Sample records for x-linked neurodevelopmental disorder

  1. Conceptualizing neurodevelopmental disorders through a mechanistic understanding of fragile X syndrome and Williams syndrome.

    PubMed

    Fung, Lawrence K; Quintin, Eve-Marie; Haas, Brian W; Reiss, Allan L

    2012-04-01

    The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive-behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well - microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene-brain-behavior links occurring in neurodevelopmental disorders.

  2. Conceptualizing neurodevelopmental disorders through a mechanistic understanding of fragile X syndrome and Williams syndrome

    PubMed Central

    Fung, Lawrence K.; Quintin, Eve-Marie; Haas, Brian W.

    2013-01-01

    Purpose of review The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Recent findings Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive–behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well – microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Summary Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene–brain–behavior links occurring in neurodevelopmental disorders. PMID:22395002

  3. Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder.

    PubMed

    Sekiguchi, Mari; Katayama, Syouichi; Hatano, Naoya; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2013-07-15

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in brain and mutations of its gene are known to be associated with neurodevelopmental disorders such as X-linked West syndrome and Rett syndrome. However, the physiological substrates of CDKL5 that are directly linked to these neurodevelopmental disorders are currently unknown. In this study, we explored endogenous substrates for CDKL5 in mouse brain extracts fractionated by a liquid-phase isoelectric focusing. In conjunction with CDKL5 phosphorylation assay, this approach detected a protein band with an apparent molecular mass of 120kDa that is remarkably phosphorylated by CDKL5. This 120-kDa protein was identified as amphiphysin 1 (Amph1) by LC-MS/MS analysis, and the site of phosphorylation by CDKL5 was determined to be Ser-293. The phosphorylation mimic mutants, Amph1(S293E) and Amph1(S293D), showed significantly reduced affinity for endophilin, a protein involved in synaptic vesicle endocytosis. Introduction of point mutations in the catalytic domain of CDKL5, which are disease-causing missense mutations found in Rett patients, resulted in the impairment of kinase activity toward Amph1. These results suggest that Amph1 is the cytoplasmic substrate for CDKL5 and that its phosphorylation may play crucial roles in the neuronal development. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Sleep in Neurodevelopmental Disorders

    PubMed Central

    Esbensen, Anna J; Schwichtenberg, Amy J

    2017-01-01

    Individuals with intellectual and developmental disabilities (IDD) experience sleep problems at higher rates than the general population. Although individuals with IDD are a heterogeneous group, several sleep problems cluster within genetic syndromes or disorders. This review summarizes the prevalence of sleep problems experienced by individuals with Angelman syndrome, Cornelia de Lange syndrome, Cri du Chat syndrome, Down syndrome, fragile X syndrome, Prader-Willi syndrome, Smith-Magenis syndrome, Williams syndrome, autism spectrum disorder, and idiopathic IDD. Factors associated with sleep problems and the evidence for sleep treatments are reviewed for each neurodevelopmental disorder. Sleep research advancements in neurodevelopmental disorders are reviewed, including the need for consistency in defining and measuring sleep problems, considerations for research design and reporting of results, and considerations when evaluating sleep treatments. PMID:28503406

  5. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders

    PubMed Central

    Kundakovic, Marija; Jaric, Ivana

    2017-01-01

    Prenatal adverse environments, such as maternal stress, toxicological exposures, and viral infections, can disrupt normal brain development and contribute to neurodevelopmental disorders, including schizophrenia, depression, and autism. Increasing evidence shows that these short- and long-term effects of prenatal exposures on brain structure and function are mediated by epigenetic mechanisms. Animal studies demonstrate that prenatal exposure to stress, toxins, viral mimetics, and drugs induces lasting epigenetic changes in the brain, including genes encoding glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf). These epigenetic changes have been linked to changes in brain gene expression, stress reactivity, and behavior, and often times, these effects are shown to be dependent on the gestational window of exposure, sex, and exposure level. Although evidence from human studies is more limited, gestational exposure to environmental risks in humans is associated with epigenetic changes in peripheral tissues, and future studies are required to understand whether we can use peripheral biomarkers to predict neurobehavioral outcomes. An extensive research effort combining well-designed human and animal studies, with comprehensive epigenomic analyses of peripheral and brain tissues over time, will be necessary to improve our understanding of the epigenetic basis of neurodevelopmental disorders. PMID:28335457

  6. Glutamatergic synapses in neurodevelopmental disorders.

    PubMed

    Moretto, Edoardo; Murru, Luca; Martano, Giuseppe; Sassone, Jenny; Passafaro, Maria

    2018-06-08

    Neurodevelopmental disorders (NDDs) are a group of diseases whose symptoms arise during childhood or adolescence and that impact several higher cognitive functions such as learning, sociability and mood. Accruing evidence suggests that a shared pathogenic mechanism underlying these diseases is the dysfunction of glutamatergic synapses. We summarize present knowledge on autism spectrum disorders (ASD), intellectual disability (ID), Down syndrome (DS), Rett syndrome (RS) and attention-deficit hyperactivity disorder (ADHD), highlighting the involvement of glutamatergic synapses and receptors in these disorders. The most commonly shared defects involve α-amino-3-hydroxy-5-methyl- 4-isoxazole propionic acid receptors (AMPARs), N-methyl-d-aspartate receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), whose functions are strongly linked to synaptic plasticity, affecting both cell-autonomous features as well as circuit formation. Moreover, the major scaffolding proteins and, thus, the general structure of the synapse are often deregulated in neurodevelopmental disorders, which is not surprising considering their crucial role in the regulation of glutamate receptor positioning and functioning. This convergence of defects supports the definition of neurodevelopmental disorders as a continuum of pathological manifestations, suggesting that glutamatergic synapses could be a therapeutic target to ameliorate patient symptomatology. Copyright © 2017. Published by Elsevier Inc.

  7. [Autism: An early neurodevelopmental disorder].

    PubMed

    Bonnet-Brilhault, F

    2017-04-01

    With approximately 67 million individuals affected worldwide, autism spectrum disorder (ASD) is the fastest growing neurodevelopmental disorder (United Nations, 2011), with a prevalence estimated to be 1/100. In France ASD affects approximately 600,000 individuals (from childhood to adulthood, half of whom are also mentally retarded), who thus have a major handicap in communication and in adapting to daily life, which leads autism to be recognized as a national public health priority. ASD is a neurodevelopmental disorder that affects several domains (i.e., socio-emotional, language, sensori-motor, executive functioning). These disorders are expressed early in life with an age of onset around 18 months. Despite evidence suggesting a strong genetic link with ASD, the genetic determinant remains unclear. The clinical picture is characterized by impairments in social interaction and communication and the presence of restrictive and repetitive behaviors (DSM-5, ICD-10). However, in addition to these two main dimensions there is significant comorbidity between ASD and other neurodevelopmental disorders such as attention deficit hyperactivity disorder or with genetic and medical conditions. One of the diagnostic features of ASD is its early emergence: symptoms must begin in early childhood for a diagnosis to be given. Due to brain plasticity, early interventions are essential to facilitate clinical improvement. Therefore, general practitioners and pediatricians are on the front line to detect early signs of ASD and to guide both medical explorations and early rehabilitation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Repurposing available drugs for neurodevelopmental disorders: The fragile X experience.

    PubMed

    Tranfaglia, Michael R; Thibodeaux, Clare; Mason, Daniel J; Brown, David; Roberts, Ian; Smith, Richard; Guilliams, Tim; Cogram, Patricia

    2018-05-04

    Many available drugs have been repurposed as treatments for neurodevelopmental disorders. In the specific case of fragile X syndrome, many clinical trials of available drugs have been conducted with the goal of disease modification. In some cases, detailed understanding of basic disease mechanisms has guided the choice of drugs for clinical trials, and several notable successes in fragile X clinical trials have led to common use of drugs such as minocycline in routine medical practice. Newer technologies like Disease-Gene Expression Matching (DGEM) may allow for more rapid identification of promising repurposing candidates. A DGEM study predicted that sulindac could be therapeutic for fragile X, and subsequent preclinical validation studies have shown promising results. The use of combinations of available drugs and nutraceuticals has the potential to greatly expand the options for repurposing, and may even be a viable business strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Antisocial Personality as a Neurodevelopmental Disorder.

    PubMed

    Raine, Adrian

    2018-05-07

    Although antisocial personality disorder (APD) is one of the most researched personality disorders, it is still surprisingly resistant to treatment. This lack of clinical progress may be partly due to the failure to view APD as a neurodevelopmental disorder and to consider early interventions. After first defining what constitutes a neurodevelopmental disorder, this review evaluates the extent to which APD meets neurodevelopmental criteria, covering structural and functional brain imaging, neurocognition, genetics and epigenetics, neurochemistry, and early health risk factors. Prevention and intervention strategies for APD are then outlined, focusing on addressing early biological and health systems, followed by forensic and clinical implications. It is argued both that APD meets criteria for consideration as a neurodevelopmental disorder and that consideration should be given both to the possibility that early onset conduct disorder is neurodevelopmental in nature, and also to the inclusion of psychopathy as a specifier in future Diagnostic and Statistical Manual revisions of APD.

  10. Sleep Disturbances in Neurodevelopmental Disorders.

    PubMed

    Robinson-Shelton, Althea; Malow, Beth A

    2016-01-01

    Sleep disturbances are extremely prevalent in children with neurodevelopmental disorders compared to typically developing children. The diagnostic criteria for many neurodevelopmental disorders include sleep disturbances. Sleep disturbance in this population is often multifactorial and caused by the interplay of genetic, neurobiological and environmental overlap. These disturbances often present either as insomnia or hypersomnia. Different sleep disorders present with these complaints and based on the clinical history and findings from diagnostic tests, an appropriate diagnosis can be made. This review aims to provide an overview of causes, diagnosis, and treatment of sleep disturbances in neurodevelopmental disorders that present primarily with symptoms of hypersomnia and/or insomnia.

  11. Genes, Circuits, and Precision Therapies for Autism and Related Neurodevelopmental Disorders

    PubMed Central

    2016-01-01

    Research in genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. While the exact identity of many of the genes remains to be discovered, genes identified to date encode for proteins that play roles in certain conserved pathways: protein synthesis, transcriptional/epigenetic regulation and synaptic signaling. Next generation of research in neurodevelopmental disorders needs to address the neural circuitry underlying the behavioral symptoms and co-morbidities, the cell types playing critical roles in these circuits and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we are able to leverage the heterogeneity of neurodevelopmental disorders into precision medicine, will the mechanism-based therapeutics for these disorders start to unlock success. PMID:26472761

  12. [Attention deficit hyperactivity disorder: from a neurodevelopmental perspective].

    PubMed

    Fernandez-Jaen, A; Lopez-Martin, S; Albert, J; Martin Fernandez-Mayoralas, D; Fernandez-Perrone, A L; Calleja-Perez, B; Lopez-Arribas, S

    2017-02-24

    Neurodevelopmental disorders cover a heterogeneous group of disorders such as intellectual disability, autism spectrum disorders or specific learning difficulties, among others. The neurobiological and clinical variables seem to clearly justify the recent inclusion of attention deficit hyperactivity disorder (ADHD) as a neurodevelopmental disorder in the international classifications. Neurodevelopmental disorders are characterised by their dimensional nature and the distribution of the different symptoms in the population. These aspects are reviewed, specifically from the perspective of the clinical features and the neuropsychology of ADHD. The dimensional symptomatic nature of ADHD contrasts with the diagnostic criteria of this disorder according to different classifications or clinical guidelines. It also contrasts with the data collected by means of different complementary examinations (scales, tests, etc.). It is essential to understand the clinical continuum within each neurodevelopmental disorder (including ADHD), among the different neurodevelopmental disorders, and among the neurodevelopmental disorders and normality for their research, diagnosis and management. The development of instruments that provide support for this dimensional component is equally significant.

  13. Loss-of-function of neuroplasticity-related genes confers risk for human neurodevelopmental disorders.

    PubMed

    Smith, Milo R; Glicksberg, Benjamin S; Li, Li; Chen, Rong; Morishita, Hirofumi; Dudley, Joel T

    2018-01-01

    High and increasing prevalence of neurodevelopmental disorders place enormous personal and economic burdens on society. Given the growing realization that the roots of neurodevelopmental disorders often lie in early childhood, there is an urgent need to identify childhood risk factors. Neurodevelopment is marked by periods of heightened experience-dependent neuroplasticity wherein neural circuitry is optimized by the environment. If these critical periods are disrupted, development of normal brain function can be permanently altered, leading to neurodevelopmental disorders. Here, we aim to systematically identify human variants in neuroplasticity-related genes that confer risk for neurodevelopmental disorders. Historically, this knowledge has been limited by a lack of techniques to identify genes related to neurodevelopmental plasticity in a high-throughput manner and a lack of methods to systematically identify mutations in these genes that confer risk for neurodevelopmental disorders. Using an integrative genomics approach, we determined loss-of-function (LOF) variants in putative plasticity genes, identified from transcriptional profiles of brain from mice with elevated plasticity, that were associated with neurodevelopmental disorders. From five shared differentially expressed genes found in two mouse models of juvenile-like elevated plasticity (juvenile wild-type or adult Lynx1-/- relative to adult wild-type) that were also genotyped in the Mount Sinai BioMe Biobank we identified multiple associations between LOF genes and increased risk for neurodevelopmental disorders across 10,510 patients linked to the Mount Sinai Electronic Medical Records (EMR), including epilepsy and schizophrenia. This work demonstrates a novel approach to identify neurodevelopmental risk genes and points toward a promising avenue to discover new drug targets to address the unmet therapeutic needs of neurodevelopmental disease.

  14. ACE: Health - Neurodevelopmental Disorders

    EPA Pesticide Factsheets

    Information about children reported to have ever been diagnosed with four different neurodevelopmental disorders: attention-deficit/hyperactivity disorder (ADHD), learning disabilities, autism, and intellectual disability.

  15. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring

    PubMed Central

    Edlow, Andrea G.

    2017-01-01

    There is a growing body of evidence from both human epidemiologic and animal studies that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with neurodevelopmental and psychiatric disorders in offspring. These disorders include cognitive impairment, autism spectrum disorders, attention deficit hyperactivity disorder, cerebral palsy, anxiety and depression, schizophrenia, and eating disorders. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development and neurodevelopmental and psychiatric morbidity in offspring. In addition, it highlights key mechanisms by which maternal obesity and maternal diet might impact fetal and offspring neurodevelopment, including neuroinflammation; increased oxidative stress, dysregulated insulin, glucose, and leptin signaling; dysregulated serotonergic and dopaminergic signaling; and perturbations in synaptic plasticity. Finally, the review summarizes available evidence regarding investigational therapeutic approaches to mitigate the harmful effects of maternal obesity on fetal and offspring neurodevelopment. PMID:27684946

  16. Neurodevelopmental Disorders (ASD and ADHD): DSM-5, ICD-10, and ICD-11.

    PubMed

    Doernberg, Ellen; Hollander, Eric

    2016-08-01

    Neurodevelopmental disorders, specifically autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) have undergone considerable diagnostic evolution in the past decade. In the United States, the current system in place is the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), whereas worldwide, the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) serves as a general medical system. This review will examine the differences in neurodevelopmental disorders between these two systems. First, we will review the important revisions made from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) to the DSM-5, with respect to ASD and ADHD. Next, we will cover the similarities and differences between ASD and ADHD classification in the DSM-5 and the ICD-10, and how these differences may have an effect on neurodevelopmental disorder diagnostics and classification. By examining the changes made for the DSM-5 in 2013, and critiquing the current ICD-10 system, we can help to anticipate and advise on the upcoming ICD-11, due to come online in 2017. Overall, this review serves to highlight the importance of progress towards complementary diagnostic classification systems, keeping in mind the difference in tradition and purpose of the DSM and the ICD, and that these systems are dynamic and changing as more is learned about neurodevelopmental disorders and their underlying etiology. Finally this review will discuss alternative diagnostic approaches, such as the Research Domain Criteria (RDoC) initiative, which links symptom domains to underlying biological and neurological mechanisms. The incorporation of new diagnostic directions could have a great effect on treatment development and insurance coverage for neurodevelopmental disorders worldwide.

  17. [Treatment of sensory information in neurodevelopmental disorders].

    PubMed

    Zoenen, D; Delvenne, V

    2018-01-01

    The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.

  18. Tourette syndrome and other neurodevelopmental disorders: a comprehensive review.

    PubMed

    Cravedi, Elena; Deniau, Emmanuelle; Giannitelli, Marianna; Xavier, Jean; Hartmann, Andreas; Cohen, David

    2017-01-01

    Gilles de la Tourette syndrome (TS) is a complex developmental neuropsychiatric condition in which motor manifestations are often accompanied by comorbid conditions that impact the patient's quality of life. In the DSM-5, TS belongs to the "neurodevelopmental disorders" group, together with other neurodevelopmental conditions, frequently co-occurring. In this study, we searched the PubMed database using a combination of keywords associating TS and all neurodevelopmental diagnoses. From 1009 original reports, we identified 36 studies addressing TS and neurodevelopmental comorbidities. The available evidence suggests the following: (1) neurodevelopmental comorbidities in TS are the rule, rather than the exception; (2) attention deficit/hyperactivity disorder (ADHD) is the most frequent; (3) there is a continuum from a simple (TS + ADHD or/and learning disorder) to a more complex phenotype (TS + autism spectrum disorder). We conclude that a prompt diagnosis and a detailed description of TS comorbidities are necessary not only to understand the aetiological basis of neurodevelopmental disorders but also to address specific rehabilitative and therapeutic approaches.

  19. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders.

    PubMed

    Schubert, D; Martens, G J M; Kolk, S M

    2015-07-01

    The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.

  20. Neurodevelopmental behavioral and cognitive disorders.

    PubMed

    Jeste, Shafali Spurling

    2015-06-01

    Neurodevelopmental disorders are a group of heterogeneous conditions characterized by a delay or disturbance in the acquisition of skills in a variety of developmental domains, including motor, social, language, and cognition. This article reviews the most commonly diagnosed neurodevelopmental disorders, which include attention deficit hyperactivity disorder (ADHD), autism spectrum disorder, global developmental delay, and intellectual disability and also provides updates on diagnosis, neurobiology, treatment, and issues surrounding the transition to adulthood. Although symptoms emerge at discrete points in childhood, these disorders result from abnormal brain maturation that likely precedes clinical impairment. As a result, research has focused on the identification of predictive biological and behavioral markers, with the ultimate goal of initiating treatments that may either alter developmental trajectories or lessen clinical severity. Advances in the methods used to identify genetic variants, from chromosomal microarray analysis to whole exome sequencing, have facilitated the characterization of many genetic mutations and syndromes that share common pathways to abnormal circuit formation and brain development. Not only do genetic discoveries enrich our understanding of mechanisms underlying atypical development, but they also allow us to identify more homogeneous subgroups within this spectrum of conditions. Impairments do continue into adulthood, with challenges in the transition to adulthood including the management of comorbidities and the provision of educational and vocational supports. Advances in our understanding of the neurobiology and developmental trajectories of these disorders will pave the way for tremendous advances in treatment. Mechanism-based therapies for genetic syndromes are being studied with the goal of expanding targeted treatments to nonsyndromic forms of neurodevelopmental disorders.

  1. The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile x syndrome.

    PubMed

    Uzunova, Genoveva; Hollander, Eric; Shepherd, Jason

    2014-01-01

    Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are relatively common childhood neurodevelopmental disorders with increasing incidence in recent years. They are currently accepted as disorders of the synapse with alterations in different forms of synaptic communication and neuronal network connectivity. The major excitatory neurotransmitter system in brain, the glutamatergic system, is implicated in learning and memory, synaptic plasticity, neuronal development. While much attention is attributed to the role of metabotropic glutamate receptors in ASD and FXS, studies indicate that the ionotropic glutamate receptors (iGluRs) and their regulatory proteins are also altered in several brain regions. Role of iGluRs in the neurobiology of ASD and FXS is supported by a weight of evidence that ranges from human genetics to in vitro cultured neurons. In this review we will discuss clinical, molecular, cellular and functional changes in NMDA, AMPA and kainate receptors and the synaptic proteins that regulate them in the context of ASD and FXS. We will also discuss the significance for the development of translational biomarkers and treatments for the core symptoms of ASD and FXS.

  2. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    PubMed Central

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  3. The Role of Ionotropic Glutamate Receptors in Childhood Neurodevelopmental Disorders: Autism Spectrum Disorders and Fragile X Syndrome

    PubMed Central

    Uzunova, Genoveva; Hollander, Eric; Shepherd, Jason

    2014-01-01

    Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are relatively common childhood neurodevelopmental disorders with increasing incidence in recent years. They are currently accepted as disorders of the synapse with alterations in different forms of synaptic communication and neuronal network connectivity. The major excitatory neurotransmitter system in brain, the glutamatergic system, is implicated in learning and memory, synaptic plasticity, neuronal development. While much attention is attributed to the role of metabotropic glutamate receptors in ASD and FXS, studies indicate that the ionotropic glutamate receptors (iGluRs) and their regulatory proteins are also altered in several brain regions. Role of iGluRs in the neurobiology of ASD and FXS is supported by a weight of evidence that ranges from human genetics to in vitro cultured neurons. In this review we will discuss clinical, molecular, cellular and functional changes in NMDA, AMPA and kainate receptors and the synaptic proteins that regulate them in the context of ASD and FXS. We will also discuss the significance for the development of translational biomarkers and treatments for the core symptoms of ASD and FXS. PMID:24533017

  4. Cryptorchidism and increased risk of neurodevelopmental disorders.

    PubMed

    Chen, Jianping; Sørensen, Henrik Toft; Miao, Maohua; Liang, Hong; Ehrenstein, Vera; Wang, Ziliang; Yuan, Wei; Li, Jiong

    2018-01-01

    Male congenital malformations as cryptorchidism may contribute to the development of neurodevelopmental disorders directly or via shared familial genetic and/or environmental factors, but the evidence is sparse. Using population-based health registries, we conducted a cohort study of all liveborn singleton boys in Denmark during 1979-2008. Boys with a diagnosis of cryptorchidism were categorized into the exposed cohort and the other boys into the unexposed comparison cohort. The outcomes were diagnoses of any neurodevelopmental disorders and their subtypes. We used Cox proportional hazards regression to compute hazard ratios (HRs), taking into consideration several potential confounders. Among 884,083 male infants, 27,505 received a diagnosis of cryptorchidism during follow-up. Boys with cryptorchidism were more likely to be diagnosed with intellectual disability (HR = 1.77; 95%confidence interval [CI]:1.59,1.97), autism spectrum disorders (ASD) (HR = 1.24; 95% CI:1.13,1.35), attention-deficit hyperactivity disorder (ADHD) (HR = 1.17; 95% CI: 1.08,1.26), anxiety (HR = 1.09; 95% CI: 1.01,1.17), and other behavioral/emotional disorders (HR = 1.16; 95% CI: 1.08,1.26) compared to boys without cryptorchidism. The observed risks of intellectual disability, ASD, and ADHD were increased further in boys with bilateral cryptorchidism. Except for anxiety, cryptorchid boys had higher risks of neurodevelopmental disorders than their non-cryptorchid full brothers. The observed increased risks were similar among boys who underwent orchiopexy, as well as among those with shorter waiting times for this surgery. Cryptorchidism may be associated with increased risks of intellectual disability, ASD, ADHD, and other behavioral/emotional disorders. Cryptorchidism and neurodevelopmental disorders may have shared genetic or in-utero/early postnatal risk factors, which need to be further investigated. Copyright © 2017. Published by Elsevier Ltd.

  5. Correlates of Early Assessment of Neurodevelopmental Disorders in Lebanon

    ERIC Educational Resources Information Center

    Dirani, Leyla Akoury; Salamoun, Mariana

    2014-01-01

    Children with neurodevelopmental disorders who receive early therapeutic interventions present a better developmental pathway than children who do not. Early assessment of neurodevelopmental disorders is the first step in this process. This study aims at describing the variables that are in play in the first assessment of children with autism…

  6. Neurodevelopmental disorders in children born to mothers with systemic lupus erythematosus.

    PubMed

    Vinet, É; Pineau, C A; Clarke, A E; Fombonne, É; Platt, R W; Bernatsky, S

    2014-10-01

    Children born to women with systemic lupus erythematosus seem to have a potentially increased risk of neurodevelopmental disorders compared to children born to healthy women. Recent experimental data suggest in utero exposure to maternal antibodies and cytokines as important risk factors for neurodevelopmental disorders. Interestingly, women with systemic lupus erythematosus display high levels of autoantibodies and cytokines, which have been shown, in animal models, to alter fetal brain development and induce behavioral anomalies in offspring. Furthermore, subjects with systemic lupus erythematosus and neurodevelopmental disorders share a common genetic predisposition, which could impair the fetal immune response to in utero immunologic insults. Moreover, systemic lupus erythematosus pregnancies are at increased risk of adverse obstetrical outcomes and medication exposures, which have been implicated as potential risk factors for neurodevelopmental disorders. In this article, we review the current state of knowledge on neurodevelopmental disorders and their potential determinants in systemic lupus erythematosus offspring. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder.

    PubMed

    Trent, Simon; Dean, Rachel; Veit, Bonnie; Cassano, Tommaso; Bedse, Gaurav; Ojarikre, Obah A; Humby, Trevor; Davies, William

    2013-08-01

    Chromosomal deletions at Xp22.3 appear to influence vulnerability to the neurodevelopmental disorders attention deficit hyperactivity disorder (ADHD) and autism. 39,X(Y*)O mice, which lack the murine orthologue of the Xp22.3 ADHD candidate gene STS (encoding steroid sulfatase), exhibit behavioural phenotypes relevant to such disorders (e.g. hyperactivity), elevated hippocampal serotonin (5-HT) levels, and reduced serum levels of dehydroepiandrosterone (DHEA). Here we initially show that 39,X(Y*)O mice are also deficient for the recently-characterised murine orthologue of the Xp22.3 autism candidate gene ASMT (encoding acetylserotonin-O-methyltransferase). Subsequently, to specify potential behavioural correlates of elevated hippocampal 5-HT arising due to the genetic lesion, we compared 39,X(Y*)O MF1 mice to 40,XY MF1 mice on behavioural tasks taxing hippocampal and/or 5-HT function (a 'foraging' task, an object-location task, and the 1-choice serial reaction time task of impulsivity). Although Sts/Asmt deficiency did not influence foraging behaviour, reactivity to familiar objects in novel locations, or 'ability to wait', it did result in markedly increased response rates; these rates correlated with hippocampal 5-HT levels and are likely to index behavioural perseveration, a frequent feature of neurodevelopmental disorders. Additionally, we show that whilst there was no systematic relationship between serum DHEA levels and hippocampal 5-HT levels across 39,X(Y*)O and 40,XY mice, there was a significant inverse linear correlation between serum DHEA levels and activity. Our data suggest that deficiency for genes within Xp22.3 could influence core behavioural features of neurodevelopmental disorders via dissociable effects on hippocampal neurochemistry and steroid hormone levels, and that the mediating neurobiological mechanisms may be investigated in the 39,X(Y*)O model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings.

    PubMed

    Dichter, Gabriel S; Damiano, Cara A; Allen, John A

    2012-07-06

    This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

  9. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings

    PubMed Central

    2012-01-01

    This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette’s syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader–Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies. PMID:22958744

  10. Reducing neurodevelopmental disorders and disability through research and interventions.

    PubMed

    Boivin, Michael J; Kakooza, Angelina M; Warf, Benjamin C; Davidson, Leslie L; Grigorenko, Elena L

    2015-11-19

    We define neurodevelopment as the dynamic inter-relationship between genetic, brain, cognitive, emotional and behavioural processes across the developmental lifespan. Significant and persistent disruption to this dynamic process through environmental and genetic risk can lead to neurodevelopmental disorders and disability. Research designed to ameliorate neurodevelopmental disorders in low- and middle-income countries, as well as globally, will benefit enormously from the ongoing advances in understanding their genetic and epigenetic causes, as modified by environment and culture. We provide examples of advances in the prevention and treatment of, and the rehabilitation of those with, neurodevelopment disorders in low- and middle-income countries, along with opportunities for further strategic research initiatives. Our examples are not the only possibilities for strategic research, but they illustrate problems that, when solved, could have a considerable impact in low-resource settings. In each instance, research in low- and middle-income countries led to innovations in identification, surveillance and treatment of a neurodevelopmental disorder. These innovations have also been integrated with genotypic mapping of neurodevelopmental disorders, forming important preventative and rehabilitative interventions with the potential for high impact. These advances will ultimately allow us to understand how epigenetic influences shape neurodevelopmental risk and resilience over time and across populations. Clearly, the most strategic areas of research opportunity involve cross-disciplinary integration at the intersection between the environment, brain or behaviour neurodevelopment, and genetic and epigenetic science. At these junctions a robust integrative cross-disciplinary scientific approach is catalysing the creation of technologies and interventions for old problems. Such approaches will enable us to achieve and sustain the United Nations moral and legal mandate for

  11. Neurodevelopmental disorders are highly over-represented in children with obesity: A cross-sectional study.

    PubMed

    Wentz, Elisabet; Björk, Anna; Dahlgren, Jovanna

    2017-01-01

    To investigate prevalence of neurodevelopmental disorders in children with obesity and to compare body mass index (BMI) and metabolic profile in the children. Seventy-six children (37 girls, 39 boys) were consecutively recruited from a university outpatient clinic specialized in severe obesity. Neurodevelopmental disorders including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and developmental coordination disorder (DCD) were assessed using interviews and questionnaires. Neurodevelopmental diagnoses were collected retrospectively in medical records. BMI ranged between 1.9 and 5.9 SDS and age between 5.1 and 16.5 years. In 13.2% and 18.4% ASD and ADHD was assigned, respectively. In addition, 25% screened positive for DCD, 31.6% had at least one neurodevelopmental disorder, and 18.4% had a parent who screened positive for adult ADHD. Girls with ASD/ADHD had higher BMI SDS than girls without neurodevelopmental disorder (P = 0.006). One third of children with obesity referred to specialist centers have a neurodevelopmental disorder including deviant motor skills, and these problems may deteriorate weight status. One fifth of the parents exhibit ADHD symptomatology which could partly explain the poor adherence by some families in obesity units. Future obesity therapy could benefit from incorporating a neurodevelopmental treatment approach. © 2016 The Obesity Society.

  12. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs.

    PubMed

    Bromley, Rebecca Louise; Mawer, George E; Briggs, Maria; Cheyne, Christopher; Clayton-Smith, Jill; García-Fiñana, Marta; Kneen, Rachel; Lucas, Sam B; Shallcross, Rebekah; Baker, Gus A

    2013-06-01

    The aim of this study was to compare the prevalence of diagnosed neurodevelopmental disorders in children exposed, in utero, to different antiepileptic drug treatments. A prospective cohort of women with epilepsy and a control group of women without epilepsy were recruited from antenatal clinics. The children of this cohort were followed longitudinally until 6 years of age (n=415). Diagnosis of a neurodevelopmental disorder was made independently of the research team. Multiple logistic regression analysis revealed an increase in risk of neurodevelopmental disorders in children exposed to monotherapy sodium valproate (VPA) (6/50, 12.0%; aOR 6.05, 95%CI 1.65 to 24.53, p=0.007) and in those exposed to polytherapy with sodium VPA (3/20, 15.0%; aOR 9.97, 95% CI 1.82 to 49.40, p=0.005) compared with control children (4/214; 1.87%). Autistic spectrum disorder was the most frequent diagnosis. No significant increase was found among children exposed to carbamazepine (1/50) or lamotrigine (2/30). An accumulation of evidence demonstrates that the risks associated with prenatal sodium VPA exposure include an increased prevalence of neurodevelopmental disorders. Whether such disorders are discrete or represent the severe end of a continuum of altered neurodevelopmental functioning requires further investigation. Replication and extension of this research is required to investigate the mechanism(s) underpinning the relationship. Finally, the increased likelihood of neurodevelopmental disorders should be communicated to women for whom sodium VPA is a treatment option.

  13. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs

    PubMed Central

    Bromley, Rebecca L; Mawer, George E; Briggs, Maria; Cheyne, Christopher; Clayton-Smith, Jill; García-Fiñana, Marta; Kneen, Rachel; Lucas, Sam B; Shallcross, Rebekah; Baker, Gus A

    2014-01-01

    The aim of this study was to compare the prevalence of diagnosed neurodevelopmental disorders in children exposed, in utero, to different antiepileptic drug (AED) treatments. A prospective cohort of women with epilepsy and a control group of women without epilepsy were recruited from antenatal clinics. The children of this cohort were followed longitudinally until six years of age (n=415). Diagnosis of a neurodevelopmental disorder was made independently of the research team. Multiple logistic regression analysis revealed an increase in risk of neurodevelopmental disorders in children exposed to monotherapy sodium valproate (6/50, 12.0%; aOR 6.05, 95%CI 1.65–24.53; p=0.007) and in those exposed to polytherapy with sodium valproate (3/20, 15.0%; aOR 9.97, 95%CI 1.82–49.40; p=0.005) compared to control children (4/214; 1.87%). Autistic spectrum disorder was the most frequent diagnosis. No significant increase was found amongst children exposed to carbamazepine (1/50) or lamotrigine (2/30). An accumulation of evidence demonstrates that the risks associated with prenatal sodium valproate exposure include an increased prevalence of neurodevelopmental disorders. Whether such disorders are discrete or represent the severe end of a continuum of altered neurodevelopmental functioning requires further investigation. Replication and extension of this research is required to investigate the mechanism(s) underpinning the relationship. Finally, the increased likelihood of neurodevelopmental disorders should be communicated to women for whom sodium valproate is a treatment option. PMID:23370617

  14. Ambra1 Shapes Hippocampal Inhibition/Excitation Balance: Role in Neurodevelopmental Disorders.

    PubMed

    Nobili, Annalisa; Krashia, Paraskevi; Cordella, Alberto; La Barbera, Livia; Dell'Acqua, Maria Concetta; Caruso, Angela; Pignataro, Annabella; Marino, Ramona; Sciarra, Francesca; Biamonte, Filippo; Scattoni, Maria Luisa; Ammassari-Teule, Martine; Cecconi, Francesco; Berretta, Nicola; Keller, Flavio; Mercuri, Nicola Biagio; D'Amelio, Marcello

    2018-02-27

    Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra +/- ) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1 +/- females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.

  15. Prevalence of neurodevelopmental disorders among low-income African Americans at a clinic on Chicago's south side.

    PubMed

    Bell, Carl C; Chimata, Radhika

    2015-05-01

    This study examined the point prevalence of neurodevelopmental disorders among predominantly low-income, African-American psychiatric patients at Jackson Park Hospital's Family Medicine Clinic on Chicago's South Side. Using active case ascertainment methodology, the authors assessed the records of 611 psychiatric patients visiting the clinic between May 23, 2013, and January 14, 2014, to identify those with DSM-5 neurodevelopmental disorders. A total of 297 patients (49%) met criteria for a neurodevelopmental disorder during childhood. Moreover, 237 (39%) had clinical profiles consistent with neurobehavioral disorder associated with prenatal alcohol exposure, and 53 (9%) had other neurodevelopmental disorders. The authors disagreed on the specific type of neurodevelopmental disorder of seven (1% of 611) of the 297 patients with neurodevelopmental disorders. A high prevalence of neurodevelopmental disorders was found among low-income predominantly African-American psychiatric patients on Chicago's South Side. If replicated, these findings should bring about substantial changes in medical practice with African-American patients.

  16. Neurodevelopmental delay in children exposed in utero to hyperemesis gravidarum.

    PubMed

    Fejzo, Marlena S; Magtira, Aromalyn; Schoenberg, Frederic Paik; Macgibbon, Kimber; Mullin, Patrick M

    2015-06-01

    The purpose of this study is to determine the frequency of emotional, behavioral, and learning disorders in children exposed in utero to hyperemesis gravidarum (HG) and to identify prognostic factors for these disorders. Neurodevelopmental outcomes of 312 children from 203 mothers with HG were compared to neurodevelopmental outcomes from 169 children from 89 unaffected mothers. Then the clinical profiles of patients with HG and a normal child outcome were compared to the clinical profiles of patients with HG and a child with neurodevelopmental delay to identify prognostic factors. Binary responses were analyzed using either a Chi-square or Fisher Exact test and continuous responses were analyzed using a t-test. Children exposed in utero to HG have a 3.28-fold increase in odds of a neurodevelopmental diagnosis including attention disorders, learning delay, sensory disorders, and speech and language delay (P<0.0005). Among characteristics of HG pregnancies, only early onset of symptoms (prior to 5 weeks gestation) was significantly linked to neurodevelopmental delay. We found no evidence for increased risk of 13 emotional, behavioral, and learning disorders, including autism, intellectual impairment, and obsessive-compulsive disorder. However, the study was not sufficiently powered to detect rare conditions. Medications, treatments, and preterm birth were not associated with an increased risk for neurodevelopmental delay. Women with HG are at a significantly increased risk of having a child with neurodevelopmental delay. Common antiemetic treatments were not linked to neurodevelopmental delay, but early symptoms may play a role. There is an urgent need to address whether aggressive treatment that includes vitamin and nutrient supplementation in women with early symptoms of severe nausea of pregnancy decreases the risk of neurodevelopmental delay. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Histone Lysine Methylation and Neurodevelopmental Disorders.

    PubMed

    Kim, Jeong-Hoon; Lee, Jang Ho; Lee, Im-Soon; Lee, Sung Bae; Cho, Kyoung Sang

    2017-06-30

    Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  18. "Too Withdrawn" or "Too Friendly": Considering Social Vulnerability in Two Neuro-Developmental Disorders

    ERIC Educational Resources Information Center

    Jawaid, A.; Riby, D. M.; Owens, J.; White, S. W.; Tarar, T.; Schulz, P. E.

    2012-01-01

    In some neuro-developmental disorders, the combined effect of intellectual disability and atypicalities of social cognition may put individuals at increased vulnerability in their social environment. The neuro-developmental disorders Williams syndrome, characterised by "hypersociability", and autism spectrum disorders, characterised by "social…

  19. Management of sleep disorders in neurodevelopmental disorders and genetic syndromes.

    PubMed

    Heussler, Helen S

    2016-03-01

    Sleep disorders in individuals with developmental difficulties continue to be a significant challenge for families, carers, and therapists with a major impact on individuals and carers alike. This review is designed to update the reader on recent developments in this area. A systematic search identified a variety of studies illustrating advances in the regulation of circadian rhythm and sleep disturbance in neurodevelopmental disorders. Specific advances are likely to lead in some disorders to targeted therapies. There is strong evidence that behavioural and sleep hygiene measures should be first line therapy; however, studies are still limited in this area. Nonpharmacological measures such as exercise, sensory interventions, and behavioural are reported. Behavioural regulation and sleep hygiene demonstrate the best evidence for improved sleep parameters in individuals with neurodisability. Although the mainstay of management of children with sleep problems and neurodevelopmental disability is similar to that of typically developing children, there is emerging evidence of behavioural strategies being successful in large-scale trials and the promise of more targeted therapies for more specific resistant disorders.

  20. Epigenetic Mistakes in Neurodevelopmental Disorders.

    PubMed

    Mastrototaro, Giuseppina; Zaghi, Mattia; Sessa, Alessandro

    2017-04-01

    Epigenetics is the array of the chromatin modifications that customize in cell-, stage-, or condition-specific manner the information encloses in plain DNA molecules. Increasing evidences suggest the importance of epigenetic mechanisms for development and maintenance of central nervous system. In fact, a large number of newly discovered genetic causes of neurodevelopmental disorders such as intellectual disability, autism spectrum disorders, and many other syndromes are mutations within genes encoding for chromatin remodeling enzymes. Here, we review recent findings on the epigenetic origin of human diseases, with emphasis on disorders that affect development of the nervous system, and discuss novel therapeutic avenues that target epigenetic mechanisms.

  1. A compensatory role for declarative memory in neurodevelopmental disorders

    PubMed Central

    Ullman, Michael T.; Pullman, Mariel Y.

    2015-01-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional, and because this system can learn and retain numerous types of information, functions, and tasks, it should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. PMID:25597655

  2. Future Directions for Examination of Brain Networks in Neurodevelopmental Disorders.

    PubMed

    Uddin, Lucina Q; Karlsgodt, Katherine H

    2018-01-01

    Neurodevelopmental disorders are associated with atypical development and maturation of brain networks. A recent focus on human connectomics research and the growing popularity of open science initiatives has created the ideal climate in which to make real progress toward understanding the neurobiology of disorders affecting youth. Here we outline future directions for neuroscience researchers examining brain networks in neurodevelopmental disorders, highlighting gaps in the current literature. We emphasize the importance of leveraging large neuroimaging and phenotypic data sets recently made available to the research community, and we suggest specific novel methodological approaches, including analysis of brain dynamics and structural connectivity, that have the potential to produce the greatest clinical insight. Transdiagnostic approaches will also become increasingly necessary as the Research Domain Criteria framework put forth by the National Institute of Mental Health permeates scientific discourse. During this exciting era of big data and increased computational sophistication of analytic tools, the possibilities for significant advancement in understanding neurodevelopmental disorders are limitless.

  3. Lessons learned: Engaging culturally diverse families in neurodevelopmental disorders intervention research

    PubMed Central

    Ratto, Allison B; Anthony, Bruno J; Pugliese, Cara; Mendez, Rocio; Safer-Lichtenstein, Jonathan; Dudley, Katerina M; Kahn, Nicole F; Kenworthy, Lauren; Biel, Matthew; Martucci, Jillian L; Anthony, Laura G

    2016-01-01

    Low-income and ethnic minority families continue to face critical disparities in access to diagnostic and treatment services for neurodevelopmental conditions, such as autism spectrum disorder and attention deficit hyperactivity disorder. Despite the growing cultural diversity of the United States, ethnic minority children and families continue to be substantially underrepresented across research on neurodevelopmental disorders, and there is a particularly concerning lack of research on the treatment of these conditions in low-income and ethnic minority communities. Of note, there are currently no published studies on adapting autism spectrum disorder treatment for low-income Latino communities and relatively few studies documenting adapted treatments for children with attention deficit hyperactivity disorder in these communities. This article describes methodological considerations and adaptations made to research procedures using a Diffusion of Innovation framework in order to effectively recruit and engage low-income, ethnic minority, particularly Latino, families of children with neurodevelopmental disorders, in a comparative effectiveness trial of two school-based interventions for executive dysfunction. PMID:27313190

  4. Melatonin for sleep problems in children with neurodevelopmental disorders.

    PubMed

    2015-10-01

    Children with neurodevelopmental disorders are at risk of sleep problems, typically difficulty getting to sleep, sleep/wake rhythm disturbances and reduced duration of sleep (insomnia). This may be associated with abnormally timed or inadequate secretion of melatonin, a naturally-occurring hormone involved in coordinating the body's sleep-wake cycle. Previously, we reviewed the use of a melatonin product licensed for primary insomnia in adults aged over 55 years. Here we review off-label and unlicensed use of melatonin in children with attention-deficit hyperactivity disorder (ADHD) or autism spectrum disorder or related neurodevelopmental disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Copy-number variations are enriched for neurodevelopmental genes in children with developmental coordination disorder.

    PubMed

    Mosca, Stephen J; Langevin, Lisa Marie; Dewey, Deborah; Innes, A Micheil; Lionel, Anath C; Marshall, Christian C; Scherer, Stephen W; Parboosingh, Jillian S; Bernier, Francois P

    2016-12-01

    Developmental coordination disorder is a common neurodevelopment disorder that frequently co-occurs with other neurodevelopmental disorders including attention-deficit hyperactivity disorder (ADHD). Copy-number variations (CNVs) have been implicated in a number of neurodevelopmental and psychiatric disorders; however, the proportion of heritability in developmental coordination disorder (DCD) attributed to CNVs has not been explored. This study aims to investigate how CNVs may contribute to the genetic architecture of DCD. CNV analysis was performed on 82 extensively phenotyped Canadian children with DCD, with or without co-occurring ADHD and/or reading disorder, and 2988 healthy European controls using identical genome-wide SNP microarrays and CNV calling algorithms. An increased rate of large and rare genic CNVs (p=0.009) was detected, and there was an enrichment of duplications spanning brain-expressed genes (p=0.039) and genes previously implicated in other neurodevelopmental disorders (p=0.043). Genes and loci of particular interest in this group included: GAP43, RBFOX1, PTPRN2, SHANK3, 16p11.2 and distal 22q11.2. Although no recurrent CNVs were identified, 26% of DCD cases, where sample availability permitted segregation analysis, were found to have a de novo rare CNV. Of the inherited CNVs, 64% were from a parent who also had a neurodevelopmental disorder. These findings suggest that there may be shared susceptibility genes for DCD and other neurodevelopmental disorders and highlight the need for thorough phenotyping when investigating the genetics of neurodevelopmental disorders. Furthermore, these data provide compelling evidence supporting a genetic basis for DCD, and further implicate rare CNVs in the aetiology of neurodevelopmental disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases.

    PubMed

    Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor

    2017-01-25

    Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.

  7. School Neuropsychology Consultation in Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Decker, Scott L.

    2008-01-01

    The role of school psychologists with training in neuropsychology is examined within the context of multitiered models of service delivery and educational reform policies. An expanded role is suggested that builds on expertise in the assessment of neurodevelopmental disorders and extends to broader tiers through consultation practice. Changes in…

  8. A compensatory role for declarative memory in neurodevelopmental disorders.

    PubMed

    Ullman, Michael T; Pullman, Mariel Y

    2015-04-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A Mutation in the Rett Syndrome Gene, MECP2, Causes X-Linked Mental Retardation and Progressive Spasticity in Males

    PubMed Central

    Meloni, Ilaria; Bruttini, Mirella; Longo, Ilaria; Mari, Francesca; Rizzolio, Flavio; D’Adamo, Patrizia; Denvriendt, Koenraad; Fryns, Jean-Pierre; Toniolo, Daniela; Renieri, Alessandra

    2000-01-01

    Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders. PMID:10986043

  10. Risk of Psychiatric and Neurodevelopmental Disorders Among Siblings of Probands With Autism Spectrum Disorders.

    PubMed

    Jokiranta-Olkoniemi, Elina; Cheslack-Postava, Keely; Sucksdorff, Dan; Suominen, Auli; Gyllenberg, David; Chudal, Roshan; Leivonen, Susanna; Gissler, Mika; Brown, Alan S; Sourander, Andre

    2016-06-01

    Previous research has focused on examining the familial clustering of schizophrenia, bipolar disorder, and autism spectrum disorders (ASD). Little is known about the clustering of other psychiatric and neurodevelopmental disorders among siblings of persons with ASD. To examine the risk for psychiatric and neurodevelopmental disorders among full siblings of probands with ASD. The Finnish Prenatal Study of Autism and Autism Spectrum Disorders used a population-based cohort that included children born from January 1, 1987, to December 31, 2005, who received a diagnosis of ASD by December 31, 2007. Each case was individually matched to 4 control participants by sex and date and place of birth. The siblings of the cases and controls were born from January 1, 1977, to December 31, 2005, and received a diagnosis from January 1, 1987, to December 31, 2009. This nested case-control study included 3578 cases with ASD with 6022 full siblings and 11 775 controls with 22 127 siblings from Finnish national registers. Data were analyzed from March 6, 2014, to February 12, 2016. The adjusted risk ratio (RR) for psychiatric and neurodevelopmental disorders among siblings of probands with ASD vs siblings of matched controls. Additional analyses were conducted separately for ASD subgroups, including childhood autism, Asperger syndrome, and pervasive developmental disorders not otherwise specified. Analyses were further stratified by sex and intellectual disability among the probands. Among the 3578 cases with ASD (2841 boys [79.4%]) and 11 775 controls (9345 boys [79.4%]), 1319 cases (36.9%) and 2052 controls (17.4%) had at least 1 sibling diagnosed with any psychiatric or neurodevelopmental disorder (adjusted RR, 2.5; 95% CI, 2.3-2.6). The largest associations were observed for childhood-onset disorders (1061 cases [29.7%] vs 1362 controls [11.6%]; adjusted RR, 3.0; 95% CI, 2.8-3.3), including ASD (374 cases [10.5%] vs 125 controls [1.1%]; adjusted RR, 11.8; 95% CI, 9

  11. 7,8-Dihydroxyflavone as a pro-neurotrophic treatment for neurodevelopmental disorders.

    PubMed

    Du, X; Hill, R A

    2015-10-01

    Neurodevelopmental disorders are a group of conditions that arises from impairments of the central nervous system during its development. The causes of the various disorders are heterogeneous and the symptoms likewise are multifarious. Most of these disorders currently have very little available treatment that is effective in combating the plethora of serious symptoms. Brain-derived neurotrophic factor (BDNF) is a fundamental neurotrophin with vital functions during brain development. Pre-clinical studies have shown that increasing BDNF signalling may be a potent way to prevent, arrest or even reverse abnormal neurodevelopmental events arising from a variety of genetic or environmental causes. However, many difficulties make BDNF problematic to administer in an efficient manner. The recent discovery of a small BDNF-mimetic, the naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF), may provide an avenue to allow efficient and safe activation of the BDNF pathway in tackling the symptoms of neurodevelopmental disorders. Here, evidence will be provided to support the potential of 7,8-DHF as a novel treatment for several neurodevelopmental disorders where the BDNF signalling pathway is implicated in the pathophysiology and where benefits are therefore most likely to be derived from its implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex.

    PubMed

    de Vries, Petrus J

    2010-07-01

    Until recently, the neuropsychiatric phenotype of tuberous sclerosis complex (TSC) was presumed to be caused by the structural brain abnormalities and/or seizures seen in the disorder. However, advances in the molecular biology of the disorder have shown that TSC is a mammalian target of rapamycin (mTOR) overactivation syndrome, and that direct molecular pathways exist between gene mutation and cognitive/neurodevelopmental phenotype. Molecularly-targeted treatments using mTOR inhibitors (such as rapamycin) are showing great promise for the physical and neurological phenotype of TSC. Pre-clinical and early-phase clinical studies of the cognitive and neurodevelopmental features of TSC suggest that some of the neuropsychiatric phenotypes might also be reversible, even in adults with the disorder. TSC, fragile X, neurofibromatosis type 1, and disorders associated with phosphatase and tensin homo (PTEN) mutations, all signal through the mTOR signaling pathway, with the TSC1-TSC2 protein complex as a molecular switchboard at its center. Together, these disorders represent as much as 14% of autism spectrum disorders (ASD). Therefore, we suggest that this signaling pathway is a key to the underlying pathophysiology of a significant subset of individuals with ASD. The study of molecularly targeted treatments in TSC and related disorders, therefore, may be of scientific and clinical value not only to those with TSC, but to a larger population that may have a neuropsychiatric phenotype attributable to mTOR overactivation or dysregulation. (c) 2010 The American Society for Experimental NeuroTherapeutics, Inc. Published by Elsevier Inc. All rights reserved.

  13. Adaptive Profiles in Autism and Other Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Mouga, Susana; Almeida, Joana; Café, Cátia; Duque, Frederico; Oliveira, Guiomar

    2015-01-01

    We investigated the influence of specific autism spectrum disorder (ASD) deficits in learning adaptive behaviour, besides intelligence quotient (IQ). Participated 217 school-aged: ASD (N = 115), and other neurodevelopmental disorders (OND) groups (N = 102) matched by Full-Scale IQ. We compared standard scores of Vineland Adaptive Behaviour Scale…

  14. Practitioner Review: Multilingualism and neurodevelopmental disorders - an overview of recent research and discussion of clinical implications.

    PubMed

    Uljarević, Mirko; Katsos, Napoleon; Hudry, Kristelle; Gibson, Jenny L

    2016-11-01

    Language and communication skills are essential aspects of child development, which are often disrupted in children with neurodevelopmental disorders. Cutting edge research in psycholinguistics suggests that multilingualism has potential to influence social, linguistic and cognitive development. Thus, multilingualism has implications for clinical assessment, diagnostic formulation, intervention and support offered to families. We present a systematic review and synthesis of the effects of multilingualism for children with neurodevelopmental disorders and discuss clinical implications. We conducted systematic searches for studies on multilingualism in neurodevelopmental disorders. Keywords for neurodevelopmental disorders were based on Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition categories as follows; Intellectual Disabilities, Communication Disorders, Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder, Specific Learning Disorder, Motor Disorders, Other Neurodevelopmental Disorders. We included only studies based on empirical research and published in peer-reviewed journals. Fifty studies met inclusion criteria. Thirty-eight studies explored multilingualism in Communication Disorders, 10 in ASD and two in Intellectual Disability. No studies on multilingualism in Specific Learning Disorder or Motor Disorders were identified. Studies which found a disadvantage for multilingual children with neurodevelopmental disorders were rare, and there appears little reason to assume that multilingualism has negative effects on various aspects of functioning across a range of conditions. In fact, when considering only those studies which have compared a multilingual group with developmental disorders to a monolingual group with similar disorders, the findings consistently show no adverse effects on language development or other aspects of functioning. In the case of ASD, a positive effect on communication and social functioning has

  15. Altered Placental Tryptophan Metabolism: A Crucial Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders

    DTIC Science & Technology

    2015-07-01

    Programming of Neurodevelopmental Disorders PRINCIPAL INVESTIGATOR: Alexandre Bonnin, PhD CONTRACTING ORGANIZATION: University of Southern...Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders 5a. CONTRACT NUMBER W81XWH-13-1-0135 Pathway for the Fetal Programming of... Neurodevelopmental Disorders 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alexandre Bonnin, PhD; 5d. PROJECT NUMBER Nick Goeden

  16. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases

    PubMed Central

    Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor

    2017-01-01

    Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry. PMID:28125008

  17. Disruption of RAB40AL function leads to Martin--Probst syndrome, a rare X-linked multisystem neurodevelopmental human disorder.

    PubMed

    Bedoyan, Jirair Krikor; Schaibley, Valerie M; Peng, Weiping; Bai, Yongsheng; Mondal, Kajari; Shetty, Amol C; Durham, Mark; Micucci, Joseph A; Dhiraaj, Arti; Skidmore, Jennifer M; Kaplan, Julie B; Skinner, Cindy; Schwartz, Charles E; Antonellis, Anthony; Zwick, Michael E; Cavalcoli, James D; Li, Jun Z; Martin, Donna M

    2012-05-01

    Martin--Probst syndrome (MPS) is a rare X-linked disorder characterised by deafness, cognitive impairment, short stature and distinct craniofacial dysmorphisms, among other features. The authors sought to identify the causative mutation for MPS. Massively parallel sequencing in two affected, related male subjects with MPS identified a RAB40AL (also called RLGP) missense mutation (chrX:102,079,078-102,079,079AC→GA p.D59G; hg18). RAB40AL encodes a small Ras-like GTPase protein with one suppressor of cytokine signalling box. The p.D59G variant is located in a highly conserved region of the GTPase domain between β-2 and β-3 strands. Using RT-PCR, the authors show that RAB40AL is expressed in human fetal and adult brain and kidney, and adult lung, heart, liver and skeletal muscle. RAB40AL appears to be a primate innovation, with no orthologues found in mouse, Xenopus or zebrafish. Western analysis and fluorescence microscopy of GFP-tagged RAB40AL constructs from transiently transfected COS7 cells show that the D59G missense change renders RAB40AL unstable and disrupts its cytoplasmic localisation. This is the first study to show that mutation of RAB40AL is associated with a human disorder. Identification of RAB40AL as the gene mutated in MPS allows for further investigations into the molecular mechanism(s) of RAB40AL and its roles in diverse processes such as cognition, hearing and skeletal development.

  18. Disruption of RAB40AL function leads to Martin–Probst syndrome, a rare X-linked multisystem neurodevelopmental human disorder

    PubMed Central

    Bedoyan, Jirair Krikor; Schaibley, Valerie M; Peng, Weiping; Bai, Yongsheng; Mondal, Kajari; Shetty, Amol C; Durham, Mark; Micucci, Joseph A; Dhiraaj, Arti; Skidmore, Jennifer M; Kaplan, Julie B; Skinner, Cindy; Schwartz, Charles E; Antonellis, Anthony; Zwick, Michael E; Cavalcoli, James D; Li, Jun Z

    2012-01-01

    Background and aim Martin–Probst syndrome (MPS) is a rare X-linked disorder characterised by deafness, cognitive impairment, short stature and distinct craniofacial dysmorphisms, among other features. The authors sought to identify the causative mutation for MPS. Methods and results Massively parallel sequencing in two affected, related male subjects with MPS identified a RAB40AL (also called RLGP) missense mutation (chrX:102,079,078-102,079,079AC→GA p.D59G; hg18). RAB40AL encodes a small Ras-like GTPase protein with one suppressor of cytokine signalling box. The p.D59G variant is located in a highly conserved region of the GTPase domain between β-2 and β-3 strands. Using RT-PCR, the authors show that RAB40AL is expressed in human fetal and adult brain and kidney, and adult lung, heart, liver and skeletal muscle. RAB40AL appears to be a primate innovation, with no orthologues found in mouse, Xenopus or zebrafish. Western analysis and fluorescence microscopy of GFP-tagged RAB40AL constructs from transiently transfected COS7 cells show that the D59G missense change renders RAB40AL unstable and disrupts its cytoplasmic localisation. Conclusions This is the first study to show that mutation of RAB40AL is associated with a human disorder. Identification of RAB40AL as the gene mutated in MPS allows for further investigations into the molecular mechanism(s) of RAB40AL and its roles in diverse processes such as cognition, hearing and skeletal development. PMID:22581972

  19. An Open Conversation on Using Eye-Gaze Methods in Studies of Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Venker, Courtney E.; Kover, Sara T.

    2015-01-01

    Purpose: Eye-gaze methods have the potential to advance the study of neurodevelopmental disorders. Despite their increasing use, challenges arise in using these methods with individuals with neurodevelopmental disorders and in reporting sufficient methodological detail such that the resulting research is replicable and interpretable. Method: This…

  20. A partial loss of function allele of Methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome

    PubMed Central

    Samaco, Rodney C.; Fryer, John D.; Ren, Jun; Fyffe, Sharyl; Chao, Hsiao-Tuan; Sun, Yaling; Greer, John J.; Zoghbi, Huda Y.; Neul, Jeffrey L.

    2008-01-01

    Rett Syndrome, an X-linked dominant neurodevelopmental disorder characterized by regression of language and hand use, is primarily caused by mutations in methyl-CpG-binding protein 2 (MECP2). Loss of function mutations in MECP2 are also found in other neurodevelopmental disorders such as autism, Angelman-like syndrome and non-specific mental retardation. Furthermore, duplication of the MECP2 genomic region results in mental retardation with speech and social problems. The common features of human neurodevelopmental disorders caused by the loss or increase of MeCP2 function suggest that even modest alterations of MeCP2 protein levels result in neurodevelopmental problems. To determine whether a small reduction in MeCP2 level has phenotypic consequences, we characterized a conditional mouse allele of Mecp2 that expresses 50% of the wild-type level of MeCP2. Upon careful behavioral analysis, mice that harbor this allele display a spectrum of abnormalities such as learning and motor deficits, decreased anxiety, altered social behavior and nest building, decreased pain recognition and disrupted breathing patterns. These results indicate that precise control of MeCP2 is critical for normal behavior and predict that human neurodevelopmental disorders will result from a subtle reduction in MeCP2 expression. PMID:18321864

  1. Children with optic nerve hypoplasia face a high risk of neurodevelopmental disorders.

    PubMed

    Dahl, Sara; Wickström, Ronny; Ek, Ulla; Teär Fahnehjelm, Kristina

    2018-03-01

    Optic nerve hypoplasia (ONH) is a congenital ocular malformation that has been associated with neurodevelopmental disorders, but the prevalence in unilateral disease and less severe visual impairment is unknown. We studied intellectual disability and autism spectrum disorders (ASDs) in patients with ONH. This was a population-based cross-sectional cohort study of 65 patients (33 female) with ONH below 20 years of age, living in Stockholm in December 2009, with data analysed in January 2016. Of these 35 were bilateral and 30 were unilateral. Neurodevelopmental disorders were diagnosed or confirmed by neurological assessments, the Five to Fifteen parent questionnaire and reviewing previous neuropsychological investigations or conducting neuropsychological tests. Bilateral ONH patients had lower mean full scale intelligence quotient scores than unilateral patients (84.4 and 99.4, respectively, p = 0.049). We assessed intellectual disability in 55 eligible patients, and it was more common in patients with bilateral ONH (18 of 32, 56%) than unilateral ONH (two of 23, 9%, p < 0.001). ASDs were diagnosed in seven of 42 (17%) patients. Children with bilateral ONH had a high risk of neurodevelopmental disorders, especially intellectual disability. The risk was lower in unilateral ONH, but the levels of neurodevelopmental disorders warrant screening of both groups. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  2. Altered Placental Tryptophan Metabolism: A Crucial Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders

    DTIC Science & Technology

    2014-07-01

    Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders PRINCIPAL INVESTIGATOR: Alexandre Bonnin, PhD CONTRACTING...Fetal Programming of Neurodevelopmental Disorders 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alexandre Bonnin, PhD; Betty...metabolism by maternal inflammation during early gestation constitutes a new molecular pathway for the fetal programming of neurodevelopmental

  3. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders.

    PubMed

    Engineer, Crystal T; Hays, Seth A; Kilgard, Michael P

    2017-01-01

    Many children with autism and other neurodevelopmental disorders undergo expensive, time-consuming behavioral interventions that often yield only modest improvements. The development of adjunctive interventions that can increase the benefit of rehabilitation therapies is essential in order to improve the lives of individuals with neurodevelopmental disorders. Vagus nerve stimulation (VNS) is an FDA approved therapy that is safe and effective in reducing seizure frequency and duration in individuals with epilepsy. Individuals with neurodevelopmental disorders often exhibit decreased vagal tone, and studies indicate that VNS can be used to overcome an insufficient vagal response. Multiple studies have also documented significant improvements in quality of life after VNS therapy in individuals with neurodevelopmental disorders. Moreover, recent findings indicate that VNS significantly enhances the benefits of rehabilitative training in animal models and patients, leading to greater recovery in a variety of neurological diseases. Here, we review these findings and provide a discussion of how VNS paired with rehabilitation may yield benefits in the context of neurodevelopmental disorders. VNS paired with behavioral therapy may represent a potential new approach to enhance rehabilitation that could significantly improve the outcomes of individuals with neurodevelopmental disorders.

  4. Clinical Performance of an Ultrahigh Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders.

    PubMed

    Ho, Karen S; Twede, Hope; Vanzo, Rena; Harward, Erin; Hensel, Charles H; Martin, Megan M; Page, Stephanie; Peiffer, Andreas; Mowery-Rushton, Patricia; Serrano, Moises; Wassman, E Robert

    2016-01-01

    Copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) significantly contribute to the etiology of neurodevelopmental disorders, such as developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD). This study summarizes the results of 3.5 years of CMA testing by a CLIA-certified clinical testing laboratory 5487 patients with neurodevelopmental conditions were clinically evaluated for rare copy number variants using a 2.8-million probe custom CMA optimized for the detection of CNVs associated with neurodevelopmental disorders. We report an overall detection rate of 29.4% in our neurodevelopmental cohort, which rises to nearly 33% when cases with DD/ID and/or MCA only are considered. The detection rate for the ASD cohort is also significant, at 25%. Additionally, we find that detection rate and pathogenic yield of CMA vary significantly depending on the primary indications for testing, the age of the individuals tested, and the specialty of the ordering doctor. We also report a significant difference between the detection rate on the ultrahigh resolution optimized array in comparison to the array from which it originated. This increase in detection can significantly contribute to the efficient and effective medical management of neurodevelopmental conditions in the clinic.

  5. De novo mutations in regulatory elements in neurodevelopmental disorders

    PubMed Central

    Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.

