Sample records for x-ray absorption contrast

  1. Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue

    2018-05-01

    Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.

  2. X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  3. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function

  4. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  5. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  6. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  7. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  8. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  9. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    PubMed Central

    Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.

    2012-01-01

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies. PMID:28817018

  10. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    PubMed

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  11. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    PubMed

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. A software platform for phase contrast x-ray breast imaging research.

    PubMed

    Bliznakova, K; Russo, P; Mettivier, G; Requardt, H; Popov, P; Bravin, A; Buliev, I

    2015-06-01

    To present and validate a computer-based simulation platform dedicated for phase contrast x-ray breast imaging research. The software platform, developed at the Technical University of Varna on the basis of a previously validated x-ray imaging software simulator, comprises modules for object creation and for x-ray image formation. These modules were updated to take into account the refractive index for phase contrast imaging as well as implementation of the Fresnel-Kirchhoff diffraction theory of the propagating x-ray waves. Projection images are generated in an in-line acquisition geometry. To test and validate the platform, several phantoms differing in their complexity were constructed and imaged at 25 keV and 60 keV at the beamline ID17 of the European Synchrotron Radiation Facility. The software platform was used to design computational phantoms that mimic those used in the experimental study and to generate x-ray images in absorption and phase contrast modes. The visual and quantitative results of the validation process showed an overall good correlation between simulated and experimental images and show the potential of this platform for research in phase contrast x-ray imaging of the breast. The application of the platform is demonstrated in a feasibility study for phase contrast images of complex inhomogeneous and anthropomorphic breast phantoms, compared to x-ray images generated in absorption mode. The improved visibility of mammographic structures suggests further investigation and optimisation of phase contrast x-ray breast imaging, especially when abnormalities are present. The software platform can be exploited also for educational purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. High energy X-ray phase and dark-field imaging using a random absorption mask.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  15. Hafnium-Based Contrast Agents for X-ray Computed Tomography.

    PubMed

    Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar

    2017-05-15

    Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.

  16. Preliminary research on dual-energy X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  18. Determination of total x-ray absorption coefficient using non-resonant x-ray emission

    PubMed Central

    Achkar, A. J.; Regier, T. Z.; Monkman, E. J.; Shen, K. M.; Hawthorn, D. G.

    2011-01-01

    An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, µ(E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from µ(E) by an unknown and difficult to measure amount. Moreover, our measurement can determine µ(E) in absolute units with no free parameters by scaling to µ(E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO3. Determining µ(E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO3, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively. PMID:22355697

  19. Various clinical application of phase contrast X-ray

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Je, Jungho

    2008-02-01

    In biomedical application study using phase contrast X-ray, both sample thickness or density and absorption difference are very important factors in aspects of contrast enhancement. We present experimental evidence that synchrotron hard X-ray are suitable for radiological imaging of biological samples down to the cellular level. We investigated the potential of refractive index radiology using un-monochromatized synchrotron hard X-rays for the imaging of cell and tissue in various diseases. Material had been adopted various medical field, such as apoE knockout mouse in cardiologic field, specimen from renal and prostatic carcinoma patient in urology, basal cell epithelioma in dermatology, brain tissue from autosy sample of pakinson's disease, artificially induced artilrtis tissue from rabbits and extracted tooth from patients of crack tooth syndrome. Formalin and paraffin fixed tissue blocks were cut in 3 mm thickness for the X-ray radiographic imaging. From adjacent areas, 4 μm thickness sections were also prepared for hematoxylin-eosin staining. Radiographic images of dissected tissues were obtained using the hard X-rays from the 7B2 beamline of the Pohang Light Source (PLS). The technique used for the study was the phase contrast images were compared with the optical microscopic images of corresponding histological slides. Radiographic images of various diseased tissues showed clear histological details of organelles in normal tissues. Most of cancerous lesions were well differentiated from adjacent normal tissues and detailed histological features of each tumor were clearly identified. Also normal microstructures were identifiable by the phase contrast imaging. Tissue in cancer or other disease showed clearly different findings from those of surrounding normal tissue. For the first time we successfully demonstrated that synchrotron hard X-rays can be used for radiological imaging of relatively thick tissue samples with great histological details.

  20. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  1. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Phase contrast imaging with coherent high energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snigireva, I.

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known inmore » optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.« less

  3. Investigation of X-ray permeability of surgical gloves coated with different contrast agents

    PubMed Central

    Kayan, Mustafa; Yaşar, Selçuk; Saygın, Mustafa; Yılmaz, Ömer; Aktaş, Aykut Recep; Kayan, Fatmanur; Türker, Yasin; Çetinkaya, Gürsel

    2016-01-01

    Objective: We aimed to investigate the effectiveness and radiation protection capability of latex gloves coated with various contrast agents as an alternative to lead gloves. Methods: The following six groups were created to evaluate the permeability of X-ray in this experimental study: lead gloves, two different non-ionic contrast media (iopromide 370/100 mg I/mL and iomeprol 400/100 mg I/mL), 10% povidone–iodine (PV–I), 240/240 g/mL barium sulphate and a mixture of equal amounts of all contrast agents. A radiation dose detector was placed in coated latex gloves for each one. The absorption values of radiation from latex gloves coated with various contrast agents were measured and compared with the absorption of radiation from lead gloves. This study was designed as an ‘experimental study’. Results: The mean absorption value of X-ray from lead gloves was 3.0±0.08 µG/s. The mean absorption values of X-ray from latex gloves coated with various contrast agents were 3.7±0.09 µG/s (iopromide 370/100 mg I/mL), 3.6±0.09 µG/s (iomeprol 400/100 mg I/mL), 3.7±0.04 µG/s (PV–I), 3.1±0.07 µG/s (barium sulphate) and 3.8±0.05 µG/s (mixture of all contrast agents). Latex gloves coated with barium sulphate provided the best radiation absorption compared with latex gloves coated with other radiodense contrast agents. Conclusion: Latex gloves coated with barium sulphate may provide protection equivalent to lead gloves. PMID:26680548

  4. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  5. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  6. Advances in functional X-ray imaging techniques and contrast agents

    PubMed Central

    Chen, Hongyu; Rogalski, Melissa M.

    2012-01-01

    X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray’s biomedical applications to functional as well as structural imaging. These techniques are promising to dramatically improve our ability to study in situ biochemistry and disease pathology. In this review, we discuss how X-ray absorption, X-ray fluorescence, and X-ray excited optical luminescence can be used for physiological, elemental, and molecular imaging of vasculature, tumours, pharmaceutical distribution, and the surface of implants. Imaging of endogenous elements, exogenous labels, and analytes detected with optical indicators will be discussed. PMID:22962667

  7. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents

    PubMed Central

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-01-01

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797

  8. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  9. Simulations of multi-contrast x-ray imaging using near-field speckles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  10. Noise in x-ray grating-based phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas; Bartl, Peter; Bayer, Florian

    Purpose: Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. Methods: In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photonmore » counting. Additionally, simulations regarding this topic were performed. Results: It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. Conclusions: These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.« less

  11. Noise in x-ray grating-based phase-contrast imaging.

    PubMed

    Weber, Thomas; Bartl, Peter; Bayer, Florian; Durst, Jürgen; Haas, Wilhelm; Michel, Thilo; Ritter, André; Anton, Gisela

    2011-07-01

    Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photon counting. Additionally, simulations regarding this topic were performed. It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.

  12. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not

  13. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE PAGES

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  14. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  15. Observation of Reverse Saturable Absorption of an X-ray Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, B. I.; Cho, M. S.; Kim, M.

    A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10more » 16 –10 17 W=cm 2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray freeelectron laser pulses.« less

  16. Observation of Reverse Saturable Absorption of an X-ray Laser

    DOE PAGES

    Cho, B. I.; Cho, M. S.; Kim, M.; ...

    2017-08-16

    A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10more » 16 –10 17 W=cm 2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray freeelectron laser pulses.« less

  17. Einstein X-ray observations of QSO's with absorption-line systems

    NASA Technical Reports Server (NTRS)

    Junkkarinen, V. T.; Marscher, A. P.; Burbidge, E. M.

    1982-01-01

    The detection of X-ray emission from eight QSO's is reported, plus an upper limit to the X-ray flux from one QSO, using the Einstein X-ray Observatory (HEAO-2). Each object in the sample contains at least one absorption-line system that has been identified in its optical spectrum. The present results are combined with those of other investigators to form a sample of 44 absorption-line QSO's (with 2 sub e greater than 1.2) which have been observed in the X-ray. This sample cannot be distinguished, in terms of X-ray properties, from one which consists of QSO's in which no absorption systems have been identified. These results are consistent with extrinsic models for absorption-line clouds, as well as with current versions of intrinsic models.

  18. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  19. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2005-06-01

    Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in

  20. Contrast-enhanced dual-energy subtraction imaging using electronic spectrum-splitting and multi-prism x-ray lenses

    NASA Astrophysics Data System (ADS)

    Fredenberg, Erik; Cederström, Björn; Lundqvist, Mats; Ribbing, Carolina; Åslund, Magnus; Diekmann, Felix; Nishikawa, Robert; Danielsson, Mats

    2008-03-01

    Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted, resulting in suppression of the signal from the tissue background and a relative enhancement of the signal from the agent. Although promising, DES is still not widely used in clinical practice. One reason may be the need for two distinctly separated x-ray spectra that are still close to the absorption edge, realized through dual exposures which may introduce motion unsharpness. In this study, electronic spectrum-splitting with a silicon-strip detector is theoretically and experimentally investigated for a mammography model with iodinated contrast agent. Comparisons are made to absorption imaging and a near-ideal detector using a signal-to-noise ratio that includes both statistical and structural noise. Similar to previous studies, heavy absorption filtration was needed to narrow the spectra at the expense of a large reduction in x-ray flux. Therefore, potential improvements using a chromatic multi-prism x-ray lens (MPL) for filtering were evaluated theoretically. The MPL offers a narrow tunable spectrum, and we show that the image quality can be improved compared to conventional filtering methods.

  1. Phased Contrast X-Ray Imaging

    ScienceCinema

    Miller, Erin

    2018-02-07

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  2. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    PubMed

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  3. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.

    2016-05-23

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  4. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.

    PubMed

    Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo

    2012-04-15

    Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A wavelet analysis for the X-ray absorption spectra of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, T. J.; Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne; SwissFEL, Paul Scherrer Inst, CH-5232 Villigen

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rheniummore » diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.« less

  6. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Marone, F.; Hintermüller, C.; Bensadoun, J.-C.; Aebischer, P.; Stampanoni, M.

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  7. X-ray absorption spectroscopy study of Gd3+-loaded ultra-short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Jebb, M.; Tweedle, M. F.; Wilson, L. J.

    2013-04-01

    We present an x-ray absorption spectroscopy study of the local structure around the Gd3+ion loaded in ultra short (20-100 nm) carbon nanotubes (GNTs). X-ray Gd L3 absorption near edge structure data shows that the 31.2-μM GNT suspension exhibits a clear characteristic of hydration at the [GdOn] cluster. Extended x-ray absorption fine structure data show that the Gd3+ ion is coordinated by about 9 oxygen ions and that this first coordination shell exhibits an asymmetry similar to that found in triclinic Gd-acetate or Gd[C2H3O2]3·4H2O or GdAc. After correction for the asymmetry using the cumulant of the third order, the Gd-O bond distance is found to be 2.345 Å, instead of 2.406 Å for a symmetrical (or Gaussian) distribution. It is shorter than that in the Gd-containing MRI contrast agents currently in clinical uses. This may account in part for high proton relaxivity observed for the GNT suspension.

  8. Model and reconstruction of a K-edge contrast agent distribution with an X-ray photon-counting detector

    PubMed Central

    Meng, Bo; Cong, Wenxiang; Xi, Yan; De Man, Bruno; Yang, Jian; Wang, Ge

    2017-01-01

    Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency. PMID:28437900

  9. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    DOE PAGES

    Kroll, Thomas; Kern, Jan; Kubin, Markus; ...

    2016-09-19

    X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. But, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. We compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based onmore » self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. Lastly, we show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.« less

  10. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    PubMed Central

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. PMID:27828320

  11. X-Ray Absorption Measured in the Resonant Auger Scattering Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hikosaka, Y.; Shigemasa, E.; Kaneyasu, T.

    2008-08-15

    We report both experimental and theoretical studies on x-ray absorption measured in the resonant Auger scattering mode of gas phase carbon monoxide near the O1s{yields}2{pi} region. Both experiment and theory display a crucial difference between the x-ray absorption profiles obtained in the conventional and resonant scattering modes. Lifetime vibrational interference is the main source of the difference. It is demonstrated that such interference, which arises from a coherent excitation to overlapping intermediate levels, ruins the idea for obtaining x-ray absorption spectra in a lifetime broadening free regime.

  12. Realtime automatic metal extraction of medical x-ray images for contrast improvement

    NASA Astrophysics Data System (ADS)

    Prangl, Martin; Hellwagner, Hermann; Spielvogel, Christian; Bischof, Horst; Szkaliczki, Tibor

    2006-03-01

    This paper focuses on an approach for real-time metal extraction of x-ray images taken from modern x-ray machines like C-arms. Such machines are used for vessel diagnostics, surgical interventions, as well as cardiology, neurology and orthopedic examinations. They are very fast in taking images from different angles. For this reason, manual adjustment of contrast is infeasible and automatic adjustment algorithms have been applied to try to select the optimal radiation dose for contrast adjustment. Problems occur when metallic objects, e.g., a prosthesis or a screw, are in the absorption area of interest. In this case, the automatic adjustment mostly fails because the dark, metallic objects lead the algorithm to overdose the x-ray tube. This outshining effect results in overexposed images and bad contrast. To overcome this limitation, metallic objects have to be detected and extracted from images that are taken as input for the adjustment algorithm. In this paper, we present a real-time solution for extracting metallic objects of x-ray images. We will explore the characteristic features of metallic objects in x-ray images and their distinction from bone fragments which form the basis to find a successful way for object segmentation and classification. Subsequently, we will present our edge based real-time approach for successful and fast automatic segmentation and classification of metallic objects. Finally, experimental results on the effectiveness and performance of our approach based on a vast amount of input image data sets will be presented.

  13. Phase contrast: the frontier of x-ray and electron imaging

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Margaritondo, G.

    2013-12-01

    Phase contrast has been a fundamental component of microscopy since the early 1940s. In broad terms, it refers to the formation of images using not the combination of wave intensities but their amplitudes with the corresponding phase factors. The impact on visible microscopy of biological specimens has been major. This contrast mechanism is now playing an increasingly important role in other kinds of microscopy, notably those based on electrons or x-rays. It notably solves the background problem of weak absorption contrast. New breakthroughs and new techniques are continuously produced, unfortunately unknown to most of the scientists that could exploit them. The present special cluster issue of reviews was inspired by this situation. The case of x-rays is very interesting. Phase contrast requires a high degree of longitudinal and lateral coherence. But conventional x-ray sources are not coherent. The progress of synchrotron sources yielded high coherence as a key byproduct—and started a rapid expansion of phase contrast radiology. No review—or cluster of reviews—can possibly cover all the facets of the recent progress. Without trying to be absolutely comprehensive, the present special cluster issue touches a variety of issues, giving a very broad picture. Liu et al review in general terms the different phase-based hard-x-ray techniques, with an interesting variety of examples. Then, Suortti et al and Wang et al present more specialized overviews of crystal and grating based x-ray imaging techniques, very powerful in the analysis of biological specimens. Mokso et al discuss the many facets of tomography using phase effects, expanding the picture of tomographic reconstruction of the three previous reviews. Wu et al treat the rapid progress in hard-x-ray focusing and its impact on radiology and tomography for materials science and biomedical research. The next two reviews deal with special and very interesting classes of applications. Specifically, Lee et al

  14. X-ray scatter imaging of hepatocellular carcinoma in a mouse model using nanoparticle contrast agents

    DOE PAGES

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; ...

    2015-10-29

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less

  15. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  16. Determining the Uncertainty of X-Ray Absorption Measurements

    PubMed Central

    Wojcik, Gary S.

    2004-01-01

    X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627

  17. Penetration Depth and Defect Image Contrast Formation in Grazing-Incidence X-ray Topography of 4H-SiC Wafers

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide Yannick; Kim, Jun Gyu; Raghothamachar, Balaji; Dudley, Michael; Chung, Gill; Sanchez, Edward; Manning, Ian

    2018-02-01

    Synchrotron x-ray topography in grazing-incidence geometry is useful for discerning defects at different depths below the crystal surface, particularly for 4H-SiC epitaxial wafers. However, the penetration depths measured from x-ray topographs are much larger than theoretical values. To interpret this discrepancy, we have simulated the topographic contrast of dislocations based on two of the most basic contrast formation mechanisms, viz. orientation and kinematical contrast. Orientation contrast considers merely displacement fields associated with dislocations, while kinematical contrast considers also diffraction volume, defined as the effective misorientation around dislocations and the rocking curve width for given diffraction vector. Ray-tracing simulation was carried out to visualize dislocation contrast for both models, taking into account photoelectric absorption of the x-ray beam inside the crystal. The results show that orientation contrast plays the key role in determining both the contrast and x-ray penetration depth for different types of dislocation.

  18. Development of optics for x-ray phase-contrast imaging of high energy density plasmas.

    PubMed

    Stutman, D; Finkenthal, M; Moldovan, N

    2010-10-01

    Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ∼100 keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.

  19. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Baran, P.; Pacile, S.; Nesterets, Y. I.; Mayo, S. C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; Taba, S. T.; Brun, F.; Pinamonti, M.; Nickson, C.; Hall, C.; Dimmock, M.; Zanconati, F.; Cholewa, M.; Quiney, H.; Brennan, P. C.; Tromba, G.; Gureyev, T. E.

    2017-03-01

    The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.

  20. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    PubMed Central

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745

  1. Differential phase contrast with a segmented detector in a scanning X-ray microprobe

    PubMed Central

    Hornberger, B.; de Jonge, M. D.; Feser, M.; Holl, P.; Holzner, C.; Jacobsen, C.; Legnini, D.; Paterson, D.; Rehak, P.; Strüder, L.; Vogt, S.

    2008-01-01

    Scanning X-ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi-keV range. In this paper the development of a segmented charge-integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third-generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements. PMID:18552427

  2. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  3. Differential phase contrast X-ray imaging system and components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutman, Daniel; Finkenthal, Michael

    2017-11-21

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  4. Edge-illumination x-ray phase contrast imaging with Pt-based metallic glass masks

    NASA Astrophysics Data System (ADS)

    Saghamanesh, Somayeh; Aghamiri, Seyed Mahmoud-Reza; Olivo, Alessandro; Sadeghilarijani, Maryam; Kato, Hidemi; Kamali-Asl, Alireza; Yashiro, Wataru

    2017-06-01

    Edge-illumination x-ray phase contrast imaging (EI XPCI) is a non-interferometric phase-sensitive method where two absorption masks are employed. These masks are fabricated through a photolithography process followed by electroplating which is challenging in terms of yield as well as time- and cost-effectiveness. We report on the first implementation of EI XPCI with Pt-based metallic glass masks fabricated by an imprinting method. The new tested alloy exhibits good characteristics including high workability beside high x-ray attenuation. The fabrication process is easy and cheap, and can produce large-size masks for high x-ray energies within minutes. Imaging experiments show a good quality phase image, which confirms the potential of these masks to make the EI XPCI technique widely available and affordable.

  5. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.

    PubMed

    Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru

    2014-07-01

    Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.

  6. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Scott, A. E.

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars,more » i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.« less

  7. X-Ray Attenuation and Absorption for Materials of Dosimetric Interest

    National Institute of Standards and Technology Data Gateway

    SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access)   Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.

  8. Nondestructive Evaluation of Advanced Materials with X-ray Phase Mapping

    NASA Technical Reports Server (NTRS)

    Hu, Zhengwei

    2005-01-01

    X-ray radiation has been widely used for imaging applications since Rontgen first discovered X-rays over a century ago. Its large penetration depth makes it ideal for the nondestructive visualization of the internal structure and/or defects of materials unobtainable otherwise. Currently used nondestructive evaluation (NDE) tools, X-ray radiography and tomography, are absorption-based, and work well in heavy-element materials where density or composition variations due to internal structure or defects are high enough to produce appreciable absorption contrast. However, in many cases where materials are light-weight and/or composites that have similar mass absorption coefficients, the conventional absorption-based X-ray methods for NDE become less useful. Indeed, the light-weight and ultra-high-strength requirements for the most advanced materials used or developed for current flight mission and future space exploration pose a great challenge to the standard NDE tools in that the absorption contrast arising from the internal structure of these materials is often too weak to be resolved. In this presentation, a solution to the problem, the use of phase information of X-rays for phase contrast X-ray imaging, will be discussed, along with a comparison between the absorption-based and phase-contrast imaging methods. Latest results on phase contrast X-ray imaging of lightweight Space Shuttle foam in 2D and 3D will be presented, demonstrating new opportunities to solve the challenging issues encountered in advanced materials development and processing.

  9. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations

  10. Ethanol fixed brain imaging by phase-contrast X-ray technique

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Thet-Thet-Lwin; Kunii, Takuya; Sirai, Ryota; Ohizumi, Takahito; Maruyama, Hiroko; Hyodo, Kazuyuki; Yoneyama, Akio; Ueda, Kazuhiro

    2013-03-01

    The two-crystal phase-contrast X-ray imaging technique using an X-ray crystal interferometer can depict the fine structures of rat's brain such as cerebral cortex, white matter, and basal ganglia. Image quality and contrast by ethanol fixed brain showed significantly better than those by usually used formalin fixation at 35 keV X-ray energy. Image contrast of cortex by ethanol fixation was more than 3-times higher than that by formalin fixation. Thus, the technique of ethanol fixation might be better suited to image cerebral structural detail at 35 keV X-ray energy.

  11. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less

  12. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    DOE PAGES

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; ...

    2016-12-13

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less

  13. Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy

    DOE PAGES

    Sneeden, Eileen Y.; Hackett, Mark J.; Cotelesage, Julien J. H.; ...

    2017-07-27

    Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s → 3p transition tomore » the singly occupied molecular orbital of the free radical. In conclusion, our results constitute the first observation of substantial levels of thiyl radicals generated by X-ray irradiation and detected by sulfur K-edge X-ray absorption spectroscopy.« less

  14. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  15. New contrasts for x-ray imaging and synergy with optical imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  16. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  17. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  18. X-ray phase-contrast imaging: the quantum perspective

    NASA Astrophysics Data System (ADS)

    Slowik, J. M.; Santra, R.

    2013-08-01

    Time-resolved phase-contrast imaging using ultrafast x-ray sources is an emerging method to investigate ultrafast dynamical processes in matter. Schemes to generate attosecond x-ray pulses have been proposed, bringing electronic timescales into reach and emphasizing the demand for a quantum description. In this paper, we present a method to describe propagation-based x-ray phase-contrast imaging in nonrelativistic quantum electrodynamics. We explain why the standard scattering treatment via Fermi’s golden rule cannot be applied. Instead, the quantum electrodynamical treatment of phase-contrast imaging must be based on a different approach. It turns out that it is essential to select a suitable observable. Here, we choose the quantum-mechanical Poynting operator. We determine the expectation value of our observable and demonstrate that the leading order term describes phase-contrast imaging. It recovers the classical expression of phase-contrast imaging. Thus, it makes the instantaneous electron density of non-stationary electronic states accessible to time-resolved imaging. Interestingly, inelastic (Compton) scattering does automatically not contribute in leading order, explaining the success of the semiclassical description.

  19. Recent observations with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  20. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  1. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  2. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  3. Estimation of contrast of refraction contrast imaging compared with absorption imaging-basic approach.

    PubMed

    Hirano, Masatsugu; Yamasaki, Katsuhito; Okada, Hiroshi; Kitazawa, Sohei; Kitazawa, Riko; Ohno, Yoshiharu; Sakurai, Takashi; Kondoh, Takeshi; Ohbayashi, Chiho; Katafuchi, Tetsuro; Maeda, Sakan; Sugimura, Kazuro; Tamura, Shinichi

    2005-03-01

    We discuss the usefulness of the refraction contrast method using highly parallel X-rays as a new approach to minute lung cancer detection. The advantages of refraction contrast images are discussed in terms of contrast, and a comparison is made with absorption images. We simulated refraction contrast imaging using globules with the density of water in air as models for minute lung cancer detection. The contrast intensified by bright and dark lines was compared on a globule with the contrast of absorption images. We adopted the Monte Carlo simulation to determine the strength of the profile curve of the photon counts at the detector. The obtained contrasts were more intense by two to three digits than those obtainable with the absorption contrast imaging method. The contrast in refraction contrast imaging was more intense than that obtainable with absorption contrast imaging. A two to three digit improvement in contrast means that it is possible to greatly reduce the exposure dose necessary for imaging. Therefore, it is expected to become possible to detect the interfaces of soft tissues, which are difficult to capture with conventional absorption imaging, at low dosages and high resolution.

  4. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    PubMed

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  5. Potential for Imaging Engineered Tissues with X-Ray Phase Contrast

    PubMed Central

    Appel, Alyssa; Anastasio, Mark A.

    2011-01-01

    As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604

  6. Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Husseini, Naji Sami

    Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions. Three contrast mechanisms - absorption, diffraction, and phase contrast - span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer. Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ˜50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack

  7. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  8. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  9. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  10. Investigating biofilm structure using x-ray microtomography and gratings-based phase contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Xiao, Xianghui; Miller, Micah D.

