTrials.gov

    2013-05-07

    Breast Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  7. The influence of sex on life shortening and tumor induction in CBA/Cne mice exposed to x rays or fission neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Majo, V.; Coppola, M.; Rebessi, S.

    1996-07-01

    An experimental study of male and female CBA/Cne mice was set up at Casaccia primarily to investigate the influence of sex on long-term survival and tumor induction after exposure to high- and low-LET radiation. Mice were whole-body-irradiated at 3 months of age with fission-neutron doses of 0.1, 0.2, 0.4, 0.8, 1.2 and 1.8 Gy at the RSV-TAPIRO reactor (mean neutron energy 0.4 MeV, in terms of kerma, y{sub D} = 51.5 KeV/{mu}m), or with 250 KVp X-ray doses of 1, 3, 5 and 7 Gy. Control and irradiated animals were then followed for their entire life span. As a generalmore » finding, male CBA/Cne mice appear more susceptible to tumori-genesis than females. In particular, the incidences of induced acute myeloid leukemia and malignant lymphomas are significant only in male mice. Benign and malignant solid tumors of many types are observed in mice of both sexes, the most frequent being in the lung, liver and ovary. However, evidence for a radiation response is limited to the case of Harderian gland neoplasms. In addition, a comparison of the observed frequency of all irradiated compared to unirradiated animals bearing solid tumors shows that the total tumor occurrence is not altered markedly by radiation exposure. A decrease in survival time is observed for both sexes and radiation types and correlates well with increasing dose. Moreover, both sex and radiation quality appear to influence the life shortening. A similar dose dependence of survival time is found when tumor-free animals alone are considered, suggesting a non-specific component of life-shortening. 18 refs., 3 figs., 5 tabs.« less

  8. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice

    NASA Astrophysics Data System (ADS)

    Mizuno, Kazue; Yonetamari, Kenta; Shirakawa, Yuki; Akiyama, Taketoshi; Ono, Ryo

    2017-03-01

    Plasma is known to activate immune cells in vitro; however, its effect on cancer immunotherapy is not well understood in vivo. In this study, we report B16-F10 tumor growth suppression at a non-irradiated site on a mouse leg after a nanosecond pulsed streamer discharge was applied to the tumor on the other leg. The tumor growth suppression at non-irradiated remote sites was observed from the day next to that of plasma irradiation: the rapid abscopal effect suggests innate immune response activation. Additionally, the production of inflammatory cytokines from splenocytes was enhanced after plasma irradiation. This suggests the activation of adaptive immune response specific to B16-F10 melanoma by plasma irradiation.

  9. Antigen localization controls T cell-mediated tumor immunity.

    PubMed

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  10. Soft x rays as a tool to investigate radiation-sensitive sites in mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenner, D.J.; Zaider, M.

    1983-01-01

    It is now clear that the initial geometrical distribution of primary radiation products in irradiated biological matter is fundamental to the observed end point (cell killing, mutation induction, chromosome aberrations, etc.). In recent years much evidence has accumulated indicating that for all radiations, physical quantities averaged over cellular dimensions (micrometers) are not good predictors of biological effect, and that energy-deposition processes at the nanometer level are critical. Thus irradiation of cells with soft x rays whose secondary electrons have ranges of the order of nanometers is a unique tool for investigating different models for predicting the biological effects of radiation.more » We demonstrate techniques whereby the biological response of the cell and the physical details of the energy deposition processes may be separated or factorized, so that given the response of a cellular system to, say, soft x rays, the response of the cell to any other radiation may be predicted. The special advantages of soft x rays for eliciting this information and also information concerning the geometry of the radiation sensitive structures within the cell are discussed.« less