    2018-01-01

    We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236

  6. Exome Pool-Seq in neurodevelopmental disorders.

    PubMed

    Popp, Bernt; Ekici, Arif B; Thiel, Christian T; Hoyer, Juliane; Wiesener, Antje; Kraus, Cornelia; Reis, André; Zweier, Christiane

    2017-12-01

    High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by >85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.

  7. Mechanism-based treatments in neurodevelopmental disorders: fragile X syndrome.

    PubMed

    Berry-Kravis, Elizabeth

    2014-04-01

    Fragile X syndrome (FXS) is the most common identifiable genetic cause of intellectual disability and autistic spectrum disorders. Recent major advances have been made in the understanding of the neurobiology and functions of fragile X mental retardation protein, the FMR1 gene product, which is absent or reduced in FXS, largely based on work in the fmr1 knockout mouse model. FXS has emerged as a disorder of synaptic plasticity associated with abnormalities of long-term depression and long-term potentiation and immature dendritic spine architecture, related to dysregulation of dendritic translation typically activated by group I mGluR and other receptors. This work has led to efforts to develop treatments for FXS with neuroactive molecules targeted to pathways dysregulated in the absence of fragile X mental retardation protein. These agents have been shown to rescue molecular, spine, and behavioral phenotypes in the FXS mouse model, and clinical trials are underway to translate findings in animal models of FXS to humans, raising complex issues about trial design and outcome measures to assess disease-modifying changes that might be associated with treatment. Genes known to be causes of autistic spectrum disorders interact with the translational pathway defective in FXS and it is likely that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction. Thus targeted treatment and clinical trial strategies in FXS may serve as a model for ASD and other cognitive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders

    PubMed Central

    Francis, S.M.; Sagar, A.; Levin-Decanini, T.; Liu, W.; Carter, C.S.; Jacob, S.

    2015-01-01

    Oxytocin (OT) and arginine vasopressin (AVP) are two small, related neuropeptide hormones found in many mammalian species, including humans. Dysregulation of these neuropeptides have been associated with changes in behavior, especially social interactions. We review how the OT and AVP systems have been investigated in Autism Spectrum Disorder (ASD), Prader–Willi Syndrome (PWS), Williams Syndrome (WS) and Fragile X syndrome (FXS). All of these neurodevelopmental disorders (NDD) are marked by social deficits. While PWS, WS and FXS have identified genetic mutations, ASD stems from multiple genes with complex interactions. Animal models of NDD are invaluable for studying the role and relatedness of OT and AVP in the developing brain. We present data from a FXS mouse model affecting the fragile X mental retardation 1 (Fmr1) gene, resulting in decreased OT and AVP staining cells in some brain regions. Reviewing the research about OT and AVP in these NDD suggests that altered OT pathways may be downstream from different etiological factors and perturbations in development. This has implications for ongoing studies of the therapeutic application of OT in NDD. PMID:24462936

  9. Association of Hypertensive Disorders of Pregnancy With Risk of Neurodevelopmental Disorders in Offspring: A Systematic Review and Meta-analysis.

    PubMed

    Maher, Gillian M; O'Keeffe, Gerard W; Kearney, Patricia M; Kenny, Louise C; Dinan, Timothy G; Mattsson, Molly; Khashan, Ali S

    2018-06-06

    Although research suggests an association between hypertensive disorders of pregnancy (HDP) and autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and other neurodevelopmental disorders in offspring, consensus is lacking. Given the increasing prevalence of hypertension in pregnancy, it is important to examine the association of HDP with neurodevelopmental outcome. To synthesize the published literature on the association between HDP and risk of neurodevelopmental disorders in offspring in a systematic review and meta-analysis. On the basis of a preprepared protocol, a systematic search of PubMed, CINAHL, Embase, PsycINFO, and Web of Science was performed from inception through June 7, 2017, supplemented by hand searching of reference lists. Two investigators independently reviewed titles, abstracts, and full-text articles. English-language cohort and case-control studies were included in which HDP and neurodevelopmental disorders were reported. Data extraction and quality appraisal were performed independently by 2 reviewers. Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed throughout. Random-effects meta-analyses of estimated pooled odds ratios (ORs) for HDP and ASD and for HDP and ADHD. Stand-alone estimates were reported for all other neurodevelopmental disorders. Of 1166 studies identified, 61 unique articles met inclusion criteria. Twenty studies reported estimates for ASD. Eleven of these (including 777 518 participants) reported adjusted estimates, with a pooled adjusted OR of 1.35 (95% CI, 1.11-1.64). Ten studies reported estimates for ADHD. Six of these (including 1 395 605 participants) reported adjusted estimates, with a pooled adjusted OR of 1.29 (95% CI, 1.22-1.36). Subgroup analyses according to type of exposure (ie, preeclampsia or other HDP) showed no statistically significant differences for ASD or ADHD. Thirty-one studies met inclusion criteria for all other

  10. Phenotypic and Molecular Convergence of 2q23.1 Deletion Syndrome with Other Neurodevelopmental Syndromes Associated with Autism Spectrum Disorder

    PubMed Central

    Mullegama, Sureni V.; Alaimo, Joseph T.; Chen, Li; Elsea, Sarah H.

    2015-01-01

    Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention. PMID:25853262

  11. Genetics Home Reference: X-linked thrombocytopenia

    MedlinePlus

    ... Facebook Twitter Home Health Conditions X-linked thrombocytopenia X-linked thrombocytopenia Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description X-linked thrombocytopenia is a bleeding disorder that primarily ...

  12. Melatonin for sleep disturbance in children with neurodevelopmental disorders: prospective observational naturalistic study.

    PubMed

    Ayyash, Hani F; Preece, Phillip; Morton, Richard; Cortese, Samuele

    2015-06-01

    Although melatonin is increasingly used for sleep disturbances in children with neurodevelopmental disorders, evidence on effective dose and impact on specific types of sleep disturbance is limited. We assessed 45 children (35 males, mean age: 6.3 ± 1.7 years) with neurodevelopmental disorders (n = 29: intellectual disability; n = 9: autism spectrum disorder; n = 7: attention-deficit/hyperactivity disorder) and sleep disturbances, treated with melatonin (mean duration: 326 days) with doses increased according to response. Thirty-eight percent of children responded to low (2.5-3 mg), 31% to medium (5-6 mg) and 9% to high doses (9-10 mg) of melatonin, with a significant increase in total hours of sleep/night, decreased sleep onset delay and decreased number of awakenings/night (all: p = 0.001), as measured with sleep diaries. No serious adverse events were reported. Melatonin is generally effective and safe in children with neurodevelopmental conditions. Increasing above 6 mg/night adds further benefit only in a small percentage of children.

  13. Understanding Neurodevelopmental Disorders: The Promise of Regulatory Variation in the 3'UTRome.

    PubMed

    Wanke, Kai A; Devanna, Paolo; Vernes, Sonja C

    2018-04-01

    Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1% to 2% of the human genome. With the advent of whole genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and noncoding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of noncoding variants identified per individual can be overwhelming, making it prudent to focus on noncoding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3'UTRome is a region of the noncoding genome that perfectly fulfills these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3'UTRome as binding sites for microRNAs or RNA binding proteins, or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3'UTRome will lead to the identification of new risk factors, new candidate disease genes, and a better understanding of the molecular mechanisms contributing to neurodevelopmental disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders

    PubMed Central

    Verkhratsky, Alexei; Parpura, Vladimir

    2015-01-01

    Astroglial cells represent a main element in the maintenance of homeostasis and providing defense to the brain. Consequently, their dysfunction underlies many, if not all, neurological, neuropsychiatric and neurodegenerative disorders. General astrogliopathy is evident in diametrically opposing morpho-functional changes in astrocytes, i.e. their hypertrophy along with reactivity or atrophy with asthenia. Neurological disorders with astroglial participation can be genetic, of which Alexander disease is a primary sporadic astrogliopathy, environmentally caused, such as heavy metal encephalopathies, or neurodevelopmental in origin. Astroglia also play a role in major neuropsychiatric disorders, ranging from schizophrenia to depression, as well as in additive disorders. Furthermore, astroglia contribute to neurodegenerative processes seen in amyotrophic lateral sclerosis, Alzheimer’s and Huntington’s diseases. PMID:25843667

  15. [Motor disorders in neurodevelopmental disorders. Tics and stereotypies].

    PubMed

    Eirís-Puñal, Jesús

    2014-02-24

    Tics are repetitive, sharp, rapid, non-rhythmic movements or utterances that are the result of sudden, abrupt and involuntary muscular contractions. Stereotypies are repetitive, apparently impulsive, rhythmic, purposeless movements that follow an individual repertoire that is specific to each individual and that occur under a variable time pattern, which may be either transient or persistent. Both are included in the Diagnostic and statistical manual of mental disorders, fifth edition (DSM-5), among the neurodevelopmental disorders, and together with coordination development disorder go to make up the group of motor disorders. For tics, the categories of 'Tourette's disorder', 'chronic motor or vocal tic disorder' and 'unspecified tic disorder' have been maintained, whereas the category 'transient tics' has disappeared and 'provisional tic disorder' and 'other specified tic disorders' have been incorporated. Within stereotypic movement disorder, the DSM-5 replaces 'non-functional' by 'apparently purposeless'; the thresholds of the need for medical care are withdrawn and replaced with the manual's standard involvement criterion; mental retardation is no longer mentioned and emphasis is placed on the severity of the stereotypic movement; and a criterion concerning the onset of symptoms and specifiers of the existence or not of self-injurious behaviours have been added, together with the association with genetic or general medical diseases or extrinsic factors. Moreover, a categorisation depending on severity has also been included.

  16. Creatine Transporter Deficiency: Screening of Males with Neurodevelopmental Disorders and Neurocognitive Characterization of a Case.

    PubMed

    Thurm, Audrey; Himelstein, Daniel; DʼSouza, Precilla; Rennert, Owen; Jiang, Susanqi; Olatunji, Damilola; Longo, Nicola; Pasquali, Marzia; Swedo, Susan; Salomons, Gajja S; Carrillo, Nuria

    2016-05-01

    Creatine transporter deficiency (CTD) is an X-linked, neurometabolic disorder associated with intellectual disability that is characterized by brain creatine (Cr) deficiency and caused by mutations in SLC6A8, the Cr transporter 1 protein gene. CTD is identified by elevated urine creatine/creatinine (Cr/Crn) ratio or reduced Cr peak on brain magnetic resonance spectroscopy; the diagnosis is confirmed by decreased Cr uptake in cultured fibroblasts, and/or identification of a mutation in the SLC6A8 gene. Prevalence studies suggest this disorder may be underdiagnosed. We sought to identify cases from a well-characterized cohort of children diagnosed with neurodevelopmental disorders. Urine screening for CTD was performed on a cohort of 46 males with autism spectrum disorder (ASD) and 9 males with a history of non-ASD developmental delay (DD) classified with intellectual disability. We identified 1 patient with CTD in the cohort based on abnormal urine Cr/Crn, and confirmed the diagnosis by the identification of a novel frameshift mutation in the SLC6A8 gene. This patient presented without ASD but with intellectual disability, and was characterized by a nonspecific phenotype of early language delay and DD that persisted into moderate-to-severe intellectual disability, consistent with previous descriptions of CTD. Identification of patients with CTD is possible by measuring urine Cr and Crn levels and the current case adds to the growing literature of neurocognitive deficits associated with the disorder that affect cognition, language and behavior in childhood.

  17. Intellectual Profiles in the Autism Spectrum and Other Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Mouga, Susana; Café, Cátia; Almeida, Joana; Marques, Carla; Duque, Frederico; Oliveira, Guiomar

    2016-01-01

    The influence of specific autism spectrum disorder (ASD) deficits in Intelligence Quotients (IQ), Indexes and subtests from the Wechsler Intelligence Scale for Children-III was investigated in 445 school-aged children: ASD (N = 224) and other neurodevelopmental disorders (N = 221), matched by Full-Scale IQ and chronological age. ASD have lower…

  18. Implication of LRRC4C and DPP6 in neurodevelopmental disorders

    PubMed Central

    Maussion, Gilles; Cruceanu, Cristiana; Rosenfeld, Jill A.; Bell, Scott C.; Jollant, Fabrice; Szatkiewicz, Jin; Collins, Ryan L.; Hanscom, Carrie; Kolobova, Ilaria; de Champfleur, Nicolas Menjot; Blumenthal, Ian; Chiang, Colby; Ota, Vanessa; Hultman, Christina; O’Dushlaine, Colm; McCarroll, Steve; Alda, Martin; Jacquemont, Sebastien; Ordulu, Zehra; Marshall, Christian R.; Carter, Melissa T.; Shaffer, Lisa G.; Sklar, Pamela; Girirajan, Santhosh; Morton, Cynthia C.; Gusella, James F.; Turecki, Gustavo; Stavropoulos, D. J.; Sullivan, Patrick F.; Scherer, Stephen W.; Talkowski, Michael E.; Ernst, Carl

    2018-01-01

    We performed whole-genome sequencing on an individual from a family with variable psychiatric phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic deletions in LRRC4C had a second clinically recognizable syndrome associated with variable clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. These data suggest that the proband’s autism may be due to the inheritance of disruptions in both DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium channel interacting molecules in neurodevelopmental disorders. PMID:27759917

  19. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.

    PubMed

    Hsiao, Elaine Y; McBride, Sara W; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R; McCue, Tyler; Codelli, Julian A; Chow, Janet; Reisman, Sarah E; Petrosino, Joseph F; Patterson, Paul H; Mazmanian, Sarkis K

    2013-12-19

    Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Boys with Asperger Syndrome Grow Up: Psychiatric and Neurodevelopmental Disorders 20 Years After Initial Diagnosis.

    PubMed

    Gillberg, I Carina; Helles, Adam; Billstedt, Eva; Gillberg, Christopher

    2016-01-01

    We examined comorbid psychiatric and neurodevelopmental disorders in fifty adult males (mean age 30 years) with Asperger syndrome (AS) diagnosed in childhood and followed up prospectively for almost two decades (13-26 years). Only three of the 50 men had never met criteria for an additional psychiatric/neurodevelopmental diagnosis and more than half had ongoing comorbidity (most commonly either ADHD or depression or both). Any psychiatric comorbidity increased the risk of poorer outcome. The minority of the AS group who no longer met criteria for a full diagnosis of an autism spectrum disorder were usually free of current psychiatric comorbidity. The high rate of psychiatric/neurodevelopmental comorbidities underscores the need for a full psychiatric/neurodevelopmental assessment at follow-up of males with AS.

  1. Neurodevelopmental profile of Fetal Alcohol Spectrum Disorder: A systematic review.

    PubMed

    Lange, Shannon; Rovet, Joanne; Rehm, Jürgen; Popova, Svetlana

    2017-06-23

    In an effort to improve the screening and diagnosis of individuals with Fetal Alcohol Spectrum Disorder (FASD), research has focused on the identification of a unique neurodevelopmental profile characteristic of this population. The objective of this review was to identify any existing neurodevelopmental profiles of FASD and review their classification function in order to identify gaps and limitations of the current literature. A systematic search for studies published up to the end of December 2016 reporting an identified neurodevelopmental profile of FASD was conducted using multiple electronic bibliographic databases. The search was not limited geographically or by language of publication. Original research published in a peer-reviewed journal that involved the evaluation of the classification function of an identified neurodevelopmental profile of FASD was included. Two approaches have been taken to determine the pathognomonic neurodevelopmental features of FASD, namely the utilization of i) behavioral observations/ratings by parents/caregivers and ii) subtest scores from standardized test batteries assessing a variety of neurodevelopmental domains. Both approaches show some promise, with the former approach (which is dominated by research on the Neurobehavioral Screening Tool) having good sensitivity (63% to 98%), but varying specificity (42% to 100%), and the latter approach having good specificity (72% to 96%), but varying sensitivity (60% to 88%). The current review revealed that research in this area remains limited and a definitive neurodevelopmental profile of FASD has not been established. However, the identification of a neurodevelopmental profile will aid in the accurate identification of individuals with FASD, by adding to the armamentarium of clinicians. The full review protocol is available in PROSPERO ( http://www.crd.york.ac.uk/PROSPERO/ ); registration number CRD42016039326; registered 20 May 2016.

  2. Genetics Home Reference: X-linked sideroblastic anemia

    MedlinePlus

    ... Twitter Home Health Conditions X-linked sideroblastic anemia X-linked sideroblastic anemia Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description X-linked sideroblastic anemia is an inherited disorder that ...

  3. Lessons Learned: Engaging Culturally Diverse Families in Neurodevelopmental Disorders Intervention Research

    ERIC Educational Resources Information Center

    Ratto, Allison B.; Anthony, Bruno J.; Pugliese, Cara; Mendez, Rocio; Safer-Lichtenstein, Jonathan; Dudley, Katerina M.; Kahn, Nicole F.; Kenworthy, Lauren; Biel, Matthew; Martucci, Jillian L.; Anthony, Laura G.

    2017-01-01

    Low-income and ethnic minority families continue to face critical disparities in access to diagnostic and treatment services for neurodevelopmental conditions, such as autism spectrum disorder and attention deficit hyperactivity disorder. Despite the growing cultural diversity of the United States, ethnic minority children and families continue to…

  4. Epigenetic dynamics in psychiatric disorders: environmental programming of neurodevelopmental processes.

    PubMed

    Kofink, Daniel; Boks, Marco P M; Timmers, H T Marc; Kas, Martien J

    2013-06-01

    Epigenetic processes have profound influence on gene translation and play a key role in embryonic development and tissue type specification. Recent advances in our understanding of epigenetics have pointed out that epigenetic alterations also play an important role in neurodevelopment and may increase the risk to psychiatric disorders. In addition to genetic regulation of these processes, compelling evidence suggests that environmental conditions produce persistent changes in development through epigenetic mechanisms. Adverse environmental influences in early life such as maternal care, alcohol exposure and prenatal nutrition interact with epigenetic factors and may induce neurodevelopmental disturbances that are related to psychiatric disorders. This review outlines recent findings linking environmentally induced modifications of the epigenome to brain development and psychopathology. Better understanding of these modifications is relevant from the perspective that they may be reversible and, therefore, offer potential for novel treatment strategies. We present the current state of knowledge and show that integrative approaches are necessary to further understand the causal pathways between environmental influences, epigenetic modification, and neuronal function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Treatments for Neurodevelopmental Disorders: Evidence, Advocacy, and the Internet

    ERIC Educational Resources Information Center

    Di Pietro, Nina C.; Whiteley, Louise; Mizgalewicz, Ania; Illes, Judy

    2013-01-01

    The Internet is a major source of health-related information for parents of sick children despite concerns surrounding quality. For neurodevelopmental disorders, the websites of advocacy groups are a largely unexamined source of information. We evaluated treatment information posted on nine highly-trafficked advocacy websites for autism, cerebral…

  6. Neurodevelopmental disorders: cluster 2 of the proposed meta-structure for DSM-V and ICD-11.

    PubMed

    Andrews, G; Pine, D S; Hobbs, M J; Anderson, T M; Sunderland, M

    2009-12-01

    DSM-IV and ICD-10 are atheoretical and largely descriptive. Although this achieves good reliability, the validity of diagnoses can be increased by an understanding of risk factors and other clinical features. In an effort to group mental disorders on this basis, five clusters have been proposed. We now consider the second cluster, namely neurodevelopmental disorders. We reviewed the literature in relation to 11 validating criteria proposed by a DSM-V Task Force Study Group. This cluster reflects disorders of neurodevelopment rather than a 'childhood' disorders cluster. It comprises disorders subcategorized in DSM-IV and ICD-10 as Mental Retardation; Learning, Motor, and Communication Disorders; and Pervasive Developmental Disorders. Although these disorders seem to be heterogeneous, they share similarities on some risk and clinical factors. There is evidence of a neurodevelopmental genetic phenotype, the disorders have an early emerging and continuing course, and all have salient cognitive symptoms. Within-cluster co-morbidity also supports grouping these disorders together. Other childhood disorders currently listed in DSM-IV share similarities with the Externalizing and Emotional clusters. These include Conduct Disorder, Attention Deficit Hyperactivity Disorder and Separation Anxiety Disorder. The Tic, Eating/Feeding and Elimination disorders, and Selective Mutisms were allocated to the 'Not Yet Assigned' group. Neurodevelopmental disorders meet some of the salient criteria proposed by the American Psychiatric Association (APA) to suggest a classification cluster.

  7. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders.

    PubMed

    Reinhard, Sarah M; Razak, Khaleel; Ethell, Iryna M

    2015-01-01

    The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called 'critical periods.' MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer's disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.

  8. Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders.

    PubMed

    Francis, S M; Sagar, A; Levin-Decanini, T; Liu, W; Carter, C S; Jacob, S

    2014-09-11

    Oxytocin (OT) and arginine vasopressin (AVP) are two small, related neuropeptide hormones found in many mammalian species, including humans. Dysregulation of these neuropeptides have been associated with changes in behavior, especially social interactions. We review how the OT and AVP systems have been investigated in Autism Spectrum Disorder (ASD), Prader-Willi Syndrome (PWS), Williams Syndrome (WS) and Fragile X syndrome (FXS). All of these neurodevelopmental disorders (NDD) are marked by social deficits. While PWS, WS and FXS have identified genetic mutations, ASD stems from multiple genes with complex interactions. Animal models of NDD are invaluable for studying the role and relatedness of OT and AVP in the developing brain. We present data from a FXS mouse model affecting the fragile X mental retardation 1 (Fmr1) gene, resulting in decreased OT and AVP staining cells in some brain regions. Reviewing the research about OT and AVP in these NDD suggests that altered OT pathways may be downstream from different etiological factors and perturbations in development. This has implications for ongoing studies of the therapeutic application of OT in NDD. This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2014. Published by Elsevier B.V.

  9. EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy

    PubMed Central

    Byrne, Susan; Jansen, Lara; U-King-Im, Jean-Marie; Siddiqui, Ata; Lidov, Hart G. W.; Bodi, Istvan; Smith, Luke; Mein, Rachael; Cullup, Thomas; Dionisi-Vici, Carlo; Al-Gazali, Lihadh; Al-Owain, Mohammed; Bruwer, Zandre; Al Thihli, Khalid; El-Garhy, Rana; Flanigan, Kevin M.; Manickam, Kandamurugu; Zmuda, Erik; Banks, Wesley; Gershoni-Baruch, Ruth; Mandel, Hanna; Dagan, Efrat; Raas-Rothschild, Annick; Barash, Hila; Filloux, Francis; Creel, Donnell; Harris, Michael; Hamosh, Ada; Kölker, Stefan; Ebrahimi-Fakhari, Darius; Hoffmann, Georg F.; Manchester, David; Boyer, Philip J.; Manzur, Adnan Y.; Lourenco, Charles Marques; Pilz, Daniela T.; Kamath, Arveen; Prabhakar, Prab; Rao, Vamshi K.; Rogers, R. Curtis; Ryan, Monique M.; Brown, Natasha J.; McLean, Catriona A.; Said, Edith; Schara, Ulrike; Stein, Anja; Sewry, Caroline; Travan, Laura; Wijburg, Frits A.; Zenker, Martin; Mohammed, Shehla; Fanto, Manolis; Gautel, Mathias

    2016-01-01

    myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease. PMID:26917586

  10. New insights into the role of motion and form vision in neurodevelopmental disorders.

    PubMed

    Johnston, Richard; Pitchford, Nicola J; Roach, Neil W; Ledgeway, Timothy

    2017-12-01

    A selective deficit in processing the global (overall) motion, but not form, of spatially extensive objects in the visual scene is frequently associated with several neurodevelopmental disorders, including preterm birth. Existing theories that proposed to explain the origin of this visual impairment are, however, challenged by recent research. In this review, we explore alternative hypotheses for why deficits in the processing of global motion, relative to global form, might arise. We describe recent evidence that has utilised novel tasks of global motion and global form to elucidate the underlying nature of the visual deficit reported in different neurodevelopmental disorders. We also examine the role of IQ and how the sex of an individual can influence performance on these tasks, as these are factors that are associated with performance on global motion tasks, but have not been systematically controlled for in previous studies exploring visual processing in clinical populations. Finally, we suggest that a new theoretical framework is needed for visual processing in neurodevelopmental disorders and present recommendations for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. A novel missense mutation in GRIN2A causes a nonepileptic neurodevelopmental disorder.

    PubMed

    Fernández-Marmiesse, Ana; Kusumoto, Hirofumi; Rekarte, Saray; Roca, Iria; Zhang, Jin; Myers, Scott J; Traynelis, Stephen F; Couce, Mª Luz; Gutierrez-Solana, Luis; Yuan, Hongjie

    2018-04-11

    Mutations in the GRIN2A gene, which encodes the GluN2A (glutamate [NMDA] receptor subunit epsilon-1) subunit of the N-methyl-d-aspartate receptor, have been identified in patients with epilepsy-aphasia spectrum disorders, idiopathic focal epilepsies with centrotemporal spikes, and epileptic encephalopathies with severe developmental delay. However, thus far, mutations in this gene have not been associated with a nonepileptic neurodevelopmental disorder with dystonia. The objective of this study was to identify the disease-causing gene in 2 siblings with neurodevelopmental and movement disorders with no epileptiform abnormalities. The study method was targeted next-generation sequencing panel for neuropediatric disorders and subsequent electrophysiological studies. The 2 siblings carry a novel missense mutation in the GRIN2A gene (p.Ala643Asp) that was not detected in genomic DNA isolated from blood cells of their parents, suggesting that the mutation is the consequence of germinal mosaicism in 1 progenitor. In functional studies, the GluN2A-A643D mutation increased the potency of the agonists L-glutamate and glycine and decreased the potency of endogenous negative modulators, including protons, magnesium and zinc but reduced agonist-evoked peak current response in mammalian cells, suggesting that this mutation has a mixed effect on N-methyl-d-aspartate receptor function. De novo GRIN2A mutations can give rise to a neurodevelopmental and movement disorder without epilepsy. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  12. Seroprevalence of Toxoplasma gondii infection among patients with non-schizophrenic neurodevelopmental disorders in Alexandria, Egypt.

    PubMed

    Shehata, Amany I; Hassanein, Faika I; Abdul-Ghani, Rashad

    2016-02-01

    Toxoplasma gondii is an opportunistic parasite with neurotropic characteristics that can mediate neurodevelopmental disorders, including mental, behavioral and personality aspects of their hosts. Therefore, the seroprevalence of anti-Toxoplasma antibodies has been studied in patients with different neurological disorders from different localities. On searching online databases, however, we could not find published studies on the seroprevalence of anti-Toxoplasma antibodies among patients with neurodevelopmental disorders in Egypt. Therefore, the present preliminary study was conducted to determine the serological profile of T. gondii infection among patients with non-schizophrenic neurodevelopmental disorders in Alexandria, Egypt. Data and blood samples were collected from 188 patients recruited for the study from four mental rehabilitation centers in the period from July 2014 to March 2015. The overall seropositivity rates of IgM and IgG among patients were 16.5% (31/188) and 50.0% (94/188), respectively. Of the studied patients' characteristics, only age was significantly associated with anti-Toxoplasma IgG seropositivity, with older patients being about twice more likely exposed to infection. However, no statistically significant association was found with IgM. In addition, seropositivity of anti-Toxoplasma IgG, but not IgM, was significantly associated with non-schizophrenic neurodevelopmental disorders; however, neither IgG nor IgM showed a significant association with cognitive impairment as indicated by the intelligence quotient scores. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Translational animal models of autism and neurodevelopmental disorders.

    PubMed

    Crawley, Jacqueline N

    2012-09-01

    Autism is a neurodevelopmental disorder whose diagnosis is based on three behavioral criteria: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics.

  14. Increased nuchal translucency thickness and risk of neurodevelopmental disorders.

    PubMed

    Hellmuth, S G; Pedersen, L H; Miltoft, C B; Petersen, O B; Kjaergaard, S; Ekelund, C; Tabor, A

    2017-05-01

    To investigate the association between fetal nuchal translucency (NT) thickness and neurodevelopmental disorders in euploid children. This study included 222 505 euploid children who had undergone routine first-trimester screening during fetal life. Children were divided according to prenatal NT into three groups: NT < 95 th percentile (n = 217 103 (97.6%)); NT 95 th -99 th percentile (n = 4760 (2.1%)); and NT > 99 th percentile (n = 642 (0.3%)). All children were followed-up to a mean age of 4.4 years. Information on diagnoses of intellectual disability, autism spectrum disorders (ASD), cerebral palsy, epilepsy and febrile seizures was obtained from national patient registries. There was no excess risk of neurodevelopmental disorders among euploid children with first-trimester NT 95 th -99 th percentile. For children with NT > 99 th percentile, there were increased risks of intellectual disability (odds ratio (OR), 6.16 (95% CI, 1.51-25.0), 0.31%) and ASD (OR, 2.48 (95% CI, 1.02-5.99), 0.78%) compared with children with NT < 95 th percentile (incidence of 0.05% for intellectual disability and 0.32% for ASD), however, there was no detected increase in the risk of cerebral palsy (OR, 1.91 (95% CI, 0.61-5.95), 0.47%), epilepsy (OR, 1.51 (95% CI, 0.63-3.66), 0.78%) or febrile seizures (OR, 0.72 (95% CI, 0.44-1.16), 2.65%). In a large unselected cohort of euploid children, there was no increased risk of neurodevelopmental disorders among those with a first-trimester NT 95 th -99 th percentile. Among euploid children with first-trimester NT > 99 th percentile, there were increased risks of intellectual disability and ASD, but the absolute risk was reassuringly low (< 1%). Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  15. Genetics Home Reference: X-linked adrenal hypoplasia congenita

    MedlinePlus

    ... Home Health Conditions X-linked adrenal hypoplasia congenita X-linked adrenal hypoplasia congenita Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description X-linked adrenal hypoplasia congenita is a disorder that ...

  16. Genetics Home Reference: X-linked chondrodysplasia punctata 1

    MedlinePlus

    ... Home Health Conditions X-linked chondrodysplasia punctata 1 X-linked chondrodysplasia punctata 1 Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description X-linked chondrodysplasia punctata 1 is a disorder of ...

  17. X-linked cataract and Nance-Horan syndrome are allelic disorders.

    PubMed

    Coccia, Margherita; Brooks, Simon P; Webb, Tom R; Christodoulou, Katja; Wozniak, Izabella O; Murday, Victoria; Balicki, Martha; Yee, Harris A; Wangensteen, Teresia; Riise, Ruth; Saggar, Anand K; Park, Soo-Mi; Kanuga, Naheed; Francis, Peter J; Maher, Eamonn R; Moore, Anthony T; Russell-Eggitt, Isabelle M; Hardcastle, Alison J

    2009-07-15

    Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication-triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved.

  18. X-linked cataract and Nance-Horan syndrome are allelic disorders

    PubMed Central

    Coccia, Margherita; Brooks, Simon P.; Webb, Tom R.; Christodoulou, Katja; Wozniak, Izabella O.; Murday, Victoria; Balicki, Martha; Yee, Harris A.; Wangensteen, Teresia; Riise, Ruth; Saggar, Anand K.; Park, Soo-Mi; Kanuga, Naheed; Francis, Peter J.; Maher, Eamonn R.; Moore, Anthony T.; Russell-Eggitt, Isabelle M.; Hardcastle, Alison J.

    2009-01-01

    Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication–triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved. PMID:19414485

  19. The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells

    PubMed Central

    Shi, Lingling; Chang, Xiao; Zhang, Peilin; Coba, Marcelo P.; Lu, Wange; Wang, Kai

    2013-01-01

    Genetic mutations in NLGN4X (neuroligin 4), including point mutations and copy number variants (CNVs), have been associated with susceptibility to autism spectrum disorders (ASDs). However, it is unclear how mutations in NLGN4X result in neurodevelopmental defects. Here, we used neural stem cells (NSCs) as in vitro models to explore the impacts of NLGN4X knockdown on neurodevelopment. Using two shRNAmir-based vectors targeting NLGN4X and one control shRNAmir vector, we modulated NLGN4X expression and differentiated these NSCs into mature neurons. We monitored the neurodevelopmental process at Weeks 0, 0.5, 1, 2, 4 and 6, based on morphological analysis and whole-genome gene expression profiling. At the cellular level, in NSCs with NLGN4X knockdown, we observed increasingly delayed neuronal development and compromised neurite formation, starting from Week 2 through Week 6 post differentiation. At the molecular level, we identified multiple pathways, such as neurogenesis, neuron differentiation and muscle development, which are increasingly disturbed in cells with NLGN4X knockdown. Notably, several postsynaptic genes, including DLG4, NLGN1 and NLGN3, also have decreased expression. Based on in vitro models, NLGN4X knockdown directly impacts neurodevelopmental process during the formation of neurons and their connections. Our functional genomics study highlights the utility of NSCs models in understanding the functional roles of CNVs in affecting neurodevelopment and conferring susceptibility to neurodevelopmental diseases. PMID:23710042

  20. The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells.

    PubMed

    Shi, Lingling; Chang, Xiao; Zhang, Peilin; Coba, Marcelo P; Lu, Wange; Wang, Kai

    2013-09-15

    Genetic mutations in NLGN4X (neuroligin 4), including point mutations and copy number variants (CNVs), have been associated with susceptibility to autism spectrum disorders (ASDs). However, it is unclear how mutations in NLGN4X result in neurodevelopmental defects. Here, we used neural stem cells (NSCs) as in vitro models to explore the impacts of NLGN4X knockdown on neurodevelopment. Using two shRNAmir-based vectors targeting NLGN4X and one control shRNAmir vector, we modulated NLGN4X expression and differentiated these NSCs into mature neurons. We monitored the neurodevelopmental process at Weeks 0, 0.5, 1, 2, 4 and 6, based on morphological analysis and whole-genome gene expression profiling. At the cellular level, in NSCs with NLGN4X knockdown, we observed increasingly delayed neuronal development and compromised neurite formation, starting from Week 2 through Week 6 post differentiation. At the molecular level, we identified multiple pathways, such as neurogenesis, neuron differentiation and muscle development, which are increasingly disturbed in cells with NLGN4X knockdown. Notably, several postsynaptic genes, including DLG4, NLGN1 and NLGN3, also have decreased expression. Based on in vitro models, NLGN4X knockdown directly impacts neurodevelopmental process during the formation of neurons and their connections. Our functional genomics study highlights the utility of NSCs models in understanding the functional roles of CNVs in affecting neurodevelopment and conferring susceptibility to neurodevelopmental diseases.

  1. Assessing the influence of researcher-partner involvement on the process and outcomes of participatory research in autism spectrum disorder and neurodevelopmental disorders: a scoping review.

    PubMed

    Jivraj, Jamil; Sacrey, Lori-Ann; Newton, Amanda; Nicholas, David; Zwaigenbaum, Lonnie

    2014-10-01

    Participatory research aims to increase the relevance and broaden the implementation of health research by involving those affected by the outcomes of health studies. Few studies within the field of neurodevelopmental disorders, particularly autism spectrum disorders, have involved autistic individuals as partners. This study sought to identify and characterize published participatory research partnerships between researchers and individuals with autism spectrum disorder or other neurodevelopmental disorders and examine the influence of participatory research partnerships on the research process and reported study outcomes. A search of databases and review of gray literature identified seven studies that described participatory research partnerships between academic researchers and individuals with autism spectrum disorder or other neurodevelopmental disorders. A comparative analysis of the studies revealed two key themes: (1) variations in the participatory research design and (2) limitations during the reporting of the depth of the partner's involvement. Both themes potentially limit the application and generalizability of the findings. The results of the review are discussed in relation to the use of evaluative frameworks for such participatory research studies to determine the potential benefits of participatory research partnerships within the neurodevelopmental and autism spectrum disorder populations. © The Author(s) 2014.

  2. Using Sibling Designs to Understand Neurodevelopmental Disorders: From Genes and Environments to Prevention Programming

    PubMed Central

    Wade, Mark; Prime, Heather; Madigan, Sheri

    2015-01-01

    Neurodevelopmental disorders represent a broad class of childhood neurological conditions that have a significant bearing on the wellbeing of children, families, and communities. In this review, we draw on evidence from two common and widely studied neurodevelopmental disorders—autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD)—to demonstrate the utility of genetically informed sibling designs in uncovering the nature and pathogenesis of these conditions. Specifically, we examine how twin, recurrence risk, and infant prospective tracking studies have contributed to our understanding of genetic and environmental liabilities towards neurodevelopmental morbidity through their impact on neurocognitive processes and structural/functional neuroanatomy. It is suggested that the siblings of children with ASD and ADHD are at risk not only of clinically elevated problems in these areas, but also of subthreshold symptoms and/or subtle impairments in various neurocognitive skills and other domains of psychosocial health. Finally, we close with a discussion on the practical relevance of sibling designs and how these might be used in the service of early screening, prevention, and intervention efforts that aim to alleviate the negative downstream consequences associated with disorders of neurodevelopment. PMID:26258141

  3. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders

    PubMed Central

    Reinhard, Sarah M.; Razak, Khaleel; Ethell, Iryna M.

    2015-01-01

    The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders. PMID:26283917

  4. Neurodevelopmental Disorders and Prenatal Residential Proximity to Agricultural Pesticides: The CHARGE Study

    PubMed Central

    Geraghty, Estella M.; Tancredi, Daniel J.; Delwiche, Lora D.; Schmidt, Rebecca J.; Ritz, Beate; Hansen, Robin L.; Hertz-Picciotto, Irva

    2014-01-01

    Background: Gestational exposure to several common agricultural pesticides can induce developmental neurotoxicity in humans, and has been associated with developmental delay and autism. Objectives: We evaluated whether residential proximity to agricultural pesticides during pregnancy is associated with autism spectrum disorders (ASD) or developmental delay (DD) in the Childhood Autism Risks from Genetics and Environment (CHARGE) study. Methods: The CHARGE study is a population-based case–control study of ASD, DD, and typical development. For 970 participants, commercial pesticide application data from the California Pesticide Use Report (1997–2008) were linked to the addresses during pregnancy. Pounds of active ingredient applied for organophophates, organochlorines, pyrethroids, and carbamates were aggregated within 1.25-km, 1.5-km, and 1.75-km buffer distances from the home. Multinomial logistic regression was used to estimate the odds ratio (OR) of exposure comparing confirmed cases of ASD (n = 486) or DD (n = 168) with typically developing referents (n = 316). Results: Approximately one-third of CHARGE study mothers lived, during pregnancy, within 1.5 km (just under 1 mile) of an agricultural pesticide application. Proximity to organophosphates at some point during gestation was associated with a 60% increased risk for ASD, higher for third-trimester exposures (OR = 2.0; 95% CI: 1.1, 3.6), and second-trimester chlorpyrifos applications (OR = 3.3; 95% CI: 1.5, 7.4). Children of mothers residing near pyrethroid insecticide applications just before conception or during third trimester were at greater risk for both ASD and DD, with ORs ranging from 1.7 to 2.3. Risk for DD was increased in those near carbamate applications, but no specific vulnerable period was identified. Conclusions: This study of ASD strengthens the evidence linking neurodevelopmental disorders with gestational pesticide exposures, particularly organophosphates, and provides novel results of

  5. Rapamycin Prevents Seizures After Depletion of STRADA in a Rare Neurodevelopmental Disorder

    PubMed Central

    Parker, Whitney E.; Orlova, Ksenia A.; Parker, William H.; Birnbaum, Jacqueline F.; Krymskaya, Vera P.; Goncharov, Dmitry A.; Baybis, Marianna; Helfferich, Jelte; Okochi, Kei; Strauss, Kevin A.; Crino, Peter B.

    2013-01-01

    A rare neurodevelopmental disorder in the Old Order Mennonite population called PMSE (polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome; also called Pretzel syndrome) is characterized by infantile-onset epilepsy, neurocognitive delay, craniofacial dysmorphism, and histopathological evidence of heterotopic neurons in subcortical white matter and subependymal regions. PMSE is caused by a homozygous deletion of exons 9 to 13 of the LYK5/STRADA gene, which encodes the pseudokinase STRADA, an upstream inhibitor of mammalian target of rapamycin complex 1 (mTORC1). We show that disrupted pathfinding in migrating mouse neural progenitor cells in vitro caused by STRADA depletion is prevented by mTORC1 inhibition with rapamycin or inhibition of its downstream effector p70 S6 kinase (p70S6K) with the drug PF-4708671 (p70S6Ki). We demonstrate that rapamycin can rescue aberrant cortical lamination and heterotopia associated with STRADA depletion in the mouse cerebral cortex. Constitutive mTORC1 signaling and a migration defect observed in fibroblasts from patients with PMSE were also prevented by mTORC1 inhibition. On the basis of these preclinical findings, we treated five PMSE patients with sirolimus (rapamycin) without complication and observed a reduction in seizure frequency and an improvement in receptive language. Our findings demonstrate a mechanistic link between STRADA loss and mTORC1 hyperactivity in PMSE, and suggest that mTORC1 inhibition may be a potential treatment for PMSE as well as other mTOR-associated neurodevelopmental disorders. PMID:23616120

  6. Translational animal models of autism and neurodevelopmental disorders

    PubMed Central

    Crawley, Jacqueline N.

    2012-01-01

    Autism is a neurodevelopmental disorder whose diagnosis is based on three behavioral criteria: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics. PMID:23226954

  7. EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy.

    PubMed

    Byrne, Susan; Jansen, Lara; U-King-Im, Jean-Marie; Siddiqui, Ata; Lidov, Hart G W; Bodi, Istvan; Smith, Luke; Mein, Rachael; Cullup, Thomas; Dionisi-Vici, Carlo; Al-Gazali, Lihadh; Al-Owain, Mohammed; Bruwer, Zandre; Al Thihli, Khalid; El-Garhy, Rana; Flanigan, Kevin M; Manickam, Kandamurugu; Zmuda, Erik; Banks, Wesley; Gershoni-Baruch, Ruth; Mandel, Hanna; Dagan, Efrat; Raas-Rothschild, Annick; Barash, Hila; Filloux, Francis; Creel, Donnell; Harris, Michael; Hamosh, Ada; Kölker, Stefan; Ebrahimi-Fakhari, Darius; Hoffmann, Georg F; Manchester, David; Boyer, Philip J; Manzur, Adnan Y; Lourenco, Charles Marques; Pilz, Daniela T; Kamath, Arveen; Prabhakar, Prab; Rao, Vamshi K; Rogers, R Curtis; Ryan, Monique M; Brown, Natasha J; McLean, Catriona A; Said, Edith; Schara, Ulrike; Stein, Anja; Sewry, Caroline; Travan, Laura; Wijburg, Frits A; Zenker, Martin; Mohammed, Shehla; Fanto, Manolis; Gautel, Mathias; Jungbluth, Heinz

    2016-03-01

    myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. Schizophrenia and the neurodevelopmental continuum:evidence from genomics.

    PubMed

    Owen, Michael J; O'Donovan, Michael C

    2017-10-01

    The idea that disturbances occurring early in brain development contribute to the pathogenesis of schizophrenia, often referred to as the neurodevelopmental hypothesis, has become widely accepted. Despite this, the disorder is viewed as being distinct nosologically, and by implication pathophysiologically and clinically, from syndromes such as autism spectrum disorders, attention-deficit/hyperactivity disorder (ADHD) and intellectual disability, which typically present in childhood and are grouped together as "neurodevelopmental disorders". An alternative view is that neurodevelopmental disorders, including schizophrenia, rather than being etiologically discrete entities, are better conceptualized as lying on an etiological and neurodevelopmental continuum, with the major clinical syndromes reflecting the severity, timing and predominant pattern of abnormal brain development and resulting functional abnormalities. It has also been suggested that, within the neurodevelopmental continuum, severe mental illnesses occupy a gradient of decreasing neurodevelopmental impairment as follows: intellectual disability, autism spectrum disorders, ADHD, schizophrenia and bipolar disorder. Recent genomic studies have identified large numbers of specific risk DNA changes and offer a direct and robust test of the predictions of the neurodevelopmental continuum model and gradient hypothesis. These findings are reviewed in detail. They not only support the view that schizophrenia is a disorder whose origins lie in disturbances of brain development, but also that it shares genetic risk and pathogenic mechanisms with the early onset neurodevelopmental disorders (intellectual disability, autism spectrum disorders and ADHD). They also support the idea that these disorders lie on a gradient of severity, implying that they differ to some extent quantitatively as well as qualitatively. These findings have important implications for nosology, clinical practice and research. © 2017 World

  9. Genetics Home Reference: X-linked congenital stationary night blindness

    MedlinePlus

    ... Health Conditions X-linked congenital stationary night blindness X-linked congenital stationary night blindness Printable PDF Open ... Javascript to view the expand/collapse boxes. Description X-linked congenital stationary night blindness is a disorder ...

  10. Schizophrenia and the neurodevelopmental continuum:evidence from genomics

    PubMed Central

    Owen, Michael J.; O'Donovan, Michael C.

    2017-01-01

    The idea that disturbances occurring early in brain development contribute to the pathogenesis of schizophrenia, often referred to as the neurodevelopmental hypothesis, has become widely accepted. Despite this, the disorder is viewed as being distinct nosologically, and by implication pathophysiologically and clinically, from syndromes such as autism spectrum disorders, attention‐deficit/hyperactivity disorder (ADHD) and intellectual disability, which typically present in childhood and are grouped together as “neurodevelopmental disorders”. An alternative view is that neurodevelopmental disorders, including schizophrenia, rather than being etiologically discrete entities, are better conceptualized as lying on an etiological and neurodevelopmental continuum, with the major clinical syndromes reflecting the severity, timing and predominant pattern of abnormal brain development and resulting functional abnormalities. It has also been suggested that, within the neurodevelopmental continuum, severe mental illnesses occupy a gradient of decreasing neurodevelopmental impairment as follows: intellectual disability, autism spectrum disorders, ADHD, schizophrenia and bipolar disorder. Recent genomic studies have identified large numbers of specific risk DNA changes and offer a direct and robust test of the predictions of the neurodevelopmental continuum model and gradient hypothesis. These findings are reviewed in detail. They not only support the view that schizophrenia is a disorder whose origins lie in disturbances of brain development, but also that it shares genetic risk and pathogenic mechanisms with the early onset neurodevelopmental disorders (intellectual disability, autism spectrum disorders and ADHD). They also support the idea that these disorders lie on a gradient of severity, implying that they differ to some extent quantitatively as well as qualitatively. These findings have important implications for nosology, clinical practice and research. PMID

  11. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia.

    PubMed

    Piton, A; Gauthier, J; Hamdan, F F; Lafrenière, R G; Yang, Y; Henrion, E; Laurent, S; Noreau, A; Thibodeau, P; Karemera, L; Spiegelman, D; Kuku, F; Duguay, J; Destroismaisons, L; Jolivet, P; Côté, M; Lachapelle, K; Diallo, O; Raymond, A; Marineau, C; Champagne, N; Xiong, L; Gaspar, C; Rivière, J-B; Tarabeux, J; Cossette, P; Krebs, M-O; Rapoport, J L; Addington, A; Delisi, L E; Mottron, L; Joober, R; Fombonne, E; Drapeau, P; Rouleau, G A

    2011-08-01

    Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n = 142; 122 males and 20 females) or SCZ (n = 143; 95 males and 48 females). We identified >200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1).

  12. Oppositional defiant- and conduct disorder-like problems: neurodevelopmental predictors and genetic background in boys and girls, in a nationwide twin study.

    PubMed

    Kerekes, Nóra; Lundström, Sebastian; Chang, Zheng; Tajnia, Armin; Jern, Patrick; Lichtenstein, Paul; Nilsson, Thomas; Anckarsäter, Henrik

    2014-01-01

    Background. Previous research has supported gender-specific aetiological factors in oppositional defiant disorder (ODD) and conduct disorder (CD). The aims of this study were to identify gender-specific associations between the behavioural problems-ODD/CD-like problems-and the neurodevelopmental disorders-attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD)-and to investigate underlying genetic effects. Methods. 17,220 twins aged 9 or 12 were screened using the Autism-Tics, AD/HD and other Comorbidities inventory. The main covariates of ODD- and CD-like problems were investigated, and the relative importance of unique versus shared hereditary and environmental effects was estimated using twin model fitting. Results. Social interaction problems (one of the ASD subdomains) was the strongest neurodevelopmental covariate of the behavioural problems in both genders, while ADHD-related hyperactivity/impulsiveness in boys and inattention in girls stood out as important covariates of CD-like problems. Genetic effects accounted for 50%-62% of the variance in behavioural problems, except in CD-like problems in girls (26%). Genetic and environmental effects linked to ADHD and ASD also influenced ODD-like problems in both genders and, to a lesser extent, CD-like problems in boys, but not in girls. Conclusions. The gender-specific patterns should be considered in the assessment and treatment, especially of CD.

  13. Predictors of Co-occurring Neurodevelopmental Disabilities in Children With Autism Spectrum Disorders.

    PubMed

    Zauche, Lauren Head; Darcy Mahoney, Ashley E; Higgins, Melinda K

    Co-occurring neurodevelopmental disabilities (including cognitive and language delays and attention deficit hyperactivity disorder) affect over half of children with ASD and may affect later behavioral, language, and cognitive outcomes beyond the ASD diagnosis. However, no studies have examined predictors of co-occurring neurodevelopmental disabilities in children with ASD. This study investigated whether maternal sociodemographic, perinatal and neonatal factors are associated with co-occurring disabilities. This study involved a retrospective analysis of medical records for children diagnosed with ASD between 2009 and 2010 at an Autism Center in the southeast United States. Logistic regression was used to identify predictors of co-occurring neurodevelopmental disabilities. Of the 385 children in the sample, 61% had a co-occurring neurodevelopmental disability. Children whose mothers had less education (OR: 0.905), had never been married (OR: 1.803), or had bleeding during pregnancy (OR: 2.233) were more likely to have a co-occurring neurodevelopmental disability. Both preterm birth and African American race were associated with bleeding during pregnancy. Several maternal and perinatal risk factors for ASD were found to put children at risk for further diagnoses of co-occurring neurodevelopmental disabilities. While prematurity, a well-established risk factor for ASD, as well as maternal ethnicity was not found to increase the risk of a co-occurring disability, this study suggests that bleeding during pregnancy may moderate these relationships. Understanding maternal, perinatal, and neonatal risk factors may inform healthcare provider screening for ASD and co-occurring neurodevelopmental disabilities by helping providers recognize infants who present with multiple risk factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mutations of CDKL5 Cause a Severe Neurodevelopmental Disorder with Infantile Spasms and Mental Retardation

    PubMed Central

    Weaving, Linda S.; Christodoulou, John; Williamson, Sarah L.; Friend, Kathie L.; McKenzie, Olivia L. D.; Archer, Hayley; Evans, Julie; Clarke, Angus; Pelka, Gregory J.; Tam, Patrick P. L.; Watson, Catherine; Lahooti, Hooshang; Ellaway, Carolyn J.; Bennetts, Bruce; Leonard, Helen; Gécz, Jozef

    2004-01-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder caused, in most classic cases, by mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2). A large degree of phenotypic variation has been observed in patients with RTT, both those with and without MECP2 mutations. We describe a family consisting of a proband with a phenotype that showed considerable overlap with that of RTT, her identical twin sister with autistic disorder and mild-to-moderate intellectual disability, and a brother with profound intellectual disability and seizures. No pathogenic MECP2 mutations were found in this family, and the Xq28 region that contains the MECP2 gene was not shared by the affected siblings. Three other candidate regions were identified by microsatellite mapping, including 10.3 Mb at Xp22.31-pter between Xpter and DXS1135, 19.7 Mb at Xp22.12-p22.11 between DXS1135 and DXS1214, and 16.4 Mb at Xq21.33 between DXS1196 and DXS1191. The ARX and CDKL5 genes, both of which are located within the Xp22 region, were sequenced in the affected family members, and a deletion of nucleotide 183 of the coding sequence (c.183delT) was identified in CDKL5 in the affected family members. In a screen of 44 RTT cases, a single splice-site mutation, IVS13-1G→A, was identified in a girl with a severe phenotype overlapping RTT. In the mouse brain, Cdkl5 expression overlaps—but is not identical to—that of Mecp2, and its expression is unaffected by the loss of Mecp2. These findings confirm CDKL5 as another locus associated with epilepsy and X-linked mental retardation. These results also suggest that mutations in CDKL5 can lead to a clinical phenotype that overlaps RTT. However, it remains to be determined whether CDKL5 mutations are more prevalent in specific clinical subgroups of RTT or in other clinical presentations. PMID:15492925

  15. Maltreatment-associated neurodevelopmental disorders: a co-twin control analysis.

    PubMed

    Dinkler, Lisa; Lundström, Sebastian; Gajwani, Ruchika; Lichtenstein, Paul; Gillberg, Christopher; Minnis, Helen

    2017-06-01

    Childhood maltreatment (CM) is strongly associated with psychiatric disorders in childhood and adulthood. Previous findings suggest that the association between CM and psychiatric disorders is partly causal and partly due to familial confounding, but few studies have investigated the mechanisms behind the association between CM and neurodevelopmental disorders (NDDs). Our objective was to determine whether maltreated children have an elevated number of NDDs and whether CM is a risk factor for an increased NDD 'load' and increased NDD symptoms when controlling for familial effects. We used a cross-sectional sample from a population-representative Swedish twin study, comprising 8,192 nine-year-old twins born in Sweden between 1997 and 2005. CM was defined as parent-reported exposure to emotional abuse/neglect, physical neglect, physical abuse, and/or sexual abuse. Four NDDs were measured with the Autism-Tics, AD/HD, and other comorbidities inventory. Maltreated children had a greater mean number of NDDs than nonmaltreated children. In a co-twin control design, CM-discordant monozygotic twins did not differ significantly for their number of NDDs, suggesting that CM is not associated with an increased load of NDDs when genetic and shared environmental factors are taken into account. However, CM was associated with a small increase in symptoms of attention-deficit/hyperactivity disorder and autism spectrum disorder in CM-discordant MZ twins, although most of the covariance of CM with NDD symptoms was explained by common genetic effects. Maltreated children are at higher risk of having multiple NDDs. Our findings are, however, not consistent with the notion that CM causes the increased NDD load in maltreated children. Maltreated children should receive a full neurodevelopmental assessment, and clinicians should be aware that children with multiple NDDs are at higher risk of maltreatment. © 2017 Association for Child and Adolescent Mental Health.

  16. Sleep, Plasticity and the Pathophysiology of Neurodevelopmental Disorders: The Potential Roles of Protein Synthesis and Other Cellular Processes

    PubMed Central

    Picchioni, Dante; Reith, R. Michelle; Nadel, Jeffrey L.; Smith, Carolyn B.

    2014-01-01

    Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders. PMID:24839550

  17. Offspring neuroimmune consequences of maternal malnutrition: Potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders.

    PubMed

    Smith, B L; Reyes, T M

    2017-10-01

    Maternal malnutrition significantly increases offspring risk for both metabolic and neurodevelopmental disorders. Animal models of maternal malnutrition have identified behavioral changes in the adult offspring related to executive function and reward processing. Together, these changes in executive and reward-based behaviors likely contribute to the etiology of both metabolic and neurodevelopmental disorders associated with maternal malnutrition. Concomitant with the behavioral effects, maternal malnutrition alters offspring expression of reward-related molecules and inflammatory signals in brain pathways that control executive function and reward. Neuroimmune pathways and microglial interactions in these specific brain circuits, either in early development or later in adulthood, could directly contribute to the maternal malnutrition-induced behavioral phenotypes. Understanding these mechanisms will help advance treatment strategies for metabolic and neurodevelopmental disorders, especially noninvasive dietary supplementation interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy.

    PubMed

    Raine, Adrian; Lee, Lydia; Yang, Yaling; Colletti, Patrick

    2010-09-01

    Antisocial personality disorder and psychopathy have been hypothesised to have a neurodevelopmental basis, but this proposition has not been formally tested. This study tests the hypothesis that individuals with cavum septum pellucidum (CSP), a marker of limbic neural maldevelopment, will show higher levels of psychopathy and antisocial personality. Cavum septum pellucidum was assessed using anatomical magnetic resonance imaging in a community sample. Those with CSP (n = 19) were compared with those lacking CSP (n = 68) on antisocial personality, psychopathy and criminal offending. Those with CSP had significantly higher levels of antisocial personality, psychopathy, arrests and convictions compared with controls. The pervasiveness of this association was indicated by the fact that those lacking a diagnosis of antisocial personality disorder, but who were charged or convicted for an offence, had a more extensive CSP than non-antisocial controls. Results could not be attributed to prior trauma exposure, head injury, demographic factors or comorbid psychiatric conditions. Our findings appear to be the first to provide evidence for a neurodevelopmental brain abnormality in those with antisocial personality disorder and psychopathy, and support the hypothesis that early maldevelopment of limbic and septal structures predisposes to the spectrum of antisocial behaviours.

  19. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders.

    PubMed

    Arnsten, Amy F T; Rubia, Katya

    2012-04-01

    This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Studies of animals, normally developing children, and patients with neurodevelopmental disorders were reviewed, with focus on neuroimaging studies. The PFC provides "top-down" regulation of attention, inhibition/cognitive control, motivation, and emotion through connections with posterior cortical and subcortical structures. Dorsolateral and inferior PFC regulate attention and cognitive/inhibitory control, whereas orbital and ventromedial structures regulate motivation and affect. PFC circuitries are very sensitive to their neurochemical environment, and small changes in the underlying neurotransmitter systems, e.g. by medications, can produce large effects on mediated function. Neuroimaging studies of children with neurodevelopmental disorders show altered brain structure and function in distinctive circuits respecting this organization. Children with attention-deficit/hyperactivity disorder show prominent abnormalities in the inferior PFC and its connections to striatal, cerebellar, and parietal regions, whereas children with conduct disorder show alterations in the paralimbic system, comprising ventromedial, lateral orbitofrontal, and superior temporal cortices together with specific underlying limbic regions, regulating motivation and emotion control. Children with major depressive disorder show alterations in ventral orbital and limbic activity, particularly in the left hemisphere, mediating emotions. Finally, children with obsessive-compulsive disorder appear to have a dysregulation in orbito-fronto-striatal inhibitory control pathways, but also deficits in dorsolateral fronto-parietal systems of attention. Altogether, there is a good correspondence

  20. Localisation of the gene for X-linked reticulate pigmentary disorder with systemic manifestations (PDR), previously known as X-linked cutaneous amyloidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gedeon, A.K.; Mulley, J.C.; Kozman, H.

    1994-08-01

    X-linked reticulate pigmentary disorder (PDR), previously reported as X-linked cutaneous amyloidosis (MIM No. 301220), is characterized by brown pigmentation of the skin which follows the lines of Blaschko in females but appears as reticulate sheets in males. Males may suffer severe gastrointestinal disorders in infancy with failure to thrive and early death. Nowadays symptomatic treatment allows survival and other manifestations may appear such as corneal dystrophy with severe photophobia or chronic respiratory disease. Amyloid deposition in the skin may be no more than an age-dependent secondary manifestation. The PDR gene was localized by linkage analysis to Xp21-p22. The background geneticmore » map is Xpter-DXS996-22.5-DXS207-3.3-DXS999-3.3-DXS365-14.2-DXS989-4.1-3`DMD-3.5-DXS997-1.0-STR44-9.3-DYSI-2.3-DXS1068-11.0-DXS228 with distances between markers given in cM. Recombinants detected with DXS999 distally and DXS228 proximally, define the limits to the localization. Linkage was found with several markers within this interval. Peak lod scores of 3.21 at {theta} = 0.0 were obtained between PDR and DXS989 and between PDR and 5`DYSI within the dystrophin locus. 29 refs., 2 figs., 2 tabs.« less

  1. Boys with Asperger Syndrome Grow Up: Psychiatric and Neurodevelopmental Disorders 20 Years after Initial Diagnosis

    ERIC Educational Resources Information Center

    Gillberg, I. Carina; Helles, Adam; Billstedt, Eva; Gillberg, Christopher

    2016-01-01

    We examined comorbid psychiatric and neurodevelopmental disorders in fifty adult males (mean age 30 years) with Asperger syndrome (AS) diagnosed in childhood and followed up prospectively for almost two decades (13-26 years). Only three of the 50 men had "never" met criteria for an additional psychiatric/neurodevelopmental diagnosis and…

  2. Novel Roles for Immune Molecules in Neural Development: Implications for Neurodevelopmental Disorders

    PubMed Central

    Garay, Paula A.; McAllister, A. Kimberley

    2010-01-01

    Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522

  3. A Novel Way to Measure and Predict Development: A Heuristic Approach to Facilitate the Early Detection of Neurodevelopmental Disorders.

    PubMed

    Marschik, Peter B; Pokorny, Florian B; Peharz, Robert; Zhang, Dajie; O'Muircheartaigh, Jonathan; Roeyers, Herbert; Bölte, Sven; Spittle, Alicia J; Urlesberger, Berndt; Schuller, Björn; Poustka, Luise; Ozonoff, Sally; Pernkopf, Franz; Pock, Thomas; Tammimies, Kristiina; Enzinger, Christian; Krieber, Magdalena; Tomantschger, Iris; Bartl-Pokorny, Katrin D; Sigafoos, Jeff; Roche, Laura; Esposito, Gianluca; Gugatschka, Markus; Nielsen-Saines, Karin; Einspieler, Christa; Kaufmann, Walter E

    2017-05-01

    Substantial research exists focusing on the various aspects and domains of early human development. However, there is a clear blind spot in early postnatal development when dealing with neurodevelopmental disorders, especially those that manifest themselves clinically only in late infancy or even in childhood. This early developmental period may represent an important timeframe to study these disorders but has historically received far less research attention. We believe that only a comprehensive interdisciplinary approach will enable us to detect and delineate specific parameters for specific neurodevelopmental disorders at a very early age to improve early detection/diagnosis, enable prospective studies and eventually facilitate randomised trials of early intervention. In this article, we propose a dynamic framework for characterising neurofunctional biomarkers associated with specific disorders in the development of infants and children. We have named this automated detection 'Fingerprint Model', suggesting one possible approach to accurately and early identify neurodevelopmental disorders.

  4. Genetics Home Reference: alpha thalassemia X-linked intellectual disability syndrome

    MedlinePlus

    ... thalassemia X-linked intellectual disability syndrome Alpha thalassemia X-linked intellectual disability syndrome Printable PDF Open All ... view the expand/collapse boxes. Description Alpha thalassemia X-linked intellectual disability syndrome is an inherited disorder ...

  5. Advanced paternal age effects in neurodevelopmental disorders-review of potential underlying mechanisms.

    PubMed

    Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C

    2017-01-31

    Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders.

  6. Examining and comparing social perception abilities across childhood-onset neurodevelopmental disorders.

    PubMed

    Baribeau, Danielle A; Doyle-Thomas, Krissy A R; Dupuis, Annie; Iaboni, Alana; Crosbie, Jennifer; McGinn, Holly; Arnold, Paul D; Brian, Jessica; Kushki, Azadeh; Nicolson, Rob; Schachar, Russell J; Soreni, Noam; Szatmari, Peter; Anagnostou, Evdokia

    2015-06-01

    Several neurodevelopmental disorders are associated with social processing deficits. The objective of this study was to compare patterns of social perception abilities across obsessive-compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and control participants. A total of 265 children completed the Reading the Mind in the Eyes Test-Child Version (RMET). Parents or caregivers completed established trait/symptom scales. The predicted percentage of accuracy on the RMET was compared across disorders and by item difficulty and item valence (i.e., positive/negative/neutral mental states), then analyzed for associations with trait/symptom scores. The percentage of correct RMET scores varied significantly between diagnostic groups (p < .0001). On pairwise group comparisons controlling for age and sex, children with ADHD and ASD scored lower than the other groups (p < .0001). When IQ was also controlled for in the model, participants with OCD performed better than controls (p < .001), although differences between other groups were less pronounced. Participants with ASD scored lowest on easy items. Those with ASD and ADHD scored significantly lower than other groups on items with positive valence (p < .01). Greater social communication impairment and hyperactivity/impulsivity, but not OCD traits/symptoms, were associated with lower scores on the RMET, irrespective of diagnosis. Social perception abilities in neurodevelopmental disorders exist along a continuum. Children with ASD have the greatest deficits, whereas children with OCD may be hypersensitive to social information. Social communication deficits and hyperactive/impulsive traits are associated with impaired social perception abilities; these findings highlight overlapping cognitive and behavioral manifestations across disorders. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Defining Early Markers of Neurodevelopmental Disorders in Infants With TSC

    DTIC Science & Technology

    2013-10-01

    in (1) children with autism and tuberous sclerosis complex and (2) children with temporal lobe tubers. This study is the first to quantify atypical...Furthermore, we hypothesize that it is the dynamic interplay between aberrant functional connectivity and physiological stressors, such as epilepsy ...neurodevelopmental disorders in children with TSC, particularly the interaction between clinical factors (such as epilepsy or tuber burden) and cognitive and

  8. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders

    PubMed Central

    Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Àlex

    2014-01-01

    Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications. PMID:24605182

  9. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders.