    2012-10-17

    Direct examination of natural and engineered environments has revealed that the majority of microorganisms in these systems live in structured communities termed biofilms. To gain a better understanding for how biofilms function and interact with their local environment, fundamental capabilities for enhanced visualization, compositional analysis, and functional characterization of biofilms are needed. For pore-scale and community-scale analysis (100’s of nm to 10’s of microns), a variety of surface tools are available. However, understanding biofilm structure in complex three-dimensional (3-D) environments is considerably more difficult. X-ray microtomography can reveal a biofilm’s internal structure, but the obtaining sufficient contrast to image low-Zmore » biological material against a higher-Z substrate makes detecting biofilms difficult. Here we present results imaging Shewanella oneidensis biofilms on a Hollow-fiber Membrane Biofilm Reactor (HfMBR), using the x-ray microtomography system at sector 2-BM of the Advanced Photon Source (APS), at energies ranging from 13-15.4 keV and pixel sizes of 0.7 and 1.3 μm/pixel. We examine the use of osmium (Os) as a contrast agent to enhance biofilm visibility and demonstrate that staining improves imaging of hydrated biofilms. We also present results using a Talbot interferometer to provide phase and scatter contrast information in addition to absorption. Talbot interferometry allows imaging of unstained hydrated biofilms with phase contrast, while absorption contrast primarily highlights edges and scatter contrast provides little information. However, the gratings used here limit the spatial resolution to no finer than 2 μm, which hinders the ability to detect small features. Future studies at higher resolution or higher Talbot order for greater sensitivity to density variations may improve imaging.« less

  11. Observation of human tissue with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-05-01

    Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.

  12. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    PubMed

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  13. In-vivo dark-field and phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Bech, M.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Pauwels, B.; Hostens, J.; Bruyndonckx, P.; Sasov, A.; Pfeiffer, F.

    2013-11-01

    Novel radiography approaches based on the wave nature of x-rays when propagating through matter have a great potential for improved future x-ray diagnostics in the clinics. Here, we present a significant milestone in this imaging method: in-vivo multi-contrast x-ray imaging of a mouse using a compact scanner. Of particular interest is the enhanced contrast in regions related to the respiratory system, indicating a possible application in diagnosis of lung diseases (e.g. emphysema).

  14. Phase contrast imaging using a micro focus x-ray source

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  15. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  16. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantlymore » absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.« less

  17. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging

  18. Search for correlated UV and x ray absorption of NGC 3516

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Kolman, Michiel

    1991-01-01

    NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.

  19. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  20. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  1. Investigation of gastric cancers in nude mice using X-ray in-line phase contrast imaging.

    PubMed

    Tao, Qiang; Luo, Shuqian

    2014-07-24

    This paper is to report the new imaging of gastric cancers without the use of imaging agents. Both gastric normal regions and gastric cancer regions can be distinguished by using the principal component analysis (PCA) based on the gray level co-occurrence matrix (GLCM). Human gastric cancer BGC823 cells were implanted into the stomachs of nude mice. Then, 3, 5, 7, 9 or 11 days after cancer cells implantation, the nude mice were sacrificed and their stomachs were removed. X-ray in-line phase contrast imaging (XILPCI), an X-ray phase contrast imaging method, has greater soft tissue contrast than traditional absorption radiography and generates higher-resolution images. The gastric specimens were imaged by an XILPCIs' charge coupled device (CCD) of 9 μm image resolution. The PCA of the projective images' region of interests (ROIs) based on GLCM were extracted to discriminate gastric normal regions and gastric cancer regions. Different stages of gastric cancers were classified by using support vector machines (SVMs). The X-ray in-line phase contrast images of nude mice gastric specimens clearly show the gastric architectures and the details of the early gastric cancers. The phase contrast computed tomography (CT) images of nude mice gastric cancer specimens are better than the traditional absorption CT images without the use of imaging agents. The results of the PCA of the texture parameters based on GLCM of normal regions is (F1+F2) >8.5, but those of cancer regions is (F1+F2) <8.5. The classification accuracy is 83.3% that classifying gastric specimens into different stages using SVMs. This is a very preliminary feasibility study. With further researches, XILPCI could become a noninvasive method for future the early detection of gastric cancers or medical researches.

  2. Investigation of gastric cancers in nude mice using X-ray in-line phase contrast imaging

    PubMed Central

    2014-01-01

    Background This paper is to report the new imaging of gastric cancers without the use of imaging agents. Both gastric normal regions and gastric cancer regions can be distinguished by using the principal component analysis (PCA) based on the gray level co-occurrence matrix (GLCM). Methods Human gastric cancer BGC823 cells were implanted into the stomachs of nude mice. Then, 3, 5, 7, 9 or 11 days after cancer cells implantation, the nude mice were sacrificed and their stomachs were removed. X-ray in-line phase contrast imaging (XILPCI), an X-ray phase contrast imaging method, has greater soft tissue contrast than traditional absorption radiography and generates higher-resolution images. The gastric specimens were imaged by an XILPCIs’ charge coupled device (CCD) of 9 μm image resolution. The PCA of the projective images’ region of interests (ROIs) based on GLCM were extracted to discriminate gastric normal regions and gastric cancer regions. Different stages of gastric cancers were classified by using support vector machines (SVMs). Results The X-ray in-line phase contrast images of nude mice gastric specimens clearly show the gastric architectures and the details of the early gastric cancers. The phase contrast computed tomography (CT) images of nude mice gastric cancer specimens are better than the traditional absorption CT images without the use of imaging agents. The results of the PCA of the texture parameters based on GLCM of normal regions is (F1 + F2) > 8.5, but those of cancer regions is (F1 + F2) < 8.5. The classification accuracy is 83.3% that classifying gastric specimens into different stages using SVMs. Conclusions This is a very preliminary feasibility study. With further researches, XILPCI could become a noninvasive method for future the early detection of gastric cancers or medical researches. PMID:25060352

  3. Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji

    1999-12-01

    Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.

  4. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging.

    PubMed

    Alric, Christophe; Taleb, Jacqueline; Le Duc, Géraldine; Mandon, Céline; Billotey, Claire; Le Meur-Herland, Alice; Brochard, Thierry; Vocanson, Francis; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2008-05-07

    Functionalized gold nanoparticles were applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. These particles were obtained by encapsulating gold cores within a multilayered organic shell which is composed of gadolinium chelates bound to each other through disulfide bonds. The contrast enhancement in MRI stems from the presence of gadolinium ions which are entrapped in the organic shell, whereas the gold core provides a strong X-ray absorption. This study revealed that these particles suited for dual modality imaging freely circulate in the blood vessels without undesirable accumulation in the lungs, spleen, and liver.

  5. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  6. X-ray phase contrast imaging at MAMI

    NASA Astrophysics Data System (ADS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical

  7. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zi; Zhang, Shen; Kang, Wei

    2016-05-15

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N{sub 2} molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electronmore » density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.« less

  8. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. Themore » observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.« less

  9. Detection of absorption lines in the spectra of X-ray bursts from X1608-52

    NASA Astrophysics Data System (ADS)

    Nakamura, Norio; Inoue, Hajime; Tanaka, Yasuo

    X-ray bursts from X 1608-52 were observed with the gas scintillation proportional counters on the Tenma satellite. Absorption features were detected in the spectra of three bursts among 17 bursts observed. These absorption features are consistent with a common absorption line at 4.1 keV. The energy and the properties of the absorption lines of the X 1608-52 bursts are very similar to those observed from the X 1636-53 bursts by Waki et al. (1984). Near equality of the absorption-line energies for X 1636-53 and X 1608-52 would imply that mass and radius of the neutron stars in these two systems are very similar to each other.

  10. X-ray two-photon absorption with high fluence XFEL pulses

    DOE PAGES

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~10 5 photons/Å 2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  11. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  12. Ultrafast absorption of intense x rays by nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Liu, Ji-Cai; Chen, Mau Hsiung; Cryan, James P.; Fang, Li; Glownia, James M.; Hoener, Matthias; Coffee, Ryan N.; Berrah, Nora

    2012-06-01

    We devise a theoretical description for the response of nitrogen molecules (N2) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations (ΔSCF method). To describe the interaction with N2, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N2: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N_2^{2+}, and molecular fragmentation are explained.

  13. Phase-contrast x-ray computed tomography for biological imaging

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  14. Mouse blood vessel imaging by in-line x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Liu, Xiao-Song; Yang, Xin-Rong; Chen, Shao-Liang; Zhu, Pei-Ping; Yuan, Qing-Xi

    2008-10-01

    It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 µm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.

  15. X-Ray Weak Broad-Line Quasars: Absorption or Intrinsic X-Ray Weakness

    NASA Technical Reports Server (NTRS)

    Risaliti, Guido; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    XMM observations of X-ray weak quasars have been performed during 2003. The data for all but the last observation are now available (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed these data, and obtained interesting preliminary scientific results. Out of the eight sources, 4 are confirmed to be extrimely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confirmed to be highly variable both in flux (by factors 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects, an article is in preparation. Preliminary results have been presented at an international workshop on AGN surveys in December 2003, in Cozumel (Mexico). In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations, and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations will be performed in early 2004, and will complement the XMM data, in order to understand whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circumnuclear material.

  16. X-Ray Absorption Microspectroscopy with Electrostatic Force Microscopy and its Application to Chemical States Mapping

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Rigopoulos, N.; Poolton, N. R. J.; Hamilton, B.

    2007-02-01

    A new technique named X-EFM that measures the x-ray absorption fine structure (XAFS) of nanometer objects was developed. In X-EFM, electrostatic force microscopy (EFM) is used as an x-ray absorption detector, and photoionization induced by x-ray absorption of surface electron trapping sites is detected by EFM. An EFM signal with respect to x-ray photon energy provides the XAFS spectra of the trapping sites. We adopted X-EFM to observe Si oxide thin films. An edge jump shift intrinsic to the X-EFM spectrum was found, and it was explained with a model where an electric field between the trapping site and probe deepens the energy level of the inner-shell. A scanning probe under x-rays with fixed photon energy provided the chemical state mapping on the surface.

  17. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  18. Gold nanoparticle contrast agents in advanced X-ray imaging technologies.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon

    2013-05-17

    Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  19. Translation of Atherosclerotic Plaque Phase-Contrast CT Imaging from Synchrotron Radiation to a Conventional Lab-Based X-Ray Source

    PubMed Central

    Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian

    2013-01-01

    Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969

  20. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy.

    PubMed

    Ravel, B; Attenkofer, K; Bohon, J; Muller, E; Smedley, J

    2013-10-01

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  1. X-Ray Modeling of the Intrinsic Absorption in NGC 4151

    NASA Astrophysics Data System (ADS)

    Denes Couto, Jullianna; Kraemer, Steven; Turner, T. Jane; Crenshaw, D. Michael

    2017-01-01

    We have investigated the relationship between the long term X-ray spectral variability in the Seyfert 1.5 galaxy NGC 4151 and its intrinsic absorption, by comparing our 2014 simultaneous ultraviolet/X-Ray observations taken with Hubble STIS Echelle and Chandra HETGS with archival observations from Chandra, XMM-Newton and Suzaku. The observations were divided into "high" and "low" states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. Our X-ray model consists of a broken powerlaw, neutral reflection and the two dominant absorption components identified by Kraemer et al (2005), X-High and D+Ea, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes in the intrinsic absorption resulting from variations in the ionization state of the gas in response to the variable strength of the ionizing continuum. However, the low states show evidence of larger column densities in one or both of the absorbers. Among plausible explanations for the column increase, we discuss the possibility of an expanding/contracting X-ray corona. X-High is consistent with being part of a magnetohydrodynamic (MHD) wind, while D+Ea is possibly radiatively driven, which suggests that at a sufficiently large radial distance there could be a break point between MHD-dominated and radiatively driven outflows. Preliminary results on the analysis of the AGN mass outflow rates and kinematics of the ionized gas in the extended emission region of NGC 4151 will also be presented.

  2. X-ray phase-contrast imaging of the breast—advances towards clinical implementation

    PubMed Central

    Herzen, J; Willner, M; Grandl, S; Scherer, K; Bamberg, F; Reiser, M F; Pfeiffer, F; Hellerhoff, K

    2014-01-01

    Breast cancer constitutes about one-quarter of all cancers and is the leading cause of cancer death in women. To reduce breast cancer mortality, mammographic screening programmes have been implemented in many Western countries. However, these programmes remain controversial because of the associated radiation exposure and the need for improvement in terms of diagnostic accuracy. Phase-contrast imaging is a new X-ray-based technology that has been shown to provide enhanced soft-tissue contrast and improved visualization of cancerous structures. Furthermore, there is some indication that these improvements of image quality can be maintained at reduced radiation doses. Thus, X-ray phase-contrast mammography may significantly contribute to advancements in early breast cancer diagnosis. Feasibility studies of X-ray phase-contrast breast CT have provided images that allow resolution of the fine structure of tissue that can otherwise only be obtained by histology. This implies that X-ray phase-contrast imaging may also lead to the development of entirely new (micro-) radiological applications. This review provides a brief overview of the physical characteristics of this new technology and describes recent developments towards clinical implementation of X-ray phase-contrast imaging of the breast. PMID:24452106

  3. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  4. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  5. Nanoparticle-enhanced x-ray therapy for cancer

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Rice, Colin E. W.; George, Thomas F.

    2016-03-01

    Photothermal therapies of nanophotohyperthermia and nanophotothermolysis utilize the light absorptive properties of nanoparticles to create heat and free radicals in a small localized region. Conjugating nanoparticles with various biomolecules allows for targeted delivery to specific tissues or even specific cells, cancerous cells being of particular interest. Previous studies have investigated nanoparticles at visible and infrared wavelengths where surface plasmon resonance leads to unique absorption characteristics. However, issues such as poor penetration depth of the visible light through biological tissues limits the effectiveness of delivery by noninvasive means. In other news, various nanoparticles have been investigated as contrast agents for traditional X-ray procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance contrast of the detected X-ray image. Using X-rays to power photothermal therapies has three main advantages over visiblespectra wavelengths: the high penetration depth of X-rays through biological media makes noninvasive treatments very feasible; the high energy of individual photons means nanoparticles can be heated to desired temperatures with lower beam intensities, or activated to produce the free radicals; and X-ray sources are already common throughout the medical industry, making future implementation on existing equipment possible. This paper uses Lorenz-Mie theory to investigate the light absorption properties of various size gold nanoparticles over photon energies in the 1-100 keV range. These absorption values are then plugged into a thermal model to determine the temperatures reached by the nanoparticles for X-ray exposures of differing time and intensity. The results of these simulations are discussed in relation to the effective implementation of nanophotohyperthermia and nanophotothermolysis treatments.

  6. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  7. Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy.

    PubMed

    Astolfo, Alberto; Endrizzi, Marco; Vittoria, Fabio A; Diemoz, Paul C; Price, Benjamin; Haig, Ian; Olivo, Alessandro

    2017-05-19

    X-ray phase contrast imaging (XPCI) is an innovative imaging technique which extends the contrast capabilities of 'conventional' absorption based x-ray systems. However, so far all XPCI implementations have suffered from one or more of the following limitations: low x-ray energies, small field of view (FOV) and long acquisition times. Those limitations relegated XPCI to a 'research-only' technique with an uncertain future in terms of large scale, high impact applications. We recently succeeded in designing, realizing and testing an XPCI system, which achieves significant steps toward simultaneously overcoming these limitations. Our system combines, for the first time, large FOV, high energy and fast scanning. Importantly, it is capable of providing high image quality at low x-ray doses, compatible with or even below those currently used in medical imaging. This extends the use of XPCI to areas which were unpractical or even inaccessible to previous XPCI solutions. We expect this will enable a long overdue translation into application fields such as security screening, industrial inspections and large FOV medical radiography - all with the inherent advantages of the XPCI multimodality.

  8. Diagnosis of a two wire X-pinch by X-ray absorption spectroscopy utilizing a doubly curved ellipsoidal crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, A. D., E-mail: adc87@cornell.edu; Hoyt, C. L., E-mail: adc87@cornell.edu; Shelkovenko, T. A., E-mail: adc87@cornell.edu

    2014-12-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emittedmore » by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here initial absorption spectra obtained from an aluminum x-pinch plasma.« less

  9. From Relativistic Electrons to X-ray Phase Contrast Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  10. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  11. Vibrational effects in x-ray absorption and resonant inelastic x-ray scattering using a semiclassical scheme

    NASA Astrophysics Data System (ADS)

    Ljungberg, Mathias P.

    2017-12-01

    A method is presented for describing vibrational effects in x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) using a combination of the classical Franck-Condon (FC) approximation and classical trajectories run on the core-excited state. The formulation of RIXS is an extension of the semiclassical Kramers-Heisenberg formalism of Ljungberg et al. [Phys. Rev. B 82, 245115 (2010), 10.1103/PhysRevB.82.245115] to the resonant case, retaining approximately the same computational cost. To overcome difficulties with connecting the absorption and emission processes in RIXS, the classical FC approximation is used for the absorption, which is seen to work well provided that a zero-point-energy correction is included. In the case of core-excited states with dissociative character, the method is capable of closely reproducing the main features for one-dimensional test systems, compared to the quantum-mechanical formulation. Due to the good accuracy combined with the relatively low computational cost, the method has great potential of being used for complex systems with many degrees of freedom, such as liquids and surface adsorbates.

  12. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  13. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be

  14. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arber, J.M.; de Boer, E.; Garner, C.D.

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure datamore » confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.« less

  15. Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development

    EPA Science Inventory

    Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...

  16. Inelastic losses in X-ray absorption theory

    NASA Astrophysics Data System (ADS)

    Campbell, Luke Whalin

    There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a

  17. X-ray absorption spectra: Graphene, h-BN, and their alloy

    NASA Astrophysics Data System (ADS)

    Bhowmick, Somnath; Rusz, Jan; Eriksson, Olle

    2013-04-01

    Using first-principles density functional theory calculations, in conjunction with the Mahan-Nozières-de Dominicis theory, we calculate the x-ray absorption spectra of the alloys of graphene and monolayer hexagonal boron nitride on a Ni (111) substrate. The chemical neighborhood of the constituent atoms (B, C, and N) inside the alloy differs from that of the parent phases. In a systematic way, we capture the change in the K-edge spectral shape, depending on the chemical neighborhood of B, C, and N. Our work also reiterates the importance of the dynamical core-hole screening for a proper description of the x-ray absorption process in sp2-bonded layered materials.

  18. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    PubMed

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  19. X ray absorption by dark nebulae (HEAO-2 guest investigator program)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.

    1991-01-01

    A study is described of data obtained from the Imaging Proportional Counter (IPC) x ray detector aboard the HEAO-2 satellite (Einstein Observatory). The research project involved a search for absorption of diffuse low energy x ray background emission by galactic dark nebulae. The commonly accepted picture that the bulk of the C band emission originates locally, closer that a few hundred parsec, and the bulk of the M band emission originates farther away than a few hundred parsec, was tested. The idea was to look for evidence of absorption of the diffuse background radiation by nearby interstellar clouds.

  20. Modern Progress and Modern Problems in High Resolution X-ray Absorption from the Cold Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Li, Haochuan; Heinz, Sebastian

    2018-01-01

    With accurate cross-sections and higher signal-to-noise, X-ray spectroscopy can directly measure Milky Way gas and dust-phase metal abundances with few underlying assumptions. The X-ray energy band is sensitive to absorption by all abundant interstellar metals — carbon, oxygen, neon, silicon, magnesium, and iron — whether they are in gas or dust form. High resolution X-ray spectra from Galactic X-ray point sources can be used to directly measure metal abundances from all phases of the interstellar medium (ISM) along singular sight lines. We show our progress for measuring the depth of photoelectric absorption edges from neutral ISM metals, using all the observations of bright Galactic X-ray binaries available in the Chandra HETG archive. The cross-sections we use take into account both the absorption and scattering effects by interstellar dust grains on the iron and silicate spectral features. However, there are many open problems for reconciling X-ray absorption spectroscopy with ISM observations in other wavelengths. We will review the state of the field, lab measurements needed, and ways in which the next generation of X-ray telescopes will contribute.

  1. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  2. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well asmore » at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.« less

  3. First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu

    2012-07-31

    Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less

  4. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.

    2011-09-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  5. Laser-driven powerful kHz hard x-ray source

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie

    2017-08-01

    A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.

  6. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential

  7. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  8. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    DOE PAGES

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...

    2017-02-10

    Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less

  9. Development of picosecond time-resolved X-ray absorption spectroscopy by high-repetition-rate laser pump/X-ray probe at Beijing Synchrotron Radiation Facility.

    PubMed

    Wang, Hao; Yu, Can; Wei, Xu; Gao, Zhenhua; Xu, Guang Lei; Sun, Da Rui; Li, Zhenjie; Zhou, Yangfan; Li, Qiu Ju; Zhang, Bing Bing; Xu, Jin Qiang; Wang, Lin; Zhang, Yan; Tan, Ying Lei; Tao, Ye

    2017-05-01

    A new setup and commissioning of transient X-ray absorption spectroscopy are described, based on the high-repetition-rate laser pump/X-ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high-repetition-rate and high-power laser is incorporated into the setup with in-house-built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser-on and laser-off signals simultaneously. The capability of picosecond transient X-ray absorption spectroscopy measurement was demonstrated for a photo-induced spin-crossover iron complex in 6 mM solution with 155 kHz repetition rate.

  10. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.

    2014-11-01

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  11. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging.

    PubMed

    Kim, Dongkyu; Park, Sangjin; Lee, Jae Hyuk; Jeong, Yong Yeon; Jon, Sangyong

    2007-06-20

    Current computed tomography (CT) contrast agents such as iodine-based compounds have several limitations, including short imaging times due to rapid renal clearance, renal toxicity, and vascular permeation. Here, we describe a new CT contrast agent based on gold nanoparticles (GNPs) that overcomes these limitations. Because gold has a higher atomic number and X-ray absorption coefficient than iodine, we expected that GNPs can be used as CT contrast agents. We prepared uniform GNPs ( approximately 30 nm in diameter) by general reduction of HAuCl4 by boiling with sodium citrate. The resulting GNPs were coated with polyethylene glycol (PEG) to impart antibiofouling properties, which extends their lifetime in the bloodstream. Measurement of the X-ray absorption coefficient in vitro revealed that the attenuation of PEG-coated GNPs is 5.7 times higher than that of the current iodine-based CT contrast agent, Ultravist. Furthermore, when injected intravenously into rats, the PEG-coated GNPs had a much longer blood circulation time (>4 h) than Ultravist (<10 min). Consequently, CT images of rats using PEG-coated GNPs showed a clear delineation of cardiac ventricles and great vessels. On the other hand, relatively high levels of GNPs accumulated in the spleen and liver, which contain phagocytic cells. Intravenous injection of PEG-coated GNPs into hepatoma-bearing rats resulted in a high contrast ( approximately 2-fold) between hepatoma and normal liver tissue on CT images. These results suggest that PEG-coated GNPs can be useful as a CT contrast agent for a blood pool and hepatoma imaging.

  12. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less

  13. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    NASA Astrophysics Data System (ADS)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  14. Optimizing contrast agents with respect to reducing beam hardening in nonmedical X-ray computed tomography experiments.

    PubMed

    Nakashima, Yoshito; Nakano, Tsukasa

    2014-01-01

    Iodine is commonly used as a contrast agent in nonmedical science and engineering, for example, to visualize Darcy flow in porous geological media using X-ray computed tomography (CT). Undesirable beam hardening artifacts occur when a polychromatic X-ray source is used, which makes the quantitative analysis of CT images difficult. To optimize the chemistry of a contrast agent in terms of the beam hardening reduction, we performed computer simulations and generated synthetic CT images of a homogeneous cylindrical sand-pack (diameter, 28 or 56 mm; porosity, 39 vol.% saturated with aqueous suspensions of heavy elements assuming the use of a polychromatic medical CT scanner. The degree of cupping derived from the beam hardening was assessed using the reconstructed CT images to find the chemistry of the suspension that induced the least cupping. The results showed that (i) the degree of cupping depended on the position of the K absorption edge of the heavy element relative to peak of the polychromatic incident X-ray spectrum, (ii) (53)I was not an ideal contrast agent because it causes marked cupping, and (iii) a single element much heavier than (53)I ((64)Gd to (79)Au) reduced the cupping artifact significantly, and a four-heavy-element mixture of elements from (64)Gd to (79)Au reduced the artifact most significantly.

  15. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  16. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    PubMed

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).

  17. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  18. Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings

    NASA Astrophysics Data System (ADS)

    Schröter, Tobias J.; Koch, Frieder J.; Kunka, Danays; Meyer, Pascal; Tietze, Sabrina; Engelhardt, Sabine; Zuber, Marcus; Baumbach, Tilo; Willer, Konstantin; Birnbacher, Lorenz; Prade, Friedrich; Pfeiffer, Franz; Reichert, Klaus-Martin; Hofmann, Andreas; Mohr, Jürgen

    2017-06-01

    Grating-based x-ray differential phase-contrast imaging (DPCI) is capable of acquiring information based on phase-shift and dark-field signal, in addition to conventional x-ray absorption-contrast. Thus DPCI gives an advantage to investigate composite materials with component wise similar absorption properties like soft tissues. Due to technological challenges in fabricating high quality gratings over a large extent, the field of view (FoV) of the imaging systems is limited to a grating area of a couple of square centimeters. For many imaging applications (e.g. in medicine), however, a FoV that ranges over several ten centimeters is needed. In this manuscript we propose to create large area gratings of theoretically any extent by assembling a number of individual grating tiles. We discuss the precision needed for alignment of each microstructure tile in order to reduce image artifacts and to preserve minimum 90% of the sensitivity obtainable with a monolithic grating. To achieve a reliable high precision alignment a semiautomatic assembly system consisting of a laser autocollimator, a digital microscope and a force sensor together with positioning devices was built. The setup was used to tile a first four times four analyzer grating with a size of 200 mm  ×  200 mm together with a two times two phase grating. First imaging results prove the applicability and quality of the tiling concept.