  11. Membrane damage effect of therapeutic ultrasound on Ehrlich ascitic tumor cells.

    PubMed

    Hao, Qiao; Liu, Quanhong; Wang, Xiaobing; Wang, Pan; Li, Tao; Tong, Wan Yan

    2009-02-01

    The biologic effects and the underlying mechanisms of Ehrlich ascitic tumor (EAT) cells induced by ultrasound were investigated in this study. Cells were subjected to ultrasonic irradiation with a frequency of 2.17 MHz and an intensity of 3 W/cm(2) for variable periods of time. Trypan blue exclusion was used to detect the integrity of cellular membrane; the membrane permeability was investigated by the incorporation of fluorescein isothiocyanate dextran during ultrasound exposure; and the cell membrane ultrastructure changes were observed under a scanning electron microscope. The potential mechanism was estimated from the generation of hydroxyl radicals, the lipid peroxidation levels, and intracellular reactive oxygen radicals production. The cell membrane damage effects induced by ultrasound increased with a prolonged exposure time; the fluorescent rates of the cells irradiated with ultrasound for 30 and 60 seconds were 11.46% and 18.50%, respectively; the amount of hydroxyl radicals in 30 (26.10 U/mL) and 60 seconds (28.47 U/mL) were significantly enhanced, compared with the control group (24.44 U/mL); then, the level of lipid peroxidation was also changed from 0.27 to 0.54 (30 seconds) and 1.21 nmol/mL (60 seconds). Shear forces and free radicals produced by acoustic cavitation may play important roles in these actions.

  12. HISTOLOGICAL INVESTIGATION OF THE BEHAVIOR OF THE LIVER MITOCHONDRIA OF THE RAT WHOLE-BODY X IRRADIATED WITH A LETHAL DOSE (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronzetti, P.; Malaspina, A.

    1958-01-01

    It was demonstrated that irradlation of the whole body of rats with a lethal dose of x rays (800 r) produces a reversible modification of the liver cell mitochondria. At first mitochondrla are reduced in number and lose their affinity for iron, then (24 hours after irradiation) they are transformed in granules and react again with Iron. About the seventh day after irradiation, mitochondria of all llver cells of every lobule return to their normal condition. The loss of affinity for iron of mitochondria is discussed as it is considered. The morphological result of the modification of the enzymes relatedmore » to mitochondria determined by the action of x rays. (auth) BIOLOGY« less

  13. Effects of laser immunotherapy on tumor microenvironment

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Wood, Ethan W.; Hasanjee, Aamr; Chen, Wei R.; Vaughan, Melville B.

    2014-02-01

    The microenvironments of tumors are involved in a complex and reciprocal dialog with surrounding cancer cells. Any novel treatment must consider the impact of the therapy on the microenvironment. Recently, clinical trials with laser immunotherapy (LIT) have proven to effectively treat patients with late-stage, metastatic breast cancer and melanoma. LIT is the synergistic combination of phototherapy (laser irradiation) and immunological stimulation. One prominent cell type found in the tumor stroma is the fibroblast. Fibroblast cells can secrete different growth factors and extracellular matrix modifying molecules. Furthermore, fibroblast cells found in the tumor stroma often express alpha smooth muscle actin. These particular fibroblasts are coined cancer-associated fibroblast cells (CAFs). CAFs are known to facilitate the malignant progression of tumors. A collagen lattice assay with human fibroblast cells is used to elucidate the effects LIT has on the microenvironment of tumors. Changes in the contraction of the lattice, the differentiation of the fibroblast cells, as well as the proliferation of the fibroblast cells will be determined.

  14. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts

    PubMed Central

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R.; Medlin, Donald; Zheng, Leon; Wilson, R. Kevin; Rusin, Matthew; Takacs, Endre

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial “pause” in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature. PMID:29300773

  15. Promotion of Tumor-Initiating Cells in Primary and Recurrent Breast Tumors

    DTIC Science & Technology

    2014-10-01

    confer stemness . We hypothesize that inhibition of IKK/NF-κB will reduce or eliminate breast camcer TICs, blocking tumorigenesis. Furthermore, we...Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011 Oct;121(10):3804-9. Review...cells and sub- population of cells termed cancer stem cells or tumor-initiating cells (TICs).1 The primary characteristic of TICs is their ability to

  16. Nanoparticle Imaging of Integrins on Tumor Cells1

    PubMed Central

    Montet, Xavier; Montet-Abou, Karin; Reynolds, Fred; Weissleder, Ralph; Josephson, Lee