    PubMed

    Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Alex

    2014-01-01

    Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications.

  10. Neurobiological Circuits Regulating Attention, Cognitive Control, Motivation, and Emotion: Disruptions in Neurodevelopmental Psychiatric Disorders

    ERIC Educational Resources Information Center

    Arnsten, Amy F. T.; Rubia, Katya

    2012-01-01

    Objective: This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Method: Studies of animals,…

  11. Neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy

    PubMed Central

    Raine, Adrian; Lee, Lydia; Yang, Yaling; Colletti, Patrick

    2010-01-01

    Background Antisocial personality disorder and psychopathy have been hypothesised to have a neurodevelopmental basis, but this proposition has not been formally tested. Aims This study tests the hypothesis that individuals with cavum septum pellucidum (CSP), a marker of limbic neural maldevelopment, will show higher levels of psychopathy and antisocial personality. Method Cavum septum pellucidum was assessed using anatomical magnetic resonance imaging in a community sample. Those with CSP (n = 19) were compared with those lacking CSP (n = 68) on antisocial personality, psychopathy and criminal offending. Results Those with CSP had significantly higher levels of antisocial personality, psychopathy, arrests and convictions compared with controls. The pervasiveness of this association was indicated by the fact that those lacking a diagnosis of antisocial personality disorder, but who were charged or convicted for an offence, had a more extensive CSP than non-antisocial controls. Results could not be attributed to prior trauma exposure, head injury, demographic factors or comorbid psychiatric conditions. Conclusions Our findings appear to be the first to provide evidence for a neurodevelopmental brain abnormality in those with antisocial personality disorder and psychopathy, and support the hypothesis that early maldevelopment of limbic and septal structures predisposes to the spectrum of antisocial behaviours. PMID:20807962

  12. Cerebellum: links between development, developmental disorders and motor learning

    PubMed Central

    Manto, Mario U.; Jissendi, Patrice

    2012-01-01

    The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remodeling are being unraveled. Advances in genetics have led to major improvements in our appraisal of the genes involved in cerebellar development, especially studies in mutant mice. Cerebellar neurogenesis is compartmentalized in relationship with neurotransmitter fate. The Engrailed-2 gene is a major actor of the specification of cerebellar cell types and late embryogenic morphogenesis. Math1, expressed by the rhombic lip, is required for the genesis of glutamatergic neurons. Mutants deficient for the transcription factor Ptf1a display a lack of Purkinje cells and gabaergic interneurons. Rora gene contributes to the developmental signaling between granule cells and Purkinje neurons. The expression profile of sonic hedgehog in postnatal stages determines the final size/shape of the cerebellum. Genes affecting the development impact upon the physiological properties of the cerebellar circuits. For instance, receptors are developmentally regulated and their action interferes directly with developmental processes. Another field of research which is expanding relates to very preterm neonates. They are at risk for cerebellar lesions, which may themselves impair the developmental events. Very preterm neonates often show sensori-motor deficits, highlighting another major link between impaired developments and learning deficiencies. Pathways playing a critical role in cerebellar development are likely to become therapeutical targets for several neurodevelopmental disorders. PMID:22291620

  13. Mapping the x-linked lymphoproliferative syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skare, J.C.; Milunsky, A.; Byron, K.S.

    1987-04-01

    The X-linked lymphoproliferative syndrome is triggered by Epstein-Barr virus infection and results in fatal mononucleosis, immunodeficiency, and lymphoproliferative disorders. This study shows that the mutation responsible for X-linked lymphoproliferative syndrome is genetically linked to a restriction fragment length polymorphism detected with the DXS42 probe (from Xq24-q27). The most likely recombination frequency between the loci is 4%, and the associated logarithm of the odds is 5.26. Haplotype analysis using flanking restriction fragment length polymorphism markers indicates that the locus for X-linked lymphoproliferative syndrome is distal to probe DXS42 but proximal to probe DXS99 (from Xq26-q27). It is now possible to predictmore » which members of a family with X-linked lymphoproliferative syndrome are carrier females and to diagnose the syndrome prenatally.« less

  14. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia

    PubMed Central

    Piton, A; Gauthier, J; Hamdan, FF; Lafrenière, RG; Yang, Y; Henrion, E; Laurent, S; Noreau, A; Thibodeau, P; Karemera, L; Spiegelman, D; Kuku, F; Duguay, J; Destroismaisons, L; Jolivet, P; Côté, M; Lachapelle, K; Diallo, O; Raymond, A; Marineau, C; Champagne, N; Xiong, L; Gaspar, C; Rivière, J-B; Tarabeux, J; Cossette, P; Krebs, M-O; Rapoport, JL; Addington, A; DeLisi, LE; Mottron, L; Joober, R; Fombonne, E; Drapeau, P; Rouleau, GA

    2012-01-01

    Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n = 142; 122 males and 20 females) or SCZ (n = 143; 95 males and 48 females). We identified > 200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1). PMID:20479760

  15. Molecular mechanisms underlying neurodevelopmental disorders, ADHD and autism.

    PubMed

    Bădescu, George Mihai; Fîlfan, Mădălina; Sandu, Raluca Elena; Surugiu, Roxana; Ciobanu, Ovidiu; Popa-Wagner, Aurel

    2016-01-01

    Neurodevelopmental disorders such as attention deficit hyperactivity disorder and autism represent a significant economic burden, which justify vigorous research to uncover its genetics and developmental clinics for a diagnostic workup. The urgency of addressing attention deficit hyperactivity disorder comorbidities is seen in the chilling fact that attention deficit hyperactivity disorder (ADHD), mood disorders, substance use disorders and obesity each increase the risk for mortality. However, data about comorbidity is mainly descriptive, with mechanistic studies limited to genetic epidemiological studies that document shared genetic risk factors among these conditions. Autism and intellectual disability affects 1.5 to 2% of the population in Western countries with many individuals displaying social-emotional agnosia and having difficulty in forming attachments and relationships. Underlying mechanisms include: (i) dysfunctions of neuronal miRNAs; (ii) deletions in the chromosome 21, subtelomeric deletions, duplications and a maternally inherited duplication of the chromosomal region 15q11-q13; (iii) microdeletions in on the long (q) arm of the chromosome in a region designated q21.1 increases the risk of delayed development, intellectual disability, physical abnormalities, and neurological and psychiatric problems associated with autism, schizophrenia, and epilepsy and weak muscle tone (hypotonia); (iv) interstitial duplications encompassing 16p13.11.

  16. Attention deficit hyperactivity disorder, combined type, dysthymic disorder and anxiety disorders: differential patterns of neurodevelopmental deficits.

    PubMed

    Vance, Alasdair; Arduca, Yolanda; Sanders, Michelle; Karamitsios, Mary; Hall, Nicole; Hetrick, Sarah

    2006-08-30

    The associations between neurodevelopmental deficits (NDD) and (1) attention deficit hyperactivity disorder, combined type (ADHD-CT) and (2) internalising disorders have been replicated. To date, the specific association between standardized NDD and carefully defined ADHD-CT alone, dysthymic disorder alone and anxiety disorders alone has not been systematically investigated in children of primary school age. A cross-sectional study of NDD in 99 six- to 12-year-old children with categorically and dimensionally defined ADHD-CT alone, dysthymic disorder alone and anxiety disorders alone and 20 age-matched healthy children was undertaken. The ADHD-CT and dysthymic disorder groups had increased total neurological subtle signs, compared to the anxiety disorders group, which, in turn, had increased total neurological subtle signs compared with the healthy children. Interestingly, the dysthymic disorder children had increased conjugate eye gaze difficulties compared with the other three groups. The differences remained after controlling for full scale IQ. These findings suggest a neurobiological underpinning of dysthymic disorder, while confirming that of ADHD-CT in primary school age children. Future studies will explore whether the above more specific neurological subtle signs are developmental phase specific or independent associations.

  17. Dermatoglyphics--a possible biomarker in the neurodevelopmental model for the origin of mental disorders.

    PubMed

    Ahmed-Popova, Ferihan M; Mantarkov, Mladen J; Sivkov, Stefan T; Akabaliev, Valentin H

    2014-01-01

    Dermatoglyphic pattern formation and differentiation are complex processes which have been in the focus of research interest ever since dermatoglyphics became a science. The patterns' early differentiation and genetic uniqueness as well as the relatively simple methods used to obtain and store fingerprints make it possible to study the relationship between certain dermatoglyphic characteristics and the underlying pathological processes in a number of diseases, including mental disorders. The present review reports published data from fundamental and clinical studies on dermatoglyphics primarily in schizophrenia and bipolar disorder to lend additional support for the neurodevelopmental hypothesis in the etiology of these disorders. Following an analysis of the theories of dermatoglyphics formation and the complex association between ridge patterns and central nervous system in early embryogenesis, an attempt is made to present dermatoglyphics as possible biological markers of impaired neurodevelopment. The contradictory data in the literature on dermatoglyphics in mental disorders suggest the need for further studies on these biological markers in order to identify their place in the neurodevelopmental etiological model of these diseases.

  18. Neurodevelopmental disorders among individuals with duplication of 4p13 to 4p12 containing a GABAA receptor subunit gene cluster

    PubMed Central

    Polan, Michelle B; Pastore, Matthew T; Steingass, Katherine; Hashimoto, Sayaka; Thrush, Devon L; Pyatt, Robert; Reshmi, Shalini; Gastier-Foster, Julie M; Astbury, Caroline; McBride, Kim L

    2014-01-01

    Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders. PMID:23695283

  19. Adaptation of the "Ten Questions" to Screen for Autism and other Neurodevelopmental Disorders in Uganda

    ERIC Educational Resources Information Center

    Kakooza-Mwesige, Angelina; Ssebyala, Keron; Karamagi, Charles; Kiguli, Sarah; Smith, Karen; Anderson, Meredith C.; Croen, Lisa A.; Trevathan, Edwin; Hansen, Robin; Smith, Daniel; Grether, Judith K.

    2014-01-01

    Neurodevelopmental disorders are recognized to be relatively common in developing countries but little data exist for planning effective prevention and intervention strategies. In particular, data on autism spectrum disorders are lacking. For application in Uganda, we developed a 23-question screener (23Q) that includes the Ten Questions screener…

  20. Alexithymia, depression and anxiety in parents of children with neurodevelopmental disorder: Comparative study of autistic disorder, pervasive developmental disorder not otherwise specified and attention deficit-hyperactivity disorder.

    PubMed

    Durukan, İbrahim; Kara, Koray; Almbaideen, Mahmoud; Karaman, Dursun; Gül, Hesna

    2018-03-01

    Recent studies have shown that individuals with neurodevelopmental disorders and their relatives have problems expressing and recognizing emotions, but there is a lack of studies on alexithymia, and the relationship between parental alexithymia and depression-anxiety symptoms in these groups. The aim of this study was therefore to measure alexithymia, depression, and anxiety levels in parents of children with pervasive developmental disorders and attention deficit-hyperactivity disorder (ADHD), and determine whether there is a positive correlation between the child's neurodevelopmental problem severity and parent scores. Parents of 29 autistic disorder (AD), 28 pervasive developmental disorder not otherwise specified (PDD-NOS) and 29 ADHD children were recruited into the study, and completed a demographic information form, as well as the Toronto Alexithymia Scale (TAS-20), Beck Depression Inventory, and State-Trait Anxiety Inventory. Alexithymia symptoms were higher in parents of children with AD than in others but unexpectedly, also these symptoms were higher in ADHD parents than in PDD-NOS groups. In addition, there were unexpected differences according to alexithymia subtype, while only the difference in maternal TAS-1 scores (difficulty in describing feelings) were statistically significant. Parental depression and state anxiety scores were increased as the child's symptom severity increased, but trait anxiety symptoms were higher in the AD and ADHD group than in the PDD-NOS group. In all groups, maternal depression and anxiety scores were higher than paternal scores, and differences were significant for depression and anxiety types in AD, and for only anxiety types in ADHD parents. The AD group had the strongest correlation between parental depression-anxiety and alexithymia. The possibility of alexithymia, depression and anxiety should be kept in mind when working with parents of children with neurodevelopmental disorders. © 2017 Japan Pediatric Society.

  1. A novel mutation in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene associated with a severe Rett phenotype.

    PubMed

    Sprovieri, T; Conforti, F L; Fiumara, A; Mazzei, R; Ungaro, C; Citrigno, L; Muglia, M; Arena, A; Quattrone, A

    2009-02-15

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have recently been reported in patients with severe neurodevelopmental disorder characterized by early-onset seizures, infantile spasms, severe psychomotor impairment and very recently, in patients with Rett syndrome (RTT)-like phenotype. Although the involvement of CDKL5 in specific biological pathways and its neurodevelopmental role have not been completely elucidated, the CDKL5 appears to be physiologically related to the MECP2 gene. Here we report on the clinical and CDKL5 molecular investigation in a very unusual RTT case, with severe, early-neurological involvement in which we have shown in a previous report, a novel P388S MECP2 mutation [Conforti et al. (2003); Am J Med Genet A 117A: 184-187]. The patient has had severe psychomotor delay since the first month of life and infantile spasms since age 5 months. Moreover, at age 5 years the patient suddenly presented with renal failure. The severe pattern of symptoms in our patient, similar to a CDKL5 phenotype, prompted us to perform an analysis of the CDKL5, which revealed a novel missense mutation never previously described. The X-inactivation assay was non-informative. In conclusion, this report reinforces the observation that the CDKL5 phenotype overlaps with RTT and that CDKL5 analysis is recommended in patients with a seizure disorder commencing during the first months of life.

  2. Cross Talk: The Microbiota and Neurodevelopmental Disorders

    PubMed Central

    Kelly, John R.; Minuto, Chiara; Cryan, John F.; Clarke, Gerard; Dinan, Timothy G.

    2017-01-01

    Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance. PMID:28966571

  3. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    PubMed

    Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko

    2016-01-01

    Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  4. Imaging genetics in attention-deficit/hyperactivity disorder and related neurodevelopmental domains: state of the art.

    PubMed

    Vilor-Tejedor, Natàlia; Cáceres, Alejandro; Pujol, Jesús; Sunyer, Jordi; González, Juan R

    2017-12-01

    Joint analysis of genetic and neuroimaging data, known as Imaging Genetics (IG), offers an opportunity to deepen our knowledge of the biological mechanisms of neurodevelopmental domains. There has been exponential growth in the literature on IG studies, which challenges the standardization of analysis methods in this field. In this review we give a complete up-to-date account of IG studies on attention deficit hyperactivity disorder (ADHD) and related neurodevelopmental domains, which serves as a reference catalog for researchers working on this neurological disorder. We searched MEDLINE/Pubmed and identified 37 articles on IG of ADHD that met our eligibility criteria. We carefully cataloged these articles according to imaging technique, genes and brain region, and summarized the main results and characteristics of each study. We found that IG studies on ADHD generally focus on dopaminergic genes and the structure of basal ganglia using structural Magnetic Resonance Imaging (MRI). We found little research involving multiple genetic factors and brain regions because of the scarce use of multivariate strategies in data analysis. IG of ADHD and related neurodevelopmental domains is still in its early stages, and a lack of replicated findings is one of the most pressing challenges in the field.

  5. Parenting stress among parents of children with Neurodevelopmental Disorders.

    PubMed

    Craig, Francesco; Operto, Francesca Felicia; De Giacomo, Andrea; Margari, Lucia; Frolli, Alessandro; Conson, Massimiliano; Ivagnes, Sara; Monaco, Marianna; Margari, Francesco

    2016-08-30

    In recent years, studies have shown that parents of children with Neurodevelopmental Disorders (NDDs) experience more parenting stress than parents of typically developing children, but the relation between the type of disorders and parenting stress is far from clear. The purpose of this study was to compare the parenting stress experienced by parents of 239 children with Specific Learning Disorders (SpLD), Language Disorders (LD), Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and typical development (TD). Parents of children with NDDs experience more parenting stress than those of children who have TD. Although, parents of children with ASD or ADHD report the most high scores of parenting stress, also the parents of children with SpLD or LD report higher parental stress compared with parent of children without NDDs. Another interesting finding was that IQ level or emotional and behavioral problems are associated with the higher levels of parenting stress. This study suggest that parent, both mothers and fathers, of children with different type of NDDs should be provided with interventions and resources to empower them with the knowledge and skills to reduce their stress and to enhance their quality of life. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Postnatal testosterone may be an important mediator of the association between prematurity and male neurodevelopmental disorders: a hypothesis.

    PubMed

    Rice, Timothy R

    2017-04-01

    Children born premature are at risk for neurodevelopmental disorders, including autism and schizophrenia. This piece advances the hypothesis that altered androgen exposure observed in premature infants is an important mediator of the neurodevelopmental risk in males associated with prematurity. Specifically, the alterations of normative physiologic postnatal activations of the hypothalamic-pituitary-gonadal axis that occur in preterm males are hypothesized to contribute to the risk of neuropsychiatric pathology of prematurity through altered androgen-mediated organizational effects on the developing brain. The physiology of testosterone and male central nervous system development in full-term births is reviewed and compared to the developmental processes of prematurity. The effects of the altered testosterone physiology observed within prematurity outside of the central nervous system are reviewed as a segue into a discussion of the effects within the nervous system, with a special focus on autism spectrum disorders and attention deficit hyperactivity disorder. The explanatory power of this model is reviewed as a supplement to the preexisting models of prematurity and neurodevelopmental risk, including infection and other perinatal central nervous system insults. The emphasis is placed on altered androgen exposure as serving as just one among many mediators of neurodevelopmental risk that may be of interest for further research and evidence-based investigation. Implications for diagnosis, management and preventative treatments conclude the piece.

  7. Vitamin D deficiency: infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia).

    PubMed

    Berridge, Michael J

    2018-02-01

    The process of development depends on a number of signaling systems that regulates the progressive sequence of developmental events. Infertility and neurodevelopmental diseases, such as attention deficit hyperactivity disorder, autism spectrum disorders, and schizophrenia, are caused by specific alterations in these signaling processes. Calcium signaling plays a prominent role throughout development beginning at fertilization and continuing through early development, implantation, and organ differentiation such as heart and brain development. Vitamin D plays a major role in regulating these signaling processes that control development. There is an increase in infertility and an onset of neurodevelopmental diseases when vitamin D is deficient. The way in which vitamin D deficiency acts to alter development is a major feature of this review. One of the primary functions of vitamin D is to maintain the phenotypic stability of both the Ca 2+ and redox signaling pathways that play such a key role throughout development.

  8. Renal involvement in the immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) disorder.

    PubMed

    Sheikine, Yuri; Woda, Craig B; Lee, Pui Y; Chatila, Talal A; Keles, Sevgi; Charbonnier, Louis-Marie; Schmidt, Birgitta; Rosen, Seymour; Rodig, Nancy M

    2015-07-01

    Immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) disorder is an autoimmune disease caused by loss-of-function mutations in the gene encoding the forkhead box P3 (FOXP3) transcription factor. These mutations affect the normal function of circulating regulatory T cells. IPEX is characterized by profound immune dysregulation leading to dermatitis, enteropathy, multiple endocrinopathies and failure to thrive. Different forms of renal injury have also been noted in these patients but these have been described to a very limited extent. Three patients with IPEX with characteristic renal findings and mutations in FOXP3, including one novel mutation, are described. Case presentations are followed by a review of the renal manifestations noted in IPEX and the range of therapeutic options for this disorder. We recommend that IPEX be considered in the differential diagnosis of young children who present with signs of immune dysregulation with a concomitant renal biopsy demonstrating immune complex deposition in a membranous-like pattern and/or interstitial nephritis.

  9. X-linked hypophosphataemia: a homologous disorder in humans and mice.

    PubMed

    Tenenhouse, H S

    1999-02-01

    X-linked hypophosphatemia is an inherited disorder of phosphate (Pi) homeostasis characterized by growth retardation, rickets and osteomalacia, hypophosphataemia, and aberrant renal Pi reabsorption and vitamin D metabolism. Studies in murine Hyp and Gy homologues have identified a specific defect in Na+-Pi cotransport at the brush border membrane, abnormal regulation of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) synthesis and degradation, and an intrinsic defect in bone mineralization. The mutant gene has been identified in XLH patients, by positional cloning, and in Hyp and Gy mice, and was designated PHEX/Phex to signify a PHosphate-regulating gene with homology to Endopeptidases on the X chromosome. PHEX/Phex is expressed in bones and teeth but not in kidney and efforts are under way to elucidate how loss of PHEX/Phex function elicits the mutant phenotype. Based on its homology to endopeptidases, it is postulated that PHEX/Phex is involved in the activation or inactivation of a peptide hormone(s) which plays a key role in the regulation of bone mineralization, renal Pi handling and vitamin D metabolism.

  10. A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3.

    PubMed

    Chao, Hsiao-Tuan; Davids, Mariska; Burke, Elizabeth; Pappas, John G; Rosenfeld, Jill A; McCarty, Alexandra J; Davis, Taylor; Wolfe, Lynne; Toro, Camilo; Tifft, Cynthia; Xia, Fan; Stong, Nicholas; Johnson, Travis K; Warr, Coral G; Yamamoto, Shinya; Adams, David R; Markello, Thomas C; Gahl, William A; Bellen, Hugo J; Wangler, Michael F; Malicdan, May Christine V

    2017-01-05

    Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Intellectual Profiles in the Autism Spectrum and Other Neurodevelopmental Disorders.

    PubMed

    Mouga, Susana; Café, Cátia; Almeida, Joana; Marques, Carla; Duque, Frederico; Oliveira, Guiomar

    2016-09-01

    The influence of specific autism spectrum disorder (ASD) deficits in Intelligence Quotients (IQ), Indexes and subtests from the Wechsler Intelligence Scale for Children-III was investigated in 445 school-aged children: ASD (N = 224) and other neurodevelopmental disorders (N = 221), matched by Full-Scale IQ and chronological age. ASD have lower scores in the VIQ than PIQ. The core distinctive scores between groups are Processing Speed Index and "Comprehension" and "Coding" subtests with lower results in ASD. ASD group with normal/high IQ showed highest score on "Similarities" subtest whereas the lower IQ group performed better on "Object Assembly". The results replicated our previous work on adaptive behaviour, showing that adaptive functioning is positively correlated with intellectual profile, especially with the Communication domain in ASD.

  12. [Gastrointestinal disorders in children with cerebral palsy and neurodevelopmental disabilities].

    PubMed

    González Jiménez, D; Díaz Martin, J J; Bousoño García, C; Jiménez Treviño, S

    2010-12-01

    Recent data suggest that, contrary to initial expectations with improvements in perinatal medicine, the prevalence of cerebral palsy has not decreased over the last 20 years. Gastrointestinal disorders are a major chronic problem in most of children with cerebral palsy and in children with neurodevelopmental disabilities. A multidisciplinary approach, with input from neurologists, gastroenterologists, nurses, dieticians and other specialists, can make a major contribution to the medical wellbeing and quality of life of these children and their caregivers. This article focuses on diagnostic methods and therapeutic options available for major nutritional and gastrointestinal problems in patients with neurological disabilities: gastroesophageal reflux, constipation and swallowing disorders. Copyright © 2009 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Associations of caesarean delivery and the occurrence of neurodevelopmental disorders, asthma or obesity in childhood based on Taiwan birth cohort study

    PubMed Central

    Chen, Ginden; Chiang, Wan-Lin; Shu, Bih-Ching; Guo, Yue Leon; Chiou, Shu-Ti; Chiang, Tung-liang

    2017-01-01

    Objectives Whether birth by caesarean section (CS) increases the occurrence of neurodevelopmental disorders, asthma or obesity in childhood is controversial. We tried to demonstrate the association between children born by CS and the occurrence of the above three diseases at the age of 5.5 years. Methods The database of the Taiwan Birth Cohort Study which was designed to assess the developmental trajectories of 24 200 children born in 2005 was used in this study. Associations between children born by CS and these three diseases were evaluated before and after controlling for gestational age (GA) at birth, children’s characteristics and disease-related predisposing factors. Results Children born by CS had significant increases in neurodevelopmental disorders (20%), asthma (14%) and obesity (18%) compared with children born by vaginal delivery. The association between neurodevelopmental disorders and CS was attenuated after controlling for GA at birth (OR 1.15; 95% CI 0.98 to 1.34). Occurrence of neurodevelopmental disorders steadily declined with increasing GA up to ≤40–42 weeks. CS and childhood asthma were not significantly associated after controlling for parental history of asthma and GA at birth. Obesity in childhood remained significantly associated with CS (OR 1.13; 95% CI 1.04 to 1.24) after controlling for GA and disease-related factors. Conclusions Our results implied that the association between CS birth and children’s neurodevelopmental disorders was significantly influenced by GA. CS birth was weakly associated with childhood asthma since parental asthma and preterm births are stronger predisposing factors. The association between CS birth and childhood obesity was robust after controlling for disease-related factors. PMID:28963295

  14. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  15. The Neurodevelopmental Basis of Early Childhood Disruptive Behavior: Irritable and Callous Phenotypes as Exemplars.

    PubMed

    Wakschlag, Lauren S; Perlman, Susan B; Blair, R James; Leibenluft, Ellen; Briggs-Gowan, Margaret J; Pine, Daniel S

    2018-02-01

    The arrival of the Journal's 175th anniversary occurs at a time of recent advances in research, providing an ideal opportunity to present a neurodevelopmental roadmap for understanding, preventing, and treating psychiatric disorders. Such a roadmap is particularly relevant for early-childhood-onset neurodevelopmental conditions, which emerge when experience-dependent neuroplasticity is at its peak. Employing a novel developmental specification approach, this review places recent neurodevelopmental research on early childhood disruptive behavior within the historical context of the Journal. The authors highlight irritability and callous behavior as two core exemplars of early disruptive behavior. Both phenotypes can be reliably differentiated from normative variation as early as the first years of life. Both link to discrete pathophysiology: irritability with disruptions in prefrontal regulation of emotion, and callous behavior with abnormal fear processing. Each phenotype also possesses clinical and predictive utility. Based on a nomologic net of evidence, the authors conclude that early disruptive behavior is neurodevelopmental in nature and should be reclassified as an early-childhood-onset neurodevelopmental condition in DSM-5. Rapid translation from neurodevelopmental discovery to clinical application has transformative potential for psychiatric approaches of the millennium. [AJP at 175: Remembering Our Past As We Envision Our Future November 1938: Electroencephalographic Analyses of Behavior Problem Children Herbert Jasper and colleagues found that brain abnormalities revealed by EEG are a potential causal factor in childhood behavioral disorders. (Am J Psychiatry 1938; 95:641-658 )].

  16. Early executive function deficit in preterm children and its association with neurodevelopmental disorders in childhood: a literature review.

    PubMed

    Sun, Jing; Buys, Nicholas

    2012-01-01

    The purpose of this study is to examine the association of deficits of executive function (EF) and neurodevelopmental disorders in preterm children and the potential of assessing EF in infants as means of early identification. EF refers to a collection of related but somewhat discrete abilities, the main ones being working memory, inhibition, and planning. There is a general consensus that EF governs goal-directed behavior that requires holding those plans or programs on-line until executed, inhibiting irrelevant action and planning a sequence of actions. EF plays an essential role in cognitive development and is vital to individual social and intellectual success. Most researchers believe in the coordination and integrate cognitive-perceptual processes in relation to time and space, thus regulating higher-order cognitive processes, such as problem solving, reasoning, logical and flexible thinking, and decision-making. The importance of the maturation of the frontal lobe, particularly the prefrontal cortex, to the development of EF in childhood has been emphasized. Therefore, any abnormal development in the prefrontal lobes of infants and children could be expected to result in significant deficits in cognitive functioning. As this is a late-maturing part of the brain, various neurodevelopmental disorders, such as autism spectrum disorders, attention deficit hyperactivity disorder, language disorders, and schizophrenia, as well as acquired disorders of the right brain (and traumatic brain injury) impair EF, and the prefrontal cortex may be particularly susceptible to delayed development in these populations. The deficits of EF in infants are persistent into childhood and related to neurodevelopmental disorders in childhood and adolescence.

  17. Can ω-3 fatty acids and tocotrienol-rich vitamin E reduce symptoms of neurodevelopmental disorders?

    PubMed

    Gumpricht, Eric; Rockway, Susie

    2014-01-01

    The incidence of childhood neurodevelopmental disorders, which include autism, attention-deficit hyperactivity disorders, and apraxia, are increasing worldwide and have a profound effect on the behaviors, cognitive skills, mood, and self-esteem of these children. Although the etiologies of these disorders are unclear, they often accompany genetic and biochemical abnormalities resulting in cognitive and communication difficulties. Because cognitive and neural development require essential fatty acids (particularly long-chain ω-3 fatty acids often lacking in mother's and children's diets) during critical growth periods, the potential behavior-modifying effects of these fatty acids as "brain nutrients" has attracted considerable attention. Additionally, there is compelling evidence for increased oxidative stress, altered antioxidant defenses, and neuroinflammation in these children. The purpose of this review is to provide a scientific rationale based on cellular, experimental animal model, observational, and clinical intervention studies for incorporating the combination of ω-3 fatty acids and tocotrienol-rich vitamin E as complementary nutritional therapies in children with neurodevelopmental disorders. Should this nutritional combination correct key clinical or biochemical outcomes and/or improve behavioral patterns, it would provide a safe, complementary option for these children. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Associations of caesarean delivery and the occurrence of neurodevelopmental disorders, asthma or obesity in childhood based on Taiwan birth cohort study.

    PubMed

    Chen, Ginden; Chiang, Wan-Lin; Shu, Bih-Ching; Guo, Yue Leon; Chiou, Shu-Ti; Chiang, Tung-Liang

    2017-09-27

    Whether birth by caesarean section (CS) increases the occurrence of neurodevelopmental disorders, asthma or obesity in childhood is controversial. We tried to demonstrate the association between children born by CS and the occurrence of the above three diseases at the age of 5.5 years. The database of the Taiwan Birth Cohort Study which was designed to assess the developmental trajectories of 24 200 children born in 2005 was used in this study. Associations between children born by CS and these three diseases were evaluated before and after controlling for gestational age (GA) at birth, children's characteristics and disease-related predisposing factors. Children born by CS had significant increases in neurodevelopmental disorders (20%), asthma (14%) and obesity (18%) compared with children born by vaginal delivery. The association between neurodevelopmental disorders and CS was attenuated after controlling for GA at birth (OR 1.15; 95% CI 0.98 to 1.34). Occurrence of neurodevelopmental disorders steadily declined with increasing GA up to ≤40-42 weeks. CS and childhood asthma were not significantly associated after controlling for parental history of asthma and GA at birth. Obesity in childhood remained significantly associated with CS (OR 1.13; 95% CI 1.04 to 1.24) after controlling for GA and disease-related factors. Our results implied that the association between CS birth and children's neurodevelopmental disorders was significantly influenced by GA. CS birth was weakly associated with childhood asthma since parental asthma and preterm births are stronger predisposing factors. The association between CS birth and childhood obesity was robust after controlling for disease-related factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Does environmental exposure to the greenhouse gas, N2O, contribute to etiological factors in neurodevelopmental disorders? A mini-review of the evidence.

    PubMed

    Fluegge, Keith

    2016-10-01

    Neurodevelopmental disorders are increasing in prevalence worldwide. Previous work suggests that exposure to the environmental air pollutant and greenhouse gas - nitrous oxide (N 2 O) - may be an etiological factor in neurodevelopmental disorders through the targeting of several neural correlates. While a number of recent systematic reviews have addressed the role of general anesthesia in the surgical setting and neurodevelopmental outcomes, a narrative mini-review was conducted to first define and characterize the relevant variables (i.e., N 2 O, attention-deficit hyperactivity disorder [ADHD] and autism spectrum disorders [ASD]) and their potential interactions into a coherent, hypothesis-generating work. The narrative mini-review merges basic principles in environmental science, anesthesiology, and psychiatry to more fully develop the novel hypotheses that neurodevelopmental impairment found in conditions like ADHD and ASD may be due to exposure to the increasing air pollutant, N 2 O. The results of the present mini-review indicate that exposure to N 2 O, even at non-toxic doses, may modulate central neurotransmission and target many neural substrates directly implicated in neurodevelopmental disorders, including the glutamatergic, opioidergic, cholinergic, and dopaminergic systems. Epidemiological studies also indicate that early and repeated exposure to general anesthesia, including N 2 O, may contribute to later adverse neurodevelopmental outcomes in children. The current evidence and subsequent hypotheses suggest that a renewed interest be taken in the toxicological assessment of environmental N 2 O exposure using validated biomarkers and psychiatric endpoints. Given the relevance of N 2 O as a greenhouse gas, societies may also wish to engage in a more robust monitoring and reporting of N 2 O levels in the environment for climactic benefit as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia.

    PubMed

    Baum, Michel; Syal, Ashu; Quigley, Raymond; Seikaly, Mouin

    2006-08-01

    X-linked hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. PHEX stands for phosphate-regulating gene with endopeptidase activity, which is located on the X chromosome. Patients with X-linked hypophosphatemia have hypophosphatemia due to renal phosphate wasting and low or inappropriately normal levels of 1,25-dihydroxyvitamin D. The renal phosphate wasting is not intrinsic to the kidney but likely due to an increase in serum levels of fibroblast growth factor-23 (FGF-23), and perhaps other phosphate-wasting peptides previously known as phosphatonins. Patients with X-linked hypophosphatemia have short stature, rickets, bone pain and dental abscesses. Current therapy is oral phosphate and vitamin D which effectively treats the rickets and bone pain but does not adequately improve short stature. In this review, we describe recent observations using Hyp mice; mice with the same mutation as patients with X-linked hypophosphatemia. We have recently found that Hyp mice have abnormal renal prostaglandin production, which may be an important factor in the pathogenesis of this disorder. Administration of FGF-23 in vivo results in phosphaturia and an increase in prostaglandin excretion, and FGF-23 increases proximal tubule prostaglandin production in vitro. In Hyp mice, indomethacin improves the phosphate transport defect in vitro and in vivo. Whether indomethacin has the same effect in patients with X-linked hypophosphatemia is unknown.

  1. Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder

    PubMed Central

    Trent, Simon; Dean, Rachel; Veit, Bonnie; Cassano, Tommaso; Bedse, Gaurav; Ojarikre, Obah A.; Humby, Trevor; Davies, William

    2013-01-01

    Summary Chromosomal deletions at Xp22.3 appear to influence vulnerability to the neurodevelopmental disorders attention deficit hyperactivity disorder (ADHD) and autism. 39,XY*O mice, which lack the murine orthologue of the Xp22.3 ADHD candidate gene STS (encoding steroid sulfatase), exhibit behavioural phenotypes relevant to such disorders (e.g. hyperactivity), elevated hippocampal serotonin (5-HT) levels, and reduced serum levels of dehydroepiandrosterone (DHEA). Here we initially show that 39,XY*O mice are also deficient for the recently-characterised murine orthologue of the Xp22.3 autism candidate gene ASMT (encoding acetylserotonin-O-methyltransferase). Subsequently, to specify potential behavioural correlates of elevated hippocampal 5-HT arising due to the genetic lesion, we compared 39,XY*O MF1 mice to 40,XY MF1 mice on behavioural tasks taxing hippocampal and/or 5-HT function (a ‘foraging’ task, an object-location task, and the 1-choice serial reaction time task of impulsivity). Although Sts/Asmt deficiency did not influence foraging behaviour, reactivity to familiar objects in novel locations, or ‘ability to wait’, it did result in markedly increased response rates; these rates correlated with hippocampal 5-HT levels and are likely to index behavioural perseveration, a frequent feature of neurodevelopmental disorders. Additionally, we show that whilst there was no systematic relationship between serum DHEA levels and hippocampal 5-HT levels across 39,XY*O and 40,XY mice, there was a significant inverse linear correlation between serum DHEA levels and activity. Our data suggest that deficiency for genes within Xp22.3 could influence core behavioural features of neurodevelopmental disorders via dissociable effects on hippocampal neurochemistry and steroid hormone levels, and that the mediating neurobiological mechanisms may be investigated in the 39,XY*O model. PMID:23276394

  2. Neurodevelopmental Disorders in Children with Severe to Profound Sensorineural Hearing Loss: A Clinical Study

    ERIC Educational Resources Information Center

    Chilosi, Anna M.; Comparini, Alessandro; Scusa, Maria F.; Berrettini, Stefano; Forli, Francesca; Battini, Roberta; Cipriani, Paola; Cioni, Giovanni

    2010-01-01

    Aim: The effects of sensorineural hearing loss (SNHL) are often complicated by additional disabilities, but the epidemiology of associated disorders is not clearly defined. The aim of this study was to evaluate the frequency and type of additional neurodevelopmental disabilities in a sample of children with SNHL and to investigate the relation…

  3. Autism Spectrum Disorder as Early Neurodevelopmental Disorder: Evidence from the Brain Imaging Abnormalities in 2-3 Years Old Toddlers

    ERIC Educational Resources Information Center

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships…

  4. Long-term neurodevelopmental benefits of breastfeeding.

    PubMed

    Bar, Sari; Milanaik, Ruth; Adesman, Andrew

    2016-08-01

    The American Academy of Pediatrics recommends exclusive breastfeeding for the first 6 months of an infant#$#apos;s life, with continuation of breastfeeding for at least a year or as mutually desired by mother and child. A robust body of research literature documenting the short-term medical, developmental, and emotional benefits of breastfeeding for infants and toddlers supports this position. This article reviews the neurodevelopmental benefits of breastfeeding as it relates to preschool and school-age children, with particular emphasis on cognitive development, attention-deficit/hyperactivity disorder, and autism spectrum disorder. The majority of research studies examining breastfeeding and long-term neurodevelopmental outcomes suggest that children who breastfeed for longer than 6 months have better cognitive outcomes, lower risk of developing attention-deficit/hyperactivity disorder, and lower risk of being diagnosed with autism spectrum disorder. Pediatricians play a critical role in educating and counseling families about infant nutrition and feeding. Along with the many positive short-term medical effects that breastfeeding confers, physicians should be aware of the growing body of research suggesting that there are also significant long-term neurodevelopmental benefits of breastfeeding.

  5. Assessing the Influence of Researcher-Partner Involvement on the Process and Outcomes of Participatory Research in Autism Spectrum Disorder and Neurodevelopmental Disorders: A Scoping Review

    ERIC Educational Resources Information Center

    Jivraj, Jamil; Sacrey, Lori-Ann; Newton, Amanda; Nicholas, David; Zwaigenbaum, Lonnie

    2014-01-01

    Participatory research aims to increase the relevance and broaden the implementation of health research by involving those affected by the outcomes of health studies. Few studies within the field of neurodevelopmental disorders, particularly autism spectrum disorders, have involved autistic individuals as partners. This study sought to identify…

  6. Heterogeneity of executive functions among comorbid neurodevelopmental disorders

    PubMed Central

    Dajani, Dina R.; Llabre, Maria M.; Nebel, Mary Beth; Mostofsky, Stewart H.; Uddin, Lucina Q.

    2016-01-01

    Executive functions (EFs) are used to set goals, plan for the future, inhibit maladaptive responses, and change behavior flexibly. Although some studies point to specific EF profiles in autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) — prevalent and often highly comorbid neurodevelopmental disorders — others have not differentiated them. The objective of the current study was to identify distinct profiles of EF across typically developing (TD) children and children with ASD and ADHD. We employed a latent profile analysis using indicators of EF (e.g., working memory, inhibition, and flexibility) in a mixed group of 8–13 year-olds including TD children (n = 128), children with ASD without ADHD (n = 30), children with ADHD (n = 93), and children with comorbid ASD and ADHD (n = 66). Three EF classes emerged: “above average,” “average,” and “impaired.” EF classes did not reproduce diagnostic categories, suggesting that differences in EF abilities are present within the ASD and ADHD groups. Further, greater EF dysfunction predicted more severe socioemotional problems, such as anxiety/depression. These results highlight the heterogeneity of current diagnostic groups and identify an “impaired” EF group, consisting of children with both ASD and ADHD, which could specifically be targeted for EF intervention. PMID:27827406

  7. Fmr-1 as an offspring genetic and a maternal environmental factor in neurodevelopmental disease.

    PubMed

    Zupan, Bojana; Toth, Miklos

    2012-01-01

    Since fragile X syndrome (FXS) is a typical X-linked mendelian disorder, the protein product associated with the disease (FMRP) is absent or reduced not only in the affected individuals but, in case of full mutation, also in their mothers. Here, by using the mouse model of the disease, we provide evidence that hyperactivity, a typical symptom of FXS, is not wholly induced by the lack of Fmrp in mice but also occurs as a result of its reduced expression in their mother. Genetically wild-type offspring of mutant mothers also had hyperactivity, albeit less pronounced than the mutant offspring. However, other features of FXS reproduced in the mouse model, such as sensory hyperreactivity and seizure susceptibility, were exclusively associated with the absence of Fmrp in the offspring. These data indicate that fmr-1, the gene encoding Fmrp, can be both an offspring genetic and a maternal environmental factor in producing a neurodevelopmental condition.

  8. Effect of fetal exposure to bisphenol A on brain mediated by X-chromosome inactivation.

    PubMed

    Kumamoto, Takayuki; Oshio, Shigeru

    2013-01-01

    Recent studies have reported that bisphenol A (BPA) influences brain development in fetal exposure to mice. The X-chromosome codes many neurodevelopment-related genes leading to abnormal development, such as mental retardation and intellectual deficiency. For females, most of expressions of X-linked genes are regulated by X-chromosome inactivation (XCI), which occurs during fetal period, and this mechanism is regulated by Xist and its antisense, Tsix. To clarify the possibility of X-mediated effect as a mechanism of neurodevelopmental disorders by BPA, pregnant ICR mice were orally administered 0.02 or 50 mg/kg of BPA on gestational days 6 and 15. Postnatally at days 2, 4 and weeks 3 and 7, mRNA expression of XCI-regulating factors (Xist and Tsix), X-linked neurodevelopment-related genes (Fmr1, Gdi1, Nlgn3, Pak3 and Ophn1), and sexual differentiation-related genes (ERα, ERβ and AR) were examined in cerebrums of female pups. Anogenital distance (AGD) and serum estradiol were also examined. In the 50 mg/kg exposed-group, reduced Xist, Fmr1, Gdi1, Nlgn3, and Pak3 and increased Tsix were observed simultaneously. Moderately reduced Xist, Gdi1, Nlgn3 and Pak3 were observed at 0.02 mg/kg BPA. ERα, ERβ and AR expression changes, shortened AGDs and reduced estradiol levels were observed in each exposure group. Fetal exposure to BPA changed expression of XCI-regulating factors and may alter the expression levels of X-linked neurodevelopment-related genes disrupting the XCI mechanism and function. This X-mediated effect is considered one of the mechanisms of various BPA-induced neurodevelopmental disorders.

  9. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders.

    PubMed

    Allen, J L; Oberdorster, G; Morris-Schaffer, K; Wong, C; Klocke, C; Sobolewski, M; Conrad, K; Mayer-Proschel, M; Cory-Slechta, D A

    2017-03-01

    Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Developmental Neurotoxicity of Inhaled Ambient Ultrafine Particle Air Pollution: Parallels with Neuropathological and Behavioral Features of Autism and Other Neurodevelopmental Disorders

    PubMed Central

    Allen, J. L.; Oberdorster, G.; Morris-Schafer, K.; Wong, C.; Klocke, C.; Sobolewski, M.; Conrad, K.; Mayer-Proschel, M.; Cory-Slechta, D. A.

    2016-01-01

    Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia. PMID:26721665

  11. Age level vs grade level for the diagnosis of ADHD and neurodevelopmental disorders.

    PubMed

    Bonati, Maurizio; Cartabia, Massimo; Zanetti, Michele; Reale, Laura; Didoni, Anna; Costantino, Maria Antonella

    2018-06-06

    A number of worldwide studies have demonstrated that children born later in the school year are more likely to receive an ADHD diagnosis than their same school-year peers. There is, however, variation in findings between countries. We aimed to confirm whether relative age is associated with ADHD diagnosis, with or without comorbidities, and to investigate whether relative age is associated with ADHD type and severity, and if this age relationship is in common with other neurodevelopmental disorder. We used the Lombardy Region's ADHD registry. Data on children aged 6 years and older from September 1, 2011 to December 31, 2017 were considered. We calculated incidence ratios to assess the inter-relations between relative age within the school year, using age at diagnosis of ADHD or of other psychiatric disorder, year of diagnosis, and total number of children born in Lombardy during the corresponding timeframe. Data on ADHD type, severity of diagnosed disorder clinical global impressions-severity scale, and repetition of a school-grade were also considered. 4081 children, 2856 of whom with ADHD, were identified. We confirmed that the cumulative incidence of ADHD diagnosis was greatest for younger children, in particular for boys, for whom the prevalence is greater. The relative age effect was not accounted for by ADHD comorbid disorders, ADHD of combined type or severity. The relative age effect was also observed for children with other neurodevelopmental disorders (without ADHD), with a similar profile as ADHD children: the incidence ratio was 1.78 (95% CI 1.07-2.97; p < 0.0247) for boys diagnosed before age ten. The findings have a potential implication for diagnostic and therapeutic practice, educational advice, and policies, besides to better plan and organize service systems and appropriately inform parents, children, and citizens.

  12. Different neurodevelopmental symptoms have a common genetic etiology.

    PubMed

    Pettersson, Erik; Anckarsäter, Henrik; Gillberg, Christopher; Lichtenstein, Paul

    2013-12-01

    Although neurodevelopmental disorders are demarcated as discrete entities in the Diagnostic Statistical Manual of mental disorders, empirical evidence indicates that there is a high degree of overlap among them. The first aim of this investigation was to explore if a single general factor could account for the large degree of observed overlap among neurodevelopmental problems, and explore whether this potential factor was primarily genetic or environmental in origin. The second aim was to explore whether there was systematic covariation, either genetic or environmental, over and above that contributed by the potential general factor, unique to each syndrome. Parents of all Swedish 9- and 12-year-old twin pairs born between 1992 and 2002 were targeted for interview regarding problems typical of autism spectrum disorders, ADHD and other neurodevelopmental conditions (response rate: 80 percent). Structural equation modeling was conducted on 6,595 pairs to examine the genetic and environmental structure of 53 neurodevelopmental problems. One general genetic factor accounted for a large proportion of the phenotypic covariation among the 53 symptoms. Three specific genetic subfactors identified 'impulsivity,' 'learning problems,' and 'tics and autism,' respectively. Three unique environment factors identified 'autism,' 'hyperactivity and impulsivity,' and 'inattention and learning problems,' respectively. One general genetic factor was responsible for the wide-spread phenotypic overlap among all neurodevelopmental symptoms, highlighting the importance of addressing broad patient needs rather than specific diagnoses. The unique genetic factors may help guide diagnostic nomenclature, whereas the unique environmental factors may highlight that neurodevelopmental symptoms are responsive to change at the individual level and may provide clues into different mechanisms and treatments. Future research would benefit from assessing the general factor separately from specific

  13. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    PubMed Central

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2009-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687

  14. Attention deficit hyperactivity disorder and disordered eating behaviors: links, risks, and challenges faced.

    PubMed

    Ptacek, Radek; Stefano, George B; Weissenberger, Simon; Akotia, Devang; Raboch, Jiri; Papezova, Hana; Domkarova, Lucie; Stepankova, Tereza; Goetz, Michal

    2016-01-01

    Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that often persists in adulthood. It is defined by inattention and/or hyperactivity-impulsivity. ADHD is associated with many comorbidities, including eating disorders (EDs). In the last decade, studies have reported that ADHD is linked with binge EDs, bulimia nervosa, and anorexia nervosa. Many postulates have been proposed to explain the association: 1) impulsive behavior in ADHD patients leads to disordered eating behavior; 2) other psychologic comorbidities present in ADHD patients account for eating behavior; 3) poor eating habits and resulting nutritional deficiencies contribute to ADHD symptoms; and 4) other risk factors common to both ADHD and EDs contribute to the coincidence of both diseases. Additionally, sex differences become a significant issue in the discussion of EDs and ADHD because of the higher incidence of bulimia nervosa and anorexia nervosa in females and the ability of females to mask the symptoms of ADHD. Interestingly, both EDs and ADHD rely on a common neural substrate, namely, dopaminergic signaling. Dopaminergic signaling is critical for motor activity and emotion, the latter enabling the former into a combined motivated movement like eating. This linkage aids in explaining the many comorbidities associated with ADHD. The interconnection of ADHD and EDs is discussed from both a historical perspective and the one based on the revealing nature of its comorbidities.

  15. Primary Health Care as a guide for assistance to infants at risk of neurodevelopmental disorders.

    PubMed

    Molini-Avejonas, Daniela Regina; Rondon-Melo, Silmara; Batista, Estela Ramos; Souza, Amanda Calsolari de; Dias, Daniela Cardilli; Samelli, Alessandra Gianella

    2018-01-01

    Purpose Characterize infants at risk of neurodevelopmental disorders according to sociodemographic and health profiles and describe their monitoring in Basic Health Units (UBS) under different management models. Methods Data were collected from medical records of infants at risk of neurodevelopmental disorders in the west region of the city of Sao Paulo from August 2013 to February 2014 (phase 1 - characterization; phase 2 - monitoring). Results Of the 225 individuals assessed in the first phase of the study, 51.1% were female and 7.11% were twins. Adolescent (45.2%), brown (50.56%), single (46.09%), complete primary education (47.60%) mothers were predominant. The mean number of prenatal visits was 7.12. Most mothers had vaginal delivery (62.22%) at mean gestational age of 37.05 weeks. Mean Apgar scores at the 1st and 5th minutes were 7.13 and 8.80, respectively. Mean weight at birth was 2597.21g., with 50.22% of newborns weighting ≤2500g. In its second phase, the study describes and compares the follow-up of 55 infants according to the UBS management model: 28 in UBS/"Estratégia Saúde da Família" (UBS/ESF) and 27 in traditional UBS (UBS/T). UBS/ESF presented higher mean of consultations (p=0.006). Longer interval between consultations was observed at UBS/T. No records of development milestones were found in 56% of the sample. Growth measures were better registered at UBS/ESF. In both management models, the number of consultations was smaller and the interval between them was shorter than those recommended by the Brazilian Ministry of Health. Conclusion According to the recommended guidelines of the "Rede Cegonha" public policy, gaps in the monitoring of infants at risk of neurodevelopmental disorders are still observed.

  16. Neurodevelopmental Reflex Testing in Neonatal Rat Pups.

    PubMed

    Nguyen, Antoinette T; Armstrong, Edward A; Yager, Jerome Y

    2017-04-24

    Neurodevelopmental reflex testing is commonly used in clinical practice to assess the maturation of the nervous system. Neurodevelopmental reflexes are also referred to as primitive reflexes. They are sensitive and consistent with later outcomes. Abnormal reflexes are described as an absence, persistence, reappearance, or latency of reflexes, which are predictive indices of infants that are at high risk for neurodevelopmental disorders. Animal models of neurodevelopmental disabilities, such as cerebral palsy, often display aberrant developmental reflexes, as would be observed in human infants. The techniques described assess a variety of neurodevelopmental reflexes in neonatal rats. Neurodevelopmental reflex testing offers the investigator a testing method that is not otherwise available in such young animals. The methodology presented here aims to assist investigators in examining developmental milestones in neonatal rats as a method of detecting early-onset brain injury and/or determining the effectiveness of therapeutic interventions. The methodology presented here aims to provide a general guideline for investigators.

  17. Neurodevelopmental attributes of joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type: Update and perspectives.

    PubMed

    Ghibellini, Giulia; Brancati, Francesco; Castori, Marco

    2015-03-01

    In the last decade, increasing attention has been devoted to the extra-articular and extra-cutaneous manifestations of joint hypermobility syndrome, also termed Ehlers-Danlos syndrome, hypermobility type (i.e., JHS/EDS-HT). Despite the fact that the current diagnostic criteria for both disorders remain focused on joint hypermobility, musculoskeletal pain and skin changes, medical practice and research have started investigating a wide spectrum of visceral, neurological and developmental complications, which represent major burdens for affected individuals. In particular, children with generalized joint hypermobility often present with various neurodevelopmental issues and can be referred for neurological consultation. It is common that investigations in these patients yield negative or inconsistent results, eventually leading to the exclusion of any structural neurological or muscle disorder. In the context of specialized clinics for connective tissue disorders, a clear relationship between generalized joint hypermobility and a characteristic neurodevelopmental profile affecting coordination is emerging. The clinical features of these patients tend to overlap with those of developmental coordination disorder and can be associated with learning and other disabilities. Physical and psychological consequences of these additional difficulties add to the chief manifestations of the pre-existing connective tissue disorder, affecting the well-being and development of children and their families. In this review, particular attention is devoted to the nature of the link between joint hypermobility, coordination difficulties and neurodevelopmental issues in children. Presumed pathogenesis and management issues are explored in order to attract more attention on this association and nurture future clinical research. © 2015 Wiley Periodicals, Inc.

  18. Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies

    PubMed Central

    Trucks, Holger; Schulz, Herbert; de Kovel, Carolien G.; Kasteleijn-Nolst Trenité, Dorothée; Sonsma, Anja C. M.; Koeleman, Bobby P.; Lindhout, Dick; Weber, Yvonne G.; Lerche, Holger; Kapser, Claudia; Schankin, Christoph J.; Kunz, Wolfram S.; Surges, Rainer; Elger, Christian E.; Gaus, Verena; Schmitz, Bettina; Helbig, Ingo; Muhle, Hiltrud; Stephani, Ulrich; Klein, Karl M.; Rosenow, Felix; Neubauer, Bernd A.; Reinthaler, Eva M.; Zimprich, Fritz; Feucht, Martha; Møller, Rikke S.; Hjalgrim, Helle; De Jonghe, Peter; Suls, Arvid; Lieb, Wolfgang; Franke, Andre; Strauch, Konstantin; Gieger, Christian; Schurmann, Claudia; Schminke, Ulf; Nürnberg, Peter; Sander, Thomas

    2015-01-01

    Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes. PMID:25950944

  19. Contemporary Medical and Surgical Management of X-linked Hypophosphatemic Rickets.

    PubMed

    Sharkey, Melinda S; Grunseich, Karl; Carpenter, Thomas O

    2015-07-01

    X-linked hypophosphatemia is an inheritable disorder of renal phosphate wasting that clinically manifests with rachitic bone pathology. X-linked hypophosphatemia is frequently misdiagnosed and mismanaged. Optimized medical therapy is the cornerstone of treatment. Even with ideal medical management, progressive bony deformity may develop in some children and adults. Medical treatment is paramount to the success of orthopaedic surgical procedures in both children and adults with X-linked hypophosphatemia. Successful correction of complex, multiapical bone deformities found in patients with X-linked hypophosphatemia is possible with careful surgical planning and exacting surgical technique. Multiple methods of deformity correction are used, including acute and gradual correction. Treatment of some pediatric bony deformity with guided growth techniques may be possible. Copyright 2015 by the American Academy of Orthopaedic Surgeons.

  20. Comparison of Grammar in Neurodevelopmental Disorders: The Case of Binding in Williams Syndrome and Autism with and without Language Impairment

    ERIC Educational Resources Information Center

    Perovic, Alexandra; Modyanova, Nadya; Wexler, Ken

    2013-01-01

    This study investigates whether distinct neurodevelopmental disorders show distinct patterns of impairments in particular grammatical abilities and the relation of those grammatical patterns to general language delays and intellectual disabilities. We studied two disorders (autism and Williams syndrome [WS]) and two distinct properties (Principle…

  1. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes

    PubMed Central

    Loe, Irene M.

    2015-01-01

    Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and th neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism. PMID:25585889

  2. Analysis of X chromosome inactivation in autism spectrum disorders

    PubMed Central

    Gong, Xiaohong; Bacchelli, Elena; Blasi, Francesca; Toma, Claudio; Betancur, Catalina; Chaste, Pauline; Delorme, Richard; Durand, Christelle; Fauchereau, Fabien; Botros, Hany Goubran; Leboyer, Marion; Mouren-Simeoni, Marie-Christine; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Gillberg, I Carina; Gillberg, Christopher; Moreno-De-Luca, Daniel; Carone, Simona; Nummela, Ilona; Rossi, Mari; Battaglia, Agatino; Jarvela, Irma; Maestrini, Elena; Bourgeron, Thomas

    2008-01-01

    Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in the susceptibility to ASD by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes. PMID:18361425

  3. Analysis of X chromosome inactivation in autism spectrum disorders.

    PubMed

    Gong, Xiaohong; Bacchelli, Elena; Blasi, Francesca; Toma, Claudio; Betancur, Catalina; Chaste, Pauline; Delorme, Richard; Durand, Christelle M; Fauchereau, Fabien; Botros, Hany Goubran; Leboyer, Marion; Mouren-Simeoni, Marie-Christine; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Gillberg, I Carina; Gillberg, Christopher; Moreno-De-Luca, Daniel; Carone, Simona; Nummela, Ilona; Rossi, Mari; Battaglia, Agatino; Jarvela, Irma; Maestrini, Elena; Bourgeron, Thomas

    2008-09-05

    Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (> or = 80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes. 2008 Wiley-Liss, Inc.

  4. Temporal changes in the incidence of treated psychiatric and neurodevelopmental disorders during adolescence: an analysis of two national Finnish birth cohorts.

    PubMed

    Gyllenberg, David; Marttila, Mikko; Sund, Reijo; Jokiranta-Olkoniemi, Elina; Sourander, André; Gissler, Mika; Ristikari, Tiina

    2018-03-01

    Comprehensive overviews of the temporal changes in treated psychiatric and neurodevelopmental disorders during adolescence are scarce. We reviewed data from two national cohorts, 10 years apart, to establish the change in use of specialised services for psychiatric and neurodevelopmental diagnoses in Finland. We compared the nationwide register-based incidence of psychiatric and neurodevelopmental diagnoses between the 12th birthday and 18th birthday of adolescents born in Finland in 1987 and 1997. Adolescents who emigrated or died before their 12th birthday and those with missing covariate data were excluded, as were those who, when aged 11 years, had lived in a municipality belonging to a hospital district with obviously incomplete data reports during any follow-up years in our study. Our primary outcomes were time to incident specialised service use for any psychiatric or neurodevelopmental disorder and for 17 specific diagnostic classes. We also investigated whether adolescents who died by suicide had accessed specialised services before their deaths. The cumulative incidence of psychiatric or neurodevelopmental disorders increased from 9·8 in the 1987 cohort to 14·9 in the 1997 cohort (difference 5·2 percentage points [95% CI 4·8-5·5]) among girls, and from 6·2 in the 1987 cohort to 8·8 in the 1997 (2·6 percentage points [2·4-2·9]) among boys. The hazard ratio for the overall relative increase in neurodevelopment and psychiatric disorders in the 1997 cohort compared with the 1987 cohort was 1·6 (95% CI 1·5-1·8) among girls and 1·5 (1·4-1·6) among boys. Of the studied diagnostic classes, we noted significant (ie, p<0·001) relative increases for ten of 17 diagnoses among girls and 11 among boys. Of the adolescents who died by suicide before age 18, only five of 16 in the 1987 cohort and two of 12 in the 1997 cohort had used specialised services in the 6 months before their death. The large absolute rise in service use for psychiatric or

  5. Social cognition and neural substrates of face perception: implications for neurodevelopmental and neuropsychiatric disorders.

    PubMed

    Lazar, Steven M; Evans, David W; Myers, Scott M; Moreno-De Luca, Andres; Moore, Gregory J

    2014-04-15

    Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes.

    PubMed

    Wusthoff, Courtney J; Loe, Irene M

    2015-02-01

    Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and the neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Needs of Adolescents and Young Adults with Neurodevelopmental Disorders: Comparisons of Young People and Parent Perspectives

    ERIC Educational Resources Information Center

    Eklund, Hanna; Findon, James; Cadman, Tim; Hayward, Hannah; Murphy, Declan; Asherson, Philip; Glaser, Karen; Xenitidis, Kiriakos

    2018-01-01

    This study used the Camberwell Assessment of Need for adults with Developmental and Intellectual Disabilities (CANDID) to examine the social, physical health and mental health needs of 168 young people (aged 14-24 years) with neurodevelopmental disorders and compared young person and parent ratings of need. Agreement was poor in 21 out of 25…

  8. β-Propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation.

    PubMed

    Hayflick, Susan J; Kruer, Michael C; Gregory, Allison; Haack, Tobias B; Kurian, Manju A; Houlden, Henry H; Anderson, James; Boddaert, Nathalie; Sanford, Lynn; Harik, Sami I; Dandu, Vasuki H; Nardocci, Nardo; Zorzi, Giovanna; Dunaway, Todd; Tarnopolsky, Mark; Skinner, Steven; Holden, Kenton R; Frucht, Steven; Hanspal, Era; Schrander-Stumpel, Connie; Mignot, Cyril; Héron, Delphine; Saunders, Dawn E; Kaminska, Margaret; Lin, Jean-Pierre; Lascelles, Karine; Cuno, Stephan M; Meyer, Esther; Garavaglia, Barbara; Bhatia, Kailash; de Silva, Rajith; Crisp, Sarah; Lunt, Peter; Carey, Martyn; Hardy, John; Meitinger, Thomas; Prokisch, Holger; Hogarth, Penelope

    2013-06-01

    Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a 'halo' of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features.

  9. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice

    PubMed Central

    Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne

    2015-01-01

    An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857

  10. Transcription map of Xq27: candidates for several X-linked diseases.

    PubMed

    Zucchi, I; Jones, J; Affer, M; Montagna, C; Redolfi, E; Susani, L; Vezzoni, P; Parvari, R; Schlessinger, D; Whyte, M P; Mumm, S

    1999-04-15

    Human Xq27 contains candidate regions for several disorders, yet is predicted to be a gene-poor cytogenetic band. We have developed a transcription map for the entire cytogenetic band to facilitate the identification of the relatively small number of expected candidate genes. Two approaches were taken to identify genes: (1) a group of 64 unique STSs that were generated during the physical mapping of the region were used in RT-PCR with RNA from human adult and fetal brain and (2) ESTs that have been broadly mapped to this region of the chromosome were finely mapped using a high-resolution yeast artificial chromosome contig. This combined approach identified four distinct regions of transcriptional activity within the Xq27 band. Among them is a region at the centromeric boundary that contains candidate regions for several rare developmental disorders (X-linked recessive hypoparathyroidism, thoracoabdominal syndrome, albinism-deafness syndrome, and Borjeson-Forssman-Lehman syndrome). Two transcriptionally active regions were identified in the center of Xq27 and include candidate regions for X-linked mental retardation syndrome 6, X-linked progressive cone dystrophy, X-linked retinitis pigmentosa 24, and a prostate cancer susceptibility locus. The fourth region of transcriptional activity encompasses the FMR1 (FRAXA) and FMR2 (FRAXE) genes. The analysis thus suggests clustered transcription in Xq27 and provides candidates for several heritable disorders for which the causative genes have not yet been found. Copyright 1999 Academic Press.