  19. On Detailed Contrast of Biomedical Object in X-ray Dark-Field Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimao, Daisuke; Mori, Koichi; Sugiyama, Hiroshi

    2007-01-19

    Over the past 10 years, refraction-based X-ray imaging has been studied together with a perspective view to clinical application. X-ray Dark-Field Imaging that utilizes a Laue geometry analyzer has recently been proposed and has the proven ability to depict articular cartilage in an intact human finger. In the current study, we researched detailed image contrast using X-ray Dark-Field Imaging by observing the edge contrast of an acrylic rod as a simple case, and found differences in image contrast between the right and left edges of the rod. This effect could cause undesirable contrast in the thin articular cartilage on themore » head of the phalanx. To avoid overlapping with this contrast at the articular cartilage, which would lead to a wrong diagnosis, we suggest that a joint surface on which articular cartilage is located should be aligned in the same sense as the scattering vector of the Laue case analyzer crystal. Defects of articular cartilage were successfully detected under this condition. When utilized under appropriate imaging conditions, X-ray Dark-Field Imaging will be a powerful tool for the diagnosis of arthropathy, as minute changes in articular cartilage may be early-stage features of this disease.« less

  20. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging

    PubMed Central

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil

    2015-01-01

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486

  1. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    PubMed Central

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  2. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    PubMed

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.

  3. Understanding refraction contrast using a comparison of absorption and refraction computed tomographic techniques

    NASA Astrophysics Data System (ADS)

    Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.

    2013-05-01

    Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.

  4. A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro

    PubMed Central

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398

  5. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    DOE PAGES

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...

    2015-01-05

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less

  6. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  7. Two-Photon Absorption of Soft X-Ray Free Electron Laser Radiation by Graphite Near the Carbon K-Absorption Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Steven T; Lam, Royce K.; Raj, Sumana L.

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ~308 and ~260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ~284.2 eV. The measured two-photon absorption cross section at 284.18 eV (~6 x 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atomsmore » - a result of resonance effects.« less

  8. Enhancement of X-ray dose absorption for medical applications

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Nahar, S.; Pradhan, A.; Barth, R.

    2013-05-01

    A promising technique for cancer treatment is radiation therapy with high-Z (HZ) nanomoities acting as radio-sensitizers attached to tumor cells and irradiated with X-rays. But the efficacy of radiosenstization is highly energy dependent. We study the physical effects in using platinum (Pt) as the radio-sensitizing agent, coupled with commonly employed broadband x-ray sources with mean energies around 100 keV, as opposed to MeV energies produced by clinical linear accelerators (LINAC) used in radiation therapy. Numerical calculations, in vitro, and in vivo studies of F98 rat glioma (brain cancer) demonstrate that irradiation from a medium energy X-ray (MEX) 160 kV source is far more effective than from a high energy x-ray (HEX) 6 MV LINAC. We define a parameter to quantify photoionization by an x-ray source, which thereby provides a measure of subsequent Auger decays. The platinum (Z = 78) results are also relevant to ongoing studies on x-ray interaction with gold (Z = 79) nanoparticles, widely studied as an HZ contrast agent. The present study should be of additional interest for a combined radiation plus chemotherapy treatment since Pt compounds such cis-Pt and carbo-Pt are commonly used in chemotherapy.

  9. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  10. An algebraic iterative reconstruction technique for differential X-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz

    2013-09-01

    Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.

  11. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westre, Tami E.

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been appliedmore » to the study of non-heme iron enzyme active sites.« less

  12. THE BLAZAR EMISSION ENVIRONMENT: INSIGHT FROM SOFT X-RAY ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furniss, A.; Williams, D. A.; Fumagalli, M.

    Collecting experimental insight into the relativistic particle populations and emission mechanisms at work within TeV-emitting blazar jets, which are spatially unresolvable in most bands and have strong beaming factors, is a daunting task. New observational information has the potential to lead to major strides in understanding the acceleration site parameters. Detection of molecular carbon monoxide (CO) in TeV emitting blazars, however, implies the existence of intrinsic gas, a connection often found in photo-dissociated region models and numerical simulations. The existence of intrinsic gas within a blazar could provide a target photon field for Compton up-scattering of photons to TeV energiesmore » by relativistic particles. We investigate the possible existence of intrinsic gas within the three TeV emitting blazars RGB J0710+591, W Comae, and 1ES 1959+650 which have measurements or upper limits on molecular CO line luminosity using an independent technique that is based on the spectral analysis of soft X-rays. Evidence for X-ray absorption by additional gas beyond that measured within the Milky Way is searched for in Swift X-ray Telescope (XRT) data between 0.3 and 10 keV. Without complementary information from another measurement, additional absorption could be misinterpreted as an intrinsically curved X-ray spectrum since both models can frequently fit the soft X-ray data. After breaking this degeneracy, we do not find evidence for intrinsically curved spectra for any of the three blazars. Moreover, no evidence for intrinsic gas is evident for RGB J0710+591 and W Comae, while the 1ES 1959+650 XRT data support the existence of intrinsic gas with a column density of {approx}1 Multiplication-Sign 10{sup 21} cm{sup -2}.« less

  13. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    NASA Astrophysics Data System (ADS)

    Minami, K.; Saito, Y.; Kai, H.; Shirota, K.; Yada, K.

    2009-09-01

    We have newly developed an open type fine-focus X-ray tube "TX-510" to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The "TX-510" employs a ZrO/W(100) Schottky emitter and an "In-Lens Field Emission Gun". The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  14. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    PubMed Central

    Socha, John J; Westneat, Mark W; Harrison, Jon F; Waters, James S; Lee, Wah-Keat

    2007-01-01

    Background Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. Results We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm-2, high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. Conclusion Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns. PMID:17331247

  15. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  16. Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications

    PubMed Central

    Rivera, Eladio J.; Tran, Lesa A.; Hernández-Rivera, Mayra; Yoon, Diana; Mikos, Antonios G.; Rusakova, Irene A.; Cheong, Benjamin Y.; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.

    2013-01-01

    The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking. PMID:24288589

  17. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  18. Hard x-ray phase contrastmicroscopy - techniques and applications

    NASA Astrophysics Data System (ADS)

    Holzner, Christian

    In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.

  19. An X-ray absorption spectroscopy study of the interactions of Ni2+ with yeast enolase.

    PubMed

    Wang, S; Scott, R A; Lebioda, L; Zhou, Z H; Brewer, J M

    1995-05-15

    An x-ray absorption spectroscopy (XAS) study was carried out at pH 7.6 on solutions of Ni2+ and yeast enolase depleted of its physiological cofactor (Mg2+) in the presence or absence of substrate/product, the very strongly bound competitive inhibitor 2-phosphonoacetohydroxamate and Mg2+. Both "conformational" and "catalytic" Ni2+ are distorted octahedral in coordination, in agreement with several spectroscopic studies but in contrast to the coordination in the crystal at pH 6.0. The data are consistent with direct coordination of what must be the catalytic Ni2+ to the phosphate of the substrate, in agreement with some previous data but in disagreement with recent interpretations by other workers. The ligands around the metal ions obtained from the x-ray structure give simulated XAS spectra in good agreement with the observed spectra.

  20. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  1. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  2. Near-edge X-ray refraction fine structure microscopy

    DOE PAGES

    Farmand, Maryam; Celestre, Richard; Denes, Peter; ...

    2017-02-06

    We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less

  3. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  4. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    PubMed

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  5. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A reaction cell for ambient pressure soft x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.

    2018-05-01

    We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

  7. Prospects of molybdenum and rhenium octahedral cluster complexes as X-ray contrast agents.

    PubMed

    Krasilnikova, Anna A; Shestopalov, Michael A; Brylev, Konstantin A; Kirilova, Irina A; Khripko, Olga P; Zubareva, Kristina E; Khripko, Yuri I; Podorognaya, Valentina T; Shestopalova, Lidiya V; Fedorov, Vladimir E; Mironov, Yuri V

    2015-03-01

    Investigation of new X-ray contrast media for radiography is an important field of science since discovering of X-rays in 1895. Despite the wide diversity of available X-ray contrast media the toxicity, especially nephrotoxicity, is still a big problem to be solved. The octahedral metal-cluster complexes of the general formula [{M6Q8}L6] can be considered as quite promising candidates for the role of new radiocontrast media due to the high local concentration of heavy elements, high tuning ability of ligand environment and low toxicity. To exemplify this, the X-ray computed tomography experiments for the first time were carried out on some octahedral cluster complexes of molybdenum and rhenium. Based on the obtained data it was proposed to investigate the toxicological proprieties of cluster complex Na2H8[{Re6Se8}(P(CH2CH2CONH2)(CH2CH2COO)2)6]. Observed low cytotoxic and acute toxic effects along with rapid renal excretion of the cluster complex evidence its perspective as an X-ray contrast media for radiography. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Near- and Extended-Edge X-Ray-Absorption Fine-Structure Spectroscopy Using Ultrafast Coherent High-Order Harmonic Supercontinua

    NASA Astrophysics Data System (ADS)

    Popmintchev, Dimitar; Galloway, Benjamin R.; Chen, Ming-Chang; Dollar, Franklin; Mancuso, Christopher A.; Hankla, Amelia; Miaja-Avila, Luis; O'Neil, Galen; Shaw, Justin M.; Fan, Guangyu; Ališauskas, Skirmantas; Andriukaitis, Giedrius; Balčiunas, Tadas; Mücke, Oliver D.; Pugzlys, Audrius; Baltuška, Andrius; Kapteyn, Henry C.; Popmintchev, Tenio; Murnane, Margaret M.

    2018-03-01

    Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV . Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K - and L -absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 109 photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 1026 photons/s /mrad2/mm2/1 % bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.

  9. X-ray absorption spectroscopy investigations on oxidized Ni/Au contacts to p-GaN.

    PubMed

    Jan, J C; Asokan, K; Chiou, J W; Pong, W F; Tseng, P K; Chen, L C; Chen, F R; Lee, J F; Wu, J S; Lin, H J; Chen, C T

    2001-03-01

    X-ray absorption spectroscopy was used to investigate the electronic structure of as-deposited and oxidized Ni/Au contacts to p-GaN and to elucidate the mechanism responsible for low impedance. X-ray absorption near edge spectra of Ni K- and L3,2-edges clearly indicate formation of NiO on the sample surface after annealing. The reason for low impedance may be attributed to increase in hole concentration and existence of p-NiO layer on the surface.

  10. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  11. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules

    NASA Astrophysics Data System (ADS)

    Dutoi, Anthony D.; Leone, Stephen R.

    2017-01-01

    Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core-valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.

  12. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing tomore » their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.« less

  13. Solvation structure of the halides from x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antalek, Matthew; Hedman, Britt; Sarangi, Ritimukta, E-mail: ritis@slac.stanford.edu

    2016-07-28

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, andmore » a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (−0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.« less

  14. Near-edge X-ray absorption spectra for metallic Cu and Mn

    NASA Astrophysics Data System (ADS)

    Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.

    1981-11-01

    The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.

  15. X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.

    2012-05-01

    The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.

  16. Development of an x-ray prism for analyzer based imaging systems

    NASA Astrophysics Data System (ADS)

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  17. Development of an x-ray prism for analyzer based imaging systems.

    PubMed

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  18. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-04-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called ``molecular movie'' within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  19. Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.

  20. Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Raj, Sumana L.; Pascal, Tod A.; Pemmaraju, C. D.; Foglia, Laura; Simoncig, Alberto; Fabris, Nicola; Miotti, Paolo; Hull, Christopher J.; Rizzuto, Anthony M.; Smith, Jacob W.; Mincigrucci, Riccardo; Masciovecchio, Claudio; Gessini, Alessandro; De Ninno, Giovanni; Diviacco, Bruno; Roussel, Eleonore; Spampinati, Simone; Penco, Giuseppe; Di Mitri, Simone; Trovò, Mauro; Danailov, Miltcho B.; Christensen, Steven T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Coreno, Marcello; Poletto, Luca; Drisdell, Walter S.; Prendergast, David; Giannessi, Luca; Principi, Emiliano; Nordlund, Dennis; Saykally, Richard J.; Schwartz, Craig P.

    2018-07-01

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ∼308 and ∼260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ∼284.2 eV. The measured two-photon absorption cross section at 284.18 eV (∼6 × 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atoms - a result of resonance effects.

  1. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  2. Emission and absorption x-ray edges of Li

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callcott, T A; Arakawa, E T; Ederer, D L

    1977-01-01

    Measurements of the K X-ray absorption and emission edges of Li are reported. They were made with the same spectrometer at the NBS storage ring and serve to establish a 0.1 eV separation between the edges with no possibility of instrument calibration error. These results are compared with recent theories of Almbladh and Mahan describing the effects of incomplete phonon relaxation about the core hole. It is concluded that these theories give a satisfactory explanation of the data.

  3. Effect of X-ray irradiation on the optical absorption of СdSe1-xTex nanocrystals embedded in borosilicate glass

    NASA Astrophysics Data System (ADS)

    Prymak, M. V.; Azhniuk, Yu. M.; Solomon, A. M.; Krasilinets, V. M.; Lopushansky, V. V.; Bodnar, I. V.; Gomonnai, A. V.; Zahn, D. R. T.

    2012-07-01

    The effect of X-ray irradiation on the optical absorption spectra of CdSe1-xTex nanocrystals embedded in a borosilicate matrix is studied. The observed blue shift of the absorption edge and bleaching of the confinement-related features in the spectra are related to X-ray induced negative ionization of the nanocrystals with charge transfer across the nanocrystal/matrix interface. The radiation-induced changes are observed to recover after longer post-irradiation storage at room temperature.

  4. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    PubMed Central

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-01-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172

  5. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGES

    Gaudin, J.; Fourment, C.; Cho, B. I.; ...

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  6. CO2 microbubble contrast enhancement in x-ray angiography.

    PubMed

    Kariya, S; Komemushi, A; Nakatani, M; Yoshida, R; Sawada, S; Tanigawa, N

    2013-04-01

    To demonstrate that carbon dioxide (CO2) microbubble contrast enhancement depicts blood vessels when used for x-ray examinations. Microbubbles were generated by cavitation of physiological saline to which CO2 gas had been added using an ejector-type microbubble generator. The input pressure values for CO2 gas and physiological saline that produced a large quantity of CO2 microbubbles were obtained in a phantom. In an animal study, angiography was performed in three swine using three types of contrast: CO2 microbubbles, conventional CO2 gas, and iodinated contrast medium. For CO2 microbubble contrast enhancement, physiological saline, and CO2 gas were supplied at the input pressures calculated in the phantom experiment. Regions of interest were set in the abdominal aorta, external iliac arteries, and background. The difference in digital values between each artery and the background was calculated. The input pressures obtained in the phantom experiment were 0.16 MPa for physiological saline and 0.5 MPa for CO2 gas, with physiological saline input volume being 8.1 ml/s. Three interventional radiologists all evaluated the depictions of all arteries as "present" in the CO2 microbubble contrast enhancement, conventional CO2 contrast enhancement, and iodinated contrast enhancement performed in three swine. Digital values for all vessels with microbubble CO2 contrast enhancement were higher than background values. In x-ray angiography, blood vessels can be depicted by CO2 microbubble contrast enhancement, in which a large quantity of CO2 microbubbles is generated within blood vessels. Copyright © 2012 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Suzuki, A.; Ohtani, E.; Katayama, Y.

    2006-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the top anvil sizes of 6 mm and 4 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 5 GPa, from 300 to 2000 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  8. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Ohtani, E.; Suzuki, A.; Katayama, Y.

    2005-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 4 GPa, from 300 to 2200 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  9. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies.

    PubMed

    Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  10. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    PubMed Central

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-01-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579

  11. Development of variable-magnification X-ray Bragg optics.

    PubMed

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  12. Creation of X-Ray Transparency of Matter by Stimulated Elastic Forward Scattering.

    PubMed

    Stöhr, J; Scherz, A

    2015-09-04

    X-ray absorption by matter has long been described by the famous Beer-Lambert law. Here, we show how this fundamental law needs to be modified for high-intensity coherent x-ray pulses, now available at x-ray free electron lasers, due to the onset of stimulated elastic forward scattering. We present an analytical expression for the modified polarization-dependent Beer-Lambert law for the case of resonant core-to-valence electronic transitions and incident transform limited x-ray pulses. Upon transmission through a solid, the resonant absorption and dichroic contrasts are found to vanish with increasing x-ray intensity, with the stimulation threshold lowered by orders of magnitude through a resonant superradiantlike effect. Our results have broad implications for the study of matter with x-ray lasers.

  13. Creation of X-Ray Transparency of Matter by Stimulated Elastic Forward Scattering

    NASA Astrophysics Data System (ADS)

    Stöhr, J.; Scherz, A.

    2015-09-01

    X-ray absorption by matter has long been described by the famous Beer-Lambert law. Here, we show how this fundamental law needs to be modified for high-intensity coherent x-ray pulses, now available at x-ray free electron lasers, due to the onset of stimulated elastic forward scattering. We present an analytical expression for the modified polarization-dependent Beer-Lambert law for the case of resonant core-to-valence electronic transitions and incident transform limited x-ray pulses. Upon transmission through a solid, the resonant absorption and dichroic contrasts are found to vanish with increasing x-ray intensity, with the stimulation threshold lowered by orders of magnitude through a resonant superradiantlike effect. Our results have broad implications for the study of matter with x-ray lasers.

  14. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  15. X-ray Properties of an Unbiased Hard X-ray Detected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard F.; Tueller, Jack; Markwardt, Craig

    2007-01-01

    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) < 3 x 10(exp 25)/sq cm), local (< z >= 0.03), AGN sample. We find 9/22 low absorption (n(sub H) < 10(exp 23)/sq cm), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of Reynolds (1997) and George et al. (1998), who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (13122) have more complex spectra, well-fit by an absorbed power law at E > 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.

  16. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  17. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy

    DOE PAGES

    Levantino, M.; Lemke, H. T.; Schirò, G.; ...

    2015-07-01

    We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (~70 fs) relaxation preceding a slower (~400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

  18. Development of an x-ray prism for analyzer based imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewer, Brian; Chapman, Dean

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP)more » was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.« less

  19. Phase-contrast X-ray computed tomography of non-formalin fixed biological objects

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Momose, Atsushi; Wu, Jin; Zeniya, Tsutomu; Yu, Quanwen; Thet-Thet-Lwin; Itai, Yuji

    2001-07-01

    Using a monolithic X-ray interferometer having the view size of 25 mm×25 mm, phase-contrast X-ray CT (PCCT) was performed for non-formalin fixed livers of two normal rats and a rabbit transplanted with VX-2 cancer. PCCT images of liver and cancer lesions resembled well those obtained by formalin fixed samples.

  20. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less

  1. Diffracting aperture based differential phase contrast for scanning X-ray microscopy.

    PubMed

    Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas

    2002-10-07

    It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.

  2. Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems [Resonant phase contrast imaging for interface physics

    DOE PAGES

    Beckwith, M. A.; Jiang, S.; Schropp, A.; ...

    2017-05-01

    Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe 2O 3 and SiO 2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating withmore » simultaneous fluorescence spectra for temperature determination. Here, the results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.« less

  3. Atomic-scale distortion of optically activated Sm dopants identified with site-selective X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Masashi; Crowe, Iain F.; Halsall, Matthew P.; Hamilton, Bruce; Hu, Yongfeng; Sham, Tsun-Kong; Harako, Susumu; Zhao, Xin-Wei; Komuro, Shuji

    2013-10-01

    The local structure of luminescent Sm dopants was investigated using an X-ray absorption fine-structure technique with X-ray-excited optical luminescence. Because this technique evaluates X-ray absorption from luminescence, only optically active sites are analyzed. The Sm L3 near-edge spectrum contains split 5d states and a shake-up transition that are specific to luminescent Sm. Theoretical calculations using cluster models identified an atomic-scale distortion that can reproduce the split 5d states. The model with C4v local symmetry and compressive bond length of Sm-O of a six-fold oxygen (SmO6) cluster is most consistent with the experimental results.

  4. High Contrast X-ray Flares In The Anchors Database

    NASA Astrophysics Data System (ADS)

    McCleary, Jacqueline; Wolk, S.

    2010-01-01

    The X-ray light curves of pre-main sequence stars can show variability in the form of flares altering a baseline characteristic activity level; the largest X-ray flares are characterized by a rapid rise to 10 or more times the characteristic count rate, followed by a slower quasi-exponential decay. Analysis of these high-contrast X-ray flares enables the study of the innermost magnetic fields of pre-main sequence stars. We have scanned the ANCHORS database of Chandra observations of star-forming regions to extend the study of flare events on pre-main sequence stars both in sky coverage and in volume. We developed a sample of 30 high-contrast flares out of the 14,000 stars available in ANCHORS at the time of our study. By not biasing our sample by cluster, age, or spectral type, we increased the number of X-ray flare events studied and subsequently the strength of any statements about their properties. Applying the generally accepted methods of time-resolved spectral analysis developed by Reale et al. (1997), we measured the temperatures, confining magnetic field strengths, and loop lengths of these large flares. The results of the flare analysis were compared to the 2MASS and Spitzer data available for the stars in our sample. We found that the longest flare loop lengths (of order several stellar radii) are only seen on stars whose IR data indicates the presence of disks, which suggests that the longest flares may stretch all the way to the disk. Such long flares tend to be more tenuous (rarified) than the other large flares studied. A wide range of loop lengths were observed, indicating that two types of flares may occur on disked young stellar objects: either compact and analogous to flares on evolved stars, or long and the result of star-disk magnetic connections.

  5. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, L; Tang, S; Ahmad, M

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less

  6. Non-destructive phase contrast hard x-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Hieber, Simone E.; Hasan, Samiul; Bikis, Christos; Schulz, Joachim; Costeur, Loïc.; Müller, Bert

    2016-04-01

    X-ray imaging in the absorption contrast mode is an established method of visualising calcified tissues such as bone and teeth. Physically soft tissues such as brain or muscle are often imaged using magnetic resonance imaging (MRI). However, the spatial resolution of MRI is insufficient for identifying individual biological cells within three-dimensional tissue. X-ray grating interferometry (XGI) has advantages for the investigation of soft tissues or the simultaneous three-dimensional visualisation of soft and hard tissues. Since laboratory microtomography (μCT) systems have better accessibility than tomography set-ups at synchrotron radiation facilities, a great deal of effort has been invested in optimising XGI set-ups for conventional μCT systems. In this conference proceeding, we present how a two-grating interferometer is incorporated into a commercially available nanotom m (GE Sensing and Inspection Technologies GmbH) μCT system to extend its capabilities toward phase contrast. We intend to demonstrate superior contrast in spiders (Hogna radiata (Fam. Lycosidae) and Xysticus erraticus (Fam. Thomisidae)), as well as the simultaneous visualisation of hard and soft tissues. XGI is an imaging modality that provides quantitative data, and visualisation is an important part of biomimetics; consequently, hard X-ray imaging provides a sound basis for bioinspiration, bioreplication and biomimetics and allows for the quantitative comparison of biofabricated products with their natural counterparts.

  7. Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL

    PubMed Central

    Obara, Yuki; Ito, Hironori; Ito, Terumasa; Kurahashi, Naoya; Thürmer, Stephan; Tanaka, Hiroki; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yamamoto, Yo-ichi; Karashima, Shutaro; Nishitani, Junichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2017-01-01

    The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300–400 fs, which we assign to the structural distortion dynamics near the surface. PMID:28713842

  8. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  9. X-Ray Absorption Toward the Einstein Ring Source PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Nair, Sunita

    1997-01-01

    PKS 1830-211 is an unusually radio-loud gravitationally lensed quasar. In the radio spectrum, the system appears as two compact, dominant features surrounded by relatively extended radio emission that forms an Einstein ring. As the line of sight to it passes close to our Galactic center, PKS 1830-211 has not been detected in wave bands other than the radio and X-ray so far. Here we present X-ray data of PKS 1830-211 observed with ROSAT Position Sensitive Proportional Counter. The X-ray spectrum shows that absorption in excess of the Galactic contribution is highly likely, which at the redshift of the lensing galaxy (z(sub t)=0.886) corresponds to N(sub H)=3.5((sup 0.6)(sub -0.5))x10(exp 22) atoms sq cm. The effective optical extinction is large, A(sub V)(observed) is greater than or approximately 5.8. When corrected for this additional extinction, the two-point optical to X-ray slope alpha(sub ox) of PKS 1830-211 lies just within the observed range of quasars. It is argued here that both compact images must be covered by the X-ray absorber(s) that we infer to be the lensing galaxy (galaxies). The dust-to-gas ratio along the line of sight within the lensing galaxy is likely to be somewhat larger than for our Galaxy.

  10. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Grace O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it,more » from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.« less

  11. Small angle x-ray scattering with edge-illumination

    NASA Astrophysics Data System (ADS)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  12. High resolution x-ray absorption and emission spectroscopy of Li x CoO2 single crystals as a function delithiation

    NASA Astrophysics Data System (ADS)

    Simonelli, L.; Paris, E.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Mizokawa, T.; Saini, N. L.

    2017-03-01

    The effect of delithiation in Li x CoO2 is studied by high resolution Co K-edge x-ray absorption and x-ray emission spectroscopy. Polarization dependence of the x-ray absorption spectra on single crystal samples is exploited to reveal information on the anisotropic electronic structure. We find that the electronic structure of Li x CoO2 is significantly affected by delithiation in which the Co ions oxidation state tending to change from 3+  to 4+. The Co intersite (intrasite) 4p-3d hybridization suffers a decrease (increase) by delithiation. The unoccupied 3d t 2g orbitals with a 1g symmetry, containing substantial O 2p character, hybridize isotropically with Co 4p orbitals and likely to have itinerant character unlike anisotropically hybridized 3d e g orbitals. Such a peculiar electronic structure could have significant effect on the mobility of Li in Li x CoO2 cathode and hence the battery characteristics.

  13. Automated generation and ensemble-learned matching of X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping

    2018-12-01

    X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.