    2006-01-01

    Abstract Nanoparticles 10 to 100 nm in size can deliver large payloads to molecular targets, but undergo slow diffusion and/or slow transport through delivery barriers. To examine the feasibility of nanoparticles targeting a marker expressed in tumor cells, we used the binding of cyclic arginine-glycine-aspartic acid (RGD) nanoparticle targeting integrins on BT-20 tumor as a model system. The goals of this study were: 1) to use nanoparticles to image αvβ3 integrins expressed in BT-20 tumor cells by fluorescence-based imaging and magnetic resonance imaging, and, 2) to identify factors associated with the ability of nanoparticles to target tumor cell integrins. Three factors were identified: 1) tumor cell integrin expression (the αvβ3 integrin was expressed in BT-20 cells, but not in 9L cells); 2) nanoparticle pharmacokinetics (the cyclic RGD peptide cross-linked iron oxide had a blood half-life of 180 minutes and was able to escape from the vasculature over its long circulation time); and 3) tumor vascularization (the tumor had a dense capillary bed, with distances of <100 µm between capillaries). These results suggest that nanoparticles could be targeted to the cell surface markers expressed in tumor cells, at least in the case wherein the nanoparticles and the tumor model have characteristics similar to those of the BT-20 tumor employed here. PMID:16611415

  17. EFFECTS OF X IRRADIATION ON ENZYME SYNTHESIS DURING LIVER REGENERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D.K.

    1962-05-01

    Twenty-four different enzymes or enzyme systems were assayed in regenerating rat liver from control and irradiated animals at various times after partial hepatectomy. X irradiation, either of the whole liver region or of an exteriorized liver lobule, interfered with the accumulation of only three of these enzymes: deoxycytidylate deaminase, thymidine phosphorylase, and NAD pyrophosphorylase. Irradiation did not affect the synthesis of related enzymes such as adenosine and guanine deaminases, and inosine and uridine phosphorylases. The effects of irradiation on enzyme synthesis in regenerating liver would appear to be highly selective. (auth)

  18. Radiation-induced cystitis following intracavitary irradiation for superficial bladder cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maatman, T.J.; Novick, A.C.; Montague, D.K.

    Intracavitary irradiation is effective in the treatment of noninvasive papillary transitional cell carcinoma and carcinoma in situ of the bladder. Mortality has not been associated with this form of therapy. The morbidity associated with intracavitary irradiation consists of mild to severe radiation cystitis and we report 2 such cases. One patient is from a series of 65 patients with noninvasive bladder tumors treated with intracavitary irradiation at this clinic since 1965. The second patient had noninvasive bladder tumors and was treated with intracavitary irradiation elsewhere. In both patients severe radiation cystitis subsequently developed, requiring simple cystectomy and urinary diversion. Themore » potential for this serious side effect must be considered when choosing a form of therapy for patients with noninvasive papillary transitional cell carcinoma and carcinoma in situ of the bladder.« less

  19. NKT Cells as an Ideal Anti-Tumor Immunotherapeutic

    PubMed Central

    Fujii, Shin-ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-01-01

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  20. Radioresistance in murine solid tumors induced by interleukin-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunschweiger, P.G.; Basrur, V.; Santos, O.