  11. A Population-based Longitudinal Study of Childhood Neurodevelopmental Disorders, IQ and Subsequent Risk of Psychotic Experiences in Adolescence

    PubMed Central

    Khandaker, Golam M.; Stochl, Jan; Zammit, Stanley; Lewis, Glyn; Jones, Peter B

    2014-01-01

    Background Schizophrenia has a neurodevelopmental component to its origin, and may share overlapping pathogenic mechanisms with childhood neurodevelopmental disorders (ND). Yet longitudinal studies of psychotic outcomes among individuals with ND are limited. We report a population-based prospective study of six common childhood ND, subsequent neurocognitive performance and the risk of psychotic experiences (PEs) in early adolescence. Methods PEs were assessed by semi-structured interviews at age 13 years. IQ and working memory were measured between ages 9 and 11 years. The presence of six neurodevelopmental disorders (autism spectrum, dyslexia, dyspraxia, dysgraphia, dysorthographia, dyscalculia) was determined from parent-completed questionnaire at age 9 years. Linear regression calculated mean difference in cognitive scores between those with and without ND. The association between ND and PEs was expressed as odds ratio (OR); effects of cognitive deficits were examined. Potential confounders included age, gender, father’s social class, ethnicity and maternal education. Results Out of 8,220 children, 487 (5.9%) were reported to have ND at age 9 years. Children with, compared with those without ND performed worse on all cognitive measures; adjusted mean difference in total IQ 6.84 (95% CI 5.00- 8.69). The association between total IQ and ND was linear (p<0.0001). The risk of PEs was higher in those with, compared with those without ND; adjusted OR for definite PEs 1.76 (95% CI 1.11- 2.79). IQ (but not working memory) deficit partly explained this association. Conclusion Higher risk of PEs in early adolescence among individuals with childhood ND is consistent with the neurodevelopmental hypothesis of schizophrenia. PMID:25066026

  12. Nonconvulsive status epilepticus and neurodevelopmental delay.

    PubMed

    Dirik, Eray; Yiş, Uluç; Hüdaoglu, Orkide; Kurul, Semra

    2006-09-01

    Nonconvulsive status epilepticus is characterized by continuous or near continuous epileptiform discharges on electroencephalography without overt motor or sensory phenomena. It is a symptomatic condition related to a disease such as epileptic encephalopathy or a metabolic disorder. Children with isolated nonconvulsive status epilepticus rarely present with global neurodevelopmental delay. This report describes an 18-month-old male who presented with global neurodevelopmental delay and decreased alertness in whom electrical status epilepticus during sleep, which is a form of nonconvulsive status epilepticus, was determined. Metabolic investigations and cranial magnetic resonance imaging were normal. He began to achieve developmental milestones after treatment with valproic acid. Although rare, pediatric neurologists and pediatricians must be aware of this condition in making the differential diagnosis of global neurodevelopmental delay and decreased alertness.

  13. No evidence for involvement of genetic variants in the X-linked neuroligin genes NLGN3 and NLGN4X in probands with autism spectrum disorder on high functioning level.

    PubMed

    Wermter, Anne-Kathrin; Kamp-Becker, Inge; Strauch, Konstantin; Schulte-Körne, Gerd; Remschmidt, Helmut

    2008-06-05

    Several lines of evidence indicate a role of mutations in the two X-linked genes neuroligin 3 (NLGN3) and neuroligin 4 (NLGN4X) in the etiology of autistic spectrum disorders. To analyze whether genetic variants in the NLGN3 and NLGN4X genes occurs in patients with autistic disorders on high functioning level, we performed a mutation screen of both genes using SSCP in 107 probands with Asperger syndrome, high-functioning autism and atypical autism. We identified four polymorphisms (rs2290488, rs7049300, rs3747333, rs3747334) and one novel synonymous variant (A558) in the NLGN4X. The polymorphisms rs7049300, rs3747333, and rs3747334 did not cause any amino acid substitutions in the total of the eight detected carriers. A family-based association study for rs2290488 in 101 trios did not reveal association of this polymorphism with autistic disorders on high functioning level. We conclude that there is no evidence for an involvement of NLGN3 and NLGN4X genetic variants with autism spectrum disorder on high functioning level in our study group. (c) 2008 Wiley-Liss, Inc.

  14. Editorial: X-chromosome-linked Kallmann's syndrome: Pathology at the molecular level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prager, D.; Braunstein, G.D.

    Kallmann's syndrome or olfactogenital dysplasia refers to a disorder characterized by hypogonadotropic hypogonadism and anosmia or hyposmia which can occur sporadically or in a familial setting. Originally described in 1856, the first familial cases were reported by Kallmann et al., in 1944. Based on segregation analysis of multiple families, three modes of transmission have been documented: X-linked, autosomal dominant with variable penetrance, and autosomal recessive. Kallmann's syndrome occurs in less than 1 in 10,000 male births, with a 5-fold excess of affected males to females, suggesting that the X-linked form is the most frequent. By genetic linkage analysis the X-linkedmore » form of Kallmann's syndrome was localized to Xp22.3. This was confirmed by the description of patients with contiguous gene syndromes due to deletions of various portions of the distal short arm of the X-chromosome. Such patients present with complex phenotypes characterized by a combination of Kallmann's syndrome with X-linked icthyosis due to steroid sulfatase deficiency, chondrodysplasia punctata, short stature, and mental retardation. DNA analysis has identified and mapped the genes responsible for these disorders. 10 refs., 1 fig., 1 tab.« less

  15. High burden of genetic conditions diagnosed in a cardiac neurodevelopmental clinic.

    PubMed

    Goldenberg, Paula C; Adler, Betsy J; Parrott, Ashley; Anixt, Julia; Mason, Karen; Phillips, Jannel; Cooper, David S; Ware, Stephanie M; Marino, Bradley S

    2017-04-01

    There is a known high prevalence of genetic and clinical syndrome diagnoses in the paediatric cardiac population. These disorders often have multisystem effects, which may have an important impact on neurodevelopmental outcomes. Taken together, these facts suggest that patients and families may benefit from consultation by genetic specialists in a cardiac neurodevelopmental clinic. This study assessed the burden of genetic disorders and utility of genetics evaluation in a cardiac neurodevelopmental clinic. A retrospective chart review was conducted of patients evaluated in a cardiac neurodevelopmental clinic from 6 December, 2011 to 16 April, 2013. All patients were seen by a cardiovascular geneticist with genetic counselling support. A total of 214 patients were included in this study; 64 of these patients had a pre-existing genetic or syndromic diagnosis. Following genetics evaluation, an additional 19 were given a new clinical or laboratory-confirmed genetic diagnosis including environmental such as teratogenic exposures, malformation associations, chromosomal disorders, and single-gene disorders. Genetic testing was recommended for 112 patients; radiological imaging to screen for congenital anomalies for 17 patients; subspecialist medical referrals for 73 patients; and non-genetic clinical laboratory testing for 14 patients. Syndrome-specific guidelines were available and followed for 25 patients with known diagnosis. American Academy of Pediatrics Red Book asplenia guideline recommendations were given for five heterotaxy patients, and family-based cardiac screening was recommended for 23 families affected by left ventricular outflow tract obstruction. Genetics involvement in a cardiac neurodevelopmental clinic is helpful in identifying new unifying diagnoses and providing syndrome-specific care, which may impact the patient's overall health status and neurodevelopmental outcome.

  16. Child functional characteristics explain child and family outcomes better than diagnosis: Population-based study of children with autism or other neurodevelopmental disorders/disabilities.

    PubMed

    Miller, Anton; Shen, Jane; Mâsse, Louise C

    2016-06-15

    Allocation of resources for services and supports for children with neurodevelopmental disorders/disabilities (NDD/D) is often based on the presence of specific health conditions. This study investigated the relative roles of a child's diagnosed health condition and neurodevelopmental and related functional characteristics in explaining child and family health and well-being. The data on children with NDD/D (ages 5 to 14; weighted n = 120,700) are from the 2006 Participation and Activity Limitation Survey (PALS), a population-based Canadian survey of parents of children with functional limitations/disabilities. Direct and indirect effects of child diagnosis status-autism spectrum disorder (ASD)/not ASD-and functional characteristics (particularly, ASD-related impairments in speech, cognition, and emotion and behaviour) on child participation and family health and well-being were investigated in a series of structural equation models, while controlling for covariates. All models adequately fitted the data. Child ASD diagnosis was significantly associated with child participation and family health and well-being. When ASD-related child functional characteristics were added to the model, all direct effects from child diagnosis on child and family outcomes disappeared; the effect of child diagnosis on child and family outcomes was fully mediated via ASD-related child functional characteristics. Children's neurodevelopmental functional characteristics are integral to understanding the child and family health-related impact of neurodevelopmental disorders such as ASD. These findings have implications for the relative weighting given to functional versus diagnosis-specific factors in considering needs for services and supports.

  17. Identification of Four Novel Synonymous Substitutions in the X-Linked Genes Neuroligin 3 and Neuroligin 4X in Japanese Patients with Autistic Spectrum Disorder.

    PubMed

    Yanagi, Kumiko; Kaname, Tadashi; Wakui, Keiko; Hashimoto, Ohiko; Fukushima, Yoshimitsu; Naritomi, Kenji

    2012-01-01

    Mutations in the X-linked genes neuroligin 3 (NLGN3) and neuroligin 4X (NLGN4X) were first implicated in the pathogenesis of X-linked autism in Swedish families. However, reports of mutations in these genes in autism spectrum disorder (ASD) patients from various ethnic backgrounds present conflicting results regarding the etiology of ASD, possibly because of genetic heterogeneity and/or differences in their ethnic background. Additional mutation screening study on another ethnic background could help to clarify the relevance of the genes to ASD. We scanned the entire coding regions of NLGN3 and NLGN4X in 62 Japanese patients with ASD by polymerase chain reaction-high-resolution melting curve and direct sequencing analyses. Four synonymous substitutions, one in NLGN3 and three in NLGN4X, were identified in four of the 62 patients. These substitutions were not present in 278 control X-chromosomes from unrelated Japanese individuals and were not registered in the database of Single Nucleotide Polymorphisms build 132 or in the Japanese Single Nucleotide Polymorphisms database, indicating that they were novel and specific to ASD. Though further analysis is necessary to determine the physiological and clinical importance of such substitutions, the possibility of the relevance of both synonymous and nonsynonymous substitutions with the etiology of ASD should be considered.

  18. Identification of Four Novel Synonymous Substitutions in the X-Linked Genes Neuroligin 3 and Neuroligin 4X in Japanese Patients with Autistic Spectrum Disorder

    PubMed Central

    Yanagi, Kumiko; Kaname, Tadashi; Wakui, Keiko; Hashimoto, Ohiko; Fukushima, Yoshimitsu; Naritomi, Kenji

    2012-01-01

    Mutations in the X-linked genes neuroligin 3 (NLGN3) and neuroligin 4X (NLGN4X) were first implicated in the pathogenesis of X-linked autism in Swedish families. However, reports of mutations in these genes in autism spectrum disorder (ASD) patients from various ethnic backgrounds present conflicting results regarding the etiology of ASD, possibly because of genetic heterogeneity and/or differences in their ethnic background. Additional mutation screening study on another ethnic background could help to clarify the relevance of the genes to ASD. We scanned the entire coding regions of NLGN3 and NLGN4X in 62 Japanese patients with ASD by polymerase chain reaction-high-resolution melting curve and direct sequencing analyses. Four synonymous substitutions, one in NLGN3 and three in NLGN4X, were identified in four of the 62 patients. These substitutions were not present in 278 control X-chromosomes from unrelated Japanese individuals and were not registered in the database of Single Nucleotide Polymorphisms build 132 or in the Japanese Single Nucleotide Polymorphisms database, indicating that they were novel and specific to ASD. Though further analysis is necessary to determine the physiological and clinical importance of such substitutions, the possibility of the relevance of both synonymous and nonsynonymous substitutions with the etiology of ASD should be considered. PMID:22934180

  19. Is adult ADHD a childhood-onset neurodevelopmental disorder? Evidence from a 4-decade longitudinal cohort study

    PubMed Central

    Moffitt, Terrie E.; Houts, Renate; Asherson, Philip; Belsky, Daniel W; Corcoran, David L; Hammerle, Maggie; Harrington, Honalee; Hogan, Sean; Meier, Madeline; Polanczyk, Guilherme V.; Poulton, Richie; Ramrakha, Sandhya; Sugden, Karen; Williams, Benjamin; Rohde, Luis Augusto; Caspi, Avshalom

    2015-01-01

    Objective Despite a prevailing assumption that adult ADHD is a childhood-onset neurodevelopmental disorder, no prospective-longitudinal study has described the childhoods of the adult-ADHD population. We report follow-back analyses of ADHD cases diagnosed in adulthood, alongside follow-forward analyses of ADHD cases diagnosed in childhood, in one cohort. Method Participants belonged to a representative birth cohort of 1,037 individuals born in Dunedin, New Zealand in 1972-73 and followed to age 38, with 95% retention. Symptoms of ADHD, associated clinical features, comorbid disorders, neuropsychological deficits, GWAS-derived polygenic risk, and life impairment indicators were assessed. Data sources were participants, parents, teachers, informants, neuropsychological testing, and administrative records. Adult ADHD diagnoses used DSM5 criteria, apart from onset-age and cross-setting corroboration, which were study outcomes. Results As expected, the childhood-ADHD group showed 6% prevalence, male excess, childhood comorbid disorders, neurocognitive deficits, polygenic risk, and, despite having outgrown their ADHD diagnosis, residual adult life impairment. As expected, the adult-ADHD group showed 3% prevalence, gender balance, adult substance dependence, adult life impairment, and treatment contact. Unexpectedly, the childhood-ADHD and adult-ADHD groups comprised virtually non-overlapping sets; 90% of adult-ADHD cases lacked a history of childhood ADHD. Also unexpectedly, the adult-ADHD group did not show tested neuropsychological deficits in childhood or adulthood, nor did they show polygenic risk for childhood ADHD. Conclusion Findings raise the possibility that adults presenting with the ADHD symptom picture may not have a childhood-onset neurodevelopmental disorder. If this finding is replicated, then the disorder's place in the classification system must be reconsidered, and research must investigate the etiology of adult ADHD. PMID:25998281

  20. Severe manifestations in carrier females in X linked retinitis pigmentosa.

    PubMed Central

    Souied, E; Segues, B; Ghazi, I; Rozet, J M; Chatelin, S; Gerber, S; Perrault, I; Michel-Awad, A; Briard, M L; Plessis, G; Dufier, J L; Munnich, A; Kaplan, J

    1997-01-01

    Retinitis pigmentosa (RP) is a group of progressive hereditary disorders of the retina in which various modes of inheritance have been described. Here, we report on X linked RP in nine families with constant and severe expression in carrier females. In our series, however, the phenotype was milder and delayed in carrier females compared to hemizygous males. This form of X linked RP could be regarded therefore as partially dominant. The disease gene maps to chromosome Xp2.1 in the genetic interval encompassing the RP3 locus (Zmax=13.71 at the DXS1100 locus). Single strand conformation polymorphism and direct sequence analysis of the retinitis pigmentosa GTPase regulator (RPGR) gene, which accounts for RP3, failed to detect any mutation in our families. Future advances in the identification of X linked RP genes will hopefully help to elucidate the molecular basis of this X linked dominant RP. Images PMID:9350809

  1. Gastrointestinal Disorders in Children with Neurodevelopmental Disabilities

    ERIC Educational Resources Information Center

    Sullivan, Peter B.

    2008-01-01

    Children with neurodevelopmental disabilities such as cerebral palsy (CP), spina bifida, or inborn errors of metabolism frequently have associated gastrointestinal problems. These include oral motor dysfunction leading to feeding difficulties, risk of aspiration, prolonged feeding times, and malnutrition with its attendant physical compromise.…

  2. Brain Imaging in Children with Neurodevelopmental Disorders.

    ERIC Educational Resources Information Center

    Mantovani, John F.

    1994-01-01

    This article reviews neuroimaging techniques such as cranial ultrasound, computed tomography scanning, and magnetic resonance imaging. Their roles in the care of children with neurodevelopmental disabilities include identification of high-risk infants, establishment of the diagnosis and prognosis in affected children, and enhancement of discussion…

  3. Long-Term Neurodevelopmental Outcomes After Preterm Birth

    PubMed Central

    Soleimani, Farin; Zaheri, Farzaneh; Abdi, Fatemeh

    2014-01-01

    Context: All over the the world, preterm birth is a major cause of death and important neurodevelopmental disorders. Approximately 9.6% (12.9 million) births worldwide are preterm. Evidence Acquisition: In this review, databases such as PubMed, EMBASE, ISI, Scopus, Google Scholar and Iranian databases including Iranmedex, and SID were researched to review relevant literature. A comprehensive search was performed using combinations of various keywords. Results: Cerebral palsy especially spastic diplegia, intellectual disability, visual (retinopathy of prematurity) and hearing impairments are the main neurodevelopmental disorders associated with prematurity. Conclusions: The increased survival of preterm infants was not associated with lower complications. There is now increasing evidence of sustained adverse outcomes into school age and adolescence, for preterm infants. PMID:25068052

  4. Novel Missense Mutation A789V in IQSEC2 Underlies X-Linked Intellectual Disability in the MRX78 Family

    PubMed Central

    Kalscheuer, Vera M.; James, Victoria M.; Himelright, Miranda L.; Long, Philip; Oegema, Renske; Jensen, Corinna; Bienek, Melanie; Hu, Hao; Haas, Stefan A.; Topf, Maya; Hoogeboom, A. Jeannette M.; Harvey, Kirsten; Walikonis, Randall; Harvey, Robert J.

    2016-01-01

    Disease gene discovery in neurodevelopmental disorders, including X-linked intellectual disability (XLID) has recently been accelerated by next-generation DNA sequencing approaches. To date, more than 100 human X chromosome genes involved in neuronal signaling pathways and networks implicated in cognitive function have been identified. Despite these advances, the mutations underlying disease in a large number of XLID families remained unresolved. We report the resolution of MRX78, a large family with six affected males and seven affected females, showing X-linked inheritance. Although a previous linkage study had mapped the locus to the short arm of chromosome X (Xp11.4-p11.23), this region contained too many candidate genes to be analyzed using conventional approaches. However, our X-chromosome exome resequencing, bioinformatics analysis and inheritance testing revealed a missense mutation (c.C2366T, p.A789V) in IQSEC2, encoding a neuronal GDP-GTP exchange factor for Arf family GTPases (ArfGEF) previously implicated in XLID. Molecular modeling of IQSEC2 revealed that the A789V substitution results in the insertion of a larger side-chain into a hydrophobic pocket in the catalytic Sec7 domain of IQSEC2. The A789V change is predicted to result in numerous clashes with adjacent amino acids and disruption of local folding of the Sec7 domain. Consistent with this finding, functional assays revealed that recombinant IQSEC2A789V was not able to catalyze GDP-GTP exchange on Arf6 as efficiently as wild-type IQSEC2. Taken together, these results strongly suggest that the A789V mutation in IQSEC2 is the underlying cause of XLID in the MRX78 family. PMID:26793055

  5. Recurrent 15q11.2 BP1-BP2 microdeletions and microduplications in the etiology of neurodevelopmental disorders.

    PubMed

    Picinelli, Chiara; Lintas, Carla; Piras, Ignazio Stefano; Gabriele, Stefano; Sacco, Roberto; Brogna, Claudia; Persico, Antonio Maria

    2016-12-01

    Rare and common CNVs can contribute to the etiology of neurodevelopmental disorders. One of the recurrent genomic aberrations associated with these phenotypes and proposed as a susceptibility locus is the 15q11.2 BP1-BP2 CNV encompassing TUBGCP5, CYFIP1, NIPA2, and NIPA1. Characterizing by array-CGH a cohort of 243 families with various neurodevelopmental disorders, we identified five patients carrying the 15q11.2 duplication and one carrying the deletion. All CNVs were confirmed by qPCR and were inherited, except for one duplication where parents were not available. The phenotypic spectrum of CNV carriers was broad but mainly neurodevelopmental, in line with all four genes being implicated in axonal growth and neural connectivity. Phenotypically normal and mildly affected carriers complicate the interpretation of this aberration. This variability may be due to reduced penetrance or altered gene dosage on a particular genetic background. We evaluated the expression levels of the four genes in peripheral blood RNA and found the expected reduction in the deleted case, while duplicated carriers displayed high interindividual variability. These data suggest that differential expression of these genes could partially account for differences in clinical phenotypes, especially among duplication carriers. Furthermore, urinary Mg 2+ levels appear negatively correlated with NIPA2 gene copy number, suggesting they could potentially represent a useful biomarker, whose reliability will need replication in larger samples. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. International telemedicine consultations for neurodevelopmental disabilities.

    PubMed

    Pearl, Phillip L; Sable, Craig; Evans, Sarah; Knight, Joseph; Cunningham, Parker; Lotrecchiano, Gaetano R; Gropman, Andrea; Stuart, Sheela; Glass, Penny; Conway, Anne; Ramadan, Issam; Paiva, Tania; Batshaw, Mark L; Packer, Roger J

    2014-06-01

    A telemedicine program was developed between the Children's National Medical Center (CNMC) in Washington, DC, and the Sheikh Khalifa Bin Zayed Foundation in the United Arab Emirates (UAE). A needs assessment and a curriculum of on-site training conferences were devised preparatory to an ongoing telemedicine consultation program for children with neurodevelopmental disabilities in the underserved eastern region of the UAE. Weekly telemedicine consultations are provided by a multidisciplinary faculty. Patients are presented in the UAE with their therapists and families. Real-time (video over Internet protocol; average connection, 768 kilobits/s) telemedicine conferences are held weekly following previews of medical records. A full consultation report follows each telemedicine session. Between February 29, 2012 and June 26, 2013, 48 weekly 1-h live interactive telemedicine consultations were conducted on 48 patients (28 males, 20 females; age range, 8 months-22 years; median age, 5.4 years). The primary diagnoses were cerebral palsy, neurogenetic disorders, autism, neuromuscular disorders, congenital anomalies, global developmental delay, systemic disease, and epilepsy. Common comorbidities were cognitive impairment, communication disorders, and behavioral disorders. Specific recommendations included imaging and DNA studies, antiseizure management, spasticity management including botulinum toxin protocols, and specific therapy modalities including taping techniques, customized body vests, and speech/language and behavioral therapy. Improved outcomes reported were in clinician satisfaction, achievement of therapy goals for patients, and requests for ongoing sessions. Weekly telemedicine sessions coupled with triannual training conferences were successfully implemented in a clinical program dedicated to patients with neurodevelopmental disabilities by the Center for Neuroscience at CNMC and the UAE government. International consultations in neurodevelopmental

  7. EMQN best practice guidelines for the molecular genetic testing and reporting of fragile X syndrome and other fragile X-associated disorders

    PubMed Central

    Biancalana, Valérie; Glaeser, Dieter; McQuaid, Shirley; Steinbach, Peter

    2015-01-01

    Different mutations occurring in the unstable CGG repeat in 5' untranslated region of FMR1 gene are responsible for three fragile X-associated disorders. An expansion of over ∼200 CGG repeats when associated with abnormal methylation and inactivation of the promoter is the mutation termed ‘full mutation' and is responsible for fragile X syndrome (FXS), a neurodevelopmental disorder described as the most common cause of inherited intellectual impairment. The term ‘abnormal methylation' is used here to distinguish the DNA methylation induced by the expanded repeat from the ‘normal methylation' occurring on the inactive X chromosomes in females with normal, premutation, and full mutation alleles. All male and roughly half of the female full mutation carriers have FXS. Another anomaly termed ‘premutation' is characterized by the presence of 55 to ∼200 CGGs without abnormal methylation, and is the cause of two other diseases with incomplete penetrance. One is fragile X-associated primary ovarian insufficiency (FXPOI), which is characterized by a large spectrum of ovarian dysfunction phenotypes and possible early menopause as the end stage. The other is fragile X-associated tremor/ataxia syndrome (FXTAS), which is a late onset neurodegenerative disorder affecting males and females. Because of the particular pattern and transmission of the CGG repeat, appropriate molecular testing and reporting is very important for the optimal genetic counselling in the three fragile X-associated disorders. Here, we describe best practice guidelines for genetic analysis and reporting in FXS, FXPOI, and FXTAS, including carrier and prenatal testing. PMID:25227148

  8. Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders

    PubMed Central

    Levman, Jacob; Takahashi, Emi

    2015-01-01

    Multivariate analysis (MVA) is a class of statistical and pattern recognition methods that involve the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of medical neuroimaging-related challenges including identifying variables associated with a measure of clinical importance (i.e. patient outcome), creating diagnostic tests, assisting in characterizing developmental disorders, understanding disease etiology, development and progression, assisting in treatment monitoring and much more. Compared to adults, imaging of developing immature brains has attracted less attention from MVA researchers. However, remarkable MVA research growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to neurodevelopmental disorders in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of the brain. The goal of this manuscript is to provide a concise review of the state of the scientific literature on studies employing brain MRI and MVA in a pre-adult population. Neurological developmental disorders addressed in the MVA research contained in this review include autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia and more. While the results of this review demonstrate considerable interest from the scientific community in applications of MVA technologies in pediatric/neonatal/fetal brain MRI, the field is still young and considerable research growth remains ahead of us. PMID:26640765

  9. Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders.

    PubMed

    Levman, Jacob; Takahashi, Emi

    2015-01-01

    Multivariate analysis (MVA) is a class of statistical and pattern recognition methods that involve the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of medical neuroimaging-related challenges including identifying variables associated with a measure of clinical importance (i.e. patient outcome), creating diagnostic tests, assisting in characterizing developmental disorders, understanding disease etiology, development and progression, assisting in treatment monitoring and much more. Compared to adults, imaging of developing immature brains has attracted less attention from MVA researchers. However, remarkable MVA research growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to neurodevelopmental disorders in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of the brain. The goal of this manuscript is to provide a concise review of the state of the scientific literature on studies employing brain MRI and MVA in a pre-adult population. Neurological developmental disorders addressed in the MVA research contained in this review include autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia and more. While the results of this review demonstrate considerable interest from the scientific community in applications of MVA technologies in pediatric/neonatal/fetal brain MRI, the field is still young and considerable research growth remains ahead of us.

  10. Effects of methylmercury and alcohol exposure in Drosophila melanogaster: Potential risks in neurodevelopmental disorders.

    PubMed

    Chauhan, Ved; Chauhan, Abha

    2016-06-01

    Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. Published by Elsevier Ltd.

  11. Markers, Models, and Measurement Error: Exploring the Links between Attention Deficits and Language Impairments

    ERIC Educational Resources Information Center

    Redmond, Sean M.

    2016-01-01

    Purpose: The empirical record regarding the expected co-occurrence of attention-deficit/hyperactivity disorder (ADHD) and specific language impairment is confusing and contradictory. A research plan is presented that has the potential to untangle links between these 2 common neurodevelopmental disorders. Method: Data from completed and ongoing…

  12. Gene correction of induced pluripotent stem cells derived from a murine model of X-linked chronic granulomatous disorder.

    PubMed

    Mukherjee, Sayandip; Thrasher, Adrian J

    2014-01-01

    Gene therapy presents an attractive alternative to allogeneic haematopoietic stem cell transplantation (HSCT) for treating patients suffering from primary immunodeficiency disorder (PID). The conceptual advantage of gene correcting a patient's autologous HSCs lies in minimizing or completely avoiding immunological complications arising from allogeneic transplantation while conferring the same benefits of immune reconstitution upon long-term engraftment. Clinical trials targeting X-linked chronic granulomatous disorder (X-CGD) have shown promising results in this context. However, long-term clinical benefits in these patients have been limited by issues of poor engraftment of gene-transduced cells coupled with transgene silencing and vector induced clonal proliferation. Novel vectors incorporating safety features such as self-inactivating (SIN) mutations in the long terminal repeats (LTRs) along with synthetic promoters driving lineage-restricted sustainable expression of the gp91phox transgene are expected to resolve the current pitfalls and require rigorous preclinical testing. In this chapter, we have outlined a protocol in which X-CGD mouse model derived induced pluripotent stem cells (iPSCs) have been utilized to develop a platform for investigating the efficacy and safety profiles of novel vectors prior to clinical evaluation.

  13. “Selfish spermatogonial selection”: a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders

    PubMed Central

    Goriely, Anne; McGrath, John J.; Hultman, Christina M.; Wilkie, Andrew O.M.; Malaspina, Dolores

    2014-01-01

    Objectives There is robust evidence from epidemiological studies that the offspring of older fathers have an increased risk of neurodevelopmental disorders such as schizophrenia and autism. Here we present a novel mechanism that may contribute to this association. Methods Narrative review. Results Because the male germ cell undergoes many more cell divisions across the reproductive age range, copy-errors taking place in the paternal germline are associated with de novo mutations in the offspring of older men. Recently it has been recognized that somatic mutations in male germ cells that modify proliferation via dysregulation of the RAS pathway can lead to within-testis expansion of mutant clonal lines. First identified in association with rare paternal age-effect disorders (e.g. Apert syndrome, achondroplasia), this process is known as ‘selfish spermatogonial selection’. This mechanism will (a) favor propagation of germ cells carrying pathogenic mutations, (b) increasingly skew the mutational profile of sperm as men age, and (c) result in an enrichment of de novo mutations in the offspring of older fathers that preferentially impact on specific cellular signaling pathways. This mechanism offers a parsimonious explanation not only for the association between advanced paternal age and various neurodevelopmental disorders, but also provides insights into the genetic architecture (role of de novo mutations), neurobiological correlates (altered cell cycle) and some epidemiological features of these disorders. We outline hypotheses to test this model. Conclusions In light of our current understanding of the genetic networks involved in neurocognitive disorders and the principles of selfish spermatogonial selection, we speculate that some pathogenic mutations associated with these disorders are the consequence of a selfish mechanism originating in the aging testis. Given the secular changes for delayed parenthood in most societies, this hypothesis has important public

  14. TARGETED TREATMENTS IN AUTISM AND FRAGILE X SYNDROME

    PubMed Central

    Gürkan, C. Kağan; Hagerman, Randi J.

    2012-01-01

    Autism is a neurodevelopmental disorder consisting of a constellation of symptoms that sometimes occur as part of a complex disorder characterized by impairments in social interaction, communication and behavioral domains. It is a highly disabling disorder and there is a need for treatment targeting the core symptoms. Although autism is accepted as highly heritable, there is no genetic cure at this time. Autism is shown to be linked to several genes and is a feature of some complex genetic disorders, including fragile X syndrome (FXS), fragile X premutation involvement, tuberous sclerosis and Rett syndrome. The term autism spectrum disorders (ASDs) covers autism, Asperger syndrome and pervasive developmental disorders (PDD-NOS) and the etiologies are heterogeneous. In recent years, targeted treatments have been developed for several disorders that have a known specific genetic cause leading to autism. Since there are significant molecular and neurobiological overlaps among disorders, targeted treatments developed for a specific disorder may be helpful in ASD of unknown etiology. Examples of this are two drug classes developed to treat FXS, Arbaclofen, a GABAB agonist, and mGluR5 antagonists, and both may be helpful in autism without FXS. The mGluR5 antagonists are also likely to have a benefit in the aging problems of fragile X premutation carriers, the fragile X –associated tremor ataxia syndrome (FXTAS) and the Parkinsonism that can occur in aging patients with fragile X syndrome. Targeted treatments in FXS which has a well known genetic etiology may lead to new targeted treatments in autism. PMID:23162607

  15. Advancing the Selection of Neurodevelopmental Measures in Epidemiological Studies of Environmental Chemical Exposure and Health Effects

    PubMed Central

    Youngstrom, Eric; LaKind, Judy S.; Kenworthy, Lauren; Lipkin, Paul H.; Goodman, Michael; Squibb, Katherine; Mattison, Donald R.; Anthony, Bruno J.; Anthony, Laura Gutermuth

    2010-01-01

    With research suggesting increasing incidence of pediatric neurodevelopmental disorders, questions regarding etiology continue to be raised. Neurodevelopmental function tests have been used in epidemiology studies to evaluate relationships between environmental chemical exposures and neurodevelopmental deficits. Limitations of currently used tests and difficulties with their interpretation have been described, but a comprehensive critical examination of tests commonly used in studies of environmental chemicals and pediatric neurodevelopmental disorders has not been conducted. We provide here a listing and critical evaluation of commonly used neurodevelopmental tests in studies exploring effects from chemical exposures and recommend measures that are not often used, but should be considered. We also discuss important considerations in selecting appropriate tests and provide a case study by reviewing the literature on polychlorinated biphenyls. PMID:20195443

  16. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders.

    PubMed

    Sukoff Rizzo, Stacey J; Crawley, Jacqueline N

    2017-02-08

    Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.

  17. The Effects of Live Music as the Discriminative Stimulus and Reinforcer on the Skill Acquisition of Learners with Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Harms, Melanie D.

    2013-01-01

    Individuals with neurodevelopmental disorders are challenged with memory and language deficits that impact their skills acquisition (Martin, Klusek, Estigarriba, & Roberts, 2009; Turner & Alborz, 2003). The value of music when applied as an antecedent and a reinforcer has long been established to address such memory and language deficits…

  18. Fragile X syndrome neurobiology translates into rational therapy.

    PubMed

    Braat, Sien; Kooy, R Frank

    2014-04-01

    Causal genetic defects have been identified for various neurodevelopmental disorders. A key example in this respect is fragile X syndrome, one of the most frequent genetic causes of intellectual disability and autism. Since the discovery of the causal gene, insights into the underlying pathophysiological mechanisms have increased exponentially. Over the past years, defects were discovered in pathways that are potentially amendable by pharmacological treatment. These findings have inspired the initiation of clinical trials in patients. The targeted pathways converge in part with those of related neurodevelopmental disorders raising hopes that the treatments developed for this specific disorder might be more broadly applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. X linked mental retardation: a clinical guide.

    PubMed

    Raymond, F L

    2006-03-01

    Mental retardation is more common in males than females in the population, assumed to be due to mutations on the X chromosome. The prevalence of the 24 genes identified to date is low and less common than expansions in FMR1, which cause Fragile X syndrome. Systematic screening of all other X linked genes in X linked families with mental retardation is currently not feasible in a clinical setting. The phenotypes of genes causing syndromic and non-syndromic mental retardation (NLGN3, NLGN4, RPS6KA3(RSK2), OPHN1, ATRX, SLC6A8, ARX, SYN1, AGTR2, MECP2, PQBP1, SMCX, and SLC16A2) are first discussed, as these may be the focus of more targeted mutation analysis. Secondly, the relative prevalence of genes causing only non-syndromic mental retardation (IL1RAPL1, TM4SF2, ZNF41, FTSJ1, DLG3, FACL4, PAK3, ARHGEF6, FMR2, and GDI) is summarised. Thirdly, the problem of recurrence risk where a molecular genetics diagnosis has not been made and what proportion of the male excess of mental retardation is due to monogenic disorders of the X chromosome are discussed.

  20. Genotype-phenotype variations in five Spanish families with Norrie disease or X-linked FEVR.

    PubMed

    Riveiro-Alvarez, Rosa; Trujillo-Tiebas, Maria José; Gimenez-Pardo, Ascension; Garcia-Hoyos, Maria; Cantalapiedra, Diego; Lorda-Sanchez, Isabel; Rodriguez de Alba, Marta; Ramos, Carmen; Ayuso, Carmen

    2005-09-02

    Norrie disease (OMIM 310600) is a rare X-linked disorder characterized by congenital blindness in males. Approximately 40 to 50% of the cases develop deafness and mental retardation. X-linked familial exudative vitreoretinopathy (XL-FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. Both X-linked disorders are due to mutations in the NDP gene, which encodes a 133 amino acid protein called Norrin, but autosomal recessive (AR) and autosomal dominant (AD) forms of FEVR have also been described. In this study, we report the molecular findings and the related phenotype in five Spanish families affected with Norrie disease or XL-FEVR due to mutations of the NDP gene. The study was conducted in 45 subjects from five Spanish families. These families were clinically diagnosed with Norrie disease or similar conditions. The three exons of the NDP gene were analyzed by automatic DNA sequencing. Haplotype analyses were also performed. Two new nonsense mutations, apart from other mutations previously described in the NDP gene, were found in those patients affected with ND or X-linked FEVR. An important genotype-phenotype variation was found in relation to the different mutations of the NDP gene. In fact, the same mutation may be responsible for different phenotypes. We speculate that there might be other molecular factors that interact in the retina with Norrin, which contribute to the resultant phenotypes.

  1. A CLINICIAN'S GUIDE TO X-LINKED HYPOPHOSPHATEMIA

    PubMed Central

    Carpenter, Thomas O.; Imel, Erik A.; Holm, Ingrid A.; Jan de Beur, Suzanne M.; Insogna, Karl L.

    2011-01-01

    X-linked hypophosphatemia (XLH) is the prototypic disorder of renal phosphate wasting, and the most common form of heritable rickets. Physicians, patients, and XLH support groups have all expressed concerns about the dearth of information about this disease and the lack of treatment guidelines which frequently lead to missed diagnoses or mismanagement. This perspective addresses the recommendation by conferees for the dissemination of concise and accessible treatment guidelines for clinicians arising from the “Advances in Rare Bone Diseases Scientific Conference,” held at the National Institutes of Health in October 2008. We briefly review the clinical and pathophysiologic features of the disorder, and offer this guide in response to the conference recommendation, base on our collective accumulated experience in the management of this complex disorder. PMID:21538511

  2. Responding to Requests of Families for Unproven Interventions in Neurodevelopmental Disorders: Hyperbaric Oxygen "Treatment" and Stem Cell "Therapy" in Cerebral Palsy

    ERIC Educational Resources Information Center

    Bell, Emily; Wallace, Tessa; Chouinard, Isabelle; Shevell, Michael; Racine, Eric

    2011-01-01

    Faced with the limitations of currently available mainstream medical treatments and interventions, parents of children with neurodevelopmental disorders often seek information about unproven interventions. These interventions frequently have undetermined efficacy and uncertain safety profiles. In this article, we present a general background and…

  3. Different Neurodevelopmental Symptoms Have a Common Genetic Etiology

    ERIC Educational Resources Information Center

    Pettersson, Erik; Anckarsäter, Henrik; Gillberg, Christopher; Lichtenstein, Paul

    2013-01-01

    Background: Although neurodevelopmental disorders are demarcated as discrete entities in the Diagnostic Statistical Manual of mental disorders, empirical evidence indicates that there is a high degree of overlap among them. The first aim of this investigation was to explore if a single general factor could account for the large degree of observed…

  4. Using animal models of enriched environments to inform research on sensory integration intervention for the rehabilitation of neurodevelopmental disorders.

    PubMed

    Reynolds, Stacey; Lane, Shelly J; Richards, Lorie

    2010-09-01

    The field of behavioral neuroscience has been successful in using an animal model of enriched environments for over five decades to measure the rehabilitative and preventative effects of sensory, cognitive and motor stimulation in animal models. Several key principles of enriched environments match those used in sensory integration therapy, a treatment used for children with neurodevelopmental disorders. This paper reviews the paradigm of environmental enrichment, compares animal models of enriched environments to principles of sensory integration treatment, and discusses applications for the rehabilitation of neurodevelopmental disorders. Based on this review, the essential features in the enriched environment paradigm which should be included in sensory integration treatment are multiple sensory experiences, novelty in the environment, and active engagement in challenging cognitive, sensory, and motor tasks. Use of sensory integration treatment may be most applicable for children with anxiety, hypersensitivity, repetitive behaviors or heightened levels of stress. Additionally, individuals with deficits in social behavior, social participation, or impairments in learning and memory may show gains with this type of treatment.

  5. Genetic contribution to neurodevelopmental outcomes in congenital heart disease: are some patients predetermined to have developmental delay?

    PubMed

    Rollins, Caitlin K; Newburger, Jane W; Roberts, Amy E

    2017-10-01

    Neurodevelopmental impairment is common in children with moderate to severe congenital heart disease (CHD). As children live longer and healthier lives, research has focused on identifying causes of neurodevelopmental morbidity that significantly impact long-term quality of life. This review will address the role of genetic factors in predicting neurodevelopmental outcome in CHD. A robust literature suggests that among children with various forms of CHD, those with known genetic/extracardiac anomalies are at highest risk of neurodevelopmental impairment. Advances in genetic technology have identified genetic causes of CHD in an increasing percentage of patients. Further, emerging data suggest substantial overlap between mutations in children with CHD and those that have previously been associated with neurodevelopmental disorders. Innate and patient factors appear to be more important in predicting neurodevelopmental outcome than medical/surgical variables. Future research is needed to establish a broader understanding of the mutations that contribute to neurodevelopmental disorders and the variations in expressivity and penetrance.

  6. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases.

    PubMed

    Verbsky, James W; Chatila, Talal A

    2013-12-01

    To summarize recent progress in our understanding of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders. A number of Mendelian disorders of immune dysregulation and autoimmunity have been noted to result from defects in T regulatory cell, development and function. The best characterized of these is IPEX, resulting from mutations affecting FOXP3. A number of other gene defects that affect T regulatory cell function also give rise to IPEX-related phenotypes, including loss-of-function mutations in CD25, STAT5b and ITCH. Recent progress includes the identification of gain-of-function mutations in STAT1 as a cause of an IPEX-like disease, emerging FOXP3 genotype/phenotype relationships in IPEX, and the elucidation of a role for the microbiota in the immune dysregulation associated with regulatory T cell deficiency. An expanding spectrum of genetic defects that compromise T regulatory cell function underlies human disorders of immune dysregulation and autoimmunity. Collectively, these disorders offer novel insights into pathways of peripheral tolerance and their disruption in autoimmunity.

  7. Molecular analyses of neurogenic defects in a human pluripotent stem cell model of fragile X syndrome.

    PubMed

    Boland, Michael J; Nazor, Kristopher L; Tran, Ha T; Szücs, Attila; Lynch, Candace L; Paredes, Ryder; Tassone, Flora; Sanna, Pietro Paolo; Hagerman, Randi J; Loring, Jeanne F

    2017-03-01

    New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models. Differentiation of human pluripotent stem cells recapitulates development of the neocortex, an area affected in both fragile X syndrome and autism spectrum disorder. We have generated induced human pluripotent stem cells from several individuals clinically diagnosed with fragile X syndrome and autism spectrum disorder. When differentiated to dorsal forebrain cell fates, our fragile X syndrome human pluripotent stem cell lines exhibited reproducible aberrant neurogenic phenotypes. Using global gene expression and DNA methylation profiling, we have analysed the early stages of neurogenesis in fragile X syndrome human pluripotent stem cells. We discovered aberrant DNA methylation patterns at specific genomic regions in fragile X syndrome cells, and identified dysregulated gene- and network-level correlates of fragile X syndrome that are associated with developmental signalling, cell migration, and neuronal maturation. Integration of our gene expression and epigenetic analysis identified altered epigenetic-mediated transcriptional regulation of a distinct set of genes in fragile X syndrome. These fragile X syndrome-aberrant networks are significantly enriched for genes associated with autism spectrum disorder, giving support to the idea that underlying similarities exist among these neurodevelopmental diseases. © The

  8. Neurodevelopmental delay among children under the age of three years at immunization clinics in Lagos State, Nigeria - Preliminary report.

    PubMed

    Bakare, Muideen O; Bello-Mojeed, Mashudat A; Munir, Kerim M; Ogun, Oluwayemi C; Eaton, Julian

    2016-04-29

    Late diagnosis and interventions characterize childhood neurodevelopmental disorders in Sub-Saharan Africa. This has negatively impacted on the prognosis of the children with neurodevelopmental disorders. This study examined the prevalence and pattern of neurodevelopmental delays among children under the age of 3 years attending immunization clinics in Lagos State, Nigeria and also affords opportunity of early follow-up and interventions, which had been documented to improve prognosis. The study involved two stage assessments; which consisted of first phase screening of the children for neurodevelopmental delays in immunization clinics at primary healthcare centers Lagos State, Nigeria and second phase which consists of definitive clinical evaluation and follow-up interventions for children screened positive for neurodevelopmental delays. Twenty seven (0.9%) of a total of 3,011 children under the age of 3 years were screened positive for neurodevelopmental delays and subsequently undergoing clinical evaluation and follow-up interventions. Preliminary working diagnoses among these children include cerebral palsy, autism spectrum disorder trait, nutritional deficiency, Down syndrome and Non-specific neurodevelopmental delay with co-morbid seizure disorder accounting for 33.3%, 14.8%, 18.5%, 7.4% and 25.9% respectively. This is a preliminary report that would be followed up with information on medium and long term intervention phase.

  9. Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway

    PubMed Central

    Lahiri, Debomoy K.; Sokol, Deborah K.; Erickson, Craig; Ray, Balmiki; Ho, Chang Y.; Maloney, Bryan

    2013-01-01

    Autism is a neurodevelopmental disorder marked by social skills and communication deficits and interfering repetitive behavior. Intellectual disability often accompanies autism. In addition to behavioral deficits, autism is characterized by neuropathology and brain overgrowth. Increased intracranial volume often accompanies this brain growth. We have found that the Alzheimer’s disease (AD) associated amyloid-β precursor protein (APP), especially its neuroprotective processing product, secreted APP α, is elevated in persons with autism. This has led to the “anabolic hypothesis” of autism etiology, in which neuronal overgrowth in the brain results in interneuronal misconnections that may underlie multiple autism symptoms. We review the contribution of research in brain volume and of APP to the anabolic hypothesis, and relate APP to other proteins and pathways that have already been directly associated with autism, such as fragile X mental retardation protein, Ras small GTPase/extracellular signal-regulated kinase, and phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin. We also present additional evidence of magnetic resonance imaging intracranial measurements in favor of the anabolic hypothesis. Finally, since it appears that APP’s involvement in autism is part of a multi-partner network, we extend this concept into the inherently interactive realm of epigenetics. We speculate that the underlying molecular abnormalities that influence APP’s contribution to autism are epigenetic markers overlaid onto potentially vulnerable gene sequences due to environmental influence. PMID:23801940

  10. Lamellar macular hole in X linked retinoschisis

    PubMed Central

    Kumar, Vinod; Goel, Neha

    2016-01-01

    X linked retinoschisis (XLRS) is the most common juvenile onset retinal degeneration. The disorder leads to poor vision in old age. Complications, however, can lead to earlier loss of vision in this condition. This report describes two patients of XLRS, who had presented with poor vision because of having had a lamellar macular hole at a young age. Lamellar macular holes are rare and have never been reported to cause early onset poor vision in XLRS. PMID:27170611

  11. Neurodevelopmental Disorders in Low- and Middle-Income Countries

    ERIC Educational Resources Information Center

    Newton, Charles R.

    2012-01-01

    In "Global Perspective on Early Diagnosis and Intervention for Children with Developmental Delays and Disabilities" (p1079-1084, this issue), Scherzer et al. highlighted the potential increase in neurodevelopmental impairments and disabilities affecting an increasing number of children in low- and middle-income countries (LMIC). In this…

  12. Are the components of social reciprocity transdiagnostic across pediatric neurodevelopmental disorders? Evidence for common and disorder-specific social impairments.

    PubMed

    Sturm, Alexandra; Rozenman, Michelle; Chang, Susanna; McGough, James J; McCracken, James T; Piacentini, John C

    2018-06-01

    Deficits in social communication are a core feature of autism spectrum disorder (ASD), yet significant social problems have been observed in youth with many neurodevelopmental disorders. In this preliminary investigation, we aimed to explore whether domains of social reciprocity (i.e., social communication, social cognition, social awareness, social motivation, and restricted and repetitive behaviors) represent transdiagnostic traits. These domains were compared across youth ages 7-17 with obsessive-compulsive disorder (OCD; N = 32), tic disorders (TD; N = 20), severe mood dysregulation (N = 33) and autism spectrum disorder (N = 35). While the ASD group was rated by parents as exhibiting the greatest social reciprocity deficits across domains, a high proportion of youth with severe mood dysregulation also exhibited pronounced deficits in social communication, cognition, and awareness. The ASD and severe mood dysregulation groups demonstrated comparable scores on the social awareness domain. In contrast, social motivation and restricted and repetitive behaviors did not appear to be transdiagnostic domains in severe mood dysregulation, OCD, or TD groups. The present work provides preliminary support that social awareness, and to a lesser extent social communication and cognition, may represent features of social reciprocity that are transdiagnostic across ASD and severe mood dysregulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Neurodevelopmental delay associated with nonconvulsive status epilepticus in a toddler.

    PubMed

    Shinawi, M; Shahar, E

    2001-03-01

    Nonconvulsive status epilepticus is a prolonged and continuous state of increased unawareness without overt motor seizures linked with repetitive generalized epileptic discharges. In children, it may occur de novo but more commonly may complicate a preexisting epileptic disorder. We report on a 2-year-old female who presented with global developmental delay as the main manifestation of nonconvulsive status epilepticus. Following valproic acid treatment, her motor, cognitive, and speech delays had gradually subsided and nearly completely resolved, in concert with normalization of electroencephalography (EEG). Hence, given a possible, albeit rare, presentation of nonconvulsive status epilepticus with global developmental delay, we suggest that EEG should be recommended in any infant who manifests neurodevelopmental delay.

  14. Analysis of the factors linked to a diagnosis of attention deficit hyperactivity disorder in children.

    PubMed

    Rivas-Juesas, C; de Dios, J G; Benac-Prefaci, M; Colomer-Revuelta, J

    2017-09-01

    Attention deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder originating from multiple factors. The aim of this study is to determine the percentage of patients with ADHD out of all patients referred to our clinic for assessment, and to explore the epidemiological and clinical factors linked to this diagnosis. retrospective analytical study of a sample of patients under 15 years old sent to the paediatric neurology clinic for suspected ADHD. DSM-IV criteria were used for diagnosis. We completed a binary logistic regression analysis to determine which risk factors were associated with the diagnosis. Of the 280 selected patients, 224 were male (male/female ratio 4:1); mean age (SD) was 8.4 (3.08) years. Almost half (49%) of the patients were referred by their schools and 64.9% were born in the second half of the year, but this tendency was more marked in girls than in boys. Assessment according to DSM-IV criteria resulted in diagnosis of 139 subjects (49.7%). The risk factors linked to diagnosis were male sex, parents with ADHD, associated sleep disorders, tics, and absence of neurodevelopmental delay. Only half of the children referred for suspected ADHD were diagnosed with that condition, and most were among the youngest in their classes, which suggests that suspected ADHD is overestimated. An exhaustive clinical interview investigating the family's psychological disorders and the patient's sleep disorders and tics is needed to improve the diagnostic process. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Linkage localization of X-linked Charcot-Marie-Tooth disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergoffen, J.; Trofatter, J.; Haines, J.L.

    1993-02-01

    Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neuropathy, is a heterogeneous group of slowly progressive, degenerative disorders of peripheral nerve. X-linked CMT (CMTX) (McKusick 302800), a subdivision of type I, or demyelinating, CMT is an X-linked dominant condition with variable penetrance. Previous linkage analysis using RFLPs demonstrated linkage to markers on the proximal long and short arms of the X chromosome, with the more likely localization on the proximal long arm of the X chromosome. Available variable simple-sequence repeats (VSSRs) broaden the possibilities for linkage analysis. This paper presents new linkage data and recombination analysis derived frommore » work with four VSSR markers - AR, PGKP1, DXS453, and DXYS1X - in addition to analysis using RFLP markers described elsewhere. These studies localize the CMTX gene to the proximal Xq segment between PGKP1 (Xq11.2-12) and DXS72 (Xq21.1), with a combined maximum multipoint lod score of 15.3 at DXS453 ([theta] = 0). 32 refs., 3 figs., 2 tabs.« less

  16. Long-term neurodevelopmental outcomes of congenital diaphragmatic hernia survivors not treated with extracorporeal membrane oxygenation.

    PubMed

    Frisk, Virginia; Jakobson, Lorna S; Unger, Sharon; Trachsel, Daniel; O'Brien, Karel

    2011-07-01

    Although there has been a marked improvement in the survival of children with congenital diaphragmatic hernia (CDH) in the past 2 decades, there are few reports of long-term neurodevelopmental outcome in this population. The present study examined neurodevelopmental outcomes in 10- to 16-year-old CDH survivors not treated with extracorporeal membrane oxygenation (ECMO). Parents of 27 CDH survivors completed questionnaires assessing medical problems, daily living skills, educational outcomes, behavioral problems, and executive functioning. Fifteen CDH survivors and matched full-term controls completed standardized intelligence, academic achievement, phonological processing, and working memory tests. Non-ECMO-treated CDH survivors demonstrated high rates of clinically significant difficulties on standardized academic achievement measures, and 14 of the 27 survivors had a formal diagnosis of specific learning disability, attention deficit hyperactivity disorder, or developmental disability. Specific problems with executive function, cognitive and attentional weaknesses, and social difficulties were more common in CDH patients than controls. Perioperative hypocapnia was linked to executive dysfunction, behavioral problems, lowered intelligence, and poor achievement in mathematics. Non-ECMO-treated CDH survivors are at substantial risk for neurodevelopmental problems in late childhood and adolescence. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Towards a Neurodevelopmental Model of Clinical Case Formulation

    PubMed Central

    Solomon, Marjorie; Hessl, David; Chiu, Sufen; Olsen, Emily; Hendren, Robert

    2009-01-01

    Rapid advances in molecular genetics and neuroimaging over the last 10-20 years have been a catalyst for research in neurobiology, developmental psychopathology, and translational neuroscience. Methods of study in psychiatry, previously described as “slow maturing,” now are becoming sufficiently sophisticated to more effectively investigate the biology of higher mental processes. Despite these technological advances, the recognition that psychiatric disorders are disorders of neurodevelopment, and the importance of case formulation to clinical practice, a neurodevelopmental model of case formulation has not yet been articulated. The goals of this manuscript, which is organized as a clinical case conference, are to begin to articulate a neurodevelopmental model of case formulation, to illustrate its value, and finally to explore how clinical psychiatric practice might evolve in the future if this model were employed. PMID:19248925

  18. Lamellar macular hole in X linked retinoschisis.

    PubMed

    Kumar, Vinod; Goel, Neha

    2016-05-11

    X linked retinoschisis (XLRS) is the most common juvenile onset retinal degeneration. The disorder leads to poor vision in old age. Complications, however, can lead to earlier loss of vision in this condition. This report describes two patients of XLRS, who had presented with poor vision because of having had a lamellar macular hole at a young age. Lamellar macular holes are rare and have never been reported to cause early onset poor vision in XLRS. 2016 BMJ Publishing Group Ltd.

  19. X-linked adrenoleukodystrophy in heterozygous female patients: women are not just carriers.

    PubMed

    Lourenço, Charles Marques; Simão, Gustavo Novelino; Santos, Antonio Carlos; Marques, Wilson

    2012-07-01

    X-linked adrenoleukodystrophy (X-ALD) is a recessive X-linked disorder associated with marked phenotypic variability. Female carriers are commonly thought to be normal or only mildly affected, but their disease still needs to be better described and systematized. To review and systematize the clinical features of heterozygous women followed in a Neurogenetics Clinic. We reviewed the clinical, biochemical, and neuroradiological data of all women known to have X-ADL. The nine women identified were classified into three groups: with severe and aggressive diseases; with slowly progressive, spastic paraplegia; and with mildly decreased vibratory sensation, brisk reflexes, and no complaints. Many of these women did not have a known family history of X-ALD. Heterozygous women with X-ADL have a wide spectrum of clinical manifestations, ranging from mild to severe phenotypes.

  20. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information?

    PubMed Central

    Mc Devitt, Niamh; Gallagher, Louise; Reilly, Richard B.

    2015-01-01

    Autism Spectrum Disorder (ASD) and Fragile X syndrome (FXS) are neurodevelopmental disorders with different but potentially related neurobiological underpinnings, which exhibit significant overlap in their behavioural symptoms. FXS is a neurogenetic disorder of known cause whereas ASD is a complex genetic disorder, with both rare and common genetic risk factors and likely genetic and environmental interaction effects. A comparison of the phenotypic presentation of the two disorders may highlight those symptoms that are more likely to be under direct genetic control, for example in FXS as opposed to shared symptoms that are likely to be under the control of multiple mechanisms. This review is focused on the application and analysis of electroencephalography data (EEG) in ASD and FXS. Specifically, Event Related Potentials (ERP) and resting state studies (rEEG) studies investigating ASD and FXS cohorts are compared. This review explores the electrophysiological similarities and differences between the two disorders in addition to the potentially associated neurobiological mechanisms at play. A series of pertinent research questions which are suggested in the literature are also posed within the review. PMID:25826237

  1. The European Prader-Willi Syndrome Clinical Research Database: An Aid in the Investigation of a Rare Genetically Determined Neurodevelopmental Disorder

    ERIC Educational Resources Information Center

    Holland, A.; Whittington, J.; Cohen, O.; Curfs, L.; Delahaye, F.; Dudley, O.; Horsthemke, B.; Lindgren, A. -C.; Nourissier, C.; Sharma, N.; Vogels, A.

    2009-01-01

    Background: Prader-Willi Syndrome (PWS) is a rare genetically determined neurodevelopmental disorder with a complex phenotype that changes with age. The rarity of the syndrome and the need to control for different variables such as genetic sub-type, age and gender limits clinical studies of sufficient size in any one country. A clinical research…

  2. Gender identity disorder and schizophrenia: neurodevelopmental disorders with common causal mechanisms?

    PubMed

    Rajkumar, Ravi Philip

    2014-01-01

    Gender identity disorder (GID), recently renamed gender dysphoria (GD), is a rare condition characterized by an incongruity between gender identity and biological sex. Clinical evidence suggests that schizophrenia occurs in patients with GID at rates higher than in the general population and that patients with GID may have schizophrenia-like personality traits. Conversely, patients with schizophrenia may experience alterations in gender identity and gender role perception. Neurobiological research, including brain imaging and studies of finger length ratio and handedness, suggests that both these disorders are associated with altered cerebral sexual dimorphism and changes in cerebral lateralization. Various mechanisms, such as Toxoplasma infection, reduced levels of brain-derived neurotrophic factor (BDNF), early childhood adversity, and links with autism spectrum disorders, may account for some of this overlap. The implications of this association for further research are discussed.

  3. Gender Identity Disorder and Schizophrenia: Neurodevelopmental Disorders with Common Causal Mechanisms?

    PubMed Central

    Rajkumar, Ravi Philip

    2014-01-01

    Gender identity disorder (GID), recently renamed gender dysphoria (GD), is a rare condition characterized by an incongruity between gender identity and biological sex. Clinical evidence suggests that schizophrenia occurs in patients with GID at rates higher than in the general population and that patients with GID may have schizophrenia-like personality traits. Conversely, patients with schizophrenia may experience alterations in gender identity and gender role perception. Neurobiological research, including brain imaging and studies of finger length ratio and handedness, suggests that both these disorders are associated with altered cerebral sexual dimorphism and changes in cerebral lateralization. Various mechanisms, such as Toxoplasma infection, reduced levels of brain-derived neurotrophic factor (BDNF), early childhood adversity, and links with autism spectrum disorders, may account for some of this overlap. The implications of this association for further research are discussed. PMID:25548672

  4. Mixed Neurodevelopmental and Neurodegenerative Pathology in Nhe6-Null Mouse Model of Christianson Syndrome

    PubMed Central

    Xu, Meiyu; Ouyang, Qing; Gong, Jingyi; Pescosolido, Matthew F.; Mishra, Sasmita; Schmidt, Michael; Jones, Richard N.; Gamsiz Uzun, Ece D.; Lizarraga, Sofia B.

    2017-01-01

    Abstract Christianson syndrome (CS) is an X-linked disorder resulting from loss-of-function mutations in SLC9A6, which encodes the endosomal Na+/H+ exchanger 6 (NHE6). Symptoms include early developmental delay, seizures, intellectual disability, nonverbal status, autistic features, postnatal microcephaly, and progressive ataxia. Neuronal development is impaired in CS, involving defects in neuronal arborization and synaptogenesis, likely underlying diminished brain growth postnatally. In addition to neurodevelopmental defects, some reports have supported neurodegenerative pathology in CS with age. The objective of this study was to determine the nature of progressive changes in the postnatal brain in Nhe6-null mice. We examined the trajectories of brain growth and atrophy in mutant mice from birth until very old age (2 yr). We report trajectories of volume changes in the mutant that likely reflect both brain undergrowth as well as tissue loss. Reductions in volume are first apparent at 2 mo, particularly in the cerebellum, which demonstrates progressive loss of Purkinje cells (PCs). We report PC loss in two distinct Nhe6-null mouse models. More widespread reductions in tissue volumes, namely, in the hippocampus, striatum, and cortex, become apparent after 2 mo, largely reflecting delays in growth with more limited tissue losses with aging. Also, we identify pronounced glial responses, particularly in major fiber tracts such as the corpus callosum, where the density of activated astrocytes and microglia are substantially increased. The prominence of the glial response in axonal tracts suggests a primary axonopathy. Importantly, therefore, our data support both neurodevelopmental and degenerative mechanisms in the pathobiology of CS. PMID:29349289

  5. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria

    PubMed Central

    Brancaleoni, V.; Balwani, M.; Granata, F.; Graziadei, G.; Missineo, P.; Fiorentino, V.; Fustinoni, S.; Cappellini, M.D.; Naik, H.; Desnick, R.J.; Di Pierro, E.

    2015-01-01

    X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromsomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP. PMID:25615817

  6. Integrating care for neurodevelopmental disorders by unpacking control: A grounded theory study

    PubMed Central

    Waxegård, Gustaf; Thulesius, Hans

    2016-01-01

    Background To establish integrated healthcare pathways for patients with neurodevelopmental disorders (ND) such as autism spectrum disorder and attention-deficit hyperactivity disorder is challenging. This study sets out to investigate the main concerns for healthcare professionals when integrating ND care pathways and how they resolve these concerns. Methods Using classic grounded theory (Glaser), we analysed efforts to improve and integrate an ND care pathway for children and youth in a Swedish region over a period of 6 years. Data from 42 individual interviews with a range of ND professionals, nine group interviews with healthcare teams, participant observation, a 2-day dialogue conference, focus group meetings, regional media coverage, and reports from other Swedish regional ND projects were analysed. Results The main concern for participants was to deal with overwhelming ND complexity by unpacking control, which is control over strategies to define patients’ status and needs. Unpacking control is key to the professionals’ strivings to expand constructive life space for patients, to squeeze health care to reach available care goals, to promote professional ideologies, and to uphold workplace integrity. Control-seeking behaviour in relation to ND unpacking is ubiquitous and complicates integration of ND care pathways. Conclusions The Unpacking control theory expands central aspects of professions theory and may help to improve ND care development. PMID:27609793

  7. Pesticides, Neurodevelopmental Disagreement, and Bradford Hill's Guidelines.

    PubMed

    Shrader-Frechette, Kristin; ChoGlueck, Christopher

    2016-06-27

    Neurodevelopmental disorders such as autism affect one-eighth of all U.S. newborns. Yet scientists, accessing the same data and using Bradford-Hill guidelines, draw different conclusions about the causes of these disorders. They disagree about the pesticide-harm hypothesis, that typical United States prenatal pesticide exposure can cause neurodevelopmental damage. This article aims to discover whether apparent scientific disagreement about this hypothesis might be partly attributable to questionable interpretations of the Bradford-Hill causal guidelines. Key scientists, who claim to employ Bradford-Hill causal guidelines, yet fail to accept the pesticide-harm hypothesis, fall into errors of trimming the guidelines, requiring statistically-significant data, and ignoring semi-experimental evidence. However, the main scientists who accept the hypothesis appear to commit none of these errors. Although settling disagreement over the pesticide-harm hypothesis requires extensive analysis, this article suggests that at least some conflicts may arise because of questionable interpretations of the guidelines.