  14. Automatic x-ray image contrast enhancement based on parameter auto-optimization.

    PubMed

    Qiu, Jianfeng; Harold Li, H; Zhang, Tiezhi; Ma, Fangfang; Yang, Deshan

    2017-11-01

    Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review. The proposed method processes the 2D x-ray images with an optimized image processing filter chain, which consists of a noise reduction filter and a high-pass filter followed by a contrast limited adaptive histogram equalization (CLAHE) filter. The most important innovation is to optimize the image processing parameters automatically to determine the required image contrast settings per disease site and imaging modality. Three major parameters controlling the image processing chain, i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size, and the clip limiting parameter for the CLAHE filter, were determined automatically using an interior-point constrained optimization algorithm. Fifty-two kV and MV x-ray images were included in this study. The results were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (significantly better than adequate and visually praise worthy) by physicians and physicists. The average scores for the images processed by the proposed method, the CLAHE, and the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percentage of the processed images received a score of 5 were 48, 29, and 18%, respectively. The proposed method is able to outperform the standard image contrast adjustment procedures that are currently used in the commercial clinical systems. When the proposed method is implemented in the clinical systems as an automatic image processing filter, it could be useful for allowing quicker and potentially more

  15. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS tomore » study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.« less

  16. Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2015-01-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  17. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E; Kozioziemski, B; Moody, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close tomore » that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.« less

  18. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy below 100 eV: probing first-row transition-metal M-edges in chemical complexes.

    PubMed

    Wang, Hongxin; Young, Anthony T; Guo, Jinghua; Cramer, Stephen P; Friedrich, Stephan; Braun, Artur; Gu, Weiwei

    2013-07-01

    X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d-d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed.

  19. Unveiling the X-ray/UV properties of AGN winds using Broad and mini-Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2015-07-01

    BAL/mini-BALs are observed in the UV spectra of ˜ 20-30% of optically selected AGN as broad absorption troughs blueshifted by several thousands km/s, indicative of powerful nuclear winds. They could be representative of the average AGN if their winds cover only 20-30% of the continuum source, and/or represent an evolutionary state analogous to the high-soft state of BHB, when the jet emission is quenched and strong X-ray absorbing equatorial disk winds are virtually ubiquitous. High-quality, possibly time-resolved X-ray/UV studies are crucial to assess the global amount and 'character' of absorption in BAL/mini-BAL QSOs and to constrain the physical mechanism responsible for the launch and acceleration of their winds, therefore placing them in the broader context of AGN geometry and evolution. I will review here the known X-ray properties of BAL/mini-BAL QSOs, and present new results from a comprehensive X-ray spectral analysis of all the Palomar-Green BAL/mini-BAL QSOs with available XMM-Newton observations, for a total of 51 pointings of 14 different sources. These will include the most recent results from a high-quality simultaneous XMM/HST observational campaign on the mini-BAL QSO PG 1126-041, that unveiled with stunning details the X-ray/UV connection in action in an AGN disk wind through correlated X-ray/UV absorption variability.

  20. X-ray tomography using the full complex index of refraction.

    PubMed

    Nielsen, M S; Lauridsen, T; Thomsen, M; Jensen, T H; Bech, M; Christensen, L B; Olsen, E V; Hviid, M; Feidenhans'l, R; Pfeiffer, F

    2012-10-07

    We report on x-ray tomography using the full complex index of refraction recorded with a grating-based x-ray phase-contrast setup. Combining simultaneous absorption and phase-contrast information, the distribution of the full complex index of refraction is determined and depicted in a bivariate graph. A simple multivariable threshold segmentation can be applied offering higher accuracy than with a single-variable threshold segmentation as well as new possibilities for the partial volume analysis and edge detection. It is particularly beneficial for low-contrast systems. In this paper, this concept is demonstrated by experimental results.

  1. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    NASA Astrophysics Data System (ADS)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  2. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  3. Potential of phase contrast x-ray imaging for detecting tumors in dense breast: initial phantom studies

    NASA Astrophysics Data System (ADS)

    Omoumi, Farid H.; Wu, Di; Guo, Yuran; Ghani, Muhammad U.; Li, Yuhua; Boyce, Kari E.; Liu, Hong

    2018-02-01

    The objective of this study is to demonstrate the potential of using the High-energy in-line phase contrast x-ray imaging to detect lesions that are indistinguishable by conventional x-ray mammography but are detectable by supplemental ultrasound screening within dense breasts. For this study, a custom-made prototype x-ray/ultrasound dualmodality phantom that mimics dense breast is created to include embedded carbon fiber disks with multiple diameters and thicknesses. The phase contrast image is acquired using a prototype at 120kVp, 67μA, exposure time of 16.7sec and focal spot size of 18.3μm with average glandular dose (AGD) of 0.3mGy under a geometric magnification of 2.48. The conventional x-ray image is acquired with a bench top system operating at 40kVp, 300μA, exposure time of 50sec and same AGD. The results demonstrate that conventional x-ray imaging is unable to detect any of the carbon fiber disks, while phase contrast imaging and ultrasonography are able to detect most or all of the disks under the applied experimental conditions. These results illustrate phase contrast imaging is capable of detecting targets in a dual-modality phantom which simulates lesions in dense breast tissue, when the simulated lesions are not distinguishable by conventional mammography. Therefore mammographic screening with phase contrast technique could eventually replace both x-ray and ultrasonography for screening detection of small lesions with microcalcification in dense breasts where pathologic lesions are masked due to highly glandular tissue. These results encourage further investigation using high glandular density phantoms to further evaluate the effectiveness of phase contrast imaging as a single modality test, which combines the advantages of both x-ray and ultrasound imaging in cancer screening of patients with dense breasts.

  4. Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Kim, Hae Koo; Lee, Sang Joon

    2010-07-27

    X-ray-based imaging is one of the most powerful and convenient methods in terms of versatility in applicable energy and high performance in use. Different from conventional nuclear medicine imaging, contrast agents are required in X-ray imaging especially for effectively targeted and molecularly specific functions. Here, in contrast to much reported static accumulation of the contrast agents in targeted organs, dynamic visualization in a living organism is successfully accomplished by the particle-traced X-ray imaging for the first time. Flow phenomena across perforated end walls of xylem vessels in rice are monitored by a gold nanoparticle (AuNP) (approximately 20 nm in diameter) as a flow tracing sensor working in nontransparent biofluids. AuNPs are surface-modified to control the hydrodynamic properties such as hydrodynamic size (DH), zeta-potential, and surface plasmonic properties in aqueous conditions. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray nanoscopy (XN), and X-ray microscopy (XM) are used to correlate the interparticle interactions with X-ray absorption ability. Cluster formation and X-ray contrast ability of the AuNPs are successfully modulated by controlling the interparticle interactions evaluated as flow-tracing sensors.

  5. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  6. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  7. X-ray-induced acoustic computed tomography of concrete infrastructure

    NASA Astrophysics Data System (ADS)

    Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong

    2018-02-01

    X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.

  8. X-ray phase contrast tomography from whole organ down to single cells

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Bartels, Matthias; Lingor, Paul; Schild, Detlev; Salditt, Tim

    2014-09-01

    We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval.

  9. Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering).

    PubMed

    Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young; Lee, Jae Hyuk; Hong, Kiryong; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Kim, Tae Kyu; Ihee, Hyotcherl

    2016-03-07

    Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.

  10. A theoretical study on phase-contrast mammography with Thomson-scattering x-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Caro, Liberato; Giannini, Cinzia; Bellotti, Roberto

    2009-10-15

    Purpose: The x-ray transmitted beam from any material/tissue depends on the complex refractive index (n=1-{delta}+i{beta}), where {delta} is responsible for the phase shift and {beta} is for the beam attenuation. Although for human tissues, the {delta} cross section is about 1000 times greater than the {beta} ones in the x-ray energy range from 10 to 150 keV, the gain in breast tumor visualization of phase-contrast mammography (PCM) with respect to absorption contact imaging (AI) is limited by the maximum dose that can be delivered to the patient. Moreover, in-line PC imaging (PCI) is the simplest experimental mode among all availablemore » x-ray PCI techniques since no optics are needed. The latter is a fundamental requirement in order to transfer the results of laboratory research into hospitals. Alternative to synchrotron radiation sources, the implementation of relativistic Thomson-scattering (TS) x-ray sources is particularly suitable for hospital use because of their high peak brightness within a relatively compact and affordable system. In this work, the possibility to realize PCM using a TS source in a hospital environment is studied, accounting for the effect of a finite deliverable dose on the PC visibility enhancement with respect to AI. Methods: The contrast-to-noise ratio of tumor-tissue lesions in PCM has been studied on the bases of a recent theoretical model, describing image contrast formation by means of both wave-optical theory and the mutual coherence formalism. The latter is used to describe the evolution, during wave propagation, of the coherence of the wave field emitted by a TS source. The contrast-to-noise ratio for both PCI and AI has been analyzed in terms of tumor size, beam energy, detector, and source distances, studying optimal conditions for performing PCM. Regarding other relevant factors which could influence ''tumor'' visibility, the authors have assumed simplified conditions such as a spherical shape description of the tumor

  11. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  12. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    NASA Astrophysics Data System (ADS)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  13. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  14. SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klysubun, Wantana; Kidkhunthod, Pinit; Tarawarakarn, Pongjakr

    2017-04-04

    The SUT-NANOTEC-SLRI beamline was constructed in 2012 as the flagship of the SUT-NANOTEC-SLRI Joint Research Facility for Synchrotron Utilization, co-established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate-energy X-ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X-ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 10 8to 2 × 10 10 photons s -1(100 mA) -1varying across photon energies. Details of the beamlinemore » and XAS instrumentation are described. To demonstrate the beamline performance,K-edge XANES spectra of MgO, Al 2O 3, S 8, FeS, FeSO 4, Cu, Cu 2O and CuO, and EXAFS spectra of Cu and CuO are presented.« less

  15. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    NASA Astrophysics Data System (ADS)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  16. X-ray microscopy of human malaria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magowan, C.; Brown, J.T.; Mohandas, N.

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in amore » way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.« less

  17. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    PubMed

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  18. Multi-frame X-ray Phase Contrast Imaging (MPCI) for Dynamic Experiments

    NASA Astrophysics Data System (ADS)

    Iverson, Adam; Carlson, Carl; Sanchez, Nathaniel; Jensen, Brian

    2017-06-01

    Recent advances in coupling synchrotron X-ray diagnostics to dynamic experiments are providing new information about the response of materials at extremes. For example, propagation based X-ray Phase Contrast Imaging (PCI) which is sensitive to differences in density has been successfully used to study a wide range of phenomena, e.g. jet-formation, compression of additive manufactured (AM) materials, and detonator dynamics. In this talk, we describe the current multi-frame X-ray phase contrast imaging (MPCI) system which allows up to eight frames per experiment, remote optimization, and an improved optical design that increases optical efficiency and accommodates dual-magnification during a dynamic event. Data will be presented that used the dual-magnification feature to obtain multiple images of an exploding foil initiator. In addition, results from static testing will be presented that used a multiple scintillator configuration required to extend the density retrieval to multi-constituent, or heterogeneous systems. The continued development of this diagnostic is fundamentally important to capabilities at the APS including IMPULSE and the Dynamic Compression Sector (DCS), and will benefit future facilities such as MaRIE at Los Alamos National Laboratory.

  19. Development and application of variable-magnification x-ray Bragg optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Keiichi, E-mail: keiichi.hirano@kek.jp; Takahashi, Yumiko; Sugiyama, Hiroshi

    2016-07-27

    A novel x-ray Bragg optics was developed for variable-magnification of an x-ray beam, and was combined with a module of the PILATUS pixel detector. A feasibility test of this optical system was carried out at the vertical-wiggler beamline BL-14B of the Photon Factory. By tuning the magnification factor, we could successfully control the spatial resolution of the optical system between 28 μm and 280 μm. X-ray absorption-contrast images of a leaf were observed at various magnification factors.

  20. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate resultsmore » from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  1. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yieldmore » accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  2. The differential absorption hard x-ray spectrometer at the Z facility

    DOE PAGES

    Bell, Kate S.; Coverdale, Christine A.; Ampleford, David J.; ...

    2017-08-03

    The Differential Absorption Hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of 7 Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the Hard X-Ray Spectrometer (HXRS) that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources drivenmore » by the Z Machine.« less

  3. X-Ray Absorption Near Edge Structure And Extended X-Ray Absorption Fine Structure Analysis of Standards And Biological Samples Containing Mixed Oxidation States of Chromium(III) And Chromium(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less

  4. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  5. Improving image quality in laboratory x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.

    2017-03-01

    Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.

  6. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  7. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride,more » and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.« less

  8. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less

  9. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    PubMed Central

    Kubin, Markus; Kern, Jan; Gul, Sheraz; Kroll, Thomas; Chatterjee, Ruchira; Löchel, Heike; Fuller, Franklin D.; Sierra, Raymond G.; Quevedo, Wilson; Weniger, Christian; Rehanek, Jens; Firsov, Anatoly; Laksmono, Hartawan; Weninger, Clemens; Alonso-Mori, Roberto; Nordlund, Dennis L.; Lassalle-Kaiser, Benedikt; Glownia, James M.; Krzywinski, Jacek; Moeller, Stefan; Turner, Joshua J.; Minitti, Michael P.; Dakovski, Georgi L.; Koroidov, Sergey; Kawde, Anurag; Kanady, Jacob S.; Tsui, Emily Y.; Suseno, Sandy; Han, Zhiji; Hill, Ethan; Taguchi, Taketo; Borovik, Andrew S.; Agapie, Theodor; Messinger, Johannes; Erko, Alexei; Föhlisch, Alexander; Bergmann, Uwe; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe

    2017-01-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6–15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. PMID:28944255

  10. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    DOE PAGES

    Kubin, Markus; Kern, Jan; Gul, Sheraz; ...

    2017-09-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. But, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexesmore » (Mn ~ 6-15 mmol/l) with no visible effects of radiation damage. We then present the first L-edge absorption spectra of the oxygen evolving complex (Mn 4 CaO 5 ) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.« less

  11. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    NASA Astrophysics Data System (ADS)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  12. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    DOE PAGES

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; ...

    2014-12-16

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less

  13. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less

  14. X-Ray Absorption near Edge Structure Spectroscopy of Nanodiamonds from the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Hill, H.; Jacobsen, C.; Wirick, S.

    2000-01-01

    Carbon X-ray Absorption Near Edge Structure Spectroscopy shows Allende DM nanodiamonds have two pre-edge peaks, consistent with other small diamonds, but fail to show a diamond exciton which is seen in 3.6 nm diamond thin films.

  15. Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

    PubMed Central

    Staedler, Yannick M.; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  16. Antibiofouling polymer coated gold nanoparticles as a dual modal contrast agent for X-ray and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Guojia; Yuan, Yi; Xing, Da

    2011-01-01

    X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.

  17. Investigation of x-ray spectra for iodinated contrast-enhanced dedicated breast CT

    PubMed Central

    Glick, Stephen J.; Makeev, Andrey

    2017-01-01

    Abstract. Screening for breast cancer with mammography has been very successful, resulting in part to a reduction of breast cancer mortality by approximately 39% since 1990. However, mammography still has limitations in performance, especially for women with dense breast tissue. Iodinated contrast-enhanced, dedicated breast CT (BCT) has been proposed to improve lesion analysis and the accuracy of diagnostic workup for patients suspected of having breast cancer. A mathematical analysis to explore the use of various x-ray filters for iodinated contrast-enhanced BCT is presented. To assess task-based performance, the ideal linear observer signal-to-noise ratio (SNR) is used as a figure-of-merit under the assumptions of a linear, shift-invariant imaging system. To estimate signal and noise propagation through the BCT detector, a parallel-cascade model was used. The lesion model was embedded into a structured background and included a realistic level of iodine uptake. SNR was computed for 84,000 different exposure settings by varying the kV setting, x-ray filter materials and thickness, breast size, and composition and radiation dose. It is shown that some x-ray filter material/thickness combinations can provide up to 75% improvement in the linear ideal observer SNR over a conventionally used x-ray filter for BCT. This improvement in SNR can be traded off for substantial reductions in mean glandular dose. PMID:28149923

  18. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  19. Contrast enhancement of biological nanoporous materials with zinc oxide infiltration for electron and X-ray nanoscale microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.

    Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less

  20. Contrast enhancement of biological nanoporous materials with zinc oxide infiltration for electron and X-ray nanoscale microscopy

    DOE PAGES

    Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.; ...

    2017-07-19

    Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less

  1. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy below 100 eV: probing first-row transition-metal M-edges in chemical complexes

    PubMed Central

    Wang, Hongxin; Young, Anthony T.; Guo, Jinghua; Cramer, Stephen P.; Friedrich, Stephan; Braun, Artur; Gu, Weiwei

    2013-01-01

    X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M 2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M 2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d–d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed. PMID:23765304

  2. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less

  3. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  4. In Situ Density Measurement of Basaltic Melts at High Pressure by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Ando, R.; Ohtani, E.; Suzuki, A.; Urakawa, S.; Katayama, Y.

    2004-12-01

    Density of silicate melt at high pressure is one of the most important properties to understand magma migration in the planetary interior. However, because of experimental difficulties, the density of magma at high pressure is poorly known. Katayama et al. (1996) recently developed a new in situ density measurement method for metallic melts, based on the density dependency of X-ray absorption in the sample. In this study, we tried to measure the density of basaltic melt by this absorption method. When X-ray is transmitted to the sample, the intensity of the transmitted X-ray beam (I) is expressed as follows; I=I0exp(-μ ρ t), where I0 is the intensity of incident X-ray beam, μ is the mass absorption coefficient, ρ is the density of the sample, and t is the thickness of the sample. If t and μ are known, we can determine the density of the sample by measuring I and I0. This is the principle of the absorption method for density measurement. In this study, in order to determine t, we used a single crystalline diamond cylinder as a sample capsule, diamond is less compressive and less deformable so that even at high pressure t (thickness of the sample at the point x) is expressed as follows; t = 2*(R02-x2)1/2, R0 is the inner radius of cylinder at the ambient condition, and x is distance from a center of the capsule. And diamond also shows less absorption so that this make it possible to measure the density of silicate melt with smaller absorption coefficient than metallic melts. In order to know the μ of the sample, we measured both densities (ρ ) and absorptions (I/I0) for some glasses and crystals with same composition of the sample at the ambient condition, and calculated as fallows; μ =ln(I/I0)/ρ . Experiments were made at the beamline (BL22XU) of SPring-8. For generation of high pressure and high temperature, we used DIA-type cubic anvil apparatus (SMAP180) there. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromatic X-ray

  5. Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering.

    PubMed

    Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli

    2018-04-17

    Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.

  6. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    NASA Astrophysics Data System (ADS)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  7. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic

  8. Synthesis and characterization of polystyrene embolization particles doped with tantalum oxide nanoparticles for X-ray contrast.

    PubMed

    Morrison, Rachel; Thompson, James; Bird, Luke; Hill, Mark A; Townley, Helen

    2015-08-01

    Radiopaque and fluorescent embolic particles have been synthesized and characterised to match the size of vasculature found in tumours to ensure effective occlusion of the vessels. A literature search showed that the majority of vessels surrounding a tumour were less than 50 µm and therefore polydispersed polystyrene particles with a peak size of 50 µm have been synthesised. The embolic particles contain 5-8 nm amorphous tantalum oxide nanoparticles which provide X-ray contrast. Embolic particles containing up to 9.4 wt% tantalum oxide were prepared and showed significant contrast compared to the undoped polystyrene particles. The X-ray contrast of the embolic particles was shown to be linear (R(2) = 0.9) with respect to the concentration of incorporated tantalum nanoparticles. A model was developed which showed that seventy-five 50 µm embolic particles containing 10% tantalum oxide could provide the same contrast as 5 cm of bone. Therefore, the synthesized particles would provide sufficient X-ray contrast to enable visualisation within a tumour.

  9. Ray tracing analysis of overlapping objects in refraction contrast imaging.

    PubMed

    Hirano, Masatsugu; Yamasaki, Katsuhito; Okada, Hiroshi; Sakurai, Takashi; Kondoh, Takeshi; Katafuchi, Tetsuro; Sugimura, Kazuro; Kitazawa, Sohei; Kitazawa, Riko; Maeda, Sakan; Tamura, Shinichi

    2005-08-01

    We simulated refraction contrast imaging in overlapping objects using the ray tracing method. The easiest case, in which two columnar objects (blood vessels) with a density of 1.0 [g/cm3], run at right angles in air, was calculated. For absorption, we performed simulation using the Snell law adapted to the object's boundary. A pair of bright and dark spot results from the interference of refracted X-rays where the blood vessels crossed. This has the possibility of increasing the visibility of the image.

  10. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns.more » Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.« less

  11. Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices

    NASA Astrophysics Data System (ADS)

    Uehara, Masato; Yashiro, Wataru; Momose, Atsushi

    2013-10-01

    It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.

  12. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  13. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  14. X-ray absorption Studies of Zinc species in Centella asiatica

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Cheung, Tak; Hogan, Clayton; Agoudavi, Yao; Dehipawala, Sumudu

    2013-03-01

    Zinc is a very important mineral present in a variety of vegetables. It is an essential element in cellular metabolism and several bodily functions. We used X-ray fluorescence, and X-ray Absorption near Edge structure(XANES) to study the amount of zinc present in several leafy vegetables as well as its chemical environment within the plant. Main absorption edge position of XANES is sensitive to the oxidation state of zinc and is useful when comparing the type of zinc present in different vegetables to the standard zinc present in supplements. Normalized main edge height is proportional to the amount of zinc present in the sample. Several leafy greens were used in this study, such as Spinacia oleracea, Basella alba, Brassica oleracea, Cardiospermum halicacabumand Centella asiatica. All of these plant leaves contained approximately the same amount of zinc in the leaf portion of the plant and a slightly lower amount in the stems, except Centella asiatica. Both leaves and stems of the plant Centella asiatica contained nearly two times the zinc compared to other plants. Further investigation of zinc's chemical environment within Centella asiatica could lead to a much more efficient dietary consumption of zinc. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886

  15. First-Principles Predictions of Near-Edge X-ray Absorption Fine Structure Spectra of Semiconducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gregory M.; Patel, Shrayesh N.; Pemmaraju, C. D.

    The electronic structure and molecular orientation of semiconducting polymers in thin films determine their ability to transport charge. Methods based on near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can be used to probe both the electronic structure and microstructure of semiconducting polymers in both crystalline and amorphous films. However, it can be challenging to interpret NEXAFS spectra on the basis of experimental data alone, and accurate, predictive calculations are needed to complement experiments. Here, we show that first-principles density functional theory (DFT) can be used to model NEXAFS spectra of semiconducting polymers and to identify the nature of transitions inmore » complicated NEXAFS spectra. Core-level X-ray absorption spectra of a set of semiconducting polymers were calculated using the excited electron and core-hole (XCH) approach based on constrained-occupancy DFT. A comparison of calculations on model oligomers and periodic structures with experimental data revealed the requirements for accurate prediction of NEXAFS spectra of both conjugated homopolymers and donor–acceptor polymers. The NEXAFS spectra predicted by the XCH approach were applied to study molecular orientation in donor–acceptor polymers using experimental spectra and revealed the complexity of using carbon edge spectra in systems with large monomeric units. The XCH approach has sufficient accuracy in predicting experimental NEXAFS spectra of polymers that it should be considered for design and analysis of measurements using soft X-ray techniques, such as resonant soft X-ray scattering and scanning transmission X-ray microscopy.« less

  16. Interference between extrinsic and intrinsic losses in x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Hedin, L.; Rehr, J. J.; Bardyszewski, W.

    2002-02-01

    The interference between extrinsic and intrinsic losses in x-ray absorption fine structure (XAFS) is treated within a Green's-function formalism, without explicit reference to final states. The approach makes use of a quasiboson representation of excitations and perturbation theory in the interaction potential between electrons and quasibosons. These losses lead to an asymmetric broadening of the main quasiparticle peak plus an energy-dependent satellite in the spectral function. The x-ray absorption spectra (XAS) is then given by a convolution of an effective spectral function over a one-electron cross section. It is shown that extrinsic and intrinsic losses tend to cancel near excitation thresholds, and correspondingly, the strength in the main peak increases. At high energies, the theory crosses over to the sudden approximation. These results thus explain the observed weakness of multielectron excitations in XAS. The approach is applied to estimate the many-body corrections to XAFS, beyond the usual mean-free path, using a phasor summation over the spectral function. The asymmetry of the spectral function gives rise to an additional many-body phase shift in the XAFS formula.

  17. Full-field x-ray nano-imaging at SSRF

    NASA Astrophysics Data System (ADS)

    Deng, Biao; Ren, Yuqi; Wang, Yudan; Du, Guohao; Xie, Honglan; Xiao, Tiqiao

    2013-09-01

    Full field X-ray nano-imaging focusing on material science is under developing at SSRF. A dedicated full field X-ray nano-imaging beamline based on bending magnet will be built in the SSRF phase-II project. The beamline aims at the 3D imaging of the nano-scale inner structures. The photon energy range is of 5-14keV. The design goals with the field of view (FOV) of 20μm and a spatial resolution of 20nm are proposed at 8 keV, taking a Fresnel zone plate (FZP) with outermost zone width of 25 nm. Futhermore, an X-ray nano-imaging microscope is under developing at the SSRF BL13W beamline, in which a larger FOV will be emphasized. This microscope is based on a beam shaper and a zone plate using both absorption contrast and Zernike phase contrast, with the optimized energy set to 10keV. The detailed design and the progress of the project will be introduced.

  18. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    PubMed

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp 2 -derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network.

  19. Quantitative X-ray fluorescence computed tomography for low-Z samples using an iterative absorption correction algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Limburg, Karin; Rohtla, Mehis

    2017-05-01

    X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.

