Sample records for x-ray all-sky monitor

  1. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  2. Results from the Ariel-5 all-sky X-ray monitor

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    A summary of results obtained from the first year of Ariel-5 all-sky monitor operation is presented. Transient source observations, as well as the results of long term studies of Sco X-1, Cyg X-3, and Cyg X-1 are described. By example, the included results are indicative of the temporal effects to which the all-sky monitor remains sensitive as it begins its second year of observation.

  3. X-ray Lobster Eye all-sky monitor for rocket experiment

    NASA Astrophysics Data System (ADS)

    Dániel, V.; Inneman, A.; Pína, L.; Zadražil, V.; Báča, T.; Stehlíková, V.; Nentvich, O.; Urban, M.; Maršíková, V.; McEntaffer, R.; Tutt, J.; Schulz, T.

    2017-05-01

    This paper presents a Lobster Eye (LE) X-ray telescope developed for the Water Recovery X-ray Rocket (WRX-R) experiment. The primary payload of the rocket experiment is a soft X-ray spectroscope developed by the Pennsylvania State University (PSU), USA. The Czech team participates by hard LE X-ray telescope as a secondary payload. The astrophysical objective of the rocket experiment is the Vela Supernova of size about 8deg x 8deg. In the center of the nebula is a neutron star with a strong magnetic field, roughly the mass of the Sun and a diameter of about 20 kilometers forming the Vela pulsar. The primary objective of WRX-R is the spectral measurement of the outer part of the nebula in soft X-ray and FOV of 3.25deg x 3.25deg. The secondary objective (hard LE X-ray telescope) is the Vela neutron star observation. The hard LE telescope consists of two X-ray telescopes with the Timepix detector. First telescope uses 2D LE Schmidt optics (2DLE- REX) with focal length over 1m and 4 Timepix detectors (2x2 matrix). The telescope FOV is 1.5deg x 1.5deg with spectral range from 3keV to 60keV. The second telescope uses 1D LE Schmidt optics (1D-LE-REX) with focal length of 25 cm and one Timepix detector. The telescope is made as a wide field with FOV 4.5deg x 3.5deg and spectral range from 3keV to 40keV. The rocket experiment serves as a technology demonstration mission for the payloads. The LE X-ray telescopes can be in the future used as all-sky monitor/surveyor. The astrophysical observation can cover the hard X-ray observation of astrophysical sources in time-domain, the GRBs surveying or the exploration of the gravitational wave sources.

  4. All-Sky Monitoring of Variable Sources with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, Mark; Camero-Arranz, Ascension; Becklen, Elif; Jenke, Peter; Cpe. K/ K/; Steele, Iain; Case, Gary; Cherry, Mike; Rodi, James; hide

    2011-01-01

    Using the Gamma ray Burst Monitor (GBM) on Fermi, we monitor the transient hard X-ray/soft gamma ray sky. The twelve GBM NaI detectors span 8 keV to 1 MeV, while the two BGO detectors span 150 keV to 40 MeV. We use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. Our monitoring reveals predictable and unpredictable phenomena such as transient outbursts and state changes. With GBM we also track the pulsed flux and spin frequency of accretion powered pulsars using epoch-folding techniques. Searches for quasi-periodic oscillations and X-ray bursts are also possible with GBM all-sky monitoring. Highlights from the Earth Occultation and Pulsar projects will be presented including our recent surprising discovery of variations in the total flux from the Crab. Inclusion of an all-sky monitor is crucial for a successful future X-ray timing mission.

  5. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  6. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Hasan, Mohammed; Seetha, S.; Bhattacharya, Dipankar

    2018-02-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the energy range 2.5-10 keV. SSM scans the sky for X-ray transient sources in this energy range of interest. If an X-ray transient source is detected in outburst by SSM, the information will be provided to the astronomical community for follow-up observations to do a detailed study of the source in various other bands. SSM instrument, since its power-ON in orbit, has observed a number of X-ray sources. This paper discusses observations of few X-ray transients by SSM. The flux reported by SSM for few sources during its Performance Verification phase (PV phase) is studied and the results are discussed.

  7. Rossi X-Ray Timing Explorer All-Sky Monitor Localization of SGR 1627-41

    NASA Astrophysics Data System (ADS)

    Smith, Donald A.; Bradt, Hale V.; Levine, Alan M.

    1999-07-01

    The fourth unambiguously identified soft gamma repeater (SGR), SGR 1627-41, was discovered with the BATSE instrument on 1998 June 15. Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6° segment of a narrow (19") annulus. We present two bursts from this source observed by the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer. We use the ASM data to further constrain the source location to a 5' long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3 arcmin of the supernova remnant G337.0-0.1. The probability that a supernova remnant would fall so close to the error box purely by chance is ~5%.

  8. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, trackedmore » and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.« less

  9. WATCHDOG: A Comprehensive All-sky Database of Galactic Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  10. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto

    2011-09-01

    We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listedmore » in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.« less

  11. The second ROSAT All-Sky Survey source catalogue: the deepest X-ray All-Sky Survey before eROSITA

    NASA Astrophysics Data System (ADS)

    Boller, T.; Freyberg, M.; Truemper, J.

    2014-07-01

    We present the second ROSAT all-sky survey source catalogue (RASS2, (Boller, Freyberg, Truemper 2014, submitted)). The RASS2 is an extension of the ROSAT Bright Source Catalogue (BSC) and the ROSAT Faint Source Catalogue (FSC). The total number of sources in the second RASS catalogue is 124489. The extensions include (i) the supply of new user data products, i.e., X-ray images, X-ray spectra, and X-ray light curves, (ii) a visual screening of each individual detection, (iii) an improved detection algorithm compared to the SASS II processing. This results into an as most as reliable and as most as complete catalogue of point sources detected during the ROSAT Survey observations. We discuss for the first time the intra-day timing and spectral properties of the second RASS catalogue. We find new highly variable sources and we discuss their timing properties. Power law fits have been applied which allows to determine X-ray fluxes, X-ray absorbing columns, and X-ray photon indices. We give access to the second RASS catalogue and the associated data products via a web-interface to allow the community to perform further scientific exploration. The RASS2 catalogue provides the deepest X-ray All-Sky Survey before eROSITA data will become available.

  12. The 105-Month Swift-BAT All-Sky Hard X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; hide

    2018-01-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40 x 10(exp -12) erg s(exp -1) cm(exp -2) over 90% of the sky and 7.24 x 10(exp -12) erg s(exp -1) cm(exp -2) over 50% of the sky in the 14-195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV band above the 4.8 sigma significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z < 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  13. The All-Sky Swift - INTEGRAL X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    All-sky surveys at hard X-ray energies (above 15 keV) have proven to be a powerful technique in detecting Galactic and extragalactic source populations. Most of the radiation at hard X-ray energies originates in non-thermal processes. These processes take place in extreme conditions of gravitational fields, of electromagnetic field, and also in explosive events. Such extreme conditions can be found in the Milk Way in the vicinity of neutron stars, black holes, and supernovae. Also extragalactic sources are known to be hard X-ray emitters like Active Galactic Nuclei (AGNs), blazars, and Clusters of Galaxies. Currently the most sensitive flying hard X-ray detectors are the Burst Alert Telescope (BAT) on board the NASA mission Swift and the INTEGRAL Soft-Gamma Ray Imager (IBIS/ISGRI) on board the ESA mission INTEGRAL. BAT and IBIS/ISGRI are coded- mask telescopes that shed continuously light on the Galactic and the extragalactic source populations. However, coded-mask telescopes suffer from heavy systematic effects (errors) preventing them from reaching their theoretical limiting sensitivity. Furthermore, by design, they block ~50% of the incident photons causing and increase of statistical noise. As a consequence BAT and IBIS/ISGRI are not sensitive enough to detect faint objects. In addition it has been proven that the Galactic survey of these instruments is limited by systematic uncertainties. Therefore, further observations on the Galactic plane will not improve the sensitivity of the survey of BAT and IBIS/ISGRI. In this project we show that it is possible to overcome the limits of BAT and of IBIS/ISGRI by combining their observations in the 18 55 keV energy range. We call it the SIX survey that stands for Swift - INTEGRAL X-ray survey. Two major advantages are obtained by merging the observations of BAT and IBIS/ISGRI: 1) the exposure is greatly enhanced (sum of BAT and IBIS/ISGRI) and therefore the sensitivity is improved; 2) the systematic errors of both

  14. Time Domain X-ray Astronomy with "All-Sky" Focusing Telescopes

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2016-04-01

    The largest and most diverse types of temporal variations in all of astronomy occur in the soft, i.e. 0.5 to 10 keV, X-ray band. They range from millisecond QPO’s in compact binaries to year long flares from AGNs due to the absorption of a star by a SMBH, and the appearance of transient sources at decadal intervals. Models predict that at least some gravitational waves will be accompanied by an X-ray flare. A typical GRB produces more photons/sq. cm. in the soft band than it does in the Swift BAT 15 to 150 keV band. In addition the GRB X-ray fluence and knowledge of the details of the onset of the X-ray afterglow is obtained by observing the seamless transition from the active burst phase that has been attributed to internal shocks to the afterglow phases that has been attributed to external shocks. Detecting orphan X-ray afterglows will augment the event rate. With high sensitivity detectors some GRB identifications are likely to be with the youngest, most distant galaxies in the universe. Previous all-sky X-ray monitors have been non focusing limited field of view scanning instruments. An “All-Sky” (actually several ster FOV), focusing lobster-eye X-ray telescope will have much more grasp than the previous instruments and will allow a wide range of topics to be studied simultaneously. Two types of lobster-eye telescopes have been proposed. One type focuses in one dimension and uses a coded mask for resolution in the second. The other type focuses in two dimensions but has less effective area and less bandwidth. Both types are compatible with a Probe mission.

  15. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  16. The 105-Month Swift-BAT All-sky Hard X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; Ricci, Claudio; Lien, Amy; Trakhtenbrot, Benny

    2018-03-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 90% of the sky and 7.24× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 50% of the sky in the 14–195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14–195 keV band above the 4.8σ significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z< 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  17. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; hide

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  18. Science Goals for an All-sky Viewing Observatory in X-rays

    NASA Astrophysics Data System (ADS)

    Remillard, R. A.; Levine, A. M.; Morgan, E. H.; Bradt, H. V.

    2003-03-01

    We describe a concept for a NASA SMEX Mission that will provide a comprehensive investigation of cosmic explosions. These range from the short flashes at cosmological distances in Gamma-ray bursts, to the moments of relativistic mass ejections in Galactic microquasars, to the panorama of outbursts used to identify the stellar-scale black holes in our Galaxy. With an equatorial launch, an array of 31 cameras can cover 97% of the sky with an average exposure efficiency of 65%. Coded mask cameras with Xe detectors (1.5-12 keV) are chosen for their ability to distinguish thermal and non-thermal processes, while providing high throughput and msec time resolution to capture the detailed evolution of bright events. This mission, with 1' position accuracy, would provide a long-term solution to the critical needs for monitoring services for Chandra and GLAST, with possible overlap into the time frame for Constellation-X. The sky coverage would create additional science opportunities beyond the X-ray missions: "eyes" for LIGO and partnerships for time-variability with LOFAR and dedicated programs at optical observatories. Compared to the RXTE ASM, AVOX offers improvements by a factor of 40 in instantaneous sky coverage and a factor of 10 in sensitivity to faint X-ray sources (i.e. to 0.8 mCrab at 3 sigma in 1 day).

  19. Studies of Transient X-Ray Sources with the Ariel 5 All-Sky Monitor. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.

    1977-01-01

    The All-Sky Monitor, an imaging X-ray detector launched aboard the Ariel 5 satellite, was used to obtain detailed light curves of three new sources. Additional data essential to the determination of the characteristic luminosities, rates of occurrence (and possible recurrence), and spatial distribution of these objects was also obtained. The observations are consistent with a roughly uniform galactic disk population consisting of at least two source sub-classes, with the second group (Type 2) at least an order of magnitude less luminous and correspondingly more frequent than the first (Type 1). While both subtypes are probably unrelated to the classical optical novae (or supernovae), they are most readily interpreted within the standard mass exchange X-ray binary model, with outbursts triggered by Roche-lobe overflow (Type 1) or enhancements in the stellar wind density of the companion (Type 2), respectively.

  20. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of themore » sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.« less

  1. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; hide

    2010-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  2. X ray observations of late-type stars using the ROSAT all-sky survey

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-03-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  3. X ray observations of late-type stars using the ROSAT all-sky survey

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-01-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  4. Suzaku Wide-band All-sky Monitor (WAM) observations of GRBs and SGRs

    NASA Astrophysics Data System (ADS)

    Yamaoka, Kazutaka; Ohno, Masanori; Tashiro, Makoto S.; Hurley, Kevin; Krimm, Hans A.; Lien, Amy Y.; Ohmori, Norisuke; Sugita, Satoshi; Urata, Yuji; Yasuda, Tetsuya; Enomoto, Junichi; Fujinuma, Takeshi; Fukazawa, Yasushi; Hanabata, Yoshitaka; Iwakiri, Wataru; Kawano, Takafumi; Kinoshita, Ryuuji; Kokubun, Motohide; Makishima, Kazuo; Matsuoka, Shunsuke; Nagayoshi, Tsutomu; Nakagawa, Yujin; Nakaya, Souhei; Nakazawa, Kazuhiro; Nishioka, Yusuke; Sakamoto, Takanori; Takahashi, Tadayuki; Takeda, Sawako; Terada, Yukikatsu; Yabe, Seiya; Yamauchi, Makoto; Yoshida, Hiraku

    2017-06-01

    We will review results for gamma-ray bursts (GRBs) and soft gamma repeaters (SGRs), obtained from the Suzaku Wide-band All-sky Monitor (WAM) which operated for about 10 years from 2005 to 2015. The WAM is a BGO (bismuth germanate: Bi4Ge3O12) lateral shield for the Hard X-ray Detector (HXD), used mainly for rejecting its detector background, but it also works as an all-sky monitor for soft gamma-ray transients in the 50-5000 keV range thanks to its large effective area (˜600 cm2 at 1 MeV for one detector) and wide field of view (about half of the entire sky). The WAM actually detected more than 1400 GRBs and 300 bursts from SGRs, and this detection number is comparable to that of other GRB-specific instruments. Based on the 10 years of operation, we describe timing and spectral performance for short GRBs, weak GRBs with high redshifts, and time-resolved pulses with good statistics.

  5. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., month- to year-long hard-state periods or phases during which numerous transitions occur). It also shows that the hard and soft states are stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  6. Exploring transient X-ray sky with Einstein Probe

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.

    2017-10-01

    The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.

  7. 7 years of MAXI: monitoring X-ray transients

    NASA Astrophysics Data System (ADS)

    Serino, M.; Shidatsu, M.; Iwakiri, W.; Mihara, T.

    2017-03-01

    This workshop was held to celebrate the successful 7 years of observation with Monitor of All-sky X-ray Image (MAXI), a Japanese astrophysics payload on the International Space Station. Since the launch in 2009, MAXI has been monitoring the variable X-ray sky, and has discovered 17 new X-ray sources. Often with a help of multi-wavelength follow-up observations, one of them has been identified with the nuclear ignition of a massive nova, 6 with black-hole binaries, and 5 with those involving neutron stars. Nevertheless, 4 of them remain unidentified, and are considered to form a potentially new class of short soft transients. MAXI is also leading the time-domain astronomy, with its capability to issue alerts which triggers prompt follow-up observations in the optical and other wavelengths. So far, MAXI has detected about a hundred gamma-ray bursts, and performing unbiased watch for stellar flares. In addition, long-term X-ray variations of about a hundred of sources are continuously tracked with MAXI. This has enabled a variety of new astrophysics that cannot be achieved by snapshot observations. The recent detections of the gravitation wave events have significantly increased the importance of MAXI as a currently operating all-sky monitor, and as a member of multi-messenger astronomy which covers electromagnetic waves, neutrinos, and gravitational waves. In this symposium, the MAXI results obtained during the 7 years are reviewed, with a session assigned to those from Hitomi. The symposium also covers new prospects in the time-domain astronomy, to be developed with future X-ray missions/instruments.

  8. An all sky study of fast X-ray transients. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Connors, Alanna

    1988-01-01

    In the HEAO 1 A-2 survey of fast X-ray transients, a search of 2 to 20 keV scanning data was made for brief increases in flux, greater than 4 millicrabs, on timescales approximately 1 to 10 to the 4th s above a 12-hour average. The search was divided into two regions, and all-sky survey of the Galaxy, and a survey of the Magellanic Clouds. In the latter, 37 events were found and identified with 4 of the 5 brighest sources in the LMC, plus 2 as flares from a foreground star. Np X-ray bursts, no gamma-ray bursts, and no events from the SMC were found. In the all-sky survey, after excluding well-known variable sources, out of the equivalent of approximately 104 days of data, 15 events were found which falling into 2 broad categories: flares from coronal sources, roughly isotropically distributed, with optically thin thermal spectra; and harder fast transients apparently distributed near the Galactic plane. The first were identified as flares from ubiquitous active cool dwarf stars. It was hypothesized that the second may have been from distant Be-neutron star binaries. However, at least two of the harder, more luminous events remained unidentified. Future research should examine the nature of these rare events, and how they may fit into a hierarchy of hard fast transients from gamma-ray bursts to outbursts from pulsar systems.

  9. RXTE All-Sky Slew Survey. Catalog of X-Ray Sources at B Greater Than 10 deg

    NASA Technical Reports Server (NTRS)

    Revnivtsev, M.; Sazonov, S.; Jahoda, K.; Gilfanov, M.

    2004-01-01

    We report results of a serendipitous hard X-ray (3-20 keV), nearly all-sky (absolute value of b greater than l0 deg.) survey based on RXTE/PCA observations performed during satellite reorientations in 1996-2002. The survey is 80% (90%) complete to a 4(sigma) limiting flux of approx. = 1.8 (2.5) x 10(exp -l1) erg/s sq cm in the 3-20 keV band. The achieved sensitivity in the 3-8 keV and 8-20 keV subbands is similar to and an order of magnitude higher than that of the previously record HEAO-1 A1 and HEAO-1 A4 all-sky surveys, respectively. A combined 7 x 10(exp 3) sq. deg area of the sky is sampled to flux levels below l0(exp -11) erg/ s sq cm (3-20 keV). In total 294 sources are detected and localized to better than 1 deg. 236 (80%) of these can be confidently associated with a known astrophysical object; another 22 likely result from the superposition of 2 or 3 closely located known sources. 35 detected sources remain unidentified, although for 12 of these we report a likely soft X-ray counterpart from the ROSAT all-sky survey bright source catalog. Of the reliably identified sources, 63 have local origin (Milky Way, LMC or SMC), 64 are clusters of galaxies and 100 are active galactic nuclei (AGN). The fact that the unidentified X-ray sources have hard spectra suggests that the majority of them are AGN, including highly obscured ones (N(sub H) greater than l0(exp 23)/sq cm). For the first time we present a log N-log S diagram for extragalactic sources above 4 x l0(exp -12) erg/ s sq cm at 8-20 keV. Key words. cosmo1ogy:observations - diffuse radiation - X-rays general

  10. INTEGRAL/IBIS 7-year All-Sky Hard X-ray Survey. I. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Revnivtsev, M.; Tsygankov, S.; Sazonov, S.; Vikhlinin, A.; Pavlinsky, M.; Churazov, E.; Sunyaev, R.

    2010-09-01

    This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects that strongly limit sensitivity in the region of the Galactic plane (GP), especially in the crowded field of the Galactic center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic ridge X-ray emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image, we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7 × 10-12 erg s-1 cm-2 ~ 0.26 mCrab in the 17-60 keV band at a 5σ detection level. The survey covers 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2 (~0.60 mCrab). Based on observations with INTEGRAL, an ESA project with the instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland, and with the participation of Russia and the USA.

  11. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  12. The Swift/BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  13. Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran

    2014-03-01

    We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.

  14. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. Themore » primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.« less

  15. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    NASA Astrophysics Data System (ADS)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  16. Scanning sky monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar

    2017-10-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.

  17. Finding counterparts for all-sky X-ray surveys with NWAY: a Bayesian algorithm for cross-matching multiple catalogues

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Buchner, J.; Budavári, T.; Dwelly, T.; Merloni, A.; Brusa, M.; Rau, A.; Fotopoulou, S.; Nandra, K.

    2018-02-01

    We release the AllWISE counterparts and Gaia matches to 106 573 and 17 665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b| > 15°. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g. colours, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a Wide-field Infrared Survey Explorer (WISE) colour-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of ∼94.7 per cent (2RXS) and 97.4 per cent (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96 per cent and 99 per cent with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool.

  18. Monitoring variable X-ray sources in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  19. All Sky Observations with BATSE and GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2008-01-01

    The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) monitored the entire sky from 1991-2000. I will review highlights of BATSE observations including gamma ray bursts, black hole candidates, accreting pulsars, and active galaxies. On 2008 June 11, the Fermi Gamma Ray Space Telescope was launched. The Gamma ray Burst Monitor (GBM) on board Fermi continues the all-sky monitoring legacy started with BATSE. I will review early results and planned observations with GBM.

  20. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Bloom, J. S.; Markwardt, C.; Miler-Jones, J.; Gehrels, N.; Kennea, J. A.; Holland, S.; Sivakoff, G. R.; Swift/BAT Team

    2013-04-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Seven years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes ~75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 223 sources have been detected in the monitor, 142 of them persistent and 81 detected only in outburst. From 2006-2013, fourteen new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  1. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Swift/BAT Team

    2011-09-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Five years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes 75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 172 sources have been detected in the monitor, 89 of them persistent and 83 detected only in outburst. From 2006-2011, nine new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  2. All-sky monitor observations of the decay of A0620-00 (Nova monocerotis 1975)

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.

    1976-01-01

    The All-Sky X-ray Monitor onboard Ariel 5 has observed the 3-6 keV decline of the bright transient X-ray source A0620-00 on a virtually continuous basis during the period September 1975 - March 1976. The source behavior on timescales 100 minutes is characterized by smooth, exponential decays interrupted by substantial increases in October and February. The latter increase was an order-of-magnitude rise above the extrapolated exponential fall-off, and was followed by a final rapid decline. Upper limits of 2.5% and 10% were found for any periodicities in the range 0d.2 - 10d during the early and later decay phases, respectively. A probable correlation between the optical and 3-6 keV emission from A0620-00 was noted, effectively ruling out models involving traditional optical novae in favor of Roche-lobe overflow in a binary system. The existing data on the transient X-ray sources is consistent with two distinct luminosity-lifetime classes of these objects.

  3. Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM

    NASA Technical Reports Server (NTRS)

    Case, G.; Wilson-Hodge, C.; Cherry, M.; Kippen, M.; Ling, J.; Radocinski, R.; Wheaton, W.

    2007-01-01

    Long term all-sky monitoring of the 20 keV - 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Gamma-ray Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM.

  4. The missing links of neutron star evolution in the eROSITA all-sky X-ray survey

    NASA Astrophysics Data System (ADS)

    Pires, A. M.

    2017-12-01

    The observational manifestation of a neutron star is strongly connected with the properties of its magnetic field. During the star’s lifetime, the field strength and its changes dominate the thermo-rotational evolution and the source phenomenology across the electromagnetic spectrum. Signatures of magnetic field evolution are best traced among elusive groups of X-ray emitting isolated neutron stars (INSs), which are mostly quiet in the radio and γ-ray wavelengths. It is thus important to investigate and survey INSs in X-rays in the hope of discovering peculiar sources and the long-sought missing links that will help us to advance our understanding of neutron star evolution. The Extended Röntgen Survey with an Imaging Telescope Array (eROSITA), the primary instrument on the forthcoming Spectrum-RG mission, will scan the X-ray sky with unprecedented sensitivity and resolution. The survey has thus the unique potential to unveil the X-ray faint end of the neutron star population and probe sources that cannot be assessed by standard pulsar surveys.

  5. All Sky Cloud Coverage Monitoring for SONG-China Project

    NASA Astrophysics Data System (ADS)

    Tian, J. F.; Deng, L. C.; Yan, Z. Z.; Wang, K.; Wu, Y.

    2016-05-01

    In order to monitor the cloud distributions at Qinghai station, a site selected for SONG (Stellar Observations Network Group)-China node, the design of the proto-type of all sky camera (ASC) applied in Xinglong station is adopted. Both hardware and software improvements have been made in order to be more precise and deliver quantitative measurements. The ARM (Advanced Reduced Instruction Set Computer Machine) MCU (Microcontroller Unit) instead of PC is used to control the upgraded version of ASC. A much higher reliability has been realized in the current scheme. Independent of the positions of the Sun and Moon, the weather conditions are constantly changing, therefore it is difficult to get proper exposure parameters using only the temporal information of the major light sources. A realistic exposure parameters for the ASC can actually be defined using a real-time sky brightness monitor that is also installed at the same site. The night sky brightness value is a very sensitive function of the cloud coverage, and can be accurately measured by the sky quality monitor. We study the correlation between the exposure parameter and night sky brightness value, and give the mathematical relation. The images of the all sky camera are inserted into database directly. All sky quality images are archived in FITS format which can be used for further analysis.