  8. De Novo and Inherited Loss-of-Function Variants in TLK2: Clinical and Genotype-Phenotype Evaluation of a Distinct Neurodevelopmental Disorder.

    PubMed

    Reijnders, Margot R F; Miller, Kerry A; Alvi, Mohsan; Goos, Jacqueline A C; Lees, Melissa M; de Burca, Anna; Henderson, Alex; Kraus, Alison; Mikat, Barbara; de Vries, Bert B A; Isidor, Bertrand; Kerr, Bronwyn; Marcelis, Carlo; Schluth-Bolard, Caroline; Deshpande, Charu; Ruivenkamp, Claudia A L; Wieczorek, Dagmar; Baralle, Diana; Blair, Edward M; Engels, Hartmut; Lüdecke, Hermann-Josef; Eason, Jacqueline; Santen, Gijs W E; Clayton-Smith, Jill; Chandler, Kate; Tatton-Brown, Katrina; Payne, Katelyn; Helbig, Katherine; Radtke, Kelly; Nugent, Kimberly M; Cremer, Kirsten; Strom, Tim M; Bird, Lynne M; Sinnema, Margje; Bitner-Glindzicz, Maria; van Dooren, Marieke F; Alders, Marielle; Koopmans, Marije; Brick, Lauren; Kozenko, Mariya; Harline, Megan L; Klaassens, Merel; Steinraths, Michelle; Cooper, Nicola S; Edery, Patrick; Yap, Patrick; Terhal, Paulien A; van der Spek, Peter J; Lakeman, Phillis; Taylor, Rachel L; Littlejohn, Rebecca O; Pfundt, Rolph; Mercimek-Andrews, Saadet; Stegmann, Alexander P A; Kant, Sarina G; McLean, Scott; Joss, Shelagh; Swagemakers, Sigrid M A; Douzgou, Sofia; Wall, Steven A; Küry, Sébastien; Calpena, Eduardo; Koelling, Nils; McGowan, Simon J; Twigg, Stephen R F; Mathijssen, Irene M J; Nellaker, Christoffer; Brunner, Han G; Wilkie, Andrew O M

    2018-06-07

    Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Association Between Parenting Stress and Functional Impairment Among Children Diagnosed with Neurodevelopmental Disorders.

    PubMed

    Almogbel, Yasser S; Goyal, Rohit; Sansgiry, Sujit S

    2017-05-01

    The objective of this study was to examine the association between parenting stress and functional impairment among children with Neurodevelopmental Disorder (NDD). A sample of 150 parents of children diagnosed with NDD were recruited from schools that offer special education services. Parents completed a self-administered survey containing the parenting stress index-short form (PSI-SF) scale and the Columbia Impairment Scale. The multiple logistic regression conducted to compare those with clinically significant PSI-SF scores indicated that the risk of parents with clinically significant scores of parenting stress increased 5.5 times with functionally impaired children with NDD. Further the risk of stress increased 4.6 times when these parents reported having their own disorder/disease. The risk of stress was reduced by 57% for those who had higher than a college level education compared to those with a college level education or below. These findings might help health care providers to initiate early intervention strategies such as peer support and education that can prevent parenting stress and reduce the risk of potential incidence of depression.

  10. Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.

    PubMed

    Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T

    1995-05-20

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.

  11. Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement

    PubMed Central

    Bennett, Deborah; Bellinger, David C.; Birnbaum, Linda S.; Bradman, Asa; Chen, Aimin; Cory-Slechta, Deborah A.; Engel, Stephanie M.; Fallin, M. Daniele; Halladay, Alycia; Hauser, Russ; Hertz-Picciotto, Irva; Kwiatkowski, Carol F.; Lanphear, Bruce P.; Marquez, Emily; Marty, Melanie; McPartland, Jennifer; Newschaffer, Craig J.; Payne-Sturges, Devon; Patisaul, Heather B.; Perera, Frederica P.; Ritz, Beate; Sass, Jennifer; Schantz, Susan L.; Webster, Thomas F.; Whyatt, Robin M.; Woodruff, Tracey J.; Zoeller, R. Thomas; Anderko, Laura; Campbell, Carla; Conry, Jeanne A.; DeNicola, Nathaniel; Gould, Robert M.; Hirtz, Deborah; Huffling, Katie; Landrigan, Philip J.; Lavin, Arthur; Miller, Mark; Mitchell, Mark A.; Rubin, Leslie; Schettler, Ted; Tran, Ho Luong; Acosta, Annie; Brody, Charlotte; Miller, Elise; Miller, Pamela; Swanson, Maureen; Witherspoon, Nsedu Obot

    2016-01-01

    Summary: Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development

  12. Placental sulfatase deficiency: maternal and fetal expression of steroid sulfatase deficiency and X-linked ichthyosis.

    PubMed

    Bradshaw, K D; Carr, B R

    1986-07-01

    PSD-X-linked ichthyosis are manifestations of a similar disorder of an inborn error of metabolism characterized by a deficiency of steroid sulfatase. The decreased enzyme activity is due to the absence of the expression of enzyme (steroid sulfatase) protein. Affected individuals with this disorder are males (X-linked inheritance) with a frequency of 1/2000 to 1/6000 births. Homozygous females from cosanguineous marriages have been reported with this disorder. The diagnosis is suspected and confirmed by: Low estriol excretion; Negative DHEAS loading test Increased DHEAS in amnionic fluid; Normal DHEAS in cord plasma; Possible delayed or abnormal labor patterns; Decreased sulfatase activity in the placenta, fibroblast, erythrocytes, lymphocytes or leukocytes of affected individuals; Development of ichthyosis in male infants at 2 to 3 months of age.

  13. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia.

    PubMed

    Jonsson, Kenneth B; Zahradnik, Richard; Larsson, Tobias; White, Kenneth E; Sugimoto, Toshitsugu; Imanishi, Yasuo; Yamamoto, Takehisa; Hampson, Geeta; Koshiyama, Hiroyuki; Ljunggren, Osten; Oba, Koichi; Yang, In Myung; Miyauchi, Akimitsu; Econs, Michael J; Lavigne, Jeffrey; Jüppner, Harald

    2003-04-24

    Mutations in fibroblast growth factor 23 (FGF-23) cause autosomal dominant hypophosphatemic rickets. Clinical and laboratory findings in this disorder are similar to those in oncogenic osteomalacia, in which tumors abundantly express FGF-23 messenger RNA, and to those in X-linked hypophosphatemia, which is caused by inactivating mutations in a phosphate-regulating endopeptidase called PHEX. Recombinant FGF-23 induces phosphaturia and hypophosphatemia in vivo, suggesting that it has a role in phosphate regulation. To determine whether FGF-23 circulates in healthy persons and whether it is elevated in those with oncogenic osteomalacia or X-linked hypophosphatemia, an immunometric assay was developed to measure it. Using affinity-purified, polyclonal antibodies against [Tyr223]FGF-23(206-222)amide and [Tyr224]FGF-23(225-244)amide, we developed a two-site enzyme-linked immunosorbent assay that detects equivalently recombinant human FGF-23, the mutant form in which glutamine is substituted for arginine at position 179 (R179Q), and synthetic human FGF-23(207-244)amide. Plasma or serum samples from 147 healthy adults (mean [+/-SD] age, 48.4+/-19.6 years) and 26 healthy children (mean age, 10.9+/-5.5 years) and from 17 patients with oncogenic osteomalacia (mean age, 43.0+/-13.3 years) and 21 patients with X-linked hypophosphatemia (mean age, 34.9+/-17.2 years) were studied. Mean FGF-23 concentrations in the healthy adults and children were 55+/-50 and 69+/-36 reference units (RU) per milliliter, respectively. Four patients with oncogenic osteomalacia had concentrations ranging from 426 to 7970 RU per milliliter, which normalized after tumor resection. FGF-23 concentrations were 481+/-528 RU per milliliter in those with suspected oncogenic osteomalacia and 353+/-510 RU per milliliter (range, 31 to 2335) in those with X-linked hypophosphatemia. FGF-23 is readily detectable in the plasma or serum of healthy persons and can be markedly elevated in those with oncogenic

  14. Targeted sequencing identifies 91 neurodevelopmental disorder risk genes with autism and developmental disability biases

    PubMed Central

    Stessman, Holly A. F.; Xiong, Bo; Coe, Bradley P.; Wang, Tianyun; Hoekzema, Kendra; Fenckova, Michaela; Kvarnung, Malin; Gerdts, Jennifer; Trinh, Sandy; Cosemans, Nele; Vives, Laura; Lin, Janice; Turner, Tychele N.; Santen, Gijs; Ruivenkamp, Claudia; Kriek, Marjolein; van Haeringen, Arie; Aten, Emmelien; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Haan, Eric; Shaw, Marie; Gecz, Jozef; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Schwartz, Charles; Kooy, R. Frank; Vandeweyer, Geert; Helsmoortel, Celine; Romano, Corrado; Alberti, Antonino; Vinci, Mirella; Avola, Emanuela; Giusto, Stefania; Courchesne, Eric; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Amaral, David; Scheffer, Ingrid E.; Delatycki, Martin B.; Lockhart, Paul J.; Hormozdiari, Fereydoun; Harich, Benjamin; Castells-Nobau, Anna; Xia, Kun; Peeters, Hilde; Nordenskjöld, Magnus; Schenck, Annette; Bernier, Raphael A.; Eichler, Evan E.

    2017-01-01

    Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 patients and >2,867 controls. We report 91 genes with an excess of de novo mutations or private disruptive mutations in 5.7% of patients, including 38 novel NDD genes. Drosophila functional assays of a subset bolster their involvement in NDDs. We identify 25 genes that show a bias for autism versus intellectual disability and highlight a network associated with high-functioning autism (FSIQ>100). Clinical follow-up for NAA15, KMT5B, and ASH1L reveals novel syndromic and non-syndromic forms of disease. PMID:28191889

  15. Neurodevelopmental variability in three young girls with a rare chromosomal disorder, 48, XXXX.

    PubMed

    Samango-Sprouse, Carole; Keen, Colleen; Mitchell, Francie; Sadeghin, Teresa; Gropman, Andrea

    2015-10-01

    Fourty eight, XXXX is a rare chromosomal aneuploidy associated with neurocognitive deficits, speech and language disorders and executive dysfunction but the scarcity and variability of reported cases limit our understanding of the 48, XXXX phenotype. To our knowledge, this is the first study to report on the neurodevelopmental profile of three young females with 48, XXXX. Patient 1 (age = 11.0), Patient 2 (age = 10.9), and Patient 3 (age = 6.4) were evaluated using comprehensive neurodevelopmental assessments. Parent questionnaires were completed to assess behavioral and psychosocial domains including executive function, ADHD and anxiety. Nonverbal intelligence quotients were 56, 80, and 91 for Patients 1, 2, and 3, respectively. There were significantly impaired visual motor capacities in graphomotor and perceptual domains below the 5th centile in Patients 1 and 2, and mildly impaired visual perception skills in Patient 3. All three patients had Childhood Apraxia of Speech (CAS) but of varying severity and similar executive dysfunction, externalizing problems and social difficulties. Familial learning disabilities (FLD) in Patient 1 and the co-occurrence of ADHD in Patient's 1 and 2 may contribute to their more impaired cognitive performances relative to Patient 3 who is the second reported case of 48, XXXX to have normal intellect. These distinct and overlapping characteristics expand the phenotypic profile of 48, XXXX and may be used in the counseling of families and treatment of children with 48, XXXX. © 2015 Wiley Periodicals, Inc.

  16. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour.

    PubMed

    Lesch, Klaus-Peter; Araragi, Naozumi; Waider, Jonas; van den Hove, Daniel; Gutknecht, Lise

    2012-09-05

    Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.

  17. Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders

    PubMed Central

    Ji, Baohu; Higa, Kerin K.; Kelsoe, John R.; Zhou, Xianjin

    2015-01-01

    Background Psychiatric disorders are common mental disorders without a pathological biomarker. Classic genetic studies found that an extra X chromosome frequently causes psychiatric symptoms in patients with either Klinefelter syndrome (XXY) or Triple X syndrome (XXX). Over-dosage of some X-linked escapee genes was suggested to cause psychiatric disorders. However, relevance of these rare genetic diseases to the pathogenesis of psychiatric disorders in the general population of psychiatric patients is unknown. Methods XIST and several X-linked genes were studied in 36 lymphoblastoid cell lines from healthy females and 60 lymphoblastoid cell lines from female patients with either bipolar disorder or recurrent major depression. XIST and KDM5C expression was also quantified in 48 RNA samples from postmortem human brains of healthy female controls and female psychiatric patients. Findings We found that the XIST gene, a master in control of X chromosome inactivation (XCI), is significantly over-expressed (p = 1 × 10− 7, corrected after multiple comparisons) in the lymphoblastoid cells of female patients with either bipolar disorder or major depression. The X-linked escapee gene KDM5C also displays significant up-regulation (p = 5.3 × 10− 7, corrected after multiple comparisons) in the patients' cells. Expression of XIST and KDM5C is highly correlated (Pearson's coefficient, r = 0.78, p = 1.3 × 10− 13). Studies on human postmortem brains supported over-expression of the XIST gene in female psychiatric patients. Interpretations We propose that over-expression of XIST may cause or result from subtle alteration of XCI, which up-regulates the expression of some X-linked escapee genes including KDM5C. Over-expression of X-linked genes could be a common mechanism for the development of psychiatric disorders between patients with those rare genetic diseases and the general population of female psychiatric patients with XIST over-expression. Our studies

  18. Functional characterization of rare FOXP2 variants in neurodevelopmental disorder.

    PubMed

    Estruch, Sara B; Graham, Sarah A; Chinnappa, Swathi M; Deriziotis, Pelagia; Fisher, Simon E

    2016-01-01

    Heterozygous disruption of FOXP2 causes a rare form of speech and language impairment. Screens of the FOXP2 sequence in individuals with speech/language-related disorders have identified several rare protein-altering variants, but their phenotypic relevance is often unclear. FOXP2 encodes a transcription factor with a forkhead box DNA-binding domain, but little is known about the functions of protein regions outside this domain. We performed detailed functional analyses of seven rare FOXP2 variants found in affected cases, including three which have not been previously characterized, testing intracellular localization, transcriptional regulation, dimerization, and interaction with other proteins. To shed further light on molecular functions of FOXP2, we characterized the interaction between this transcription factor and co-repressor proteins of the C-terminal binding protein (CTBP) family. Finally, we analysed the functional significance of the polyglutamine tracts in FOXP2, since tract length variations have been reported in cases of neurodevelopmental disorder. We confirmed etiological roles of multiple FOXP2 variants. Of three variants that have been suggested to cause speech/language disorder, but never before been characterized, only one showed functional effects. For the other two, we found no effects on protein function in any assays, suggesting that they are incidental to the phenotype. We identified a CTBP-binding region within the N-terminal portion of FOXP2. This region includes two amino acid substitutions that occurred on the human lineage following the split from chimpanzees. However, we did not observe any effects of these amino acid changes on CTBP binding or other core aspects of FOXP2 function. Finally, we found that FOXP2 variants with reduced polyglutamine tracts did not exhibit altered behaviour in cellular assays, indicating that such tracts are non-essential for core aspects of FOXP2 function, and that tract variation is unlikely to be a

  19. Communication Intervention for Young Children with Severe Neurodevelopmental Disabilities via Telehealth

    ERIC Educational Resources Information Center

    Simacek, Jessica; Dimian, Adele F.; McComas, Jennifer J.

    2017-01-01

    Young children with neurodevelopmental disorders such as autism spectrum disorders (ASD) and Rett syndrome often experience severe communication impairments. This study examined the efficacy of parent-implemented communication assessment and intervention with remote coaching via telehealth on the acquisition of early communication skills of three…

  20. MULTIMODAL IMAGING OF MOSAIC RETINOPATHY IN CARRIERS OF HEREDITARY X-LINKED RECESSIVE DISEASES.

    PubMed

    Wu, An-Lun; Wang, Jung-Pan; Tseng, Yun-Ju; Liu, Laura; Kang, Yu-Chuan; Chen, Kuan-Jen; Chao, An-Ning; Yeh, Lung-Kun; Chen, Tun-Lu; Hwang, Yih-Shiou; Wu, Wei-Chi; Lai, Chi-Chun; Wang, Nan-Kai

    2018-05-01

    To investigate the clinical features in carriers of X-linked retinitis pigmentosa, X-linked ocular albinism, and choroideremia (CHM) using multimodal imaging and to assess their diagnostic value in these three mosaic retinopathies. We prospectively examined 14 carriers of 3 X-linked recessive disorders (X-linked retinitis pigmentosa, X-linked ocular albinism, and CHM). Details of abnormalities of retinal morphology were evaluated using fundus photography, fundus autofluorescence (FAF) imaging, and spectral domain optical coherence tomography. In six X-linked retinitis pigmentosa carriers, fundus appearance varied from unremarkable to the presence of tapetal-like reflex and pigmentary changes. On FAF imaging, all carriers exhibited a bright radial reflex against a dark background. By spectral domain optical coherence tomography, loss of the ellipsoid zone in the macula was observed in 3 carriers (50%). Regarding the retinal laminar architecture, 4 carriers (66.7%) showed thinning of the outer nuclear layer and a dentate appearance of the outer plexiform layer. All five X-linked ocular albinism carriers showed a characteristic mud-splatter patterned fundus, dark radial streaks against a bright background on FAF imaging, and a normal-appearing retinal structure by spectral domain optical coherence tomography imaging. Two of the 3 CHM carriers (66.7%) showed a diffuse moth-eaten appearance of the fundus, and all 3 showed irregular hyper-FAF and hypo-FAF spots throughout the affected area. In the CHM carriers, the structural changes observed by spectral domain optical coherence tomography imaging were variable. Our findings in an Asian cohort suggest that FAF imaging is a practical diagnostic test for differentiating X-linked retinitis pigmentosa, X-linked ocular albinism, and CHM carriers. Wide-field FAF is an easy and helpful adjunct to testing for the correct diagnosis and identification of lyonization in carriers of these three mosaic retinopathies.

  1. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    PubMed Central

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  2. Brief Report: Non-Random X Chromosome Inactivation in Females with Autism

    ERIC Educational Resources Information Center

    Talebizadeh, Z.; Bittel, D. C.; Veatch, O. J.; Kibiryeva, N.; Butler, M. G.

    2005-01-01

    Autism is a heterogeneous neurodevelopmental disorder with a 3-4 times higher sex ratio in males than females. X chromosome genes may contribute to this higher sex ratio through unusual skewing of X chromosome inactivation. We studied X chromosome skewness in 30 females with classical autism and 35 similarly aged unaffected female siblings as…

  3. fMRI assessment of neuroplasticity in youths with neurodevelopmental-associated motor disorders after piano training.

    PubMed

    Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Thienel, Anna; Wohlschläger, Afra; Lampe, Renée

    2015-01-01

    Damage to the developing brain may lead to lifelong motor impairments namely of the hand function. Playing an instrument combines the execution of gross and fine motor movements with direct auditory feedback of performance and with emotional value. This motor-associated sensory information may work as a self-control of motor performance in therapeutic settings. The current study examined the occurrence of neuronal changes associated to piano training in youths with neurodevelopmental-associated hand motor deficits. Functional magnetic resonance imaging responses evoked during a finger tapping task in a group of ten youths with neuromotor impairments that received individualized piano lessons for eighteen months were analyzed. Functional imaging data obtained before and after the piano training was compared to that obtained from a similar group of six youths who received no training during the same period of time. Dynamic causal modeling of functional data indicated an increase in positive connectivity from the left primary motor cortical area to the right cerebellum from before to after the piano training. A wide variability across patients was observed and further studies remain necessary to clarify the neurophysiological basis of the effects of piano training in hand motor function of patients with neurodevelopmental motor disorders. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. The Expression of Caspases Is Enhanced in Peripheral Blood Mononuclear Cells of Autism Spectrum Disorder Patients

    ERIC Educational Resources Information Center

    Siniscalco, Dario; Sapone, Anna; Giordano, Catia; Cirillo, Alessandra; de Novellis, Vito; de Magistris, Laura; Rossi, Francesco; Fasano, Alessio; Maione, Sabatino; Antonucci, Nicola

    2012-01-01

    Autism and autism spectrum disorders (ASDs) are heterogeneous complex neuro-developmental disorders characterized by dysfunctions in social interaction and communication skills. Their pathogenesis has been linked to interactions between genes and environmental factors. Consistent with the evidence of certain similarities between immune cells and…

  5. Multifarious Functions of the Fragile X Mental Retardation Protein.

    PubMed

    Davis, Jenna K; Broadie, Kendal

    2017-10-01

    Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Analysis of the parental origin of de novo MECP2 mutations and X chromosome inactivation in 24 sporadic patients with Rett syndrome in China.

    PubMed

    Zhu, Xingwang; Li, Meirong; Pan, Hong; Bao, Xinhua; Zhang, Jingjing; Wu, Xiru

    2010-07-01

    Rett syndrome is an X-linked neurodevelopmental disorder that predominantly affects females. It is caused by mutations in methyl-CpG-binding protein 2 gene. Due to the sex-limited expression, it has been suggested that de novo X-linked mutations may exclusively occur in male germ cells and thus only females are affected. In this study, the authors have analyzed the parental origin of mutations and the X-chromosome inactivation status in 24 sporadic patients with identified methyl-CpG-binding protein 2 gene mutations. The results showed that 22 of 24 patients have a paternal origin. Only 2 patients have a maternal origin. Except for 2 cases which were homozygotic at the androgen receptor gene locus, of the remaining 22 cases, 16 cases have a random X-chromosome inactivation pattern; the other 6 cases have a skewed X-chromosome inactivation and they favor expression of the wild allele. The relationship between X-chromosome inactivation and phenotype may need more cases to explore.

  7. Neonatal and childhood neurodevelopmental, health and educational outcomes of children exposed to antidepressants and maternal depression during pregnancy: protocol for a retrospective population-based cohort study using linked administrative data

    PubMed Central

    Singal, Deepa; Brownell, Marni; Chateau, Dan; Ruth, Chelsea; Katz, Laurence Y

    2016-01-01

    Introduction Antidepressants are commonly prescribed during pregnancy; however, there are inconsistent data on the safety of these medications during the prenatal period. To address this gap, this study will investigate short-term and long-term neurodevelopmental, physical and mental health, and educational outcomes of children who have been exposed to selective serotonin reuptake inhibitors (SSRIs) or selective serotonin norepinephrine reuptake inhibitors (SNRIs) and/or maternal depression during pregnancy. Methods and analysis Administrative data will be linked to generate 4 population-based exposed groups from all children born in Manitoba between 1996 and 2014 whose mother had at least 2 prescriptions for either an SSRI or SNRI: (1) throughout the prenatal period (beginning of pregnancy until birth); (2) in the first trimester (≤14 weeks gestation); (3) in the second trimester (15–26 weeks gestation); (4) in the third trimester (≥27 weeks gestation) and 1 population-based unexposed group consisting of children whose mothers had a diagnosis of mood or anxiety disorder during pregnancy but did not use antidepressants. Propensity scores and inverse probability treatment weights will be used to adjust for confounding. Multivariate regression modelling will determine whether, compared with untreated mood/anxiety disorder, prenatal exposure to antidepressant medications is associated with: (1) adverse birth and neonatal outcomes, including: preterm birth, low birth weight, low Apgar scores, respiratory distress, congenital malformations and persistent pulmonary hypertension; (2) adverse early childhood outcomes, including: early childhood education challenges, diagnosis of neurodevelopmental disorders and diagnosis of mental disorders. We will determine if exposure effects differ between SSRIs and SRNIs, and determine if exposure effects differ between gestation timing of exposure to antidepressants. Ethics and dissemination Ethical approval was obtained

  8. Genetics Home Reference: X-linked dilated cardiomyopathy

    MedlinePlus

    ... Twitter Home Health Conditions X-linked dilated cardiomyopathy X-linked dilated cardiomyopathy Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description X-linked dilated cardiomyopathy is a form of heart ...

  9. Genetics Home Reference: X-linked myotubular myopathy

    MedlinePlus

    ... Twitter Home Health Conditions X-linked myotubular myopathy X-linked myotubular myopathy Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description X-linked myotubular myopathy is a condition that primarily ...

  10. Neurodevelopmental Treatment (NDT): Therapeutic Intervention and Its Efficacy.

    ERIC Educational Resources Information Center

    Stern, Francine Martin; Gorga, Delia

    1988-01-01

    Use of neurodevelopmental treatment, also known as the Bobath method, is discussed, including its history, philosophy, goals, and treatment emphasis with infants and children with movement disorders. Examples of children before and after therapeutic intervention illustrate use of the technique, and controversies in measuring therapy efficacy are…

  11. Paternal inheritance of classic X-linked bilateral periventricular nodular heterotopia.

    PubMed

    Kasper, Burkhard S; Kurzbuch, Katrin; Chang, Bernard S; Pauli, Elisabeth; Hamer, Hajo M; Winkler, Jürgen; Hehr, Ute

    2013-06-01

    Periventricular nodular heterotopia (PNH) is a developmental disorder of the central nervous system, characterized by heterotopic nodules of gray matter resulting from disturbed neuronal migration. The most common form of bilateral PNH is X-linked dominant inherited, caused by mutations in the Filamin A gene (FLNA) and associated with a wide variety of other clinical findings including congenital heart disease. The typical patient with FLNA-associated PNH is female and presents with difficult to treat seizures. In contrast, hemizygous FLNA loss of function mutations in males are reported to be perinatally lethal. In X-linked dominant traits like FLNA-associated PNH the causal mutation is commonly inherited from the mother. Here, we present an exceptional family with paternal transmission of classic bilateral FLNA-associated PNH from a mildly affected father with somatic and germline mosaicism for a c.5686G>A FLNA splice mutation to both daughters with strikingly variable clinical manifestation and PNH extent in cerebral MR imaging. Our observations emphasize the importance to consider in genetic counseling and risk assessment the rare genetic constellation of paternal transmission for families with X-linked dominant inherited FLNA-associated PNH. Copyright © 2013 Wiley Periodicals, Inc.

  12. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity.

    PubMed

    Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2016-09-01

    Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity

    PubMed Central

    Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H.

    2016-01-01

    Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3′,5′-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)—an enzyme involved in the metabolism of T4—by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile–treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. PMID:27413119

  14. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders.

    PubMed

    Varadinova, Miroslava; Boyadjieva, Nadka

    2015-12-01

    The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse

    PubMed Central

    Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L.; Coba, Marcelo P.; Levitt, Pat

    2016-01-01

    Background Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Methods Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays (PLA) in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Results Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1 and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism, but not schizophrenia, bipolar disorder, major depressive disorder or attentional deficit hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices, but not with highly expressed genes that are not in the interactome. PLA and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. Conclusions The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. PMID:27086544

  16. Neurodevelopmental model of schizophrenia: update 2012

    PubMed Central

    Rapoport, JL; Giedd, JN; Gogtay, N

    2012-01-01

    The neurodevelopmental model of schizophrenia, which posits that the illness is the end state of abnormal neurodevelopmental processes that started years before the illness onset, is widely accepted, and has long been dominant for childhood-onset neuropsychiatric disorders. This selective review updates our 2005 review of recent studies that have impacted, or have the greatest potential to modify or extend, the neurodevelopmental model of schizophrenia. Longitudinal whole-population studies support a dimensional, rather than categorical, concept of psychosis. New studies suggest that placental pathology could be a key measure in future prenatal high-risk studies. Both common and rare genetic variants have proved surprisingly diagnostically nonspecific, and copy number variants (CNVs) associated with schizophrenia are often also associated with autism, epilepsy and intellectual deficiency. Large post-mortem gene expression studies and prospective developmental multi-modal brain imaging studies are providing critical data for future clinical and high-risk developmental brain studies. Whether there can be greater molecular specificity for phenotypic characterization is a subject of current intense study and debate, as is the possibility of neuronal phenotyping using human pluripotent-inducible stem cells. Biological nonspecificity, such as in timing or nature of early brain development, carries the possibility of new targets for broad preventive treatments. PMID:22488257

  17. Step-Initiation Deficits in Children with Faulty Posture Diagnosed with Neurodevelopmental Disorders during Infancy.

    PubMed

    Stania, Magdalena; Sarat-Spek, Alina; Blacha, Teresa; Kazek, Beata; Słomka, Kajetan J; Emich-Widera, Ewa; Juras, Grzegorz

    2017-01-01

    Early detection of movement deficits during step initiation will facilitate the selection of the optimal physiotherapy management strategy. The main aim of the study was to assess potential differences in step initiation between 5- and 6-year-old children with faulty posture who had been diagnosed with neurodevelopmental disorders during infancy and healthy children. The experimental group consisted of 19 children aged 5-6 years with faulty posture, who had been diagnosed with neurodevelopmental disorders during infancy and were given physiotherapy in the first year of their lives. The control group comprised 19 nursery school children aged 5-6 years with no postural defects, no history of postural control or movement deficits, and no physiotherapy interventions in the first year of their lives. Step initiation was performed on force platforms under various conditions, i.e., with and without an obstacle, stepping up onto a platform placed at a higher level, stepping down onto a platform placed on a lower level. The recording of center of foot pressure (COP) displacements was divided into three phases: phase 1 (P1)-quiet standing before step initiation, phase 2 (P2)-transit, phase 3 (P3)-quiet standing until measurement completion. The Tukey post hoc test showed that the means of sway range (raCOP) and mean velocity (vCOP) in sagittal ( AP ) plane for phase 1 and vCOP in frontal ( ML ) plane for phase 3 registered in the step-up trial were significantly higher ( p  < 0.05) in children with faulty posture compared to children with typical development. P1vCOP ML , P3vCOP AP , P3raCOP ML , and P3vCOP ML of the step-down trial were also significantly higher in children with faulty posture ( p  < 0.05). Inclusion of functional movement exercises (stair-walking tasks) in physiotherapy interventions for children with postural defects seems well justified.The trial was registered in the Australian and New Zealand Clinical Trials Registry (no. ACTRN12617001068358).

  18. Neurodevelopmental Versus Neurodegenerative Model of Schizophrenia and Bipolar Disorder: Comparison with Physiological Brain Development and Aging.

    PubMed

    Buoli, Massimiliano; Serati, Marta; Caldiroli, Alice; Cremaschi, Laura; Altamura, Alfredo Carlo

    2017-03-01

    Available data support a contribution of both neurodevelopmental and neurodegenerative factors in the etiology of schizophrenia (SCH) and bipolar disorder (BD). Of note, one of the most important issue of the current psychiatric research is to identify the specific factors that contribute to impaired brain development and neurodegeneration in SCH and BD, and especially how these factors alter normal brain development and physiological aging process. Our hypothesis is that only specific damages, taking place in precise brain development stages, are associated with future SCH /BD onset and that neurodegeneration consists of an acceleration of brain aging after SCH /BD onset. In support of our hypothesis, the results of the present narrative mini-review shows as neurodevelopmental damages generally contribute to neuropsychiatric syndromes (e.g. hypothyroidism or treponema pallidum), but only some of them are specifically associated with adult SCH and BD (e.g. toxoplasma or substance abuse), particularly if they happen in specific stages of brain development. On the other hand, cognitive impairment and brain changes, associated with long duration of SCH /BD, look like what happens during aging: memory, executive domains and prefrontal cortex are implicated both in aging and in SCH /BD progression. Future research will explore possible validity of this etiological model for SCH and BD.

  19. ErbB4 in Laminated Brain Structures: A Neurodevelopmental Approach to Schizophrenia

    PubMed Central

    Perez-Garcia, Carlos G.

    2015-01-01

    The susceptibility genes for schizophrenia Neuregulin-1 (NRG1) and ErbB4 have critical functions during brain development and in the adult. Alterations in the ErbB4 signaling pathway cause a variety of neurodevelopmental defects including deficiencies in neuronal migration, synaptic plasticity, and myelination. I have used the ErbB4-/- HER4heart KO mice to study the neurodevelopmental insults associated to deficiencies in the NRG1-ErbB4 signaling pathway and their potential implication with brain disorders such as schizophrenia, a chronic psychiatric disease affecting 1% of the population worldwide. ErbB4 deletion results in an array of neurodevelopmental deficits that are consistent with a schizophrenic model. First, similar defects appear in multiple brain structures, from the cortex to the cerebellum. Second, these defects affect multiple aspects of brain development, from deficits in neuronal migration to impairments in excitatory/inhibitory systems, including reductions in brain volume, cortical and cerebellar heterotopias, alterations in number and distribution of specific subpopulations of interneurons, deficiencies in the astrocytic and oligodendrocytic lineages, and additional insults in major brain structures. This suggests that alterations in specific neurodevelopmental genes that play similar functions in multiple neuroanatomical structures might account for some of the symptomatology observed in schizophrenic patients, such as defects in cognition. ErbB4 mutation uncovers flaws in brain development that are compatible with a neurodevelopmental model of schizophrenia, and it establishes a comprehensive model to study the basis of the disorder before symptoms are detected in the adult. PMID:26733804

  20. Application of carrier testing to genetic counseling for X-linked agammaglobulinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.C.; Nachtman, R.G.; Belmont, J.W.

    Bruton X-linked agammaglobulinemia (XLA) is a phenotypically recessive genetic disorder of B lymphocyte development. Female carriers of XLA, although asymptomatic, have a characteristic B cell lineage-specific skewing of the pattern of X inactivation. Skewing apparently results from defective growth and maturation of B cell precursors bearing a mutant active X chromosome. In this study, carrier status was tested in 58 women from 22 families referred with a history of agammaglobulinemia. Primary carrier analysis to examine patterns of X inactivation in CD19[sup +] peripheral blood cells (B lymphocytes) was conducted using quantitative PCR at the androgen-receptor locus. Obligate carriers of XLAmore » demonstrated >95% skewing of X inactivation in peripheral blood CD19[sup +] cells but not in CD19[sup [minus

  1. Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability.

    PubMed

    Reggiani, Claudio; Coppens, Sandra; Sekhara, Tayeb; Dimov, Ivan; Pichon, Bruno; Lufin, Nicolas; Addor, Marie-Claude; Belligni, Elga Fabia; Digilio, Maria Cristina; Faletra, Flavio; Ferrero, Giovanni Battista; Gerard, Marion; Isidor, Bertrand; Joss, Shelagh; Niel-Bütschi, Florence; Perrone, Maria Dolores; Petit, Florence; Renieri, Alessandra; Romana, Serge; Topa, Alexandra; Vermeesch, Joris Robert; Lenaerts, Tom; Casimir, Georges; Abramowicz, Marc; Bontempi, Gianluca; Vilain, Catheline; Deconinck, Nicolas; Smits, Guillaume

    2017-07-19

    Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.

  2. Mutational studies in X-linked Charcot-Marie-Tooth disease (CMTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherryson, A.K.; Yeung, L.; Kennerson, M.L.

    1994-09-01

    Charcot-Marie-Tooth disease, also known as hereditary motor and sensory neuropathy (HMSN), is a heterogeneous group of slowly progressive disorders of the peripheral nerve. X-linked CMT (CMTX) is characterized by slow motor nerve conduction velocities in affected males and the presence of mildly affected or normal carrier females with intermediate or normal nerve conduction velocities. CMTX, which has an incidence of 3.1 per 100,000 and accounts for approximately 10% of CMT cases, has been mapped to Xq13. One of the genes lying in this region, connexin 32, has been found to contain alterations in individuals affected with X-linked CMT. We havemore » identified our X-linked families from dominant type 1 CMT families using the clinical criteria given above. These families were screened for point mutations in connexin 32. We have identified three missense mutations, a G{r_arrow}A transition at amino acid 35 (valine to methionine), a C{r_arrow}G transition at amino acid 158 (proline to alanine) and a T{r_arrow}A transition at amino acid 182 (serine to threonine). Another family showed a 18 bp deletion, which removed the amino acid 111 to 116 inclusive (histidine, glycine, aspartic acid, proline, leucine, histidine).« less

  3. Bipolar Disorder and Cognitive Dysfunction: A Complex Link.

    PubMed

    Cipriani, Gabriele; Danti, Sabrina; Carlesi, Cecilia; Cammisuli, Davide Maria; Di Fiorino, Mario

    2017-10-01

    The aim of this article was to describe the current evidence regarding phenomenon of cognitive functioning and dementia in bipolar disorder (BD). Cochrane Library and PubMed searches were conducted for relevant articles, chapters, and books published before 2016. Search terms used included "bipolar disorder," "cognitive dysfunction," and "dementia." At the end of the selection process, 159 studies were included in our qualitative synthesis. As result, cognitive impairments in BD have been previously considered as infrequent and limited to the affective episodes. Nowadays, there is evidence of stable and lasting cognitive dysfunctions in all phases of BD, including remission phase, particularly in the following domains: attention, memory, and executive functions. The cause of cognitive impairment in BD raises the question if it subtends a neurodevelopmental or a neurodegenerative process. Impaired cognitive functioning associated with BD may contribute significantly to functional disability, in addition to the distorted affective component usually emphasized.

  4. Liver transplantation may prevent neurodevelopmental deterioration in high-risk patients with urea cycle disorders.

    PubMed

    Kido, Jun; Matsumoto, Shirou; Momosaki, Ken; Sakamoto, Rieko; Mitsubuchi, Hiroshi; Endo, Fumio; Nakamura, Kimitoshi

    2017-09-01

    UCDs are among the most common inherited metabolic diseases in Japan. We investigated the clinical manifestations, treatment, and prognoses of 177 patients with UCDs who were evaluated and treated from January 1999 to March 2009 in Japan, using a questionnaire survey. Among these 177 patients, 42 (seven with carbamoyl phosphate synthetase 1 deficiency, 27 with ornithine transcarbamylase deficiency, seven with argininosuccinate synthetase deficiency, and one with arginase 1 deficiency) underwent living-donor LT. Although this study was retrospective and included limited neurodevelopmental information before and after LT, we evaluated whether LT could improve neurodevelopmental outcomes in patients with UCDs. The neurodevelopmental outcomes of patients with a MAC of <300 μmol/L at the time of onset were not significantly different between the LT and non-LT groups (P=.222). LT may have prevented further neurodevelopmental complications in children with MAC ≥300 μmol/L (P=.008) compared with non-transplant management. Therefore, Liver transplant should be considered in patients with UCD with a MAC of ≥300 μmol/L at the time of disease onset. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders

    PubMed Central

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Bárbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceição, Inês C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F.; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.

    2014-01-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. PMID:24768552

  6. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.

    PubMed

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A S; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T; Oliveira, Bárbara; Marshall, Christian R; Magalhaes, Tiago R; Lowe, Jennifer K; Howe, Jennifer L; Griswold, Anthony J; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A; De Jonge, Maretha V; Cuccaro, Michael; Crawford, Emily L; Correia, Catarina T; Conroy, Judith; Conceição, Inês C; Chiocchetti, Andreas G; Casey, Jillian P; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L Alison; McGrew, Susan G; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M; Vieland, Veronica J; Vicente, Astrid M; Schellenberg, Gerard D; Pericak-Vance, Margaret; Paterson, Andrew D; Parr, Jeremy R; Oliveira, Guiomar; Nurnberger, John I; Monaco, Anthony P; Maestrini, Elena; Klauck, Sabine M; Hakonarson, Hakon; Haines, Jonathan L; Geschwind, Daniel H; Freitag, Christine M; Folstein, Susan E; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W

    2014-05-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse.

    PubMed

    Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L; Coba, Marcelo P; Levitt, Pat

    2016-12-15

    Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. Copyright © 2016 Society of Biological Psychiatry

  8. Genetics Home Reference: X-linked severe combined immunodeficiency

    MedlinePlus

    ... Facebook Twitter Home Health Conditions X-linked SCID X-linked severe combined immunodeficiency Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description X-linked severe combined immunodeficiency (SCID) is an inherited ...

  9. Perinatal Pitocin as an Early ADHD Biomarker: Neurodevelopmental Risk?

    ERIC Educational Resources Information Center

    Kurth, Lisa; Haussmann, Robert

    2011-01-01

    Objective: To investigate a potential relationship between coincidental increases in perinatal Pitocin usage and subsequent childhood ADHD onset in an attempt to isolate a specific risk factor as an early biomarker of this neurodevelopmental disorder. Method: Maternal labor/delivery and corresponding childbirth records of 172 regionally diverse,…

  10. Compound heterozygous HAX1 mutations in a Swedish patient with severe congenital neutropenia and no neurodevelopmental abnormalities.

    PubMed

    Carlsson, Göran; Elinder, Göran; Malmgren, Helena; Trebinska, Alicja; Grzybowska, Ewa; Dahl, Niklas; Nordenskjöld, Magnus; Fadeel, Bengt

    2009-12-01

    Kostmann disease or severe congenital neutropenia (SCN) is an autosomal recessive disorder of neutrophil production. Homozygous HAX1 mutations were recently identified in SCN patients belonging to the original family in northern Sweden described by Kostmann. Moreover, recent studies have suggested an association between neurological dysfunction and HAX1 deficiency. Here we describe a patient with a compound heterozygous HAX1 mutation consisting of a nonsense mutation (c.568C > T, p.Glu190X) and a frame-shift mutation (c.91delG, p.Glu31LysfsX54) resulting in a premature stop codon. The patient has a history of neutropenia and a propensity for infections, but has shown no signs of neurodevelopmental abnormalities.

  11. Increased gender variance in autism spectrum disorders and attention deficit hyperactivity disorder.

    PubMed

    Strang, John F; Kenworthy, Lauren; Dominska, Aleksandra; Sokoloff, Jennifer; Kenealy, Laura E; Berl, Madison; Walsh, Karin; Menvielle, Edgardo; Slesaransky-Poe, Graciela; Kim, Kyung-Eun; Luong-Tran, Caroline; Meagher, Haley; Wallace, Gregory L

    2014-11-01

    Evidence suggests over-representation of autism spectrum disorders (ASDs) and behavioral difficulties among people referred for gender issues, but rates of the wish to be the other gender (gender variance) among different neurodevelopmental disorders are unknown. This chart review study explored rates of gender variance as reported by parents on the Child Behavior Checklist (CBCL) in children with different neurodevelopmental disorders: ASD (N = 147, 24 females and 123 males), attention deficit hyperactivity disorder (ADHD; N = 126, 38 females and 88 males), or a medical neurodevelopmental disorder (N = 116, 57 females and 59 males), were compared with two non-referred groups [control sample (N = 165, 61 females and 104 males) and non-referred participants in the CBCL standardization sample (N = 1,605, 754 females and 851 males)]. Significantly greater proportions of participants with ASD (5.4%) or ADHD (4.8%) had parent reported gender variance than in the combined medical group (1.7%) or non-referred comparison groups (0-0.7%). As compared to non-referred comparisons, participants with ASD were 7.59 times more likely to express gender variance; participants with ADHD were 6.64 times more likely to express gender variance. The medical neurodevelopmental disorder group did not differ from non-referred samples in likelihood to express gender variance. Gender variance was related to elevated emotional symptoms in ADHD, but not in ASD. After accounting for sex ratio differences between the neurodevelopmental disorder and non-referred comparison groups, gender variance occurred equally in females and males.

  12. Chromosomal Microarray Analysis of Consecutive Individuals with Autism Spectrum Disorders Using an Ultra-High Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders.

    PubMed

    Ho, Karen S; Wassman, E Robert; Baxter, Adrianne L; Hensel, Charles H; Martin, Megan M; Prasad, Aparna; Twede, Hope; Vanzo, Rena J; Butler, Merlin G

    2016-12-09

    Copy number variants (CNVs) detected by chromosomal microarray analysis (CMA) significantly contribute to understanding the etiology of autism spectrum disorder (ASD) and other related conditions. In recognition of the value of CMA testing and its impact on medical management, CMA is in medical guidelines as a first-tier test in the evaluation of children with these disorders. As CMA becomes adopted into routine care for these patients, it becomes increasingly important to report these clinical findings. This study summarizes the results of over 4 years of CMA testing by a CLIA-certified clinical testing laboratory. Using a 2.8 million probe microarray optimized for the detection of CNVs associated with neurodevelopmental disorders, we report an overall CNV detection rate of 28.1% in 10,351 consecutive patients, which rises to nearly 33% in cases without ASD, with only developmental delay/intellectual disability (DD/ID) and/or multiple congenital anomalies (MCA). The overall detection rate for individuals with ASD is also significant at 24.4%. The detection rate and pathogenic yield of CMA vary significantly with the indications for testing, age, and gender, as well as the specialty of the ordering doctor. We note discrete differences in the most common recurrent CNVs found in individuals with or without a diagnosis of ASD.

  13. A Critical Neurodevelopmental Role for L-Type Voltage-Gated Calcium Channels in Neurite Extension and Radial Migration.

    PubMed

    Kamijo, Satoshi; Ishii, Yuichiro; Horigane, Shin-Ichiro; Suzuki, Kanzo; Ohkura, Masamichi; Nakai, Junichi; Fujii, Hajime; Takemoto-Kimura, Sayaka; Bito, Haruhiko

    2018-06-13

    Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca 2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCC during brain development remain unclear. Calcium signaling has been shown to be essential for neurodevelopmental processes such as sculpting of neurites, functional wiring, and fine tuning of growing networks. To investigate this relationship, we performed submembraneous calcium imaging using a membrane-tethered genetically encoded calcium indicator (GECI) Lck-G-CaMP7. We successfully recorded s pontaneous regenerative calcium transients (SRCaTs) in developing mouse excitatory cortical neurons prepared from both sexes before synapse formation. SRCaTs originated locally in immature neurites independently of somatic calcium rises and were significantly more elevated in the axons than in dendrites. SRCaTs were not blocked by tetrodoxin, a Na + channel blocker, but were strongly inhibited by hyperpolarization, suggesting a voltage-dependent source. Pharmacological and genetic manipulations revealed the critical importance of the Ca v 1.2 (CACNA1C) pore-forming subunit of L-type VGCCs, which were indeed expressed in immature mouse brains. Consistently, knocking out Ca v 1.2 resulted in significant alterations of neurite outgrowth. Furthermore, expression of a gain-of-function Ca v 1.2 mutant found in Timothy syndrome, an autosomal dominant multisystem disorder exhibiting syndromic autism, resulted in impaired radial migration of layer 2/3 excitatory neurons, whereas postnatal abrogation of Ca v 1.2 enhancement could rescue cortical malformation. Together, these lines of evidence suggest a critical role for spontaneous opening of L-type VGCCs in neural development and corticogenesis and indicate that L-type VGCCs might constitute a perinatal therapeutic target for neuropsychiatric calciochannelopathies. SIGNIFICANCE STATEMENT Despite many association

  14. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries

    PubMed Central

    Talkowski, Michael E.; Rosenfeld, Jill A.; Blumenthal, Ian; Pillalamarri, Vamsee; Chiang, Colby; Heilbut, Adrian; Ernst, Carl; Hanscom, Carrie; Rossin, Elizabeth; Lindgren, Amelia; Pereira, Shahrin; Ruderfer, Douglas; Kirby, Andrew; Ripke, Stephan; Harris, David; Lee, Ji-Hyun; Ha, Kyungsoo; Kim, Hyung-Goo; Solomon, Benjamin D.; Gropman, Andrea L.; Lucente, Diane; Sims, Katherine; Ohsumi, Toshiro K.; Borowsky, Mark L.; Loranger, Stephanie; Quade, Bradley; Lage, Kasper; Miles, Judith; Wu, Bai-Lin; Shen, Yiping; Neale, Benjamin; Shaffer, Lisa G.; Daly, Mark J.; Morton, Cynthia C.; Gusella, James F.

    2012-01-01

    SUMMARY Balanced chromosomal abnormalities (BCAs) represent a reservoir of single gene disruptions in neurodevelopmental disorders (NDD). We sequenced BCAs in autism and related NDDs, revealing disruption of 33 loci in four general categories: 1) genes associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, CDKL5), 2) single gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, SNURF-SNRPN), 3) novel risk loci (e.g., CHD8, KIRREL3, ZNF507), and 4) genes associated with later onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, ANK3). We also discovered profoundly increased burden of copy number variants among 19,556 neurodevelopmental cases compared to 13,991 controls (p = 2.07×10−47) and enrichment of polygenic risk alleles from autism and schizophrenia genome-wide association studies (p = 0.0018 and 0.0009, respectively). Our findings suggest a polygenic risk model of autism incorporating loci of strong effect and indicate that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages. PMID:22521361

  15. [Microarrays in 236 patients with neurodevelopmental disorders and congenital abnormalities].

    PubMed

    Faundes, Víctor; Santa María, Lorena; Morales, Paulina; Curotto, Bianca; Alliende, María Angélica

    2017-07-01

    In 20% of neurodevelopmental disorders (NDD) and congenital abnormalities (CA) the cause would be a genomic imbalance detectable only by chromosomal microarrays (CMA). To analyze the results of CMA performed at the INTA Laboratory of Molecular Cytogenetics, during a period of four years in patients with NDD or CA. Retrospective study that included all CMA reports of Chilean patients. Age, sex, clinical diagnosis and origin were analyzed, as well as the characteristics of the finding. The percentage of cases diagnosed by CMA was calculated considering all patients with pathogenic (PV) or probably pathogenic variants (VLP). Finally, we studied the association between patients' characteristics and a positive CMA outcome. A total of 236 reports were analyzed. The median age was 5.41 (range 2.25-9.33) years, and 59% were men. Ninety chromosomal imbalances were found, which corresponded mainly to deletions (53.3%), with a median size of 1.662 (range 0.553-6.673) Megabases. The diagnostic rate of CMA in Chilean patients from all over the country was 19.2%. There was a close relationship between the patient's sex and the detection of VLP/VP (p = 0.034). Our diagnostic rate and the association between female sex and a higher percentage of diagnosed cases are concordant with other international studies. Therefore, CMA is a valid diagnostic tool in the Chilean population.

  16. X-linked cardiomyopathy is heterogeneous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, M.J.; Sillence, D.O.; Mulley, J.C.

    Two major loci of X-linked cardiomyopathy have been mapped by linkage analysis. The gene for X-linked dilated cardiomyopathy (XLCM) is mapped to the dystrophin locus at Xp21, while Barth syndrome has been localised to distal Xq28. XLCM usually presents in juvenile males with no skeletal disease but decreased dystrophin in cardiac muscle. Barth syndrome most often presents in infants and is characterized by skeletal myopathy, short stature and neutropenia in association with cardiomyopathy of variable severity. Prior to carrier or prenatal diagnosis in a family, delineation of the cardiomyopathy locus involved is essential. We report the linkage mapping of amore » large kindred in which several male infants have died with hypertrophic cardiomyopathy. There is a family history of unexplained death of infant males less than 6 months old over 4 generations. Features of Barth syndrome such as short stature, skeletal myopathy and neutropenia have not been observed. Genotyping at 10 marker loci in Xq28 has revealed significant pairwise lod scores with the cardiomyopathy phenotype at DXS52 (Z=2.21 at {theta}=0.0), at markers p26 and p39 near DXS15 (Z=2.30 at {theta}=0.0) and at F8C (Z=2.24 at {theta}=0.0). A recombinant detected with DXS296 defines the proximal limit to the localization. No recombinants were detected at any of the loci distal to DXS296. The most distal marker in Xq28, DXS1108, is within 500 kb of the telomere. As the gene in this family is localized to Xq28, it is possible that this disorder is an allelic variant at the Barth syndrome locus.« less

  17. [X-linked adrenoleukodystrophy: a report of three cases. The importance of early diagnosis].

    PubMed

    López Úbeda, Marta; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José I; García Jiménez, María C

    2017-10-01

    X-linked adrenoleukodystrophy is the most common peroxisomal disorder. This disease is caused by a defect in the ABCD1 gen. Saturated very long chain fatty acids are accumulated in serum, adrenal cortex and central nervous system white matter. The clinical spectrum is characterized by progressive neurological dysfunction and adrenal insufficiency with a devastating prognosis. We report a first case of X-linked adrenoleukodystrophy with fatal evolution which identified two asymptomatic family members and established a preventive treatment. Although there is no definitive cure, we stress the importance of family study and evaluation of the individual in situation of risk to establish an early preventive treatment and to give in each particular situation suitable professional advice. Sociedad Argentina de Pediatría.

  18. Patulous Subarachnoid Space of the Optic Nerve Associated with X-Linked Hypophosphatemic Rickets.

    PubMed

    Galvez-Ruiz, Alberto; Chaudhry, Imtiaz

    2013-01-01

    Although the deficiency forms are the most common manifestations of rickets, there are other forms of rickets that are resistant to vitamin D. Of these, the most common is X-linked hypophosphatemic rickets. Rickets represents a group of multiple cranial bone disorders-craniosynostosis and the presence of Chari I malformation being the most notable-that explain the increase in intracranial pressure. We present a 4-year-old patient with an unusual association of X-linked hypophosphataemic rickets, bilateral proptosis, and prominent bilateral widening of the optic nerve sheaths. Although the association between intracranial hypertension and rickets is known, to the best of our knowledge, such a prominent distention of the subarachnoid space of the optic nerve without papilloedema has not been previously described.

  19. Genetics Home Reference: X-linked lissencephaly with abnormal genitalia

    MedlinePlus

    ... Health Conditions X-linked lissencephaly with abnormal genitalia X-linked lissencephaly with abnormal genitalia Printable PDF Open ... Javascript to view the expand/collapse boxes. Description X-linked lissencephaly with abnormal genitalia (XLAG) is a ...

  20. Genetics Home Reference: X-linked sideroblastic anemia and ataxia

    MedlinePlus

    ... Health Conditions X-linked sideroblastic anemia and ataxia X-linked sideroblastic anemia and ataxia Printable PDF Open ... Javascript to view the expand/collapse boxes. Description X-linked sideroblastic anemia and ataxia is a rare ...

  1. Genetics Home Reference: X-linked intellectual disability, Siderius type

    MedlinePlus

    ... Health Conditions X-linked intellectual disability, Siderius type X-linked intellectual disability, Siderius type Printable PDF Open ... Javascript to view the expand/collapse boxes. Description X-linked intellectual disability, Siderius type is a condition ...

  2. A novel X-linked disorder with developmental delay and autistic features.

    PubMed

    Kaya, Namik; Colak, Dilek; Albakheet, Albandary; Al-Owain, Mohammad; Abu-Dheim, Nada; Al-Younes, Banan; Al-Zahrani, Jawaher; Mukaddes, Nahit M; Dervent, Aysin; Al-Dosari, Naji; Al-Odaib, Ali; Kayaalp, Inci V; Al-Sayed, Moeenaladin; Al-Hassnan, Zuhair; Nester, Michael J; Al-Dosari, Mohammad; Al-Dhalaan, Hesham; Chedrawi, Aziza; Gunoz, Hulya; Karakas, Bedri; Sakati, Nadia; Alkuraya, Fowzan S; Gascon, Generaso G; Ozand, Pinar T

    2012-04-01

    Genomic duplications that lead to autism and other human diseases are interesting pathological lesions since the underlying mechanism almost certainly involves dosage sensitive genes. We aim to understand a novel genomic disorder with profound phenotypic consequences, most notably global developmental delay, autism, psychosis, and anorexia nervosa. We evaluated the affected individuals, all maternally related, using childhood autism rating scale (CARS) and Vineland Adaptive scales, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) brain, electroencephalography (EEG), electromyography (EMG), muscle biopsy, high-resolution molecular karyotype arrays, Giemsa banding (G-banding) and fluorescent in situ hybridization (FISH) experiments, mitochondrial DNA (mtDNA) sequencing, X-chromosome inactivation study, global gene expression analysis on Epstein-Barr virus (EBV)-transformed lymphoblasts, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). We have identified a novel Xq12-q13.3 duplication in an extended family. Clinically normal mothers were completely skewed in favor of the normal chromosome X. Global transcriptional profiling of affected individuals and controls revealed significant alterations of genes and pathways in a pattern consistent with previous microarray studies of autism spectrum disorder patients. Moreover, expression analysis revealed copy number-dependent increased messenger RNA (mRNA) levels in affected patients compared to control individuals. A subset of differentially expressed genes was validated using qRT-PCR. Xq12-q13.3 duplication is a novel global developmental delay and autism-predisposing chromosomal aberration; pathogenesis of which may be mediated by increased dosage of genes contained in the duplication, including NLGN3, OPHN1, AR, EFNB1, TAF1, GJB1, and MED12. Copyright © 2011 American Neurological Association.

  3. Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits

    PubMed Central

    Pappas, Samuel S.; Leventhal, Daniel K.; Albin, Roger L.; Dauer, William T.

    2014-01-01

    This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role—Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function. PMID:24947237

  4. Genetics Home Reference: X-linked hyper IgM syndrome

    MedlinePlus

    ... Home Health Conditions X-linked hyper IgM syndrome X-linked hyper IgM syndrome Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description X-linked hyper IgM syndrome is a condition that ...

  5. The “Neuro” of Neuroblastoma: Neuroblastoma as a Neurodevelopmental Disorder

    PubMed Central

    Ratner, Nancy; Brodeur, Garrett M.; Dale, Russell C.; Schor, Nina F.

    2017-01-01

    Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. PMID:27043043

  6. Generalised joint hypermobility and neurodevelopmental traits in a non-clinical adult population

    PubMed Central

    Glans, Martin; Humble, Mats B.

    2017-01-01

    Background Generalised joint hypermobility (GJH) is reportedly overrepresented among clinical cases of attention deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and developmental coordination disorder (DCD). It is unknown if these associations are dimensional and, therefore, also relevant among non-clinical populations. Aims To investigate if GJH correlates with sub-syndromal neurodevelopmental symptoms in a normal population. Method Hakim-Grahame’s 5-part questionnaire (5PQ) on GJH, neuropsychiatric screening scales measuring ADHD and ASD traits, and a DCD-related question concerning clumsiness were distributed to a non-clinical, adult, Swedish population (n=1039). Results In total, 887 individuals met our entry criteria. We found no associations between GJH and sub-syndromal symptoms of ADHD, ASD or DCD. Conclusions Although GJH is overrepresented in clinical cases with neurodevelopmental disorders, such an association seems absent in a normal population. Thus, if GJH serves as a biomarker cutting across diagnostic boundaries, this association is presumably limited to clinical populations. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28959454

  7. Autism Spectrum Disorder in a Girl with a De Novo X;19 Balanced Translocation

    PubMed Central

    Baruffi, Marcelo Razera; de Souza, Deise Helena; Bicudo da Silva, Rosana Aparecida; Ramos, Ester Silveira; Moretti-Ferreira, Danilo

    2012-01-01

    Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process. PMID:23074688

  8. Gastrointestinal disorders in children with neurodevelopmental disabilities.

    PubMed

    Sullivan, Peter B

    2008-01-01

    Children with neurodevelopmental disabilities such as cerebral palsy (CP), spina bifida, or inborn errors of metabolism frequently have associated gastrointestinal problems. These include oral motor dysfunction leading to feeding difficulties, risk of aspiration, prolonged feeding times, and malnutrition with its attendant physical compromise. Gastrostomy tube feeding is increasingly being used in these children to circumvent oral motor dysfunction and prevent malnutrition. Foregut dysmotility causes several problems such as dysphagia from oesophageal dysmotility, gastro-oesophageal reflux disease, and delayed gastric emptying. Gastro-oesophageal reflux disease is common in these children but often fails to respond to medical management and may require surgical treatment. Finally, constipation is often a problem that may be overlooked in this population. This article focuses on these associated gastrointestinal manifestations and discusses the current diagnostic and therapeutic options available. (c) 2008 Wiley-Liss, Inc.

  9. Genetics Home Reference: X-linked dystonia-parkinsonism

    MedlinePlus

    ... X-linked dystonia-parkinsonism syndrome (XDP): clinical and molecular genetic analysis. Brain Pathol. 1992 Oct;2(4):287-95. Review. Citation on PubMed Kaji R, Goto S, Tamiya G, Ando S, Makino S, Lee LV. Molecular dissection and anatomical basis of dystonia: X-linked ...

  10. Neurodevelopmental functioning in children with FAS, pFAS, and ARND.

    PubMed

    Chasnoff, Ira J; Wells, Anne M; Telford, Erin; Schmidt, Christine; Messer, Gwendolyn

    2010-04-01

    The purpose of this article is to compare the neurodevelopmental profiles of 78 foster and adopted children with fetal alcohol syndrome (FAS), partial FAS (pFAS), or alcohol-related neurodevelopmental disorder (ARND). Seventy-eight foster and adopted children underwent a comprehensive diagnostic evaluation. By using criteria more stringent than those required by current guidelines, the children were placed in 1 of 3 diagnostic categories: FAS, pFAS, or ARND. Each child was evaluated across the domains of neuropsychological functioning most frequently affected by prenatal exposure to alcohol. Multivariate analyses of variance were conducted to examine differences in neuropsychological functioning between the 3 diagnostic groups. Descriptive discriminant analyses were performed in follow-up to the multivariate analyses of variance. The children in the 3 diagnostic categories were similar for descriptive and child welfare variables. Children with FAS had significantly decreased mean weight, height, and head circumference. Children with FAS exhibited the most impaired level of general intelligence, significantly worse language-based memory compared with children with ARND, and significantly poorer functional communication skills than children with pFAS. On executive functioning, the FAS group of children performed significantly worse on sequencing and shift than either the pFAS or ARND groups. Children with pFAS and ARND were similar in all neurodevelopmental domains that were tested. The children who met tightly defined physical criteria for a diagnosis of FAS demonstrated significantly poorer neurodevelopmental functioning than children with pFAS and ARND. Children in these latter 2 groups were similar in all neurodevelopmental domains that were tested.

  11. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder.

    PubMed

    Fuchs, Claudia; Rimondini, Roberto; Viggiano, Rocchina; Trazzi, Stefania; De Franceschi, Marianna; Bartesaghi, Renata; Ciani, Elisabetta

    2015-10-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a rare neurodevelopmental disorder characterized by early-onset seizures, severe developmental delay, intellectual disability and Rett syndrome-like features. CDKL5 is highly expressed in the brain during early postnatal stages, suggesting its importance for brain maturation. Using a newly-generated Cdkl5 knockout (Cdkl5 -/Y) mouse, we recently found that loss of Cdkl5 impairs postnatal hippocampal development with a reduction in neuronal precursor survival and maturation. These defects were accompanied by increased activity of the glycogen synthase kinase 3β (GSK3β) a crucial inhibitory regulator of many neurodevelopmental processes. The goal of the current study was to establish whether inhibition of GSK3β corrects hippocampal developmental defects due to Cdkl5 loss. We found that treatment with the GSK3β inhibitor SB216763 restored neuronal precursor survival, dendritic maturation, connectivity and hippocampus-dependent learning and memory in the Cdkl5 -/Y mouse. Importantly, these effects were retained one month after treatment cessation. At present, there are no therapeutic strategies to improve the neurological defects of subjects with CDKL5 disorder. Current results point at GSK3β inhibitors as potential therapeutic tools for the improvement of abnormal brain development in CDKL5 disorder. Copyright © 2015. Published by Elsevier Inc.

  12. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia

    USDA-ARS?s Scientific Manuscript database

    Focal dermal hypoplasia is an X-linked dominant disorder characterized by patchy hypoplastic skin and digital, ocular, and dental malformations. We used array comparative genomic hybridization to identify a 219-kb deletion in Xp11.23 in two affected females. We sequenced genes in this region and fou...

  13. Mapping of the X-linked cataract (Xcat) mutation, the gene implicated in the Nance Horan syndrome, on the mouse X chromosome.