  20. The Frequency of Intrinsic X-Ray Weakness among Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Liu, Hezhen; Luo, B.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.

    2018-06-01

    We present combined ≈14–37 ks Chandra observations of seven z = 1.6–2.7 broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band (2–8 keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS 1203+1530 and LBQS 1442–0011, show soft/steep spectral shapes ({{{Γ }}}eff}={2.2}-0.9+0.9 and {1.9}-0.8+0.9) and significant X-ray weakness in the hard band (by factors of ≈15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-ultraviolet spectral energy distributions of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak active galactic nuclei (AGNs) among HiBAL quasars to be ≈7%–10% (2/29–3/29), and we estimate it is ≈6%–23% (2/35–8/35) among the general BAL quasar population. Such a fraction is considerably larger than that among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.

  1. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  2. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 < T < 350 K) magneto transport measurements were done on the Fe(Si1-xGex)2 thin films via Van Der Paw (VDP) Hall configuration using a 0.5-1T magnetic field and a current of 10-200 μA through indium ohmic contacts, the Hall coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  3. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta

    2009-11-10

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jetmore » can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.« less

  4. X ray opacity in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Wise, Michael W.; Sarazin, Craig L.

    1993-01-01

    We have calculated the emergent x-ray properties for a set of spherically symmetric, steady-state cluster cooling flow models including the effects of radiative transfer. Opacity due to resonant x-ray lines, photoelectric absorption, and electron scattering have been included in these calculations, and homogeneous and inhomogeneous gas distributions were considered. The effects of photoionization opacity are small for both types of models. In contrast, resonant line optical depths can be quite high in both homogeneous and inhomogeneous models. The presence of turbulence in the gas can significantly lower the line opacity. We find that integrated x-ray spectra for the flow cooling now are only slightly affected by radiative transfer effects. However x-ray line surface brightness profiles can be dramatically affected by radiative transfer. Line profiles are also strongly affected by transfer effects. The combined effects of opacity and inflow cause many of the lines in optically thick models to be asymmetrical.

  5. A versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast.

    PubMed

    Forsberg, J; Englund, C-J; Duda, L-C

    2009-08-01

    We present the design and operation of a versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast. The utility of the setup is demonstrated by results from following a corrosion process of iron in saline environment, subjected to a controlled humid atmosphere. The system includes a transmission flow-cell reactor that allows for in situ microscopic probing with soft X-rays. We employ a full field technique by using a nearly collimated X-ray beam that produces an unmagnified projection of the transmitted soft X-rays (below 1.1 keV) which is magnified and recorded by an optical CCD camera. Time lapse series with chemical contrast allow us to follow and interpret the chemical processes in detail. The obtainable lateral resolution is a few mum, sufficient to detect filiform corrosion on iron.

  6. Are There Intrinsically X-Ray Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)

    2000-01-01

    Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.

  7. Realistic wave-optics simulation of X-ray phase-contrast imaging at a human scale

    NASA Astrophysics Data System (ADS)

    Sung, Yongjin; Segars, W. Paul; Pan, Adam; Ando, Masami; Sheppard, Colin J. R.; Gupta, Rajiv

    2015-07-01

    X-ray phase-contrast imaging (XPCI) can dramatically improve soft tissue contrast in X-ray medical imaging. Despite worldwide efforts to develop novel XPCI systems, a numerical framework to rigorously predict the performance of a clinical XPCI system at a human scale is not yet available. We have developed such a tool by combining a numerical anthropomorphic phantom defined with non-uniform rational B-splines (NURBS) and a wave optics-based simulator that can accurately capture the phase-contrast signal from a human-scaled numerical phantom. Using a synchrotron-based, high-performance XPCI system, we provide qualitative comparison between simulated and experimental images. Our tool can be used to simulate the performance of XPCI on various disease entities and compare proposed XPCI systems in an unbiased manner.

  8. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabler, S.; Rack, T.; Nelson, K.

    2010-10-15

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 {mu}m are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system beingmore » 4 {mu}m in absorption mode and {approx}14 {mu}m in phase contrast mode (z{sub 2}=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.« less

  9. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    PubMed

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  10. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laloum, D., E-mail: david.laloum@cea.fr; CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  11. C IV absorption-line variability in X-ray-bright broad absorption-line quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Chand, Hum; Srianand, Raghunathan; Majumdar, Jhilik

    2014-07-01

    We report the kinematic shift and strength variability of the C IV broad absorption-line (BAL) trough in two high-ionization X-ray-bright quasi-stellar objects (QSOs): SDSS J085551+375752 (at zem ˜ 1.936) and SDSS J091127+055054 (at zem ˜ 2.793). Both these QSOs have shown a combination of profile shifts and the appearance and disappearance of absorption components belonging to a single BAL trough. The observed average kinematic shift of the whole BAL profile resulted in an average deceleration of ˜-0.7 ± 0.1, -2.0 ± 0.1 cm s-2 over rest-frame time-spans of 3.11 and 2.34 yr for SDSS J085551+375752 and SDSS J091127+055054, respectively. To our knowledge, these are the largest kinematic shifts known, exceeding by factors of about 2.8 and 7.8 the highest deceleration reported in the literature; this makes both objects potential candidates to investigate outflows using multiwavelength monitoring of their line and continuum variability. We explore various possible mechanisms to understand the observed profile variations. Outflow models involving many small self-shielded clouds, probably moving in a curved path, provide the simplest explanation for the C IV BAL strength and velocity variations, along with the X-ray-bright nature of these sources.

  12. X-ray diffraction microscopy on frozen hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna

    X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.

  13. On the relation of optical obscuration and X-ray absorption in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Burtscher, L.; Davies, R. I.; Graciá-Carpio, J.; Koss, M. J.; Lin, M.-Y.; Lutz, D.; Nandra, P.; Netzer, H.; Orban de Xivry, G.; Ricci, C.; Rosario, D. J.; Veilleux, S.; Contursi, A.; Genzel, R.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Tacconi, L. J.

    2016-02-01

    The optical classification of a Seyfert galaxy and whether it is considered X-ray absorbed are often used interchangeably. There are many borderline cases, however, and also numerous examples where the optical and X-ray classifications appear to be in disagreement. In this article we revisit the relation between optical obscuration and X-ray absorption in active galactic nuclei (AGNs). We make use of our "dust colour" method to derive the optical obscuration AV, and consistently estimated X-ray absorbing columns using 0.3-150 keV spectral energy distributions. We also take into account the variable nature of the neutral gas column NH and derive the Seyfert subclasses of all our objects in a consistent way. We show in a sample of 25 local, hard-X-ray detected Seyfert galaxies (log LX/ (erg / s) ≈ 41.5-43.5) that there can actually be a good agreement between optical and X-ray classification. If Seyfert types 1.8 and 1.9 are considered unobscured, the threshold between X-ray unabsorbed and absorbed should be chosen at a column NH = 1022.3 cm-2 to be consistent with the optical classification. We find that NH is related to AV and that the NH/AV ratio is approximately Galactic or higher in all sources, as indicated previously. However, in several objects we also see that deviations from the Galactic ratio are only due to a variable X-ray column, showing that (1) deviations from the Galactic NH/AV can be simply explained by dust-free neutral gas within the broad-line region in some sources; that (2) the dust properties in AGNs can be similar to Galactic dust and that (3) the dust colour method is a robust way to estimate the optical extinction towards the sublimation radius in all but the most obscured AGNs.

  14. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loo, B.W. Jr.

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetrationmore » depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography

  15. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source.

    PubMed

    Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).

  16. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    PubMed Central

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146

  17. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGES

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; ...

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  18. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.

    PubMed

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker

    2016-03-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  19. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    NASA Astrophysics Data System (ADS)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  20. 4D x-ray phase contrast tomography for repeatable motion of biological samples

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2016-09-01

    X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.

  1. 4D x-ray phase contrast tomography for repeatable motion of biological samples.

    PubMed

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2016-09-01

    X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm 3 . A maximum volume size of 13 × 13 × 6 mm 3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.

  2. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  3. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    PubMed

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  4. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneip, S.; Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109; McGuffey, C.

    2011-08-29

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlightingmore » the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.« less

  5. Realistic wave-optics simulation of X-ray phase-contrast imaging at a human scale

    PubMed Central

    Sung, Yongjin; Segars, W. Paul; Pan, Adam; Ando, Masami; Sheppard, Colin J. R.; Gupta, Rajiv

    2015-01-01

    X-ray phase-contrast imaging (XPCI) can dramatically improve soft tissue contrast in X-ray medical imaging. Despite worldwide efforts to develop novel XPCI systems, a numerical framework to rigorously predict the performance of a clinical XPCI system at a human scale is not yet available. We have developed such a tool by combining a numerical anthropomorphic phantom defined with non-uniform rational B-splines (NURBS) and a wave optics-based simulator that can accurately capture the phase-contrast signal from a human-scaled numerical phantom. Using a synchrotron-based, high-performance XPCI system, we provide qualitative comparison between simulated and experimental images. Our tool can be used to simulate the performance of XPCI on various disease entities and compare proposed XPCI systems in an unbiased manner. PMID:26169570

  6. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less

  7. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.

    PubMed

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L

    2014-08-30

    The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Microcomputed tomography with a second generation photon-counting x-ray detector: contrast analysis and material separation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Meier, D.; Oya, P.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2010-04-01

    The overall aim of this work was to evaluate the potential for improving in vivo small animal microCT through the use of an energy resolved photon-counting detector. To this end, we developed and evaluated a prototype microCT system based on a second-generation photon-counting x-ray detector which simultaneously counted photons with energies above six energy thresholds. First, we developed a threshold tuning procedure to reduce the dependence of detector uniformity and to reduce ring artifacts. Next, we evaluated the system in terms of the contrast-to-noise ratio in different energy windows for different target materials. These differences provided the possibility to weight the data acquired in different windows in order to optimize the contrast-to-noise ratio. We also explored the ability of the system to use data from different energy windows to aid in distinguishing various materials. We found that the energy discrimination capability provided the possibility for improved contrast-to-noise ratios and allowed separation of more than two materials, e.g., bone, soft-tissue and one or more contrast materials having K-absorption edges in the energy ranges of interest.

  9. Randic and Schultz molecular topological indices and their correlation with some X-ray absorption parameters

    NASA Astrophysics Data System (ADS)

    Khatri, Sunil; Kekre, Pravin A.; Mishra, Ashutosh

    2016-10-01

    The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically.

  10. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  11. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  12. System for phase-contrast x-ray radiography using X pinch radiation and a method thereof

    DOEpatents

    Chandler, Katherine; Chelkovenko, Tatiana; Hammer, David; Pikuz, Sergei; Sinars, Daniel; Song, Byungmoo

    2007-11-06

    A radiograph system with an anode plate, a cathode plate, and a power source coupled to said anode plate and the cathode plate. At least two wires coupled between the anode plate and the cathode plate provide a configuration to form an X-pinch having a photon source size of less than five microns at energies above 2.5 keV. Material at the configuration forming the X-pinch vaporizes upon application of a suitable current to the wires forming a dense hot plasma and emitting a single x-ray pulse with sufficient photons having energies in the range of from about 2.5 keV to about 20 keV to provide a phase contrast image of an object in the path of the photons. Multiple simultaneous images may be formed of a plurality of objects. Suitable filters and x-ray detectors are provided.

  13. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOEpatents

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  14. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOEpatents

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  15. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    PubMed

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-24

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  16. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  17. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  18. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.

    PubMed

    Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z

    2010-10-01

    Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  19. Experimental and theoretical comparison of the O K-edge nonresonant inelastic X-ray scattering and X-ray absorption spectra of NaReO4.

    PubMed

    Bradley, Joseph A; Yang, Ping; Batista, Enrique R; Boland, Kevin S; Burns, Carol J; Clark, David L; Conradson, Steven D; Kozimor, Stosh A; Martin, Richard L; Seidler, Gerald T; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Wolfsberg, Laura E

    2010-10-06

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

  20. Chemical imaging analysis of the brain with X-ray methods

    NASA Astrophysics Data System (ADS)

    Collingwood, Joanna F.; Adams, Freddy

    2017-04-01

    Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.

  1. Alternative difference analysis scheme combining R -space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less

  2. 'Taking X-ray phase contrast imaging into mainstream applications' and its satellite workshop 'Real and reciprocal space X-ray imaging'.

    PubMed

    Olivo, Alessandro; Robinson, Ian

    2014-03-06

    A double event, supported as part of the Royal Society scientific meetings, was organized in February 2013 in London and at Chicheley Hall in Buckinghamshire by Dr A. Olivo and Prof. I. Robinson. The theme that joined the two events was the use of X-ray phase in novel imaging approaches, as opposed to conventional methods based on X-ray attenuation. The event in London, led by Olivo, addressed the main roadblocks that X-ray phase contrast imaging (XPCI) is encountering in terms of commercial translation, for clinical and industrial applications. The main driver behind this is the development of new approaches that enable XPCI, traditionally a synchrotron method, to be performed with conventional laboratory sources, thus opening the way to its deployment in clinics and industrial settings. The satellite meeting at Chicheley Hall, led by Robinson, focused on the new scientific developments that have recently emerged at specialized facilities such as third-generation synchrotrons and free-electron lasers, which enable the direct measurement of the phase shift induced by a sample from intensity measurements, typically in the far field. The two events were therefore highly complementary, in terms of covering both the more applied/translational and the blue-sky aspects of the use of phase in X-ray research. 

  3. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  4. Morphology, stability, and X-ray absorption spectroscopic study of iron oxide (Hematite) nanoparticles prepared by micelle nanolithography

    NASA Astrophysics Data System (ADS)

    Bera, Anupam; Bhattacharya, Atanu; Tiwari, N.; Jha, S. N.; Bhattacharyya, D.

    2018-03-01

    Currently, considerable effort is being made towards synthesis and characterization of iron oxide nanoparticles. In this article, we report on the preparation and characterization of iron oxide nanoparticle (NP) arrays supported on natively oxidized Si(100) surface. The NPs are synthesized by reverse micelle nanolithography technique and are then deposited onto natively oxidized Si(100) surface via spin-coating. Plasma oxidation followed by high temperature annealing results in a unimodal size distribution of pseudohexagonally-ordered array of iron oxide NPs (with ∼14 nm mean diameter and ∼5 nm mean height). High temperature annealing does not fragment the NPs. Particles are sinter-resistant: the unimodal arrays are robust with respect to thermal treatment. X-ray absorption spectroscopy (XAS), including X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS), reveals that structure of the iron oxide particle resembles closely the hematite α-Fe2O3 structure. Furthermore, with the help of EXAFS spectra, we eliminate the possibility of γ-Fe2O3, Fe3O4, FeO and FeO(OH) structures for the NPs.

  5. Pump-Flow-Probe X-Ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems.

    PubMed

    Smolentsev, Grigory; Guda, Alexander; Zhang, Xiaoyi; Haldrup, Kristoffer; Andreiadis, Eugen; Chavarot-Kerlidou, Murielle; Canton, Sophie E; Nachtegaal, Maarten; Artero, Vincent; Sundstrom, Villy

    2013-08-29

    A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed.

  6. Pump-Flow-Probe X-Ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems

    PubMed Central

    Smolentsev, Grigory; Guda, Alexander; Zhang, XIaoyi; Haldrup, Kristoffer; Andreiadis, Eugen; Chavarot-Kerlidou, Murielle; Canton, Sophie E.; Nachtegaal, Maarten; Artero, Vincent; Sundstrom, Villy

    2014-01-01

    A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed. PMID:24443663

  7. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    PubMed

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  8. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2012-12-01

    The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the

  9. High-resolution x-ray tomography using laboratory sources

    NASA Astrophysics Data System (ADS)

    Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing

    2006-08-01

    X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.

  10. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    PubMed

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.

  11. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination.

    PubMed

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A; Millard, Thomas P; Olivo, Alessandro

    2016-05-05

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.

  12. Incorporation of Cadmium and Nickel into Ferrite Spinel Solid Solution: X-ray Diffraction and X-ray Absorption Fine Structure Analyses.

    PubMed

    Su, Minhua; Liao, Changzhong; Chan, Tingshan; Shih, Kaimin; Xiao, Tangfu; Chen, Diyun; Kong, Lingjun; Song, Gang

    2018-01-16

    The feasibility of incorporating Cd and Ni in hematite was studied by investigating the interaction mechanism for the formation of Cd x Ni 1-x Fe 2 O 4 solid solutions (CNFs) from CdO, NiO, and α-Fe 2 O 3 . X-ray diffraction results showed that the CNFs crystallized into spinel structures with increasing lattice parameters as the Cd content in the precursors was increased. Cd 2+ ions were found to occupy the tetrahedral sites, as evidenced by Rietveld refinement and extended X-ray absorption fine structure analyses. The incorporation of Cd and Ni into ferrite spinel solid solution strongly relied on the processing parameters. The incorporation of Cd and Ni into the CNFs was greater at high x values (0.7 < x ≤ 1.0) than at low x values (0.0 ≤ x ≤ 0.7). A feasible treatment technique based on the investigated mechanism of CNF formation was developed, involving thermal treatment of waste sludge containing Cd and Ni. Both of these metals in the waste sludge were successfully incorporated into a ferrite spinel solid solution, and the concentrations of leached Cd and Ni from this solid solution were substantially reduced, stabilizing at low levels. This research offers a highly promising approach for treating the Cd and Ni content frequently encountered in electronic waste and its treatment residues.

  13. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    PubMed

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  14. Towards a nanoscale mammographic contrast agent: development of a modular pre-clinical dual optical/x-ray agent

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Gorelikov, Ivan; Niroui, Farnaz; Levitin, Ronald B.; Mainprize, James G.; Yaffe, Martin J.; Rowlands, J. A.; Matsuura, Naomi

    2013-08-01

    Contrast-enhanced digital mammography (CEDM) can provide improved breast cancer detection and characterization compared to conventional mammography by imaging the effects of tumour angiogenesis. Current small-molecule contrast agents used for CEDM are limited by a short plasma half-life and rapid extravasation into tissue interstitial space. To address these limitations, nanoscale agents that can remain intravascular except at sites of tumour angiogenesis can be used. For CEDM, this agent must be both biocompatible and strongly attenuate mammographic energy x-rays. Nanoscale perfluorooctylbromide (PFOB) droplets have good x-ray attenuation and have been used in patients for other applications. However, the macroscopic scale of x-ray imaging (50-100 µm) is inadequate for direct verification that PFOB droplets localize at sites of breast tumour angiogenesis. For efficient pre-clinical optimization for CEDM, we integrated an optical marker into PFOB droplets for microscopic assessment (≪50 µm). To develop PFOB droplets as a new nanoscale mammographic contrast agent, PFOB droplets were labelled with fluorescent quantum dots (QDs). The droplets had mean diameters of 160 nm, fluoresced at 635 nm and attenuated x-ray spectra at 30.5 keV mean energy with a relative attenuation of 5.6 ± 0.3 Hounsfield units (HU) mg-1 mL-1 QD-PFOB. With the agent loaded into tissue phantoms, good correlation between x-ray attenuation and optical fluorescence was found (R2 = 0.96), confirming co-localization of the QDs with PFOB for quantitative assessment using x-ray or optical methods. Furthermore, the QDs can be removed from the PFOB agent without affecting its x-ray attenuation or structural properties for expedited translation of optimized PFOB droplet formulations into patients.

  15. The use of C-near edge X-ray absorption fine structure spectroscopy for the elaboration of chemistry in lignocellulosics

    Treesearch

    Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick

    2006-01-01

    The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...

  16. Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy

    Treesearch

    Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun

    2005-01-01

    The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...

  17. Investigating the local structure of B-site cations in (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Grosvenor, Andrew P.

    2018-05-01

    The structural properties of (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x = 0.2 before impurity phases begin to form at x = 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4+. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4+ with Sc3+ results in an increase in the off-centre displacement of Ti4+ cations. Surprisingly, BiScO3 substitution has no effect on the displacement of the Ti4+ cation in the (1-x)PbTiO3-xBiScO3 solid solution.

  18. Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis

    DOE PAGES

    Lu, Qingquan; Zhang, Jian; Peng, Pan; ...

    2015-05-26

    An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(II) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(I) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(II) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfonesmore » are synthesized with good to excellent yields under mild conditions.« less

  19. A hyperspectral X-ray computed tomography system for enhanced material identification

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomei; Wang, Qian; Ma, Jinlei; Zhang, Wei; Li, Po; Fang, Zheng

    2017-08-01

    X-ray computed tomography (CT) can distinguish different materials according to their absorption characteristics. The hyperspectral X-ray CT (HXCT) system proposed in the present work reconstructs each voxel according to its X-ray absorption spectral characteristics. In contrast to a dual-energy or multi-energy CT system, HXCT employs cadmium telluride (CdTe) as the x-ray detector, which provides higher spectral resolution and separate spectral lines according to the material's photon-counter working principle. In this paper, a specimen containing ten different polymer materials randomly arranged was adopted for material identification by HXCT. The filtered back-projection algorithm was applied for image and spectral reconstruction. The first step was to sort the individual material components of the specimen according to their cross-sectional image intensity. The second step was to classify materials with similar intensities according to their reconstructed spectral characteristics. The results demonstrated the feasibility of the proposed material identification process and indicated that the proposed HXCT system has good prospects for a wide range of biomedical and industrial nondestructive testing applications.

  20. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    PubMed

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  2. Self-interaction-corrected time-dependent density-functional-theory calculations of x-ray-absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Guangde; Rinkevicius, Zilvinas; Vahtras, Olav

    We outline an approach within time-dependent density functional theory that predicts x-ray spectra on an absolute scale. The approach rests on a recent formulation of the resonant-convergent first-order polarization propagator [P. Norman et al., J. Chem. Phys. 123, 194103 (2005)] and corrects for the self-interaction energy of the core orbital. This polarization propagator approach makes it possible to directly calculate the x-ray absorption cross section at a particular frequency without explicitly addressing the excited-state spectrum. The self-interaction correction for the employed density functional accounts for an energy shift of the spectrum, and fully correlated absolute-scale x-ray spectra are thereby obtainedmore » based solely on optimization of the electronic ground state. The procedure is benchmarked against experimental spectra of a set of small organic molecules at the carbon, nitrogen, and oxygen K edges.« less

  3. In Vitro Validation of an Artefact Suppression Algorithm in X-Ray Phase-Contrast Computed Tomography.

    PubMed

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hirano, Shin-Ichi; Gupta, Rajiv; Ando, Masami

    2015-01-01

    X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction alteration caused by individual voxels along the path of the X-ray beam. Dense objects such as calcifications in biological specimens violate this condition. There are extensive beam deflection artefacts in the vicinity of such structures because they result in large distortion of wave front due to the large difference of refractive index; for such large changes in beam direction, the transmittance of the silicon analyzer crystal saturates and is no longer linearly dependent on the angle of refraction. This paper describes a method by which these effects can be overcome and excellent soft-tissue contrast of phase tomography can be preserved in the vicinity of such artefact-producing structures.

  4. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  5. Characterization of CuHal-intercalated carbon nanotubes with x-ray absorption spectroscopy combined with x-ray photoelectron and resonant photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M.; Generalov, A.; Vinogdradov, A.; Eliseev, A.

    2013-04-01

    Encapsulated single-walled carbon nanotubes (SWCNTs) with inner channels filled by different compounds present the new class of composite materials. Such CNTs give opportunity to form 1D nanocrystals as well as quantum nanowires with new physical and chemical properties inside the tubes. The present study is aimed to characterize the possible chemical interaction between CuHal (Hal=I, Cl, Br) and SWCNTs in CuHal@SWCNTs and electronic structure of the latter using high-resolution near edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with high-resolution X-ray photoelectron spectroscopy and resonant photoemission spectroscopy. The present study has shown that there is a chemical interaction between the filler and π-electron subsystem of CNTs which is accompanied by changes of the atomic and electronic structure of the filler during the encapsulating it inside CNTs.

  6. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  7. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    PubMed

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  8. Erratum: Creation of X-Ray Transparency of Matter by Stimulated Elastic Forward Scattering [Phys. Rev. Lett. 115 , 107402 (2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stöhr, J.; Scherz, A.

    X-ray absorption by matter has long been described by the famous Beer-Lambert law. Here we show how this fundamental law needs to be modified for high-intensity coherent x-ray pulses, now available at x-ray free electron lasers, due to the onset of stimulated elastic forward scattering. We present an analytical expression for the modified polarization-dependent Beer-Lambert law for the case of resonant core-to-valence electronic transitions and incident transform limited x-ray pulses. Upon transmission through a solid, the absorption and dichroic contrasts are found to vanish with increasing x-ray intensity, with the stimulation threshold lowered by orders of magnitude through a super-radiativemore » coherent effect. Our results have broad implications for the study of matter with x-ray lasers.« less

  9. X-ray (image)

    MedlinePlus

    X-rays are a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media ( ...

  10. Quantification of signal detection performance degradation induced by phase-retrieval in propagation-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2016-04-01

    In propagation-based X-ray phase-contrast (PB XPC) imaging, the measured image contains a mixture of absorption- and phase-contrast. To obtain separate images of the projected absorption and phase (i.e., refractive) properties of a sample, phase retrieval methods can be employed. It has been suggested that phase-retrieval can always improve image quality in PB XPC imaging. However, when objective (task-based) measures of image quality are employed, this is not necessarily true and phase retrieval can be detrimental. In this work, signal detection theory is utilized to quantify the performance of a Hotelling observer (HO) for detecting a known signal in a known background. Two cases are considered. In the first case, the HO acts directly on the measured intensity data. In the second case, the HO acts on either the retrieved phase or absorption image. We demonstrate that the performance of the HO is superior when acting on the measured intensity data. The loss of task-specific information induced by phase-retrieval is quantified by computing the efficiency of the HO as the ratio of the test statistic signal-to-noise ratio (SNR) for the two cases. The effect of the system geometry on this efficiency is systematically investigated. Our findings confirm that phase-retrieval can impair signal detection performance in XPC imaging.