  6. Long Duration X-ray Bursts Observed by MAXI

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi

    Monitor of All-sky X-ray Image (MAXI) is X-ray mission on the International Space Station. MAXI scans all sky every 92 min and detects various X-ray transient events including X-ray bursts. Among the X-ray bursts observed by MAXI, eleven had long duration and were observed more than one scan. Six out of eleven long bursts have the e-folding time of >1 h, that should be classified as "superbursts", while the rest are "intermediate-duration bursts". The total emitted energy of these long X-ray bursts range from 1041 to 1042 ergs. The lower limits of the superburst recurrence time of 4U 0614+091 and Ser X-1 are calculated as 4400 and 59 days, which may be consistent with the observed recurrence time of 3523 and 1148 days, respectively.

  7. Canadian Led X-ray Polarimeter Mission CXP

    NASA Technical Reports Server (NTRS)

    Kaspi, V.; Hanna, D.; Weisskopf, M.; Ramsey, B.; Ragan, K.; Vachon, B.; Elsner, R.; Heyl, J.; Pavlov, G.; Cumming, A.; hide

    2006-01-01

    We propose a Canadian-led X-ray Polarimetry Mission (CXP), to include a scattering X-ray Polarimeter and sensitive All-Sky X-ray Monitor (ASXM). Polarimetry would provide a new observational window on black holes, neutron stars, accretion disks and jets, and the ASXM would offer sensitive monitoring of the volatile X-ray sky. The envisioned polarimeter consists of a hollow scattering beryllium cone surrounded by an annular proportional counter, in a simple and elegant design that is reliable and low-risk. It would be sensitive in the 6-30 keV band to approx. 3% polarization in approx. 30 Galactic sources and 2 AGN in a baseline 1-yr mission, and have sensitivity greater than 10 times that of the previous X-ray polarimeter flown (NASA's OSO-8, 1975-78) for most sources. This X-ray polarimeter would tackle questions like, Do black holes spin?, How do pulsars pulse?, What is the geometry of the magnetic field in accreting neutron stars? Where and how are jets produced in microquasars and AGN?, What are the geometries of many of the most famous accretion-disk systems in the sky? This will be done using a novel and until-now unexploited technique that will greatly broaden the available observational phase space of compact objects by adding to timing and spectroscopy observations of polarization fraction and position angle as a function of energy. The All-Sky X-ray Monitor would scan for transients, both as potential targets for the polarimeter but also as a service to the worldwide astronomical community. The entire CXP mission could be flown for $40- 60M CDN, according to estimates by ComDev International, and could be built entirely in Canada. It would fall well within the CSA's SmallSat envelope and would empower the growing and dynamic Canadian High-Energy Astrophysics community with world leadership in a potentially high impact niche area.

  8. The Swift-BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, Hans; Markwardt, C. B.; Sanwal, D.; Tueller, J.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets on time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing (approx.20 minutes) to the full mission duration for the hard X-ray survey program. The transient monitor has recently become public through the web site http:// swift.gsfc.nasa.gov/docs/swift/results/transients/. Sky images are processed to detect astrophysical sources in the 15-50 keV energy band and the detected flux or upper limit is calculated for >100 sources on time scales up to one day. Light curves are updated each time that new BAT data becomes available (approx.10 times daily). In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is approx.1500-3000 seconds, with a 1-sigma sensitivity of approx.4 mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  9. The Fermi-GBM Three-year X-Ray Burst Catalog

    NASA Astrophysics Data System (ADS)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  10. VizieR Online Data Catalog: WATCHDOG: an all-sky database of Galactic BHXBs (Tetarenko+, 2016)

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-03-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Monitor of All-Sky X-ray Image (MAXI), Rossi X-ray Timing Explorer (RXTE), and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (~40%) of the Galactic transient BHXB outburst sample over the past ~20 years. Our findings suggest that this "hard-only" behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these "hard-only" outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population. (9 data files).

  11. Big Sky and Greenhorn Drill Holes and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Big Sky" and "Greenhorn" target locations, shown at left. X-ray diffraction analysis of the Greenhorn sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed an abundance of silica in the form of noncrystalline opal. The broad hump in the background of the X-ray diffraction pattern for Greenhorn, compared to Big Sky, is diagnostic of opal. The image of Big Sky at upper left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera the day the hole was drilled, Sept. 29, 2015, during the mission's 1,119th Martian day, or sol. The Greenhorn hole was drilled, and the MAHLI image at lower left was taken, on Oct. 18, 2015 (Sol 1137). http://photojournal.jpl.nasa.gov/catalog/PIA20272

  12. On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1

    NASA Astrophysics Data System (ADS)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.

    2017-10-01

    We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.

  13. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  14. Second ROSAT all-sky survey (2RXS) source catalogue

    NASA Astrophysics Data System (ADS)

    Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-04-01

    Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the

  15. GBM Observations of Be X-Ray Binary Outbursts

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  16. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  17. Galactic SNR Candidates in the ROSAT All-Sky Survey

    NASA Technical Reports Server (NTRS)

    Schaudel, Daniel; Becker, Werner; Voges, Wolfgand; Reich, Wolfgang; Weisskopf, Martin; Six, N. Frank (Technical Monitor)

    2001-01-01

    Identified radio supernova remnants (SNRS) in the Galaxy comprise an incomplete sample of the SNR population due to various selection effects. ROSAT performed the first all-sky survey with an imaging X-ray telescope, and thus provides another window for finding SNRS and compact objects that may reside within them. Performing a search for extended X-ray sources in the ROSAT all-sky survey database about 350 objects were identified as SNR candidates in recent years. Continuing this systematic search, we have reanalyzed the ROSAT all-sky survey (BASS) data of these candidates and correlated the results with radio surveys like NVSS, ATNF, Molonglo, and Effelsberg. A further correlation with SIMBAD and NED were used for subsequent identification purpose. About 50 of the 350 candidates turned out to be likely galaxies or clusters of galaxies. We found 14 RASS sources which are very promising SNR candidates and are currently subject of further follow-up studies. We will provide the details of the identification campaign and present first results.

  18. X-Ray Astronomy--A New View of the Sky From Space

    ERIC Educational Resources Information Center

    Gursky, Herbert

    1973-01-01

    Objects and energy sources are detected whose existence was only hinted at a few years ago. The X-Ray sky has a large number of sources along the Milky Way, most of which lie within 30 degrees of the galactic center, plus a number of faint sources associated with external galaxies. (DF)

  19. VizieR Online Data Catalog: Wisconsin soft X-ray diffuse background all-sky Survey (McCammon+ 1983)

    NASA Astrophysics Data System (ADS)

    McCammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.

    1997-10-01

    The catalog contains all-sky survey of the soft X-ray diffuse background and the count-rate data from which the maps were made for the ten flights included in the survey. It contains 40 files in the machine-readable version and includes documentation and utility subroutines. The data files contain different band maps (B, C, M, M1, M2, I, J, 2-6 keV) in a 0 degree-centered Aitoff projection, in a 180-degree-centered Aitoff projection, in a north polar projection, and in a south polar projection. Lookup tables in the form of FITS images are provided for conversion between pixel coordinates and Galactic coordinates for the various projections. The bands are: B = 130-188eV C = 160-284eV M1 = 440-930eV M2 = 600-1100eV I = 770-1500eV J = 1100-2200eV 2-6keV = 1800-6300eV (51 data files).

  20. Cosmological constraints from X-ray all sky surveys, from CODEX to eROSITA

    NASA Astrophysics Data System (ADS)

    Finoguenov, A.

    2017-10-01

    Large area cluster cosmology has long become a multiwavelength discipline. Understanding the effect of various selections is currently the main path to improving on the validity of cluster cosmological results. Many of these results are based on the large area sample derived from RASS data. We perform wavelet detection of X-ray sources and make extensive simulations of the detection of clusters in the RASS data. We assign an optical richness to each of the 25,000 detected X-ray sources in the 10,000 square degrees of SDSS BOSS area. We show that there is no obvious separation of sources on galaxy clusters and AGN, based on distribution of systems on their richness. We conclude that previous catalogs, such as MACS, REFLEX are all subject to a complex optical selection function, in addition to an X-ray selection. We provide a complete model of identification of cluster counts are galaxy clusters, which includes chance identification, effect of AGN halo occupation distribution and the thermal emission of ICM. Finally we present the cosmological results obtained using this sample.

  1. Multifrequency observations of KAZ 102 during the ROSAT all-sky survey

    NASA Technical Reports Server (NTRS)

    Treves, A.; Fink, H. H.; Malkan, M.; Wilkes, B. J.; Baganoff, F.; Heidt, J.; Pian, E.; Sadun, A.; Schaeidt, S.; Bonnell, J. T.

    1995-01-01

    The bright quasar Kaz 102, which lies in the vicinity of the North Ecliptic Pole, was monitored during the ROSAT All Sky Survey for 121.5 days from 1990 July 30 to 1991 January 25. In the course of the survey, optical photometry with various filters was peformed at several epochs, together with UV (IUE) and optical spectrophotometry. The spectral energy distribution in the 3 x 10(exp 14) -3 x 10(exp 17) Hz range is obtained simultaneously among the various frequencies to less than or = 1 day. No clear case of variability can be made in the X-rays, while in the optical and UV variability of 10%-20% is apparent. An analysis of IUE and Einstein archives indicates a doubling timescale of years for the UV and soft X-ray flux. The X-ray photon index, which in 1979 was rather flat (Gamma = 0.8(+0.6 -0.4), in 1990/1991 was found to be Gamma = 2.22 +/- 0.13, a typical value for radio-quiet quasars in this energy range. The overall energy distribution and the variability are discussed.

  2. Early In-orbit Performance of Scanning Sky Monitor Onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Singh, Brajpal; Jain, Anand; Yadav, Reena; Agarwal, Anil; Babu, V. Chandra; Kumar; Kushwaha, Ankur; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Seetha, S.; Bhattacharya, Dipankar; Balaji, K.; Kumar, Manoj; Kulshresta, Prashanth

    2017-06-01

    We report the in-orbit performance of Scanning Sky Monitor (SSM) onboard AstroSat. The SSM operates in the energy range 2.5 to 10 keV and scans the sky to detect and locate transient X-ray sources. This information of any interesting phenomenon in the X-ray sky as observed by SSM is provided to the astronomical community for follow-up observations. Following the launch of AstroSat on 28th September, 2015, SSM was commissioned on October 12th, 2015. The first power ON of the instrument was with the standard X-ray source, Crab in the field-of-view. The first orbit data revealed the basic expected performance of one of the detectors of SSM, SSM1. Following this in the subsequent orbits, the other detectors were also powered ON to find them perform in good health. Quick checks of the data from the first few orbits revealed that the instrument performed with the expected angular resolution of 12' × 2.5° and effective area in the energy range of interest. This paper discusses the instrument aspects along with few on-board results immediately after power ON.

  3. The 1979 X-ray outburst of Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Swank, J. H.

    1980-01-01

    X-ray observations of the first major outburst of the classical transient X-ray source Centaurus X-4 since its discovery in 1969 are presented. The observations were obtained in May, 1979, with the all-sky monitor on board Ariel 5. The flare light curve is shown to exhibit many of the characteristics of other transients, including a double-peaked maximum, as well as significant, apparently random, variations and a lower peak flux and shorter duration than the 1969 event. Application of a standard epoch-folding technique to data corrected for linear decay trends indicates a possible source modulation at 0.3415 days (8.2 hours). Comparison of the results with previous other data on Cen X-4 and the characteristics of the soft X-ray transients allows a total X-ray output of approximately 3 x 10 to the 43rd ergs to be estimated, and reveals the duration and decay time of the 1979 Cen X-4 outburst to be the shortest yet observed from soft X-ray transients. The observations are explained in terms of episodic mass exchange from a late-type dwarf onto a neutron star companion in a relatively close binary system.

  4. Lobster eye X-ray optics: Data processing from two 1D modules

    NASA Astrophysics Data System (ADS)

    Nentvich, O.; Urban, M.; Stehlikova, V.; Sieger, L.; Hudec, R.

    2017-07-01

    The X-ray imaging is usually done by Wolter I telescopes. They are suitable for imaging of a small part of the sky, not for all-sky monitoring. This monitoring could be done by a Lobster eye optics which can theoretically have a field of view up to 360 deg. All sky monitoring system enables a quick identification of source and its direction. This paper describes the possibility of using two independent one-dimensional Lobster Eye modules for this purpose instead of Wolter I and their post-processing into an 2D image. This arrangement allows scanning with less energy loss compared to Wolter I or two-dimensional Lobster Eye optics. It is most suitable especially for very weak sources.

  5. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of

  6. STROBE-X: X-Ray Timing Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Gendreau, K.; Arzoumanian, Z.; Chakrabarty, D.; Remillard, R.; Feroci, M.; Maccarone, T.; Wood, K.; Jenke, P.

    2017-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active

  7. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity

  8. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Thomas J.; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; Jenke, Peter

    2017-08-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic

  9. MAXI observations of long X-ray bursts

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi

    2016-12-01

    We report nine long X-ray bursts from neutron stars, detected with the Monitor of All-sky X-ray Image (MAXI). Some of these bursts lasted for hours, and hence are qualified as superbursts, which are prolonged thermonuclear flashes on neutron stars and are relatively rare events. MAXI observes roughly 85% of the whole sky every 92 minutes in the 2-20 keV energy band, and has detected nine bursts with a long e-folding decay time, ranging from 0.27 to 5.2 hr, since its launch in 2009 August until 2015 August. The majority of the nine events were found to originate from transient X-ray sources. The persistent luminosities of the sources, when these prolonged bursts were observed, were lower than 1% of the Eddington luminosity for five of them and lower than 20% for the rest. This trend is contrastive to the 18 superbursts observed before MAXI, all but two of which originated from bright persistent sources. The distribution of the total emitted energy, i.e., the product of e-folding time and luminosity, of these bursts clusters around 1041-1042 erg, whereas both the e-folding time and luminosity ranges for an order of magnitude. Among the nine events, two were from 4U 1850-086 during phases of relatively low persistent flux, whereas it usually exhibits standard short X-ray bursts during outbursts.

  10. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  11. Amsterdam-ASTRON radio transient facility and analysis centre: towards a 24 x 7, all-sky monitor for the low-frequency array (LOFAR).

    PubMed

    Prasad, Peeyush; Wijnholds, Stefan J

    2013-06-13

    The Amsterdam-ASTRON Radio Transient Facility And Analysis Centre (AARTFAAC) project aims to implement an all-sky monitor (ASM), using the low-frequency array (LOFAR) telescope. It will enable real-time, 24 × 7 monitoring for low-frequency radio transients over most of the sky locally visible to the LOFAR at time scales ranging from seconds to several days, and rapid triggering of follow-up observations with the full LOFAR on detection of potential transient candidates. These requirements pose several implementation challenges: imaging of an all-sky field of view, low latencies of processing, continuous availability and autonomous operation of the ASM. The first of these has already resulted in the correlator for the ASM being the largest in the world in terms of the number of input data streams. We have carried out test observations using existing LOFAR infrastructure, in order to quantify and constrain crucial instrumental design criteria for the ASM. In this study, we present an overview of the AARTFAAC data-processing pipeline and illustrate some of the aforementioned challenges by showing all-sky images obtained from one of the test observations. These results provide quantitative estimates of the capabilities of the instrument.

  12. The Chaotic Long-term X-ray Variability of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-04-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through May 2014. The combined ASM-MAXI data provide a continuous time series over fifty times the length of the timescale of interest. Topological analysis can help us identify 'fingerprints' in the phase-space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled nonlinear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  13. The chaotic long-term X-ray variability of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-07-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a time-scale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from 1995 December through 2014 May. The combined ASM-MAXI data provide a continuous time series over 50 times the length of the time-scale of interest. Topological analysis can help us identify `fingerprints' in the phase space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled non-linear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  14. Suzaku Wide-band All-sky Monitor measurements of duration distributions of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ohmori, Norisuke; Yamaoka, Kazutaka; Ohno, Masanori; Sugita, Satoshi; Kinoshita, Ryuuji; Nishioka, Yusuke; Hurley, Kevin; Hanabata, Yoshitaka; Tashiro, Makoto S.; Enomoto, Junichi; Fujinuma, Takeshi; Fukazawa, Yasushi; Iwakiri, Wataru; Kawano, Takafumi; Kokubun, Motohide; Makishima, Kazuo; Matsuoka, Shunsuke; Nagayoshi, Tsutomu; Nakagawa, Yujin E.; Nakaya, Souhei; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Takeda, Sawako; Terada, Yukikatsu; Urata, Yuji; Yabe, Seiya; Yasuda, Tetsuya; Yamauchi, Makoto

    2016-06-01

    We report on the T90 and T50 duration distributions and their relations with spectral hardness using 1464 gamma-ray bursts (GRBs), which were observed by the Suzaku Wide-band All-sky Monitor (WAM) from 2005 August 4 to 2010 December 29. The duration distribution is clearly bimodal in three energy ranges (50-120, 120-250, and 250-550 keV), but is unclear in the 550-5000 keV range, probably because of the limited sample size. The WAM durations decrease with energy according to a power-law index of -0.058(-0.034, +0.033). The hardness-duration relation reveals the presence of short-hard and long-soft GRBs. The short:long event ratio tends to be higher with increasing energy. We compared the WAM distribution with ones measured by eight other GRB instruments. The WAM T90 distribution is very similar to those of INTEGRAL/SPI-ACS and Granat/PHEBUS, and least likely to match the Swift/BAT distribution. The WAM short:long event ratio (0.25:0.75) is much different from Swift/BAT (0.08:0.92), but is almost the same as CGRO/BATSE (0.25:0.75). To explain this difference for BAT, we examined three effects: BAT trigger types, energy dependence of the duration, and detection sensitivity differences between BAT and WAM. As a result, we found that the ratio difference could be explained mainly by energy dependence including soft extended emissions for short GRBs and much better sensitivity for BAT which can detect weak/long GRBs. The reason for the same short:long event ratio for BATSE and WAM was confirmed by calculation using the trigger efficiency curve.

  15. The ROSAT All-Sky Survey view of the Large Magellanic Cloud (LMC)

    NASA Technical Reports Server (NTRS)

    Pietsch, W.; Denner, K.; Kahabka, P.; Pakull, M.; Schaeidt, S.

    1996-01-01

    During the Rosat all sky survey, centered on the Large Magellanic Cloud (LMC), 516 X-ray sources were detected. The field was covered from July 1990 to January 1991. The X-ray parameters of the sources, involving position, count rates, hardness ratios, extent, and time variability during the observations, are discussed. Identifications with objects from optical, radio and infrared wavelength allow the LMC candidates to be separated from the foreground stars and the background objects.

  16. High-Mass X-ray Binaries in hard X- rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.

  17. Results of X-ray and optical monitoring of SCO X-1

    NASA Technical Reports Server (NTRS)

    Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.

    1974-01-01

    Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.

  18. Weather and atmosphere observation with the ATOM all-sky camera

    NASA Astrophysics Data System (ADS)

    Jankowsky, Felix; Wagner, Stefan

    2015-03-01

    The Automatic Telescope for Optical Monitoring (ATOM) for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.

  19. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Tom; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; STROBE-X Collaboration

    2017-01-01

    We describe a proposed probe-class mission concept that will provide an unprecedented view of the X-ray sky, performing timing and spectroscopy over a broad band (0.2-30 keV) probing timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises two primary instruments. The soft band (0.2-12 keV) will be covered by an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates. This technology, fully developed for NICER, would be scaled up with enhanced optics to take advantage of the longer focal length of STROBE-X. The harder band (2 to at least 30 keV) would be covered by large-area collimated silicon drift detectors,developed for the European LOFT mission concept. Each instrument would provide an order of magnitude improvement in effective area compared with its predecessor (NICER in the soft band and RXTE in the hard band). A sensitive sky monitor would act as a trigger for pointed observations, provide high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enable multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.The broad coverage will enable thermal components, non-thermal components, iron lines, and reflection features to be studied simultaneously from a single platform for the first time in accreting black holes at all scales. The enormous collecting area will enable studies of the dense matter equation of state using both soft thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. Revolutionary science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, would also be obtained.We describe the mission

  20. A ROTSE-I/ROSAT Survey of X-ray Emission from Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Geske, M.; McKay, T.

    2005-05-01

    Using public data from the ROSAT All Sky Survey (RASS) and the ROTSE-I Sky Patrols, the incidence of strong x-ray emissions from contact binary systems was examined. The RASS data was matched to an expanded catalog of contact binary systems from the ROTSE-I data, using a 35 arc second radius. X-ray luminosities for matching objects were then determined. This information was then used to evaluate the total x-ray emissions from all such objects, in order to determine their contribution to the galactic x-ray background.

  1. The Einstein All-Sky IPC slew survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  2. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  3. Limits on soft X-ray flux from distant emission regions

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Mccammon, D.; Sanders, W. T.; Kraushaar, W. L.

    1984-01-01

    The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales.

  4. Is there a UV/X-ray connection in IRAS 13224-3809?

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.

    2018-04-01

    We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.

  5. ASM observations of X-ray flares from 4U 0115+63 and ASM 1354-64.

    NASA Astrophysics Data System (ADS)

    Tsunemi, H.; Kitamoto, S.

    The authors report two X-ray flares detected with the All Sky Monitor (ASM) on board the GINGA satellite. One is from the recurrent X-ray pulsar 4U 0115+63 and the other is from the probable recurrent X-ray nova named ASM 1354-64. The maximum intensity for 4U 0115+63 was 180 mCrab and its duration was at least 22 days. Its spectrum was hard and resembled those of X-ray pulsars. The maximum intensity of ASM 1354-64 was 300 mCrab. It faded down below the detection limit at the end of August 1987. Its spectrum was soft and was similar to those of black hole candidates.

  6. Feasibility of spectro-photometry in X-rays (SPHINX) from the moon

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar

    2010-08-01

    Doing space Astronomy on lunar surface has several advantages. We present here feasibility of an All Sky Monitoring Payload for Spectro-photometry in X-rays (SPHINX) which can be placed on a lander on the moon or in a space craft orbiting around the moon. The Si-PIN photo-diodes and CdTe crystals are used to detect solar flares, bright gamma bursts, soft gamma-ray repeaters from space and also X-ray fluorescence (XRF) from lunar surface. We present the complete Geant4 simulation to study the feasibility of such an instrument in presence of Cosmic Diffused X-Ray Background (CDXRB). We find that the signal to noise ratio is sufficient for moderate to bright GRBs (above 5 keV), for the quiet sun (up to 100 keV), solar flares, soft gamma-ray repeaters, X-ray Fluorescence (XRF) of lunar surface etc. This is a low-cost system which is capable of performing multiple tasks while stationed at the natural satellite of our planet.

  7. The UHURU X-ray instrument.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Austin, G.; Mickiewicz, S.; Goddard, R.

    1972-01-01

    On Dec. 12, 1970, the UHURU X-ray observatory was launched into equatorial orbit with the prime mission of conducting an all-sky survey of astronomical X-ray sources with intensities of 0.00005 Sco-X1 or greater. The X-ray detection system contains 12 gas-filled proportional counters, 6 behind each collimator. The aspect system is discussed together with the structure, the pulse height analyzer, the command system, the calibration system, and the power distribution system. Pulse shape discrimination circuits used on UHURU use the same technique that was used on the system originally developed for large area proportional counters described by Gorenstein and Mickiewicz (1968).

  8. LOBSTER: new space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Sveda, L.; Pína, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2017-11-01

    The LOBSTER telescopes are based on the optical arrangement of the lobster eye. The main difference from classical X-ray space telescopes in wide use is the very large field of view while the use of optics results in higher efficiency if compared with detectors without optics. Recent innovative technologies have enabled to design, to develop and to test first prototypes. They will provide deep sensitive survey of the sky in X-rays for the first time which is essential for both long-term monitoring of celestial high-energy sources as well as in understanding transient phenomena. The technology is now ready for applications in space.

  9. The Fermi All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in our Galaxy

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.; hide

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  10. CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm

    NASA Astrophysics Data System (ADS)

    Shamir, L.; Nemiroff, R. J.

    2004-05-01

    One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.

  11. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We

  12. Longterm lightcurves of X-ray binaries

    NASA Astrophysics Data System (ADS)

    Clarkson, William

    The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE

  13. X-ray Monitoring of eta Carinae: Variations on a Theme

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2004-01-01

    We present monitoring observations by the Rossi X-ray Timing Explorer of the 2-10 keV X-ray emission from the supermassive star eta Carinae from 1996 through late 2003. These data cover more than one of the stellar variability cycles in temporal detail and include especially detailed monitoring through two X-ray minima. We compare the current X-ray minimum which began on June 29, 2003 to the previous X-ray minimum which began on December 15, 1997, and refine the X-ray period to 2024 days. We examine the variations in the X-ray spectrum with phase and with time, and also refine our understanding of the X-ray peaks which have a quasi-period of 84 days, with significant variation. Cycle-to-cycle differences are seen in the level of X-ray intensity and in the detailed variations of the X-ray flux on the rise to maximum just prior to the X-ray minimum. Despite these differences the similarities between the decline to minimum, the duration of the minimum, and correlated variations of the X-ray flux and other measures throughout the electromagnetic spectrum leave little doubt that that the X-ray variation is strictly periodic and produced by orbital motion as the wind from eta Carinae collides with the wind of an otherwise unseen companion.

  14. Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto

    2017-05-01

    Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.

  15. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Albert, A.