    PubMed

    Stambolian, D; Favor, J; Silvers, W; Avner, P; Chapman, V; Zhou, E

    1994-07-15

    The Xcat mutation in the mouse, an X-linked inherited disorder, is characterized by the congenital onset of cataracts. The cataracts have morphologies similar to those of cataracts found in the human Nance Horan (X-linked cataract dental) syndrome, suggesting that Xcat is an animal model for Nance Horan. The Xcat mutation provides an opportunity to investigate, at the molecular level, the pathogenesis of cataract. As a first step to cloning the Xcat gene, we report the localization of the Xcat mutation with respect to known molecular markers on the mouse X chromosome. Back-cross progeny carrying the Xcat mutation were obtained from an interspecific cross. Genomic DNA from each mouse was subjected to Southern and PCR analysis to identify restriction fragment length polymorphisms and simple sequence length polymorphisms, respectively. Our results refine the location of Xcat to a 2-cM region, eliminate several genes from consideration as the Xcat mutation, identify molecular probes tightly linked with Xcat, and suggest candidate genes responsible for the Xcat phenotype.

  14. Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies.

    PubMed

    Homberg, Judith R; Kyzar, Evan J; Stewart, Adam Michael; Nguyen, Michael; Poudel, Manoj K; Echevarria, David J; Collier, Adam D; Gaikwad, Siddharth; Klimenko, Viktor M; Norton, William; Pittman, Julian; Nakamura, Shun; Koshiba, Mamiko; Yamanouchi, Hideo; Apryatin, Sergey A; Scattoni, Maria Luisa; Diamond, David M; Ullmann, Jeremy F P; Parker, Matthew O; Brown, Richard E; Song, Cai; Kalueff, Allan V

    2016-01-01

    Neurodevelopmental disorders (NDDs) are common and severely debilitating. Their chronic nature and reliance on both genetic and environmental factors makes studying NDDs and their treatment a challenging task. Herein, the authors discuss the neurobiological mechanisms of NDDs, and present recommendations on their translational research and therapy, outlined by the International Stress and Behavior Society. Various drugs currently prescribed to treat NDDs also represent a highly diverse group. Acting on various neurotransmitter and physiological systems, these drugs often lack specificity of action, and are commonly used to treat multiple other psychiatric conditions. There has also been relatively little progress in the development of novel medications to treat NDDs. Based on clinical, preclinical and translational models of NDDs, our recommendations cover a wide range of methodological approaches and conceptual strategies. To improve pharmacotherapy and drug discovery for NDDs, we need a stronger emphasis on targeting multiple endophenotypes, a better dissection of genetic/epigenetic factors or "hidden heritability," and a careful consideration of potential developmental/trophic roles of brain neurotransmitters. The validity of animal NDD models can be improved through discovery of novel (behavioral, physiological and neuroimaging) biomarkers, applying proper environmental enrichment, widening the spectrum of model organisms, targeting developmental trajectories of NDD-related behaviors and comorbid conditions beyond traditional NDDs. While these recommendations cannot be addressed all in once, our increased understanding of NDD pathobiology may trigger innovative cross-disciplinary research expanding beyond traditional methods and concepts.

  15. The clinical significance of small copy number variants in neurodevelopmental disorders.

    PubMed

    Asadollahi, Reza; Oneda, Beatrice; Joset, Pascal; Azzarello-Burri, Silvia; Bartholdi, Deborah; Steindl, Katharina; Vincent, Marie; Cobilanschi, Joana; Sticht, Heinrich; Baldinger, Rosa; Reissmann, Regina; Sudholt, Irene; Thiel, Christian T; Ekici, Arif B; Reis, André; Bijlsma, Emilia K; Andrieux, Joris; Dieux, Anne; FitzPatrick, David; Ritter, Susanne; Baumer, Alessandra; Latal, Beatrice; Plecko, Barbara; Jenni, Oskar G; Rauch, Anita

    2014-10-01

    Despite abundant evidence for pathogenicity of large copy number variants (CNVs) in neurodevelopmental disorders (NDDs), the individual significance of genome-wide rare CNVs <500 kb has not been well elucidated in a clinical context. By high-resolution chromosomal microarray analysis, we investigated the clinical significance of all rare non-polymorphic exonic CNVs sizing 1-500 kb in a cohort of 714 patients with undiagnosed NDDs. We detected 96 rare CNVs <500 kb affecting coding regions, of which 58 (60.4%) were confirmed. 6 of 14 confirmed de novo, one of two homozygous and four heterozygous inherited CNVs affected the known microdeletion regions 17q21.31, 16p11.2 and 2p21 or OMIM morbid genes (CASK, CREBBP, PAFAH1B1, SATB2; AUTS2, NRXN3, GRM8). Two further de novo CNVs affecting single genes (MED13L, CTNND2) were instrumental in delineating novel recurrent conditions. For the first time, we here report exonic deletions of CTNND2 causing low normal IQ with learning difficulties with or without autism spectrum disorder. Additionally, we discovered a homozygous out-of-frame deletion of ACOT7 associated with features comparable to the published mouse model. In total, 24.1% of the confirmed small CNVs were categorised as pathogenic or likely pathogenic (median size 130 kb), 17.2% as likely benign, 3.4% represented incidental findings and 55.2% remained unclear. These results verify the diagnostic relevance of genome-wide rare CNVs <500 kb, which were found pathogenic in ∼2% (14/714) of cases (1.1% de novo, 0.3% homozygous, 0.6% inherited) and highlight their inherent potential for discovery of new conditions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders

    PubMed Central

    Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran

    2017-01-01

    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders. PMID:28824374

  17. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders.

    PubMed

    Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran

    2017-01-01

    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.

  18. Fragile X-associated tremor/ataxia syndrome: another phenotype of the fragile X gene.

    PubMed

    Hessl, David; Grigsby, Jim

    2016-08-01

    Neuropsychologists have an important role in evaluating patients with fragile X-associated disorders, but most practitioners are unaware of the recently identified neurodegenerative movement disorder known as fragile X-associated tremor ataxia syndrome (FXTAS). The objective of this editorial is to orient the reader to FXTAS and highlight the importance of clinical neuropsychology in describing the fragile X premutation phenotype and the role practitioners may have in assessing and monitoring patients with or at risk for neurodegeneration. We issued a call for papers for the special issue, highlighting the primary objective of familiarizing clinical neuropsychologists with FXTAS, and with the neuropsychological phenotype of both male and female asymptomatic carriers. Eight papers are included, including an overview of the fragile X-associated disorders (Grigsby), a review of the neuroradiological and neurological aspects of FXTAS and how the disorder compares to other movement disorders (O'Keefe et al.), a perspective on the prominence of white matter disease and dementia in FXTAS (Filley), and a review of mouse models of FXTAS (Foote). There are four research papers, including one on self-reported memory problems in FXTAS (Birch et al.), and three papers focused on the neuropsychiatric aspects of the fragile X premutation, a review (Bourgeois), an examination of autism-related traits (Schneider), and a research paper on executive functioning and psychopathology (Grigsby). The issue highlights the importance of awareness of fragile X-associated disorders for neuropsychologists, an awareness that must reach beyond neurodevelopmental aspects related to fragile X syndrome into the realm of neurodegenerative disease and aging.

  19. Advanced paternal age effects in neurodevelopmental disorders—review of potential underlying mechanisms

    PubMed Central

    Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C

    2017-01-01

    Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders. PMID:28140401

  20. Vitreoretinal surgery without schisis cavity excision for the management of juvenile X linked retinoschisis.

    PubMed

    García-Arumí, J; Corcóstegui, I A; Navarro, R; Zapata, M A; Berrocal, M H

    2008-11-01

    Juvenile X linked retinoschisis (XLRS) is a congenital X linked recessive retinal disorder characterised by cystic maculopathy and peripheral schisis. This study presents the case of an 8-month-old boy with a documented positive family history of XLRS, with a large retinoschisis cavity affecting the macula, first in the left eye and 1 year later in the right eye. The patient underwent pars plana vitrectomy in both eyes using 23-G instruments, posterior hyaloid dissection, a small retinotomy, fluid drainage with a 42-G cannula, infrared diode laser and silicone oil as internal tamponade. The anatomical and functional outcomes at 3 years following the first surgery are described. To the authors' knowledge, there is no previously reported experience with this technique in patients with XLRS.

  1. Epigenetics studies of fetal alcohol spectrum disorder: where are we now?

    PubMed Central

    Lussier, Alexandre A; Weinberg, Joanne; Kobor, Michael S

    2017-01-01

    Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field. PMID:28234026

  2. Epigenetics studies of fetal alcohol spectrum disorder: where are we now?

    PubMed

    Lussier, Alexandre A; Weinberg, Joanne; Kobor, Michael S

    2017-03-01

    Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.

  3. Maternal thyroid hormone insufficiency during pregnancy and risk of neurodevelopmental disorders in offspring: A systematic review and meta-analysis.

    PubMed

    Thompson, William; Russell, Ginny; Baragwanath, Genevieve; Matthews, Justin; Vaidya, Bijay; Thompson-Coon, Jo

    2018-04-01

    In the last 2 decades, several studies have examined the association between maternal thyroid hormone insufficiency during pregnancy and neurodevelopmental disorders in children and shown conflicting results. This systematic review aimed to assess the evidence for an association between maternal thyroid hormone insufficiency during pregnancy and neurodevelopmental disorders in children. We also sought to assess whether levothyroxine treatment for maternal thyroid hormone insufficiency improves child neurodevelopment outcomes. We performed systematic literature searches in MEDLINE, EMBASE, PSYCinfo, CINAHL, AMED, BNI, Cochrane, Scopus, Web of Science, GreyLit, Grey Source and Open Grey (latest search: March 2017). We also conducted targeted web searching and performed forwards and backwards citation chasing. Meta-analyses of eligible studies were carried out using the random-effects model. We identified 39 eligible articles (37 observational studies and 2 randomized controlled trials [RCT]). Meta-analysis showed that maternal subclinical hypothyroidism and hypothyroxinaemia are associated with indicators of intellectual disability in offspring (odds ratio [OR] 2.14, 95% confidence interval [CI] 1.20 to 3.83, P = .01, and OR 1.63, 95% CI 1.03 to 2.56, P = .04, respectively). Maternal subclinical hypothyroidism and hypothyroxinaemia were not associated with attention deficit hyperactivity disorder, and their effect on the risk of autism in offspring was unclear. Meta-analysis of RCTs showed no evidence that levothyroxine treatment for maternal hypothyroxinaemia or subclinical hypothyroidism reduces the incidence of low intelligence quotient in offspring. Although studies were generally of good quality, there was evidence of heterogeneity between the included observational studies (I 2 72%-79%). Maternal hypothyroxinaemia and subclinical hypothyroidism may be associated with intellectual disability in offspring. Currently, there is no evidence that levothyroxine

  4. Systematic reviews on neurodevelopmental and neurodegenerative disorders linked to pesticide exposure: Methodological features and impact on risk assessment.

    PubMed

    Hernández, Antonio F; González-Alzaga, Beatriz; López-Flores, Inmaculada; Lacasaña, Marina

    2016-01-01

    Epidemiological data are not currently used in the risk assessment of chemical substances in a systematic and consistent manner. However, systematic reviews (SRs) could be useful for risk assessment as they appraise and synthesize the best epidemiological knowledge available. To conduct a comprehensive literature search of SRs pertaining to pesticide exposure and various neurological outcomes, namely neurodevelopmental abnormalities, Parkinson's disease (PD) and Alzheimer's disease (AD), and to assess the potential contribution of SRs to the risk assessment process. Search was conducted in PubMed and Web of Science databases and articles were selected if the following inclusion criteria were met: being a SR, published until April 2015 and without language restrictions. For each neurological outcome, two review authors independently screened the search results for included studies. Data were extracted and summarized in two tables according to 16 criteria. Disagreements were resolved by discussion. The total number of studies identified in the first search was 65, 304 and 108 for neurodevelopment, PD and AD, respectively. From them, 8, 10 and 2 met the defined inclusion criteria for those outcomes, respectively. Overall, results suggest that prenatal exposure to organophosphates is associated with neurodevelopmental disturbances in preschool and school children. In contrast, postnatal exposures failed to show a clear effect across cohort studies. Regarding PD, 6 SRs reported statistically significant combined effect size estimates, with OR/RR ranging between 1.28 and 1.94. As for AD, 2 out of the 8 original articles included in the SRs found significant associations, with OR of 2.39 and 4.35, although the quality of the data was rather low. The critical appraisal of the SRs identified allowed for discussing the implications of SRs for risk assessment, along with the identification of gaps and limitations of current epidemiological studies that hinder their use for

  5. Measuring Functional Skills in Preschool Children at Risk for Neurodevelopmental Disabilities

    ERIC Educational Resources Information Center

    Msall, Michael E.

    2005-01-01

    Approximately 400,000 preschool children have a major neurodevelopmental disorder impacting on mobility, cognitive-adaptive, or communicative skills. As many as 1 in 3 children live at psychosocial disadvantage because of poverty, parental mental illness or substance misuse, or low parental educational (i.e. less than high school). In the past…

  6. [Prenatal diagnosis of X-linked anhidrotic ectodermal dysplasia with X-chromosome inversion].

    PubMed

    Shi, Hui-juan; Fang, Qun; Wang, Lian-tang

    2005-07-13

    To investigate the possibility of prenatal diagnosis of the fetal suspected to be affected by anhidrotic ectodermal dysplasia (EDA) in a family with X-linked EDA so as to provide a basis for prenatal diagnosis and genetic counseling of this disorder. Pedigree analysis and genetic counseling were performed in a family after a proband was diagnosed with EDA. The peripheral blood samples were collected from the proband, a 12-year-old boy, his mother, and his 2 aunts, one being pregnant, to undergo chromosome karyotype analysis. The fetus Puncture of umbilical vein was performed to collect the blood of fetus for chromosome examination. Induced abortion was conducted due to the diagnosis of the fetus with EDA. Autopsy, immunohistochemistry of the skin tissues of face, breast, epigastrium, and thigh, and X-ray photography of the lower jawbone were made. Pericentric inversion occurring at one of the X-chromosome [inv (x) (p22q13)] was found in the proband and his nephew (the fetus), both patients, and his mother and his second aunt (the pregnant woman), both carriers. Autopsy of the fetus showed epidermis dysplasia and deficiency of hair follicle and sebaceous gland. Immunohistochemistry showed that epithelial membrane antigen and cytokeratin were negatively expressed in the fetal skin tissues. Pedigree analysis and genetic counseling for the family members of EDA patients and prenatal and postpartum examination for the fetus help diagnose EDA.

  7. Neurodevelopmental and behavioural paediatrics.

    PubMed

    McDowell, Michael

    2015-01-01

    One of the notable shifts in Paediatrics across the last 50 years has been towards disorders that are chronic and qualitative in nature. In addition to physical health, these impact on childhood development, behaviour and wellbeing. Understanding and management of these problems extends the traditional biological toolkit of paediatrics into the complexities of uncertainties of psychological and social context. In Australasia, the profession has responded with the development of Community Paediatrics as a recognised sub-specialty, of which Neurodevelopmental and Behavioural Paediatrics is an important component. These developments are reviewed along with consideration of future challenges for this field of health care. © 2015 The Author. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  8. Immune Disorder HSCT Protocol

    ClinicalTrials.gov

    2017-11-17

    Immune Deficiency Disorders; Severe Combined Immunodeficiency; Chronic Granulomatous Disease; X-linked Agammaglobulinemia; Wiskott-Aldrich Syndrome; Hyper-IgM; DiGeorge Syndrome; Chediak-Higashi Syndrome; Common Variable Immune Deficiency; Immune Dysregulatory Disorders; Hemophagocytic Lymphohistiocytosis; IPEX; Autoimmune Lymphoproliferative Syndrome; X-linked Lymphoproliferative Syndrome

  9. X-linked recessive primary retinal dysplasia is linked to the Norrie disease locus.

    PubMed

    Ravia, Y; Braier-Goldstein, O; Bat-Miriam, K M; Erlich, S; Barkai, G; Goldman, B

    1993-08-01

    X-linked primary retinal dysplasia (PRD) refers to an abnormal proliferation of retinal tissue causing either its neural elements or its glial tissue to form folds, giving rise to gliosis. A Jewish family of oriental origin was previously reported by Godel and Goodman, in which a total of five males suffer from different degrees of blindness. The authors postulated that the described findings are distinguished from Norrie disease, since in this case no clinical findings, other than those associated with the eyes, were noticed in the affected males. In addition, two of the carrier females exhibit minimal eye changes. We have performed linkage analysis of the family using the L1.28, p58-1 and m27 beta probes, and DXS426 and MAOB associated microsatellites. Our results map the gene responsible for the disorder between the MAOB and DXS426, m27 beta and p58-1 loci, on the short arm of the X chromosome at Xp11.3, which suggest the possibility that the same gene is responsible for both primary retinal dysplasia and Norrie disease.

  10. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder

    PubMed Central

    Zong, Liang; Guan, Jing; Ealy, Megan; Zhang, Qiujing; Wang, Dayong; Wang, Hongyang; Zhao, Yali; Shen, Zhirong; Campbell, Colleen A; Wang, Fengchao; Yang, Ju; Sun, Wei; Lan, Lan; Ding, Dalian; Xie, Linyi; Qi, Yue; Lou, Xin; Huang, Xusheng; Shi, Qiang; Chang, Suhua; Xiong, Wenping; Yin, Zifang; Yu, Ning; Zhao, Hui; Wang, Jun; Wang, Jing; Salvi, Richard J; Petit, Christine; Smith, Richard J H; Wang, Qiuju

    2015-01-01

    Background Auditory neuropathy spectrum disorder (ANSD) is a form of hearing loss in which auditory signal transmission from the inner ear to the auditory nerve and brain stem is distorted, giving rise to speech perception difficulties beyond that expected for the observed degree of hearing loss. For many cases of ANSD, the underlying molecular pathology and the site of lesion remain unclear. The X-linked form of the condition, AUNX1, has been mapped to Xq23-q27.3, although the causative gene has yet to be identified. Methods We performed whole-exome sequencing on DNA samples from the AUNX1 family and another small phenotypically similar but unrelated ANSD family. Results We identified two missense mutations in AIFM1 in these families: c.1352G>A (p.R451Q) in the AUNX1 family and c.1030C>T (p.L344F) in the second ANSD family. Mutation screening in a large cohort of 3 additional unrelated families and 93 sporadic cases with ANSD identified 9 more missense mutations in AIFM1. Bioinformatics analysis and expression studies support this gene as being causative of ANSD. Conclusions Variants in AIFM1 gene are a common cause of familial and sporadic ANSD and provide insight into the expanded spectrum of AIFM1-associated diseases. The finding of cochlear nerve hypoplasia in some patients was AIFM1-related ANSD implies that MRI may be of value in localising the site of lesion and suggests that cochlea implantation in these patients may have limited success. PMID:25986071

  11. Neuropsychiatric manifestations in late-onset urea cycle disorder patients.

    PubMed

    Serrano, Mercedes; Martins, Cecilia; Pérez-Dueñas, Belén; Gómez-López, Lilian; Murgui, Empar; Fons, Carmen; García-Cazorla, Angels; Artuch, Rafael; Jara, Fernando; Arranz, José A; Häberle, Johannes; Briones, Paz; Campistol, Jaume; Pineda, Mercedes; Vilaseca, Maria A

    2010-03-01

    Inherited urea cycle disorders represent one of the most common groups of inborn errors of metabolism. Late-onset urea cycle disorders caused by partial enzyme deficiencies may present with unexpected clinical phenotypes. We report 9 patients followed up in our hospital presenting late-onset urea cycle disorders who initially manifested neuropsychiatric/neurodevelopmental symptoms (the most prevalent neuropsychiatric/neurodevelopmental diagnoses were mental retardation, attention-deficit hyperactivity disorder [ADHD], language disorder, and delirium). Generally, these clinical pictures did not benefit from pharmacological treatment. Conversely, dietary treatment improved the symptoms. Regarding biochemical data, 2 patients showed normal ammonium but high glutamine levels. This study highlights the fact that neuropsychiatric/neurodevelopmental findings are common among the initial symptomatology of late-onset urea cycle disorders. The authors recommend that unexplained or nonresponsive neuropsychiatric/neurodevelopmental symptoms appearing during childhood or adolescence be followed by a study of ammonia and amino acid plasmatic levels to rule out a urea cycle disorder.

  12. Copy Number Variation in Obsessive-Compulsive Disorder and Tourette Syndrome: A Cross-Disorder Study

    PubMed Central

    McGrath, Lauren M.; Yu, Dongmei; Marshall, Christian; Davis, Lea K.; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A.; Osiecki, Lisa; O’Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A.; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Cath, Danielle C.; Cavallini, Maria C.; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M.; Dion, Yves; Rosário, Maria C.; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas; Garrido, Helena; Geller, Daniel; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A.; Hemmings, Sian M.J.; Herrera, Luis D.; Hounie, Ana G.; Jankovic, Joseph; Kennedy, James L; King, Robert A.; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L.; Lyon, Gholson J.; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T.; McMahon, William; Murphy, Dennis L.; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark; Robertson, Mary M.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Tischfield, Jay A.; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Shugart, Yin Yao; Miguel, Euripedes C.; Nicolini, Humberto; Oostra, Ben A.; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A.; Cox, Nancy J.; Hanna, Gregory L.; Brentani, Helena; Scherer, Stephen W.; Arnold, Paul D.; Stewart, S. Evelyn; Mathews, Carol A.; Knowles, James A.; Cook, Edwin H.; Pauls, David L.; Wang, Kai; Scharf, Jeremiah M.

    2014-01-01

    Objective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable, neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. Method The primary analyses utilized a cross-disorder design for 2,699 patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. Results Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p=.09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 patient deletions: 0 control deletions, p=0.08 in current study, p=0.025 compared to published controls). Three 16p13.11 deletions were confirmed de novo, providing further support to the etiological significance of this region. The overall OCD de novo rate was 1.4%, which is intermediate between published rates in controls (0.7%) and in autism or schizophrenia (2–4%). Conclusion Several converging lines of evidence implicate 16p13.11 deletions in OCD, with weaker evidence for a role in TS. The trend toward increased overall neurodevelopmental CNV burden in TS and OCD suggests that deletions previously associated with other neurodevelopmental disorders may also contribute to these phenotypes. PMID:25062598

  13. Non-invasive fetal sex determination by maternal plasma sequencing and application in X-linked disorder counseling.

    PubMed

    Pan, Xiaoyu; Zhang, Chunlei; Li, Xuchao; Chen, Shengpei; Ge, Huijuan; Zhang, Yanyan; Chen, Fang; Jiang, Hui; Jiang, Fuman; Zhang, Hongyun; Wang, Wei; Zhang, Xiuqing

    2014-12-01

    To develop a fetal sex determination method based on maternal plasma sequencing (MPS), assess its performance and potential use in X-linked disorder counseling. 900 cases of MPS data from a previous study were reviewed, in which 100 and 800 cases were used as training and validation set, respectively. The percentage of uniquely mapped sequencing reads on Y chromosome was calculated and used to classify male and female cases. Eight pregnant women who are carriers of Duchenne muscular dystrophy (DMD) mutations were recruited, whose plasma were subjected to multiplex sequencing and fetal sex determination analysis. In the training set, a sensitivity of 96% and false positive rate of 0% for male cases detection were reached in our method. The blinded validation results showed 421 in 423 male cases and 374 in 377 female cases were successfully identified, revealing sensitivity and specificity of 99.53% and 99.20% for fetal sex determination, at as early as 12 gestational weeks. Fetal sex for all eight DMD genetic counseling cases were correctly identified, which were confirmed by amniocentesis. Based on MPS, high accuracy of non-invasive fetal sex determination can be achieved. This method can potentially be used for prenatal genetic counseling.

  14. Role of ALDP (ABCD1) and Mitochondria in X-Linked Adrenoleukodystrophy

    PubMed Central

    McGuinness, M. C.; Lu, J.-F.; Zhang, H.-P.; Dong, G.-X.; Heinzer, A. K.; Watkins, P. A.; Powers, J.; Smith, K. D.

    2003-01-01

    Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C>22:0) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA β-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA β-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA β-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA β-oxidation and that VLCFA levels are not determined by the rate of VLCFA β-oxidation. The rate of peroxisomal VLCFA β-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid β-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA β-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice. PMID:12509471

  15. New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouet, M.; Kenwick, S.; Moncla, A.

    1995-06-01

    The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the firstmore » examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function. 39 refs., 5 figs., 3 tabs.« less

  16. [Importance of family examination in juvenile X-linked retinoschisis].

    PubMed

    Kłosowska-Zawadka, A; Bernardczyk-Meller, J; Gotz-Wieckowska, A; Krawczyński, M

    2005-12-01

    Congenital (juvenile) retinoschisis belongs to the group of hereditary vitreoretinopathies. This disorder is inherited in an X-linked recessive pattern and its onset usually occurs in 5- to 10-year-old boys. Presenting clinical signs include decreased visual acuity due to maculopathy. The authors present a case of a 17-year-old boy with decreased visual acuity, hypermetropia, and bilateral retinoschisis with maculopathy upon fundus examination. In view of a 50% risk of the disorder occurring in the brothers of the affected male, they underwent full ophthalmological and electrophysiological examinations (until then asymptomatic). In one of them decreased visual acuity, mixed astigmatism, and maculopathy were present, without any changes of the peripheral retina. In the youngest brother decreased visual acuity, hypermetropia, and maculopathy were diagnosed. Genetic counseling and ophthalmological examination of family members at risk facilitated early recognition of the pathological changes in the siblings. Genetic counseling with pedigree analysis and genetic analysis, if possible, should be offered to all affected patients and family members.

  17. Musical and verbal short-term memory: insights from neurodevelopmental and neurological disorders.

    PubMed

    Caclin, Anne; Tillmann, Barbara

    2018-05-09

    Auditory short-term memory (STM) is a fundamental ability to make sense of auditory information as it unfolds over time. Whether separate STM systems exist for different types of auditory information (music and speech, in particular) is a matter of debate. The present paper reviews studies that have investigated both musical and verbal STM in healthy individuals and in participants with neurodevelopmental and neurological disorders. Overall, the results are in favor of only partly shared networks for musical and verbal STM. Evidence for a distinction in STM for the two materials stems from (1) behavioral studies in healthy participants, in particular from the comparison between nonmusicians and musicians; (2) behavioral studies in congenital amusia, where a selective pitch STM deficit is observed; and (3) studies in brain-damaged patients with cases of double dissociation. In this review we highlight the need for future studies comparing STM for the same perceptual dimension (e.g., pitch) in different materials (e.g., music and speech), as well as for studies aiming at a more insightful characterization of shared and distinct mechanisms for speech and music in the different components of STM, namely encoding, retention, and retrieval. © 2018 New York Academy of Sciences.

  18. FARVATX: Family-Based Rare Variant Association Test for X-Linked Genes.

    PubMed

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-09-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. © 2016 WILEY PERIODICALS, INC.

  19. FARVATX: FAmily-based Rare Variant Association Test for X-linked genes

    PubMed Central

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H.; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-01-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease (COPD). Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. PMID:27325607

  20. An agenda for 21st century neurodevelopmental medicine: lessons from autism.

    PubMed

    Klin, A; Jones, W

    2018-03-01

    The future of neurodevelopmental medicine has the potential of situating child neurology at the forefront of a broad-based public health effort to optimize neurodevelopmental outcomes of children born with high-prevalence and diverse genetic, pre- and peri-natal, and environmental burdens compromising early brain development and leading to lifetime disabilities. Building on advancements in developmental social neuroscience and in implementation science, this shift is already occurring in the case of emblematic neurodevelopmental disorders such as autism. Capitalizing on early neuroplasticity and on quantification of trajectories of social-communicative development, new technologies are emerging for high-throughput and cost-effective diagnosis and for community-viable delivery of powerful treatments, in seamless integration across previously fragmented systems of healthcare delivery. These solutions could be deployed in the case of other groups of children at greater risk for autism and communication delays, such as those born extremely premature or with congenital heart disease. The galvanizing concept in this aspirational future is a public health focus on promoting optimal conditions for early brain development, not unlike current campaigns promoting pre-natal care, nutrition or vaccination.

  1. Fragile X-associated disorders: Don't miss them.

    PubMed

    Birch, Rachael C; Cohen, Jonathan; Trollor, Julian N

    2017-01-01

    Fragile X-associated disorders are a family of inherited disorders caused by expansions in the Fragile X Mental Retardation 1 (FMR1) gene. Premutation expansions of the FMR1 gene confer risk for fragile X-associated primary ovarian insufficiency and fragile X-associated tremor ataxia syndrome, as well as other medical and psychiatric comorbidities. Premutation expansions of the FMR1 gene are common in the general population. However, fragile X-associated disorders are frequently under-recognised and often misdiagnosed. The aim of this article is to describe fragile X-associated disorders and identify specific considerations for general practitioners (GPs) during identification and management of these disorders. GPs have a critical role in the identification of fragile X-associated disorders, as well as coordination of complex care needs. Prompt recognition and appropriate management of these disorders and potential medical and psychiatric comorbidities will have important implications not only for the affected patient, but also other family members who may be at risk.

  2. Physiological Arousal in Autism and Fragile X Syndrome: Group Comparisons and Links with Pragmatic Language

    ERIC Educational Resources Information Center

    Klusek, Jessica; Martin, Gary E.; Losh, Molly

    2013-01-01

    This study tested the hypothesis that pragmatic (i.e., social) language impairment is linked to arousal dysregulation in autism spectrum disorder (ASD) and fragile X syndrome (FXS). Forty boys with ASD, 39 with FXS, and 27 with typical development (TD), aged 4-15 years, participated. Boys with FXS were hyperaroused compared to boys with TD but did…

  3. Difference or disorder? Cultural issues in understanding neurodevelopmental disorders.

    PubMed

    Norbury, Courtenay Frazier; Sparks, Alison

    2013-01-01

    Developmental disorders, such as autism spectrum disorder and specific language impairment, are biologically based disorders that currently rely on behaviorally defined criteria for diagnosis and treatment. Specific behaviors that are included in diagnostic frameworks and the point at which individual differences in behavior constitute abnormality are largely arbitrary decisions. Such decisions are therefore likely to be strongly influenced by cultural values and expectations. This is evident in the dramatically different prevalence rates of autism spectrum disorder across countries and across different ethnic groups within the same country. In this article, we critically evaluate the understanding of developmental disorders from a cultural perspective. We specifically consider the challenges of applying diagnostic methods across cultural contexts, the influence of cultural values and expectations on the identification and treatment of children with suspected disorders, and how cross-cultural studies can help to refine cognitive theories of disorder that have been derived exclusively from Western North American and European investigations. Our review synthesizes clinical, cultural, and theoretical work in this area, highlighting potential universals of disorder and concluding with recommendations for future research and practice.

  4. X-linked congenital panhypopituitarism.

    PubMed

    Schimke, R N; Spaulding, J J; Hollowell, J G

    1971-05-01

    Two half brothers with panhypopituitary dwarfism are reported who have the same mother and different, unrelated fathers. The subject of hereditary panhypopituitarism is reviewed briefly. It is concluded that there are at least two forms of hereditary panhypopituitary dwarfism, one of which may be X-linked.

  5. Mapping Self-Reports of Working Memory Deficits to Executive Dysfunction in Fragile X Mental Retardation 1 ("FMR1") Gene Premutation Carriers Asymptomatic for FXTAS

    ERIC Educational Resources Information Center

    Kogan, Cary S.; Cornish, Kim M.

    2010-01-01

    Fragile X Syndrome is a neurodevelopmental disorder that is caused by the silencing of a single gene on the X chromosome, the Fragile X Mental Retardation 1 ("FMR1") gene. In recent years, the premutation ("carrier") status has received considerable attention and there is now an emerging consensus that despite intellectual functioning being within…

  6. Elucidating the Links Between Endocrine Disruptors and Neurodevelopment

    PubMed Central

    Blawas, Ashley M.; Gray, Kimberly; Heindel, Jerrold J.; Lawler, Cindy P.

    2015-01-01

    Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes. PMID:25714811

  7. The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes.

    PubMed

    Gabriele, Michele; Lopez Tobon, Alejandro; D'Agostino, Giuseppe; Testa, Giuseppe

    2018-06-08

    The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. X-linked juvenile retinoschisis: mutations at the retinoschisis and Norrie disease gene loci?

    PubMed

    Hiraoka, M; Rossi, F; Trese, M T; Shastry, B S

    2001-01-01

    Juvenile retinoschisis (RS) and Norrie disease (ND) are X-linked recessive retinal disorders. Both disorders, in the majority of cases, are monogenic and are caused by mutations in the RS and ND genes, respectively. Here we report the identification of a family in which mutations in both the RS and ND genes are segregating with RS pathology. Although the mutations identified in this report were not functionally characterized with regard to their pathogenicity, it is likely that both of them are involved in RS pathology in the family analyzed. This suggests the complexity and digenic nature of monogenic human disorders in some cases. If this proves to be a widespread problem, it will complicate the strategies used to identify the genes involved in diseases and to develop methods for intervention.

  9. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait.

    PubMed

    Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi

    2006-02-01

    Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.

  10. Phenotype-genotype correlations in X linked retinitis pigmentosa.

    PubMed Central

    Kaplan, J; Pelet, A; Martin, C; Delrieu, O; Aymé, S; Bonneau, D; Briard, M L; Hanauer, A; Larget-Piet, L; Lefrançois, P

    1992-01-01

    Retinitis pigmentosa (RP) represents a group of clinically heterogeneous retinal degenerations in which all modes of inheritance have been described. We have previously found two different clinical profiles in X linked RP as a function of age and mode of onset. The first clinical form has very early onset with severe myopia. The second form starts later with night blindness with mild myopia or none. At least two genes have been identified in X linked forms, namely RP2 (linked to DXS7, DXS255, and DXS14) and RP3 (linked to DXS84 and OTC) on the short arm of the X chromosome. In order to contribute to phenotype-genotype correlations in X linked RP, we tested the hypothesis that the two clinical profiles could be accounted for by the two different gene loci. The present study provides evidence for linkage of the clinical form with early myopia as the onset symptom with the RP2 gene (pairwise linkage to DXS255: Z = 3.13 at theta = 0), while the clinical form with later night blindness as the onset symptom is linked to the RP3 gene (pairwise linkage to OTC: Z = 4.16 at theta = 0). Images PMID:1357178

  11. Sex-specific silencing of X-linked genes by Xist RNA

    PubMed Central

    Gayen, Srimonta; Maclary, Emily; Hinten, Michael; Kalantry, Sundeep

    2016-01-01

    X-inactive specific transcript (Xist) long noncoding RNA (lncRNA) is thought to catalyze silencing of X-linked genes in cis during X-chromosome inactivation, which equalizes X-linked gene dosage between male and female mammals. To test the impact of Xist RNA on X-linked gene silencing, we ectopically induced endogenous Xist by ablating the antisense repressor Tsix in mice. We find that ectopic Xist RNA induction and subsequent X-linked gene silencing is sex specific in embryos and in differentiating embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). A higher frequency of XΔTsixY male cells displayed ectopic Xist RNA coating compared with XΔTsixX female cells. This increase reflected the inability of XΔTsixY cells to efficiently silence X-linked genes compared with XΔTsixX cells, despite equivalent Xist RNA induction and coating. Silencing of genes on both Xs resulted in significantly reduced proliferation and increased cell death in XΔTsixX female cells relative to XΔTsixY male cells. Thus, whereas Xist RNA can inactivate the X chromosome in females it may not do so in males. We further found comparable silencing in differentiating XΔTsixY and 39,XΔTsix (XΔTsixO) ESCs, excluding the Y chromosome and instead implicating the X-chromosome dose as the source of the sex-specific differences. Because XΔTsixX female embryonic epiblast cells and EpiSCs harbor an inactivated X chromosome prior to ectopic inactivation of the active XΔTsix X chromosome, we propose that the increased expression of one or more X-inactivation escapees activates Xist and, separately, helps trigger X-linked gene silencing. PMID:26739568

  12. Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis.

    PubMed

    Lucas, Barbara R; Elliott, Elizabeth J; Coggan, Sarah; Pinto, Rafael Z; Jirikowic, Tracy; McCoy, Sarah Westcott; Latimer, Jane

    2016-11-29

    Gross motor skills are fundamental to childhood development. The effectiveness of current physical therapy options for children with mild to moderate gross motor disorders is unknown. The aim of this study was to systematically review the literature to investigate the effectiveness of conservative interventions to improve gross motor performance in children with a range of neurodevelopmental disorders. A systematic review with meta-analysis was conducted. MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, PEDro, Cochrane Collaboration, Google Scholar databases and clinical trial registries were searched. Published randomised controlled trials including children 3 to ≤18 years with (i) Developmental Coordination Disorder (DCD) or Cerebral Palsy (CP) (Gross Motor Function Classification System Level 1) or Developmental Delay or Minimal Acquired Brain Injury or Prematurity (<30 weeks gestational age) or Fetal Alcohol Spectrum Disorders; and (ii) receiving non-pharmacological or non-surgical interventions from a health professional and (iii) gross motor outcomes obtained using a standardised assessment tool. Meta-analysis was performed to determine the pooled effect of intervention on gross motor function. Methodological quality and strength of meta-analysis recommendations were evaluated using PEDro and the GRADE approach respectively. Of 2513 papers, 9 met inclusion criteria including children with CP (n = 2) or DCD (n = 7) receiving 11 different interventions. Only two of 9 trials showed an effect for treatment. Using the least conservative trial outcomes a large beneficial effect of intervention was shown (SMD:-0.8; 95% CI:-1.1 to -0.5) with "very low quality" GRADE ratings. Using the most conservative trial outcomes there is no treatment effect (SMD:-0.1; 95% CI:-0.3 to 0.2) with "low quality" GRADE ratings. Study limitations included the small number and poor quality of the available trials. Although we found that some interventions with a task

  13. Neurodevelopmental outcome in prenatally diagnosed isolated agenesis of the corpus callosum.

    PubMed

    Folliot-Le Doussal, Lise; Chadie, Alexandra; Brasseur-Daudruy, Marie; Verspyck, Eric; Saugier-Veber, Pascale; Marret, Stéphane

    2018-01-01

    Neurodevelopmental outcome in children with agenesis of the corpus callosum (ACC) is correlated with the presence or absence of associated brain abnormalities. Indeed, neurodevelopmental outcome shows severe disabilities when the ACC is not isolated whereas in isolated forms, the neurologic development is mainly normal. Contrary to data in several published studies, the prognosis remains uncertain even in isolated forms, which may lead in France to medical termination of pregnancy. To evaluate long-term neurodevelopmental outcome in children with prenatally diagnosed isolated ACC. This is a follow-up study conducted in Normandy (France). It included a cohort of 25 children born between January 1991 and June 2016, with a prenatal diagnosis of isolated ACC and who were followed for at least two years. The average follow-up was 8±5years. ACC was complete in 17 patients (68%), partial in 5 (20%) and hypoplastic in 3 (12%). Whereas global motor development was normal in each case, normal neurodevelopmental outcome or mild disabilities occurred in 88% children and moderate/severe neuro-disabilities were present in 12% of children. Wechsler Intelligence Scale for Children-IV evaluations and Intellectual Total Quotients were within normal range, but we observed lower scores in verbal comprehension, social judgment, executive functions. A lower score in morphosyntax was observed among 52% of children with oral language disorders. Neurodevelopmental outcome was favorable in most of our patients with isolated ACC, but mild learning disabilities emerged in older children. Long-term follow-up until school age is essential to provide early diagnosis and appropriate care support. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Difference or Disorder? Cultural Issues in Understanding Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Norbury, Courtenay Frazier; Sparks, Alison

    2013-01-01

    Developmental disorders, such as autism spectrum disorder and specific language impairment, are biologically based disorders that currently rely on behaviorally defined criteria for diagnosis and treatment. Specific behaviors that are included in diagnostic frameworks and the point at which individual differences in behavior constitute abnormality…

  15. Co-morbidity in Attention-Deficit Hyperactivity Disorder: A Clinical Study from India.

    PubMed

    Jacob, P; Srinath, S; Girimaji, S; Seshadri, S; Sagar, J V

    2016-12-01

    To assess the prevalence of neurodevelopmental and psychiatric co-morbidities in children and adolescents diagnosed with attention-deficit hyperactivity disorder at a tertiary care child and adolescent psychiatry centre. A total of 63 children and adolescents who were diagnosed with attention-deficit hyperactivity disorder and fulfilled the inclusion criteria were comprehensively assessed for neurodevelopmental and psychiatric co-morbidities. The tools used included the Mini-International Neuropsychiatric Interview for Children and Adolescents, Attention Deficit Hyperactivity Disorder Rating Scale IV (ADHD-RS), Children's Global Assessment Scale, Clinical Global Impression Scale, Vineland Social Maturity Scale, and Childhood Autism Rating Scale. All except 1 subject had neurodevelopmental and / or psychiatric disorder co-morbid with attention-deficit hyperactivity disorder; 66.7% had both neurodevelopmental and psychiatric disorders. Specific learning disability was the most common co-existing neurodevelopmental disorder and oppositional defiant disorder was the most common psychiatric co-morbidity. The mean baseline ADHD-RS scores were significantly higher in the group with psychiatric co-morbidities, especially in the group with oppositional defiant disorder. Co-morbidity is present at a very high frequency in clinic-referred children diagnosed with attention-deficit hyperactivity disorder. Psychiatric co-morbidity, specifically oppositional defiant disorder, has an impact on the severity of attention-deficit hyperactivity disorder. Co-morbidity needs to be explicitly looked for during evaluation and managed appropriately.

  16. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes

    PubMed Central

    Krasovec, Marc; Filatov, Dmitry A.

    2018-01-01

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (πx = 0.016; πaut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex. PMID:29751495

  17. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.

    PubMed

    Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A

    2018-05-03

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.

  18. [Autism and Early Neurodevelopmental Milestones].

    PubMed

    Ferreira, Xavier; Oliveira, Guiomar

    2016-03-01

    Autism spectrum disorder, also referred to in this study as autism, is a neurodevelopmental chronic disease that manifests early in childhood by impairment in social interaction, communication and repetitive behavior. Since there are no specific biomarkers available, the diagnosis is based exclusively on clinical criteria. The purpose of the present study is to determine which are the early psychomotor development or neurodevelopmental milestones that present a significant correlation with the severity of the main symptoms of autism, development quotients, and adaptive function. We performed a retrospective study on a sample of 1572 individuals with a diagnosis of autism that were monitored at Hospital Pediátrico do Centro Hospitalar e Universitário de Coimbra, in the Neurodevelopment and Autism Unit. We analyzed six early psychomotor developmental milestones: age of acquisition of 'walking', 'first words', 'first phrases', 'daytime control of bladder sphincter', 'night-time control of bladder sphincter', and age of first complaints. Afterwards, we divided the sample in three subgroups regarding clinical severity, according to the Childhood Autism Rating Scale, and we analyzed significant differences among each other concerning the six milestones established beforehand. The milestone 'age of first phrases' was, from the six milestones, the one with a stronger correlation with the variables of clinical manifestations of autism, development/intelligence quotients, and adaptive function. In division of the sample into subgroups of clinical severity, it was the most severe that showed later ages of acquisition of the neurodevelopmental milestones and earlier ages of first complaints. This study proves the clinical utility to know the age of achievement of early psychomotor developmental skills, since they act as predictors of clinical severity of autism, cognition, and adaptive function of a wide population with autism. Therefore, this data contribute for prognostic

  19. NMDA antagonist MK801 recreates auditory electrophysiology disruption present in autism and other neurodevelopmental disorders.

    PubMed

    Saunders, John A; Gandal, Michael J; Roberts, Timothy P; Siegel, Steve J

    2012-10-01

    Autism is a highly disabling neurodevelopmental disorder characterized by social deficits, language impairment, and repetitive behaviors. There are few effective biological treatments for this disorder, partly due to the lack of translational biomarkers. However, recent data suggest that autism has reliable electrophysiological endophenotypes, along with evidence that some deficits may be caused by NMDA receptor (NMDAR) dysfunction. Similarly, the NMDAR antagonist MK801 has been used in behavioral animal models of autism. Since MK801 has also been used as a model of schizophrenia, this paper examines the independent and overlapping ways in which MK801 recreates the electrophysiogical changes present in both diseases. Mouse EEG was recorded in response to auditory stimuli after either vehicle or MK801 and the dose-response relationship for each measure was determined. ERP component amplitude and latency analysis was performed along with time-frequency analysis of gamma frequency inter-trial coherence and evoked power. Evoked gamma power and ITC were decreased by MK801 at the highest dose. P1, N1 latency and gamma baseline power were increased in dose dependent fashion following MK801. There were no amplitude changes in P1 or N1. MK801 caused alterations in evoked gamma activity, gamma ITC, gamma baseline power, P1 and N1 latency similar to findings in autism. These data provide evidence indicating that NMDAR dysfunction may contribute to deficits specific to autism and some that overlap with other disorders such as schizophrenia. Such observations could be important for developing novel therapeutics, as electrophysiological endophenotypes associate with functional measures and may provide early biomarkers for efficacy in clinical trials. Copyright © 2012. Published by Elsevier B.V.

  20. Connexin mutations in X-linked Charcot-Marie-Tooth disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergoffen, J.; Scherer, S.S.; Wang, S.

    1993-12-24

    X-linked Charcot-Marie-Tooth disease (CMTX) is a form of hereditary neuropathy with demyelination. Recently, this disorder was mapped to chromosome Xq13.1. The gene for the gap junction protein connexin32 is located in the same chromosomal segment, which led to its consideration as a candidate gene for CMTX. With the use of Northern (RNA) blot and immunohistochemistry techniques, it was found that connexin32 is normally expressed in myelinated peripheral nerve. Direct sequencing of the connexin32 gene showed seven different mutations in affected persons from eight CMTX families. These findings, a demonstration of inherited defects in a gap junction protein, suggest that connexin32more » plays an important role in peripheral nerve.« less

  1. Survival and Neurodevelopmental Outcomes among Periviable Infants.

    PubMed

    Younge, Noelle; Goldstein, Ricki F; Bann, Carla M; Hintz, Susan R; Patel, Ravi M; Smith, P Brian; Bell, Edward F; Rysavy, Matthew A; Duncan, Andrea F; Vohr, Betty R; Das, Abhik; Goldberg, Ronald N; Higgins, Rosemary D; Cotten, C Michael

    2017-02-16

    Data reported during the past 5 years indicate that rates of survival have increased among infants born at the borderline of viability, but less is known about how increased rates of survival among these infants relate to early childhood neurodevelopmental outcomes. We compared survival and neurodevelopmental outcomes among infants born at 22 to 24 weeks of gestation, as assessed at 18 to 22 months of corrected age, across three consecutive birth-year epochs (2000-2003 [epoch 1], 2004-2007 [epoch 2], and 2008-2011 [epoch 3]). The infants were born at 11 centers that participated in the National Institute of Child Health and Human Development Neonatal Research Network. The primary outcome measure was a three-level outcome - survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, or death. After accounting for differences in infant characteristics, including birth center, we used multinomial generalized logit models to compare the relative risk of survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, and death. Data on the primary outcome were available for 4274 of 4458 infants (96%) born at the 11 centers. The percentage of infants who survived increased from 30% (424 of 1391 infants) in epoch 1 to 36% (487 of 1348 infants) in epoch 3 (P<0.001). The percentage of infants who survived without neurodevelopmental impairment increased from 16% (217 of 1391) in epoch 1 to 20% (276 of 1348) in epoch 3 (P=0.001), whereas the percentage of infants who survived with neurodevelopmental impairment did not change significantly (15% [207 of 1391] in epoch 1 and 16% [211 of 1348] in epoch 3, P=0.29). After adjustment for changes in the baseline characteristics of the infants over time, both the rate of survival with neurodevelopmental impairment (as compared with death) and the rate of survival without neurodevelopmental impairment (as compared with death) increased over time (adjusted relative risks, 1

  2. Telemedicine is helping the parents of children with neurodevelopmental disorders living in remote and deprived areas.

    PubMed

    Stuckey, Ruth; Domingues-Montanari, Sophie

    2017-08-01

    Telecommunication technologies are advancing rapidly with huge investment to improve infrastructure in rural areas. Telemedicine brings the benefits of telecommunication to healthcare, especially in resource-limited and remote communities. The recent literature on telemedicine in paediatrics will be reviewed, with particular focus on its application to help children with neurodevelopmental disorders and their families living in remote regions and/or low-income countries, and gaps identified for future research. Studies show that telemedicine can enable a family's access to appropriately qualified help that physically may only be available hundreds of miles away, helping to overcome geographic barriers. Telemedicine can also train parents and equip them with the knowledge and skills to better care for their children. Despite some technological barriers to implementation, telemedicine can help transform all stages of autism treatment. However, more studies are required in low- and middle-income countries to fully elucidate the benefits offered by telemedicine to autistic children and their families.

  3. Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition

    PubMed Central

    Wise, Merrill S.

    2016-01-01

    Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646

  4. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism

    PubMed Central

    Jamain, Stéphane; Quach, Hélène; Betancur, Catalina; Råstam, Maria; Colineaux, Catherine; Gillberg, I Carina; Söderström, Henrik; Giros, Bruno; Leboyer, Marion; Gillberg, Christopher; Bourgeron, Thomas

    2003-01-01

    Many studies have supported a genetic aetiology for autism. Here we report mutations in two X-linked genes, neuroligins NLGN3 and NLGN4, in siblings with autism spectrum disorders. These mutations affect cell adhesion molecules localised at the synapse and suggest that a defect of synaptogenesis may predispose to autism. PMID:12669065

  5. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.

    PubMed

    Jamain, Stéphane; Quach, Hélène; Betancur, Catalina; Råstam, Maria; Colineaux, Catherine; Gillberg, I Carina; Soderstrom, Henrik; Giros, Bruno; Leboyer, Marion; Gillberg, Christopher; Bourgeron, Thomas

    2003-05-01

    Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.

  6. A Clinician's Guide to Co-Occurring ADHD among Adolescent Substance Users: Comorbidity, Neurodevelopmental Risk, and Evidence-Based Treatment Options

    ERIC Educational Resources Information Center

    Hogue, Aaron; Evans, Steven W.; Levin, Frances R.

    2017-01-01

    This article introduces neurodevelopmental and clinical considerations for treating adolescents with co-occurring attention deficit hyperactivity disorder (ADHD) and adolescent substance use (ASU) in outpatient settings. We first describe neurobiological impairments common to ADHD and ASU, including comorbidity with conduct disorder, that evoke a…

  7. ADIPOCYTOKINES AND OBESITY-LINKED DISORDERS

    PubMed Central

    OUCHI, NORIYUKI; OHASHI, KOJI; SHIBATA, REI; MUROHARA, TOYOAKI

    2012-01-01

    ABSTRACT Obesity is closely associated with an increased risk for metabolic and cardiovascular diseases. Adipose tissue produces a number of secretory bioactive substances, also known as adipocytokines or adipokines, which directly affect adjacent or distant organs. Most adipocytokines are pro-inflammatory, thereby promoting the obesity-linked disorders. In contrast, there are a small number of adipocytokines that exhibit anti-inflammatory properties. It is now recognized that dysregulated production or secretion of adipocytokines caused by adipocyte dysfunction leads to the development of obesity-linked complications. In this review, we focus on the functional role of several adipocytokines in metabolic and cardiovascular diseases. PMID:22515108

  8. Macular hole in juvenile X-linked retinoschisis.

    PubMed

    Al-Swaina, Nayef; Nowilaty, Sawsan R

    2013-10-01

    An 18 year-old male with no antecedent of trauma, systemic syndrome or myopia was referred for surgical treatment of a full thickness macular hole in the left eye. A more careful inspection revealed discrete foveal cystic changes in the fellow eye and subtle peripheral depigmented retinal pigment epithelial changes in both eyes. A spectral-domain optical coherence tomography (SD-OCT) scan confirmed, in addition to the full thickness macular hole in the left eye, microcystic spaces in the nuclear layers of both retinae. The diagnosis of X-linked retinoschisis was confirmed with a full field electroretinogram displaying the typical negative ERG. Macular holes are uncommon in the young and those complicating X-linked retinoschisis are rare. This report highlights the importance of investigating the presence of a macular hole in a young patient and illustrates the clinical and SD-OCT clues beyond the foveal center which led to the correct diagnosis of X-linked juvenile retinoschisis.

  9. [Specific developmental disorder of speech and language in adulthood].

    PubMed

    Vlassopoulos, M; Anagnostopoulos, D C

    2012-06-01

    Specific developmental disorder of speech and language is part of a more general category of neurodevelopmental disorders, which is encountered in 7-10% of the childhood population. These children exhibit a significant impairment in speech and language development, which cannot be justified by hearing impairment, cognitive impairment, neuromuscular or orofacial disorders, as well as by emotional or environmental factors. Specific developmental disorders of speech and language are often comorbid with other neurodevelopmental disorders, such as motor coordination disorder and ADHD. These disorders are usually detected in early childhood and commonly treated during the preschool and school years. Despite this fact clinical and empirical evidence suggest that often these disorders persist beyond the school years, even though the symptomatology may be differentiated. In this literature review, we address the question of whether specific developmental language disorders are encountered only during childhood, and, if they persist, how they are manifested in adulthood. Finally, possible factors which may lead to these manifestations are analyzed. A considerable body of research has shown that even though the symptoms of children with specific developmental language disorders are resolved before the end of childhood, a significant part of this population continues to have persisting difficulties through adolescence and into adulthood. The continuity of this disorder may sometimes be directly linked to language disorder, as in the case of learning impairments or, on the other hand, symptoms may be related with those of conduct disorders, social adjustment disorder, emotional and psychiatric disorders in adolescence and adulthood. It therefore appears that specific developmental language disorder is often an early symptom of other disorders in the future. Even though the precise mechanisms which are responsible for these disorders are not yet known, it is possible that a

  10. X-linked dominant retinitis pigmentosa in an American family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, R.E.; Daiger, S.P.; Blanton, S.H.

    1994-09-01

    Retinitis pigmentosa is a genetically heterogeneous disease with autosomal dominant (adRP), autosomal recessive and X-linked forms. At least 3 forms of X-linked retinitis pigmentosa have been reported: RP2 which maps to Xp11.4-p 11.23, RP3 which maps to Xp21.1 and RP6, which maps to Xp21.3-p21.1. The X-linked forms of retinitis pigmentosa are generally considered to be recessive as female carriers are not affected or are much less affected than males. Here we report a five generation American family with X-linked retinitis pigmentosa in which both males and females are significantly affected. The disease locus in this family appears to be distinctmore » from RP2 and RP3. The American family (UTAD054) presents with early-onset retinitis pigmentosa. The family appeared to fit an autosomal dominant pattern; however, linkage testing excluded all known adRP loci. Absence of male-to-male transmission in the pedigree suggested the possibility of X-linked dominant inheritance. Thus we tested six microsatellite markers that map to Xp (DXS987, DXS989, DXS993, DXS999, DXS1003 and DXS1110). Of these, DXS989 showed tight linkage with one allele (199) showing a 100% concordance with disease status. The odds favoring an X-linked dominant mode of inheritance in this family, versus autosomal dominant, are 10{sup 5}:1. In addition, recombinations for DXS999, and dXS1110, the two markers flanking DXS989, were observed in affected individuals. These data map the disease locus in this family to a 9 mb region on the X chromosome between Xp22.11 and Xp21.41. In addition, the recombinant individuals exclude close linkage to RP2 and RP3. The observance of high penetrance in females indicates that this family has X-linked dominant retinitis pigmentosa. We suggest that this mode of inheritance should be considered in other families with dominant retinitis pigmentosa but an absence of male-to-male transmission.« less

  11. Genetic and neurodevelopmental influences in autistic disorder.

    PubMed

    Nicolson, Rob; Szatmari, Peter

    2003-09-01

    In the past, autism was considered to be largely psychogenic. However, research in the last 2 decades indicates that autism is largely caused by genetic factors that lead to abnormal brain development. This article reviews research into the genetic and neurodevelopmental factors underlying autism. We review the findings from genetic and brain-imaging studies of autism over the past 15 years and synthesize these findings as a guide for future research. Genome scans and association studies have suggested potential genomic regions and genes, respectively, that may be involved in the etiology of autism, and there have been some replications of these results. Similarly, the findings that brain volume is exaggerated in autism and corpus callosum size is reduced have also been independently replicated. Unfortunately, studies of other subcortical structures remain inconclusive or contradictory. Overwhelming evidence now supports a neurobiological basis for autism. However, further refinements will be needed to guide future studies, particularly to identify the most informative phenotypes to investigate. Additionally, studies examining the role of genetic factors in the brain abnormalities underlying autism will likely lead to further findings that will enhance our understanding of autism's causes.

  12. Sex chromosome aneuploidies and copy-number variants: a further explanation for neurodevelopmental prognosis variability?

    PubMed

    Le Gall, Jessica; Nizon, Mathilde; Pichon, Olivier; Andrieux, Joris; Audebert-Bellanger, Séverine; Baron, Sabine; Beneteau, Claire; Bilan, Frédéric; Boute, Odile; Busa, Tiffany; Cormier-Daire, Valérie; Ferec, Claude; Fradin, Mélanie; Gilbert-Dussardier, Brigitte; Jaillard, Sylvie; Jønch, Aia; Martin-Coignard, Dominique; Mercier, Sandra; Moutton, Sébastien; Rooryck, Caroline; Schaefer, Elise; Vincent, Marie; Sanlaville, Damien; Le Caignec, Cédric; Jacquemont, Sébastien; David, Albert; Isidor, Bertrand

    2017-08-01

    Sex chromosome aneuploidies (SCA) is a group of conditions in which individuals have an abnormal number of sex chromosomes. SCA, such as Klinefelter's syndrome, XYY syndrome, and Triple X syndrome are associated with a large range of neurological outcome. Another genetic event such as another cytogenetic abnormality may explain a part of this variable expressivity. In this study, we have recruited fourteen patients with intellectual disability or developmental delay carrying SCA associated with a copy-number variant (CNV). In our cohort (four patients 47,XXY, four patients 47,XXX, and six patients 47,XYY), seven patients were carrying a pathogenic CNV, two a likely pathogenic CNV and five a variant of uncertain significance. Our analysis suggests that CNV might be considered as an additional independent genetic factor for intellectual disability and developmental delay for patients with SCA and neurodevelopmental disorder.

  13. Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs

    PubMed Central

    Palafox, Luis E.; Aguilar, Leocundo; Sanchez, Mauricio A.; Martinez, Luis G.

    2016-01-01

    Mobile ad-hoc networks (MANETs) are dynamic by nature; this dynamism comes from node mobility, traffic congestion, and other transmission conditions. Metrics to evaluate the effects of those conditions shine a light on node’s behavior in an ad-hoc network, helping to identify the node or nodes with better conditions of connection. In this paper, we propose a relative index to evaluate a single node reliability, based on the link disconnection entropy disorder using neighboring nodes as reference. Link disconnection entropy disorder is best used to identify fast moving nodes or nodes with unstable communications, this without the need of specialized sensors such as GPS. Several scenarios were studied to verify the index, measuring the effects of Speed and traffic density on the link disconnection entropy disorder. Packet delivery ratio is associated to the metric detecting a strong relationship, enabling the use of the link disconnection entropy disorder to evaluate the stability of a node to communicate with other nodes. To expand the utilization of the link entropy disorder, we identified nodes with higher speeds in network simulations just by using the link entropy disorder. PMID:27219671

  14. Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs.

    PubMed

    Alvarez, Carlos F; Palafox, Luis E; Aguilar, Leocundo; Sanchez, Mauricio A; Martinez, Luis G

    2016-01-01

    Mobile ad-hoc networks (MANETs) are dynamic by nature; this dynamism comes from node mobility, traffic congestion, and other transmission conditions. Metrics to evaluate the effects of those conditions shine a light on node's behavior in an ad-hoc network, helping to identify the node or nodes with better conditions of connection. In this paper, we propose a relative index to evaluate a single node reliability, based on the link disconnection entropy disorder using neighboring nodes as reference. Link disconnection entropy disorder is best used to identify fast moving nodes or nodes with unstable communications, this without the need of specialized sensors such as GPS. Several scenarios were studied to verify the index, measuring the effects of Speed and traffic density on the link disconnection entropy disorder. Packet delivery ratio is associated to the metric detecting a strong relationship, enabling the use of the link disconnection entropy disorder to evaluate the stability of a node to communicate with other nodes. To expand the utilization of the link entropy disorder, we identified nodes with higher speeds in network simulations just by using the link entropy disorder.

  15. Exploration of large, rare copy number variants associated with psychiatric and neurodevelopmental disorders in individuals with anorexia nervosa.

    PubMed

    Yilmaz, Zeynep; Szatkiewicz, Jin P; Crowley, James J; Ancalade, NaEshia; Brandys, Marek K; van Elburg, Annemarie; de Kovel, Carolien G F; Adan, Roger A H; Hinney, Anke; Hebebrand, Johannes; Gratacos, Monica; Fernandez-Aranda, Fernando; Escaramis, Georgia; Gonzalez, Juan R; Estivill, Xavier; Zeggini, Eleftheria; Sullivan, Patrick F; Bulik, Cynthia M

    2017-08-01

    Anorexia nervosa (AN) is a serious and heritable psychiatric disorder. To date, studies of copy number variants (CNVs) have been limited and inconclusive because of small sample sizes. We conducted a case-only genome-wide CNV survey in 1983 female AN cases included in the Genetic Consortium for Anorexia Nervosa. Following stringent quality control procedures, we investigated whether pathogenic CNVs in regions previously implicated in psychiatric and neurodevelopmental disorders were present in AN cases. We observed two instances of the well-established pathogenic CNVs in AN cases. In addition, one case had a deletion in the 13q12 region, overlapping with a deletion reported previously in two AN cases. As a secondary aim, we also examined our sample for CNVs over 1 Mbp in size. Out of the 40 instances of such large CNVs that were not implicated previously for AN or neuropsychiatric phenotypes, two of them contained genes with previous neuropsychiatric associations, and only five of them had no associated reports in public CNV databases. Although ours is the largest study of its kind in AN, larger datasets are needed to comprehensively assess the role of CNVs in the etiology of AN.

  16. Survival and Neurodevelopmental Outcomes among Periviable Infants

    PubMed Central

    Younge, Noelle; Goldstein, Ricki F.; Bann, Carla M.; Hintz, Susan R.; Patel, Ravi M.; Smith, P. Brian; Bell, Edward F.; Rysavy, Matthew A.; Duncan, Andrea F.; Vohr, Betty R.; Das, Abhik; Goldberg, Ronald N.; Higgins, Rosemary D.; Cotten, C. Michael

    2017-01-01

    BACKGROUND Data reported during the past 5 years indicate that rates of survival have increased among infants born at the borderline of viability, but less is known about how increased rates of survival among these infants relate to early childhood neurodevelopmental outcomes. METHODS We compared survival and neurodevelopmental outcomes among infants born at 22 to 24 weeks of gestation, as assessed at 18 to 22 months of corrected age, across three consecutive birth-year epochs (2000–2003 [epoch 1], 2004–2007 [epoch 2], and 2008–2011 [epoch 3]). The infants were born at 11 centers that participated in the National Institute of Child Health and Human Development Neonatal Research Network. The primary outcome measure was a three-level outcome — survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, or death. After accounting for differences in infant characteristics, including birth center, we used multinomial generalized logit models to compare the relative risk of survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, and death. RESULTS Data on the primary outcome were available for 4274 of 4458 infants (96%) born at the 11 centers. The percentage of infants who survived increased from 30% (424 of 1391 infants) in epoch 1 to 36% (487 of 1348 infants) in epoch 3 (P<0.001). The percentage of infants who survived without neurodevelopmental impairment increased from 16% (217 of 1391) in epoch 1 to 20% (276 of 1348) in epoch 3 (P = 0.001), whereas the percentage of infants who survived with neurodevelopmental impairment did not change significantly (15% [207 of 1391] in epoch 1 and 16% [211 of 1348] in epoch 3, P = 0.29). After adjustment for changes in the baseline characteristics of the infants over time, both the rate of survival with neurodevelopmental impairment (as compared with death) and the rate of survival without neurodevelopmental impairment (as compared with death) increased

  17. Associations between neurodevelopmental disorders and factors related to school, health, and social interaction in schoolchildren: Results from a Swedish population-based survey.