    1996-02-01

    Interleukin-1 (IL-1) has radioprotective activity in hematopoietic lineages and in other normal cell renewal systems, but little is known about the effects of IL-1{alpha} on the radiosensitivity of tumor cell populations. The present studies were conducted to investigate the effects of IL-1{alpha} on the radiosensitivity of clonogenic cells in RIF-1 and SCC-7 tumors. Radioresistance was detected within 2-4 h after administration of IL-1{alpha} (0.5 {mu}g/mouse, ip) and characterized by increases in D{sub 0}, D{sub q}, {alpha}/{Beta} and SF2. This radioresistance was similar to that seen in tumors rendered totally hypoxic before X irradiation. Tirapazamine, a hypoxic cell cytotoxin, and IL-1{alpha}more » had synergistic schedule-dependent antitumor activity in vivo, suggesting that IL-1-induced radioresistance in vivo is due to hypoxia. Radioresistance induced by IL-1{alpha} was transient, and the data suggested reoxygenation within 12 h. In vitro, IL-1{alpha} had no direct effect on the radiosensitivity of SCC-7 cells in tissue culture under aerobic conditions. However, an increase in D{sub 0}, {alpha}/{Beta} and SF2 was seen in clonogenic tumor cells from primary cultures treated with IL-1{alpha} under aerobic conditions. Superoxide dismutase and catalase prevented the induction of radioresistance by IL-1{alpha} in vitro, suggesting that oxidative responses from tumor macrophages after administration of IL-1{alpha} may be responsible for induced radioresistance by IL-1 in vitro. Although oxidant stress induced by IL-1 may play an important role in the activity of IL-1{alpha} both in vivo and in vitro in our models, the mechanisms by which such responses modulate tumor radiosensitivity in vivo and in vitro are likely quite different. 32 refs., 6 figs., 1 tab.« less

  1. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    DTIC Science & Technology

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  2. Brick by brick: metabolism and tumor cell growth

    PubMed Central

    DeBerardinis, Ralph J.; Sayed, Nabil; Ditsworth, Dara; Thompson, Craig B.

    2008-01-01

    Summary Tumor cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. Classical work in tumor cell metabolism focused on bioenergetics, particularly enhanced glycolysis and suppressed oxidative phosphorylation (the ‘Warburg effect’). But the biosynthetic activities required to create daughter cells are equally important for tumor growth, and recent studies are now bringing these pathways into focus. In this review, we discuss how tumor cells achieve high rates of nucleotide and fatty acid synthesis, how oncogenes and tumor suppressors influence these activities, and how glutamine metabolism enables macromolecular synthesis in proliferating cells. PMID:18387799

  3. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aloy, Marie-Therese; Hospices Civils de Lyon, Service de Radiotherapie, Centre Hospitalier Lyon-Sud, Pierre-Benite; Hadchity, Elie

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively ormore » in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.« less

  4. Tumor-stem cells interactions by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  5. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  6. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappaport, D.S.; Casarett, G.W.

    1979-09-01

    This study was conducted to determine what influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. EAG was induced in female Sprague-Dawley rats by immunization with Bordetella pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Progressive arteriolonephrosclerosis (ANS) was observed in right (irradiated) kidneys following unilateral renal irradiation (1500 rad). Rats were either immunized, sham-immunized, irradiated, sham-irradiated, or both immunized and irradiated. Light and immunofluorescent microscopic observation, urine protein content, and kidney weights were evaluated. In immunized-irradiated animals the effects of irradiation andmore » immunization were largely additive. Immunization did not considerably influence the development and course of ANS and irradiation did not considerably influence the development and course of EAG.« less

  7. Role of stem cell derived exosomes in tumor biology.

    PubMed

    Sharma, Aman

    2018-03-15

    Exosomes are nano-scale messengers loaded with bio-molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro-environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC-exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC-exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC-exo) contain stemness-specific proteins, self-renewal promoting regulatory miRNAs, and survival factors. CSC-exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology. © 2017 UICC.

  8. Apoptosis and injuries of heavy ion beam and x-ray radiation on malignant melanoma cell.

    PubMed

    Qin, Jin; Li, Sha; Zhang, Chao; Gao, Dong-Wei; Li, Qiang; Zhang, Hong; Jin, Xiao-Dong; Liu, Yang