    2013-07-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign andmore » show that, despite their low latitudes, most of them are likely of extragalactic origin.« less

  16. Solar Wind Charge Exchange Contribution to the ROSAT All Sky Survey Maps

    NASA Astrophysics Data System (ADS)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; McCammon, D.; Morgan, K.; Porter, F. S.; Prasai, K.; Snowden, S. L.; Thomas, N. E.; Ursino, E.; Walsh, B. M.

    2016-10-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l=140^\\circ ,b=0^\\circ , where the DXL path crosses the Galactic plane, is 33 % +/- 6 % ({statistical})+/- 12 % ({systematic}) for R1, 44 % +/- 6 % +/- 5 % for R2, 18 % +/- 12 % +/- 11 % for R4, 14 % +/- 11 % +/- 9 % for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 % +/- 6 % +/- 13 % for R1, 30 % +/- 4 % +/- 4 % for R2, 8 % +/- 5 % +/- 5 % for R4, 6 % +/- 4 % +/- 4 % for R5, and negligible for R6 and R7.

  17. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2018-04-17

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  18. X-ray Variations at the Orbital Period from Cygnus X-1 IN the High/Soft State

    NASA Astrophysics Data System (ADS)

    Boroson, Bram; Vrtilek, Saeqa Dil

    2010-02-01

    Orbital variability has been found in the X-ray hardness of the black hole candidate Cygnus X-1 during the soft/high X-ray state using light curves provided by the Rossi X-ray Timing Explorer's All-Sky Monitor. We are able to set broad limits on how the mass-loss rate and X-ray luminosity vary between the hard and soft states. The folded light curve shows diminished flux in the soft X-ray band at phi = 0 (defined as the time of the superior conjunction of the X-ray source). Models of the orbital variability provide slightly superior fits when the absorbing gas is concentrated in neutral clumps and better explain the strong variability in hardness. In combination with the previously established hard/low state dips, our observations give a lower limit to the mass-loss rate in the soft state (\\dot{M}<2× 10^{-6} M_{⊙} yr-1) than the limit in the hard state (\\dot{M}<4× 10^{-6} M_{⊙} yr-1). Without a change in the wind structure between X-ray states, the greater mass-loss rate during the low/hard state would be inconsistent with the increased flaring seen during the high-soft state.

  19. What Can Simbol-X Do for Gamma-ray Binaries?

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  20. The FERMI All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in Our Galaxy

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2013-06-17

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. In addition, for each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. Finally, we proceed to discuss the 27 sources found at Galactic latitudes smaller thanmore » 10° and show that, despite their low latitudes, most of them are likely of extragalactic origin.« less

  1. X1908+075: An X-Ray Binary with a 4.4 Day Period

    NASA Astrophysics Data System (ADS)

    Wen, Linqing; Remillard, Ronald A.; Bradt, Hale V.

    2000-04-01

    X1908+075 is an optically unidentified and highly absorbed X-ray source that appeared in early surveys such as Uhuru, OSO 7, Ariel 5, HEAO-1, and the EXOSAT Galactic Plane Survey. These surveys measured a source intensity in the range 2-12 mcrab at 2-10 keV, and the position was localized to ~0.5d. We use the Rossi X-Ray Timing Explorer (RXTE) All-Sky Monitor (ASM) to confirm our expectation that a particular Einstein/IPC detection (1E 1908.4+0730) provides the correct position for X1908+075. The analysis of the coded mask shadows from the ASM for the position of 1E 1908.4+0730 yields a persistent intensity ~8 mcrab (1.5-12 keV) over a 3 yr interval beginning in 1996 February. Furthermore, we detect a period of 4.400+/-0.001 days with a false-alarm probability less than 10-7. The folded light curve is roughly sinusoidal, with an amplitude that is 26% of the mean flux. The X-ray period may be attributed to the scattering and absorption of X-rays through a stellar wind combined with the orbital motion in a binary system. We suggest that X1908+075 is an X-ray binary with a high-mass companion star.

  2. RXTE All-Sky Monitor Localization of SGR 1627-41

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Bradt, H. V.; Levine, A. M.

    1999-09-01

    The fourth unambiguously identified Soft Gamma Repeater (SGR), SGR 1627--41, was discovered with the BATSE instrument on 1998 June 15 (Kouveliotou et al. 1998). Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6(deg) segment of a narrow (19('') ) annulus (Hurley et al. 1999; Woods et al. 1998). We report on two bursts from this source observed by the All-Sky Monitor (ASM) on RXTE. We use the ASM data to further constrain the source location to a 5(') long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3(') of the supernova remnant (SNR) G337.0--0.1. The probability that a SNR would fall so close to the error box purely by chance is ~ 5%.

  3. Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.

    2011-01-01

    The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.

  4. Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2017-09-01

    We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.

  5. The Swift BAT Hard X-ray Survey - A New Window on the Local AGN Universe

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2009-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 keV sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6E24 atms/cm2) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  6. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    NASA Astrophysics Data System (ADS)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2017-04-01

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 107 s exposure and over 20 GRBs down to a 6 × 10-6 erg cm-2 fluence and 10% polarization during a one-year observation.

  7. Discovery and Orbital Determination of the Transient X-Ray Pulsar GRO J1750-27

    NASA Technical Reports Server (NTRS)

    Scott, D. M.; Finger, M. H.; Wilson, R. B.; Koh, D. T.; Prince, T. A.; Vaughan, B. A.; Chakrabarty, D.

    1997-01-01

    We report on the discovery and hard X-ray (20 - 70 keV) observations of the 4.45 s period transient X-ray pulsar GRO J1750-27 with the BATSE all-sky monitor on board CGRO. A relatively faint out- burst (less than 30 mcrab peak) lasting at least 60 days was observed during which the spin-up rate peaked at 38 pHz/s and was correlated with the pulsed intensity. An orbit with a period of 29.8 days was found. The large spin-up rate, spin period, and orbital period together suggest that accretion is occurring from a disk and that the outburst is a "giant" outburst typical of a Be/X-ray transient system. No optical counterpart has yet been reported.

  8. Discovery and Orbital Determination of the Transient X-Ray Pulsar GRO J1750-27

    NASA Technical Reports Server (NTRS)

    Scott, D. M.; Finger, M. H.; Wilson, R. B.; Koh, D. T.; Prince, T. A.; Vaughan, B. A.; Chakrabarty, D.

    1997-01-01

    We report on the discovery and hard X-ray (20-70 keV) observations of the 4.45 second period transient X-ray pulsar GRO J1750-27 with the BATSE all-sky monitor on board CCRO. A relatively faint outburst (< 30 mCrab peak) lasting at least 60 days was observed during which the spin-up rate peaked at 38 pHz/sec and was correlated with the pulsed intensity. An orbit with a period of 29.8 days was found. The large spin-up rate, spin period and orbital period together suggest that accretion is occurring from a disk and that the outburst is a 'giant' outburst typical of a Be/X-ray transient system. No optical counterpart has been reported yet.

  9. All Sky Imager Network for Science and Education

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.; Zalles, D. R.; Baumgardner, J. L.; Marshall, R. A.; Kaltenbacher, E.

    2012-12-01

    A new all sky imager network for space weather monitoring and education outreach has been developed by SRI International. The goal of this program is to install sensitive, low-light all-sky imagers across the continental United States to observe upper atmospheric airglow and aurora in near real time. While aurora borealis is often associated with the high latitudes, during intense geomagnetic storms it can extend well into the continental United States latitudes. Observing auroral processes is instrumental in understanding the space weather, especially in the times of increasing societal dependence on space-based technologies. Under the THEMIS satellite program, Canada has installed a network of all-sky imagers across their country to monitor aurora in real-time. However, no comparable effort exists in the United States. Knowledge of the aurora and airglow across the entire United States in near real time would allow scientists to quickly assess the impact of a geomagnetic storm in concert with data from GPS networks, ionosondes, radars, and magnetometers. What makes this effort unique is that we intend to deploy these imagers at high schools across the country. Selected high-schools will necessarily be in rural areas as the instrument requires dark night skies. At the commencement of the school year, we plan to give an introductory seminar on space weather at each of these schools. Science nuggets developed by SRI International in collaboration with the Center for GeoSpace Studies and the Center for Technology in Learning will be available for high school teachers to use during their science classes. Teachers can use these nuggets as desired within their own curricula. We intend to develop a comprehensive web-based interface that will be available for students and scientific community alike to observe data across the network in near real time and also to guide students towards complementary space weather data sets. This interface will show the real time extent of

  10. Earth Occultation Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique (EOT). Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors for daily monitoring. Light curves, updated daily, are available on our website http://heastro.phys.lsu.edu/gbm. Our software is also capable of performing the Earth occultation monitoring using up to 128 energy bands, or any combination of those bands, using our 128-channel, 4-s CSPEC data. The GBM BGO detectors, sensitive from about 200 keV to 40 keV, can also be used with this technique. In our standard application of the EOT, we use a catalog of sources to drive the measurements. To ensure that our catalog is complete, our team has developed an Earth occultation imaging method. In this talk, I will describe both techniques and the current data products available. I will highlight recent and important results from the GBM EOT, including the current status of our observations of hard X-ray variations in the Crab Nebula.

  11. Application of X-ray imaging techniques to auroral monitoring

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Burstein, P.

    1981-01-01

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  12. The Swift/BAT Hard X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, H. A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.

    2006-01-01

    The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.

  13. Simultaneous Monitoring of X-Ray and Radio Variability in Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Capellupo, Daniel M.; Haggard, Daryl; Choux, Nicolas; Baganoff, Fred; Bower, Geoffrey C.; Cotton, Bill; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Chris; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joey; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad

    2017-08-01

    Monitoring of Sagittarius A* from X-ray to radio wavelengths has revealed structured variability—including X-ray flares—but it is challenging to establish correlations between them. Most studies have focused on variability in the X-ray and infrared, where variations are often simultaneous, and because long time series at submillimeter and radio wavelengths are limited. Previous work on submillimeter and radio variability hints at a lag between X-ray flares and their candidate submillimeter or radio counterparts, with the long wavelength data lagging the X-ray. However, there is only one published time lag between an X-ray flare and a possible radio counterpart. Here we report nine contemporaneous X-ray and radio observations of Sgr A*. We detect significant radio variability peaking ≳ 176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also report other potentially associated X-ray and radio variability, with the radio peaks appearing ≲ 80 minutes after these weaker X-ray flares. Taken at face value, these results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and radio wavelengths is not temporally correlated. We cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.

  14. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Pulse periods and the long-term variations of the X-ray pulsars VELA X-1 and Centaurus X-3

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi

    The paper reports recent determinations of the pulse period for two X-ray pulsars, Vela X-1 and Cen X-3, made in 1987 with the All Sky Monitor (ASM) on board the Ginga satellite. The heliocentric pulse periods are 283.09 + or - 0.01 s and 4.8229 + or - 0.0001 s, respectively. These are the longest and shortest values in their respective observational histories. The random walk model for the Vela X-1 pulsar can explain this result as well as those obtained previously. It is also noted that the pulse-period change for the Cen X-3 system shows a 9-yr periodicity. This is probably due to the activity of the companion star rather than to Doppler-shift variations due to a third body or the precession of the neutron star.

  16. Long-Term Properties of Accretion Discs in X-ray Binaries. 1; The Variable Third Period in SMC X-1

    NASA Technical Reports Server (NTRS)

    Charles, P. A.; Clarkson, W. I.; Coe, M. J.; Laycock, S.; Tout, M.; Wilson, C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Long term X-ray monitoring data from the RXTE All Sky Monitor (ASM) reveal that the third (superorbital) period in SMC X-1 is not constant but varies between 40-60 days. A dynamic power spectrum analysis indicates that the third period has been present continuously throughout the five years of ASM observations. This period changed smoothly from 60 days to 45 days and then returned to its former value, on a timescale of approximately 1600 days. During the nearly 4 years of overlap between the CGRO & RXTE missions, the simultaneous BATSE hard X-ray data confirm this variation in SMC X-1. Sources of systematic error and possible artefacts are investigated and found to be incapable of reproducing the results reported here. Our disco cry of such an instability in the superorbital period of SMC X-1 is interpreted in the context of recent theoretical studies of warped, precessing accretion discs. We find that the behaviour of SMC X-1 is consistent with a radiation - driven warping model.

  17. Sub-MeV band observation of a hard burst from AXP 1E 1547.0-5408 with the Suzaku Wide-band All-sky Monitor

    NASA Astrophysics Data System (ADS)

    Yasuda, Tetsuya; Iwakiri, Wataru B.; Tashiro, Makoto S.; Terada, Yukikatsu; Kouzu, Tomomi; Enoto, Teruaki; Nakagawa, Yujin E.; Bamba, Aya; Urata, Yuji; Yamaoka, Kazutaka; Ohno, Masanori; Shibata, Shinpei; Makishima, Kazuo

    2015-06-01

    The 2.1-s anomalous X-ray pulsar 1E 1547.0-5408 exhibited an X-ray outburst on 2009 January 22, emitting a large number of short bursts. The wide-band all-sky monitor (WAM) on-board Suzaku detected at least 254 bursts in the 160 keV-6.2 MeV band over the period of January 22 00:57-17:02 UT from the direction of 1E 1547.0-5408. One of these bursts, which occurred at 06:45:13, produced the brightest fluence in the 0.5-6.2 MeV range, with an averaged 0.16-6.2 MeV flux and extrapolated 25 keV-2 MeV fluence of about 1 × 10-5 erg cm-2 s-1 and about 3 × 10-4 erg cm-2, respectively. After pile-up corrections, the time-resolved WAM spectra of this burst were well-fitted in the 0.16-6.2 MeV range by two-component models; specifically, a blackbody plus an optically thin thermal bremsstrahlung or a combination of a blackbody and a power-law component with an exponential cut-off. These results are compared with previous works reporting the persistent emission and weaker short bursts followed by the same outburst.

  18. The All Sky Automated Survey

    NASA Astrophysics Data System (ADS)

    Pojmański, G.

    2004-10-01

    The All Sky Automated Survey is a low cost project, the ultimate goal of which is detection and investigation of any kind of the photometric variability present all over the sky. The current system consists of 4 instruments covering 36x36, 9x9 (2 units) and 2x2 degrees, equipped with 2Kx2K CCDs, V,R,I standard filters and custom made automated mounts. All are working in Las Campanas Observatory, Chile in fully automated mode. In the ASAS-3 phase of the project we have been taking data at a rate of 1 measurement per 1-3 days for all available objects brighter than V=14, located south of δ=+28 deg. So far over 2 TB of images has been collected and analyzed, leading to a photometric light curve catalog of over 10 million sources. A preliminary search for variability revealed over 40,000 bright, variable sources (over 75 % were not previously known). Direct access to the data is available over the Internet: http://www.astrouw.edu.pl/˜ gp/asas. At present the ASAS Alert System is being tested. Events, like outbursts of CV's or Novae, eclipses etc. are reported within a few minutes after first detection. Due to large number of artifacts in these data raw events require verification, which can take up to 24 hours.

  19. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  20. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komura, S.; Takada, A.; Mizumura, Y.

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factormore » over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.« less

  1. Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?

    NASA Technical Reports Server (NTRS)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-01-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."

  2. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  3. Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?

    NASA Astrophysics Data System (ADS)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-11-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”

  4. First results from HAWC: monitoring the TeV gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Lauer, Robert J.

    2015-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a wide-field gamma-ray detector sensitive to primary energies between 100 GeV and 100 TeV. The array is being built at an altitude of 4100 m a.s.l. on the Sierra Negra volcano near Puebla, Mexico. Data taking has already started while construction continues, with the completion projected for early 2015. The design is optimized to detect extended air showers induced by gamma rays that pass through the array and to reconstruct the directions and energies of the primary photons. With a duty cycle close to 100% and a daily coverage of ~8 sr of the sky, HAWC will perform a survey of TeV emissions from many different sources. The northern active galactic nuclei will be monitored for up to 6 hours each day, providing unprecedented light curve coverage at energies comparable to those of imaging air Cherenkov telescopes. HAWC has been in scientific operation with more than 100 detector modules since August 2013. Here we present a preliminary look at the first results and discuss the efforts to integrate HAWC in multi-wavelength studies of extragalactic jets.

  5. Long-term optical and X-ray variability of the Be/X-ray binary H 1145-619: Discovery of an ongoing retrograde density wave

    NASA Astrophysics Data System (ADS)

    Alfonso-Garzón, J.; Fabregat, J.; Reig, P.; Kajava, J. J. E.; Sánchez-Fernández, C.; Townsend, L. J.; Mas-Hesse, J. M.; Crawford, S. M.; Kretschmar, P.; Coe, M. J.

    2017-11-01

    Context. Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. Aims: We investigate the correlation between the optical emission and X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. Methods: We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 yr. We used optical spectra from the SAAO, SMARTS, and SALT telescopes and optical photometry from the Optical Monitoring Camera (OMC) onboard INTEGRAL and from the All Sky Automated Survey (ASAS). We also used X-ray observations from INTEGRAL/JEM-X, and IBIS to generate the light curves and combined them with Swift/XRT to extract the X-ray spectra. In addition, we compiled archival observations and measurements from the literature to complement these data. Results: Comparing the evolution of the optical continuum emission with the Hα line variability, we identified three different patterns of optical variability: first, global increases and decreases of the optical brightness, observed from 1982 to 1994 and from 2009 to 2017, which can be explained by the dissipation and replenishment of the circumstellar disc; second, superorbital variations with a period of Psuperorb ≈ 590 days, observed in 2002-2009, which seems to be related to the circumstellar disc; and third, optical outbursts, observed in 1998-1999 and 2002-2005, which we interpret as mass ejections from the Be star. We discovered the presence of a retrograde one-armed density wave, which appeared in 2016 and is still present in the circumstellar disc. Conclusions: We carried out the most complete long-term optical study of the Be/X-ray binary H 1145-619 in correlation with its X-ray activity. For the first time, we found the presence of a retrograde density

  6. Monitoring the Galaxy - Highlights from the MAXI mission

    NASA Astrophysics Data System (ADS)

    Mihara, Tatehiro

    Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor on the International Space Station. It is equipped with Gas Slit Camera (GSC) and Solid-state Slit Camera (SSC). Since it was mounted to the Japanese experimental module in 2009, it has been scanning the whole sky in every 92 minutes with ISS rotation. The data are processed automatically and distributed through http://maxi.riken.jp homepage. MAXI issued 136 to Astronomers Telegram and 47 to Gamma-ray burst Coordinated Network so far. There are many transient X-ray sources in our galaxy. The most remarkable one is a new source. MAXI discovered 12 MAXI sources, 6 of which are blackhole binaries. MAXI J0158-744 was a source in a new category (Morii et al. 2013). It was a very bright (10(40) erg s(-1) ) and very rapid (< 1 hour) nova consisting of a unusual pair of binary, which was a Ne-white dwarf and a Be star. The monitoring results are published as the 37-month catalog (Hiroi et al. 2012) which contains 500 sources above 0.6 mCrab in 4-10 keV in high Galactic-latitude (|b| > 10 deg). SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble (Kimura et al. 2013) and north polar spur, as well as it found Ne line from the rapid soft X-ray nova MAXI J0158-744. Be X-ray binary pulsars (BeXBP) are also transients. They have outbursts at the periastron passage. However, the outburst does not occur in every orbit. Some sources stay in quiescence for tens of years, then suddenly start outbursts repeating for several years. All-sky monitor is then essential to study such kinds of sources. For example, cyclotron feature is often seen in the high energy X-ray band of BeXBP, from which magnetic fields of the poles are measured. MAXI detection of outburst and following SUZAKU pointing observation are very effective. We observed two BeXBP, GX 304-1 in 2010 and GRO J1008-57 in 2012 in MAXI-Suzaku collaboration and succeeded to catch them at the outburst peaks (600mCrab and 450

  7. Reflective all-sky thermal infrared cloud imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redman, Brian J.; Shaw, Joseph A.; Nugent, Paul W.

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference thatmore » is used to estimate and remove thermal emission from the metal sphere. In conclusion, once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.« less

  8. Reflective all-sky thermal infrared cloud imager

    DOE PAGES

    Redman, Brian J.; Shaw, Joseph A.; Nugent, Paul W.; ...

    2018-04-17

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference thatmore » is used to estimate and remove thermal emission from the metal sphere. In conclusion, once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.« less

  9. Reflective all-sky thermal infrared cloud imager.

    PubMed

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  10. A catalogue of clusters of galaxies identified from all sky surveys of 2MASS, WISE, and SuperCOSMOS

    NASA Astrophysics Data System (ADS)

    Wen, Z. L.; Han, J. L.; Yang, F.

    2018-03-01

    We identify 47 600 clusters of galaxies from photometric data of Two Micron All Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), and SuperCOSMOS, among which 26 125 clusters are recognized for the first time and mostly in the sky outside the Sloan Digital Sky Survey (SDSS) area. About 90 per cent of massive clusters of M500 > 3 × 1014 M⊙ in the redshift range of 0.025 < z < 0.3 have been detected from such survey data, and the detection rate drops down to 50 per cent for clusters with a mass of M500 ˜ 1 × 1014 M⊙. Monte Carlo simulations show that the false detection rate for the whole cluster sample is less than 5 per cent. By cross-matching with ROSAT and XMM-Newton sources, we get 779 new X-ray cluster candidates which have X-ray counterparts within a projected offset of 0.2 Mpc.

  11. Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, MAXI and Suzaku

    NASA Astrophysics Data System (ADS)

    Coley, Joel B.; Corbet, R.; Mukai, K.; Pottschmidt, K.

    2013-01-01

    Optical and X-ray observations of 4U 1210-64 (1ES 1210-646) suggest that the source is a High Mass X-ray Binary (HMXB) probably powered by the Be mechanism. Data acquired by the RXTE All Sky Monitor (ASM), the ISS Monitor of All-sky X-ray Image (MAXI) and Suzaku provide a detailed temporal and spectral description of this poorly understood source. Long-term data produced by ASM and MAXI indicate that the source shows two distinct high and low states. A 6.7-day orbital period of the system was found in folded light curves produced by both ASM and MAXI. A two day Suzaku observation in Dec. 2010 took place during a transition from the minimum to the maximum of the folded light curve. The two day Suzaku observation reveals large variations in flux indicative of strong orbit to orbit variability. Flares in the Suzaku light curve can reach nearly 1.4 times the mean count rate. From a spectral analysis of the Suzaku data, emission lines in the Fe K alpha region were detected at 6.4 keV, 6.7 keV and 6.97 keV interpreted as FeI, FeXXV and FeXXVI. In addition, emission lines were observed at approximately 1.0 and 2.6 keV, corresponding to NeX and SXVI respectively. Thermal bremsstrahlung or power law models both modified by interstellar and partially covering absorption provide a good fit to the continuum data. This source is intriguing for these reasons: i) No pulse period was observed; ii) 6.7 day orbital period is much less than typical orbital periods seen in Be/X-ray Binaries; iii) The optical companion is a B5V--an unusual spectral class for an HMXB; iv) There are extended high and low X-ray states.

  12. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  13. The History of the CONCAM Project: All Sky Monitors in the Digital Age

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert; Shamir, Lior; Pereira, Wellesley

    2018-01-01

    The CONtinuous CAMera (CONCAM) project, which ran from 2000 to (about) 2008, consisted of real-time, Internet-connected, fisheye cameras located at major astronomical observatories. At its peak, eleven CONCAMs around the globe monitored most of the night sky, most of the time. Initially designed to search for transients and stellar variability, CONCAMs gained initial notoriety as cloud monitors. As such, CONCAMs made -- and its successors continue to make -- ground-based astronomy more efficient. The original, compact, fisheye-observatory-in-a-suitcase design underwent several iterations, starting with CONCAM0 and with the last version dubbed CONCAM3. Although the CONCAM project itself concluded after centralized funding diminished, today more locally-operated, commercially-designed, CONCAM-like devices operate than ever before. It has even been shown that modern smartphones can operate in a CONCAM-like mode. It is speculated that the re-instatement of better global coordination of current wide-angle sky monitors could lead to better variability monitoring of the brightest stars and transients.

  14. Fast transient X-rays and gamma ray bursts - Are they stellar flares?

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    Short period transient X-ray emissions (FTX) have been observed from several sources in the sky and the largest single group of objects identified with such sources are active stars: flare stars, and RS CVn binaries. The study of the number, source and flux distribution of the fast transient X-ray sources shows that all the FTX emission can be treated as flares in the interbinary regions of active stars. It is suggested that the FTX emission is a common feature of the gamma ray bursts (GRBs). The evidence for the similarity between the hard X-ray flares and GRBs is discussed, and the possibility that the gamma ray bursts are the impulsive precursors of FTX originating from active stars with large scale magnetic activity is examined.