  11. A simple heat-pipe cell for X-ray absorption spectrometry of potassium vapor

    NASA Astrophysics Data System (ADS)

    Pres̆eren, R.; Kodre, A.; Arc̆on, I.; Padez̆nik Gomils̆ek, J.; Hribar, M.

    1999-01-01

    The construction and operation of a simple high-temperature X-ray absorption cell for potassium vapor is described. The principle of "spectroscopic heat pipe" is exploited to separate kapton windows, indispensable for good transmission in the low-energy region, from the hot and aggressive vapor. High-resolution spectrum of the K-edge region of atomic potassium reveals fingerprints of multielectron photoexcitations.

  12. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-08-01

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα1 line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  13. Analysis of field of view limited by a multi-line X-ray source and its improvement for grating interferometry.

    PubMed

    Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben

    2012-08-01

    X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.

  14. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  15. Large-field high-contrast hard x-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source.

    PubMed

    Lim, Jun; Park, So Yeong; Huang, Jung Yun; Han, Sung Mi; Kim, Hong-Tae

    2013-01-01

    We developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects. The setup, including the optics and the alignment, is simple and easy, and allows faster and easier imaging of large bio-samples.

  16. When will Low-Contrast Features be Visible in a STEM X-Ray Spectrum Image?

    PubMed

    Parish, Chad M

    2015-06-01

    When will a small or low-contrast feature, such as an embedded second-phase particle, be visible in a scanning transmission electron microscopy (STEM) X-ray map? This work illustrates a computationally inexpensive method to simulate X-ray maps and spectrum images (SIs), based upon the equations of X-ray generation and detection. To particularize the general procedure, an example of nanostructured ferritic alloy (NFA) containing nm-sized Y2Ti2O7 embedded precipitates in ferritic stainless steel matrix is chosen. The proposed model produces physically appearing simulated SI data sets, which can either be reduced to X-ray dot maps or analyzed via multivariate statistical analysis. Comparison to NFA X-ray maps acquired using three different STEM instruments match the generated simulations quite well, despite the large number of simplifying assumptions used. A figure of merit of electron dose multiplied by X-ray collection solid angle is proposed to compare feature detectability from one data set (simulated or experimental) to another. The proposed method can scope experiments that are feasible under specific analysis conditions on a given microscope. Future applications, such as spallation proton-neutron irradiations, core-shell nanoparticles, or dopants in polycrystalline photovoltaic solar cells, are proposed.

  17. When will low-contrast features be visible in a STEM X-ray spectrum image?

    DOE PAGES

    Parish, Chad M.

    2015-04-01

    When will a small or low-contrast feature, such as an embedded second-phase particle, be visible in a scanning transmission electron microscopy (STEM) X-ray map? This work illustrates a computationally inexpensive method to simulate X-ray maps and spectrum images (SIs), based upon the equations of X-ray generation and detection. To particularize the general procedure, an example of nanostructured ferritic alloy (NFA) containing nm-sized Y 2Ti 2O 7 embedded precipitates in ferritic stainless steel matrix is chosen. The proposed model produces physically appearing simulated SI data sets, which can either be reduced to X-ray dot maps or analyzed via multivariate statistical analysis.more » Comparison to NFA X-ray maps acquired using three different STEM instruments match the generated simulations quite well, despite the large number of simplifying assumptions used. A figure of merit of electron dose multiplied by X-ray collection solid angle is proposed to compare feature detectability from one data set (simulated or experimental) to another. The proposed method can scope experiments that are feasible under specific analysis conditions on a given microscope. As a result, future applications, such as spallation proton–neutron irradiations, core-shell nanoparticles, or dopants in polycrystalline photovoltaic solar cells, are proposed.« less

  18. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  19. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE PAGES

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  20. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    We have obtained XMM spectra for five red, 2MASS AGN, selected from a sample observed by Chandra to be X-ray bright and to cover a range of hardness ratios. Our results confirm the presence of substantial absorbing material in three sources which have optical classifications ranging from Type 1 to Type 2, with an intrinsically flat (hard) power law continuum indicated in the other two. The presence of both X-ray absorption and broad optical emission lines with the usual strength suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this soft X-ray emission may arise in an extended region of ionized gas, perhaps linked with the polarized (scattered) light which is a feature of these sources. The spectral complexity revealed by XMM emphasizes the limitations of the low S/N Chandra data. Overall, the new XMM results strengthen our conclusions (Wilkes et al. 2002) that the observed X-ray continua of red AGN are unusually hard at energies greater than 2 keV. Whether due to substantial line-of-sight absorption or to an intrinsically hard or reflection-dominated spectrum, these 'red' AGN have an observed spectral form consistent with contributing significantly to the missing had absorbed population of the Cosmic X-ray Background (CXRB). When absorption and or reflection is taken into account, all these AGN have power law slopes typical of broad-line (Type 1) AGN (Gamma approximately 1.9). This appears to resolve the spectral paradox which for so long has existed between the CXRB and the AGN thought to be the dominant contributors. It also suggests two scenarios whereby Type 1 AGN/QSOs may be responsible for a significant fraction of the CXRB at energies above 2 keV: 1) X-ray absorbed AGN/QSOs with visible broad emission lines; 2) AGN/QSOs with complex spectra whose hardness greater than 2 keV is not

  1. Application of x-ray absorption fine structure (XAFS) to local-order analysis in Fe-Cr maghemite-like materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Fuentes-Cobas, L. E.; Macías-Ríos, E.

    2015-07-23

    The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-rangemore » structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})« less

  2. Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.; Kirkland, J. P.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films. A least-squares fitting of experimental EXAFS data with theoretical, multiple-scattering, EXAFS data allowed the quantitative determination of site distributions for all transition metal cations.

  3. X-ray absorption spectroscopic studies on gold nanoparticles in mesoporous and microporous materials.

    PubMed

    Akolekar, Deepak B; Foran, Garry; Bhargava, Suresh K

    2004-05-01

    Au L(3)-edge X-ray absorption spectroscopic measurements were carried out over a series of mesoporous and microporous materials containing gold nanoparticles to investigate the effects of the host matrix and preparation methods on the properties of gold nanoparticles. The materials of structure type MCM-41, ZSM-5, SAPO-18 and LSX with varying framework composition containing low concentrations of gold nanoparticles were prepared and characterized. In these materials the size of the gold nanoparticles varied in the range approximately 1 to 4 nm. A series of gold nanoparticles within different mesoporous and microporous materials have been investigated using X-ray absorption fine structure (XANES, EXAFS) and other techniques. Information such as atomic distances, bonding and neighbouring environment obtained from XAFS measurements was useful in elucidating the nature and structure of gold nanoparticles on these catalytic materials. The influence of the high-temperature (823, 1113, 1273 K) treatment on gold nanoparticles inside the mesoporous matrix was investigated using the XAFS technique. The XAFS and XANES results confirm various characteristics of gold nanoparticles in these materials suitable for catalysis, fabrication of nanodevices and other applications.

  4. Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.

    The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.

  5. The optical lens coupled X-ray in-line phase contrast imaging system for the characterization of low Z materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Lin, Wei; Dai, Fei; Li, Jun; Qi, Xiaobo; Lei, Haile; Liu, Yuanqiong

    2018-05-01

    Due to the high spatial resolution and contrast, the optical lens coupled X-ray in-line phase contrast imaging system with the secondary optical magnification is more suitable for the characterization of the low Z materials. The influence of the source to object distance and the object to scintillator distance on the image resolution and contrast is studied experimentally. A phase correlation algorithm is used for the image mosaic of a serial of X-ray phase contrast images acquired with high resolution, the resulting resolution is less than 1.0 μm, and the whole field of view is larger than 1.4 mm. Finally, the geometric morphology and the inner structure of various weakly absorbing samples and the evaporation of water in the plastic micro-shell are in situ characterized by the optical lens coupled X-ray in-line phase contrast imaging system.

  6. Ultrafast Absorption Spectroscopy of Aluminum Plasmas Created by LCLS using Betatron X-Ray Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie

    2016-10-12

    This document summarizes the goals and accomplishments of a six month-long LDRD project, awarded through the LLNL director Early and Mid Career Recognition (EMCR) program. This project allowed us to support beamtime awarded at the Matter under Extreme Conditions (MEC) end station of the Linac Coherent Light Source (LCLS). The goal of the experiment was to heat metallic samples with the bright x-rays from the LCLS free electron laser. Then, we studied how they relaxed back to equilibrium by probing them with ultrafast x-ray absorption spectroscopy using laser-based betatron radiation. Our work enabled large collaborations between LLNL, SLAC, LBNL, andmore » institutions in France and in the UK, while providing training to undergraduate and graduate students during the experiment. Following this LDRD project, the PI was awarded a 5-year DOE early career research grant to further develop applications of laser-driven x-ray sources for high energy density science experiments and warm dense matter states.« less

  7. X-ray vector radiography of a human hand

    NASA Astrophysics Data System (ADS)

    Jud, Christoph; Braig, Eva; Dierolf, Martin; Eggl, Elena; Günther, Benedikt; Achterhold, Klaus; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Münzel, Daniela

    2017-03-01

    Grating based x-ray phase-contrast reveals differential phase-contrast (DPC) and dark-field contrast (DFC) on top of the conventional absorption image. X-ray vector radiography (XVR) exploits the directional dependence of the DFC and yields the mean scattering strength, the degree of anisotropy and the orientation of scattering structures by combining several DFC-projections. Here, we perform an XVR of an ex vivo human hand specimen. Conventional attenuation images have a good contrast between the bones and the surrounding soft tissue. Within the bones, trabecular structures are visible. However, XVR detects subtler differences within the trabecular structure: there is isotropic scattering in the extremities of the phalanx in contrast to anisotropic scattering in its body. The orientation changes as well from relatively random in the extremities to an alignment along the longitudinal trabecular orientation in the body. In the other bones measured, a similar behavior was found. These findings indicate a deeper insight into the anatomical configuration using XVR compared to conventional radiography. Since microfractures cause a discontinuous trabecular structure, XVR could help to detect so-called radiographically occult fractures of the trabecular bones.

  8. Density of alkaline magmas at crustal and upper mantle conditions by X-ray absorption

    NASA Astrophysics Data System (ADS)

    Seifert, R.; Malfait, W.; Petitgirard, S.; Sanchez-Valle, C.

    2011-12-01

    Silicate melts are essential components of igneous processes and are directly involved in differentiation processes and heat transfer within the Earth. Studies of the physical properties of magmas (e.g., density, viscosity, conductivity, etc) are however challenging and experimental data at geologically relevant pressure and temperature conditions remain scarce. For example, there is virtually no data on the density at high pressure of alkaline magmas (e.g., phonolites) typically found in continental rift zone settings. We present in situ density measurements of alkaline magmas at crustal and upper mantle conditions using synchrotron X-ray absorption. Measurements were conducted on ID27 beamline at ESRF using a panoramic Paris-Edinburgh Press (PE Press). The starting material is a synthetic haplo-phonolite glass similar in composition to the Plateau flood phonolites from the Kenya rift [1]. The glass was synthesized at 1673 K and 2.0 GPa in a piston-cylinder apparatus at ETH Zurich and characterized using EPMA, FTIR and density measurements. The sample contains less than 200 ppm water and is free of CO2. Single-crystal diamond cylinders (Øin = 0.5 mm, height = 1 mm) were used as sample containers and placed in an assembly formed by hBN spacers, a graphite heater and a boron epoxy gasket [2]. The density was determined as a function of pressure (1.0 to 3.1 GPa) and temperature (1630-1860 K) from the X-ray absorption contrast at 20 keV between the sample and the diamond capsule. The molten state of the sample during the data collection was confirmed by X-ray diffraction measurements. Pressure and temperature were determined simultaneously from the equation of state of hBN and platinum using the the double isochor method [3].The results are combined with available density data at room conditions to derive the first experimental equation of state (EOS) of phonolitic liquids at crustal and upper mantle conditions. We will compare our results with recent reports of the

  9. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  10. First Point-Spread Function and X-Ray Phase Contrast Imaging Results with an 88-mm Diameter Single Crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.

    In this study, we report initial demonstrations of the use of single crystals in indirect x-ray imaging with a benchtop implementation of propagation-based (PB) x-ray phase contrast imaging. Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point-spread function (PSF) with the 50-μm thick single crystal scintillators than with the reference polycrystalline phosphor/scintillator. Fiber-optic plate depth-of-focus and Al reflective-coating aspects are also elucidated. Guided by the results from the 25-mm diameter crystal samples, we report additionally the first results with a unique 88-mm diameter single crystal bonded to a fiber optic platemore » and coupled to the large format CCD. Both PSF and x-ray phase contrast imaging data are quantified and presented.« less

  11. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics

    PubMed Central

    Sowa, Katarzyna M.; Last, Arndt; Korecki, Paweł

    2017-01-01

    Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10–100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy. PMID:28322316

  12. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.

    PubMed

    Sowa, Katarzyna M; Last, Arndt; Korecki, Paweł

    2017-03-21

    Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10-100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy.

  13. PROBING X-RAY ABSORPTION AND OPTICAL EXTINCTION IN THE INTERSTELLAR MEDIUM USING CHANDRA OBSERVATIONS OF SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foight, Dillon R.; Slane, Patrick O.; Güver, Tolga

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) themore » model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.« less

  14. Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-06-01

    X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.

  15. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  16. Phase contrast tomography of the mouse cochlea at microfocus x-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartels, Matthias; Krenkel, Martin; Hernandez, Victor H.

    2013-08-19

    We present phase contrast x-ray tomography of functional soft tissue within the bony cochlear capsule of mice, carried out at laboratory microfocus sources with well-matched source, detector, geometry, and reconstruction algorithms at spatial resolutions down to 2 μm. Contrast, data quality and resolution enable the visualization of thin membranes and nerve fibers as well as automated segmentation of surrounding bone. By complementing synchrotron radiation imaging techniques, a broad range of biomedical applications becomes possible as demonstrated for optogenetic cochlear implant research.

  17. Brute force absorption contrast microtomography

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.; Mills, David

    2014-09-01

    In laboratory X-ray microtomography (XMT) systems, the signal-to-noise ratio (SNR) is typically determined by the X-ray exposure due to the low flux associated with microfocus X-ray tubes. As the exposure time is increased, the SNR improves up to a point where other sources of variability dominate, such as differences in the sensitivities of adjacent X-ray detector elements. Linear time-delay integration (TDI) readout averages out detector sensitivities on the critical horizontal direction and equiangular TDI also averages out the X-ray field. This allows the SNR to be increased further with increasing exposure. This has been used in dentistry to great effect, allowing subtle variations in dentine mineralisation to be visualised in 3 dimensions. It has also been used to detect ink in ancient parchments that are too damaged to physically unroll. If sufficient contrast between the ink and parchment exists, it is possible to virtually unroll the tomographic image of the scroll in order that the text can be read. Following on from this work, a feasibility test was carried out to determine if it might be possible to recover images from decaying film reels. A successful attempt was made to re-create a short film sequence from a rolled length of 16mm film using XMT. However, the "brute force" method of scaling this up to allow an entire film reel to be imaged presents a significant challenge.

  18. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constantmore » temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.« less

  19. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.

    Here, a systematic X-ray absorption study at the U 3d, 4d, and 4f edges of UO 2 was performed, and the data were analyzed within framework of the Anderson impurity model. By applying the high-energy-resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS) at the U 3d 3/2 edge and conducting the XAS measurements at the shallower U 4f levels, fine details of the XAS spectra were resolved resulting from reduced core-hole lifetime broadening. This multiedge study enabled a far more effective analysis of the electronic structure at the U sites and characterization of the chemical bonding and degree ofmore » the 5f localization in UO 2. The results support the covalent character of UO 2 and do not agree with the suggestions of rather ionic bonding in this compound as expressed in some publications.« less

  20. X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems

    PubMed Central

    Sarangi, Ritimukta

    2012-01-01

    Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635

  1. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy

    DOE PAGES

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.; ...

    2016-11-30

    Here, a systematic X-ray absorption study at the U 3d, 4d, and 4f edges of UO 2 was performed, and the data were analyzed within framework of the Anderson impurity model. By applying the high-energy-resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS) at the U 3d 3/2 edge and conducting the XAS measurements at the shallower U 4f levels, fine details of the XAS spectra were resolved resulting from reduced core-hole lifetime broadening. This multiedge study enabled a far more effective analysis of the electronic structure at the U sites and characterization of the chemical bonding and degree ofmore » the 5f localization in UO 2. The results support the covalent character of UO 2 and do not agree with the suggestions of rather ionic bonding in this compound as expressed in some publications.« less

  2. Wavelet processing and digital interferometric contrast to improve reconstructions from X-ray Gabor holograms.

    PubMed

    Aguilar, Juan C; Misawa, Masaki; Matsuda, Kiyofumi; Suzuki, Yoshio; Takeuchi, Akihisa; Yasumoto, Masato

    2018-05-01

    In this work, the application of an undecimated wavelet transformation together with digital interferometric contrast to improve the resulting reconstructions in a digital hard X-ray Gabor holographic microscope is shown. Specifically, the starlet transform is used together with digital Zernike contrast. With this contrast, the results show that only a small set of scales from the hologram are, in effect, useful, and it is possible to enhance the details of the reconstruction.

  3. The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Schartel, N.; Zetzl, M.; Santos-Lleó, M.; Rodríguez-Pascual, P. M.; Ballo, L.; Talavera, A.

    2016-01-01

    Context. The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. Aims: This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? Methods: We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST), and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. Results: We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme αox gradient (αox = -2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 ±0.9 with αox = -2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum (Γ = 1.70-0.45+0.57) with moderate intrinsic absorption (NH = 5.5-3.9+6.9 × 1021 cm-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Lyα. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around λ ≈ 2500 Å in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission. Besides strong FeII multiplets and broad Balmer and HeI lines in the optical band we only detect a narrow [O II

  4. Aggravation of pre-existing atrioventricular block, Wenckebach type, provoked by application of X-ray contrast medium.

    PubMed

    Brodmann, Marianne; Seinost, Gerald; Stark, Gerhard; Pilger, Ernst

    2006-01-01

    Significant bradycardia followed by cardiac arrest related to single bolus administration of X-ray contrast medium into a peripheral artery has not, to our knowledge, been described in the literature. While performing a percutaneous transluminal angioplasty of the left superficial femoral artery in a 68-year old patient with a pre-existing atrioventricular (AV) block, Wenckebach type, he developed an AV block III after a single bolus injection of intra-arterial X-ray contrast medium. We believe that application of contrast medium causes a transitory ischemia in the obstructed vessel and therefore elevation of endogenous adenosine. In the case of a previously damaged AV node this elevation of endogenous adenosine may be responsible for the development of a short period of third-degree AV block.

  5. Phase-contrast microtomography using an X-ray interferometer having a 40-μm analyzer

    NASA Astrophysics Data System (ADS)

    Momose, A.; Koyama, I.; Hamaishi, Y.; Yoshikawa, H.; Takeda, T.; Wu, J.; Itai, Y.; Takai, , K.; Uesugi, K.; Suzuki, Y.

    2003-03-01

    Phase-contrast X-ray tomographic experiment using a triple Laue-case (LLL) interferometer having a 40-μm lamella which was fabricated to improve spatial resolution, was carried out using undulator X-rays at SPring-8, Japan. Three-dimensional images mapping the refractive index were measured for various animal tissues. Comparing the images with those obtained in previous experiments using conventional LLL interferometers having a 1-mm lamella, improvement in the spatial resolution was demonstrated in that histological structures, such as hepatic lobules in liver and tubules in kidney, were revealed.

  6. Investigation of the Structural Stability of Ion-Implanted Gd 2Ti 2-xSn xO 7 Pyrochlore-Type Oxides by Glancing Angle X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluri, Esther Rani; Hayes, John R.; Walker, James D.S.

    2016-03-24

    Rare-earth titanate and stannate pyrochlore-type oxides have been investigated in the past for the sequestration of nuclear waste elements because of their resistance to radiation-induced structural damage. In order to enhance this property, it is necessary to understand the effect of radioactive decay of the incorporated actinide elements on the local chemical environment. In this study, Gd 2Ti 2–xSn xO 7 materials have been implanted with Au– ions to simulate radiation-induced structural damage. Glancing angle X-ray absorption near-edge spectroscopy (GA-XANES), glancing angle X-ray absorption fine structure (GA-EXAFS) analysis, and powder X-ray diffraction have been used to investigate changes in themore » local coordination environment of the metal atoms in the damaged surface layer. Examination of GA-XANES/EXAFS spectra from the implanted Gd 2Ti 2–xSn xO 7 materials collected at various glancing angles allowed for an investigation of how the local coordination environment around the absorbing atoms changed at different depths in the damaged surface layer. This study has shown the usefulness of GA-XANES to the examination of ion-implanted materials and has suggested that Gd 2Ti 2–xSn xO 7 becomes more susceptible to ion-beam-induced structural damage with increasing Sn concentration.« less

  7. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Page, A.M.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examinedmore » the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.« less

  8. Propagation-based x-ray phase contrast imaging using an iterative phase diversity technique

    NASA Astrophysics Data System (ADS)

    Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.

    2018-03-01

    Through the use of a phase diversity technique, we demonstrate a near-field in-line x-ray phase contrast algorithm that provides improved object reconstruction when compared to our previous iterative methods for a homogeneous sample. Like our previous methods, the new technique uses the sample refractive index distribution during the reconstruction process. The technique complements existing monochromatic and polychromatic methods and is useful in situations where experimental phase contrast data is affected by noise.

  9. Automated segmentation of middle hepatic vein in non-contrast x-ray CT images based on an atlas-driven approach

    NASA Astrophysics Data System (ADS)

    Kitagawa, Teruhiko; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki

    2008-03-01

    In order to support the diagnosis of hepatic diseases, understanding the anatomical structures of hepatic lobes and hepatic vessels is necessary. Although viewing and understanding the hepatic vessels in contrast media-enhanced CT images is easy, the observation of the hepatic vessels in non-contrast X-ray CT images that are widely used for the screening purpose is difficult. We are developing a computer-aided diagnosis (CAD) system to support the liver diagnosis based on non-contrast X-ray CT images. This paper proposes a new approach to segment the middle hepatic vein (MHV), a key structure (landmark) for separating the liver region into left and right lobes. Extraction and classification of hepatic vessels are difficult in non-contrast X-ray CT images because the contrast between hepatic vessels and other liver tissues is low. Our approach uses an atlas-driven method by the following three stages. (1) Construction of liver atlases of left and right hepatic lobes using a learning datasets. (2) Fully-automated enhancement and extraction of hepatic vessels in liver regions. (3) Extraction of MHV based on the results of (1) and (2). The proposed approach was applied to 22 normal liver cases of non-contrast X-ray CT images. The preliminary results show that the proposed approach achieves the success in 14 cases for MHV extraction.

  10. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems.

    PubMed

    Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro

    2010-03-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.

  11. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A.; Chabior, M.; Zanette, I.

    2014-10-15

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less

  12. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  13. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  14. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmand, Maryam

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopymore » (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.« less

  15. Simulation and source identification of X-ray contrast media in the water cycle of Berlin.

    PubMed

    Knodel, J; Geissen, S-U; Broll, J; Dünnbier, U

    2011-11-01

    This article describes the development of a model to simulate the fate of iodinated X-ray contrast media (XRC) in the water cycle of the German capital, Berlin. It also handles data uncertainties concerning the different amounts and sources of input for XRC via source densities in single districts for the XRC usage by inhabitants, hospitals, and radiologists. As well, different degradation rates for the behavior of the adsorbable organic iodine (AOI) were investigated in single water compartments. The introduced model consists of mass balances and includes, in addition to naturally branched bodies of water, the water distribution network between waterways and wastewater treatment plants, which are coupled to natural surface waters at numerous points. Scenarios were calculated according to the data uncertainties that were statistically evaluated to identify the scenario with the highest agreement among the provided measurement data. The simulation of X-ray contrast media in the water cycle of Berlin showed that medical institutions have to be considered as point sources for congested urban areas due to their high levels of X-ray contrast media emission. The calculations identified hospitals, represented by their capacity (number of hospital beds), as the most relevant point sources, while the inhabitants served as important diffusive sources. Deployed for almost inert substances like contrast media, the model can be used for qualitative statements and, therefore, as a decision-support tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. X-ray absorption spectroscopy and imaging of heterogeneous hydrothermal mixtures using a diamond microreactor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Darab, John G.; Hoffmann, Markus M.

    2001-04-01

    Hydrothermal synthesis is an important route to novel materials. Hydrothermal chemistry is also an important aspect of geochemistry and a variety of waste remediation technologies. There is a significant lack of information about the speciation of inorganic compounds under hydrothermal conditions. For these reasons we describe a high-temperature, high-pressure cell that allows one to acquire both x-ray absorption fine structure (XAFS) spectra and x-ray transmission and absorption images of heterogeneous hydrothermal mixtures. We demonstrate the utility of the method by measuring the Cu(I) speciation in a solution containing both solid and dissolved Cu phases at temperatures up to 325{sup o}C.more » X-ray imaging of the various hydrothermal phases allows micro-XAFS to be collected from different phases within the heterogeneous mixture. The complete structural characterization of a soluble bichloro-cuprous species was determined. In situ XAFS measurements were used to define the oxidation state and the first-shell coordination structure. The Cu--Cl distance was determined to be 2.12 Aa for the CuCl{sub 2}{sup -} species and the complete loss of tightly bound waters of hydration in the first shell was observed. The microreactor cell described here can be used to test thermodynamic models of solubility and redox chemistry of a variety of different hydrothermal mixtures.« less

  17. Microreactor Cells for High-Throughput X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beesley, Angela; Tsapatsaris, Nikolaos; Weiher, Norbert

    2007-01-19

    High-throughput experimentation has been applied to X-ray Absorption spectroscopy as a novel route for increasing research productivity in the catalysis community. Suitable instrumentation has been developed for the rapid determination of the local structure in the metal component of precursors for supported catalysts. An automated analytical workflow was implemented that is much faster than traditional individual spectrum analysis. It allows the generation of structural data in quasi-real time. We describe initial results obtained from the automated high throughput (HT) data reduction and analysis of a sample library implemented through the 96 well-plate industrial standard. The results show that a fullymore » automated HT-XAS technology based on existing industry standards is feasible and useful for the rapid elucidation of geometric and electronic structure of materials.« less

  18. Hydrothermal Diamond Anvil Cell (HDAC): From Visual Observation to X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bassett, W. A.; Mibe, K.