    PubMed

    Beckman, Linda; Janson, Staffan; von Kobyletzki, Laura

    2016-10-01

    Children and adolescents with autism spectrum disorder (ASD) or attention-deficit/hyperactivity disorder (ADHD) are more likely to be surrounded by different risk factors. In order to work preventively with decreasing ADHD and ASD symptoms, there is a need of more knowledge concerning risk factors. This study aimed to investigate school, health, lifestyle and social interactions association with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) among schoolchildren aged 6-17 years. Data for 18,416 children and adolescents aged 6-17 years in the county of Värmland, Sweden, from the school year 2012/2013 and 2013/2014 were obtained from the Student Health Database, which includes information on health examinations by school nurses and self-reported information of mental and physical health, social relations, physical activity, and school conditions. Of all participants, 2.4% reported only ADHD and 1.6% reported only ASD. The results confirmed that ADHD or ASD was significantly associated with worse school experiences, lower socioeconomic status, less physical activity, more substance use, weaker social network and more impairments than those without ADHD or ASD. Knowledge of risk or protective factors during school years is needed to develop interventions to reduce symptoms of neurodevelopmental disorders in children and adolescents. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Facilitating support groups for siblings of children with neurodevelopmental disorders using audio-conferencing: a longitudinal feasibility study.

    PubMed

    Gettings, Sheryl; Franco, Fabia; Santosh, Paramala J

    2015-01-01

    Siblings of children with chronic illness and disabilities are at increased risk of negative psychological effects. Support groups enable them to access psycho-education and social support. Barriers to this can include the distance they have to travel to meet face-to-face. Audio-conferencing, whereby three or more people can connect by telephone in different locations, is an efficient means of groups meeting and warrants exploration in this healthcare context. This study explored the feasibility of audio-conferencing as a method of facilitating sibling support groups. A longitudinal design was adopted. Participants were six siblings (aged eight to thirteen years) and parents of children with complex neurodevelopmental disorders attending the Centre for Interventional Paediatric Psychopharmacology (CIPP). Four of the eight one-hour weekly sessions were held face-to-face and the other four using audio-conferencing. Pre- and post-intervention questionnaires and interviews were completed and three to six month follow-up interviews were carried out. The sessions were audio-recorded, transcribed and thematic analysis was undertaken. Audio-conferencing as a form of telemedicine was acceptable to all six participants and was effective in facilitating sibling support groups. Audio-conferencing can overcome geographical barriers to children being able to receive group therapeutic healthcare interventions such as social support and psycho-education. Psychopathology ratings increased post-intervention in some participants. Siblings reported that communication between siblings and their family members increased and siblings' social network widened. Audio-conferencing is an acceptable, feasible and effective method of facilitating sibling support groups. Siblings' clear accounts of neuropsychiatric symptoms render them reliable informants. Systematic assessment of siblings' needs and strengthened links between Child and Adolescent Mental Health Services, school counsellors and

  19. Select putative neurodevelopmental toxins modify SNAP-25 expression in primary cultures of rat cerebellar granule cells.

    PubMed

    Zieminska, Elzbieta; Lenart, Jacek; Lazarewicz, Jerzy W

    2016-08-31

    A presynaptic protein SNAP-25 belonging to SNARE complex which is instrumental in intracellular vesicular trafficking and exocytosis, has been implicated in hyperactivity and cognitive abilities in some neuropsychiatric disorders. The unclear etiology of the behavior disrupting neurodevelopmental disabilities in addition to genetic causes most likely involves environmental factors. The aim of this in vitro study was to test if various suspected developmental neurotoxins can alter SNAP-25 mRNA and protein expression in neurons. Real-time PCR and Western blotting analyses were used to assess SNAP-25 mRNA and protein levels in primary cultures of rat cerebellar granule cells (CGCs). The test substances: tetrabromobisphenol-A (TBBPA), thimerosal (TH), silver nanoparticles (NAg), valproic acid (VPA) and thalidomide (THAL), were administered to CGC cultures at subtoxic concentrations for 24h. The results demonstrated that SNAP-25 mRNA levels were increased by 49 and 66% by TBBPA and THAL, respectively, whereas VPA and NAg reduced these levels to 48 and 64% of the control, respectively. The SNAP-25 protein content in CGCs was increased by 79% by TBBPA, 25% by THAL and 21% by NAg; VPA and TH reduced these levels to 73 and 69% of the control, respectively. The variety of changes in SNAP-25 expression on mRNA and protein level suggests the diversity of the mechanism of action of the test substances. This initial study provided no data on concentration-effect relations and on functional changes in CGCs. However it is the first to demonstrate the effect of different compounds that are suspected of causing neurodevelopmental disabilities on SNAP-25 expression. These results suggest that this protein may be a common target for not only inherited but also environmental modifications linked to behavioral deficits in neurodevelopmental disabilities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Neurodevelopmental outcome in isolated mild fetal ventriculomegaly: systematic review and meta-analysis.

    PubMed

    Pagani, G; Thilaganathan, B; Prefumo, F

    2014-09-01

    The finding of fetal ventriculomegaly is variably associated with other fetal abnormalities and, even when isolated, is thought to be linked to abnormal neurodevelopmental outcome. The aim of this study was to undertake a systematic review and meta-analysis of the current literature to assess the prevalence of neurodevelopmental delay in cases of isolated mild fetal ventriculomegaly, as well as the false-negative rate of prenatal imaging for the diagnosis of associated abnormalities in patients referred for isolated mild ventriculomegaly. Studies that assessed neurodevelopmental outcome in isolated ventriculomegaly were identified from a search of scientific databases. Studies that did not check for karyotype or that excluded cases of bilateral ventriculomegaly were not included in the analysis. Ventriculomegaly was defined as mild when the width of the ventricular atrium was between 10 and 15 mm. Cases in which an associated abnormality (abnormal karyotype, structural abnormality or fetal infection) was observed either before or after birth were not considered as part of the isolated group. Neurodevelopmental delay was defined as an abnormal quotient score, according to the test used. The search yielded 961 possible citations; of these, 904 were excluded by review of the title or abstract as they did not meet the selection criteria. Full manuscripts were retrieved for 57 studies, and 20 were included in the review with a total of 699 cases of isolated mild ventriculomegaly. The overall prevalence of neurodevelopmental delay was 7.9% (95% CI, 4.7-11.1%). Of the 20 studies included in the systematic review, nine reported data on postnatal imaging, showing a prevalence of previously undiagnosed findings of 7.4% (95% CI, 3.1-11.8%). The false-negative rate of prenatal imaging is 7.4% in apparently isolated fetal ventriculomegaly of ≤ 15 mm. The incidence of neurodevelopmental delay in truly isolated ventriculomegaly of ≤ 15 mm is 7.9%. As the latter rate is

  1. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood.

    PubMed

    Ouvrier, Robert; Geevasingha, Nimeshan; Ryan, Monique M

    2007-08-01

    The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.

  2. Touchscreen learning deficits in Ube3a, Ts65Dn and Mecp2 mouse models of neurodevelopmental disorders with intellectual disabilities.

    PubMed

    Leach, P T; Crawley, J N

    2017-12-20

    Mutant mouse models of neurodevelopmental disorders with intellectual disabilities provide useful translational research tools, especially in cases where robust cognitive deficits are reproducibly detected. However, motor, sensory and/or health issues consequent to the mutation may introduce artifacts that preclude testing in some standard cognitive assays. Touchscreen learning and memory tasks in small operant chambers have the potential to circumvent these confounds. Here we use touchscreen visual discrimination learning to evaluate performance in the maternally derived Ube3a mouse model of Angelman syndrome, the Ts65Dn trisomy mouse model of Down syndrome, and the Mecp2 Bird mouse model of Rett syndrome. Significant deficits in acquisition of a 2-choice visual discrimination task were detected in both Ube3a and Ts65Dn mice. Procedural control measures showed no genotype differences during pretraining phases or during acquisition. Mecp2 males did not survive long enough for touchscreen training, consistent with previous reports. Most Mecp2 females failed on pretraining criteria. Significant impairments on Morris water maze spatial learning were detected in both Ube3a and Ts65Dn, replicating previous findings. Abnormalities on rotarod in Ube3a, and on open field in Ts65Dn, replicating previous findings, may have contributed to the observed acquisition deficits and swim speed abnormalities during water maze performance. In contrast, these motor phenotypes do not appear to have affected touchscreen procedural abilities during pretraining or visual discrimination training. Our findings of slower touchscreen learning in 2 mouse models of neurodevelopmental disorders with intellectual disabilities indicate that operant tasks offer promising outcome measures for the preclinical discovery of effective pharmacological therapeutics. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  3. Ventriculoperitoneal shunts in low birth weight infants with intracranial hemorrhage: neurodevelopmental outcome.

    PubMed

    Boynton, B R; Boynton, C A; Merritt, T A; Vaucher, Y E; James, H E; Bejar, R F

    1986-02-01

    Fifty preterm infants (mean birth weight, 1266 +/- 303 g; mean gestational age, 30 +/- 2 weeks) who required a ventriculoperitoneal (VP) shunt for posthemorrhagic hydrocephalus (92% with Grade III or IV hemorrhage) were followed for neurodevelopmental problems. VP shunts were placed at a median age of 29 days (range, 18 to 87 days) after serial lumbar punctures failed to control progressive and symptomatic ventriculomegaly. A total of 34 infants (68%) required one shunt revision or more, and the overall infection rate per patient was 50%. Seven infants died, 2 from shunt infections. The infants were evaluated with audiological, ophthalmological, and neurodevelopmental examinations. Of the survivors, 11 (28%) have severe visual loss and 10 (24%) have hearing impairment. Of the infants, 21 (49%) have severe motor handicaps and 19 (38%) have seizure disorders. Developmental and motor scores were obtained using the Bayley or Knobloch-Gesell scales. Seven infants (18%) have normal developmental outcomes; 26 (60%) have multiple handicaps. Grade IV hemorrhage or the occurrence of seizures was a predictor of poor neurodevelopmental outcome. We conclude that progressive posthemorrhagic hydrocephalus in low birth weight infants is associated with multiple handicaps despite early VP shunt placement.

  4. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE PAGES

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun; ...

    2017-04-27

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  5. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  6. Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder.

    PubMed

    Steinberg, Karyn Meltz; Ramachandran, Dhanya; Patel, Viren C; Shetty, Amol C; Cutler, David J; Zwick, Michael E

    2012-09-28

    Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3' UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects.

  7. Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder

    PubMed Central

    2012-01-01

    Background Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. Methods We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. Results We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3’ UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. Conclusions These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects. PMID:23020841

  8. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity.

    PubMed

    Katrancha, Sara M; Wu, Yi; Zhu, Minsheng; Eipper, Betty A; Koleske, Anthony J; Mains, Richard E

    2017-12-01

    Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Genetics Home Reference: immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome

    MedlinePlus

    ... Health Conditions IPEX syndrome Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome Printable PDF Open All Close All ... expand/collapse boxes. Description Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome primarily affects males and is ...

  10. The Influence of Neurodevelopmental Treatment on Transforming Growth Factor-β1 Levels and Neurological Remodeling in Children With Cerebral Palsy.

    PubMed

    Tao, Weiyuan; Lu, Zuneng; Wen, Fang

    2016-11-01

    Neurodevelopmental treatment is an advanced therapeutic approach for the neural rehabilitation of children with cerebral palsy. Cerebral palsy represents a spectrum of neurological disorders primarily affecting gross motor function. The authors investigated the effects of neurodevelopmental treatment on serum levels of transforming growth factor-β1 (TGF-β1), a neuroprotective cytokine, and improvements to motor skills. Serum TGF-β1 levels and total score of the Gross Motor Function Measure-88 (GMFM-88) were significantly higher in children with cerebral palsy who underwent neurodevelopmental treatment compared to untreated patients (P < .01). Furthermore, the improved GMFM-88 total scores after neurodevelopmental treatment were significantly higher in children under the age of 3 with cerebral palsy than in older patients (P < .01). The authors demonstrate that the integration of TGF-β1 levels and GMFM-88 total score could be used to assess the efficacy of neurodevelopmental treatment. Moreover, the findings provide further scientific support for the early intervention and neurological rehabilitation of young children with cerebral palsy. © The Author(s) 2016.

  11. Maternal Metabolic Conditions and Risk for Autism and Other Neurodevelopmental Disorders

    PubMed Central

    Walker, Cheryl K.; Bremer, Andrew A.; Baker, Alice S.; Ozonoff, Sally; Hansen, Robin L.; Hertz-Picciotto, Irva

    2012-01-01

    OBJECTIVE: We examined whether metabolic conditions (MCs) during pregnancy (diabetes, hypertension, and obesity) are associated with autism spectrum disorder (ASD), developmental delays (DD), or impairments in specific domains of development in the offspring. METHODS: Children aged 2 to 5 years (517 ASD, 172 DD, and 315 controls) were enrolled in the CHARGE (Childhood Autism Risks from Genetics and the Environment) study, a population-based, case-control investigation between January 2003 and June 2010. Eligible children were born in California, had parents who spoke English or Spanish, and were living with a biological parent in selected regions of California. Children’s diagnoses were confirmed by using standardized assessments. Information regarding maternal conditions was ascertained from medical records or structured interview with the mother. RESULTS: All MCs were more prevalent among case mothers compared with controls. Collectively, these conditions were associated with a higher likelihood of ASD and DD relative to controls (odds ratio: 1.61 [95% confidence interval: 1.10–2.37; odds ratio: 2.35 [95% confidence interval: 1.43–3.88], respectively). Among ASD cases, children of women with diabetes had Mullen Scales of Early Learning (MSEL) expressive language scores 0.4 SD lower than children of mothers without MCs (P < .01). Among children without ASD, those exposed to any MC scored lower on all MSEL and Vineland Adaptive Behavior Scales (VABS) subscales and composites by at least 0.4 SD (P < .01 for each subscale/composite). CONCLUSIONS: Maternal MCs may be broadly associated with neurodevelopmental problems in children. With obesity rising steadily, these results appear to raise serious public health concerns. PMID:22492772

  12. X-linked hypophosphatemia attributable to pseudoexons of the PHEX gene.

    PubMed

    Christie, P T; Harding, B; Nesbit, M A; Whyte, M P; Thakker, R V

    2001-08-01

    X-linked hypophosphatemia is commonly caused by mutations of the coding region of PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). However, such PHEX mutations are not detected in approximately one third of X-linked hypophosphatemia patients who may harbor defects in the noncoding or intronic regions. We have therefore investigated 11 unrelated X-linked hypophosphatemia patients in whom coding region mutations had been excluded, for intronic mutations that may lead to mRNA splicing abnormalities, by the use of lymphoblastoid RNA and RT-PCRs. One X-linked hypophosphatemia patient was found to have 3 abnormally large transcripts, resulting from 51-bp, 100-bp, and 170-bp insertions, all of which would lead to missense peptides and premature termination codons. The origin of these transcripts was a mutation (g to t) at position +1268 of intron 7, which resulted in the occurrence of a high quality novel donor splice site (ggaagg to gtaagg). Splicing between this novel donor splice site and 3 preexisting, but normally silent, acceptor splice sites within intron 7 resulted in the occurrences of the 3 pseudoexons. This represents the first report of PHEX pseudoexons and reveals further the diversity of genetic abnormalities causing X-linked hypophosphatemia.

  13. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Galvez-Contreras, Alma Y.; Campos-Ordonez, Tania; Gonzalez-Castaneda, Rocio E.; Gonzalez-Perez, Oscar

    2017-01-01

    Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders. PMID:28751869

  14. Structure–function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders

    PubMed Central

    Stoodley, Catherine J.; Limperopoulos, Catherine

    2016-01-01

    SUMMARY The increasing appreciation of the role of the cerebellum in motor and non-motor functions is crucial to understanding the outcomes of acquired cerebellar injury and developmental lesions in high-risk fetal and neonatal populations, children with cerebellar damage (e.g. posterior fossa tumors), and neurodevelopmental disorders (e.g. autism). We review available data regarding the relationship between the topography of cerebellar injury or abnormality and functional outcomes. We report emerging structure–function relationships with specific symptoms: cerebellar regions that interconnect with sensorimotor cortices are associated with motor impairments when damaged; disruption to posterolateral cerebellar regions that form circuits with association cortices impact long-term cognitive outcomes; and midline posterior vermal damage is associated with behavioral dysregulation and an autism-like phenotype. We also explore the impact of age and the potential role for critical periods on cerebellar structure and child function. These findings suggest that the cerebellum plays a critical role in motor, cognitive, and social–behavioral development, possibly via modulatory effects on the developing cerebral cortex. PMID:27184461

  15. Impaired plasticity of macrophages in X-linked adrenoleukodystrophy.

    PubMed

    Weinhofer, Isabelle; Zierfuss, Bettina; Hametner, Simon; Wagner, Magdalena; Popitsch, Niko; Machacek, Christian; Bartolini, Barbara; Zlabinger, Gerhard; Ohradanova-Repic, Anna; Stockinger, Hannes; Köhler, Wolfgang; Höftberger, Romana; Regelsberger, Günther; Forss-Petter, Sonja; Lassmann, Hans; Berger, Johannes

    2018-05-30

    X-linked adrenoleukodystrophy is caused by ATP-binding cassette transporter D1 (ABCD1) mutations and manifests by default as slowly progressive spinal cord axonopathy with associated demyelination (adrenomyloneuropathy). In 60% of male cases, however, X-linked adrenoleukodystrophy converts to devastating cerebral inflammation and demyelination (cerebral adrenoleukodystrophy) with infiltrating blood-derived monocytes and macrophages and cytotoxic T cells that can only be stopped by allogeneic haematopoietic stem cell transplantation or gene therapy at an early stage of the disease. Recently, we identified monocytes/macrophages but not T cells to be severely affected metabolically by ABCD1 deficiency. Here we found by whole transcriptome analysis that, although monocytes of patients with X-linked adrenoleukodystrophy have normal capacity for macrophage differentiation and phagocytosis, they are pro-inflammatory skewed also in patients with adrenomyloneuropathy in the absence of cerebral inflammation. Following lipopolysaccharide activation, the ingestion of myelin debris, normally triggering anti-inflammatory polarization, did not fully reverse the pro-inflammatory status of X-linked adrenoleukodystrophy macrophages. Immunohistochemistry on post-mortem cerebral adrenoleukodystrophy lesions reflected the activation pattern by prominent presence of enlarged lipid-laden macrophages strongly positive for the pro-inflammatory marker co-stimulatory molecule CD86. Comparative analyses of lesions with matching macrophage density in cases of cerebral adrenoleukodystrophy and acute multiple sclerosis showed a similar extent of pro-inflammatory activation but a striking reduction of anti-inflammatory mannose receptor (CD206) and haemoglobin-haptoglobin receptor (CD163) expression on cerebral adrenoleukodystrophy macrophages. Accordingly, ABCD1-deficiency leads to an impaired plasticity of macrophages that is reflected in incomplete establishment of anti-inflammatory responses

  16. Neurodevelopmental Outcomes in Congenital Heart Disease

    MedlinePlus

    ... school and independent living, such as attention, organization, social interaction, coordination, and self-care. The American Heart Association has described categories of children at high risk for neurodevelopmental impairment (see the Table ) and recommends these children be formally evaluated with ... Media Neurodevelopmental Outcomes in Congenital Heart Disease Caitlin ...

  17. X-linked adult-onset adrenoleukodystrophy: Psychiatric and neurological manifestations

    PubMed Central

    Shamim, Daniah; Alleyne, Karen

    2017-01-01

    Adult-onset adrenoleukodystrophy is a rare x-linked inborn error of metabolism occurring predominantly in males with onset in early 30s. Here, we report a 34-year-old male with first signs of disease in early 20s manifesting as a pure psychiatric disorder. Prior to onset of neurological symptoms, this patient demonstrated a schizophrenia and bipolar-like presentation. The disease progressed over the next 10–13 years and his memory and motor problems became evident around the age of 33 years. Subsequently, diagnostic testing showed the typical magnetic resonance imaging and lab findings for adult-onset adrenoleukodystrophy. This case highlights adult-onset adrenoleukodystrophy which may present as a pure psychiatric disturbance in early adulthood and briefly discusses the prolonged time between the onset of psychiatric symptoms and the onset of neurological disease. PMID:29201369

  18. X-linked adult-onset adrenoleukodystrophy: Psychiatric and neurological manifestations.

    PubMed

    Shamim, Daniah; Alleyne, Karen

    2017-01-01

    Adult-onset adrenoleukodystrophy is a rare x-linked inborn error of metabolism occurring predominantly in males with onset in early 30s. Here, we report a 34-year-old male with first signs of disease in early 20s manifesting as a pure psychiatric disorder. Prior to onset of neurological symptoms, this patient demonstrated a schizophrenia and bipolar-like presentation. The disease progressed over the next 10-13 years and his memory and motor problems became evident around the age of 33 years. Subsequently, diagnostic testing showed the typical magnetic resonance imaging and lab findings for adult-onset adrenoleukodystrophy. This case highlights adult-onset adrenoleukodystrophy which may present as a pure psychiatric disturbance in early adulthood and briefly discusses the prolonged time between the onset of psychiatric symptoms and the onset of neurological disease.

  19. Rett syndrome: an overlooked diagnosis in women with stereotypic hand movements, psychomotor retardation, Parkinsonism, and dystonia?

    PubMed

    Roze, Emmanuel; Cochen, Valérie; Sangla, Sophie; Bienvenu, Thierry; Roubergue, Anne; Leu-Semenescu, Smaranda; Vidaihet, Marie

    2007-02-15

    Rett syndrome is an X-linked neurodevelopmental disorder resulting in profound psychomotor retardation. It is usually diagnosed by a pediatrician or pediatric neurologist. Adult neurologists may, therefore, overlook the possibility of Rett syndrome in women with psychomotor retardation of unknown etiology. We report the case of a woman diagnosed with Rett syndrome at age 49 years. This report emphasizes the diagnostic value of movement disorders, including hand stereotypies, Parkinsonism, and dystonia, in adults with Rett syndrome.

  20. ESSENCE-Q - a first clinical validation study of a new screening questionnaire for young children with suspected neurodevelopmental problems in south Japan.

    PubMed

    Hatakenaka, Yuhei; Fernell, Elisabeth; Sakaguchi, Masahiko; Ninomiya, Hitoshi; Fukunaga, Ichiro; Gillberg, Christopher

    2016-01-01

    Early identification of autism spectrum disorder, intellectual developmental disorder, attention-deficit/hyperactivity disorder, and other neurodevelopmental disorders/problems is crucial, yet diagnosis is often delayed for years under the often misguided "wait-and-see" paradigm. The early symptomatic syndromes eliciting neurodevelopmental clinical examinations-questionnaire (ESSENCE-Q) is a brief (12-item) screening questionnaire developed specifically for the purpose of speeding up the identification process of a wide variety of neurodevelopmental problems. The aims were to 1) estimate the reliability of the ESSENCE-Q, 2) evaluate the clinical cutoff levels suggested by the author of the ESSENCE-Q, and 3) propose optimal cutoff levels based on receiver operating characteristic analysis. The ESSENCE-Q was used for 1 year by a psychiatrist in Kochi, Japan, assessing children under the age of 6 years referred for developmental problems. The children were also clinically assessed with regard to whether or not they met criteria for a developmental disorder (diagnosis positive and diagnosis negative groups). We contrasted the results of the ESSENCE-Q and those of clinical diagnostic assessments in 130 cases. Cronbach's alpha was 0.82, sensitivity was 0.94 (95% confidence interval [CI]: [0.88, 0.98]), and specificity 0.53 (95% CI: [0.28, 0.77]), which are reasonable psychometrics for a first-step screening tool. Based on receiver operating characteristic analysis, we recommended an optimal cutoff level of yes ≥2 or maybe/a little ≥3 on the ESSENCE-Q (0.87 (95% CI: [0.79, 0.92]) sensitivity and 0.77 (95% CI: [0.50, 0.93]) specificity). The ESSENCE-Q can be a good instrument for use as a screening tool for aiding in the process of early identification of neurodevelopmental disorders in clinical settings. To establish the broader validity and reliability of the ESSENCE-Q, case-control studies and general population studies of children in different age groups are needed.

  1. Genetics Home Reference: X-linked spondyloepiphyseal dysplasia tarda

    MedlinePlus

    ... Educational Resources (6 links) Cincinnati Children's Hospital: Coxa Vera Disease InfoSearch: Spondyloepiphyseal dysplasia tarda X-linked Johns ... Free article on PubMed Central Savarirayan R, Thompson E, Gécz J. Spondyloepiphyseal dysplasia tarda (SEDL, MIM #313400). ...

  2. Neurodevelopmental Theories of Schizophernia : Application to Late-Onset Schizophernia

    PubMed Central

    Palmer, Barton W.; Jeste, Dilip V.

    1996-01-01

    A review of literature on the neurodevelopmental origins of schizophemia is presented, with particular attention to neurodevelopmental processes in late-onset schizophemia. Definitions of the term “neurodevelopmental” as used in schizophernia literature are first provided. Next, evidence for the developmental origins of the neuropathology in schizophemia is reviewed. This evidence includes studies of the associations between schizophemia and neurodevelopmental brain aberrations, minor physical anomalies, obstetric complications, prenatal viral exposure, childhood neuromotor abnormalities, and pandysmaturation. A brief discussion of the predominant theories about the neurodevelopmental origins of schizophemia is then provided. The concept and nature of “late-onset schizophenia ”is next defined and discussed. Finally, the neurodevelopmental literature is discussed in relation to the phenomenon of late-onset schizophemia. Based on this review, we conclude that there exists a strong likelihood that late-onset schizophrenia involves neurodevelopmental processes. PMID:21584112

  3. CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome

    USDA-ARS?s Scientific Manuscript database

    X-linked hyper-IgM syndrome (XHM) is a combined immune deficiency disorder caused by mutations in CD40 ligand. We tested CP-870,893, a human CD40 agonist monoclonal antibody, in the treatment of two XHM patients with biliary Cryptosporidiosis. CP-870,893 activated B cells and APCs in vitro, restori...

  4. Neurodevelopmental Effects of Antiepileptic Drugs.

    PubMed

    Kellogg, Marissa; Meador, Kimford J

    2017-07-01

    Increasing evidence suggests that exposure to certain antiepileptic drugs (AEDs) during critical periods of development may induce transient or long-lasting neurodevelopmental deficits across cognitive, motor and behavioral domains. The developing nervous system may endure prolonged chronic exposure to AEDs during pregnancy (in utero) or during childhood, which can lead to neurodevelopmental defects such as congenital neural tube defects, lower IQ, language deficits, autism and ADHD. To date, valproate is the most widely recognized AED to significantly negatively affect neurodevelopment, and demonstrates greater adverse effects than any other AEDs that have been assessed. Although some AEDs appear to have low risk (i.e., lamotrigine, levetiracetam), other AEDs have been implicated in a variety of studies detailed below, and many AEDs have not been adequately assessed. The purpose of this review article is to summarize our current understanding of the neurodevelopmental effects of AEDs.

  5. Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior

    PubMed Central

    Genestine, Matthieu; Lin, Lulu; Durens, Madel; Yan, Yan; Jiang, Yiqin; Prem, Smrithi; Bailoor, Kunal; Kelly, Brian; Sonsalla, Patricia K.; Matteson, Paul G.; Silverman, Jill; Crawley, Jacqueline N.; Millonig, James H.; DiCicco-Bloom, Emanuel

    2015-01-01

    Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40–75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5–15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human

  6. siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster.

    PubMed

    Menon, Debashish U; Coarfa, Cristian; Xiao, Weimin; Gunaratne, Preethi H; Meller, Victoria H

    2014-11-18

    Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.

  7. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice.

    PubMed

    Wang, I-Ting Judy; Allen, Megan; Goffin, Darren; Zhu, Xinjian; Fairless, Andrew H; Brodkin, Edward S; Siegel, Steve J; Marsh, Eric D; Blendy, Julie A; Zhou, Zhaolan

    2012-12-26

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders.

  8. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice

    PubMed Central

    Wang, I-Ting Judy; Allen, Megan; Goffin, Darren; Zhu, Xinjian; Fairless, Andrew H.; Brodkin, Edward S.; Siegel, Steve J.; Marsh, Eric D.; Blendy, Julie A.; Zhou, Zhaolan

    2012-01-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders. PMID:23236174

  9. Signaling of Noncomprehension in Communication Breakdowns in Fragile X Syndrome, Down Syndrome, and Autism Spectrum Disorder

    PubMed Central

    Martin, Gary E.; Barstein, Jamie; Hornickel, Jane; Matherly, Sara; Durante, Genna; Losh, Molly

    2017-01-01

    The ability to indicate a failure to understand a message is a critical pragmatic (social) language skill for managing communication breakdowns and supporting successful communicative exchanges. The current study examined the ability to signal noncomprehension across different types of confusing message conditions in children and adolescents with fragile X syndrome (FXS), Down syndrome (DS), autism spectrum disorder (ASD), and typical development (TD). Controlling for nonverbal mental age and receptive vocabulary skills, youth with comorbid FXS and ASD and those with DS were less likely than TD controls to signal noncomprehension of confusing messages. Youth with FXS without ASD and those with idiopathic ASD did not differ from controls. No sex differences were detected in any group. Findings contribute to current knowledge of pragmatic profiles in different forms of genetically-based neurodevelopmental disorders associated with intellectual disability, and the role of sex in the expression of such profiles. Learning Outcomes Upon completion of this article, readers will have learned about: (1) the social-communicative profiles of youth with FXS, DS, and ASD, (2) the importance of signaling noncomprehension in response to a confusing message, and (3) the similarities and differences in noncomprehension signaling in youth with FXS (with and without ASD), DS, idiopathic ASD, and TD. PMID:28161297

  10. Signaling of noncomprehension in communication breakdowns in fragile X syndrome, Down syndrome, and autism spectrum disorder.

    PubMed

    Martin, Gary E; Barstein, Jamie; Hornickel, Jane; Matherly, Sara; Durante, Genna; Losh, Molly

    The ability to indicate a failure to understand a message is a critical pragmatic (social) language skill for managing communication breakdowns and supporting successful communicative exchanges. The current study examined the ability to signal noncomprehension across different types of confusing message conditions in children and adolescents with fragile X syndrome (FXS), Down syndrome (DS), autism spectrum disorder (ASD), and typical development (TD). Controlling for nonverbal mental age and receptive vocabulary skills, youth with comorbid FXS and ASD and those with DS were less likely than TD controls to signal noncomprehension of confusing messages. Youth with FXS without ASD and those with idiopathic ASD did not differ from controls. No sex differences were detected in any group. Findings contribute to current knowledge of pragmatic profiles in different forms of genetically-based neurodevelopmental disorders associated with intellectual disability, and the role of sex in the expression of such profiles. Upon completion of this article, readers will have learned about: (1) the social-communicative profiles of youth with FXS, DS, and ASD, (2) the importance of signaling noncomprehension in response to a confusing message, and (3) the similarities and differences in noncomprehension signaling in youth with FXS (with and without ASD), DS, idiopathic ASD, and TD. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Combination of a Haploidentical Stem Cell Transplant With Umbilical Cord Blood for Cerebral X-Linked Adrenoleukodystrophy.

    PubMed

    Jiang, Hua; Jiang, Min-Yan; Liu, Sha; Cai, Yan-Na; Liang, Cui-Li; Liu, Li

    2015-08-01

    Childhood cerebral X-linked adrenoleukodystrophy is a rapidly progressive neurodegenerative disorder that affects central nervous system myelin and the adrenal cortex. Hematopoietic stem cell transplantation is the best available curative therapy if performed during the early stages of disease. Only 30% of patients who might benefit from a hematopoietic stem cell transplant will have a full human leukocyte antigen-matched donor, which is considered to be the best choice. We present a 5-year-old boy with cerebral X-linked adrenoleukodystrophy whose brain magnetic resonance imaging severity score was 7 and who needed an immediate transplantation without an available full human leukocyte antigen-matched donor. We combined haploidentical and umbilical cord blood sources for transplantation and saw encouraging results. After transplantation, the patient showed neurological stability for 6 months and the level of very long chain fatty acids had decreased. By 1 year, the patient appeared to gradually develop cognition, motor, and visual disturbances resulting from possible mix chimerism. Transplantation of haploidentical stem cells combined with the infusion of umbilical cord blood is a novel approach for treating cerebral X-linked adrenoleukodystrophy. It is critical to monitor posttransplant chimerism and carry out antirejection therapy timely for a beneficial clinical outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Informing DSM-5: biological boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia

    PubMed Central

    2013-01-01

    Background The fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) opted to retain existing diagnostic boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia. The debate preceding this decision focused on understanding the biologic basis of these major mental illnesses. Evidence from genetics, neuroscience, and pharmacotherapeutics informed the DSM-5 development process. The following discussion will emphasize some of the key factors at the forefront of the debate. Discussion Family studies suggest a clear genetic link between bipolar I disorder, schizoaffective disorder, and schizophrenia. However, large-scale genome-wide association studies have not been successful in identifying susceptibility genes that make substantial etiological contributions. Boundaries between psychotic disorders are not further clarified by looking at brain morphology. The fact that symptoms of bipolar I disorder, but not schizophrenia, are often responsive to medications such as lithium and other anticonvulsants must be interpreted within a larger framework of biological research. Summary For DSM-5, existing nosological boundaries between bipolar I disorder and schizophrenia were retained and schizoaffective disorder preserved as an independent diagnosis since the biological data are not yet compelling enough to justify a move to a more neurodevelopmentally continuous model of psychosis. PMID:23672587

  13. Genetics Home Reference: X-linked agammaglobulinemia

    MedlinePlus

    ... Sep;104(3):221-30. Citation on PubMed Smith CIE, Berglöf A. X-Linked Agammaglobulinemia. 2001 Apr ... Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): ...

  14. Orexin: a Missing Link Between Sleep Disorders and Heart Failure?

    PubMed

    Pan, Stephen; Cabral, Carolina S; Ashley, Euan A; Perez, Marco V

    2017-04-01

    Sleep disorders represent a significant comorbidity in the heart failure population, and there is mounting evidence that treatment of sleep disorders such as obstructive sleep apnea can significantly improve cardiac function. However, the link between these two disorders is still not entirely clear. Recently, a novel neurohormonal pathway has been elucidated involving signaling molecules now collectively known as the orexins, which have been implicated in regulating autonomic function during sleep/wake cycles. Further evidence has mounted that orexin signaling is deeply perturbed in the setting of sleep disorders, and furthermore that abnormal orexin signaling may be implicated in the pathology of heart failure. The orexin signaling pathway represents an enticing novel target for both the treatment of sleep disorders as well as heart failure, and may represent one facet of the "missing link" between these two prevalent and often comorbid diseases.

  15. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    PubMed

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  16. A Trial of Metformin in Individuals With Fragile X Syndrome

    ClinicalTrials.gov

    2018-06-05

    Fragile X Syndrome; Fragile X Mental Retardation Syndrome; Mental Retardation, X Linked; Genetic Diseases, X-Linked; Trinucleotide Repeat Expansion; Fra(X) Syndrome; Intellectual Disability; FXS; Neurobehavioral Manifestations; Sex Chromosome Disorders

  17. Early neurodevelopmental outcomes of extremely preterm infants.

    PubMed

    Rogers, Elizabeth E; Hintz, Susan R

    2016-12-01

    Infants born at extreme preterm gestation are at risk for both death and disability. Although rates of survival have improved for this population, and some evidence suggests a trend toward decreased neuromotor impairment over the past decades, a significant improvement in overall early neurodevelopmental outcome has not yet been realized. This review will examine the rates and types of neurodevelopmental impairment seen after extremely preterm birth, including neurosensory, motor, cognitive, and behavioral outcomes. We focus on early outcomes in the first 18-36 months of life, as the majority of large neonatal studies examining neurodevelopmental outcomes stop at this age. However, this early age is clearly just a first glimpse into lifetime outcomes; the neurodevelopmental effects of extreme prematurity may last through school age, adolescence, and beyond. Importantly, prematurity appears to be an independent risk factor for adverse development, but this population demonstrates considerable variability in the types and severity of impairments. Understanding both the nature and prevalence of neurodevelopmental impairment among extremely preterm infants is important because it can lead to targeted interventions that in turn may lead to improved outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome.

    PubMed

    Bostrom, Crystal; Yau, Suk-Yu; Majaess, Namat; Vetrici, Mariana; Gil-Mohapel, Joana; Christie, Brian R

    2016-09-01

    Fragile-X Syndrome (FXS) is the most common form of inherited intellectual disability and the leading genetic cause of autism spectrum disorder. FXS is caused by transcriptional silencing of the Fragile X Mental Retardation 1 (Fmr1) gene due to a CGG repeat expansion, resulting in the loss of Fragile X Mental Retardation Protein (FMRP). FMRP is involved in transcriptional regulation and trafficking of mRNA from the nucleus to the cytoplasm and distal sites both in pre- and post-synaptic terminals. Consequently, FXS is a multifaceted disorder associated with impaired synaptic plasticity. One region of the brain that is significantly impacted by the loss of FMRP is the hippocampus, a structure that plays a critical role in the regulation of mood and cognition. This review provides an overview of the neuropathology of Fragile-X Syndrome, highlighting how structural and synaptic deficits in hippocampal subregions, including the CA1 exhibiting exaggerated metabotropic glutamate receptor dependent long-term depression and the dentate gyrus displaying hypofunction of N-methyl-d-aspartate receptors, contribute to cognitive impairments associated with this neurodevelopmental disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mapping X-linked ophthalmic diseases. IV. Provisional assignment of the locus for X-linked congenital cataracts and microcornea (the Nance-Horan syndrome) to Xp22.2-p22.3.

    PubMed

    Lewis, R A; Nussbaum, R L; Stambolian, D

    1990-01-01

    The Nance-Horan syndrome (NHS) is an infrequent X-linked disorder typified by dense congenital central cataracts, microcornea, anteverted and simplex pinnae, brachymetacarpalia, and numerous dental anomalies. The regional location of the genetic mutation causing NHS is unknown. The authors applied the modern molecular techniques of analysis of restriction fragment length polymorphisms to five multigenerational kindreds in which NHS segregated. Provisional linkage is established to two DNA markers--DXS143 at Xp22.3-p22.2 and DXS43 at Xp22.2. Regional localization of NHS will provide potential antenatal diagnosis in families at risk for the disease and will enhance understanding of the multifaceted genetic defects.

  20. Novel mutations in the connexin 32 gene associated with X-linked Charcot-Marie-Tooth disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.; Ainsworth, P.

    1994-09-01

    Charcot-Marie-Tooth disease is a pathologically and genetically hetergenous group of disorders that cause a progressive neuropathy, defined pathologically by degeneration of the myelin (CMT 1) of the axon (CMT 2) of the peripheral nerves. An X-linked type of the demyelinating form of this disorder (CMT X) has recently been linked to mutations in the connexin 32 (Cx32) gene, which codes for a 284 amino acid gap junction protein found in myelinated peripheral nerve. To date some 7 different mutations in this gene have been identified as being responsible for CMT X. The majority of these predict nonconservative amino acid substitutions,more » while one is a frameshift mutation which predicts a premature stop at codon 21. We report the results of molecular studies on three further local CMT X kindreds. The Cx32 gene was amplified by PCR in three overlapping fragments 300-450 bp in length using leukocyte-derived DNA as template. These were either sequenced directly using a deaza dGTP sequencing protocol, or were cloned and sequenced using a TA vector. In two of the kindreds the affected members carried a point mutation which was predicted to effect a non-conservative amino acid change within the first transmembrane domain. Both of these mutations caused a restriction site alteration (the loss of an Nla III and the creation of a Pvu II, respectively), and the former mutation was observed to segregate with the clinicial phenotype in affected family members. Affected members of the third kindred, which was a very large multigenerational family that had been extensively studied previously, were shown to carry a point mutation predicted to cause a premature truncation of the Cx32 gene product in the intracellular carboxy terminus. This mutation obliterated an Rsa I site which allowed a rapid screen of several other family members.« less

  1. Teaching Students with Developmental Disabilities: Tips from Teens and Young Adults with Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Duquette, Cheryll; Stodel, Emma; Fullarton, Stephanie; Hagglund, Karras

    2006-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is a term that encompasses the various neurodevelopmental disorders experienced by individuals with prenatal alcohol exposure. FASD incorporates the terms Fetal Alcohol Syndrome (FAS), Fetal Alcohol Effects (FAE), and Alcohol-Related Neurodevelopmental Disorder (ARND). Early studies showed that students with…

  2. Molecular and clinical studies of X-linked deafness among Pakistani families.

    PubMed

    Waryah, Ali M; Ahmed, Zubair M; Bhinder, Munir A; Binder, Munir A; Choo, Daniel I; Sisk, Robert A; Shahzad, Mohsin; Khan, Shaheen N; Friedman, Thomas B; Riazuddin, Sheikh; Riazuddin, Saima

    2011-07-01

    There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132 and PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild-to-profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling and molecular epidemiology of hearing loss among Pakistanis.

  3. Molecular and Clinical Studies of X-linked Deafness Among Pakistani Families

    PubMed Central

    Waryah, Ali M.; Ahmed, Zubair M.; Choo, Daniel I.; Sisk, Robert A.; Binder, Munir A.; Shahzad, Mohsin; Khan, Shaheen N.; Friedman, Thomas B.; Riazuddin, Sheikh; Riazuddin, Saima

    2011-01-01

    There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132, PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild to profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling, and molecular epidemiology of hearing loss among Pakistanis. PMID:21633365

  4. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review.

    PubMed

    Muñoz-Quezada, María Teresa; Lucero, Boris A; Barr, Dana B; Steenland, Kyle; Levy, Karen; Ryan, P Barry; Iglesias, Veronica; Alvarado, Sergio; Concha, Carlos; Rojas, Evelyn; Vega, Catalina

    2013-12-01

    Many studies have investigated the neurodevelopmental effects of prenatal and early childhood exposures to organophosphate (OP) pesticides among children, but they have not been collectively evaluated. The aim of the present article is to synthesize reported evidence over the last decade on OP exposure and neurodevelopmental effects in children. The Data Sources were PubMed, Web of Science, EBSCO, SciVerse Scopus, SpringerLink, SciELO and DOAJ. The eligibility criteria considered were studies assessing exposure to OP pesticides and neurodevelopmental effects in children from birth to 18 years of age, published between 2002 and 2012 in English or Spanish. Twenty-seven articles met the eligibility criteria. Studies were rated for evidential consideration as high, intermediate, or low based upon the study design, number of participants, exposure measurement, and neurodevelopmental measures. All but one of the 27 studies evaluated showed some negative effects of pesticides on neurobehavioral development. A positive dose-response relationship between OP exposure and neurodevelopmental outcomes was found in all but one of the 12 studies that assessed dose-response. In the ten longitudinal studies that assessed prenatal exposure to OPs, cognitive deficits (related to working memory) were found in children at age 7 years, behavioral deficits (related to attention) seen mainly in toddlers, and motor deficits (abnormal reflexes) seen mainly in neonates. No meta-analysis was possible due to different measurements of exposure assessment and outcomes. Eleven studies (all longitudinal) were rated high, 14 studies were rated intermediate, and two studies were rated low. Evidence of neurological deficits associated with exposure to OP pesticides in children is growing. The studies reviewed collectively support the hypothesis that exposure to OP pesticides induces neurotoxic effects. Further research is needed to understand effects associated with exposure in critical windows of

  5. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review

    PubMed Central

    Muñoz-Quezada, María Teresa; Lucero, Boris A.; Barr, Dana B.; Steenland, Kyle; Levy, Karen; Ryan, P. Barry; Iglesias, Veronica; Alvarado, Sergio; Concha, Carlos; Rojas, Evelyn; Vega, Catalina

    2013-01-01

    Many studies have investigated the neurodevelopmental effects of prenatal and early childhood exposures to organophosphate (OP) pesticides among children, but they have not been collectively evaluated. The aim of the present article is to synthesize reported evidence over the last decade on OP exposure and neurodevelopmental effects in children. The Data Sources were PubMed, Web of Science, EBSCO, SciVerse Scopus, SpringerLink, SciELO and DOAJ. The eligibility criteria considered were studies assessing exposure to OP pesticides and neurodevelopmental effects in children from birth to 18 years of age, published between 2002 and 2012 in English or Spanish. Twenty-seven articles met the eligibility criteria. Studies were rated for evidential consideration as high, intermediate, or low based upon the study design, number of participants, exposure measurement, and neurodevelopmental measures. All but one of the 27 studies evaluated showed some negative effects of pesticides on neurobehavioral development. A positive dose–response relationship between OP exposure and neurodevelopmental outcomes was found in all but one of the 12 studies that assessed dose–response. In the ten longitudinal studies that assessed prenatal exposure to OPs, cognitive deficits (related to working memory) were found in children at age 7 years, behavioral deficits (related to attention) seen mainly in toddlers, and motor deficits (abnormal reflexes) seen mainly in neonates. No meta-analysis was possible due to different measurements of exposure assessment and outcomes. Eleven studies (all longitudinal) were rated high, 14 studies were rated intermediate, and two studies were rated low. Evidence of neurological deficits associated with exposure to OP pesticides in children is growing. The studies reviewed collectively support the hypothesis that exposure to OP pesticides induces neurotoxic effects. Further research is needed to understand effects associated with exposure in critical windows

  6. Simpson-Golabi-Behmel syndrome: an X-linked encephalo-tropho-schisis syndrome. 1988.

    PubMed

    Neri, G; Marini, R; Cappa, M; Borrelli, P; Opitz, J M

    2013-11-01

    The following paper by Professor GiovanniNeri and colleagues was originally published in 1988, American Journal of Medical Genetics 30:287–299. This paper represented a seminal work at the time of publication as it not only reported a new family with a disorder that had been called the “gigantism-dysplasia syndrome”, but also suggested naming the condition the Simpson-Golabi-Behmel syndrome. This eponym has clearly stood “the test of time”, and that designation is now widely accepted. This paper is graciously republished by Wiley-Blackwell in the Special Festschrift issue honoring Professor Neri. We report on another family with the so-called "gigantism-dysplasia syndrome", an X-linked condition characterized by pre-and postnatal overgrowth, characteristic face with apparent coarseness, dysplastic changes in several tissues, and mild intellectual impairment. This condition has been called the Golabi-Rosen syndrome; however, we agree that is the same entity as that described, in a milder form, by Simpson et al. in 1975 and by Behmel et al. in 1984. Therefore, we suggest that this entity be designated the Simpson-Golabi-Behmel syndrome. The manifestations in affected individuals suggest that this condition represents an X-linked encephalo-tropho-schisis syndrome. © 2013 Wiley Periodicals, Inc.

  7. Schizophrenia and sleep disorders: links, risks, and management challenges.

    PubMed

    Kaskie, Rachel E; Graziano, Bianca; Ferrarelli, Fabio

    2017-01-01

    Schizophrenia is a major psychiatric disorder that has a massive, long-lasting negative impact on the patients as well as society. While positive symptoms (i.e., delusions and hallucinations), negative symptoms (i.e., anhedonia, social withdrawal), and cognitive impairments are traditionally considered the most prominent features of this disorder, the role of sleep and sleep disturbances has gained increasing prominence in clinical practice. Indeed, the vast majority of patients with schizophrenia report sleep abnormalities, which tend to precede illness onset and can predict an acute exacerbation of psychotic symptoms. Furthermore, schizophrenia patients often have a comorbid sleep disorder, including insomnia, obstructive sleep apnea, restless leg syndrome, or periodic limb movement disorder. Despite accumulating data, the links between sleep disorders and schizophrenia have not been thoroughly examined, in part because they are difficult to disentangle, as numerous factors contribute to their comorbidity, including medication status. Additionally, sleep disorders are often not the primary focus of clinicians treating this population, despite studies suggesting that comorbid sleep disorders carry their own unique risks, including worsening of psychotic symptoms and poorer quality of life. There is also limited information about effective management strategies for schizophrenia patients affected by significant sleep disturbances and/or sleep disorders. To begin addressing these issues, the present review will systematically examine the literature on sleep disorders and schizophrenia, focusing on studies related to 1) links between distinct sleep disorders and schizophrenia; 2) risks unique to patients with a comorbid sleep disorder; and 3) and management challenges and strategies.

  8. Expanding the phenotype of Triple X syndrome: A comparison of prenatal versus postnatal diagnosis.

    PubMed

    Wigby, Kristen; D'Epagnier, Cheryl; Howell, Susan; Reicks, Amy; Wilson, Rebecca; Cordeiro, Lisa; Tartaglia, Nicole

    2016-11-01

    Triple X syndrome (47, XXX) occurs in approximately 1:1,000 female births and has a variable phenotype of physical and psychological features. Prenatal diagnosis rates of 47, XXX are increasing due to non-invasive prenatal genetic testing. Previous studies suggest that prenatal diagnosed females have better neurodevelopmental outcomes. This cross-sectional study describes diagnosis, physical features, medical problems, and neurodevelopmental features in a large cohort of females with 47, XXX. Evaluation included review of medical and developmental history, physical exam, cognitive, and adaptive testing. Medical and developmental features were compared between the prenatal and postnatal diagnosis groups using rate calculations and Fisher's exact test. Cognitive and adaptive tests scores were compared using t-tests. Seventy-four females age 6 months-24 years (mean 8.3 years) participated. Forty-four (59.5%) females were in the prenatal diagnosis group. Mean age of postnatal diagnosis was 5.9 years; developmental delay was the most common indication for postnatal genetic testing. Common physical features included hypertelorism, epicanthal folds, clinodactyly, and hypotonia. Medical problems included dental disorders (44.4%), seizure disorders (16.2%), genitourinary malformations (12.2%). The prenatal diagnosis group had higher verbal (P < 0.001), general ability index (P = 0.004), and adaptive functioning scores (P < 0.001). Rates of ADHD (52.2% vs. 45.5%, P = 0.77) and learning disabilities (39.1% vs. 36.3%, P = 1.00) were similar between the two groups. These findings expand on the phenotypic features in females with Triple X syndrome and support that prenatally ascertained females have better cognitive and functional outcomes. However, prenatally diagnosed females are still at risk for neurodevelopmental disorders. Genetic counseling and treatment recommendations are summarized. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Attention-deficit/hyperactivity disorder during adulthood.

    PubMed

    Magnin, E; Maurs, C

    Attention-Deficit/Hyperactivity Disorder (ADHD), although considered a childhood-onset neurodevelopmental condition, is nevertheless a frequent and disabling condition in adults. A proportion of such patients are not diagnosed during childhood or adolescence, as diagnosis of the syndrome is rather complex, especially when other psychiatric, neurological or other neurodevelopmental conditions are also associated, yet comorbidities and consequences of ADHD are frequently observed in adults and older populations. As ADHD patients present to memory clinics with attentional and executive disorders, neuropsychological examinations of undiagnosed ADHD patients may reveal atypical cognitive profiles that can complicate the usual diagnostic procedure and increase the risk of delayed diagnosis or misdiagnosis. Thus, explorations of cognitive and/or behavioral disorders in adult populations should systematically screen for this neurodevelopmental condition. Accurate diagnosis could lead to non-pharmaceutical and/or pharmaceutical treatments to improve symptoms and quality of life for adult ADHD patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Comparison of parental estimate of developmental age with measured IQ in children with neurodevelopmental disorders.

    PubMed

    Chandler, S; Howlin, P; Simonoff, E; Kennedy, J; Baird, G

    2016-07-01

    Formal IQ tests are an important part of the diagnostic and needs-based assessment process for children with neurodevelopmental disorders. However, resources for such assessments are not always available. It has been suggested that parental estimates of their child's developmental age could serve as a proxy IQ when formal measures are unavailable. Parental estimates of their child's developmental age were converted to a developmental quotient (DQ) in 197 children with Autism Spectrum Disorder (ASD) aged 4-9 years, and 108 children with ADHD and intellectual disability (ADHD + ID) aged 7-15 years. Formal IQ assessments were then conducted. Parents completed the Social Communication Questionnaire ((SCQ), a measure of autism symptomatology) and a demographic questionnaire. In the ASD sample, 58% of parent estimates were within 15 points (i.e. one standard deviation) of the child's measured IQ score. Lower measured IQ and lower SCQ total score predicted higher parental accuracy. In the ADHD + ID sample, 74% of parental estimates were within 15 points of measured IQ. In this group, higher child IQ predicted greater parental accuracy. Parents in the ADHD + ID group were more likely to overestimate children's ability level than parents in the ASD group. In this study, the majority of parents of children with ADHD and ID were able to estimate their child's intellectual ability level with some accuracy. Parents of children with ASD were less accurate, but this may be because these parents were focussing more on children's level of adaptive functioning, which is known to be typically lower than cognitive ability in ASD. © 2016 John Wiley & Sons Ltd.

  11. A Simulation of X-Linked Inheritance.

    ERIC Educational Resources Information Center

    Harrell, Pamela Esprivalo

    1997-01-01

    Describes how to lead students through a classroom-based simulation to teach a variety of concepts such as X-linked traits, sex determination, and sex anomalies. The simulation utilizes inexpensive materials such as plastic eggs that twist apart to represent human eggs and sperm. (AIM)

  12. Escape of X-linked miRNA genes from meiotic sex chromosome inactivation

    PubMed Central

    Sosa, Enrique; Flores, Luis; Yan, Wei; McCarrey, John R.

    2015-01-01

    Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. PMID:26395485

  13. Mutational Survey of the PHEX Gene in Patients with X-linked Hypophosphatemic Rickets

    PubMed Central

    Ichikawa, Shoji; Traxler, Elizabeth A.; Estwick, Selina A.; Curry, Leah R.; Johnson, Michelle L.; Sorenson, Andrea H.; Imel, Erik A.; Econs, Michael J.

    2008-01-01

    X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. XLH is caused by inactivating mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). In this study, we sequenced the PHEX gene in subjects from 26 kindreds who were clinically diagnosed with XLH. Sequencing revealed 18 different mutations, of which thirteen have not been reported previously. In addition to deletions, splice site mutations, and missense and nonsense mutations, a rare point mutation in the 3’-untranslated region (3’-UTR) was identified as a novel cause of XLH. In summary, we identified a wide spectrum of mutations in the PHEX gene. Our data, in accord with those of others, indicate that there is no single predominant PHEX mutation responsible for XLH. PMID:18625346

  14. Heat shock protein expression in cerebral X-linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss.

    PubMed

    Görtz, A L; Peferoen, L A N; Gerritsen, W H; van Noort, J M; Bugiani, M; Amor, S

    2018-06-01

    X-linked adrenoleukodystrophy (X-ALD) is a genetic white matter disorder in which demyelination occurs due to accumulation of very long-chain fatty acids. Inflammation in the brain white matter is a hallmark of the pathology of cerebral X-ALD, but the underlying pathogenic mechanisms are still largely unknown. In other inflammatory demyelinating disorders, such as multiple sclerosis, the expression of heat shock proteins (HSPs) in combination with interferon-γ (IFN-γ) has been suggested to play a prominent role in the initiation of demyelination and inflammation. We therefore investigated these pathways in X-ALD lesions. By immunohistochemistry, we examined the expression of small HSPs (HSPB1, HSPB5, HSPB6, HSPB8) and higher molecular weight HSPs (HSPA, HSPD1), and the expression of elements of the IFN-γ pathway on autopsy material of five patients with X-ALD. The expression of the larger HSPs, HSPA and HSPD1, as well as small HSPs is increased in X-ALD lesions compared with normal-appearing white matter. Such upregulation can already be detected before demyelination and inflammation occur, and it is predominant in astrocytes. The IFN-γ pathway does not seem to play a leading role in the observed inflammation. The finding that astrocytes show signs of cellular stress before demyelination suggests that they play a major role early in the pathogenesis of cerebral X-ALD, and may therefore be involved in the initiation of inflammation and demyelination. © 2017 British Neuropathological Society.

  15. Emphasizing the Health Benefits of Vitamin D for Those with Neurodevelopmental Disorders and Intellectual Disabilities

    PubMed Central

    Grant, William B.; Wimalawansa, Sunil J.; Holick, Michael F.; Cannell, John J.; Pludowski, Pawel; Lappe, Joan M.; Pittaway, Mary; May, Philip

    2015-01-01

    People with neurodevelopmental disorders and intellectual disabilities have much greater health care needs. Mainly staying indoors, such people generally have low 25-hydroxyvitamin D (25(OH)D) concentrations. The Vitamin D Task Force of the American Academy of Developmental Medicine and Dentistry (AADMD) reviewed the evidence of 25(OH)D concentrations that benefit the health of persons with developmental disabilities. Maintaining recommended optimal serum 25(OH)D concentrations year long will benefit skeletal development in infants, children, and adolescents, and benefit musculoskeletal health and neuromuscular coordination in adult patients, and decrease risk of falls. Maintaining optimal concentrations decreases risks and severities of autoimmune diseases, cardiovascular disease, many types of cancer, dementia, types 1 and 2 diabetes mellitus, and respiratory tract infections. Other benefits include improved dental and oral health and improved physical performance. The Task Force recommends that 25(OH)D concentrations for optimal health to be in the range of 75 to 125 nmol/L, which can be achieved using between 800 and 4000 IU/day vitamin D3 and sensible exposure to solar UVB radiation. The paper also discusses the potential risks of higher 25(OH)D concentrations, the evidence from and limitations of randomized controlled trials, and the recommendations by various groups and agencies. PMID:25734565

  16. DIA1R is an X-linked gene related to Deleted In Autism-1.

    PubMed

    Aziz, Azhari; Harrop, Sean P; Bishop, Naomi E

    2011-01-17

    Autism spectrum disorders (ASDS) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.

  17. Modulation of the GABAergic pathway for the treatment of fragile X syndrome.

    PubMed

    Lozano, Reymundo; Hare, Emma B; Hagerman, Randi J

    2014-01-01

    Fragile X syndrome (FXS) is the most common genetic cause of intellectual disability and the most common single-gene cause of autism. It is caused by mutations on the fragile X mental retardation gene (FMR1) and lack of fragile X mental retardation protein, which in turn, leads to decreased inhibition of translation of many synaptic proteins. The metabotropic glutamate receptor (mGluR) hypothesis states that the neurological deficits in individuals with FXS are due mainly to downstream consequences of overstimulation of the mGluR pathway. The main efforts have focused on mGluR5 targeted treatments; however, investigation on the gamma-aminobutyric acid (GABA) system and its potential as a targeted treatment is less emphasized. The fragile X mouse models (Fmr1-knock out) show decreased GABA subunit receptors, decreased synthesis of GABA, increased catabolism of GABA, and overall decreased GABAergic input in many regions of the brain. Consequences of the reduced GABAergic input in FXS include oversensitivity to sensory stimuli, seizures, and anxiety. Deficits in the GABA receptors in different regions of the brain are associated with behavioral and attentional processing deficits linked to anxiety and autistic behaviors. The understanding of the neurobiology of FXS has led to the development of targeted treatments for the core behavioral features of FXS, which include social deficits, inattention, and anxiety. These symptoms are also observed in individuals with autism and other neurodevelopmental disorders, therefore the targeted treatments for FXS are leading the way in the treatment of other neurodevelopmental syndromes and autism. The GABAergic system in FXS represents a target for new treatments. Herein, we discuss the animal and human trials of GABAergic treatment in FXS. Arbaclofen and ganaxolone have been used in individuals with FXS. Other potential GABAergic treatments, such as riluzole, gaboxadol, tiagabine, and vigabatrin, will be also discussed. Further

  18. [Professional stressors and common mental health disorders: Causal links?

    PubMed

    Nicolas, C; Chawky, N; Jourdan-Ionescu, C; Drouin, M-S; Page, C; Houlfort, N; Beauchamp, G; Séguin, M

    2018-06-01

    According to the World Health Organization, depression has become the leading cause of disability in the world, contributing significantly to the burden of health issues especially in the industrialized countries. This is a major public health problem, with potential impact on work climates, productivity at work and the continued existence of the organizations. Some recent studies have examined potential links between professional factors and common mental health disorders, but none have demonstrated a direct causal link. In the present study, we explored possible links between work-related stressors and common mental health disorders, with the objective of determining priority mental health prevention axes. The study used a life trajectory method. We compared professional stressors and difficulties present in other spheres of life in the last five years between two groups: a group of 29 participants with common mental health disorders during the last five years (depression, anxiety disorders, eating disorders, substance use disorders, pathological gambling), and a group of 29 participants who have not experienced a mental health disorder in the last five years. Data were collected from semi-structured interviews with the participants using a life course analysis method. Each participant was interviewed during two or three meetings of two to three hour duration. Questions regarding difficulties in different spheres of life and mental health were asked. More precisely, data were collected with regards to the presence or absence of mental health disorders in the last five years and the nature of mental health disorders and difficulties. Moreover, we collected data pertaining to the most important positive and negative events in different spheres of life that were present in the last five years, including family life, romantic relationships, social life, academic difficulties, losses and separations, episodes of personal difficulties, financial difficulties as well as

  19. X-linked recessive panhypopituitarism associated with a regional duplication in Xq25-q26.

    PubMed Central

    Lagerström-Fermér, M; Sundvall, M; Johnsen, E; Warne, G L; Forrest, S M; Zajac, J D; Rickards, A; Ravine, D; Landegren, U; Pettersson, U

    1997-01-01

    We present a linkage analysis and a clinical update on a previously reported family with X-linked recessive panhypopituitarism, now in its fourth generation. Affected members exhibit variable degrees of hypopituitarism and mental retardation. The markers DXS737 and DXS1187 in the q25-q26 region of the X chromosome showed evidence for linkage with a peak LOD score (Zmax) of 4.12 at zero recombination fraction (theta(max) = 0). An apparent extra copy of the marker DXS102, observed in the region of the disease gene in affected males and heterozygous carrier females, suggests that a segment including this marker is duplicated. The gene causing this disorder appears to code for a dosage-sensitive protein central to development of the pituitary. Images Figure 2 PMID:9106538

  20. Maxillary distraction osteogenesis for treatment of cleft lip and palate in a patient with X-linked agammaglobulinemia.

    PubMed

    Sato, Yutaka; Mishimagi, Takashi; Katsuki, Yuko; Harada, Kiyoshi

    2014-07-01

    X-linked agammaglobulinemia (XLA) is a congenital immune deficiency disorder caused by abnormal antibody production. It is a rare disease with an estimated frequency of 1 in 379,000 that has X-linked recessive heredity and develops only in males. The clinical problems include bacterial infection such as otitis media, sinusitis, and bronchitis. In recent years it has become possible to diagnose XLA in the early stage and intravenous immunoglobulin replacement therapy has permitted survival to adulthood. However, there have been no reports of oral surgery in patients with XLA. Here, we describe a case in which immunoglobulin replacement therapy given pre- and postoperatively was used to control infection in oral surgery and maxillary distraction osteogenesis performed for improving occlusion and appearance of a cleft lip and palate in a patient with XLA. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Infant health and neurodevelopmental outcomes following prenatal exposure to duloxetine.