  15. Understanding the Long-Term Spectral Variability of Cygnus X-1 with Burst and Transient Source Experiment and All-Sky Monitor Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Lin-Qing

    2002-01-01

    We present a comprehensive analysis of all observations of Cyg X-1 by the Compton Gamma Ray Observatory Burst and Transient Source Experiment (BATSE; 20-300 keV) and by the Rossi X-Ray Timing Explorer all-sky monitor (ASM; 1.5-12 keV) until 2002 June, including approximately 1200 days of simultaneous data. We find a number of correlations between fluxes and hardnesses in different energy bands. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the 20-100 keV flux. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. There is also another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superposed on a constant soft blackbody component. These variability patterns are in agreement with the dependencies of the rms variability on the photon energy in the two states. We also study in detail recent soft states from late 2000 until 2002. The last of them has lasted thus far for more than 200 days. Their spectra are generally harder in the 1.5-5 keV band and similar or softer in the 3-12 keV band than the spectra of the 1996 soft state, whereas the rms variability is stronger in all the ASM bands. On the other hand, the 1994 soft state transition observed by BATSE appears very similar to the 1996 one. We interpret the variability patterns in terms of theoretical Comptonization

  16. Progress on the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Ford, Anthony; Jenet, F.; Craig, J.; Creighton, T. D.; Dartez, L. P.; Hicks, B.; Hinojosa, J.; Jaramillo, R.; Kassim, N. E.; Lunsford, G.; Miller, R. B.; Murray, J.; Ray, P. S.; Rivera, J.; Taylor, G. B.

    2013-01-01

    The Low Frequency All Sky Monitor is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 cross-dipole antennas designed to operate between 5-88MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array project. Over the last year, undergraduate students from the University of Texas at Brownsville’s Center for Advanced Radio Astronomy have been establishing these stations around the continental US, consisting of sites located in Port Mansfield, Texas, the LWA North Arm site of the LWA1 Radio Observatory in New Mexico, adjacent to the North Arm of the Very Large Array, the Green Bank Radio Observatory, West Virginia, and NASA’s Goldstone tracking complex in California. In combination with the establishment of these sites was the development of the analog hardware, which consists of commercial off-the-shelf RF splitter/combiners and a custom amplifier and filter chain designed by colleagues at the University of New Mexico. This poster will expound on progress in site installation and development of the analog signal chain.

  17. Active galaxies observed during the Extreme Ultraviolet Explorer all-sky survey

    NASA Technical Reports Server (NTRS)

    Marshall, H. L.; Fruscione, A.; Carone, T. E.

    1995-01-01

    We present observations of active galactic nuclei (AGNs) obtained with the Extreme Ultraviolet Explorer (EUVE) during the all-sky survey. A total of 13 sources were detected at a significance of 2.5 sigma or better: seven Seyfert galaxies, five BL Lac objects, and one quasar. The fraction of BL Lac objects is higher in our sample than in hard X-ray surveys but is consistent with the soft X-ray Einstein Slew Survey, indicating that the main reason for the large number of BL Lac objects in the extreme ulktraviolet (EUV) and soft X-ray bands is their steeper X-ray spectra. We show that the number of AGNs observed in both the EUVE and ROSAT Wide Field Camera surveys can readily be explained by modelling the EUV spectra with a simple power law in the case of BL Lac objects and with an additional EUV excess in the case of Seyferts and quasars. Allowing for cold matter absorption in Seyfert galaxy hosts drive up the inferred average continuum slope to 2.0 +/- 0.5 (at 90% confidence), compared to a slope of 1.0 usually found from soft X-ray data. If Seyfert galaxies without EUV excesses form a significant fraction of the population, then the average spectrum of those with bumps should be even steeper. We place a conservative limit on neutral gas in BL Lac objects: N(sub H) less than 10(exp 20)/sq cm.

  18. Swift-X-Ray Telescope Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2012-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (approx. 3.7 d and approx.1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations, we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from approx. 5 × 10(exp 16) to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.

  19. SWIFT-BAT HARD X-RAY SKY MONITORING UNVEILS THE ORBITAL PERIOD OF THE HMXB IGR J18219–1347

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Parola, V.; Cusumano, G.; Segreto, A.

    2013-09-20

    IGR J18219–1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the Burst Alert Telescope (BAT) survey data up to 2012 March and the X-Ray Telescope (XRT) data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ∼13 standard deviations in the 88 month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of Pmore » {sub 0} = 72.44 ± 0.3 days. The significance of this modulation is about seven standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P {sub 0} shows a sharp peak covering ∼30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light-curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219–1347 binary system hosts a Be star. The broadband XRT+BAT spectrum is well modeled with a flat absorbed power law with a high-energy exponential cutoff at ∼11 keV.« less

  20. ESASky: All the sky you need

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; ESASky Team

    2018-06-01

    ESASky is a discovery portal giving to all astronomers, professional and amateur alike, an easy way to access high-quality scientific data from their computer, tablet, or mobile device. It includes over half a million images, 300,000 spectra, and more than a billion catalogue sources. From gamma rays to radio wavelengths, it allows users to explore the cosmos with data from a dozen space missions from the astronomical archives of ESA, NASA, and JAXA and does not require prior knowledge of any particular mission. ESASky features an all-sky exploration interface, letting users easily zoom in for stars as single targets or as part of a whole galaxy, visualise them and retrieve the relevant data taken in an area of the sky with just a few clicks. Users can easily compare observations of the same source obtained by different space missions at different times and wavelengths. They can also use ESASky to plan future observations with the James Webb Space Telescope, comparing the relevant portion of the sky as observed by Hubble and other missions. We will illustrate the many options to visualise and access astronomical data: interactive footprints for each instrument, tree-maps, filters, and solar-system object trajectories can all be combined and displayed. The most recent version of ESASky, released in February, also includes access to scientific publications, allowing users to visualise on the sky all astronomical objects with associated scientific publications and to link directly back to the papers in the NASA Astrophysics Data System.

  1. Fast optical and X-ray variability in the UCXB 4U0614+09

    NASA Astrophysics Data System (ADS)

    Hakala, P. J.; Charles, P. A.; Muhli, P.

    2011-09-01

    We present results from several years of fast optical photometry of 4U0614+091 (V1055 Orionis), a candidate ultracompact X-ray binary most likely consisting of a neutron star and a degenerate secondary. We find evidence for strong accretion-driven variability at all epochs, which manifests itself as red noise. This flickering produces transient peaks in the observed power spectrum in the 15-65 min period range. Only in one of our 12 optical data sets can we see evidence for a period that cannot be reproduced using the red noise model. This period of 51 min coincides with the strongest period detected by Shahbaz et al. and can thus be taken as the prime candidate for the orbital period of the system. Furthermore, we find some tentative evidence for the X-ray versus optical flux anticorrelation discovered by Machin et al. using our data together with the all-sky X-ray monitoring data from RXTE/All Sky Monitor. We propose that the complex time series behaviour of 4U0614+09 is a result of drastic changes in the accretion disc geometry/structure on time-scales from hours to days. Finally, we want to draw attention to the interpretation of moderately strong peaks in the power spectra of especially accreting sources. Many of such 'periods' can probably be attributed to the presence of red noise (i.e. correlated events) in the data. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Uses results provided by the ASM/RXTE teams at MIT and at the RXTE SOF and GOF at NASA's GSFC.

  2. Temporal X-ray astronomy with a pinhole camera. [cygnus and scorpius constellation

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    Preliminary results from the Ariel-5 all-sky X-ray monitor are presented, along with sufficient experiment details to define the experiment sensitivity. Periodic modulation of the X-ray emission was investigated from three sources with which specific periods were associated, with the results that the 4.8 hour variation from Cyg X-3 was confirmed, a long-term average 5.6 day variation from Cyg X-1 was discovered, and no detectable 0.787 day modulation of Sco X-1 was observed. Consistency of the long-term Sco X-1 emission with a shot-noise model is discussed, wherein the source behavior is shown to be interpretable as approximately 100 flares per day, each with a duration of several hours. A sudden increase in the Cyg X-1 intensity by almost a factor of three on 22 April 1975 is reported, after 5 months of relative source constancy. The light curve of a bright nova-like transient source in Triangulum is presented, and compared with previously observed transient sources. Preliminary evidence for the existence of X-ray bursts with duration less than 1 hour is offered.

  3. VizieR Online Data Catalog: Second ROSAT all-sky survey (2RXS) source catalog (Boller+, 2016)

    NASA Astrophysics Data System (ADS)

    Boller, T.; Freyberg, M. J.; Truemper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-03-01

    We have re-analysed the photon event files from the ROSAT all-sky survey. The main goal was to create a catalogue of point-like sources, which is referred to as the 2RXS source catalogue. We improved the reliability of detections by an advanced detection algorithm and a complete screening process. New data products were created to allow timing and spectral analysis. Photon event files with corrected astrometry and Moon rejection (RASS-3.1 processing) were made available in FITS format. The 2RXS catalogue will serve as the basic X-ray all-sky survey catalogue until eROSITA data become available. (2 data files).

  4. Current Status of The Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Dartez, Louis; Creighton, Teviet; Jenet, Fredrick; Dolch, Timothy; Boehler, Keith; Bres, Luis; Cole, Brent; Luo, Jing; Miller, Rossina; Murray, James; Reyes, Alex; Rivera, Jesse

    2018-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of cross-dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual- polarization dipole antenna stands. The primary science goals of LoFASM will be the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council’s ASTRO2010 decadal survey. The data acquisition system for the LoFASM antenna array uses Field Programmable Gate Array (FPGA) technology to implement a real time full Stokes spectrometer and data recorder. This poster presents an overview of the LoFASM Radio Telescope as well as the status of data analysis of initial commissioning observations.

  5. Fermi Gamma-Ray Space Telescope: Highlights of the GeV Sky

    NASA Technical Reports Server (NTRS)

    Thomspon, D. J.

    2011-01-01

    Because high-energy gamma rays can be produced by processes that also produce neutrinos. the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of potenl ial targds for neutrino observations. Gamma-ray bursts. active galactic nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. \\Vhile important to gamma-ray astrophysics. such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  6. Disk Disruptions and X-ray Intensity Excursions in Cyg X-2, LMC X-3 and Cyg X-3

    NASA Astrophysics Data System (ADS)

    Boyd, P. T.; Smale, A. P.

    2001-05-01

    The RXTE All Sky Monitor soft X-ray light curves of many X-ray binaries show long-term intensity variations (a.k.a "superorbital periodicities") that have been ascribed to precession of a warped, tilted accretion disk around the X-ray source. We have found that the excursion times between X-ray minima in Cyg X-2 can be characterized as a series of integer multiples of the 9.8 binary orbital period, (as opposed to the previously reported stable 77.7 day single periodicity, or a single modulation whose period changes slowly with time). While the data set is too short for a proper statistical analysis, it is clear that the length of any given intensity excursion cannot be used to predict the next (integer) excursion length in the series. In the black hole candidate system LMC X-3, the excursion times are shown to be related to each other by rational fractions. We find that the long term light curve of the unusual galactic X-ray jet source Cyg X-3 can also be described as a series of intensity excursions related to each other by integer multiples of a fundamental underlying clock. In the latter cases, the clock is apparently not related to the known binary periods. A unified physical model, involving both an inclined accretion disk and a fixed-probability disk disruption mechanism is presented, and compared with three-body scattering results. Each time the disk passes through the orbital plane it experiences a fixed probability P that it will disrupt. This model has testable predictions---the distribution of integers should resemble that of an atomic process with a characteristic half life. Further analysis can support or refute the model, and shed light on what system parameters effectively set the value of P.

  7. Hard X-ray luminosity function of tidal disruption events: First results from the MAXI extragalactic survey

    NASA Astrophysics Data System (ADS)

    Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Hori, Takafumi; Kawai, Nobuyuki; Negoro, Hitoshi; Mihara, Tatehiro

    2016-08-01

    We derive the first hard X-ray luminosity function (XLF) of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs), which gives an occurrence rate of TDEs per unit volume as a function of peak luminosity and redshift, utilizing an unbiased sample observed by the Monitor of All-sky X-ray Image (MAXI). On the basis of the light curves characterized by a power-law decay with an index of -5/3, a systematic search using the MAXI data detected four TDEs in the first 37 months of observations, all of which have been found in the literature. To formulate the TDE XLF, we consider the mass function of SMBHs, that of disrupted stars, the specific TDE rate as a function of SMBH mass, and the fraction of TDEs with relativistic jets. We perform an unbinned maximum likelihood fit to the MAXI TDE list and check the consistency with the observed TDE rate in the ROSAT all-sky survey. The results suggest that the intrinsic fraction of the jet-accompanying events is 0.0007%-34%. We confirm that at z ≲ 1.5 the contamination of the hard X-ray luminosity functions of active galactic nuclei by TDEs is not significant and hence that their contribution to the growth of SMBHs is negligible at the redshifts.

  8. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  9. Network based sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.

    2009-01-01

    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  10. Night Sky Weather Monitoring System Using Fish-Eye CCD

    NASA Astrophysics Data System (ADS)

    Tomida, Takayuki; Saito, Yasunori; Nakamura, Ryo; Yamazaki, Katsuya

    Telescope Array (TA) is international joint experiment observing ultra-high energy cosmic rays. TA employs fluorescence detection technique to observe cosmic rays. In this technique, tho existence of cloud significantly affects quality of data. Therefore, cloud monitoring provides important information. We are developing two new methods for evaluating night sky weather with pictures taken by charge-coupled device (CCD) camera. One is evaluating the amount of cloud with pixels brightness. The other is counting the number of stars with contour detection technique. The results of these methods show clear correlation, and we concluded both the analyses are reasonable methods for weather monitoring. We discuss reliability of the star counting method.

  11. Much NICER Monitoring of the X-ray Spectrum of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael Francis; Hamaguchi, Kenji; Drake, Stephen; Pasham, Dheeraj; Gendreau, Keith C.; Arzoumanian, Zaven

    2018-01-01

    Eta Carinae is the most massive and luminous stellar system within 3 kpc. It is a known binary system with an orbital period of 5.52 years in which bright, thermal, X-ray emission is produced by a strong shock driven by the collisions of the wind of the visible primary star with the thin, fast wind of an otherwise unseen companion. Variations of the X-ray spectrum are produced by intrinsic changes in the density of the hot shocked gas and by intervening changes in wind absorption as the two stars revolve in a long-period, highly eccentric orbit. Previous X-ray monitoring studies since 1996 have detailed these variations, but have been either restricted to the E>3 keV band or have been affected by optical loading which limited measurement of X-ray absorption changes which can be used to determine the overlying density profile of the primary's wind around the orbit. The Neutron Star Interior Composition Explorer (NICER) is an excellent general-purpose observatory for X-ray astronomy, and in particular, its soft response and large effective area facilitate monitoring of X-ray spectral variations for bright sources like Eta Car without any bias due to photon pileup. We present the first observations of the X-ray spectrum of Eta Car obtained by NICER, and discuss limits on changes in column density, emission measure and temperature we derive from the NICER spectra.

  12. Performance of large area x-ray proportional counters in a balloon experiment

    NASA Astrophysics Data System (ADS)

    Roy, J.; Agrawal, P. C.; Dedhia, D. K.; Manchanda, R. K.; Shah, P. B.; Chitnis, V. R.; Gujar, V. M.; Parmar, J. V.; Pawar, D. M.; Kurhade, V. B.

    2016-10-01

    ASTROSAT is India's first satellite fully devoted to astronomical observations covering a wide spectral band from optical to hard X-rays by a complement of 4 co-aligned instruments and a Scanning Sky X-ray Monitor. One of the instruments is Large Area X-ray Proportional Counter with 3 identical detectors. In order to assess the performance of this instrument, a balloon experiment with two prototype Large Area X-ray Proportional Counters (LAXPC) was carried out on 2008 April 14. The design of these LAXPCs was similar to those on the ASTROSAT except that their field of view (FOV) was 3 ∘ × 3 ∘ versus FOV of 1 ∘ × 1 ∘ for the LAXPCs on the ASTROSAT. The LAXPCs are aimed at the timing and spectral studies of X-ray sources in 3-80 keV region. In the balloon experiment, the LAXPC, associated electronics and support systems were mounted on an oriented platform which could be pre-programmed to track any source in the sky. A brief description of the LAXPC design, laboratory tests, calibration and the detector characteristics is presented here. The details of the experiment and background counting rates of the 2 LAXPCs at the float altitude of about 41 km are presented in different energy bands. The bright black hole X-ray binary Cygnus X-1 (Cyg X-1) was observed in the experiment for ˜ 3 hours. Details of Cyg X-1 observations, count rates measured from it in different energy intervals and the intensity variations of Cyg X-1 detected during the observations are presented and briefly discussed.

  13. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  14. Diffuse X-ray sky in the Galactic center

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji

    2018-01-01

    The Galactic diffuse X-ray emission (GDXE) in the Milky Way Galaxy is spatially and spectrally decomposed into the Galactic center X-ray emission (GCXE), the Galactic ridge X-ray emission (GRXE), and the Galactic bulge X-ray emission (GBXE). The X-ray spectra of the GDXE are characterized by the strong K-shell lines of the highly ionized atoms, and the brightest lines are the K-shell transition (principal quantum number transition of n = 2 → 1) of neutral iron (Fe I-Kα), He-like iron (Fe XXV-Heα), and He-like sulfur (S XV-Heα). Accordingly, the GDXE is composed of a high-temperature plasma of ˜7 keV (HTP) and a low-temperature plasma of ˜1 keV, which emit the Fe XXV-Heα and S XV-Heα lines, respectively. The Fe I-Kα line is emitted from nearly neutral irons, and hence the third component of the GDXE is a cool gas (CG). The Fe I-Kα distribution in the GCXE region is clumpy (Fe I-Kα clump), associated with giant molecular cloud (MC) complexes (Sagittarius A, B, C, D, and E) in the central molecular zone. The origin of the Fe I-Kα clumps is the fluorescence and Thomson scattering from the MCs irradiated by past big flares of the supermassive black hole Sagittarius A*. The scale heights and equivalent widths of the Fe I-Kα, Fe XXV-Heα, and Fe XXVI-Lyα (n = 2 → 1 transition of H-like iron) lines are different among the GCXE, GBXE, and GRXE. Therefore, their structures and origins are separately examined. This paper gives an overview of the research history and the present understandings of the GDXE, while in particular focusing on the origin of the HTP and CG in the GCXE.

  15. The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis

    NASA Astrophysics Data System (ADS)

    Abdollahi, S.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Conrad, J.; Costantin, D.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desai, A.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Donaggio, B.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giomi, M.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hays, E.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, L.; Suson, D. J.; Takahashi, M.; Tanaka, K.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.

    2017-09-01

    We present the second catalog of flaring gamma-ray sources (2FAV) detected with the Fermi All-sky Variability Analysis (FAVA), a tool that blindly searches for transients over the entire sky observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. With respect to the first FAVA catalog, this catalog benefits from a larger data set, the latest LAT data release (Pass 8), as well as from an improved analysis that includes likelihood techniques for a more precise localization of the transients. Applying this analysis to the first 7.4 years of Fermi observations, and in two separate energy bands 0.1-0.8 GeV and 0.8-300 GeV, a total of 4547 flares were detected with significance greater than 6σ (before trials), on the timescale of one week. Through spatial clustering of these flares, 518 variable gamma-ray sources were identified. Based on positional coincidence, likely counterparts have been found for 441 sources, mostly among the blazar class of active galactic nuclei. For 77 2FAV sources, no likely gamma-ray counterpart has been found. For each source in the catalog, we provide the time, location, and spectrum of each flaring episode. Studying the spectra of the flares, we observe a harder-when-brighter behavior for flares associated with blazars, with the exception of BL Lac flares detected in the low-energy band. The photon indexes of the flares are never significantly smaller than 1.5. For a leptonic model, and under the assumption of isotropy, this limit suggests that the spectrum of freshly accelerated electrons is never harder than p˜ 2.

  16. X-ray Transients in the Advanced LIGO/Virgo Horizon

    NASA Technical Reports Server (NTRS)

    Kanner, Jonah; Baker, John G.; Blackburn, Lindy L.; Camp, Jordan B.; Mooley, Kunal; Mushotzky, Richard F.; Ptak, Andrew Francis

    2013-01-01

    Advanced LIGO and Advanced Virgo will be all-sky monitors for merging compact objects within a few hundred megaparsecs. Finding the electromagnetic counterparts to these events will require an understanding of the transient sky at low redshift (z < 0.1). We performed a systematic search for extragalactic, low redshift, transient events in the XMM-Newton Slew Survey. In a flux limited sample, we found that highly variable objects comprised 10% of the sample, and that of these, 10% were spatially coincident with cataloged optical galaxies. This led to 4 × 10(exp -4) transients per square degree above a flux threshold of 3×10(exp -12) erg/sq cm/s (0.2-2 keV) which might be confused with LIGO/Virgo counterparts. This represents the first extragalactic measurement of the soft X-ray transient rate within the Advanced LIGO/Virgo horizon. Our search revealed six objects that were spatially coincident with previously cataloged galaxies, lacked evidence for optical active galactic nuclei, displayed high luminosities approx. 10(exp 43) erg/s, and varied in flux by more than a factor of 10 when compared with the ROSAT All-Sky Survey. At least four of these displayed properties consistent with previously observed tidal disruption events.

  17. A complete X-ray sample of the high latitude sky from HEAO-1 A-2: log N lo S and luminosity functions

    NASA Technical Reports Server (NTRS)

    Piccinotti, G.; Mushotzky, R. F.; Boldt, E. A.; Holt, S. S.; Marshall, F. E.; Serlemitsos, P. J.; Shafer, R. A.

    1981-01-01

    An experiment was performed in which a complete X-ray survey of the 8.2 steradians of the sky at galactic latitudes where the absolute value of b is 20 deg down to a limiting sensitivity of 3.1 x ten to the minus 11th power ergs/sq cm sec in the 2-10 keV band. Of the 85 detected sources 17 were identified with galactic objects, 61 were identified with extragalactic objects, and 7 remain unidentified. The log N - log S relation for the non-galactic objects is well fit by the Euclidean relationship. The X-ray spectra of these objects were used to construct log N - log S in physical units. The complete sample of identified sources was used to construct X-ray luminosity functions, using the absolute maximum likelihood method, for clusters galaxies and active galactic nuclei.

  18. Studies of an x ray selected sample of cataclysmic variables. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.

    1986-01-01

    Just prior to the thesis research, an all-sky survey in hard x rays with the HEAO-1 satellite and further observations in the optical resulted in a catalog of about 700 x-ray sources with known optical counterparts. This sample includes 43 cataclysmic variables, which are binaries consisting of a detached white-dwarf and a Roche lobe filling companion star. This thesis consists of studies of the x-ray selected sample of catalcysmic variables.

  19. Simultaneous Monitoring of X-ray and Radio Variability in Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Haggard, Daryl; Capellupo, Daniel M.; Choux, Nicolas; Baganoff, Frederick K.; Bower, Geoffrey C.; Cotton, William D.; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Christopher Christopher; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joseph; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad

    2017-08-01

    We report on joint X-ray/radio campaigns targeting Sagittarius A*, including 9 contemporaneous Chandra and VLA observations. These campaigns are the most extensive of their kind and have allowed us to test whether the black hole’s variations in different parts of the electromagnetic spectrum are due to the same physical processes. We detect significant radio variability peaking >176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also identify other potentially associated X-ray and radio variability, with radio peaks appearing <80 minutes after weaker X-ray flares. These results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and at radio wavelengths are not temporally correlated, and show that the radio variations occurring around the time of X-ray flaring are not significantly greater than the overall radio flux variations. We also cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.

  20. Far infrared all-sky survey

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    1991-01-01

    An all-sky survey at submillimeter waves is examined. Far-infrared all-sky surveys were performed using high-thoroughput bolometric detectors from a one-meter balloon telescope. Based on the large-bodied experience obtained with the original all-sky survey telescope, a number of radically different approaches were implemented. Continued balloon measurements of the spectrum of the cosmic microwave background were performed.

  1. ROSAT all-sky survey on the Einstein EMSS sample

    NASA Technical Reports Server (NTRS)

    Maccacaro, Tomasso

    1992-01-01

    The cosmological evolution and the luminosity function (XLF) of X ray selected Active Galactic Nuclei (AGN's) are discussed. The sample used is extracted from the Einstein Observatory Extended Medium Sensitivity Surveys (EMSS) and consists of more than 420 objects. Preliminary results from the ROSAT All-Sky Survey data confirm the correctness of the optical identification of the EMSS sources, thus giving confidence to the results obtained from the analysis of the AGN's sample. The XLF observed at different redshifts (up to z approx. 2) gives direct evidence of cosmological evolution. Data have been analyzed within the framework of luminosity evolution models and the two most common evolutionary forms, L sub x(Z) = L sub x(0) x e(sup Cr) and L sub x(Z) = L sub x(0) x (1 + z)(exp C), have been considered. Luminosity dependent evolution is required if the evolution function has the exponential form, whereas the simpler pure luminosity evolution model is still acceptable if the evolution function has the power law form. Using the whole sample of objects the number-counts and the de-evolved (z = 0) XLF have been derived. A comparison of the EMSS data with preliminary ROSAT results presented at this meeting indicates an overall agreement.

  2. The HectoMAP Cluster Survey. II. X-Ray Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, Jubee; Chon, Gayoung; Bohringer, Hans

    Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less

  3. The HectoMAP Cluster Survey. II. X-Ray Clusters

    DOE PAGES

    Sohn, Jubee; Chon, Gayoung; Bohringer, Hans; ...

    2018-03-10

    Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less

  4. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2009-10-30

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  5. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  6. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.