    2006-05-01

    A fluid sample contained in a Re gasket between two diamond anvils can be subjected to pressures up to 2.5 GPa and temperatures up to 1200°C in a resistively heated hydrothermal diamond anvil cell (HDAC). Thermocouples are used to measure temperature. The constant-volume sample chamber permits isochoric measurements that can be used to determine pressure from the equation of state of H2O and to map phases and properties in P-T space. A movie of reactions between K-feldspar and water up to 2.5 GPa and 880°C illustrates the use of visual observations for mapping coexisting solution, melt, and solid phases. X-ray absorption spectroscopy of ZnBr2 in solution up to 500°C and 500 MPa shows hydrogen bond breaking in the hydration shells of the ZnBr42- and Br- ions with increasing temperature. In other studies the stability field of ikaite (CaCO3·6H2O) has been mapped by visual observation and Raman spectroscopy; the phases of montmorillonite have been mapped by X-ray diffraction; and the leaching of Pb from zircon has been measured by X-ray microprobe.

  19. Molybdenum X-Ray Absorption Edges from 200 – 20,000 eV, The Benefits of Soft X-Ray Spectroscopy for Chemical Speciation

    PubMed Central

    George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.

    2009-01-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  20. Conventional and phase contrast x-ray imaging techniques and ultrasound imaging method in breast tumor detection: initial comparison studies using phantom

    NASA Astrophysics Data System (ADS)

    Guo, Yuran; Wu, Di; Omoumi, Farid H.; Li, Yuhua; Wong, Molly Donovan; Ghani, Muhammad U.; Zheng, Bin; Liu, Hong

    2018-02-01

    The objective of this study was to demonstrate the capability of the high-energy in-line phase contrast imaging in detecting the breast tumors which are undetectable by conventional x-ray imaging but detectable by ultrasound. Experimentally, a CIRS multipurpose breast phantom with heterogeneous 50% glandular and 50% adipose breast tissue was imaged by high-energy in-line phase contrast system, conventional x-ray system and ultrasonography machine. The high-energy in-line phase contrast projection was acquired at 120 kVp, 0.3 mAs with the focal spot size of 18.3 μm. The conventional x-ray projection was acquired at 40 kVp, 3.3 mAs with the focal spot size of 22.26 μm. Both of the x-ray imaging acquisitions were conducted with a unique mean glandular dose of 0.08 mGy. As the result, the high-energy in-line phase contrast system was able to detect one lesion-like object which was also detected by the ultrasonography. This object was spherical shape with the length of about 12.28 mm. Also, the conventional x-ray system was not able to detect any objects. This result indicated the advantages provided by high-energy in-line phase contrast over conventional x-ray system in detecting lesion-like object under the same radiation dose. To meet the needs of current clinical strategies for high-density breasts screening, breast phantoms with higher glandular densities will be employed in future studies.

  1. X-ray microscopy with high-resolution zone plates: recent developments

    NASA Astrophysics Data System (ADS)

    Schneider, Gerd; Wilhein, Thomas; Niemann, Bastian; Guttman, P.; Schliebe, T.; Lehr, J.; Aschoff, H.; Thieme, Juergen; Rudolph, Dietbert M.; Schmahl, Guenther A.

    1995-09-01

    In order to expand the applications of x-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross- linked polymer chain electron beam resist allows us to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for x-ray microscopy was developed and implemented on the Gottingen x-ray microscope at BESSY. The effects of x ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free x-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T less than or equal to 130 K unfixed biological specimen can be exposed to a radiation dose of 109 - 1010 Gy without any observable structural changes. A multiple-angle viewing stage allows us to take stereoscopic images with the x-ray microscope, giving a 3D-impression of the object. As an example for the applications of x-ray microscopy in biology, erythrocytes infected by malaria parasite have been examined. Studies of the aggregation of hematite by sodium sulfate gives an example for the application of x-ray microscopy in the field of colloid research.

  2. X-ray data booklet. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, D.

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  3. X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Sainctavit, Philippe; Ollefs, Katharina; Sikora, Marcin; Filipponi, Adriano; Glatzel, Pieter; Wilhelm, Fabrice; Rogalev, Andrei

    2016-12-01

    X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of  ˜4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.

  4. Joint reconstruction of x-ray fluorescence and transmission tomography

    DOE PAGES

    Di, Zichao; Chen, Si; Hong, Young Pyo; ...

    2017-05-30

    X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combinedmore » signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Furthermore, compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.« less

  5. Joint reconstruction of x-ray fluorescence and transmission tomography

    PubMed Central

    Di, Zichao Wendy; Chen, Si; Hong, Young Pyo; Jacobsen, Chris; Leyffer, Sven; Wild, Stefan M.

    2017-01-01

    X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combined signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption. PMID:28788848

  6. RefleX: X-ray absorption and reflection in active galactic nuclei for arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Paltani, S.; Ricci, C.

    2017-11-01

    Reprocessed X-ray radiation carries important information about the structure and physical characteristics of the material surrounding the supermassive black hole (SMBH) in active galactic nuclei (AGN). We report here on a newly developed simulation platform, RefleX, which allows to reproduce absorption and reflection by quasi-arbitrary geometries. We show here the reliability of our approach by comparing the results of our simulations with existing spectral models such as pexrav, MYTorus and BNTorus. RefleX implements both Compton scattering on free electrons and Rayleigh scattering and Compton scattering on bound electrons. We show the effect of bound-electron corrections on a torus geometry simulated like in MYTorus. We release with this paper the RefleX executable, as well as RXTorus, a model that assumes absorption and reflection from a torus with a varying ratio of the minor to major axis of the torus. To allow major flexibility RXTorus is also distributed in three components: absorbed primary emission, scattered radiation and fluorescent lines. RXTorus is provided for different values of the abundance, and with (atomic configuration) or without (free-electron configuration) taking into account Rayleigh scattering and bound electrons. We apply the RXTorus model in both configurations on the XMM-Newton and NuSTAR spectrum of the Compton-thick AGN NGC 424 and find that the models are able to reproduce very well the observations, but that the assumption on the bound or free state of the electrons has significant consequences on the fit parameters. RefleX executable, user manual and example models are available at http://www.astro.unige.ch/reflex. A copy of the RefleX executable is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A31

  7. Hierarchical multimodal tomographic x-ray imaging at a superbend

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Marone, F.; Mikuljan, G.; Jefimovs, K.; Trtik, P.; Vila-Comamala, J.; David, C.; Abela, R.

    2008-08-01

    Over the last decade, synchrotron-based X-ray tomographic microscopy has established itself as a fundamental tool for non-invasive, quantitative investigations of a broad variety of samples, with application ranging from space research and materials science to biology and medicine. Thanks to the brilliance of modern third generation sources, voxel sizes in the micrometer range are routinely achieved by the major X-ray microtomography devices around the world, while the isotropic 100 nm barrier is reached and trespassed only by few instruments. The beamline for TOmographic Microscopy and Coherent rAdiology experiments (TOMCAT) of the Swiss Light Source at the Paul Scherrer Institut, operates a multimodal endstation which offers tomographic capabilities in the micrometer range in absorption contrast - of course - as well as phase contrast imaging. Recently, the beamline has been equipped with a full field, hard X-rays microscope with a theoretical pixel size down to 30 nm and a field of view of 50 microns. The nanoscope performs well at X-ray energies between 8 and 12 keV, selected from the white beam of a 2.9 T superbend by a [Ru/C]100 fixed exit multilayer monochromator. In this work we illustrate the experimental setup dedicated to the nanoscope, in particular the ad-hoc designed X-ray optics needed to produce a homogeneous, square illumination of the sample imaging plane as well as the magnifying zone plate. Tomographic reconstructions at 60 nm voxel size will be shown and discussed.

  8. Aggravation of Pre-Existing Atrioventricular Block, Wenckebach Type, Provoked by Application of X-Ray Contrast Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodmann, Marianne, E-mail: marianne.brodmann@meduni-graz.at; Seinost, Gerald; Stark, Gerhard

    2006-12-15

    Background. Significant bradycardia followed by cardiac arrest related to single bolus administration of X-ray contrast medium into a peripheral artery has not, to our knowledge, been described in the literature. Methods and Results. While performing a percutaneous transluminal angioplasty of the left superficial femoral artery in a 68-year old patient with a pre-existing atrioventricular (AV) block, Wenckebach type, he developed an AV block III after a single bolus injection of intra-arterial X-ray contrast medium. Conclusion. We believe that application of contrast medium causes a transitory ischemia in the obstructed vessel and therefore elevation of endogenous adenosine. In the case ofmore » a previously damaged AV node this elevation of endogenous adenosine may be responsible for the development of a short period of third-degree AV block.« less

  9. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark-field signals with laboratory  x-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Olivo, Alessandro

    We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is alsomore » discussed.« less

  10. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling

    DOE PAGES

    Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; ...

    2016-01-18

    We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO 2 + and AmO 2 2+ with only a small amount AmO 2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties ofmore » the AmO 2 + and AmO 2 2+ aquo complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).« less

  11. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems

    PubMed Central

    Munro, Peter R.T.; Ignatyev, Konstantin; Speller, Robert D.; Olivo, Alessandro

    2013-01-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation. PMID:20389424

  12. Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Wessely, O.; Katsnelson, M. I.; Nilsson, A.; Nikitin, A.; Ogasawara, H.; Odelius, M.; Sanyal, B.; Eriksson, O.

    2007-10-01

    We have calculated the electronic structure and the x-ray absorption (XA) spectrum of a hydrogenated single graphite plane, in order to simulate recent experimental results on hydrogenated single wall carbon nanotubes (SWCNT) as well as hydrogenated graphene. We find that the presence of H induces a substantial component of sp3 bonding and as a result the π and π* components to the electronic structure vanish. We have calculated a theoretical x-ray absorption spectrum using a multiband version of the Mahan-Nozières-De Dominicis theory. By making a fitting of the XA signal of C atoms that have H attached to them and C atoms without H in the vicinity we obtain a good representation of the experimental data and we can draw the conclusion that in the experiments [A. Nikitin , Phys. Rev. Lett. 95, 225507 (2005)] some 35-50 % H have been absorbed in the SWCNT.

  13. Fast Time-Dependent Density Functional Theory Calculations of the X-ray Absorption Spectroscopy of Large Systems.

    PubMed

    Besley, Nicholas A

    2016-10-11

    The computational cost of calculations of K-edge X-ray absorption spectra using time-dependent density functional (TDDFT) within the Tamm-Dancoff approximation is significantly reduced through the introduction of a severe integral screening procedure that includes only integrals that involve the core s basis function of the absorbing atom(s) coupled with a reduced quality numerical quadrature for integrals associated with the exchange and correlation functionals. The memory required for the calculations is reduced through construction of the TDDFT matrix within the absorbing core orbitals excitation space and exploiting further truncation of the virtual orbital space. The resulting method, denoted fTDDFTs, leads to much faster calculations and makes the study of large systems tractable. The capability of the method is demonstrated through calculations of the X-ray absorption spectra at the carbon K-edge of chlorophyll a, C 60 and C 70 .

  14. Medical X-ray sources now and for the future

    NASA Astrophysics Data System (ADS)

    Behling, Rolf

    2017-11-01

    This paper focuses on the use of X-rays in their largest field of application: medical diagnostic imaging and image-guided therapy. For this purpose, vacuum electronics in the form of X-ray tubes as the source of bremsstrahlung (braking radiation) have been the number one choice for X-ray production in the range of photon energies between about 16 keV for mammography and 150 keV for general radiography. Soft tissue on one end and bony structures on the other are sufficiently transparent and the contrast delivered by difference of absorption is sufficiently high for this spectral range. The dominance of X-ray tubes holds even more than 120 years after Conrad Roentgen's discovery of the bremsstrahlung mechanism. What are the specifics of current X-ray tubes and their medical diagnostic applications? How may the next available technology at or beyond the horizon look like? Can we hope for substantial game changers? Will flat panel sources, less expensive X-ray "LED's", compact X-ray Lasers, compact synchrotrons or equivalent X-ray sources appear in medical diagnostic imaging soon? After discussing the various modalities of imaging systems and their sources of radiation, this overview will briefly touch on the physics of bremsstrahlung generation, key characteristics of X-ray tubes, and material boundary conditions, which restrict performance. It will discuss the deficits of the bremsstrahlung technology and try to sketch future alternatives and their prospects of implementation in medical diagnostics.

  15. 3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV.

    PubMed

    Chen, Jie; Yang, Yunhao; Zhang, Xiaobo; Andrews, Joy C; Pianetta, Piero; Guan, Yong; Liu, Gang; Xiong, Ying; Wu, Ziyu; Tian, Yangchao

    2010-07-01

    Three-dimensional (3D) nanoscale structures of the fission yeast, Schizosaccharomyces pombe, can be obtained by full-field transmission hard X-ray microscopy with 30 nm resolution using synchrotron radiation sources. Sample preparation is relatively simple and the samples are portable across various imaging environments, allowing for high-throughput sample screening. The yeast cells were fixed and double-stained with Reynold's lead citrate and uranyl acetate. We performed both absorption contrast and Zernike phase contrast imaging on these cells in order to test this method. The membranes, nucleus, and subcellular organelles of the cells were clearly visualized using absorption contrast mode. The X-ray images of the cells could be used to study the spatial distributions of the organelles in the cells. These results show unique structural information, demonstrating that hard X-ray microscopy is a complementary method for imaging and analyzing biological samples.

  16. 3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission x-ray microscopy at 5.4 keV

    PubMed Central

    Chen, Jie; Yang, Yunhao; Zhang, Xiaobo; Andrews, Joy C.; Pianetta, Piero; Guan, Yong; Liu, Gang; Xiong, Ying; Wu, Ziyu; Tian, Yangchao

    2010-01-01

    Three-dimensional (3D) nanoscale structures of the fission yeast, Schizosaccharomyces pombe, can be obtained by full-field transmission hard x-ray microscopy with 30 nm resolution using synchrotron radiation sources. Sample preparation is relatively simple and the samples are portable across various imaging environments, allowing for high throughput sample screening. The yeast cells were fixed and double stained with Reynold’s lead citrate and uranyl acetate. We performed both absorption contrast and Zernike phase contrast imaging on these cells in order to test this method. The membranes, nucleus and subcellular organelles of the cells were clearly visualized using absorption contrast mode. The x-ray images of the cells could be used to study the spatial distributions of the organelles in the cells. These results show unique structural information, demonstrating that hard x-ray microscopy is a complementary method for imaging and analyzing biological samples. PMID:20349228

  17. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  18. Image reconstruction for x-ray K-edge imaging with a photon counting detector

    NASA Astrophysics Data System (ADS)

    Meng, Bo; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2014-09-01

    Contrast agents with high-Z elements have K-absorption edges which significantly change X-ray attenuation coefficients. The K-edge characteristics is different for various kinds of contrast agents, which offers opportunities for material decomposition in biomedical applications. In this paper, we propose a new K-edge imaging method, which not only quantifies a distribution of a contrast agent but also provides an optimized contrast ratio. Our numerical simulation tests demonstrate the feasibility and merits of the proposed methodology.

  19. X-ray K-edge absorption spectra of Fe minerals and model compounds: II. EXAFS

    NASA Astrophysics Data System (ADS)

    Waychunas, Glenn A.; Brown, Gordon E.; Apted, Michael J.

    1986-01-01

    K-edge extended X-ray absorption fine structure (EXAFS) spectra of Fe in varying environments in a suite of well-characterized silicate and oxide minerals were collected using synchrotron radiation and analyzed using single scattering approximation theory to yield nearest neighbor Fe-O distances and coordination numbers. The partial inverse character of synthetic hercynite spinal was verified in this way. Comparison of the results from all samples with structural data from X-ray diffraction crystal structure refinements indicates that EXAFS-derived first neighbor distances are generally accurate to ±0.02 Å using only theoretically generated phase information, and may be improved over this if similar model compounds are used to determine EXAFS phase functions. Coordination numbers are accurate to ±20 percent and can be similarly improved using model compound EXAFS amplitude information. However, in particular cases the EXAFS-derived distances may be shortened, and the coordination number reduced, by the effects of static and thermal disorder or by partial overlap of the longer Fe-O first neighbor distances with second neighbor distances in the EXAFS structure function. In the former case the total information available in the EXAFS is limited by the disorder, while in the latter case more accurate results can in principle be obtained by multiple neighbor EXAFS analysis. The EXAFS and XANES spectra of Fe in Nain, Labrador osumulite and Lakeview, Oregon plagioclase are also analyzed as an example of the application of X-ray absorption spectroscopy to metal ion site occupation determination in minerals.

  20. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    PubMed Central

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123

  1. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    DOE PAGES

    Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...

    2015-10-20

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less

  2. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  3. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  4. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    NASA Astrophysics Data System (ADS)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  5. Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6(x-) (x = 3, 2).

    PubMed

    Löble, Matthias W; Keith, Jason M; Altman, Alison B; Stieber, S Chantal E; Batista, Enrique R; Boland, Kevin S; Conradson, Steven D; Clark, David L; Lezama Pacheco, Juan; Kozimor, Stosh A; Martin, Richard L; Minasian, Stefan G; Olson, Angela C; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Zehnder, Ralph A

    2015-02-25

    Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).

  6. Dual-energy contrast-enhanced digital mammography (DE-CEDM): optimization on digital subtraction with practical x-ray low/high-energy spectra

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew P.; Parikh, Samir; Parisky, Yuri

    2006-03-01

    Dual-energy contrast enhanced digital mammography (DE-CEDM), which is based upon the digital subtraction of low/high-energy image pairs acquired before/after the administration of contrast agents, may provide physicians physiologic and morphologic information of breast lesions and help characterize their probability of malignancy. This paper proposes to use only one pair of post-contrast low / high-energy images to obtain digitally subtracted dual-energy contrast-enhanced images with an optimal weighting factor deduced from simulated characteristics of the imaging chain. Based upon our previous CEDM framework, quantitative characteristics of the materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filters, breast tissues / lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systemically modeled. Using the base-material (polyethylene-PMMA) decomposition method based on entrance low / high-energy x-ray spectra and breast thickness, the optimal weighting factor was calculated to cancel the contrast between fatty and glandular tissues while enhancing the contrast of iodized lesions. By contrast, previous work determined the optimal weighting factor through either a calibration step or through acquisition of a pre-contrast low/high-energy image pair. Computer simulations were conducted to determine weighting factors, lesions' contrast signal values, and dose levels as functions of x-ray techniques and breast thicknesses. Phantom and clinical feasibility studies were performed on a modified Selenia full field digital mammography system to verify the proposed method and computer-simulated results. The resultant conclusions from the computer simulations and phantom/clinical feasibility studies will be used in the upcoming clinical study.

  7. Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Siah, S. C.; Brandt, R. E.; Lim, K.; Schelhas, L. T.; Jaramillo, R.; Heinemann, M. D.; Chua, D.; Wright, J.; Perkins, J. D.; Segre, C. U.; Gordon, R. G.; Toney, M. F.; Buonassisi, T.

    2015-12-01

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga2O3:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga2O3:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga2O3:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga2O3:Sn are present as Sn4+, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga2O3:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga2O3:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation.

  8. Trimodal low-dose X-ray tomography

    PubMed Central

    Zanette, I.; Bech, M.; Rack, A.; Le Duc, G.; Tafforeau, P.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.

    2012-01-01

    X-ray grating interferometry is a coherent imaging technique that bears tremendous potential for three-dimensional tomographic imaging of soft biological tissue and other specimens whose details exhibit very weak absorption contrast. It is intrinsically trimodal, delivering phase contrast, absorption contrast, and scattering (“dark-field”) contrast. Recently reported acquisition strategies for grating-interferometric phase tomography constitute a major improvement of dose efficiency and speed. In particular, some of these techniques eliminate the need for scanning of one of the gratings (“phase stepping”). This advantage, however, comes at the cost of other limitations. These can be a loss in spatial resolution, or the inability to fully separate the three imaging modalities. In the present paper we report a data acquisition and processing method that optimizes dose efficiency but does not share the main limitations of other recently reported methods. Although our method still relies on phase stepping, it effectively uses only down to a single detector frame per projection angle and yields images corresponding to all three contrast modalities. In particular, this means that dark-field imaging remains accessible. The method is also compliant with data acquisition over an angular range of only 180° and with a continuous rotation of the specimen. PMID:22699500

  9. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectropscopy using IFEFFIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravel, B.; Newville, M.; UC)

    2010-07-20

    A software package for the analysis of X-ray absorption spectroscopy (XAS) data is presented. This package is based on the IFEFFIT library of numerical and XAS algorithms and is written in the Perl programming language using the Perl/Tk graphics toolkit. The programs described here are: (i) ATHENA, a program for XAS data processing, (ii) ARTEMIS, a program for EXAFS data analysis using theoretical standards from FEFF and (iii) HEPHAESTUS, a collection of beamline utilities based on tables of atomic absorption data. These programs enable high-quality data analysis that is accessible to novices while still powerful enough to meet the demandsmore » of an expert practitioner. The programs run on all major computer platforms and are freely available under the terms of a free software license.« less

  10. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    DOE PAGES

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; ...

    2016-01-11

    The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH 3(CH 2) 15N+(CH 3) 3Br₋) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na 2S x solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfurmore » reaction products on the cathode surface during the charge/discharge processes make the capacity decay. Lastly, a modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.« less

  11. X-ray absorption spectroscopy and neutron diffraction study of the perovskite-type rare-earth cobaltites

    NASA Astrophysics Data System (ADS)

    Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.

    2018-05-01

    Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.

  12. Measuring the Dust Grains and Distance to X Persei Via Its X-ray Halo

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    2006-09-01

    We propose to observe the X-ray halo of the high mass X-ray binary pulsar X Per to measure interstellar dust grains along the line of sight (LOS) and to determine the distance to X Per. The X-ray halo is formed by scattering from grains along the LOS, which for X Per appear to be concentrated in one molecular cloud. Unlike many other X-ray halo observations, this low-absorption high-latitude sightline is well-characterized from absorption spectroscopy done with HST, Copernicus, and FUSE. This halo observation will measure the distance to the cloud and the dust size distribution in it. We will also be able to determine the distance to X Per by measuring the time delayed pulses in the X-ray halo.

  13. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis

  14. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Opticallymore » classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.« less

  15. Wind-embedded shocks in FASTWIND: X-ray emission and K-shell absorption

    NASA Astrophysics Data System (ADS)

    Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.

    2017-11-01

    EUV and X-ray radiation emitted from wind-embedded shocks can affect the ionization balance in the outer atmospheres of massive stars, and can also be the mechanism responsible for producing highly ionized atoms detected in the wind UV spectra. To investigate these processes, we implemented the emission from wind-embedded shocks and related physics into our atmosphere/spectrum synthesis code FASTWIND. We also account for the high energy absorption of the cool wind, by adding important K-shell opacities. Various tests justfying our approach have been described by Carneiro+(2016, A&A 590, A88). In particular, we studied the impact of X-ray emission on the ionization balance of important elements. In almost all the cases, the lower ionization stages (O iv, N iv, P v) are depleted and the higher stages (N v, O v, O vi) become enhanced. Moreover, also He lines (in particular He ii 1640 and He ii 4686) can be affected as well. Finally, we carried out an extensive discussion of the high-energy mass absorption coefficient, κν, regarding its spatial variation and dependence on T eff. We found that (i) the approximation of a radially constant κν can be justified for r >= 1.2R * and λ <= 18 Å, and also for many models at longer wavelengths. (ii) In order to estimate the actual value of this quantity, however, the He ii background needs to be considered from detailed modeling.

  16. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  17. Ultrasonically modulated x-ray phase contrast and vibration potential imaging methods

    NASA Astrophysics Data System (ADS)

    Hamilton, Theron J.; Cao, Guohua; Wang, Shougang; Bailat, Claude J.; Nguyen, Cuong K.; Li, Shengqiong; Gehring, Stephan; Wands, Jack; Gusev, Vitalyi; Rose-Petruck, Christoph; Diebold, Gerald J.

    2006-02-01

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high resolution x-ray imaging of tissue. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging various tumor phantoms and tumors from mice. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. In a related effort we report progress on development of an imaging technique using and electrokinetic effect known as the ultrasonic vibration potential. The ultrasonic vibration potential refers to the voltage generated when ultrasound traverses a colloidal or ionic fluid. The theory of imaging based on the vibration potential is reviewed, and an expression given that describes the signal from an arbitrary object. The experimental apparatus consists of a pair of parallel plates connected to the irradiated body, a low noise preamplifier, a radio frequency lock-in amplifier, translation stages for the ultrasonic transducer that generates the ultrasound, and a computer for data storage and image formation. Experiments are reported where bursts of ultrasound are directed onto colloidal silica objects placed within inert bodies.

  18. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  19. X-ray phase-contrast imaging at 100 keV on a conventional source

    PubMed Central

    Thüring, T.; Abis, M.; Wang, Z.; David, C.; Stampanoni, M.