    PubMed

    Bellantuono, Cesario; Marini, Alessandra; Lucarelli, Chiara

    2013-09-01

    Maternal psychiatric disorders can have negative consequences on the fetus and newborn. Thus, the risks of untreated mental disorders in pregnancy should be balanced against the potential risks of a psychopharmacological treatment. The aim of the present report is to provide information on the infant safety of duloxetine exposure, an antidepressant drug belonging to the serotonin-norepinephrine reuptake inhibitors, during pregnancy. Despite duloxetine being routinely prescribed as a treatment for major depression and anxiety disorders, there is a paucity of literature evaluating both the short- and long-term effects of duloxetine exposure in utero. This paper provides data on infant health and neurodevelopmental outcomes, up to 9 months of age, in a newborn exposed to duloxetine throughout pregnancy. Although the present report suggests that duloxetine was not associated with major malformations or neurobehavioural problems, the drug should be used with caution until further information is available on its safety profile in pregnancy.

  2. Dysregulated nitric oxide signaling as a candidate mechanism of fragile X syndrome and other neuropsychiatric disorders.

    PubMed

    Colvin, Steven M; Kwan, Kenneth Y

    2014-01-01

    A mechanistic understanding of the pathophysiology underpinning psychiatric disorders is essential for the development of targeted molecular therapies. For fragile X syndrome (FXS), recent mechanistic studies have been focused on the metabotropic glutamate receptor (mGluR) signaling pathway. This line of research has led to the discovery of promising candidate drugs currently undergoing various phases of clinical trial, and represents a model of how biological insights can inform therapeutic strategies in neurodevelopmental disorders. Although mGluR signaling is a key mechanism at which targeted treatments can be directed, it is likely to be one of many mechanisms contributing to FXS. A more complete understanding of the molecular and neural underpinnings of the disorder is expected to inform additional therapeutic strategies. Alterations in the assembly of neural circuits in the neocortex have been recently implicated in genetic studies of autism and schizophrenia, and may also contribute to FXS. In this review, we explore dysregulated nitric oxide signaling in the developing neocortex as a novel candidate mechanism of FXS. This possibility stems from our previous work demonstrating that neuronal nitric oxide synthase 1 (NOS1 or nNOS) is regulated by the FXS protein FMRP in the mid-fetal human neocortex. Remarkably, in the mid-late fetal and early postnatal neocortex of human FXS patients, NOS1 expression is severely diminished. Given the role of nitric oxide in diverse neural processes, including synaptic development and plasticity, the loss of NOS1 in FXS may contribute to the etiology of the disorder. Here, we outline the genetic and neurobiological data that implicate neocortical dysfunction in FXS, review the evidence supporting dysregulated nitric oxide signaling in the developing FXS neocortex and its contribution to the disorder, and discuss the implications for targeting nitric oxide signaling in the treatment of FXS and other psychiatric illnesses.

  3. Screening for X-linked adrenoleukodystrophy among adult men with Addison's disease.

    PubMed

    Horn, Morten A; Erichsen, Martina M; Wolff, Anette S B; Månsson, Jan-Eric; Husebye, Eystein S; Tallaksen, Chantal M E; Skjeldal, Ola H

    2013-09-01

    X-linked adrenoleukodystrophy is an important cause of Addison's disease in boys, but less is known about its contribution to Addison's disease in adult men. After surveying all known cases of X-linked adrenoleukodystrophy in Norway in a separate study, we aimed to look for any missed cases among the population of adult men with nonautoimmune Addison's disease. Among 153 adult men identified in a National Registry for Addison's Disease (75% of identified male cases of Addison's disease in Norway), those with negative indices for 21-hydroxylase autoantibodies were selected. Additionally, cases with low autoantibody indices (48-200) were selected. Sera from subjects included were analysed for levels of very long-chain fatty acids, which are diagnostic for X-linked adrenoleukodystrophy in men. Eighteen subjects had negative indices and 17 had low indices for 21-hydroxylase autoantibodies. None of those with low indices and only one of those with negative indices were found to have X-linked adrenoleukodystrophy; this subject had already been diagnosed because of the neurological symptoms. Cases of Addison's disease proved to be caused by X-linked adrenoleukodystrophy constitute 1·5% of all adult male cases in Norway; the proportion among nonautoimmune cases was 15%. We found X-linked adrenoleukodystrophy to be an uncommon cause of Addison's disease in adult men. However, this aetiological diagnosis has far-reaching consequences both for the patient and for his extended family. We therefore recommend that all adult men with nonautoimmune Addison's disease be analysed for levels of very long-chain fatty acids. © 2013 John Wiley & Sons Ltd.

  4. Communication Intervention for Young Children with Severe Neurodevelopmental Disabilities Via Telehealth.

    PubMed

    Simacek, Jessica; Dimian, Adele F; McComas, Jennifer J

    2017-03-01

    Young children with neurodevelopmental disorders such as autism spectrum disorders (ASD) and Rett syndrome often experience severe communication impairments. This study examined the efficacy of parent-implemented communication assessment and intervention with remote coaching via telehealth on the acquisition of early communication skills of three young children with ASD (2) and Rett syndrome (1). Efficacy of the intervention was evaluated using single-case experimental designs. First, functional assessment was used to identify idiosyncratic/potentially communicative responses and contexts for each child. Next, parents implemented functional communication training (FCT). All of the children acquired the targeted communication responses. The findings support the efficacy of telehealth as a service delivery model to coach parents on intervention strategies for their children's early communication skills.

  5. Impaired inhibitory control of cortical synchronization in fragile X syndrome.

    PubMed

    Paluszkiewicz, Scott M; Olmos-Serrano, Jose Luis; Corbin, Joshua G; Huntsman, Molly M

    2011-11-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by severe cognitive impairments, sensory hypersensitivity, and comorbidities with autism and epilepsy. Fmr1 knockout (KO) mouse models of FXS exhibit alterations in excitatory and inhibitory neurotransmission, but it is largely unknown how aberrant function of specific neuronal subtypes contributes to these deficits. In this study we show specific inhibitory circuit dysfunction in layer II/III of somatosensory cortex of Fmr1 KO mice. We demonstrate reduced activation of somatostatin-expressing low-threshold-spiking (LTS) interneurons in response to the group I metabotropic glutamate receptor (mGluR) agonist 3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice, resulting in impaired synaptic inhibition. Paired recordings from pyramidal neurons revealed reductions in synchronized synaptic inhibition and coordinated spike synchrony in response to DHPG, indicating a weakened LTS interneuron network in Fmr1 KO mice. Together, these findings reveal a functional defect in a single subtype of cortical interneuron in Fmr1 KO mice. This defect is linked to altered activity of the cortical network in line with the FXS phenotype.

  6. Genetics Home Reference: X-linked lymphoproliferative disease

    MedlinePlus

    ... infects most humans. In some people it causes infectious mononucleosis (commonly known as "mono"). Normally, after initial infection, ... severe susceptibility to EBV infection severe susceptibility to infectious mononucleosis X-linked lymphoproliferative syndrome XLP Related Information How ...

  7. The Neuroanatomy of Autism Spectrum Disorder: An Overview of Structural Neuroimaging Findings and Their Translatability to the Clinical Setting

    ERIC Educational Resources Information Center

    Ecker, Christine

    2017-01-01

    Autism spectrum disorder is a complex neurodevelopmental disorder, which is accompanied by differences in brain anatomy, functioning and brain connectivity. Due to its neurodevelopmental character, and the large phenotypic heterogeneity among individuals on the autism spectrum, the neurobiology of autism spectrum disorder is inherently difficult…

  8. The influence of media suggestions about links between criminality and autism spectrum disorder.

    PubMed

    Brewer, Neil; Zoanetti, Jordana; Young, Robyn L

    2017-01-01

    We examined whether media reports linking criminal behaviour and autism spectrum disorder foster negative attitudes towards individuals with autism spectrum disorder. In a between-subjects design, participants were exposed to (a) a media story in which a murderer was labelled with autism spectrum disorder (media exposure condition) or not labelled with any disorder (control) and (b) an autism spectrum disorder-education condition attacking the myth that people diagnosed with autism spectrum disorder are likely to be violent criminals or a no-autism spectrum disorder-education condition. Participants attitudes towards three different crime perpetrators (one with autism spectrum disorder) described in separate vignettes were probed. The media exposure linking crime and autism spectrum disorder promoted more negative attitudes towards individuals with autism spectrum disorder, whereas the positive autism spectrum disorder-related educational message had the opposite effect. © The Author(s) 2016.

  9. [Metabolic syndrome and bipolar disorder: Is sleep the missing link?

    PubMed

    Brochard, H; Boudebesse, C; Henry, C; Godin, O; Leboyer, M; Étain, B

    2016-12-01

    To examine the pathophysiologic mechanisms that may link circadian disorder and metabolic syndrome in bipolar disorder (BP). A systematic review of the literature was conducted from January 2013 to January 2015, using the Medline and Cochrane databases, using the keywords "metabolic syndrome", "obesity", "leptin" and "circadian disorders", "sleeping disorders" and cross-referencing them with "bipolar disorder". The following types of publications were candidates for review: (i) clinical trials; (ii) studies involving patients diagnosed with bipolar disorder; (iii) studies involving patients with sleeping disorder; or (iv) data about metabolic syndrome. Forty articles were selected. The prevalence of metabolic syndrome in BP was significantly higher compared to the general population (from 36 to 49% in the USA [Vancampfort, 2013]), and could be explained by several factors including reduced exercise and poor diet, genetic vulnerability, frequent depressive episodes, psychiatric comorbidity and psychotropic treatment. This high frequency of metabolic syndrome worsens the prognosis of these patients, increasing morbidity and mortality. Secondly, patients with BP experienced circadian and sleep disturbance, including modification in melatonin secretion. These perturbations are known to persist in periods of mood stabilization and are found in patients' relatives. Circadian disturbances are factors of relapse in bipolar patients, and they may also have a role in the metabolic comorbidities of these patients. Recent studies show that in populations of patients with bipolar disorder, a correlation between circadian disturbance and metabolic parameters are found. To identify the pathophysiological pathway connecting both could lead to a better comprehension of the disease and new therapeutics. In the overall population, mechanisms have been identified linking circadian and metabolic disorder involving hormones like leptin and ghrelin. These hormones are keys to

  10. Neurodevelopmental and Cognitive Outcomes in Children With Intestinal Failure.

    PubMed

    Chesley, Patrick M; Sanchez, Sabrina E; Melzer, Lilah; Oron, Assaf P; Horslen, Simon P; Bennett, F Curt; Javid, Patrick J

    2016-07-01

    Recent advances in medical and surgical management have led to improved long-term survival in children with intestinal failure. Yet, limited data exist on their neurodevelopmental and cognitive outcomes. The aim of the present study was to measure neurodevelopmental outcomes in children with intestinal failure. Children enrolled in a regional intestinal failure program underwent prospective neurodevelopmental and psychometric evaluation using a validated scoring tool. Cognitive impairment was defined as a mental developmental index <70. Neurodevelopmental impairment was defined as cerebral palsy, visual or hearing impairment, or cognitive impairment. Univariate analyses were performed using the Wilcoxon rank-sum test. Data are presented as median (range). Fifteen children with a remnant bowel length of 18 (5-85) cm were studied at age 17 (12-67) months. Thirteen patients remained dependent on parenteral nutrition. Twelve (80%) subjects scored within the normal range on cognitive testing. Each child with cognitive impairment was noted to have additional risk factors independent of intestinal failure including cardiac arrest and extreme prematurity. On univariate analysis, cognitive impairment was associated with longer inpatient hospital stays, increased number of surgical procedures, and prematurity (P < 0.02). In total, 4 (27%) children demonstrated findings consistent with neurodevelopmental impairment. A majority of children with intestinal failure demonstrated normal neurodevelopmental and cognitive outcomes on psychometric testing. These data suggest that children with intestinal failure without significant comorbidity may be at low risk for long-term neurodevelopmental impairment.

  11. Structural Brain Abnormalities in Adolescents with Autism Spectrum Disorder and Patients with Attention Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Brieber, Sarah; Neufang, Susanne; Bruning, Nicole; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Fink, Gereon R.; Konrad, Kerstin

    2007-01-01

    Background: Although autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are two distinct neurodevelopmental diseases, they share behavioural, neuropsychological and neurobiological characteristics. For the identification of endophenotypes across diagnostic categories, further investigations of phenotypic overlap…

  12. Association between Severity of Behavioral Phenotype and Comorbid Attention Deficit Hyperactivity Disorder Symptoms in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Rao, Patricia A.; Landa, Rebecca J.

    2014-01-01

    Autism spectrum disorder and attention deficit hyperactivity disorder are neurodevelopmental disorders that cannot be codiagnosed under existing diagnostic guidelines ("Diagnostic and Statistical Manual of the American Psychiatric Association," 4th ed., text rev.). However, reports are emerging that attention deficit hyperactivity…

  13. Rhinitis and sleep disorders: The trigeminocardiac reflex link?

    PubMed

    Bindu, Barkha; Singh, Gyaninder Pal; Chowdhury, Tumul; Schaller, Bernhard

    2017-06-01

    Rhinitis, allergic or non-allergic, is an inflammatory condition of the nose. It is associated with a wide range of sleep disorders that are generally attributed to nasal congestion and presence of inflammatory mediators like cytokines and interleukins. However, the pathophysiological mechanisms behind these sleep disorders remain unclear. On the other hand, the trigeminocardiac reflex (TCR) has recently been linked to various sleep disorders like obstructive sleep apnea, sleep bruxism and rapid eye movement (REM) sleep apnea. TCR can be incited by stimulation of the trigeminal nerve or the area innervated by its branches including the nasal mucosa. Trigeminal nasal afferents can be activated on exposure to noxious stimuli (mechanical or chemical) like ammonia vapors, carbon-dioxide, nicotine, hypertonic saline, air-puffs and smoke. In rhinitis, there is associated neuronal hyper-responsiveness of sensory nasal afferents due to inflammation (which can be suppressed by steroids). This may further lead to increased occurrence of TCR in rhinitis. Moreover, there is involvement of autonomic nervous system both in rhinitis and TCR. In TCR, parasympathetic over activity and sympathetic inhibition leads to sudden onset bradycardia, hypotension, apnea and gastric motility. Also, the autonomic imbalance reportedly plays a significant role in the pathophysiology of rhinitis. Thus, considering these facts we hypothesize that the TCR could be the link between rhinitis and sleep disorders and we believe that further research in this direction may yield significant development in our understanding of sleep disorders in rhinitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sex Differences and Neurodevelopmental Variables: A Vector Model

    ERIC Educational Resources Information Center

    Languis, Marlin; Naour, Paul

    For the individual, gender difference falls along the feminine-masculine continuum with strong neurodevelopmental influences at various points throughout the lifespan. Neurodevelopmental influences are conceptualized in a vector model of sex difference. Vector attributes, direction and magnitude, are influenced initially by differences in levels…

  15. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system.

    PubMed

    Lee, Ryan H; Mills, Elizabeth A; Schwartz, Neil; Bell, Mark R; Deeg, Katherine E; Ruthazer, Edward S; Marsh-Armstrong, Nicholas; Aizenman, Carlos D

    2010-01-12

    Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the Xenopus laevis tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits. Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-alpha on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-alpha resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-alpha treatment also enhanced the overall growth of tectal cell

  16. Social Cognition in Children with High-Functioning Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Associations with Executive Functions

    PubMed Central

    Miranda, Ana; Berenguer, Carmen; Roselló, Belén; Baixauli, Inmaculada; Colomer, Carla

    2017-01-01

    Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are neurodevelopmental disorders characterized by social impairments. The first objective of this study was to analyze social cognition deficits of children with ADHD, high-functioning ASD (HFASD), and typical development (TD) in their performance on explicit and applied measures of theory of mind (ToM). The second objective was to investigate the relationships between executive functions and social cognition in HFASD and ADHD. One hundred and twenty-six 7- to 11-year old children, 52 with HFASD, 35 with ADHD, and 39 with TD, performed the NEPSY-II social perception subtests. Parents estimated their children's ToM skills using the Theory of Mind Inventory (ToMI). Teacher-reported data from the Behavior Rating Inventory of Executive Function (BRIEF) were also obtained. The HFASD and ADHD groups showed worse performance on the verbal ToM task than the TD group, and only the performance of the HFASD group was significantly lower than the TD group on the contextual ToM task. Parents also estimated that the HFASD group had more difficulties on the applied ToM than the ADHD and TD groups. Furthermore, there is a different executive function-theory of mind link in the HFASD and ADHD groups: behavioral regulation processes such as inhibition and emotional control are more associated with social cognition in children with ADHD, whereas metacognitive processes such as initiation and planning have a strong association with social cognition in children with HFASD. These findings have implications for understanding social perception deficits in neurodevelopmental disorders, highlighting the need for early intervention. PMID:28690570

  17. Social Cognition in Children with High-Functioning Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Associations with Executive Functions.

    PubMed

    Miranda, Ana; Berenguer, Carmen; Roselló, Belén; Baixauli, Inmaculada; Colomer, Carla

    2017-01-01

    Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are neurodevelopmental disorders characterized by social impairments. The first objective of this study was to analyze social cognition deficits of children with ADHD, high-functioning ASD (HFASD), and typical development (TD) in their performance on explicit and applied measures of theory of mind (ToM). The second objective was to investigate the relationships between executive functions and social cognition in HFASD and ADHD. One hundred and twenty-six 7- to 11-year old children, 52 with HFASD, 35 with ADHD, and 39 with TD, performed the NEPSY-II social perception subtests. Parents estimated their children's ToM skills using the Theory of Mind Inventory (ToMI). Teacher-reported data from the Behavior Rating Inventory of Executive Function (BRIEF) were also obtained. The HFASD and ADHD groups showed worse performance on the verbal ToM task than the TD group, and only the performance of the HFASD group was significantly lower than the TD group on the contextual ToM task. Parents also estimated that the HFASD group had more difficulties on the applied ToM than the ADHD and TD groups. Furthermore, there is a different executive function-theory of mind link in the HFASD and ADHD groups: behavioral regulation processes such as inhibition and emotional control are more associated with social cognition in children with ADHD, whereas metacognitive processes such as initiation and planning have a strong association with social cognition in children with HFASD. These findings have implications for understanding social perception deficits in neurodevelopmental disorders, highlighting the need for early intervention.

  18. Effect of co-twin gender on neurodevelopmental symptoms: a twin register study.

    PubMed

    Eriksson, Jonna Maria; Lundström, Sebastian; Lichtenstein, Paul; Bejerot, Susanne; Eriksson, Elias

    2016-01-01

    Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders thought to have both genetic and environmental causes. It has been hypothesized that exposure to elevated levels of prenatal testosterone is associated with elevated traits of ASD and ADHD. Assuming that testosterone levels from a dizygotic male twin fetus may lead to enhanced testosterone exposure of its co-twins, we aimed to test the prenatal testosterone hypothesis by comparing same-sex with opposite-sex dizygotic twins with respect to neurodevelopmental symptoms. Neuropsychiatric traits were assessed in a population-based twin cohort from the Child and Adolescent Twin Study in Sweden (CATSS). Parental interviews were conducted for 16,312 dizygotic twins, 9 and 12 years old, with the Autism-Tics, ADHD, and other Comorbidities inventory (A-TAC). Girls with a female co-twin had an increased risk of reaching the cut-off score for ADHD compared with girls with a male co-twin. Both boys and girls with a female co-twin displayed a larger number of traits related to attention deficit and repetitive and stereotyped behaviors than those with a male twin. In girls, this also extended to social interaction and the combined measures for ASD and ADHD, however, with small effect sizes. Our results are reverse to what would have been expected from the prenatal testosterone hypothesis but consistent with a previous study of ASD and ADHD traits in dizygotic twins. The seemingly protective effect for girls of having a twin brother may be an effect of parent report bias, but may also be an unexpected effect of sharing the intrauterine environment with a male co-twin.

  19. Attention Deficit Hyperactivity Disorder, Tic Disorder, and Allergy: Is There a Link? A Nationwide Population-Based Study

    ERIC Educational Resources Information Center

    Chen, Mu-Hong; Su, Tung-Ping; Chen, Ying-Sheue; Hsu, Ju-Wei; Huang, Kai-Lin; Chang, Wen-Han; Bai, Ya-Mei

    2013-01-01

    Background: Attention deficit hyperactivity disorder (ADHD) and tic disorder usually co-occur in the same individuals, but the underlying mechanisms remain unclear. Previous evidence has shown that a frequent coexistence of allergic diseases was noted in patients with ADHD or tic disorder. We attempted to investigate the possible link among ADHD,…

  20. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy.

    PubMed

    Chen, Z Y; Battinelli, E M; Fielder, A; Bundey, S; Sims, K; Breakefield, X O; Craig, I W

    1993-10-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder characterized by an abnormality of the peripheral retina. Both autosomal dominant (adFEVR) and X-linked (XLFEVR) forms have been described, but the biochemical defect(s) underlying the symptoms are unknown. Molecular analysis of the Norrie gene locus (NDP) in a four generation FEVR family (shown previously to exhibit linkage to the X-chromosome markers DXS228 and MAOA (Xp11.4-p11.3)) reveals a missense mutation in the highly conserved region of the NDP gene, which caused a neutral amino acid substitution (Leu124Phe), was detected in all of the affected males, but not in the unaffected family members, nor in normal controls. The observations suggest that phenotypes of both XLFEVR and Norrie disease can result from mutations in the same gene.

  1. Physiological Arousal in Autism and Fragile X Syndrome: Group Comparisons and Links With Pragmatic Language

    PubMed Central

    Klusek, Jessica; Martin, Gary E.; Losh, Molly

    2014-01-01

    This study tested the hypothesis that pragmatic (i.e., social) language impairment is linked to arousal dysregulation in autism spectrum disorder (ASD) and fragile X syndrome (FXS). Forty boys with ASD, 39 with FXS, and 28 with typical development (TD), aged 4–15 years, participated. Boys with FXS were hyperaroused compared to boys with TD but did not differ from boys with ASD. Dampened vagal tone predicted pragmatic impairment in ASD, and associations emerged between cardiac activity and receptive/expressive vocabulary across groups. Findings support autonomic dysfunction as a mechanism underlying pragmatic impairment in ASD and suggest that biophysiological profiles are shared in ASD and FXS, which has implications for understanding the role of fragile X mental retardation-1 (FMR1, the FXS gene) in the pathophysiology of ASD. PMID:24432860

  2. STRENGTHENING THE REFLECTIVE FUNCTIONING CAPACITIES OF PARENTS WHO HAVE A CHILD WITH A NEURODEVELOPMENTAL DISABILITY THROUGH A BRIEF, RELATIONSHIP-FOCUSED INTERVENTION.

    PubMed

    Sealy, Julie; Glovinsky, Ira P

    2016-01-01

    This randomized controlled trial examined the reflective functioning capacities of caregivers who have a child with a neurodevelopmental disorder between the ages of 2 years 0 months and 6 years 11 months. Children with a neurodevelopmental disorder receive a range of diagnoses, including sutism; however, they all exhibit social communication challenges that can derail social relationships. Forty parent-child dyads in Barbados were randomly assigned to either a developmental individual-difference, relationship-based/floortime(DIR/FT) group (n = 20), or a psychoeducational (wait-list) group (n = 20) with parental reflective functioning measured before and after a 12-week DIR/FT treatment intervention. Results revealed significant gains in parental reflective functioning in the treatment group, as compared to the psychoeducational (wait-list) group, after the 12-week relationship-focused intervention. © 2016 Michigan Association for Infant Mental Health.

  3. The Cerebellum and Neurodevelopmental Disorders.

    PubMed

    Stoodley, Catherine J

    2016-02-01

    Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit-hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior.

  4. The cerebellum and neurodevelopmental disorders

    PubMed Central

    Stoodley, Catherine J.

    2015-01-01

    Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior. PMID:26298473

  5. Individuals with Smith-Magenis syndrome display profound neurodevelopmental behavioral deficiencies and exhibit food-related behaviors equivalent to Prader-Willi syndrome.

    PubMed

    Alaimo, Joseph T; Barton, Laura V; Mullegama, Sureni V; Wills, Rachel D; Foster, Rebecca H; Elsea, Sarah H

    2015-12-01

    Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder associated with intellectual disability, sleep disturbances, early onset obesity and vast behavioral deficits. We used the Behavior Problems Inventory-01 to categorize the frequency and severity of behavioral abnormalities in a SMS cohort relative to individuals with intellectual disability of heterogeneous etiology. Self-injurious, stereotyped, and aggressive/destructive behavioral scores indicated that both frequency and severity were significantly higher among individuals with SMS relative to those with intellectual disability. Next, we categorized food behaviors in our SMS cohort across age using the Food Related Problems Questionnaire (FRPQ) and found that problems began to occur in SMS children as early as 5-11 years old, but children 12-18 years old and adults manifested the most severe problems. Furthermore, we evaluated the similarities of SMS adult food-related behaviors to those with intellectual disability and found that SMS adults had more severe behavioral problems. Many neurodevelopmental disorders exhibit syndromic obesity including SMS. Prader-Willi syndrome (PWS) is the most frequent neurodevelopmental disorder with syndromic obesity and has a well-established management and treatment plan. Using the FRPQ we found that SMS adults had similar scores relative to PWS adults. Both syndromes manifest weight gain early in development, and the FRPQ scores highlight specific areas in which behavioral similarities exist, including preoccupation with food, impaired satiety, and negative behavioral responses. SMS food-related behavior treatment paradigms are not as refined as PWS, suggesting that current PWS treatments for prevention of obesity may be beneficial for individuals with SMS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Long-Term Neurodevelopmental Outcomes of Premature Infants in Singapore.

    PubMed

    Teo, Charmaine M; Poon, Woei Bing; Ho, Selina Ky

    2018-02-01

    Neonatal care advances have resulted in improved survival but have raised concerns of increase in neurodevelopmental impairment. This study looked at long-term neurodevelopmental outcomes at ages 5 and 8 years of very low birthweight infants born in the 2000s as compared to the 1990s. Neurodevelopmental assessment at 2 years old was compared to that at 5 and 8 years to determine if assessment at 2 years was predictive of later outcomes. A retrospective cohort study of consecutive infants with birthweight less than 1250 grams admitted to a tertiary centre in Singapore between January 1994 to December 1995 (Epoch I) and January 2004 to December 2005 (Epoch II) were included. Neurodevelopmental impairment was defined as having intelligence quotient (IQ) of less than 70, cerebral palsy, legal blindness, or hearing impairment requiring hearing aids. Mean gestational age was lower for Epoch II compared to Epoch I (28.1 ± 2.5 vs 29.4 ± 2.7 weeks, P = 0.004). Death or neurodevelopmental impairment rates did not differ (24.3% and 17.1% at 5 years old, P = 0.398; 29.1% and 25.0% at 8 years old, P = 0.709). There was improvement in visual impairment rate at 8 years in Epoch II (10.7% vs 34.0%, P = 0.024). Mean IQ was better in Epoch II (109 and 107 vs 97 and 99 at 5 [ P = 0.001] and 8 years [ P = 0.047], respectively). All infants with no neurodevelopmental impairment at 2 years remained without impairment later on. Over a decade, neurodevelopmental outcomes did not worsen despite lower mean gestational age. Long- term improvement in IQ scores and a reduction in visual impairment rates were seen. Our data suggests that children without neurodevelopmental impairment at 2 years are without impairment later on; therefore, they may need only developmental monitoring with targeted assessments instead of routine formal IQ assessments.

  7. X-inactivation patterns in female Leber`s hereditary optic neuropathy patients do not support a strong X-linked determinant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegoraro, E.; Hoffman, E.P.; Carelli, V.

    1996-02-02

    Leber`s hereditary optic neuropathy (LHON) accounts for about 3% of the cases of blindness in young adult males. The underlying mitochondrial pathogenesis of LHON has been well studied, with specific mitochondrial DNA (mtDNA) mutations of structural genes described and well characterized. However, enigmatic aspects of the disease are not explained by mutation data, such as the higher proportion of affected males, the later onset of the disease in females, and the presence of unaffected individuals with a high proportion of mutant mtDNA. A hypothesis which has been put forward to explain the unusual disease expression is a dual model ofmore » mtDNA and X-linked nuclear gene inheritance. If a nuclear X-linked modifier gene influences the expression of the mitochondrial-linked mutant gene then the affected females should be either homozygous for the nuclear determinant, or if heterozygous, lyonization should favor the mutant X. In order to determine if an X-linked gene predisposes to LHON phenotype we studied X-inactivation patterns in 35 females with known mtDNA mutations from 10 LHON pedigrees. Our results do not support a strong X-linked determinant in LHON cause: 2 of the 10 (20%) manifesting carriers showed skewing of X-inactivation, as did 3 of the 25 (12%) nonmanifesting carriers. 39 refs., 2 figs., 1 tab.« less

  8. Pediatric Neurodevelopmental Treatment

    ERIC Educational Resources Information Center

    Camacho, Ricardo; McCauley, Brandon; Szczech Moser, Christy

    2016-01-01

    Over 70 years ago Dr. Karel Bobath and his wife Bertha Bobath began to craft the therapeutic intervention now known as neurodevelopmental treatment (NDT). This edition of Reviews, Tools, and Resources will highlight a historical review of research studies that have been completed, current websites, books, and blogs focusing on NDT.

  9. Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility.

    PubMed

    Lu, Xuemei; Shapiro, Joshua A; Ting, Chau-Ti; Li, Yan; Li, Chunyan; Xu, Jin; Huang, Huanwei; Cheng, Ya-Jen; Greenberg, Anthony J; Li, Shou-Hsien; Wu, Mao-Lien; Shen, Yang; Wu, Chung-I

    2010-08-01

    Postmating reproductive isolation is often manifested as hybrid male sterility, for which X-linked genes are overrepresented (the so-called large X effect). In contrast, X-linked genes are significantly under-represented among testis-expressing genes. This seeming contradiction may be germane to the X:autosome imbalance hypothesis on hybrid sterility, in which the X-linked effect is mediated mainly through the misexpression of autosomal genes. In this study, we compared gene expression in fertile and sterile males in the hybrids between two Drosophila species. These hybrid males differ only in a small region of the X chromosome containing the Ods-site homeobox (OdsH) (also known as Odysseus) locus of hybrid sterility. Of genes expressed in the testis, autosomal genes were, indeed, more likely to be misexpressed than X-linked genes under the sterilizing action of OdsH. Since this mechanism of X:autosome interaction is only associated with spermatogenesis, a connection between X:autosome imbalance and the high rate of hybrid male sterility seems plausible.

  10. [No X-chromosome linked juvenile foveal retinoschisis].

    PubMed

    Pérez Alvarez, M J; Clement Fernández, F

    2002-08-01

    To describe the clinical characteristics of two cases of juvenile foveal retinoschisis in women with an atypical hereditary pattern, no X-chromosome linked. An autosomal recessive inheritance is proposed. Two generations of a family (5 members) in which only two sisters were evaluated. The complete examination of these two cases includes retinography, fluorescein angiography, automated perimetry, color vision testing, electroretinogram, electrooculogram and visually evoked potentials. Comparing our cases with the classic form of X-linked juvenile retinoschisis, they are less severely affected. The best visual acuity and the less disturbed or even normal electroretinogram confirm this fact. We emphasise the existence of isolated plaques of retinal pigment epithelium atrophy with perivascular pigment clumps without foveal schisis in one patient, which could represent an evolved form of this entity. The hereditary foveal juvenile retinoschisis in women suggests an autosomal inheritance (autosomal recessive in our cases) and presents less severe involvement (Arch Soc Esp Oftalmol 2002; 77: 443-448).

  11. Visual search for feature conjunctions: an fMRI study comparing alcohol-related neurodevelopmental disorder (ARND) to ADHD.

    PubMed

    O'Conaill, Carrie R; Malisza, Krisztina L; Buss, Joan L; Bolster, R Bruce; Clancy, Christine; de Gervai, Patricia Dreessen; Chudley, Albert E; Longstaffe, Sally

    2015-01-01

    Alcohol-related neurodevelopmental disorder (ARND) falls under the umbrella of fetal alcohol spectrum disorder (FASD). Diagnosis of ARND is difficult because individuals do not demonstrate the characteristic facial features associated with fetal alcohol syndrome (FAS). While attentional problems in ARND are similar to those found in attention-deficit/hyperactivity disorder (ADHD), the underlying impairment in attention pathways may be different. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) was conducted at 3 T. Sixty-three children aged 10 to 14 years diagnosed with ARND, ADHD, and typically developing (TD) controls performed a single-feature and a feature-conjunction visual search task. Dorsal and ventral attention pathways were activated during both attention tasks in all groups. Significantly greater activation was observed in ARND subjects during a single-feature search as compared to TD and ADHD groups, suggesting ARND subjects require greater neural recruitment to perform this simple task. ARND subjects appear unable to effectively use the very efficient automatic perceptual 'pop-out' mechanism employed by TD and ADHD groups during presentation of the disjunction array. By comparison, activation was lower in ARND compared to TD and ADHD subjects during the more difficult conjunction search task as compared to the single-feature search. Analysis of DTI data using tract-based spatial statistics (TBSS) showed areas of significantly lower fractional anisotropy (FA) and higher mean diffusivity (MD) in the right inferior longitudinal fasciculus (ILF) in ARND compared to TD subjects. Damage to the white matter of the ILF may compromise the ventral attention pathway and may require subjects to use the dorsal attention pathway, which is associated with effortful top-down processing, for tasks that should be automatic. Decreased functional activity in the right temporoparietal junction (TPJ) of ARND subjects may be due to a

  12. Apparent X-linked primary ciliary dyskinesia associated with retinitis pigmentosa and a hearing loss.

    PubMed

    Krawczyński, Maciej R; Dmeńska, Hanna; Witt, Michał

    2004-01-01

    Three brothers, one 10-year-old and a pair of 14-year-old dizygotic twins--expressed the classical, early-onset retinitis pigmentosa (RP) with typical ophthalmoscopic findings, night blindness, visual field constricted to 10 degrees and flat ERG response. All three brothers were also diagnosed with primary ciliary dyskinesia (PCD) and had recurrent respiratory infections, chronic sinusitis and bronchiectasis. In all of them, resection of the middle lobe of the right lung was performed. A similar clinical picture of coexisting RP and PCD was noted in the brother of the probands' mother. All probands displayed situs solitus. Consistent with the X-linked mode of RP inheritance, there were also three obligatory female carriers of the disorder in this family: the mother of the affected boys, her mother and a daughter of her brother. In all of them, retinitis pigmentosa "sine pigmento" was found with milder but clinically significant symptoms (mild night blindness, visual field constricted to 30 degrees, and scotopic and photopic ERG responses reduced to 30-60%). No extraocular symptoms were detected in any of the heterozygous female carriers. This family presents an example of two rare phenomena: X-linked dominant retinitis pigmentosa (with milder expression in females) and a rare combination of RP with recurrent respiratory infections due to PCD.

  13. Preschool Neurodevelopmental Outcomes in Children with Congenital Heart Disease.

    PubMed

    Brosig, Cheryl L; Bear, Laurel; Allen, Sydney; Hoffmann, Raymond G; Pan, Amy; Frommelt, Michele; Mussatto, Kathleen A

    2017-04-01

    To describe preschool neurodevelopmental outcomes of children with complex congenital heart disease (CHD), who were evaluated as part of a longitudinal cardiac neurodevelopmental follow-up program, as recommended by the American Heart Association and the American Academy of Pediatrics, and identify predictors of neurodevelopmental outcomes in these children. Children with CHD meeting the American Heart Association/American Academy of Pediatrics high-risk criteria for neurodevelopmental delay were evaluated at 4-5 years of age. Testing included standardized neuropsychological measures. Parents completed measures of child functioning. Scores were compared by group (single ventricle [1V]; 2 ventricles [2V]; CHD plus known genetic condition) to test norms and classified as: normal (within 1 SD of mean); at risk (1-2 SD from mean); and impaired (>2 SD from mean). Data on 102 patients were analyzed. Neurodevelopmental scores did not differ based on cardiac anatomy (1V vs 2V); both groups scored lower than norms on fine motor and adaptive behavior skills, but were within 1 SD of norms. Patients with genetic conditions scored significantly worse than 1V and 2V groups and test norms on most measures. Children with CHD and genetic conditions are at greatest neurodevelopmental risk. Deficits in children with CHD without genetic conditions were mild and may not be detected without formal longitudinal testing. Parents and providers need additional education regarding the importance of developmental follow-up for children with CHD. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Autism and Related Disorders

    PubMed Central

    McPartland, James; Volkmar, Fred R.

    2012-01-01

    The Pervasive Developmental Disorders are a group of neurodevelopmental disorders that include Autistic Disorder, Asperger’s Disorder, Pervasive Developmental Disorder - Not Otherwise Specified (PDD-NOS), Childhood Disintegrative Disorder (CDD), and Rett’s Disorder. All feature childhood onset with a constellation of symptoms spanning social interaction and communication and including atypical behavior patterns. The first three disorders (Autistic Disorder, Asperger’s Disorder, and PDD-NOS) are currently referred to as Autism Spectrum Disorders, reflecting divergent phenotypic and etiologic characteristics compared to Rett’s Disorder and CDD. This chapter reviews relevant research and clinical information relevant to appropriate medical diagnosis and treatment. PMID:22608634

  15. Subjective Experience of Episodic Memory and Metacognition: A Neurodevelopmental Approach

    PubMed Central

    Souchay, Céline; Guillery-Girard, Bérengère; Pauly-Takacs, Katalin; Wojcik, Dominika Zofia; Eustache, Francis

    2013-01-01

    Episodic retrieval is characterized by the subjective experience of remembering. This experience enables the co-ordination of memory retrieval processes and can be acted on metacognitively. In successful retrieval, the feeling of remembering may be accompanied by recall of important contextual information. On the other hand, when people fail (or struggle) to retrieve information, other feelings, thoughts, and information may come to mind. In this review, we examine the subjective and metacognitive basis of episodic memory function from a neurodevelopmental perspective, looking at recollection paradigms (such as source memory, and the report of recollective experience) and metacognitive paradigms such as the feeling of knowing). We start by considering healthy development, and provide a brief review of the development of episodic memory, with a particular focus on the ability of children to report first-person experiences of remembering. We then consider neurodevelopmental disorders (NDDs) such as amnesia acquired in infancy, autism, Williams syndrome, Down syndrome, or 22q11.2 deletion syndrome. This review shows that different episodic processes develop at different rates, and that across a broad set of different NDDs there are various types of episodic memory impairment, each with possibly a different character. This literature is in agreement with the idea that episodic memory is a multifaceted process. PMID:24399944

  16. Neurodevelopmental outcome of infantile spasms: A systematic review and meta-analysis.

    PubMed

    Widjaja, Elysa; Go, Cristina; McCoy, Blathnaid; Snead, O Carter

    2015-01-01

    The aims of this systematic review and meta-analysis were to assess (i) estimates of good neurodevelopmental outcome in infantile spasms (IS), (ii) if neurodevelopmental outcome has changed since the publication of the first guideline on medical treatment of IS in 2004 and (iii) effect of lead time to treatment (LTTT). The Medline, Embase, Cochrane, PsycINFO, Web of Science and Scopus databases, and reference lists of retrieved articles were searched. Studies inclusion criteria were: (i) >5 patients with IS, (ii) mean/median follow-up of >6 months, (iii) neurodevelopmental outcome, and (iv) randomized and observational studies. The data extracted included proportion of good neurodevelopmental outcome, year of publication, cryptogenic or symptomatic IS and LTTT. Of the 1436 citations screened, 55 articles were included in final analysis, with a total of 2967 patients. The pooled estimate for good neurodevelopmental outcome was 0.236 (95% CI: 0.193-0.286). There was no difference between the proportions of good neurodevelopmental outcome for the 21 studies published after 2004 [0.264 (95% CI: 0.197-0.344)] compared to the 34 studies published before 2004 [0.220 (95% CI: 0.168-0.283)] (Q value=0.862, p=0.353). The pooled estimate of good neurodevelopmental outcome for cryptogenic IS [0.543 (95% CI: 0.458-0.625)] was higher than symptomatic IS [0.125 (95% CI: 0.09-0.171)] (Q value=69.724, p<0.001). Risk ratio of LTTT <4weeks relative to >4weeks for good neurodevelopmental outcome of 8 studies was 1.519 (95% CI: 1.064-2.169). Neurodevelopmental outcome was overall poor in patients with IS and has not changed since the publication of first guideline on IS. Although cryptogenic IS has better prognosis than symptomatic IS, the outcome for cryptogenic IS remained poor. There was heterogeneity in neurodevelopmental outcome ascertainment methods, highlighting the need for a more standardized and comprehensive assessment of cognitive, behavioural, emotional and functional

  17. Thyroid dysfunctions of prematurity and their impacts on neurodevelopmental outcome.

    PubMed

    Chung, Mi Lim; Yoo, Han Wok; Kim, Ki-Soo; Lee, Byong Sop; Pi, Soo-Young; Lim, Gina; Kim, Ellen Ai-Rhan

    2013-01-01

    Thyroid dysfunction is very common and is associated with neurodevelopmental impairments in preterm infants. This study was conducted to determine the incidence and natural course of various thyroid dysfunctions and their impacts on neurodevelopmental outcomes among premature infants. A total of 177 infants were enrolled who were born at <34 weeks or whose birth weight was <1500 g and who underwent repeat thyroid function tests. We analyzed how various thyroid dysfunctions affected neurodevelopmental outcomes at 18 months of corrected age. Thyroid dysfunction was noted in 88 infants. Hypothyroxinemia was observed in 23 infants, and their thyroid function was influenced by variable clinical factors. Free T4 levels were all normalized without thyroxine medication, and neurodevelopmental outcomes were not affected. In contrast, hyperthyrotropinemia was not associated with other clinical factors. Among 58 subjects who had hyperthyrotropinemia, only 31 infants showed normal thyroid-stimulating hormone (TSH) levels at follow-up tests. The remaining 27 infants had persistently high TSH levels, which significantly and poorly influenced the neurodevelopmental outcomes. Thyroid dysfunction is common among preterm infants. With the exception of persistent hyperthyrotropinemia, it generally does not affect neurodevelopmental outcomes. However, the beneficial effects of thyroid hormone therapy in patients with persistent hyperthyrotropinemia merits further study.

  18. Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility

    PubMed Central

    Lu, Xuemei; Shapiro, Joshua A.; Ting, Chau-Ti; Li, Yan; Li, Chunyan; Xu, Jin; Huang, Huanwei; Cheng, Ya-Jen; Greenberg, Anthony J.; Li, Shou-Hsien; Wu, Mao-Lien; Shen, Yang; Wu, Chung-I

    2010-01-01

    Postmating reproductive isolation is often manifested as hybrid male sterility, for which X-linked genes are overrepresented (the so-called large X effect). In contrast, X-linked genes are significantly under-represented among testis-expressing genes. This seeming contradiction may be germane to the X:autosome imbalance hypothesis on hybrid sterility, in which the X-linked effect is mediated mainly through the misexpression of autosomal genes. In this study, we compared gene expression in fertile and sterile males in the hybrids between two Drosophila species. These hybrid males differ only in a small region of the X chromosome containing the Ods-site homeobox (OdsH) (also known as Odysseus) locus of hybrid sterility. Of genes expressed in the testis, autosomal genes were, indeed, more likely to be misexpressed than X-linked genes under the sterilizing action of OdsH. Since this mechanism of X:autosome interaction is only associated with spermatogenesis, a connection between X:autosome imbalance and the high rate of hybrid male sterility seems plausible. PMID:20511493

  19. Temperament, Attentional Processes, and Anxiety: Diverging Links between Adolescents with and without Anxiety Disorders?

    ERIC Educational Resources Information Center

    Vervoort, Leentje; Wolters, Lidewij H.; Hogendoorn, Sanne M.; Prins, Pier J.; de Haan, Else; Boer, Frits; Hartman, Catharina A.

    2011-01-01

    The present study first examined the links between reactive temperament (negative affectivity), regulative temperament (effortful control [EC]) and internalizing problems in adolescents (12-18 years) with anxiety disorders (ANX; N = 39) and without anxiety disorders (nANX; N = 35). Links differed between ANX and nANX participants. Negative…

  20. Genetics Home Reference: X-linked cardiac valvular dysplasia

    MedlinePlus

    ... inflammation of the inner lining of the heart (endocarditis), abnormal blood clots, or sudden death. X-linked ... Johns Hopkins Medicine: Mitral Valve Prolapse MedlinePlus Encyclopedia: Endocarditis MedlinePlus Encyclopedia: Mitral Valve Prolapse General Information from ...

  1. Adult Learning Disorders: Contemporary Issues

    ERIC Educational Resources Information Center

    Wolf, Lorraine E., Ed.; Schreiber, Hope E., Ed.; Wasserstein, Jeanette, Ed.

    2008-01-01

    Recent advances in neuroimaging and genetics technologies have enhanced our understanding of neurodevelopmental disorders in adults. The authors in this volume not only discuss such advances as they apply to adults with learning disorders, but also address their translation into clinical practice. One cluster of chapters addresses developmental…

  2. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers.

    PubMed

    Kakoi, H; Hirota, K; Gawahara, H; Kurosawa, M; Kuwajima, M

    2005-03-01

    Sex chromosome aberrations are often associated with clinical signs that affect equine health and reproduction. However, abnormal manifestation with sex chromosome aberration usually appears at maturity and potential disorders may be suspected infrequently. A reliable survey at an early stage is therefore required. To detect and characterise sex chromosome aberrations in newborn foals by the parentage test and analysis using X- and Y-linked markers. We conducted a genetic diagnosis combined with a parentage test by microsatellite DNA and analysis of X- and Y-linked genetic markers in newborn light-breed foals (n = 17, 471). The minimum incidence of sex chromosome aberration in horses was estimated in the context of available population data. Eighteen cases with aberrations involving 63,XO, 65,XXY and 65,XXX were found. The XO, XXY (pure 65,XXY and/or mosaics/chimaeras) and XXX were found in 0.15, 0.02 and 0.01% of the population, respectively, based solely on detection of abnormal segregation of a single X chromosome marker, LEX003. Detection at an early age and understanding of the prevalence of sex chromosome aberrations should assist in the diagnosis and managment of horses kept for breeding. Further, the parental origin of the X chromosome of each disorder could be proved by the results of genetic analysis, thereby contributing to cytogenetic characterisation.

  3. Clinical and genetic features in autosomal recessive and X-linked Alport syndrome.

    PubMed

    Wang, Yanyan; Sivakumar, Vanessa; Mohammad, Mardhiah; Colville, Deb; Storey, Helen; Flinter, Frances; Dagher, Hayat; Savige, Judy

    2014-03-01

    This study determined the family history and clinical features that suggested autosomal recessive rather than X-linked Alport syndrome. All patients had the diagnosis of Alport syndrome and the mode of inheritance confirmed by genetic testing, and underwent examination at a single centre. Patients comprised 9 males and 6 females with autosomal recessive Alport syndrome, and 18 males and 22 females with X-linked disease. Fourteen (93 %) individuals with autosomal recessive Alport syndrome developed early end-stage renal failure, all 15 had hearing loss, and most had lenticonus (12, 80 %), and a central (13, 87 %) or peripheral (13, 87 %) retinopathy. These features occurred as often as in males with X-linked disease. Females with autosomal recessive inheritance were less likely to have an affected family member in another generation (p = 0.01) than females with X-linked disease. They were more likely to have renal failure (p = 0.003), hearing loss (p = 0.02) and lenticonus (p < 0.001). Fifty percent had a central retinopathy compared with 18 % with X-linked disease (p = 0.14), but peripheral retinopathy prevalence was not different (p = 0.64). Nonsense mutations accounted for 67 % (8/12) of these disease-causing mutations. Autosomal recessive inheritance is increased in females with Alport syndrome and early onset renal failure, hearing loss, lenticonus, and, possibly, central retinopathy.

  4. Executive Functioning Differences between Adults with Attention Deficit Hyperactivity Disorder and Autistic Spectrum Disorder in Initiation, Planning and Strategy Formation

    ERIC Educational Resources Information Center

    Bramham, Jessica; Ambery, Fiona; Young, Susan; Morris, Robin; Russell, Ailsa; Xenitidis, Kiriakos; Asherson, Philip; Murphy, Declan

    2009-01-01

    Executive functioning deficits characterize the neuropsychological profiles of the childhood neurodevelopmental disorders of attention deficit hyperactivity disorder (ADHD) and autistic spectrum disorder (ASD). This study sought to determine whether similar impairments exist in adults with ADHD (N = 53) and ASD (N = 45) in comparison with a…

  5. X-linked mental retardation associated with macro-orchidism.

    PubMed Central

    Turner, G; Eastman, C; Casey, J; McLeay, A; Procopis, P; Turner, B

    1975-01-01

    Two families are described with an X-linked form of mental retardation in whom the affected males were found to have bilateral enlargement of the testes. No conclusive evidence of any endocrinological disturbance was found. Images PMID:1240971

  6. Newly postulated neurodevelopmental risks of pediatric anesthesia.

    PubMed

    Hays, Stephen R; Deshpande, Jayant K

    2011-04-01

    Recent animal and human studies have raised concern that exposure to anesthetic agents in children may cause neuronal damage and be associated with adverse neurodevelopmental outcomes. Exposure of young animals to anesthetic agents above threshold doses and durations during a critical neurodevelopmental window in the absence of concomitant painful stimuli causes widespread neuronal apoptosis and subsequent abnormal behaviors. The relevance of such animal data to humans is unknown. Untreated neonatal pain and stress also are associated with enhanced neuronal death and subsequent maladaptive behaviors, which can be prevented by exposure to these same anesthetic agents. Retrospective observational human studies have suggested a dose-dependent association between multiple anesthetic exposures in early childhood and subsequent learning disability, the causality of which is unknown. Ongoing prospective investigations are underway, the results of which may clarify if and what neurodevelopmental risks are associated with pediatric anesthesia. No change in current practice is yet indicated.

  7. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors

    PubMed Central

    Sugathan, Aarathi; Biagioli, Marta; Golzio, Christelle; Erdin, Serkan; Blumenthal, Ian; Manavalan, Poornima; Ragavendran, Ashok; Brand, Harrison; Lucente, Diane; Miles, Judith; Sheridan, Steven D.; Stortchevoi, Alexei; Kellis, Manolis; Haggarty, Stephen J.; Katsanis, Nicholas; Gusella, James F.; Talkowski, Michael E.

    2014-01-01

    Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10−8) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10−10). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. PMID:25294932

  8. Identification of novel missense mutations in the Norrie disease gene associated with one X-linked and four sporadic cases of familial exudative vitreoretinopathy.

    PubMed

    Shastry, B S; Hejtmancik, J F; Trese, M T

    1997-01-01

    X-linked Familial Exudative Vitreoretinopathy (XLFEVR) is a hereditary eye disorder that affects both the retina and the vitreous body. It is characterized by an abnormal vascularization of the peripheral retina. It has been previously shown by linkage and candidate gene analysis that XLFEVR and Norrie disease are allelic. In this report we describe four novel mutations (R41K, H42R, K58N, and Y120C) in the Norrie disease gene associated with one X-linked and four sporadic cases of FEVR. One mutation (H42R) was found to be segregating with the disease in three generations (X-linked family), and the others are sporadic. These sequence alterations changed the encoded amino acids in the Norrie disease protein and were not found in 17 unaffected family members or in 36 randomly selected normal individuals. This study provides additional evidence that mutations in the same gene can result in FEVR and Norrie disease. It also demonstrates that it may be beneficial for clinical diagnosis to screen for mutations in the Norrie disease gene in sporadic FEVR cases.

  9. SIL1-related Marinesco-Sjoegren syndrome (MSS) with associated motor neuronopathy and bradykinetic movement disorder.

    PubMed

    Byrne, Susan; Dlamini, Nomazulu; Lumsden, Daniel; Pitt, Matthew; Zaharieva, Irina; Muntoni, Francesco; King, Andrew; Robert, Leema; Jungbluth, Heinz

    2015-07-01

    Marinesco-Sjoegren syndrome (MSS) is a recessively inherited multisystem disorder caused by mutations in SIL1 and characterized by cerebellar atrophy with ataxia, cataracts, a skeletal muscle myopathy, and variable degrees of developmental delay. Pathogenic mechanisms implicated to date include mitochondrial, nuclear envelope and lysosomal-autophagic pathway abnormalities. Here we present a 5-year-old girl with SIL1-related MSS and additional unusual features of an associated motor neuronopathy and a bradykinetic movement disorder preceding the onset of ataxia. These findings suggest that an associated motor neuronopathy may be part of the phenotypical spectrum of SIL1-related MSS and should be actively investigated in genetically confirmed cases. The additional observation of a bradykinetic movement disorder suggests an intriguing continuum between neurodevelopmental and neurodegenerative multisystem disorders intricately linked in the same cellular pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Altered Placental Tryptophan Metabolism: A Crucial Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders

    DTIC Science & Technology

    2016-09-01

    with previous in vitro studies suggesting that subsets of 5- HT autoreceptors expressed either on dorsal raphe 5- HT neuron cell bodies or axons...saline (Figure 1B). This effect was blocked by the co-injection of pCPA. The overall 5- HT + axon density over the entire rostro-caudal axis was also...brain. There, 5- HT modulates critical neurodevelopmental processes. We investigated the effects of maternal inflammation triggered in mid- pregnancy in

  11. Targeted Treatments in Autism and Fragile X Syndrome

    ERIC Educational Resources Information Center

    Gurkan, C. Kagan; Hagerman, Randi J.

    2012-01-01

    Autism is a neurodevelopmental disorder consisting of a constellation of symptoms that sometimes occur as part of a complex disorder characterized by impairments in social interaction, communication and behavioral domains. It is a highly disabling disorder and there is a need for treatment targeting the core symptoms. Although autism is accepted…

  12. X-Linked Glomerulopathy Due to COL4A5 Founder Variant.

    PubMed

    Barua, Moumita; John, Rohan; Stella, Lorenzo; Li, Weili; Roslin, Nicole M; Sharif, Bedra; Hack, Saidah; Lajoie-Starkell, Ginette; Schwaderer, Andrew L; Becknell, Brian; Wuttke, Matthias; Köttgen, Anna; Cattran, Daniel; Paterson, Andrew D; Pei, York

    2018-03-01

    Alport syndrome is a rare hereditary disorder caused by rare variants in 1 of 3 genes encoding for type IV collagen. Rare variants in COL4A5 on chromosome Xq22 cause X-linked Alport syndrome, which accounts for ∼80% of the cases. Alport syndrome has a variable clinical presentation, including progressive kidney failure, hearing loss, and ocular defects. Exome sequencing performed in 2 affected related males with an undefined X-linked glomerulopathy characterized by global and segmental glomerulosclerosis, mesangial hypercellularity, and vague basement membrane immune complex deposition revealed a COL4A5 sequence variant, a substitution of a thymine by a guanine at nucleotide 665 (c.T665G; rs281874761) of the coding DNA predicted to lead to a cysteine to phenylalanine substitution at amino acid 222, which was not seen in databases cataloguing natural human genetic variation, including dbSNP138, 1000 Genomes Project release version 01-11-2004, Exome Sequencing Project 21-06-2014, or ExAC 01-11-2014. Review of the literature identified 2 additional families with the same COL4A5 variant leading to similar atypical histopathologic features, suggesting a unique pathologic mechanism initiated by this specific rare variant. Homology modeling suggests that the substitution alters the structural and dynamic properties of the type IV collagen trimer. Genetic analysis comparing members of the 3 families indicated a distant relationship with a shared haplotype, implying a founder effect. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  13. A natural history study of X-linked myotubular myopathy

    PubMed Central

    Amburgey, Kimberly; Tsuchiya, Etsuko; de Chastonay, Sabine; Glueck, Michael; Alverez, Rachel; Nguyen, Cam-Tu; Rutkowski, Anne; Hornyak, Joseph; Beggs, Alan H.

    2017-01-01

    Objective: To define the natural history of X-linked myotubular myopathy (MTM). Methods: We performed a cross-sectional study that included an online survey (n = 35) and a prospective, 1-year longitudinal investigation using a phone survey (n = 33). Results: We ascertained data from 50 male patients with MTM and performed longitudinal assessments on 33 affected individuals. Consistent with existing knowledge, we found that MTM is a disorder associated with extensive morbidities, including wheelchair (86.7% nonambulant) and ventilator (75% requiring >16 hours of support) dependence. However, unlike previous reports and despite the high burden of disease, mortality was lower than anticipated (approximate rate 10%/y). Seventy-six percent of patients with MTM enrolled (mean age 10 years 11 months) were alive at the end of the study. Nearly all deaths in the study were associated with respiratory failure. In addition, the disease course was more stable than expected, with few adverse events reported during the prospective survey. Few non–muscle-related morbidities were identified, although an unexpectedly high incidence of learning disability (43%) was noted. Conversely, MTM was associated with substantial burdens on patient and caregiver daily living, reflected by missed days of school and lost workdays. Conclusions: MTM is one of the most severe neuromuscular disorders, with affected individuals requiring extensive mechanical interventions for survival. However, among study participants, the disease course was more stable than predicted, with more individuals surviving infancy and early childhood. These data reflect the disease burden of MTM but offer hope in terms of future therapeutic intervention. PMID:28842446

  14. Clinical utility of the X-chromosome array.

    PubMed

    Zarate, Yuri A; Dwivedi, Alka; Bartel, Frank O; Bellomo, M Allison; Cathey, Sara S; Champaigne, Neena L; Clarkson, L Kate; Dupont, Barbara R; Everman, David B; Geer, Joseph S; Gordon, Barbara C; Lichty, Angie W; Lyons, Michael J; Rogers, R Curtis; Saul, Robert A; Schroer, Richard J; Skinner, Steven A; Stevenson, Roger E

    2013-01-01

    Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59 = 42%). The findings were deemed pathogenic/likely pathogenic (16/59 = 27%), benign (4/59 = 7%) or uncertain (7/59 = 12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families. Copyright © 2012 Wiley Periodicals, Inc.

  15. A human neurodevelopmental model for Williams syndrome

    PubMed Central

    Chailangkarn, Thanathom; Trujillo, Cleber A.; Freitas, Beatriz C.; Hrvoj-Mihic, Branka; Herai, Roberto H.; Yu, Diana X.; Brown, Timothy T.; Marchetto, Maria C. N.; Bardy, Cedric; McHenry, Lauren; Stefanacci, Lisa; Järvinen, Anna; Searcy, Yvonne M.; DeWitt, Michelle; Wong, Wenny; Lai, Philip; Ard, M. Colin; Hanson, Kari L.; Romero, Sarah; Jacobs, Bob; Dale, Anders M.; Dai, Li; Korenberg, Julie R.; Gage, Fred H.; Bellugi, Ursula; Halgren, Eric; Semendeferi, Katerina; Muotri, Alysson R.

    2016-01-01

    Summary Williams syndrome (WS) is a genetic neurodevelopmental disorder characterized by an uncommon hypersociability and a mosaic of retained and compromised linguistic and cognitive abilities. Nearly all clinically diagnosed individuals with WS lack precisely the same set of genes, with breakpoints in chromosome band 7q11.231–5. The contribution of specific genes to the neuroanatomical and functional alterations, leading to behavioral pathologies in humans, remains largely unexplored. Here, we investigate neural progenitor cells (NPCs) and cortical neurons derived from WS and typically developing (TD) induced pluripotent stem cells (iPSCs). WS NPCs have an increased doubling time and apoptosis compared to TD NPCs. Using an atypical WS subject6, 7, we narrowed this cellular phenotype to a single gene candidate, FZD9. At the neuronal stage, WS-derived layers V/VI cortical neurons were characterized by longer total dendrites, increased numbers of spines and synapses, aberrant calcium oscillation and altered network connectivity. Morphometric alterations observed in WS neurons were validated after Golgi staining of postmortem layers V/VI cortical neurons. This human iPSC model8 fills in the current knowledge gap in WS cellular biology and could lead to further insights into the molecular mechanism underlying the disorder and the human social brain. PMID:27509850

  16. The multifocal electroretinogram in X-linked juvenile retinoschisis.

    PubMed

    Huang, Shizhou; Wu, Dezheng; Jiang, Futian; Luo, Guangwei; Liang, Jiongji; Wen, Feng; Yu, Minzhong; Long, Shixian; Wu, Lezheng

    2003-05-01

    To measure and compare the multifocal electroretinography in normal control and X-linked juvenile retinoschisis, 13 cases (13 right eyes) of normal control and nine cases (17 eyes) of X-linked juvenile retinoschisis were measured with VERIS Science 4.0. Four cases (eight eyes) out of the nine retinoschisis cases were tested with Ganzfeld ERG at the same day. The results showed statistically significant difference of average response densities and latencies in six ring retinal regions between the normal control and retinoschisis. The trace array and 3-D topography of multifocal ERG showed multi-area amplitude decrease with absence or reduction of central peak amplitude in patients with retinoschisis. The P1/N1 ratio of multifocal ERG average response densities in six ring retinal regions was different from the b/a ratio of Ganzfeld ERG. The multifocal ERG and Ganzfeld ERG each had its advantage in the diagnosis of retinoschisis.

  17. Comorbidity of Autism Spectrum Disorders and Emotional/behavioral Disorders: Towards Improved Diagnostic Procedures, Instructional Programming, and Personnel Preparation

    ERIC Educational Resources Information Center

    Clinton, Elias

    2016-01-01

    An emotional/behavioral disorder is a mental health disability characterized by intensive internalized behaviors (e.g., anxiety, depression) and/or externalized behaviors (e.g., physical aggression, verbal aggression). Autism is a neurodevelopmental disorder characterized by deficits in social communication and repetitive behaviors (i.e., stereo…

  18. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  19. Anticipated stigma and blameless guilt: Mothers' evaluation of life with the sex-linked disorder, hypohidrotic ectodermal dysplasia (XHED).

    PubMed

    Clarke, Angus

    2016-06-01

    Practical experience of a genetic disorder may influence how parents approach reproduction, if they know their child may be affected by an inherited condition. One important aspect of this practical experience is the stigmatisation which family members may experience or witness. We outline the concept of stigma and how it affects those in families with a condition that impacts upon physical appearance. We then consider the accounts given by females in families affected by the rare sex-linked disorder, X-linked hypohidrotic ectodermal dysplasia (XHED), which principally affects males but can be passed through female carriers to affect their sons. The stigmatisation of affected males is as important in the accounts given by their womenfolk as the physical effects of the condition; this impacts on their talk about transmission of the disorder to the next generation. Perspectives may also change over time. The mothers of affected sons differ from their daughters, who do not yet have children, and from their mothers, who may express more strongly their sense of guilt at having transmitted the condition, despite there being no question of moral culpability. We conclude with suggestions about other contexts where the possibility of stigma may influence reproductive decisions. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Nephrogenic diabetes insipidus: an X chromosome-linked dominant inheritance pattern with a vasopressin type 2 receptor gene that is structurally normal.

    PubMed Central

    Friedman, E; Bale, A E; Carson, E; Boson, W L; Nordenskjöld, M; Ritzén, M; Ferreira, P C; Jammal, A; De Marco, L

    1994-01-01

    Nephrogenic diabetes insipidus is a rare hereditary disorder, most commonly transmitted in an X chromosome-linked recessive manner and characterized by the lack of renal response to the action of antidiuretic hormone [Arg8]vasopressin. The vasopressin type 2 receptor (V2R) has been suggested to be the gene that causes the disease, and its role in disease pathogenesis is supported by mutations within this gene in affected individuals. Using the PCR, denaturing gradient gel electrophoresis, and direct DNA sequencing, we examined the V2R gene in four unrelated kindreds. In addition, linkage analysis with chromosome Xq28 markers was done in one large Brazilian kindred with an apparent unusual X chromosome-linked dominant inheritance pattern. In one family, a mutation in codon 280, causing a Tyr-->Cys substitution in the sixth transmembrane domain of the receptor, was found. In the other three additional families with nephrogenic diabetes insipidus, the V2R-coding region was normal in sequence. In one large Brazilian kindred displaying an unusual X chromosome-linked dominant mode of inheritance, the disease-related gene was localized to the same region of the X chromosome as the V2R, but no mutations were found, thus raising the possibility that this disease is caused by a gene other than V2R. Images PMID:8078903