    2012-09-01

    PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜260 with respect to a previous observation performed 4.5 yr earlier. The ultraviolet (UV) flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray data base spanning almost 10 yr in total in the activity of the source. Our monitoring programme demonstrates that the αox variability in PHL 1092 is entirely driven by long-term X-ray flux changes. We apply a series of physically motivated models with the goal of explaining the UV-to-X-ray spectral energy distribution and the extreme X-ray and αox variability. We consider three possible models. (i) A breathing corona scenario in which the size of the X-ray-emitting corona is correlated with the X-ray flux. In this case, the lowest X-ray flux states of PHL 1092 are associated with an almost complete collapse of the X-ray corona down to the marginal stable orbit. (ii) An absorption scenario in which the X-ray flux variability is entirely due to intervening absorption. If so, PHL 1092 is a quasar with standard X-ray output for its optical luminosity, appearing as X-ray weak at times due to absorption. (iii) A disc-reflection-dominated scenario in which the X-ray-emitting corona is confined within a few gravitational radii from the black hole at all times. In this case, the intrinsic variability of PHL 1092 only needs to be a factor of ˜10 rather than the observed factor of ˜260. We discuss these scenarios in the context of non-BAL X-ray weak quasars.

  7. X-ray Weekly Monitoring of the Galactic Center Sgr A* with Suzaku

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Nobukawa, Masayoshi; Hayashi, Takayuki; Iizuka, Ryo; Saitoh, Takayuki; Murakami, Hiroshi

    A small gas cloud, G2, is on an orbit almost straight into the supermassive blackhole Sgr A* by spring 2014. This event gives us a rare opportunity to test the mass feeding onto the blackhole by a gas. To catch a possible rise of the mass accretion from the cloud, we have been performing the bi-week monitoring of Sgr A* in autumn and spring in the 2013 fiscal year. The key feature of Suzaku is the high-sensitivity wide-band X-ray spectroscopy all in one observatory. It is characterized by a large effective area combined with low background and good energy resolution, in particular a good line spread function in the low-energy range. Since the desired flare events associated with the G2 approach is a transient event, the large effective area is critical and powerful tools to hunt them. The first monitoring in 2013 autumn was successfully made. The X-rays from Sgr A* and its nearby emission were clearly resolved from the bright transient source AX J1745.6-2901. No very large flare from Sgr A*was found during the monitoring. We also may report the X-ray properties of two serendipitous sources, the neutron star binary AX J1745.6-2901 and a magnetar SGR J1745-29.

  8. X-ray Properties of Deep Radio-Selected Quasars

    NASA Technical Reports Server (NTRS)

    Becker, Robert

    2002-01-01

    This report summarizes the research supported by the ADP grant entitled 'X-ray Properties of Deep Radio-Selected Quasars'. The primary effort consisted of correlating the ROSAT All-Sky Survey catalog with the April 1997 release of the FIRST (Faint Images of the Radio Sky at Twenty centimeters) radio catalog. We found that a matching radius of 60 sec excluded most false matches while retaining most of the true radio-X-ray sources. The correlation of the approx. 80,000 source RASS and approx. 268,000 FIRST catalogs matched 2,588 FIRST sources with 1,649 RASS sources out of a possible 5,520 RASS sources residing in the FIRST survey area. This number is much higher than expected from our previous experience of correlating the RASS with radio surveys and indicates we detected new classes of objects not seen in the correlations with less sensitive radio surveys.

  9. The MIT OSO-7 X-ray experiment. A five color survey of the positions and time variations of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Taylor, R. S.; Clark, G. W.

    1971-01-01

    The all-sky, X-ray measurements are made in five broad energy bands from 0.5 to 60 keV with X-ray collimators of one and three degree FWHM response. Working with the onboard star sensor source locations may be determined to a precision of plus or minus 0.1 deg. The experiment is located in wheel compartment number three of the spacecraft. A time division logic system divides each wheel rotation into 256 data bins in each of which X-ray counts are accumulated over a 190 second interval. Measurement chain circuits include provision for both geometric and risetime anticoincidence. A detailed description of the instrument is included as is pertinent operating information.

  10. All-Sky Monitoring of Variable Sources with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie; Finger, Mark H.; Jenke, Pater; Rodi, James C.; Baumgartner, Wayne H.; hide

    2011-01-01

    This slide presentation reviews the monitoring of variable sources with the Fermi Gamma Ray Burst Monitor (GBM). It reviews the use of the Earth Occultation technique, the observations of the Crab Nebula with the GBM, and the comparison with other satellite's observations. The instruments on board the four satellites indicate a decline in the Crab from 2008-2010.

  11. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; ...

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  12. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  13. Swift X-ray monitoring of stellar coronal variability

    NASA Astrophysics Data System (ADS)

    Miller, Brendan; Hagen, Cedric; Gallo, Elena; Wright, Jason T.

    2018-01-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares. Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  14. Swift X-ray monitoring of stellar coronal variability

    NASA Astrophysics Data System (ADS)

    Miller, Brendan P.; Gallo, Elena; Wright, Jason; Hagen, Cedric

    2017-08-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares.Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  15. X-ray scanning of overhead aurorae from rockets

    NASA Technical Reports Server (NTRS)

    Barcus, J. R.; Goldberg, R. A.; Gesell, L. H.

    1981-01-01

    Two Nike Tomahawk rocket payloads were launched into energetic auroral events in September, 1976 to investigate the structure of these events, as well as their effects on the atmosphere. X-ray scintillation detectors with energy discrimination in four ranges were used to measure the deposition of bremsstrahlung produced X-rays within the stratosphere and mesosphere. Iterative computer techniques were used to reconstruct X-ray source maps at 100 km, taking atmospheric absorption effects into account. Payload 18.178 was launched on September 21st into an aurora having two distinct azimuthal regions of optical brightness. The X-ray scanner detected the same features, and overlays of the X-ray source maps on all-sky photographs showed spatial coincidence of the X-ray with optical features at the lower energies (below 40 keV). Payload 18.179 was launched September 23rd into an aurora with a more diffuse character. The optical structure did not coincide as well with the measured X-ray structure. There was also an indication of a two-component spectrum for each event, with the hard component originating in the more diffuse, optically faint regions.

  16. The Multi-component X-ray Emission of 3C 273

    NASA Astrophysics Data System (ADS)

    Soldi, S.; Türler, M.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    3C 273 is the brightest quasar in the sky and among the most extensively observed and studied AGN, therefore one of the most suitable targets for a long-term, multi-frequency study. The superposition of a thermal Comptonisation component, similar to that observed in Seyfert galaxies, and of a non-thermal component, related to the jet emission, seems to explain some of the spectral and timing properties of the X-ray emission of 3C 273. Yet, during some observations this dichotomy has not been observed and the variability properties could also be consistent with a single-component scenario, characterised by two parameters varying independently. In order to understand the nature of the X-ray emission in 3C 273, a series of observations up to 80-100 keV, possibly catching the source in different flux states, are essential. Simbol-X will be able to study the emission of 3C 273 in the broad 0.5-80 keV band with high sensitivity, allowing us to disentangle the emission from different spectral components, with 20-30 ks long observations. In addition, the shape and the origin of the high-energy emission of this quasar will be further constrained thanks to the AGILE and Fermi satellites, monitoring the γ-ray sky in the MeV-GeV energy domain.

  17. XIPE, the X-ray imaging polarimetry explorer: Opening a new window in the X-ray sky

    NASA Astrophysics Data System (ADS)

    Soffitta, Paolo; XIPE Collaboration

    2017-11-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a candidate ESA fourth medium size mission, now in competitive phase A, aimed at time-spectrally-spatially-resolved X-ray polarimetry of a large number of celestial sources as a breakthrough in high energy astrophysics and fundamental physics. Its payload consists of three X-ray optics with a total effective area larger than one XMM mirror but with a low mass and of three Gas Pixel Detectors at their focus. The focal length is 4 m and the whole satellite fits within the fairing of the Vega launcher without the need of an extendable bench. XIPE will be an observatory with 75% of the time devoted to a competitive guest observer program. Its consortium across Europe comprises Italy, Germany, Spain, United Kingdom, Switzerland, Poland, Sweden Until today, thanks to a dedicated experiment that dates back to the '70, only the Crab Nebula showed a non-zero polarization with large significance [1] in X-rays. XIPE, with its innovative detector, promises to make significative measurements on hundreds of celestial sources.

  18. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    PubMed

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  19. Searching for Primordial Black Holes in the Radio and X-Ray Sky.

    PubMed

    Gaggero, Daniele; Bertone, Gianfranco; Calore, Francesca; Connors, Riley M T; Lovell, Mark; Markoff, Sera; Storm, Emma

    2017-06-16

    We model the accretion of gas onto a population of massive primordial black holes in the Milky Way and compare the predicted radio and x-ray emission with observational data. We show that, under conservative assumptions on the accretion process, the possibility that O(10)M_{⊙} primordial black holes can account for all of the dark matter in the Milky Way is excluded at 5σ by a comparison with a Very Large Array radio catalog at 1.4 GHz and at ≃40σ by a comparison with a Chandra x-ray catalog (0.5-8 keV). We argue that this method can be used to identify such a population of primordial black holes with more sensitive future radio and x-ray surveys.

  20. Absolute x-ray energy calibration and monitoring using a diffraction-based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.

    2016-07-27

    In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.

  1. Probing the mysteries of the X-ray binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji

    2014-10-01

    4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 ± 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, themore » predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V; however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index Γ = 1.85{sub −0.05}{sup +0.04} and a high-energy cutoff at 5.5 ± 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI Kα, Fe Kα, Fe XXV Kα, and Fe XXVI Kα were observed in the Suzaku spectra. Out of eclipse, the Fe Kα line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.« less

  2. UBAT of UFFO/ Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Panasyuk, M. I.; Reglero, V.; Connell, P.; Kim, M. B.; Lee, J.; Rodrigo, J. M.; Ripa, J.; Eyles, C.; Lim, H.; Gaikov, G.; Jeong, H.; Leonov, V.; Chen, P.; Castro-Tirado, A. J.; Nam, J. W.; Svertilov, S.; Yashin, I.; Garipov, G.; Huang, M.-H. A.; Huang, J.-J.; Kim, J. E.; Liu, T.-C.; Petrov, V.; Bogomolov, V.; Budtz-Jørgensen, C.; Brandt, S.; Park, I. H.

    2018-02-01

    The Ultra-Fast Flash Observatory (UFFO) Burst Alert and Trigger Telescope (UBAT) has been designed and built for the localization of transient X-ray sources such as Gamma Ray Bursts (GRBs). As one of main instruments in the UFFO payload onboard the Lomonosov satellite (hereafter UFFO/ Lomonosov), the UBAT's roles are to monitor the X-ray sky, to rapidly locate and track transient sources, and to trigger the slewing of a UV/optical telescope, namely Slewing Mirror Telescope (SMT). The SMT, a pioneering application of rapid slewing mirror technology has a line of sight parallel to the UBAT, allowing us to measure the early UV/optical GRB counterpart and study the extremely early moments of GRB evolution. To detect X-rays, the UBAT utilizes a 191.1 cm2 scintillation detector composed of Yttrium Oxyorthosilicate (YSO) crystals, Multi-Anode Photomultiplier Tubes (MAPMTs), and associated electronics. To estimate a direction vector of a GRB source in its field of view, it employs the well-known coded aperture mask technique. All functions are written for implementation on a field programmable gate array to enable fast triggering and to run the device's imaging algorithms. The UFFO/ Lomonosov satellite was launched on April 28, 2016, and is now collecting GRB observation data. In this study, we describe the UBAT's design, fabrication, integration, and performance as a GRB X-ray trigger and localization telescope, both on the ground and in space.

  3. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  4. Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing

    NASA Astrophysics Data System (ADS)

    Edelson, R.; Gelbord, J.; Cackett, E.; Connolly, S.; Done, C.; Fausnaugh, M.; Gardner, E.; Gehrels, N.; Goad, M.; Horne, K.; McHardy, I.; Peterson, B. M.; Vaughan, S.; Vestergaard, M.; Breeveld, A.; Barth, A. J.; Bentz, M.; Bottorff, M.; Brandt, W. N.; Crawford, S. M.; Dalla Bontà, E.; Emmanoulopoulos, D.; Evans, P.; Figuera Jaimes, R.; Filippenko, A. V.; Ferland, G.; Grupe, D.; Joner, M.; Kennea, J.; Korista, K. T.; Krimm, H. A.; Kriss, G.; Leonard, D. C.; Mathur, S.; Netzer, H.; Nousek, J.; Page, K.; Romero-Colmenero, E.; Siegel, M.; Starkey, D. A.; Treu, T.; Vogler, H. A.; Winkler, H.; Zheng, W.

    2017-05-01

    Swift monitoring of NGC 4151 with an ˜6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3-50 keV) and six in the ultraviolet (UV)/optical (1900-5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ˜3-4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to lead the optical by ˜0.5-1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner & Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.

  5. Apollo-Soyuz pamphlet no. 2: X-rays, gamma-rays. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The nature of high energy radiation and its penetration through earth's atmosphere is examined with emphasis on X-rays, gamma rays, and cosmic radiation and the instruments used in their detection. The history of radio astronomy and the capabilities of the Uhuru satellite are summarized. The ASTP soft X-ray experiment (MA-048) designed to study the spectra in the range from 0.1 to 10 keV and survey the background over a large section of the sky is described, as well as the determination of SMC C-1 as an X-ray pulsar. The crystal activation experiment (MA-151) used to measure the radioactive isotopes created by cosmic rays in crystals used for gamma ray detectors is also discussed.

  6. Engine materials characterization and damage monitoring by using x ray technologies

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1993-01-01

    X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws

  7. The U.S. Spectrum X Gamma Coordination Facility

    NASA Astrophysics Data System (ADS)

    Forman, William R.

    1999-08-01

    Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.

  8. The U.S. Spectrum X Gamma Coordination Facility

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1999-01-01

    Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.

  9. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  10. An all-diamond X-ray position and flux monitor using nitrogen-incorporated ultra-nanocrystalline diamond contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Mengnan; Gaowei, Mengjia; Zhou, Tianyi

    Diamond X-ray detectors with conducting nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD) films as electrodes were fabricated to measure X-ray beam flux and position. Structural characterization and functionality tests were performed for these devices. The N-UNCD films grown on unseeded diamond substrates were compared with N-UNCD films grown on a seeded silicon substrate. The feasibility of the N-UNCD films acting as electrodes for X-ray detectors was confirmed by the stable performance in a monochromatic X-ray beam. The fabrication process is able to change the surface status which may influence the signal uniformity under low bias, but this effect can be neglected under fullmore » collection bias.« less

  11. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  12. Monitoring the Galactic - Search for Hard X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  13. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki

    2013-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, including 5 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  14. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  15. Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro

    2015-04-01

    Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.

  16. The cosmic X-ray background. [heao observations

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1980-01-01

    The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.

  17. EXTraS: Exploring the X-ray Transient and variable Sky

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Salvaterra, R.; Tiengo, A.; D'Agostino, D.; Watson, M.; Haberl, F.; Wilms, J.

    2017-10-01

    The EXTraS project extracted all temporal domain information buried in the whole database collected by the EPIC cameras onboard the XMM-Newton mission. This included a search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight orders of magnitude in time scale and six orders of magnitude in flux, as well as a search for fast transients, missed by standard image analysis. Phenomenological classification of variable sources, based on X-ray and multiwavelength information, has also been performed. All results and products of EXTraS are made available to the scientific community through a web public data archive. A dedicated science gateway will allow scientists to apply EXTraS pipelines on new observations. EXTraS is the most comprehensive analysis of variability, on the largest ever sample of soft X-ray sources. The resulting archive and tools disclose an enormous scientific discovery space to the community, with applications ranging from the search for rare events to population studies, with impact on the study of virtually all astrophysical source classes. EXTraS, funded within the EU/FP7 framework, is carried out by a collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy), University of Leicester (UK), MPE (Germany) and ECAP (Germany).

  18. Observations of galactic X-ray sources by OSO-7

    NASA Technical Reports Server (NTRS)

    Markert, T. H.; Canizares, C. R.; Clark, G. W.; Hearn, D. R.; Li, F. K.; Sprott, G. F.; Winkler, P. F.

    1977-01-01

    We present the MIT data from the OSO-7 satellite for observations of the galactic plane between 1971 and 1974. A number of sources discovered in the MIT all-sky survey are described in detail: MX 0049 + 59, MX 0836 - 42, MX 1353 - 64, MX 1406 - 61, MX 1418 - 61, MX 1709 - 40, and MX 1608 - 52 (the persistent source suggested to be associated with the X-ray burst source XB 1608 - 52). Upper limits to the X-ray emission from a number of interesting objects are also derived. General results describing all of our observations of galactic sources are presented. Specifically, we display the number-intensity diagrams, luminosity functions, and color-color diagrams for all of the sources we detected. The data are divided between disk and bulge populations, and the characteristics of the two groups are contrasted. Finally, the concept of X-ray source populations and the relationship of globular cluster sources and burst sources to the disk and bulge populations are discussed.

  19. The INTEGRAL long monitoring of persistent ultra compact X-ray bursters

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Bazzano, A.; Ubertini, P.; Bird, A. J.; Natalucci, L.; Sguera, V.

    2008-12-01

    Context: The combination of compact objects, short period variability and peculiar chemical composition of the ultra compact X-ray binaries make up a very interesting laboratory to study accretion processes and thermonuclear burning on the neutron star surface. Improved large optical telescopes and more sensitive X-ray satellites have increased the number of known ultra compact X-ray binaries allowing their study with unprecedented detail. Aims: We analyze the average properties common to all ultra compact bursters observed by INTEGRAL from 0.2 keV to 150 keV. Methods: We have performed a systematic analysis of the INTEGRAL public data and Key-Program proprietary observations of a sample of the ultra compact X-ray binaries. In order to study their average properties in a very broad energy band, we combined INTEGRAL with BeppoSAX and SWIFT data whenever possible. For sources not showing any significant flux variations along the INTEGRAL monitoring, we build the average spectrum by combining all available data; in the case of variable fluxes, we use simultaneous INTEGRAL and SWIFT observations when available. Otherwise we compared IBIS and PDS data to check the variability and combine BeppoSAX with INTEGRAL /IBIS data. Results: All spectra are well represented by a two component model consisting of a disk-blackbody and Comptonised emission. The majority of these compact sources spend most of the time in a canonical low/hard state, with a dominating Comptonised component and accretion rate dot {M} lower than 10-9 {M⊙}/yr, not depending on the model used to fit the data. INTEGRAL is an ESA project with instruments and Science Data Center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

  20. Development of the hard x-ray monitor onboard WF-MAXI

    NASA Astrophysics Data System (ADS)

    Arimoto, Makoto; Yatsu, Yoichi; Kawai, Nobuyuki; Ikeda, Hirokazu; Harayama, Atsushi; Takeda, Shin'ichiro; Takahashi, Tadayuki; Tomida, Hiroshi; Ueno, Shiro; Kimura, Masashi; Mihara, Tatehiro; Serino, Motoko; Tsunemi, Hiroshi; Yoshida, Atsumasa; Sakamoto, Takanori; Kohmura, Tadayoshi; Negoro, Hitoshi; Ueda, Yoshihiro

    2014-07-01

    WF-MAXI is a mission to detect and localize X-ray transients with short-term variability as gravitational-wave (GW) candidates including gamma-ray bursts, supernovae etc. We are planning on starting observations by WF-MAXI to be ready for the initial operation of the next generation GW telescopes (e.g., KAGRA, Advanced LIGO etc.). WF-MAXI consists of two main instruments, Soft X-ray Large Solid Angle Camera (SLC) and Hard X-ray Monitor (HXM) which totally cover 0.7 keV to 1 MeV band. HXM is a multi-channel array of crystal scintillators coupled with APDs observing photons in the hard X-ray band with an effective area of above 100 cm2. We have developed an analog application specific integrated circuit (ASIC) dedicated for the readout of 32-channel APDs' signals using 0.35 μm CMOS technology based on Open IP project and an analog amplifier was designed to achieve a low-noise readout. The developed ASIC showed a low-noise performance of 2080 e- + 2.3 e-/pF at root mean square and with a reverse-type APD coupled to a Ce:GAGG crystal a good FWHM energy resolution of 6.9% for 662 keV -rays.

  1. Discovery of the 198 Second X-Ray Pulsar GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod

    1998-01-01

    GRO J2058+42, a transient 198 s X-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mcrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 to 196 s during the 46 day outburst. The pulse shape evolved over the course of the outburst and exhibited energy-dependent variations. BATSE observed five additional weak outbursts from GRO J2058 + 42, each with a 2 week duration and a peak-pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) localized the source to within a 4 s radius error circle (90% confidence) centered on R.A. = 20h 59m.0, decl. = 41 deg 43 s (J2000). Additional shorter outbursts with peak-pulsed fluxes of about 8 mcrab were detected by BATSE halfway between the first four 15 mcrab outbursts. The RXTE All-Sky Monitor detected all eight weak outbursts with approximately equal durations and intensities. GRO J2058 + 42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron, No optical counterpart has been identified to date, and no X-ray source was present in the error circle in archival ROSAT observations.

  2. Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelson, R.; Gelbord, J.; Cackett, E.

    Swift monitoring of NGC 4151 with an ∼6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3–50 keV) and six in the ultraviolet (UV)/optical (1900–5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ∼3–4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to leadmore » the optical by ∼0.5–1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner and Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.« less

  3. GX 9+9: VARIABILITY OF THE X-RAY ORBITAL MODULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Robert J.; Levine, Alan M.; Durant, Martin

    2009-05-10

    Results of observations of the Galactic bulge X-ray source GX 9+9 by the All-Sky Monitor (ASM) and Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer are presented. The ASM results show that the 4.19 hr X-ray periodicity first reported by Hertz and Wood in 1987 was weak or not detected for most of the mission prior to late 2004, but then became strong and remained strong for approximately two years after which it weakened considerably. When the modulation at the 4.19 hr period is strong, it appears in folded light curves as an intensity dip over {approx}<30% ofmore » a cycle and is distinctly nonsinusoidal. A number of PCA observations of GX 9+9 were performed before the appearance of strong modulation; two were performed in 2006 during the epoch of strong modulation. Data obtained from the earlier PCA observations yield, at best, limited evidence of the presence of phase-dependent intensity changes, while the data from the later observations confirm the presence of flux minima with depths and phases compatible with those apparent in folded ASM light curves. Light curves from a Chandra observation of GX 9+9 performed in the year 2000 prior to the start of strong modulation show the possible presence of shallow dips at the predicted times. Optical observations performed in 2006 while the X-ray modulation was strong do not show an increase in the degree of modulation at the 4.19 hr period. Implications of the changes in modulation strength in X-rays and other observational results are considered.« less

  4. PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet, Robin H. D.; Pearlman, Aaron B.; Buxton, Michelle

    2010-08-10

    A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum insteadmore » of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations.« less

  5. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  6. Using the EXIST Active Shields for Earth Occultation Observations of X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Fishman, Gerald; Hong, Jae-Sub; Gridlay, Jonathan; Krawczynski, Henric

    2005-01-01

    The EXIST active shields, now being planned for the main detectors of the coded aperture telescope, will have approximately 15 times the area of the BATSE detectors; and they will have a good geometry on the spacecraft for viewing both the leading and training Earth's limb for occultation observations. These occultation observations will complement the imaging observations of EXIST and can extend them to higher energies. Earth occultatio observations of the hard X-ray sky with BATSE on the Compton Gamma Ray Observatory developed and demonstrated the capabilities of large, flat, uncollimated detectors for this method. With BATSE, a catalog of 179 X-ray sources was monitored twice every spacecraft orbit for 9 years at energies above about 25 keV, resulting in 83 definite detections and 36 possible detections with 5-sigma detection sensitivities of 3.5-20 mcrab (20-430 keV) depending on the sky location. This catalog included four transients discovered with this technique and many variable objects (galactic and extragalactic). This poster will describe the Earth occultation technique, summarize the BATSE occultation observations, and compare the basic observational parameters of the occultation detector elements of BATSE and EXIST.

  7. Discovery of X-ray emission associated with the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Garmire, G.

    1992-01-01

    The Gum Nebula was observed by the A-2 LED proportional counters on the HEAO-1 satellite as part of the all-sky survey. The first detection of X-ray emission associated with the Gum Nebula is reported. Soft X-ray spectra were constructed from the A-2 LED PHA data. Single temperature Raymond-Smith models were fitted to the observed spectra to yield temperature, column density and emission measure. The temperature is 6 x 10 exp 5 K, the column density 4 x 10 exp 20/sq cm, and the emission measure 5 cm exp-6 pc. The X-ray and optical properties of the Gum Nebula are consistent with a supernova remnant in the shell stage of evolution, which was the product of an energetic (3 x 10 exp 51 ergs) supernova explosion which occurred about 2 x 10 exp 6 yr ago.

  8. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    NASA Astrophysics Data System (ADS)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  9. X-Ray Background Survey Spectrometer (XBSS)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T. (Principal Investigator); Paulos, R. J.

    1996-01-01

    The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

  10. A New Sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    Crawford, David L.; McKenna, D.

    2006-12-01

    A good estimate of sky brightness and its variations throughout the night, the months, and even the years is an essential bit of knowledge both for good observing and especially as a tool in efforts to minimize sky brightness through local action. Hence a stable and accurate monitor can be a valuable and necessary tool. We have developed such a monitor, with the financial help of Vatican Observatory and Walker Management. The device is now undergoing its Beta test in preparation for production. It is simple, accurate, well calibrated, and automatic, sending its data directly to IDA over the internet via E-mail . Approximately 50 such monitors will be ready soon for deployment worldwide including most major observatories. Those interested in having one should enquire of IDA about details.