    2017-05-01

    This study aims to investigate the influence of high linear energy transfer (LET) heavy ion ( 12 C 6+ ) and low LET X-ray radiation on apoptosis and related proteins of malignant melanoma on tumor-bearing mice under the same physical dosage. C57BL/6 J mice were burdened by tumors and randomized into three groups. These mice received heavy ion ( 12 C 6+ ) and X-ray radiation under the same physical dosage, respectively; their weight and tumor volumes were measured every three days post-radiation. After 30 days, these mice were sacrificed. Then, median survival time was calculated and tumors on mice were proliferated. In addition, immunohistochemistry was carried out for apoptosis-related proteins to reflect the expression level. After tumor-bearing mice were radiated to heavy ion, median survival time improved and tumor volume significantly decreased in conjunction with the upregulated expression of pro-apoptosis factors, Bax and cytochrome C, and the downregulated expression of apoptosis-profilin (Bcl-2, Survivin) and proliferation-related proteins (proliferating cell nuclear antigen). The results indicated that radiation can promote the apoptosis of malignant melanoma cells and inhibit their proliferation. This case was more suitable for heavy ion ( 12 C 6+ ). High LET heavy ion ( 12 C 6+ ) radiation could significantly improve the killing ability for malignant melanoma cells by inducing apoptosis in tumor cells and inhibiting their proliferation. These results demonstrated that heavy ion ( 12 C 6+ ) presented special advantages in terms of treating malignant melanoma. Impact statement Malignant melanoma is a malignant skin tumor derived from melanin cells, which has a high malignant degree and high fatality rate. In this study, proliferating cell nuclear antigen (PCNA) can induce the apoptosis of malignant melanoma cells and inhibit its proliferation, and its induction effect on apoptosis is significantly higher than low LET X-ray; hence, it is expected to

  9. Post-irradiation-examination of irradiated fuel outside the hot cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran

    Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

  10. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    PubMed

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  11. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines.

    PubMed

    Kishimoto, Takuya Evan; Yashima, Shoko; Nakahira, Rei; Onozawa, Eri; Azakami, Daigo; Ujike, Makoto; Ochiai, Kazuhiko; Ishiwata, Toshiyuki; Takahashi, Kimimasa; Michishita, Masaki

    2017-07-07

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 10 3 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis.

  12. Tumoral and Choroidal Vascularization

    PubMed Central

    Jost, Maud; Maillard, Catherine; Lecomte, Julie; Lambert, Vincent; Tjwa, Marc; Blaise, Pierre; Alvarez Gonzalez, Maria-Luz; Bajou, Khalid; Blacher, Silvia; Motte, Patrick; Humblet, Chantal; Defresne, Marie Paule; Thiry, Marc; Frankenne, Francis; Gothot, André; Carmeliet, Peter; Rakic, Jean-Marie; Foidart, Jean-Michel; Noël, Agnès

    2007-01-01

    An adequate balance between serine proteases and their plasminogen activator inhibitor-1 (PAI-1) is critical for pathological angiogenesis. PAI-1 deficiency in mice is associated with impaired choroidal neovascularization (CNV) and tumoral angiogenesis. In the present work, we demonstrate unexpected differences in the contribution of bone marrow (BM)-derived cells in these two processes regulated by PAI-1. PAI-1−/− mice grafted with BM-derived from wild-type mice were able to support laser-induced CNV formation but not skin carcinoma vascularization. Engraftment of irradiated wild-type mice with PAI-1−/− BM prevented CNV formation, demonstrating the crucial role of PAI-1 delivered by BM-derived cells. In contrast, the transient infiltration of tumor transplants by local PAI-1-producing host cells rather than by BM cells was sufficient to rescue tumor growth and angiogenesis in PAI-1-deficient mice. These data identify PAI-1 as a molecular determinant of a local permissive soil for tumor angiogenesis. Altogether, the present study demonstrates that different cellular mechanisms contribute to PAI-1-regulated tumoral and CNV. PAI-1 contributes to BM-dependent choroidal vascularization and to BM-independent tumor growth and angiogenesis. PMID:17717143

  13. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.

    PubMed

    Jordan, Kimberly R; McMahan, Rachel H; Kemmler, Charles B; Kappler, John W; Slansky, Jill E

    2010-03-09

    Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.