    2014-01-01

    X-ray grating interferometry is a promising imaging technique sensitive to attenuation, refraction and scattering of the radiation. Applications of this technique in the energy range between 80 and 150 keV pose severe technical challenges, and are still mostly unexplored. Phase-contrast X-ray imaging at such high energies is of relevant scientific and industrial interest, in particular for the investigation of strongly absorbing or thick materials as well as for medical imaging. Here we show the successful implementation of a Talbot-Lau interferometer operated at 100 keV using a conventional X-ray tube and a compact geometry, with a total length of 54 cm. We present the edge-on illumination of the gratings in order to overcome the current fabrication limits. Finally, the curved structures match the beam divergence and allow a large field of view on a short and efficient setup. PMID:24903579

  20. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  1. X-ray absorption studies of chlorine valence and local environments in borosilicate waste glasses

    NASA Astrophysics Data System (ADS)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.; Stolte, W. C.; Demchenko, I. N.

    2011-01-01

    Chlorine (Cl) is a constituent of certain types of nuclear wastes and its presence can affect the physical and chemical properties of silicate melts and glasses developed for the immobilization of such wastes. Cl K-edge X-ray absorption spectra (XAS) were collected and analyzed to characterize the unknown Cl environments in borosilicate waste glass formulations, ranging in Cl-content from 0.23 to 0.94 wt.%. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data for the glasses show trends dependent on calcium (Ca) content. Near-edge data for the Ca-rich glasses are most similar to the Cl XANES of CaCl 2, where Cl - is coordinated to three Ca atoms, while the XANES for the Ca-poor glasses are more similar to the mineral davyne, where Cl is most commonly coordinated to two Ca in one site, as well as Cl and oxygen nearest-neighbors in other sites. With increasing Ca content in the glass, Cl XANES for the glasses approach that for CaCl 2, indicating more Ca nearest-neighbors around Cl. Reliable structural information obtained from the EXAFS data for the glasses is limited, however, to Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na distances; Cl sbnd Ca contributions could not be fit to the glass data, due to the narrow k-space range available for analysis. Structural models that best fit the glass EXAFS data include Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na correlations, where Cl sbnd O and Cl sbnd Na distances decrease by approximately 0.16 Å as glass Ca content increases. XAS for the glasses indicates Cl - is found in multiple sites where most Cl-sites have Ca neighbors, with oxygen, and possibly, Na second-nearest neighbors. EXAFS analyses suggest that Cl sbnd Cl environments may also exist in the glasses in minor amounts. These results are generally consistent with earlier findings for silicate glasses, where Cl - was associated with Ca 2+ and Na + in network modifier sites.

  2. Dynamical Core-Hole Screening in the X-Ray Absorption Spectra of Hydrogenated Carbon Nanotubes And Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessely, O.; /Uppsala U. /Imperial Coll., London; Katsnelson, M.I.

    2009-04-30

    We have calculated the electronic structure and the x-ray absorption (XA) spectrum of a hydrogenated single graphite plane, in order to simulate recent experimental results on hydrogenated single wall carbon nanotubes (SWCNT) as well as hydrogenated graphene. We find that the presence of H induces a substantial component of sp{sup 3} bonding and as a result the {pi} and {pi}* components to the electronic structure vanish. We have calculated a theoretical x-ray absorption spectrum using a multiband version of the Mahan-Nozieres-De Dominicis theory. By making a fitting of the XA signal of C atoms that have H attached to themmore » and C atoms without H in the vicinity we obtain a good representation of the experimental data and we can draw the conclusion that in the experiments [A. Nikitin et al., Phys. Rev. Lett. 95, 225507 (2005)] some 35-50 % H have been absorbed in the SWCNT.« less

  3. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  4. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy studies of CaSO 4:Dy thermoluminescent phosphors

    NASA Astrophysics Data System (ADS)

    Bakshi, A. K.; Jha, S. N.; Olivi, L.; Phase, D. M.; Kher, R. K.; Bhattacharyya, D.

    2007-11-01

    Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO4:Dy phosphor samples at the Dy L3 edge with synchrotron radiation. Measurements were carried out on a set of samples which were subjected to post-preparation annealing at different temperatures and for different cycles. The EXAFS data have been analysed to find the Dy-S and Dy-O bond lengths in the neighbourhood of the Dy atoms in a CaSO4 matrix. The observations from EXAFS measurements were verified with XANES and XPS techniques. On the basis of these measurements, efforts were made to explain the loss of thermoluminescence sensitivity of CaSO4:Dy phosphors after repeated cycles of annealing at 400 °C in air for 1 h.

  5. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    PubMed

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  6. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  7. Micro-X-Ray computed tomography of natural and experimental melt segregations and other geological materials with small absorption contrasts

    NASA Astrophysics Data System (ADS)

    Baumgartner, L.; Wohlers, A.; Müller, T.

    2003-04-01

    Micro X-ray tomography is rapidly advancing to an important tool for non-destructive 3-D imaging of geological and engineering materials. We have been using a Skyscan 1072 system (Skyscan, Belgium) to successfully image as diverse geological materials as sandstones, foraminifers, run products of hydrothermal partial melting experiments, and metamorphic rocks. The system has a conical x-ray source with a spot size of about 5µm. The X-ray source is powered by a 10W, 20--100kV, tunable supply. Images are acquired with a scintillator coupled by glass fiber optics to a 1024×1024 pixel, 12-bit CCD. The sample is rotated for 180^o (or 360^o) in steps as small as 0.24^o. Transmission image are back projected, using a Feldkamp algorithm, into a stack of up to 1000 1K×1K images, each of which represents a horizontal cross section of the sample. We have succeeded to image very low contrast systems (feldspar/quartz and olivine/calcite/dolomite), by using extended acquisition times (up to 24 hours), and low excitation voltages (30--40kV) in combination with aluminum filters to reduce beam hardening. Some quartzites collected in the Little Cottonwood contact aureole have been infiltrated by a pegmatitic liquid. These liquids are the products of partial melting in intercalated meta-pelites. 2-D images (thin sections) clearly show, that poly-crystalline interstitial feldspar and mica represent precipitates from the infiltrated pegmatitic liquid (acute quartz-feldspar junctions similar to melting experiments). The micro-CT images reveal a thin mica-feldspar network. It forms highly anastomosing, multiply interconnected networks surrounding quartz grains. They connect larger, up to 1mm sized ponds, located in triple junctions. These results have important consequences for porous melt transport in shallow crustal rocks. Micro-CT images of spinifex textured olivine in marbles from the Ubehebe Peak contact aureole (Death Valley, California) reveal two preferential growth

  8. X-ray absorption radiography for high pressure shock wave studies

    NASA Astrophysics Data System (ADS)

    Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.

    2018-01-01

    The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.

  9. 3D printing X-Ray Quality Control Phantoms. A Low Contrast Paradigm

    NASA Astrophysics Data System (ADS)

    Kapetanakis, I.; Fountos, G.; Michail, C.; Valais, I.; Kalyvas, N.

    2017-11-01

    Current 3D printing technology products may be usable in various biomedical applications. Such an application is the creation of X-ray quality control phantoms. In this work a self-assembled 3D printer (geeetech i3) was used for the design of a simple low contrast phantom. The printing material was Polylactic Acid (PLA) (100% printing density). Low contrast scheme was achieved by creating air-holes with different diameters and thicknesses, ranging from 1mm to 9mm. The phantom was irradiated at a Philips Diagnost 93 fluoroscopic installation at 40kV-70kV with the semi-automatic mode. The images were recorded with an Agfa cr30-x CR system and assessed with ImageJ software. The best contrast value observed was approximately 33%. In low contrast detectability check it was found that the 1mm diameter hole was always visible, for thickness larger or equal to 4mm. A reason for not being able to distinguish 1mm in smaller thicknesses might be the presence of printing patterns on the final image, which increased the structure noise. In conclusion the construction of a contrast resolution phantom with a 3D printer is feasible. The quality of the final product depends upon the printer accuracy and the material characteristics.

  10. An X-ray absorption spectroscopy study of the inversion degree in zinc ferrite nanocrystals dispersed on a highly porous silica aerogel matrix.

    PubMed

    Carta, D; Marras, C; Loche, D; Mountjoy, G; Ahmed, S I; Corrias, A

    2013-02-07

    The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix.

  11. Tomographic image reconstruction using x-ray phase information

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  12. Improved Modeling of Midlatitude D-Region Ionospheric Absorption of High Frequency Radio Signals During Solar X-Ray Flares

    DTIC Science & Technology

    2009-06-01

    a physics-based model which calculates mid - latitude ionospheric electron and ion density profiles for prediction of HF propagation and absorption...greatest in the summer due to longer periods of daylight and ionization. For times not close to sunrise or sunset, mid - latitude ionospheric ...IMPROVED MODELING OF MIDLATITUDE D-REGION IONOSPHERIC ABSORPTION OF HIGH FREQUENCY RADIO SIGNALS DURING SOLAR X-RAY FLARES 1

  13. TWO DISTINCT-ABSORPTION X-RAY COMPONENTS FROM TYPE IIn SUPERNOVAE: EVIDENCE FOR ASPHERICITY IN THE CIRCUMSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuda, Satoru; Tsuboi, Yohko; Maeda, Keiichi

    2016-12-01

    We present multi-epoch X-ray spectral observations of three Type IIn supernovae (SNe), SN 2005kd, SN 2006jd, and SN 2010jl, acquired with Chandra , XMM-Newton , Suzaku , and Swift . Previous extensive X-ray studies of SN 2010jl have revealed that X-ray spectra are dominated by thermal emission, which likely arises from a hot plasma heated by a forward shock propagating into a massive circumstellar medium (CSM). Interestingly, an additional soft X-ray component was required to reproduce the spectra at a period of ∼1–2 years after the SN explosion. Although this component is likely associated with the SN, its origin remained an open question. Wemore » find a similar, additional soft X-ray component from the other two SNe IIn as well. Given this finding, we present a new interpretation for the origin of this component; it is thermal emission from a forward shock essentially identical to the hard X-ray component, but directly reaches us from a void of the dense CSM. Namely, the hard and soft components are responsible for the heavily and moderately absorbed components, respectively. The co-existence of the two components with distinct absorptions as well as the delayed emergence of the moderately absorbed X-ray component could be evidence for asphericity of the CSM. We show that the X-ray spectral evolution can be qualitatively explained by considering a torus-like geometry for the dense CSM. Based on our X-ray spectral analyses, we estimate the radius of the torus-like CSM to be on the order of ∼5 × 10{sup 16} cm.« less

  14. Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging.

    PubMed

    Yin, Qian; Yap, Felix Y; Yin, Lichen; Ma, Liang; Zhou, Qin; Dobrucki, Lawrence W; Fan, Timothy M; Gaba, Ron C; Cheng, Jianjun

    2013-09-18

    Biocompatible poly(iohexol) nanoparticles, prepared through cross-linking of iohexol and hexamethylene diisocyanate followed by coprecipitation of the resulting cross-linked polymer with mPEG-polylactide, were utilized as contrast agents for in vivo X-ray computed tomography (CT) imaging. Compared to conventional small-molecule contrast agents, poly(iohexol) nanoparticles exhibited substantially protracted retention within the tumor bed and a 36-fold increase in CT contrast 4 h post injection, which makes it possible to acquire CT images with improved diagnosis accuracy over a broad time frame without multiple administrations.

  15. Accurate Modeling of X-ray Extinction by Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Hoffman, John; Draine, B. T.

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  16. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, John; Draine, B. T., E-mail: jah5@astro.princeton.edu, E-mail: draine@astro.princeton.edu

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must bemore » taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.« less

  17. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE PAGES

    Nazaretski, E.; Yan, H.; Lauer, K.; ...

    2017-10-05

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  18. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  19. Probing the CZTS/CdS heterojunction utilizing photoelectrochemistry and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Turnbull, Matthew J.; Vaccarello, Daniel; Wong, Jonathan; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng

    2018-04-01

    The importance of renewable resources is becoming more and more influential on research due to the depletion of fossil fuels. Cost-effective ways of harvesting solar energy should also be at the forefront of these investigations. Cu2ZnSnS4 (CZTS) solar cells are well within the frame of these goals, and a thorough understanding of how they are made and processed synthetically is crucial. The CZTS/CdS heterojunction was examined using photoelectrochemistry and synchrotron radiation (SR) spectroscopy. These tools provided physical insights into this interface that was formed by the electrophoretic deposition of CZTS nanocrystals and chemical bath deposition (CBD) of CdS for the respective films. It was discovered that CBD induced a change in the local and long range environment of the Zn in the CZTS lattice, which was detrimental to the photoresponse. X-ray absorption near-edge structures and extended X-ray absorption fine structures (EXAFSs) of the junction showed that this change was at an atomic level and was associated with the coordination of oxygen to zinc. This was confirmed through FEFF fitting of the EXAFS and through IR spectroscopy. It was found that this change in both photoresponse and the Zn coordination can be reversed with the use of low temperature annealing. Investigating CZTS through SR techniques provides detailed structural information of minor changes from the zinc perspective.

  20. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  1. Revealing the electronic ground state of ReNiO3 combining Ni-L3 x-ray absorption and resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Bisogni, Valentina; Catalano, Sara; Green, Robert; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Balandesh, Shadi; Strocov, Vladimir N.; Zubko, Pavlo; Sawatzky, George; Triscone, Jean-Marc; Schmitt, Thorsten

    Rare-earth nickelates ReNiO3 attract a lot of interest thanks to their intriguing physical properties like sharp metal to insulator transition, unusual magnetic order and expected superconductivity in nickelate-based heterostructures. Full understanding of these materials, however, is hampered by the difficulties in describing their electronic ground state (GS). Taking a NdNiO3 thin film as a representative example, we reveal with x-ray absorption and resonant inelastic x-ray scattering unusual coexistence of bound and continuum excitations, providing strong evidence for abundant O 2p holes in the GS of these materials. Using an Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the O 2p valence band, confirming suggestions that these materials exhibit a negative charge-transfer energy, with O 2p states extending across the Fermi level.

  2. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  3. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  4. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    NASA Astrophysics Data System (ADS)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  5. Combining Sequential Extractions and X-ray Absorption Spectroscopy for Quantitative and Qualitative Zinc Speciation in Soil

    NASA Astrophysics Data System (ADS)

    Bauer, Tatiana; Minkina, Tatiana; Batukaev, Abdulmalik; Nevidomskaya, Dina; Burachevskaya, Marina; Tsitsuashvili, Viktoriya; Urazgildieva, Kamilya

    2017-04-01

    The combined use of X-ray absorption spectrometry and extractive fractionation is an effective approach for studying the interaction of metal ions with soil compounds and identifying the phases-carriers of metals in soil and their stable fixation. These studies were carried out using the technique of X-ray absorption spectroscopy and chemical extractive fractionation. In a model experiment the samples taken in Calcic Chernozem were artificially contaminated with higher portion of Zn(NO3)2 (2000 mg/kg). The metal were incubated in soil samples for 2 year. The samples of soil mineral and organic phases (calcite, kaolinite, bentonite, humic acids) were saturated with Zn2+ from a solution of nitrate salts of metal. The total content of Zn in soil and soil various phases was determined using the X-ray fluorescence method. Extended X-ray absorption fine structure (EXAFS) Zn was measured at the Structural Materials Science beamline of the Kurchatov Center for Synchrotron Radiation. Sequential fractionation of Zn in soil conducted by Tessier method (Tessier et al., 1979) which determining 5 fractions of metals in soil: exchangeable, bound to Fe-Mn oxide, bound to carbonate, bound to the organic matter, and bound to silicate (residual). This methodology has so far more than 4000 citations (Web of Science), which demonstrates the popularity of this approach. Much Zn compounds are contained in uncontaminated soils in stable primary and secondary silicates inherited from the parental rocks (67% of the total concentrations in all fractions), which is a regional trait of soils in the fore-Caucasian plain. Extracted fractionation of metal compounds in soil samples, artificially contaminated with Zn salts, indicates the priority holding of Zn2+ ions by silicates, carbonates and Fe-Mn oxides. The Zn content significantly increases in the exchangeable fraction. Atomic structure study of the soil various phases saturated with Zn2+ ion by using (XANES) X-ray absorption spectroscopy

  6. Arsenite Oxidation by a Poorly-Crystalline Manganese Oxide 2. Results from X-ray Absorption Spectroscopy and X-ray Diffraction

    PubMed Central

    Lafferty, Brandon J.; Ginder-Vogel, Matthew; Zhu, Mengqiang; Livi, Kenneth J. T.; Sparks, Donald L.

    2010-01-01

    Arsenite (AsIII) oxidation by manganese oxides (Mn-oxides) serves to detoxify and, under many conditions, immobilize arsenic (As) by forming arsenate (AsV). AsIII oxidation by MnIV-oxides can be quite complex, involving many simultaneous forward reactions and subsequent back reactions. During AsIII oxidation by Mn-oxides, a reduction in oxidation rate is often observed, which is attributed to Mn-oxide surface passivation. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data show that MnII sorption on a poorly-crystalline hexagonal birnessite (δ-MnO2) is important in passivation early during reaction with AsIII. Also, it appears that MnIII in the δ-MnO2 structure is formed by conproportionation of sorbed MnII and MnIV in the mineral structure. The content of MnIII within the δ-MnO2 structure appears to increase as the reaction proceeds. Binding of AsV to δ-MnO2 also changes as MnIII becomes more prominent in the δ-MnO2 structure. The data presented indicate that AsIII oxidation and AsV sorption by poorly-crystalline δ-MnO2 is greatly affected by Mn oxidation state in the δ-MnO2 structure. PMID:20977204

  7. Development of an X-ray prism for a combined diffraction enhanced imaging and fluorescence imaging system

    NASA Astrophysics Data System (ADS)

    Bewer, Brian E.

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.

  8. X-Ray Continua of Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    The targets for this program, PG1416-129 and LBQS 2212-1759 were known to be Broad Absorption Line Quasars (BALQSOs). BALQSOs are highly absorbed in soft X-rays. Good high energy response of Rossi-XTE made them ideal targets for observation. We observed LBQS 2212-1759 with PCA. We have now analyzed the data and found that the source was not detected. Since our target was expected to be faint, reliable estimate of background was very important. With the release of new FTOOLS (version 4.1) we were able to do so. We also analyzed a well known bright object and verified our results with the published data. This gave us confidence in the non-detection of our target LBQS 2212-1759. We are currently investigating the implications of this non-detection. Due to some scheduling problems, our second target PG1416-129 was not observed in A01. It was observed on 06/26/98. This target was detected with RXTE. We are now working on the spectral analysis with XSPEC.

  9. Properties of iopamidol-incorporated poly(vinyl alcohol) microparticle as an X-ray imaging flow tracer.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-02-10

    We have recently reported on poly(vinyl alcohol) microparticles containing X-ray contrast agent, iopamidol, designed as a flow tracer working in synchrotron X-ray imaging ( Biosens. Bioelectron. 2010 , 25 , 1571 ). Although iopamidol is physically encapsulated in the microparticles, it displays a great contrast enhancement and stable feasibility in in vitro human blood pool. Nonetheless, a direct relation between the absolute amount of incorporated iopamidol and the enhancement in imaging efficiency was not observed. In this study, physical properties of the designed microparticle are systematically investigated experimentally with theoretical interpretation to correlate an enhancement in X-ray imaging efficiency. The compositional ratio of X-ray contrast agent in polymeric microparticle is controlled as 1/1 and 10/1 [contrast agent/polymer microparticle (w/w)] with changed degree of cross-linkings. Flory-Huggins interaction parameter (χ), retractive force (τ) and degree of swelling of the designed polymeric microparticles are investigated. In addition, the hydrodynamic size (D(H)) and ζ-potential are evaluated in terms of environment responsiveness. The physical properties of the designed flow tracer microparticles under a given condition are observed to be strongly related with the X-ray absorption efficiency, which are also supported by the Beer-Lambert-Bouguer law. The designed microparticles are almost nontoxic with a reasonable concentration and time period, enough to be utilized as a flow tracer in various biomedical applications. This study would contribute to the basic understanding on the physical property connected with the imaging efficiency of contrast agents.

  10. Finite temperature effects on the X-ray absorption spectra of energy related materials

    NASA Astrophysics Data System (ADS)

    Pascal, Tod; Prendergast, David

    2014-03-01

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.

  11. High speed X-ray phase contrast imaging of energetic composites under dynamic compression

    NASA Astrophysics Data System (ADS)

    Parab, Niranjan D.; Roberts, Zane A.; Harr, Michael H.; Mares, Jesus O.; Casey, Alex D.; Gunduz, I. Emre; Hudspeth, Matthew; Claus, Benjamin; Sun, Tao; Fezzaa, Kamel; Son, Steven F.; Chen, Weinong W.

    2016-09-01

    Fracture of crystals and frictional heating are associated with the formation of "hot spots" (localized heating) in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and the fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and the fracture mechanisms in PBXs composed of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene binder doped with iron (III) oxide. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speed synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. The obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted.

  12. High speed X-ray phase contrast imaging of energetic composites under dynamic compression

    DOE PAGES

    Parab, Niranjan D.; Roberts, Zane A.; Harr, Michael H.; ...

    2016-09-26

    Fracture of crystals and subsequent frictional heating are associated with formation of hot spots in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and fracture mechanisms in PBXs manufactured using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene (HTPB) binder. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speedmore » synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. In conclusion, the obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted.« less

  13. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  14. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  15. Ab Initio Theory of Dynamical Core-Hole Screening in Graphite from X-Ray Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Wessely, O.; Katsnelson, M. I.; Eriksson, O.

    2005-04-01

    We have implemented the effect of dynamical core-hole screening, as given by Mahan, Nozières, and De Dominicis, in a first-principles based method and applied the theory to the x-ray absorption (XA) spectrum of graphite. It turns out that two of the conspicuous peaks of graphite are well described, both regarding the position, shape, and relative intensity, whereas one peak is absent in the theory. Only by incorporation of both excitonic and delocalized processes can a full account of the experimental spectrum be obtained theoretically, and we interpret the XA spectrum in graphite to be the result of a well screened and a poor screened process, much in the same way as is done for core level x-ray photoelectron spectroscopy.

  16. The Soft X-ray View of Ultra Fast Outflows

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.

    2017-10-01

    The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.

  17. Crystallography with online optical and X-ray absorption spectroscopies demonstrates an ordered mechanism in copper nitrite reductase.

    PubMed

    Hough, Michael A; Antonyuk, Svetlana V; Strange, Richard W; Eady, Robert R; Hasnain, S Samar

    2008-04-25

    Nitrite reductases are key enzymes that perform the first committed step in the denitrification process and reduce nitrite to nitric oxide. In copper nitrite reductases, an electron is delivered from the type 1 copper (T1Cu) centre to the type 2 copper (T2Cu) centre where catalysis occurs. Despite significant structural and mechanistic studies, it remains controversial whether the substrates, nitrite, electron and proton are utilised in an ordered or random manner. We have used crystallography, together with online X-ray absorption spectroscopy and optical spectroscopy, to show that X-rays rapidly and selectively photoreduce the T1Cu centre, but that the T2Cu centre does not photoreduce directly over a typical crystallographic data collection time. Furthermore, internal electron transfer between the T1Cu and T2Cu centres does not occur, and the T2Cu centre remains oxidised. These data unambiguously demonstrate an 'ordered' mechanism in which electron transfer is gated by binding of nitrite to the T2Cu. Furthermore, the use of online multiple spectroscopic techniques shows their value in assessing radiation-induced redox changes at different metal sites and demonstrates the importance of ensuring the correct status of redox centres in a crystal structure determination. Here, optical spectroscopy has shown a very high sensitivity for detecting the change in T1Cu redox state, while X-ray absorption spectroscopy has reported on the redox status of the T2Cu site, as this centre has no detectable optical absorption.

  18. Histology-validated x-ray tomography for imaging human coronary arteries

    NASA Astrophysics Data System (ADS)

    Buscema, Marzia; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Matviykiv, Sofiya; Holme, Margaret N.; Hipp, Alexander; Beckmann, Felix; Saxer, Till; Michaud, Katarzyna; Müller, Bert

    2016-10-01

    Heart disease is the number one cause of death worldwide. To improve therapy and patient outcome, the knowledge of anatomical changes in terms of lumen morphology and tissue composition of constricted arteries is crucial for designing a localized drug delivery to treat atherosclerosis disease. Traditional tissue characterization by histology is a pivotal tool, although it brings disadvantages such as vessel morphology modification during decalcification and slicing. X-ray tomography in absorption and phase contrast modes yields a deep understanding in blood vessel anatomy in healthy and diseased stages: measurements in absorption mode make visible highly absorbing tissue components including cholesterol plaques, whereas phase contrast tomography gains better contrast of the soft tissue components such as vessel walls. Established synchrotron radiation-based micro-CT techniques ensure high performance in terms of 3D visualization of highly absorbing and soft tissues.

  19. X-ray phase contrast imaging of objects with subpixel-size inhomogeneities: a geometrical optics model.

    PubMed

    Gasilov, Sergei V; Coan, Paola

    2012-09-01

    Several x-ray phase contrast extraction algorithms use a set of images acquired along the rocking curve of a perfect flat analyzer crystal to study the internal structure of objects. By measuring the angular shift of the rocking curve peak, one can determine the local deflections of the x-ray beam propagated through a sample. Additionally, some objects determine a broadening of the crystal rocking curve, which can be explained in terms of multiple refraction of x rays by many subpixel-size inhomogeneities contained in the sample. This fact may allow us to differentiate between materials and features characterized by different refraction properties. In the present work we derive an expression for the beam broadening in the form of a linear integral of the quantity related to statistical properties of the dielectric susceptibility distribution function of the object.

  20. X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region

    NASA Astrophysics Data System (ADS)

    Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben

    2009-10-01

    Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.