  11. The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu

    1994-01-01

    We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.

  12. Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2010-01-01

    X-ray telescopes with spatial resolution optimized over the field of view (FOV) are of special interest for missions, such as WFXT, focused on moderately deep and deep surveys of the x-ray sky, and for solar x-ray observations. Here we report on the present status of an on-going study of the properties of Wolter I and polynominal grazing incidence designs with a view to gain a deeper insight into their properties and simply the design process. With these goals in mind, we present some results in the complementary topics of (1) properties of Wolter I x-ray optics and polynominal x-ray optic ray tracing. Of crucial importance for the design of wide-field x-ray optics is the optimization criteria. Here we have adopted the minimization of a merit function, M, which measures the spatial resolution averaged over the FOV: M= ((integral of d phi) between the limits of 0 and 2 pi) (integral of d theta theta w(theta) sigma square (theta,phi) between the limits of 0 and theta(sub FOV)) (integral of d phi between the limits of 0 and phi/4) (Integral of d theta theta w(theta) between the limits of 0 and theta(sub FOV) where w(theta(sub 1) is a weighting function and Merit function: sigma-square (theta, phi) = summation of (x,y,z) [<x,y,z)(exp 2)>-<(x,y,z)> (exp 2)] is the spatial variance for a point source on the sky at polar and azimuthal off-axis angles (theta,phi).

  13. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; /KIPAC, Menlo Park; Alexander, D.M.

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thickmore » AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.« less

  14. A Digital Backend for the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Dartez, L. P.

    2014-04-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. The primary science goals of LoFASM are the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council's decadal survey. LoFASM consists of antennas and front-end electronics that were originally developed for the Long Wavelength Array (LWA) by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of four stations, each consisting of 12 dual-polarization dipole antennas. In a single station, RF signals from each of the individual LoFASM dipoles are combined in phase in order to synthesize LoFASM's beam. The LoFASM RF signals are phased up so that the resulting beam is sensitive to radio emission that originates from the zenith and RF signals approaching from the horizon are attenuated. Digitally, this is achieved using a full Stokes 100MHz correlating spectrometer constructed using field programmable gate array (FPGA) technology. In this thesis I will describe the design and usage of the LoFASM Correlator.

  15. Correlated Radial Velocity and X-Ray Variations in HD 154791/4U 1700+24

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; Sokoloski, J. L.; Kenyon, Scott J.

    2002-12-01

    We present evidence for approximately 400 day variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported ~400 day variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fitted with an eccentric orbit with period 404+/-3 days, amplitude K=0.75+/-0.12kms-1, and eccentricity e=0.26+/-0.15. There are also indications of variations on longer timescales >~2000 days. We have reexamined all available All-Sky Monitor (ASM) data following an unusually large X-ray outburst in 1997-1998 and confirm that the 1 day averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400+/-20 days. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108+/-0.012 ASM counts s-1 (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 days after the time of periastron, according to the eccentric orbital fit. If the 400 day oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.

  16. The Wide Field X-ray Telescope Mission

    NASA Astrophysics Data System (ADS)

    Murray, Stephen S.; WFXT Team

    2010-01-01

    To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.

  17. The X-ray properties of high redshift, optically selected QSOs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Anderson, S. F.

    1985-01-01

    In order to study the X-ray properties of high redshift QSOs, grism/grens plates covering 17 deg. of sky previously imaged to very sensitive X-ray flux levels with the Einstein Observatory were taken. Following optical selection of the QSO, the archived X-ray image is examined to extract an X-ray flux detection or a sensitive upper limit.

  18. Digital all-sky polarization imaging of partly cloudy skies.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  19. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  20. ROSAT - A German X-ray satellite searches for the big bang

    NASA Astrophysics Data System (ADS)

    The scientific aims, design, development history, launch, and initial performance of the NASA/FRG orbiting X-ray observatory Rosat are reviewed and illustrated with extensive drawings, diagrams, photographs, and sample images. The main Rosat instrument is a 120-cm-long 83-cm-aperture Wolter X-ray telescope with optical surfaces ground to achieve mean microroughness of less than 1 nm and image resolution 2.5 arcsec. The Rosat mission began with a Delta II launch on June 1, 1990; its first objective is an all-sky X-ray survey which should increase the number of known X-ray sources from about 5000 to over 100,000. The second phase involves detailed observations of selected objects, including nearby normal stars, SN clouds, binary systems, hot neutron stars, and extremely distant QSOs. The first images obtained by Rosat were of the Galactic SNR Cas A, revealing the structure of the shock front and a weak X-ray halo.

  1. The X-ray monitoring of the long-period colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Y.; Maeda, Y.; Tsuboi, Y.

    2017-10-01

    We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.

  2. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  3. CALET Upper Limits on X-Ray and Gamma-Ray Counterparts of GW151226

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; Di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Kitamura, H.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Torii, S.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.

    2016-09-01

    We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ˜1 GeV up to 10 TeV with a field of view of ˜2 sr. The CALET gamma-ray burst monitor (CGBM) views ˜3 sr and ˜2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV-1 MeV and 40 keV-20 MeV bands respectively. We place a 90% upper limit of 2 × 10-7 erg cm-2 s-1 in the 1-100 GeV band where CAL reaches 15% of the integrated LIGO probability (˜1.1 sr). The CGBM 7σ upper limits are 1.0 × 10-6 erg cm-2 s-1 (7-500 keV) and 1.8 × 10-6 erg cm-2 s-1 (50-1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3-5 × 1049 erg s-1, which is significantly lower than typical short GRBs.

  4. Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard

    2015-08-01

    Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  5. The Two Micron All Sky Survey

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol

    The 2 Micron All Sky Survey (2MASS) project, a collaboration between the University of Massachusetts (Dr. Mike Skrutskie, PI) and the Infrared Processing and Analysis Center, JPL/Caltech funded primarily by NASA and the NSF, will scan the entire sky utilizing two new, highly automated 1.3m telescopes at Mt. Hopkins, AZ and at CTIO, Chile. Each telescope simultaneously scans the sky at J, H and Ks with a three channel camera using 256x256 arrays of HgCdTe detectors to detect point sources brighter than about 1 mJy (to SNR=10), with a pixel size of 2.0 arcseconds. The data rate is $\\sim 19$ Gbyte per night, with a total processed data volume of 13 Tbytes of images and 0.5 Tbyte of tabular data. The 2MASS data is archived nightly into the Infrared Science Information System at IPAC, which is based on an Informix database engine, judged at the time of purchase to have the best commercially available indexing and parallelization flexibility, and a 5 Tbyte-capacity RAID multi-threaded disk system with multi-server shared disk architecture. I will discuss the challenges of processing and archiving the 2MASS data, and of supporting intelligent query access to them by the astronomical community across the net, including possibilities for cross-correlation with other remote data sets.

  6. Proof of Concept for a Simple Smartphone Sky Monitor

    NASA Astrophysics Data System (ADS)

    Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.

    2013-01-01

    We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.

  7. Spatial Fluctuations in the Diffuse Cosmic X-Ray Background. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shafer, R. A.

    1983-01-01

    The bright, essentially isotropic, X-ray sky flux above 2 keV yields information on the universe at large distances. However, a definitive understanding of the origin of the flux is lacking. Some fraction of the total flux is contributed by active galactic nuclei and clusters of galaxies, but less than one percent of the total is contributed by the or approximately 3 keV band resolved sources, which is the band where the sky flux is directly observed. Parametric models of AGN (quasar) luminosity function evolution are examined. Most constraints are by the total sky flux. The acceptability of particular models hinges on assumptions currently not directly testable. The comparison with the Einstein Observatory 1 to keV low flux source counts is hampered by spectral uncertainties. A tentative measurement of a large scale dipole anisotropy is consistent with the velocity and direction derived from the dipole in the microwave background. The impact of the X-ray anisotropy limits for other scales on studies of large-scale structure in the universe is sketched. Models of the origins of the X-ray sky flux are reviewed, and future observational programs outlined.

  8. NICER and MAXI Observations of Two Large X-ray Flares from RS CVn Binaries

    NASA Astrophysics Data System (ADS)

    Drake, Stephen A.; Hamaguchi, Kenji; Corcoran, Michael Francis; Iwakiri, Wataru; Sasaki, Ryo; Kawai, Hiroki; Tsuboi, Yohko; Enoto, Teruaki; NICER Science Team

    2018-01-01

    NICER has observed two giant X-ray flares on the active binary systems, GT Mus and UX Ari, in response to their detections by the MAXI all-sky X-ray monitor onboard the ISS, with a delay of about a day in each case. The large effective area of the NICER X-ray optics means that high signal-to-noise spectra with more than 200,000 counts were obtained in relatively short exposures totaling less than an hour in each set of observations.MAXI detected a transient of 5.5 x 10^-10 erg/s/cm2 at the position of the active RS CVn binary GT Mus (G5/8 III + ?) early on 2017 July 19. NICER started its observations about 1 day later, and intermittently monitored the decay for the next 2.5 days, accumulating about 1,600 seconds exposure. The NICER light curve shows a smooth, gradual flux decline by a factor of two for the first 2 days, followed by an apparent flattening in the last half day. The dominant plasma temperature remained at ~40 million K during this period, suggesting an ongoing continuous heating during the decay phase.NICER also followed up another MAXI-detected flare in October 2017, this one from the nearby active system, UX Ari. NICER's X-ray spectrum shows clear neon and oxygen lines, while the emissionfrom iron ions is not as prominent as it is in most flares, implying an abundance of only ~10% solar which is significantly lower than previous inferred coronal Fe abundances for this star, although this result is dependent on the NICER gain correction.

  9. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to

  10. Optical, UV, and X-ray evidence for a 7-yr stellar cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Wargelin, B. J.; Saar, S. H.; Pojmański, G.; Drake, J. J.; Kashyap, V. L.

    2017-01-01

    Stars of stellar type later than about M3.5 are believed to be fully convective and therefore unable to support magnetic dynamos like the one that produces the 11-yr solar cycle. Because of their intrinsic faintness, very few late M stars have undergone long-term monitoring to test this prediction, which is critical to our understanding of magnetic field generation in such stars. Magnetic activity is also of interest as the driver of UV and X-ray radiation, as well as energetic particles and stellar winds, that affects the atmospheres of close-in planets that lie within habitable zones, such as the recently discovered Proxima b. We report here on several years of optical, UV, and X-ray observations of Proxima Centauri (GJ 551; dM5.5e): 15 yr of All Sky Automated Survey photometry in the V band (1085 nights) and 3 yr in the I band (196 nights), 4 yr of Swift X-Ray Telescope and UV/Optical Telescope observations (more than 120 exposures), and nine sets of X-ray observations from other X-ray missions (ASCA, XMM-Newton, and three Chandra instruments) spanning 22 yr. We confirm previous reports of an 83-d rotational period and find strong evidence for a 7-yr stellar cycle, along with indications of differential rotation at about the solar level. X-ray/UV intensity is anticorrelated with optical V-band brightness for both rotational and cyclical variations. From comparison with other stars observed to have X-ray cycles, we deduce a simple empirical relationship between X-ray cyclic modulation and Rossby number, and we also present Swift UV grism spectra covering 2300-6000 Å.

  11. Supernova SN 2014C Optical and X-Ray

    NASA Image and Video Library

    2017-01-24

    This visible-light image from the Sloan Digital Sky Survey shows spiral galaxy NGC 7331, center, where astronomers observed the unusual supernova SN 2014C . The inset images are from NASA's Chandra X-ray Observatory, showing a small region of the galaxy before the supernova explosion (left) and after it (right). Red, green and blue colors are used for low, medium and high-energy X-rays, respectively. http://photojournal.jpl.nasa.gov/catalog/PIA21088

  12. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. TIME-FREQUENCY ANALYSIS OF THE SUPERORBITAL MODULATION OF THE X-RAY BINARY SMC X-1 USING THE HILBERT-HUANG TRANSFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang

    2011-10-20

    The high-mass X-ray binary SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between {approx}40 days and {approx}60 days. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). We analyzed the entire ASM database collected since 1996. The Hilbert-Huang transform (HHT), developed for non-stationary and nonlinear time-series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum as it shows more detailed information in both themore » time and frequency domains. The RXTE observations show that the superorbital modulation period was mostly between {approx}50 days and {approx}65 days, whereas it changed to {approx}45 days around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed to a timescale of hundreds of days between {approx}MJD 51,500 and {approx}MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for {approx}0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.« less

  14. Displaying chest X-ray by beamer or monitor: comparison of diagnostic accuracy for subtle abnormalities.

    PubMed

    Kuiper, L M; Thijs, A; Smulders, Y M

    2012-01-01

    The advent of beamer projection of radiological images raises the issue of whether such projection compromises diagnostic accuracy. The purpose of this study was to evaluate whether beamer projection of chest X-rays is inferior to monitor display. We selected 53 chest X-rays with subtle abnormalities and 15 normal X-rays. The images were independently judged by a senior radiologist and a senior pulmonologist with a state-of-art computer monitor. We used their unanimous or consensus judgment as the reference test. Subsequently, four observers (one senior pulmonologist, one senior radiologist and one resident from each speciality) judged these X-rays on a standard clinical computer monitor and with beamer projection. We compared the number of correct results for each method. Overall, the sensitivity and specificity did not differ between monitor and beamer projection. Separate analyses in senior and junior examiners suggested that senior examiners had a moderate loss of diagnostic accuracy (8% lower sensitivity, pp<0.05, and 6% lower specificity, p=ns) associated with the use of beamer projection, whereas juniors showed similar performance on both imaging modalities. These initial data suggest that beamer projection may be associated with a small loss of diagnostic accuracy in specific subgroups of physicians. This finding illustrates the need for more extensive studies.

  15. Handbook of X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  16. Gamma-Ray Astronomy Across 6 Decades of Energy: Synergy between Fermi, IACTs, and HAWC

    NASA Technical Reports Server (NTRS)

    Hui, C. Michelle

    2017-01-01

    Gamma Ray Observatories, Gamma-Ray Astrophysics, GeV TeV Sky Survey, Galaxy, Galactic Plane, Source Distribution, The gamma-ray sky is currently well-monitored with good survey coverage. Many instruments from different waveband/messenger (X rays, gamma rays, neutrinos, gravitational waves) available for simultaneous observations. Both wide-field and pointing instruments in development and coming online in the next decade LIGO

  17. X-Ray Detection of the Cluster Containing the Cepheid S Mus

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Guinan, Edward; Engle, Scott; Bond, Howard E.; Schaefer, Gail H.; Karovska, Margarita; DePasquale, Joseph; Tingle, Evan

    2014-04-01

    The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity, making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified a population of X-ray sources whose near-IR Two Micron All Sky Survey counterparts lie at locations in the J, (J - K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt law (period-luminosity relation) calibrator.

  18. Discovery of the 198 s X-Ray Pulsar GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod

    1997-01-01

    GRO J2058+42, a transient 198 second x-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mCrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 s to 196 s during the 46-day outburst. The pulse shape evolved over the course of the outburst and exhibited energy dependent variations. BATSE observed five additional weak outbursts from GRO J2058+427 each with two week duration and peak pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) localized the source to within a 4' radius error circle (90% confidence) centered on R.A. = 20 h 59 m.0, Decl. = 41 deg 43 min (J2000). Additional shorter outbursts with peak pulsed fluxes of about 8 mCrab were detected by BATSE halfway between the first four 15 mCrab outbursts. The RXTE All-Sky Monitor detected 8 weak outbursts with approximately equal durations and intensities. GRO J2058+42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron. No optical counterpart has been identified to date and no x-ray source was present in the error circle in archival ROSAT observations.

  19. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  20. Serendipitous Detections of XTE J1906+09 with the Rossi X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa

    2002-01-01

    The 89 s X-ray pulsar XTE J1906+09 was discovered during Rossi X-Ray Timing Explorer (RXTE) observations of SGR 1900+14 in 1996. Because of monitoring campaigns of SGR 1900+14, XTE J1906+09 was also monitored regularly in 1996 September, 1998 May-June, 1998 August-1999 July, and 2000 March-2001 January. A search for pulsations resulted in detections of only the two previously reported outbursts in 1996 September and 1998 August-September. Pulsed flux upper limits for the rest of the observations show that XTE J1906+09 is a transient X-ray pulsar and likely has a Be star companion. The RXTE all-sky monitor did not reveal XTE J1906+09. Pulse-timing analysis of the second outburst discovered a sinusoidal signature in the pulse frequencies that is likely produced by an orbital periastron passage. Fits to pulse phases using an orbital model and quadratic phase model have chi(exp 2) minima at orbital periods of 26-30 days for fixed mass functions of 5, 10, 15, and 20 solar masses. The pulse shape showed energy- and intensity-dependent variations. Pulse-phase spectroscopy quantified the energy-dependent variations. The phase-averaged spectrum used the pulse minimum spectrum as the background spectrum to eliminate effects from SGR 1900+14 and the Galactic ridge and was well fitted by an absorbed power law with a high-energy cutoff with column density N(sub H) = 6 +/- 1 x 10(exp 22)/sq cm, a photon index of 1.01 +/- 0.08, cutoff energy E(sub cut) = 11 +/- 1 keV, and e-folding energy E(sub fold) = 19 +/- 4 keV. Estimated 2-10 keV peak fluxes, corrected for contributions from the Galactic ridge and SGR 1900+14, are 6 x l0(exp -12) and 1.1 x 10(exp -10) ergs/sq cm/s for the 1996 and 1998 outbursts, respectively. XTE J1906+09 may be part of an unusual class of Be/X-ray binaries that do not lie on the general spin period versus orbital period correlation with the majority of Be/X-ray binaries.

  1. Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers

    NASA Astrophysics Data System (ADS)

    Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.

    2007-12-01

    The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg

  2. VizieR Online Data Catalog: The Fermi-GBM three-year X-ray burst catalog (Jenke+, 2016)

    NASA Astrophysics Data System (ADS)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2018-03-01

    Gamma-ray Burst Monitor (GBM) is an all-sky monitor whose primary objective is to extend the energy range over which gamma-ray bursts are observed in the Large Area Telescope on Fermi (Meegan et al. 2009ApJ...702..791M). GBM consists of 12 NaI detectors with a diameter of 12.7 cm and a thickness of 1.27 cm and two bismuth germanate (BGO) detectors with a diameter and thickness of 12.7 cm. GBM has three continuous data types: CTIME data with nominal 0.256 s time resolution and 8-channel spectral resolution used for event detection and localization, CSPEC data with nominal 4.096 s time resolution and 128-channel spectral resolution, which are used for spectral modeling, and CTTE (continuous-time tagged event) data with time stamps (2 μs precision) on individual events at full 128-channel spectral resolution, which were made available in 2012 November. The Fermi-GBM X-ray Burst Monitor relies on daily inspection of CTIME channel 1 (12-25 keV) data and began operations on 2010 March 12. (3 data files).

  3. On the Design of Wide-Field X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald F.; O'Dell, Stephen L.; Ramsey, Brian D.; Weiskopf, Martin C.

    2009-01-01

    X-ray telescopes having a relatively wide field-of-view and spatial resolution vs. polar off-axis angle curves much flatter than the parabolic dependence characteristic of Wolter I designs are of great interest for surveys of the X-ray sky and potentially for study of the Sun s X-ray emission. We discuss the various considerations affecting the design of such telescopes, including the possible use of polynomial mirror surface prescriptions, a method of optimizing the polynomial coefficients, scaling laws for mirror segment length vs. intersection radius, the loss of on-axis spatial resolution, and the positioning of focal plane detectors.

  4. Long-term variability in bright hard X-ray sources: 5+ years of BATSE data

    NASA Technical Reports Server (NTRS)

    Robinson, C. R.; Harmon, B. A.; McCollough, M. L.; Paciesas, W. S.; Sahi, M.; Scott, D. M.; Wilson, C. A.; Zhang, S. N.; Deal, K. J.

    1997-01-01

    The operation of the Compton Gamma Ray Observatory (CGRO)/burst and transient source experiment (BATSE) continues to provide data for inclusion into a data base for the analysis of long term variability in bright, hard X-ray sources. The all-sky capability of BATSE provides up to 30 flux measurements/day for each source. The long baseline and the various rising and setting occultation flux measurements allow searches for periodic and quasi-periodic signals with periods of between several hours to hundreds of days to be conducted. The preliminary results from an analysis of the hard X-ray variability in 24 of the brightest BATSE sources are presented. Power density spectra are computed for each source and profiles are presented of the hard X-ray orbital modulations in some X-ray binaries, together with amplitude modulations and variations in outburst durations and intensities in recurrent X-ray transients.

  5. Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Thorstensen, John; Remillard, Ronald A.

    2000-01-01

    There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.

  6. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking

  7. PheniX: A New Vision for the Hard X-ray Sky

    NASA Technical Reports Server (NTRS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bassani, Loredana; Bazzano, Angela; Belmont, Renaud; Bird, A. J.; Caroli, E.; Chauvin, M.; Clark, D.; Gehrels, N.; hide

    2012-01-01

    We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1-200 keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1-200 keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk-thermal emission-iron line-comptonisation-reflection-non-thermal emission-jets. Neutron stars-magnetic field-cyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines-direct measurement of magnetic filed-equation of state constraints-short bursts-giant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN's. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20 keV). Element formation-Supernovae: The energy resolution achievable for this mission (<0.5 keV) and a large high energy effective area are

  8. PheniX: a new vision for the hard X-ray sky

    NASA Astrophysics Data System (ADS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bassani, Loredana; Bazzano, Angela; Belmont, Renaud; Bird, A. J.; Caroli, E.; Chauvin, M.; Clark, D.; Gehrels, N.; Goerlach, U.; Harrisson, F.; Laurent, P.; Malzac, J.; Medina, P.; Merloni, A.; Paltani, S.; Stephen, J.; Ubertini, P.; Wilms, J.

    2012-10-01

    We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1-200 keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1-200 keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk-thermal emission-iron line-comptonisation-reflection-non-thermal emission-jets. Neutron stars-magnetic field-cyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines-direct measurement of magnetic filed-equation of state constraints-short bursts-giant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN's. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20 keV). Element formation-Supernovae: The energy resolution achievable for this mission (<0.5 keV) and a large high energy effective area are

  9. X-rays from the Solar System

    NASA Astrophysics Data System (ADS)

    Dennerl, K.

    2017-10-01

    While the beginning of X-ray astronomy was motivated by solar system studies (Sun and Moon), the main research interest soon shifted outwards to much more distant and exotic objects. However, the ROSAT discovery of X-rays from comets in 1996 and the insight that this `new' kind of X-ray emission, charge exchange, was underestimated for a long time, has demonstrated that solar system studies are still important for X-ray astrophysics in general. While comets provide the best case for studying the physics of charge exchange, the X-ray signatures of this process have now also been detected at Venus, Mars, and Jupiter, thanks to Chandra and XMM-Newton. An analysis of the X-ray data of solar system objects, however, is challenging in many respects. This is particularly true for comets, which appear as moving, extended X-ray sources, emitting a line-rich spectrum at low energies. Especially for XMM-Newton, which has the unparalleled capability to observe with five highly sensitive X-ray instruments plus an optical monitor simultaneously, it is a long way towards photometrically and spectroscopically calibrated results, which are consistent between all its instruments. I will show this in my talk, where I will also summarize the current state of solar system X-ray research.

  10. A radio monitoring survey of ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  11. The likely optical counterpart of X-ray transient KS 1731-260

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Groot, Paul J.; Miller, Jon J.; Markwardt, Craig; Lewin, Walter H. G.; van der Klis, Michiel

    2001-07-01

    During our 27 March 2001 Chandra observation of the neutron star X-ray transient KS 1731-260, two X-ray sources were detected (Wijnands et al. 2001, ApJL submitted, astro-ph/0107380). One of those sources is very likely a star in the USNO A2.0 optical catalog (Monet et al. 1998, USNO-SA2.0, U.S. Naval Observatory, Washington DC) and in the Two Micron All Sky Survey (2MASS) point source catalog with a position (from 2MASS) of R.A = 17h34m12.70s, Dec. -26d05m48.4s (+/- 0.2 arcseconds).

  12. South Atlantic Anomaly Entry and Exit as Measured by the X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Smith, Evan; Stark, Michael; Giles, Barry; Antunes, Sandy; Gawne, Bill

    1996-01-01

    The Rossi X-ray Timing Explorer (RXTE) carries instruments that must switch off high voltages (HV) when passing through the South Atlantic Anomaly (SAA). The High Energy X-ray Timing Experiment (HEXTE) contains a particle monitor that detects the increased particle flux associated with the SAA and autonomously reduces its voltage. The Proportional Counter Array (PCA) relies on uplinked predictions of SAA entry/exit times based on ephemeris data provided by the Flight Dynamics Facility. A third instrument, the All-Sky Monitor (ASM) also uses a predicted SAA model to reduce voltage when passing through the SAA. Data collected from the HEXTE particle monitor, as well as other instrument readings near the times of SAA entry/exit offer the potential for refining models of the boundaries of the SAA. The SAA has an increased particle flux which causes high rates of detection in the RXTE instruments designed to observe x-rays. The high counting rates could degrade the PCA if HV is not reduced during SAA passages. On the other hand, PCA downtime can be minimized and the science return can be optimized by having the best possible model of the SAA boundary. Thus, the PCA team planned an extensive effort during in-orbit checkout to utilize both the HEXTE particle monitor data and instrument counting rates to refine the model of the SAA boundary. The times of SAA entry and exit are compared with the definitive epemeris to determine the precise location (latitude and longitude) of the SAA boundary. Over time, the SAA and its perimeter were mapped. The RXTE Science Operations Center is continuously working to feed back the results of this effort into the science scheduling process, improving the SAA model as it affects the RXTE instruments, thus obtaining more accurate estimates of the SAA entry/exit times.