  14. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    PubMed

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  15. Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell

    PubMed Central

    Chen, Jiang; Li, Hong-Yu; Wang, Di; Shao, Xiao-Dong

    2015-01-01

    Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination. PMID:25736302

  16. Lattice damage and compositional changes in Xe ion irradiated In{sub x}Ga{sub 1-x}N (x = 0.32−1.0) single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Limin, E-mail: zhanglm@lzu.edu.cn; Peng, Jinxin; Ai, Wensi

    2016-06-28

    Lattice disorder and compositional changes in In{sub x}Ga{sub 1-x}N (x = 0.32, 0.47, 0.7, 0.8, and 1.0) films on GaN/Al{sub 2}O{sub 3} substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3 × 10{sup 13 }cm{sup −2}, the relative level of lattice disorder in In{sub x}Ga{sub 1-x}N increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrastmore » to Ga-rich In{sub x}Ga{sub 1-x}N (x = 0.32 and 0.47), significant volume swelling of up to ∼25% accompanied with oxidation in In-rich In{sub x}Ga{sub 1-x}N (x = 0.7, 0.8, and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich In{sub x}Ga{sub 1-x}N and GaN. The results from this study indicate an extreme susceptibility of the high In-content In{sub x}Ga{sub 1-x}N to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.« less

  17. Noncoherent light for PDT of spontaneous animal tumors

    NASA Astrophysics Data System (ADS)

    Lucroy, Michael D.; Ridgway, Tisha D.; Higbee, Russell G.; Reeds, Kimberly

    2004-07-01

    Cultured 9L cells were incubated with graded doses of pheophorbide-a-hexyl ether (HPPH) and exposed to 665 nm red light from either a noncoherent light source or a KTP-pumped dye laser. Cell death was observed after irradiation using either light source, with the noncoherent light being most effective at the highest HPPH concentrations. To determing the practicality of using the noncoherent light source for clinical PDT, dogs and cats with spontaneous tumors were injected intravenously with 0.15 mg/kg HPPH one hour before their tumors were irradiated with 665 nm noncoherent light (50 mW cm-2, 100 J cm-2). Of the 9 tumors treated, 8 complete responses were observed, all of which occurred in animals with squamous cell carcinoma. After 68 weeks of follow up, the median initial disease free interval had not been reached. These data support the use of noncoherent light sources for PDT of spontaneous tumors in animals, representing a cost-effective alternative to medical lasers in both veterinary and human dermatology and oncology.

  18. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation.

    PubMed

    Ji, Kai; Zhao, Lujun; Yang, Chengwen; Meng, Maobin; Wang, Ping

    2012-11-27

    To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Thirty-nine patients with medically inoperable T1-4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Under a 60 Gy dosage, the median D mean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40 Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions.

  19. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation

    PubMed Central

    2012-01-01

    Background To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Methods Thirty-nine patients with medically inoperable T1–4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Results Under a 60 Gy dosage, the median Dmean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Conclusions Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions. PMID:23186308

  20. One-step synthesis of gene carrier via gamma irradiation and its application in tumor gene therapy

    PubMed Central

    Kim, Eun-Ji; Heo, Hun; Park, Jong-Seok; Gwon, Hui-Jeong; Lim, Youn-Mook; Jang, Mi-Kyeong

    2018-01-01

    Introduction Although numerous studies have been conducted with the aim of developing drug-delivery systems, chemically synthesized gene carriers have shown limited applications in the biomedical fields due to several problems, such as low-grafting yields, undesirable reactions, difficulties in controlling the reactions, and high-cost production owing to multi-step manufacturing processes. Materials and methods We developed a 1-step synthesis process to produce 2-aminoethyl methacrylate-grafted water-soluble chitosan (AEMA-g-WSC) as a gene carrier, using gamma irradiation for simultaneous synthesis and sterilization, but no catalysts or photoinitiators. We analyzed the AEMA graft site on WSC using 2-dimensional nuclear magnetic resonance spectroscopy (2D NMR; 1H and 13C NMR), and assayed gene transfection effects in vitro and in vivo. Results We revealed selective grafting of AEMA onto C6-OH groups of WSC. AEMA-g-WSC effectively condensed plasmid DNA to form polyplexes in the size range of 170 to 282 nm. AEMA-g-WSC polyplexes in combination with psi-hBCL2 (a vector expressing short hairpin RNA against BCL2 mRNA) inhibited tumor cell proliferation and tumor growth in vitro and in vivo, respectively, by inducing apoptosis. Conclusion The simple grafting process mediated via gamma irradiation is a promising method for synthesizing gene carriers. PMID:29416333