  13. C-BASS: The C-Band All Sky Survey

    NASA Astrophysics Data System (ADS)

    Pearson, Timothy J.; C-BASS Collaboration

    2016-06-01

    The C-Band All Sky Survey (C-BASS) is a project to image the whole sky at a wavelength of 6 cm (frequency 5 GHz), measuring both the brightness and the polarization of the sky. Correlation polarimeters are mounted on two separate telescopes, one at the Owens Valley Observatory (OVRO) in California and another in South Africa, allowing C-BASS to map the whole sky. The OVRO instrument has completed observations for the northern part of the survey. We are working on final calibration of intensity and polarization. The southern instrument has recently started observations for the southern part of the survey from its site at Klerefontein near Carnarvon in South Africa. The principal aim of C-BASS is to allow the subtraction of polarized Galactic synchrotron emission from the data produced by CMB polarization experiments, such as WMAP, Planck, and dedicated B-mode polarization experiments. In addition it will contribute to studies of: (1) the local (< 1 kpc) Galactic magnetic field and cosmic-ray propagation; (2) the distribution of the anomalous dust emission, its origin and the physical processes that affect it; (3) modeling of Galactic total intensity emission, which may allow CMB experiments access to the currently inaccessible region close to the Galactic plane. Observations at many wavelengths from radio to infrared are needed to fully understand the foregrounds. At 5 GHz, C-BASS maps synchrotron polarization with minimal corruption by Faraday rotation, and complements the full-sky maps from WMAP and Planck. I will present the project status, show results of component separation in selected sky regions, and describe the northern survey data products.C-BASS (http://www.astro.caltech.edu/cbass/) is a collaborative project between the Universities of Oxford and Manchester in the UK, the California Institute of Technology (supported by the National Science Foundation and NASA) in the USA, the Hartebeesthoek Radio Astronomy Observatory (supported by the Square Kilometre

  14. XTE J1946+274 = GRO J1944+26: An Enigmatic Be/X-ray Binary

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Coe, M. J.; Negueruela, Ignacio; Six, N. Frank (Technical Monitor)

    2002-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8-s Be/X-ray pulsar discovered simultaneously in 1998 September with the, Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) and the All-Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE). Pulse timing analysis yielded an orbital period of 169.2 days, a moderate eccentricity of 0.33, and implied a mass function of 9.7 solar mass. We observed evidence for an accretion disk, a correlation between measured spin-up rate and flux, which was fitted to obtain a distance estimate of 9.2 +/- 1.0 kpc. XTE J1946+274 remained active from 1998 September - 2001 July, undergoing 13 outbursts that were not locked in orbital phase. Comparing RXTE PCA observations from the initial bright outburst in 1998 and the last pair of outburst in 2001, we found energy and intensity dependent pulse profile variations in both outbursts and hardening spectra with increasing intensity during the fainter 2001 outbursts. In 2001 July, optical H(alpha) observations indicate a density perturbation appeared in the Be disk as the X-ray outbursts ceased. We propose that the equatorial plane of the Be star is inclined with respect to the orbital plane in this system and that this inclination may produce the unusual outburst behavior of the system.

  15. A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.

    2006-01-01

    We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification

  16. SLAC All Access: X-ray Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Johanna; Liu, Yijin

    2012-08-14

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  17. SLAC All Access: X-ray Microscope

    ScienceCinema

    Nelson, Johanna; Liu, Yijin

    2018-01-16

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  18. AGN classification for X-ray sources in the 105 month Swift/BAT survey

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Bassani, L.; Palazzi, E.; Malizia, A.; Stephen, J. B.; Ubertini, P.

    2018-03-01

    We here provide classifications for 8 hard X-ray sources listed as 'unknown AGN' in the 105 month Swift/BAT all-sky survey catalogue (Oh et al. 2018, ApJS, 235, 4). The corresponding optical spectra were extracted from the 6dF Galaxy Survey (Jones et al. 2009, MNRAS, 399, 683).

  19. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  20. Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system

    NASA Astrophysics Data System (ADS)

    Vítek, S.

    2017-07-01

    The purpose of this experiment was to measure light pollution in the capital of Czech Republic, Prague. As a measuring instrument is used calibrated consumer level digital single reflex camera with IR cut filter, therefore, the paper reports results of measuring and monitoring of the light pollution in the wavelength range of 390 - 700 nm, which most affects visual range astronomy. Combining frames of different exposure times made with a digital camera coupled with fish-eye lens allow to create high dynamic range images, contain meaningful values, so such a system can provide absolute values of the sky brightness.

  1. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  2. A cosmic and solar X-ray and gamma-ray instrument for a scout launch

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.

    1988-01-01

    An overview is presented for a set of simple and robust X-ray and gamma ray instruments which have both cosmic and solar objectives. The primary solar scientific objective is the study of the beaming of energetic electrons and ions in solar flares. The instrument will measure spectra and polarization of flare emissions up to 10 MeV. At X-ray energies both the directly emitted flux and the reflected albedo flux will be measured with a complement of six X-ray sensors. Each of these detectors will have a different high Z filter selected to optimize both the energy resolution and high rate capabilities in the energy band 10 to 300 keV. At energies greater than 100 keV seven 7.6 x 7.6 cm NaI and a set of 30 concentric plastic scattering detectors will record the spectra and polarization of electron bremsstrahlung and nuclear gamma rays. All of the components of the instrument are in existence and have passed flight tests for earlier space missions. The instrument will use a spinning solar oriented Scout spacecraft. The NaI detectors will act as a self-modulating gamma ray detector for cosmic sources in a broad angular band which lies at 90 degrees to the Sun-Earth vector and hence will scan the entire sky in 6 months.

  3. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Swank, Jean

    2008-01-01

    magnetic field rotation-powered pulsars are all now called magnetars, because they have pulse periods indicating they are slowing down as they would with magnetic dipole radiation for a surface field above 5x1013 gauss. The accretion disk has been connected to the launching of radio jets from black holes, and even from neutron stars. Estimates of the angular momenta of black holes are being made from different approaches, modelling a high frequency oscillation that may be related to how close the inner part of the accretion disk is to the black hole, modelling the continua spectra of the X-ray emission, and modeling the emission of red-shifted iron that may be emitted from the accretion disk. These investigations require early discovery of the black hole transient with the All Sky Monitor on RXTE or other monitoring information, frequent extended observations, and coordinated observations with missions that give higher energy resolution, or radio and infrared information.

  4. The Orbit and Position of the X-ray Pulsar XTE J1855-026: An Eclipsing Supergiant System

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Mukai, Koji; White, Nicholas E. (Technical Monitor)

    2002-01-01

    A pulse timing orbit has been obtained for the X-ray binary XTEJ1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of approximately 16 solar mass together with the detection of an extended near-total eclipse confirm that the primary star is supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A.= 18 hr 55 min 31.3 sec, decl.= -02 deg 36 min 24.0 sec (2000) with an estimated systematic uncertainty of less than 12 min. A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.

  5. Status Of The Swift Burst Alert Telescope Hard X-ray Transient Monitor

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J.; Fenimore, E.; Gehrels, N.; Markwardt, C. B.; Palmer, D.; Sakamoto, T.; Skinner, G. K.; Stamatikos, M.; Tueller, J.

    2010-01-01

    The Swift Burst Alert Telescope hard X-ray transient monitor has been operating since October 1, 2006. More than 700 sources are tracked on a daily basis and light curves are produced and made available to the public on two time scales: a single Swift pointing (approximately 20 minutes) and the weighted average for each day. Of the monitored sources, approximately 33 are detected daily and another 100 have had one or more outburst during the Swift mission. The monitor is also sensitive to the detection of previously undiscovered sources and we have reported the discovery of four galactic sources and one source in the Large Magellanic Cloud. Follow-up target of opportunity observations with Swift and the Rossi X-Ray Timing Explorer have revealed that three of these new sources are pulsars and two are black hole candidates. In addition, the monitor has led to the announcement of significant outbursts from 24 different galactic and extra-galactic sources, many of which have had follow-up Swift XRT, UVOT and ground based multi-wavelength observations. The transient monitor web pages currently receive an average of 21 visits per day. We will report on the most important results from the transient monitor and also on detection and exposure statistics and outline recent and planned improvements to the monitor. The transient monitor web page is http://swift.gsfc.nasa.gov/docs/swift/results/transients/.

  6. An extreme ultraviolet telescope with no soft X-ray response

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    While EUV grazing incidence telescopes of conventional design exhibit a substantial X-ray response as well as an extreme UV response, and existing bandpass filters for the transmission of radiation longward of 400 A also transmit soft X-rays, the grazing incidence telescope presented suppresses this soft X-ray throughput through the incorporation of a Wolter Schwarzschild Type II mirror with large graze angles. The desirable features of an EUV photometric survey telescope are retained. An instrument of this design will be flown on the EUE mission, in order to make a survey of the sky at wavelengths longer than 400 A.

  7. X-ray observations of LMC X-3 with the monitor proportional counter aboard the HEAO 2 Einstein observatory - A comparison with Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Darbro, W. A.; Elsner, R. F.; Williams, A. C.; Kahn, S. M.; Grindlay, J. E.; Naranan, S.; Sutherland, P. G.

    1983-01-01

    A comparison is presented of the black hole candidates LMC X-3 and Cygnus X-1 based on Einstein observations of LMC X-3 with the monitor proportional counter. A spectral analysis shows LMC X-3 to be more like the typical bright galactic X-ray source than Cygnus X-1. A search for periodic pulsations over a period range from 0.2 ms to over 1000 s set upper limits at the 90 percent confidence level of the order of 10 percent. An analysis of the aperiodic variability of LMC X-3 shows none of the shot noise behavior characteristic of Cygnus X-1. The absence of distinctive X-ray properties common to both sources suggests that the identification of black hole candidates on the basis of X-ray properties similar to Cygnus X-1 (or LMC X-3) is not reliable.

  8. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    NASA Technical Reports Server (NTRS)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  9. Swift/XRT Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2011-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418.4532, for which both orbital and spin periods are known (approx. 3.7d and approx. 1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 5 X 10(exp 16) g to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT

  10. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, Jun-yi; Lu, Xiang-long; Zhao, Qiu-wen; Dong, Dian-qiao; Lao, Bao-qiang; Lu, Yang; Wei, Yan-heng; Wu, Xiao-cong; An, Tao

    2017-01-01

    SS 433 is sofar the unique X-ray binary that has the simultaneously detected orbital period, super-orbital period, and nutation period, as well as a bidirectional spiral jet. The study on its X-ray light variability is helpful for understanding the dynamic process of the system, and the correlations between the different wavebands. In this paper, two time-series analysis techniques, i.e., the Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periods in the Swift/BAT (Burst Alert Telescope) (15-50 keV) and RXTE/ASM (Rose X-ray Timing Explorer/All Sky Monitor) (1.5-3, 3- 4, and 5-12 keV) light curves of SS 433, and the Monte Carlo simulation is performed for the obtained periodical components. For the 15-50 keV energy band, five significant periodical components are detected, which are P1(∼6.29 d), P2 (∼6.54 d), P3 (∼13.08 d), P4 (∼81.50 d), and P5 (∼162.30 d). For the 3-5 and 5-12 keV energy bands, the periodical components P3 (∼13 d) and P5 (∼162 d) are detected in both energy bands. However, for the 1.5-3 keV energy band, no significant periodic signal is detected. P5 is the strongest periodic signal in the power spectrum for all the energy bands of 3-5, 5-12, and 15-50 keV, and it is consistent with the previous result obtained from the study of optical light curves. Furthermore, in combination with the radio spiral jet of SS 433, it is suggested that the X-ray and optical variability of P5 (∼162 d) is probably related to the precession of its relativistic jet. The high correlation between the X-ray and optical light curves may also imply that the X-ray and optical radiations are of the same physical origin. P3 shows a good agreement with the orbital period (∼13.07 d) obtained by the previous study, and P2 and P4 are respectively the high-frequency harmonics of P3 and P5. P1 is detected only in the power spectrum of the 15-50 keV energy band, and it is consistent with the nutation period of the system. As

  11. 1SXPS: A Deep Swift X-Ray Telescope Point Source Catalog with Light Curves and Spectra

    NASA Technical Reports Server (NTRS)

    Evans, P. A.; Osborne, J. P.; Beardmore, A. P.; Page, K. L.; Willingale, R.; Mountford, C. J.; Pagani, C.; Burrows, D. N.; Kennea, J. A.; Perri, M.; hide

    2013-01-01

    We present the 1SXPS (Swift-XRT point source) catalog of 151,524 X-ray point sources detected by the Swift-XRT in 8 yr of operation. The catalog covers 1905 sq deg distributed approximately uniformly on the sky. We analyze the data in two ways. First we consider all observations individually, for which we have a typical sensitivity of approximately 3 × 10(exp -13) erg cm(exp -2) s(exp -1) (0.3-10 keV). Then we co-add all data covering the same location on the sky: these images have a typical sensitivity of approximately 9 × 10(exp -14) erg cm(exp -2) s(exp -1) (0.3-10 keV). Our sky coverage is nearly 2.5 times that of 3XMM-DR4, although the catalog is a factor of approximately 1.5 less sensitive. The median position error is 5.5 (90% confidence), including systematics. Our source detection method improves on that used in previous X-ray Telescope (XRT) catalogs and we report greater than 68,000 new X-ray sources. The goals and observing strategy of the Swift satellite allow us to probe source variability on multiple timescales, and we find approximately 30,000 variable objects in our catalog. For every source we give positions, fluxes, time series (in four energy bands and two hardness ratios), estimates of the spectral properties, spectra and spectral fits for the brightest sources, and variability probabilities in multiple energy bands and timescales.

  12. Classification of Variable Objects in Massive Sky Monitoring Surveys

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily

    2012-03-01

    The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of

  13. Stability of the nine sky quality meters in the Dutch night sky brightness monitoring network.

    PubMed

    den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim

    2015-04-22

    In the context of monitoring abundance of artificial light at night, the year-to-year stability of Sky Quality Meters (SQMs) is investigated by analysing intercalibrations derived from two measurement campaigns that were held in 2011 and 2012. An intercalibration comprises a light sensitivity factor and an offset for each SQM. The campaigns were concerned with monitoring measurements, each lasting one month. Nine SQMs, together forming the Night Sky Brightness Monitoring network (MHN) in The Netherlands, were involved in both campaigns. The stability of the intercalibration of these instruments leads to a year-to-year uncertainty (standard deviation) of 5% in the measured median luminance occurring at the MHN monitoring locations. For the 10-percentiles and 90-percentiles, we find 8% and 4%, respectively. This means that, for urban and industrial areas, changes in the sky brightness larger than 5% become detectable. Rural and nature areas require an 8%-9% change of the median luminance to be detectable. The light sensitivety agrees within 8% for the whole group of SQMs.

  14. Miniaturized X-ray telescope for VZLUSAT-1 nanosatellite with Timepix detector

    NASA Astrophysics Data System (ADS)

    Baca, T.; Platkevic, M.; Jakubek, J.; Inneman, A.; Stehlikova, V.; Urban, M.; Nentvich, O.; Blazek, M.; McEntaffer, R.; Daniel, V.

    2016-10-01

    We present the application of a Timepix detector on the VZLUSAT-1 nanosatellite. Timepix is a compact pixel detector (256×256 square pixels, 55×55 μm each) sensitive to hard X-ray radiation. It is suitable for detecting extraterrestrial X-rays due to its low noise characteristics, which enables measuring without special cooling. This project aims to verify the practicality of the detector in conjunction with 1-D Lobster-Eye optics to observe celestial sources between 5 and 20 keV. A modified USB interface (developed by IEAP at CTU in Prague) is used for low-level control of the Timepix. An additional 8-bit Atmel microcontroller is dedicated for commanding the detector and to process the data onboard the satellite. We present software methods for onboard post-processing of captured images, which are suitable for implementation under the constraints of the low-powered embedded hardware. Several measuring modes are prepared for different scenarios including single picture exposure, solar UV-light triggered exposure, and long-term all-sky monitoring. The work has been done within Medipix2 collaboration. The satellite is planned for launch in April 2017 as a part of the QB50 project with an end of life expectancy in 2019.

  15. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  16. Searching for New γ-Ray Blazar Candidates in the Third Palermo BAT Hard X-Ray Catalog with WISE

    NASA Astrophysics Data System (ADS)

    Maselli, A.; Massaro, F.; Cusumano, G.; D'Abrusco, R.; La Parola, V.; Paggi, A.; Segreto, A.; Smith, Howard A.; Tosti, G.

    2013-06-01

    We searched for γ-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the γ-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources and WISE γ-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 γ-ray blazar candidates.

  17. SEARCHING FOR NEW {gamma}-RAY BLAZAR CANDIDATES IN THE THIRD PALERMO BAT HARD X-RAY CATALOG WITH WISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maselli, A.; Cusumano, G.; La Parola, V.

    We searched for {gamma}-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the {gamma}-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources andmore » WISE {gamma}-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 {gamma}-ray blazar candidates.« less

  18. Simbol-X: Imaging The Hard X-ray Sky with Unprecedented Spatial Resolution and Sensitivity

    NASA Astrophysics Data System (ADS)

    Tagliaferri, Gianpiero; Simbol-X Joint Scientific Mission Group

    2009-01-01

    Simbol-X is a hard X-ray mission, with imaging capability in the 0.5-80 keV range. It is based on a collaboration between the French and Italian space agencies with participation of German laboratories. The launch is foreseen in late 2014. It relies on a formation flight concept, with two satellites carrying one the mirror module and the other one the focal plane detectors. The mirrors will have a 20 m focal length, while the two focal plane detectors will be put one on top of the other one. This combination will provide over two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion physics and census, and to particle acceleration mechanisms. We will give an overall description of the mission characteristics, performances and scientific objectives.

  19. Build YOUR All-Sky View with Aladin

    NASA Astrophysics Data System (ADS)

    Oberto, A.; Fernique, P.; Boch, T.; Bonnarel, F.

    2011-07-01

    From the need to extend the display outside the boundaries of a single image, the Aladin team recently developed a new feature to visualize wide areas or even all of the sky. This all-sky view is particularly useful for visualization of very large objects and, with coverage of the whole sky, maps from the Planck satellite. To improve on this capability, some catalogs and maps have been built from many surveys (e.g., DSS, IRIS, GLIMPSE, SDSS, 2MASS) in mixed resolutions, allowing progressive display. The maps are constructed by mosaicing individual images. Now, we provide a new tool to build an all-sky view with your own images. From the images you have selected, it will compose a mosaic with several resolutions (HEALPix tessellation), and organize them to allow their progressive display in Aladin. For convenience, you can export it to a HEALPix map, or share it with the community through Aladin from your web site or eventually from the CDS image collection.

  20. The GRB All-sky Spectrometer Experiment II: Data Collection and Analysis

    NASA Astrophysics Data System (ADS)

    Voigt, Elana; Martinot, Zachary; Banks, Zachary; Pober, Jonathan; Morales, Miguel F.

    2015-01-01

    The GRB All-sky Spectrometer Experiment (GASE) is a widefield interferometer radio telescope designed to look for Gamma Ray Bursts in the 30 to 50 MHz range. It is based and operated as a wholly undergraduate experiment at the University of Washington. This poster will focus on data analysis and the relation of data analysis to the commissioning process of our 8 element GASE array.

  1. Point Source All Sky

    NASA Image and Video Library

    2003-03-27

    This panoramic view encompasses the entire sky as seen by Two Micron All-Sky Survey. The measured brightnesses of half a billion stars (points) have been combined into colors representing three distinct wavelengths of infrared light: blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns. This image is centered on the core of our own Milky Way galaxy, toward the constellation of Sagittarius. The reddish stars seemingly hovering in the middle of the Milky Way's disc -- many of them never observed before -- trace the densest dust clouds in our galaxy. The two faint smudges seen in the lower right quadrant are our neighboring galaxies, the Small and Large Magellanic Clouds. http://photojournal.jpl.nasa.gov/catalog/PIA04250

  2. Probing large-scale structure with large samples of X-ray selected AGN. I. Baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid

    2014-12-01

    We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.

  3. Variable gamma-ray sky at 1 GeV

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Rubtsov, G. I.

    2013-01-01

    We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 × 10-6, which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).

  4. Multiwavelength Observations of the 2002 Outburst of GX 339-4: Two Patterns of X-Ray-Optical/Near-Infrared Behavior

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; Buxton, Michelle; Markoff, Sera; Bailyn, Charles D.; Nespoli, Elisa; Belloni, Tomaso

    2005-05-01

    We report on quasi-simultaneous Rossi X-Ray Timing Explorer and optical/near-infrared (NIR) observations of the black hole candidate X-ray transient GX 339-4. Our observations were made over a time span of more than 8 months in 2002 and cover the initial rise and transition from a hard to a soft spectral state in X-rays. Two distinct patterns of correlated X-ray-optical/NIR behavior were found. During the hard state, the optical/NIR and X-ray fluxes correlated well, with a NIR versus X-ray flux power-law slope similar to that of the correlation found between X-ray and radio fluxes in previous studies of GX 339-4 and other black hole binaries. As the source went through an intermediate state, the optical/NIR fluxes decreased rapidly, and once it had entered the spectrally soft state, the optical/NIR spectrum of GX 339-4 was much bluer, and the ratio of X-ray to NIR flux was higher by a factor of more than 10 compared to the hard state. In the spectrally soft state, changes in the NIR preceded those in the soft X-rays by more than 2 weeks, indicating a disk origin of the NIR emission and providing a measure of the viscous timescale. A sudden onset of NIR flaring of ~0.5 mag on a timescale of 1 day was also observed during this period. We present spectral energy distributions, including radio data, and discuss possible sources for the optical/NIR emission. We conclude that, in the hard state, this emission probably originates in the optically thin part of a jet and that in none of the X-ray states is X-ray reprocessing the dominant source of optical/NIR emission. Finally, comparing the light curves from the all-sky monitor (ASM) and Proportional Counter Array (PCA) instruments, we find that the X-ray/NIR delay depends critically on the sensitivity of the X-ray detector, with the delay inferred from the PCA (if present at all) being a factor of 3-6 times shorter than the delay inferred from the ASM; this may be important in interpreting previously reported X-ray

  5. Outbursts from the Transient X-Ray Pulsar Cep X-4 (GS 2138+56)

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Scott, D. Matthew

    1997-01-01

    Cep X-4 was discovered with the Orbiting Solar Observatory (OSO) 7 Satellite in 1973 June-July, but no pulsations were detected. In March 1988, an additional outburst was observed with Gingaq. Pulsations at a period of 66.2490 +/- .0001 s were detected during a month long outburst which peaked at about 100 mCrab (1-20 keV) in early April 1988. The source apparently did not appear again until June 1993 when it was detected by Roentgen Satellite (ROSAT) and Burst and Transient Source Experiment (BATSE). Pulsations at a period of 66.2499 +/- .0007 s were detected by BATSE. The outburst lasted about two weeks and had a peak pulsed flux of 15-20 mCrab (20-50 keV). In July 1997, BATSE and the All-Sky Monitor (ASM) on Rossi X-ray Timing Explorer (RXTE) observed a new outburst from Cep X-4. Pulsations at a period of 66.2743 +/- 0.0005 s were detected by BATSE. This outburst lasted about 2 weeks and peaked at a pulsed flux of about 10-15 mCrab (20-50 keV). Results of a search of BATSE data for additional outbursts will be presented. Pulse frequency and flux histories will be presented and compared to the flux history from the RXTE ASM. Implications of the apparent spin-down between outbursts will be discussed.

  6. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron

    DOE PAGES

    Ho, Wynn C. G.; Ng, C. -Y.; Lyne, Andrew G.; ...

    2016-09-22

    The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly towards periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here in this paper, we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi LAT gamma-ray data, allows us to update and refine the orbital period to 45–50 yr and time of periastron passage to 2017 November. We analyse archival and recent Chandra and Swiftmore » observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ~70 since 2002 and ~20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Hα emission line of the Be star suggest that the size of its circumstellar disc may be varying by ~2 over time-scales as short as 1–2 months. In conclusion, multiwavelength monitoring of PSR J2032+4127/MT91 213 will continue through periastron passage, and the system should present an interesting test case and comparison to PSR B1259-63/LS 2883.« less

  7. All-Sky Microwave Imager Data Assimilation at NASA GMAO

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Jin, Jianjun; El Akkraoui, Amal; McCarty, Will; Todling, Ricardo; Gu, Wei; Gelaro, Ron

    2017-01-01

    Efforts in all-sky satellite data assimilation at the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center have been focused on the development of GSI configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) and Global Change Observation Mission-Water (GCOM-W) Advanced Microwave Scanning Radiometer 2 (AMSR-2). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be relatively transparent to atmospheric gases and thin ice clouds, and highly sensitive to precipitation. Therefore, GMAOs all-sky data assimilation efforts are primarily focused on utilizing these data in precipitating regions. The all-sky framework being tested at GMAO employs the GSI in a hybrid 4D-EnVar configuration of the Goddard Earth Observing System (GEOS) data assimilation system, which will be included in the next formal update of GEOS. This article provides an overview of the development of all-sky radiance assimilation in GEOS, including some performance metrics. In addition, various projects underway at GMAO designed to enhance the all-sky implementation will be introduced.

  8. An X-ray beam position monitor based on the photoluminescence of helium gas

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; White, Jeffrey A.

    2005-03-01

    A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.

  9. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1987-01-01

    The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background.

  10. VLBI Monitoring of the Bright Gamma-Ray Blazar PKS 0537-441

    DTIC Science & Technology

    2010-06-01

    active state by Fermi. It is one of the brightest ,),-ray blazars detected in the southern sky so far. The TANAMI (Tracking Active Galactic Nuclei...Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TAN AMI) program (Ojha et a1. (2010» has been monitoring south- ern sky blazars such...Telescope. Studying Active Galactic Nuclei (AGN) at different wavelengths is crucial in order to understand AGN-jets and differentiate between

  11. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, Giovanni; Fabian, Andy; Gallo, Luigi; Brandt, Niel; Schneider, Donald

    2012-09-01

    PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ~260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope alpha_ox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with XMM-Newton, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We apply a series of physically motivated models to the data with the goal of explaining as self-consistently as possible the UV-to-X-ray spectral energy distribution (SED) and the extreme X-ray and alpha_ox variability. We discuss our results in the context of the class of non-BAL X-ray weak quasars and so-called PHL 1811 analogs.

  12. AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey

    NASA Astrophysics Data System (ADS)

    Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John

    2017-11-01

    Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).

  13. The Diffuse Soft X-ray Background: Trials and Tribulations

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.

    2013-01-01

    I joined the University of Wisconsin-Madison sounding rocket group at its inception. It was an exciting time, as nobody knew what the X-ray sky looked like. Our group focused on the soft X-ray background, and built proportional counters with super thin (2 micron thick) windows. As the inter gas pressure of the counters was about 1 atmosphere, it was no mean feat to get payload to launch without the window bursting. On top of that we built all our own software from space solutions to unfolding the spectral data. For we did it then as now: Our computer code modeled the detector response and then folded various spectral shapes through the response and compared the results with the raw data. As far as interpretation goes, here are examples of how one can get things wrong: The Berkeley group published a paper of the soft X-ray background that disagreed with ours. Why? It turned out they had **assumed** the galactic plane was completely opaque to soft X-ray and hence corrected for detector background that way. It turns out that the ISM emits in soft X-rays! Another example was the faux pas of the Calgary group. They didn’t properly shield their detector from the sounding rocket telemetry. Thus they got an enormous signal, which to our amusement some (ambulance chaser) theoreticians tried to explain! So back then as now, mistakes were made, but at least we all knew how our X-ray systems worked from soup (the detectors) to nuts (the data analysis code) where as toady “anybody” with a good idea but only a vague inkling of how detectors, mirrors and software work, can be an X-ray astronomer. On the one hand, this has made the field accessible to all, and on the other, errors in interpretation can be made as the X-ray telescope user can fall prey to running black box software. Furthermore with so much funding going into supporting observers, there is little left to make the necessary technology advances or keep the core expertise in place to even to stay even with

  14. Chandra Observation of Luminous and Ultraluminous X-ray Binaries in M101

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Pence, W. D.; Snowden, S. L.; Kuntz, K. D.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.

  15. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  16. All-Sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2011-01-01

    We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6 x 10(exp -9) Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data. collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h(sub 0) is 1 x 10(exp -24), while at the high end of our frequency ra.nge we achieve a worst-case upper limit of 3.8 x 10(exp -24) for all polarizations and sky locations. These results constitute a factor of two improvement upop. previously published data. A new detection pipeline utilizing a Loosely Coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long.period binary companion.

  17. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  18. Optical and radio properties of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Stocke, J. T.; Liebert, J.; Schmidt, G.; Gioia, I. M.; Maccacaro, T.

    1985-01-01

    The eight BL Lac objects from the HEAO 1 A-2 all-sky survey and from the Einstein medium-sensitivity survey (MSS) form a flux-limited complete X-ray selected sample. The optical and radio properties of the MSS BL Lac objects are presented and compared with those of the HEAO 1 A-2 sample and with those of radio-selected BL Lac objects. The X-ray selected BL Lac objects possess smaller polarized fractions and less violent optical variability than radio-selected BL Lac objects. These properties are consistent with the substantial starlight fraction seen in the optical spectra of a majority of these objects. This starlight allows a determination of definite redshifts for two of four MSS BL Lac objects and a probable redshift for a third. These redshifts are 0.2, 0.3, and 0.6. Despite the differences in characteristics between the X-ray selected and radio-selected samples, it is concluded that these eight objects possess most of the basic qualities of BL Lac objects and should be considered members of that class. Moreover, as a class, these X-ray selected objects have the largest ratio of X-ray to optical flux of any active galactic nuclei yet discovered.

  19. Optical and X-ray rebrightening in NS X-ray Nova Aql X-1

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, A.; Bikmaev, I.; Irtuganov, E.; Sakhibullin, N.; Vlasyuk, V. V.; Spiridonova, O. I.; Khamitov, I.; Medvedev, P.; Pavlinsky, M. N.; Tsygankov, S. S.

    2017-06-01

    The current outburst in NS X-ray Nova Aql X-1 has started 28 May 2017, as it was reported earlier (see ATel#10441, #10450, #10452). During optical monitoring campaign of Aql X-1, performed at 1.5-m Russian-Turkish telescope (TUBITAK National Observatory) and 1-m SAO RAS optical telescope (Special Astrophysical Observatory) we report a substantial increase of optical brightness of Aql X-1 in the last few days.

  20. The necessity of recognizing all events in X-ray detection.

    PubMed

    Papp, T; Maxwell, J A; Papp, A T

    2010-01-01

    In our work in studying properties of inner shell ionization, we are troubled that the experimental data used to determine the basic parameters of X-ray physics have a large and unexplainable scatter. As we looked into the problems we found that many of them contradict simple logic, elemental arithmetic, even parity and angular momentum conservation laws. We have identified that the main source of the problems, other than the human factor, is rooted in the signal processing electronics. To overcome these problems we have developed a fully digital signal processor, which not only has excellent resolution and line shape, but also allows proper accounting of all events. This is achieved by processing all events and separating them into two or more spectra (maximum 16), where the first spectrum is the accepted or good spectrum and the second spectrum is the spectrum of all rejected events. The availability of all the events allows one to see the other part of the spectrum. To our surprise the total information explains many of the shortcomings and contradictions of the X-ray database. The data processing methodology cannot be established on the partial and fractional information offered by other approaches. Comparing Monte Carlo detector modeling results with the partial spectra is ambiguous. It suggests that the metrology of calibration by radioactive sources as well as other X-ray measurements could be improved by the availability of the proper accounting of all events. It is not enough to know that an event was rejected and increment the input counter, it is necessary to know, what was rejected and why it happened, whether it was a noise or a disturbed event, a retarded event or a true event, or any pile up combination of these events. Such information is supplied by our processor reporting the events rejected by each discriminator in separate spectra. Several industrial applications of this quality assurance capable signal processor are presented. Copyright 2009

  1. An All-Sky Portable (ASP) Optical Catalogue

    NASA Astrophysics Data System (ADS)

    Flesch, Eric Wim

    2017-06-01

    This optical catalogue combines the all-sky USNO-B1.0/A1.0 and most-sky APM catalogues, plus overlays of SDSS optical data, into a single all-sky map presented in a sparse binary format that is easily downloaded at 9 Gb zipped. Total count is 1 163 237 190 sources and each has J2000 astrometry, red and blue magnitudes with PSFs and variability indicator, and flags for proper motion, epoch, and source survey and catalogue for each of the photometry and astrometry. The catalogue is available on http://quasars.org/asp.html, and additional data for this paper is available at http://dx.doi.org/10.4225/50/5807fbc12595f.

  2. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    coupled device) focal plane detector that reads out the position and energy of the X-rays, allowing a determination of the leak location. The effective area of the detection system is approximately 2 cm(exp2) at 1 keV. The Lobster astrophysics instrument, designed for monitoring the sky for Xray transients, gives high sensitivity along with large field of view (30×30deg) and good spatial resolution (1 arc min). This offers a significant benefit for detecting ISS ammonia leaks, since the goal is to localize small leaks as efficiently as possible.

  3. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  4. MAXI/GSC 7-year Source Catalog

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Kawamuro, T.; Hori, T.; Shidatsu, M.; Tanimoto, A.; MAXI Team

    2017-10-01

    Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been continuously observing the X-ray sky since its launch in 2009. The MAXI survey has achieved the best sensitivity in the 4-10 keV band as an all sky X-ray mission, and is complementary to the ROSAT all sky survey (<2 keV) and hard X-ray (>10 keV) surveys performed with Swift and INTEGRAL. Here we present the latest source catalog of MAXI/Gas Slit Camera (GSC) constructed from the first 7-year data, which is an extension of the 37-month catalog of the high Galactic-latitude sky (Hiroi et al. 2013). We summarize statistical properties of the X-ray sources and results of cross identification with other catalogs.

  5. Extended Source/Galaxy All Sky 2

    NASA Image and Video Library

    2003-03-27

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey’s All-Sky Survey Extended Source Catalog; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04251

  6. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  7. The Einstein All-Sky Slew Survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1992-01-01

    The First Einstein IPC Slew Survey produced a list of 819 x-ray sources, with f(sub x) approximately 10(exp -12) - 10(exp -10) erg/sq cm s and positional accuracy of approximately 1.2 feet (90 percent radius). The aim of this program was to identify these x-ray sources.

  8. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03X-ray-studied samples of normal galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  9. Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.

    PubMed

    Khrennikov, K; Wenz, J; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2015-05-15

    We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.

  10. Cluster Masses Derived from X-ray and Sunyaev-Zeldovich Effect Measurements

    NASA Technical Reports Server (NTRS)

    Laroque, S.; Joy, Marshall; Bonamente, M.; Carlstrom, J.; Dawson, K.

    2003-01-01

    We infer the gas mass and total gravitational mass of 11 clusters using two different methods; analysis of X-ray data from the Chandra X-ray Observatory and analysis of centimeter-wave Sunyaev-Zel'dovich Effect (SZE) data from the BIMA and OVRO interferometers. This flux-limited sample of clusters from the BCS cluster catalogue was chosen so as to be well above the surface brightness limit of the ROSAT All Sky Survey; this is therefore an orientation unbiased sample. The gas mass fraction, f_g, is calculated for each cluster using both X-ray and SZE data, and the results are compared at a fiducial radius of r_500. Comparison of the X-ray and SZE results for this orientation unbiased sample allows us to constrain cluster systematics, such as clumping of the intracluster medium. We derive an upper limit on Omega_M assuming that the mass composition of clusters within r_500 reflects the universal mass composition Omega_M h_100 is greater than Omega _B / f-g. We also demonstrate how the mean f_g derived from the sample can be used to estimate the masses of clusters discovered by upcoming deep SZE surveys.

  11. The soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.

    1982-01-01

    Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.

  12. Evidence for a 17-d periodicity from Cyg X-3

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.; Pravdo, S. H.; Peacock, A.; Elvis, M.; Watson, M. G.; Pounds, K. A.

    1976-01-01

    Data are presented from the Ariel-V All-Sky Monitor which indicate a 17-day periodicity of the X-ray spectra from Cyg X-3 (3U2030+40). The data are consistent with data from the Ariel V Sky Survey Experiment. Assuming that the high intensity state of Cyg X-3 is well fitted by a structureless black body (Serlemitsos et al., 1975), and that the 17-day maxima correspond to increased electron scattering in the source, it is suggested that the 17-day effect is analogous to the 35-day variation in Her X-1. The possible explanation of this phenomenon as a result of the 17-day orbital period of the binary system containing Cyg X-3 is severely constrained by the stability of the well-known 4.8-hour variation.

  13. Digital optical correlator x-ray telescope alignment monitoring system

    NASA Astrophysics Data System (ADS)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  14. A matched filter approach for blind joint detection of galaxy clusters in X-ray and SZ surveys

    NASA Astrophysics Data System (ADS)

    Tarrío, P.; Melin, J.-B.; Arnaud, M.

    2018-06-01

    The combination of X-ray and Sunyaev-Zeldovich (SZ) observations can potentially improve the cluster detection efficiency, when compared to using only one of these probes, since both probe the same medium, the hot ionized gas of the intra-cluster medium. We present a method based on matched multifrequency filters (MMF) for detecting galaxy clusters from SZ and X-ray surveys. This method builds on a previously proposed joint X-ray-SZ extraction method and allows the blind detection of clusters, that is finding new clusters without knowing their position, size, or redshift, by searching on SZ and X-ray maps simultaneously. The proposed method is tested using data from the ROSAT all-sky survey and from the Planck survey. The evaluation is done by comparison with existing cluster catalogues in the area of the sky covered by the deep SPT survey. Thanks to the addition of the X-ray information, the joint detection method is able to achieve simultaneously better purity, better detection efficiency, and better position accuracy than its predecessor Planck MMF, which is based on SZ maps alone. For a purity of 85%, the X-ray-SZ method detects 141 confirmed clusters in the SPT region; to detect the same number of confirmed clusters with Planck MMF, we would need to decrease its purity to 70%. We provide a catalogue of 225 sources selected by the proposed method in the SPT footprint, with masses ranging between 0.7 and 14.5 ×1014 M⊙ and redshifts between 0.01 and 1.2.

  15. Lifting the veil on the X-ray universe

    NASA Astrophysics Data System (ADS)

    1999-11-01

    . A multi-spectral space telescope The spacecraft carries three sets of science instruments, not only capable of making images of an X-ray source but also able to precisely distinguish the "colour" of the X-rays being viewed. At the prime focus of each of the telescopes are three European Photon Imaging Cameras. With silicon chips that can register extremely weak X-ray radiation, these advanced cameras are capable of detecting rapid variations in the intensity of a source. Grating structures at the exit of two mirror modules will reflect about half the incoming rays to a secondary focus, with its own cameras. This Reflection Grating Spectrometer will "fan out" the various wavelengths (much like a prism with visible light), and indicate in more detail the presence of individual elements, such as oxygen and iron. The third instrument aboard XMM is a conventional but very sensitive optical telescope. It will observe simultaneously the same regions as the X-ray telescopes but in the ultraviolet and visible wavelengths, giving astronomers complementary data about the X-ray sources being studied. In orbit, this 30-cm telescope will be as sensitive as a 4-m instrument on the Earth's surface. The mysteries of the X-ray sky XMM will explore the hidden depths of the Universe, its violent hotspots where stars and galaxies are formed, and where worlds and matter itself disappear. Much as the colour of a street lamp can indicate which gas it uses, the science instruments on board XMM will reveal the deepest secrets of X-ray objects, their chemical composition and temperatures - clues to the physical processes that are taking place. Astronomers will use XMM to resolve the mysteries of stars that exploded long ago as supernovae and whose remnants, glowing with X-rays, may be supplying material for new planets and stars. They will study regions of supernova remnants that are still hot and may hold the key to understanding the origin of the enigmatic cosmic rays that pervade the

  16. How to Model Super-Soft X-ray Sources?

    NASA Astrophysics Data System (ADS)

    Rauch, Thomas

    2012-07-01

    During outbursts, the surface temperatures of white dwarfs in cataclysmic variables exceed by far half a million Kelvin. In this phase, they may become the brightest super-soft sources (SSS) in the sky. Time-series of high-resolution, high S/N X-ray spectra taken during rise, maximum, and decline of their X-ray luminosity provide insights into the processes following such outbursts as well as in the surface composition of the white dwarf. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) is a powerful tool for their calculation. We present the application of TMAP models to SSS spectra and discuss their validity.

  17. An X-ray monitor for measurement of a titanium tritide target thickness

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  18. All-Sky Infrared Survey

    NASA Image and Video Library

    2009-11-17

    This infrared view of the whole sky highlights the flat plane of our Milky Way galaxy line across middle of image. NASA WISE, will take a similar infrared census of the whole sky, only with much improved resolution and sensitivity.

  19. X-Ray Emission from the Terrestrial Magnetosheath

    NASA Astrophysics Data System (ADS)

    Robertson, I. P.; Collier, M. R.; Cravens, T. E.; Fok, M.

    2004-12-01

    X-rays are generated throughout the terrestrial magnetosheath as a consequence of charge transfer collisions between heavy solar wind ions and geocoronal neutrals. The solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft X-ray photons. A model has been created to simulate this X-ray radiation. Previously simulated images were created as seen from an observation point outside the geocorona. The locations of the bow shock and magnetopause were evident in these images. The cusps, however, were not taken into account in the model. We have now used dynamic three-dimensional simulations of the solar wind, magnetosheath and magnetosphere that were performed by the CCMC at Goddard Space Flight Center for the March 31st , 2001 geomagnetic storm. We have generated a sky map of the expected X-Ray emissions as would have been seen by an observer at the IMAGE space craft location at that time. We have also generated images as seen from an observation point well outside the geocorona. In both cases the presence of the cusps can clearly be observed.

  20. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  1. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-09-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  2. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  3. The SuperCOSMOS all-sky galaxy catalogue

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.

    2016-10-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

  4. Gamma-ray astronomy with muons: Sensitivity of IceCube to PeVatrons in the Southern sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halzen, Francis; O'Murchadha, Aongus; Kappes, Alexander

    2009-10-15

    Northern hemisphere TeV gamma-ray observatories such as Milagro and Tibet AS{gamma} have demonstrated the importance of all-sky instruments by discovering previously unidentified sources that may be the PeVatrons producing cosmic rays up to the knee in the cosmic ray spectrum. We evaluate the potential of IceCube to identify similar sources in the southern sky by detailing an analytic approach to determine fluxes of muons from TeV gamma-ray showers. We apply this approach to known gamma-ray sources such as supernova remnants. We find that, similar to Milagro, detection is possible in 10 years for pointlike PeVatrons with fluxes stronger than severalmore » 10{sup -11} particles TeV{sup -1} cm{sup -2} s{sup -1}.« less

  5. ROSAT x ray survey observations of active chromospheric binary systems and other selected sources

    NASA Technical Reports Server (NTRS)

    Ramsey, Lawrence W.

    1993-01-01

    The connection between processes that produce optical chromospheric activity indicators and those that produce x-rays in RS CVn binary systems by taking advantage of the ROSAT All-Sky Survey (RASS) results and our unique ground-based data set was investigated. In RS CVn systems, excess emission in the Ca 2 resonance (K & H) and infrared triplet (IRT) lines and in the Balmer lines of hydrogen is generally cited as evidence for chromospheric activity, which is usually modeled as scaled up solar-type activity. X-ray emission in RS CVn systems is believed to arise from coronal loop structures. Results from spectra data obtained from RASS observations are discussed and presented.

  6. Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Lee, S.; Westferro, F.

    The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less

  7. Why do we see Broad Lines in X-ray Absorbed, Red AGN?

    NASA Astrophysics Data System (ADS)

    Wilkes, B. J.; Ghosh, Himel; Cutri, R.; Hines, D.; Nelson, B.; Schmidt, G. D.; Smith, P. S.

    2003-05-01

    The Two Micron All-Sky Survey (2MASS) red AGN catalog has revealed a previously unknown population whose number density rivals that of optically-selected AGN as found in the many, relatively shallow surveys (e.g. PG, Hamburg). The Chandra X-ray spectra of these red, mostly broad-line AGN are hard. This, combined with their unusually high optical polarization, suggests substantial obscuration (log NH = 21-23 cm-2) toward the nuclear energy source, despite a clear view of the broad emission line region. We have expanded our Chandra-observed sub-sample to include 20 more 2MASS AGN yielding a set of 46 which includes all available optical classes. This sample is thus pre-selected for complex absorption and sufficient to study the relative X-ray and optical obscuration for each AGN class. Those observed to date continue the lack of a relation between the X-ray hardness ratio and optical class noted in our earlier sample. Combining this with X-ray spectral fits where we have sufficient counts and with our multi-wavelength data, we compare the spectral energy distributions with those of normal and other red AGN and investigate possible scenarios for the absorbing material. We gratefully ackowledge the financial support of NASA grant: GO1-2112A

  8. Anchoring the Distance Scale via X-Ray/Infrared Data for Cepheid Clusters: SU Cas

    NASA Astrophysics Data System (ADS)

    Majaess, D.; Turner, D. G.; Gallo, L.; Gieren, W.; Bonatto, C.; Lane, D. J.; Balam, D.; Berdnikov, L.

    2012-07-01

    New X-ray (XMM-Newton) and JHKs (Observatoire du Mont-Mégantic) observations for members of the star cluster Alessi 95, which Turner et al. discovered hosts the classical Cepheid SU Cas, were used in tandem with UCAC3 (proper motion) and Two Micron All Sky Survey observations to determine precise cluster parameters: E(J - H) = 0.08 ± 0.02 and d = 405 ± 15 pc. The ensuing consensus among cluster, pulsation, and trigonometric distances (d=414+/- 5(\\sigma _{\\bar{x}}) +/- 10 (\\sigma) pc) places SU Cas in a select group of nearby fundamental Cepheid calibrators (δ Cep, ζ Gem). High-resolution X-ray observations may be employed to expand that sample as the data proved pertinent for identifying numerous stars associated with SU Cas. Acquiring X-ray observations of additional fields may foster efforts to refine Cepheid calibrations used to constrain H 0.

  9. Extended Source/Galaxy All Sky 1

    NASA Image and Video Library

    2003-03-27

    This panoramic view of the entire sky reveals the distribution of galaxies beyond our Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is constructed from a database of over 1.6 million galaxies listed in the survey's Extended Source Catalog; more than half of the galaxies have never before been catalogued. The image is a representation of the relative brightnesses of these million-plus galaxies, all observed at a wavelength of 2.2 microns. The brightest and nearest galaxies are represented in blue, and the faintest, most distant ones are in red. This color scheme gives insights into the three dimensional large-scale structure of the nearby universe with the brightest, closest clusters and superclusters showing up as the blue and bluish-white features. The dark band in this image shows the area of the sky where our Milky Way galaxy blocks our view of distant objects, which, in this projection, lies predominantly along the edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04252

  10. XTE J1946+274 = GRO J1944+26: An Enigmatic Be/X-Ray Binary

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Coe, M. J.; Negueruela, Ignacio

    2003-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8 s Be/X-ray pulsar discovered simultaneously in 1998 September with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) and the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer (RXTE). Here we present new results from BATSE and RXTE including a pulse timing analysis, spectral analysis, and evidence for an accretion disk. Our pulse timing analysis yielded an orbital period of 169.2 days, a moderate eccentricity 0.33, and implied a mass function of 9.7 solar masses. We observed evidence for an accretion disk, a correlation between measured spin-up rate and flux, which was fitted to obtain a distance estimate of 9.5 +/- 2.9 kpc. XTE J1946+274 remained active from 1998 September to 2001 July, undergoing 13 outbursts that were not locked in orbital phase. Comparing RXTE Proportional Counter Array observations from the initial bright outburst in 1998 and the last pair of outbursts in 2001, we found energy and intensity-dependent pulse profile variations in both outbursts and hardening spectra with increasing intensity during the fainter 2001 outbursts. In 2001 July, optical H alpha observations indicated that a density perturbation appeared in the Be disk as the X-ray outbursts ceased. We propose that the equatorial plane of the Be star is inclined with respect to the orbital plane in this system and that this inclination may be a factor in the unusual outburst behavior of the system.

  11. CubeX: The CubeSAT X-ray Telescope for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.

    2017-12-01

    The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several

  12. A Comparison of the Variability of the Symbiotic X-ray Binaries GX 1+4, 4U 1954+31, and 4U 1700+24 from Swift/BAT and RXTE/ASM Observations

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; Sokoloski, J. L.; Mukai, K.; Markwardt, C. B.; Tueller, J.

    2007-01-01

    We present an analysis of the X-ray variability of three symbiotic X-ray binaries, GX 1+4, 4U 1700+24, and 4U 1954+31, using observations made with the Swift Burst Alert Telescope (BAT) and the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Observations of 4U 1954+31 with the Swift BAT show modulation at a period near 5 hours. Models to explain this modulation are discussed including the presence of an exceptionally slow X-ray pulsar in the system and accretion instabilities. We conclude that the most likely interpretation is that 4U 1954+31 contains one of the slowest known X-ray pulsars. Unlike 4U 1954+31, neither GX 1+4 nor 4U 1700+24 show any evidence for modulation on a timescale of hours. An analysis of the RXTE ASM light curves of GX l+4, 4U 1700+24, and 4U 1954+31 does not show the presence of periodic modulation in any source, although there is considerable variability on long timescales for all three sources. There is no modulation in GX 1+4 on either the optical 1161 day orbital period or a previously reported 304 day X-ray period. For 4U 1700+24 we do not confirm the 404 day period previously proposed for this source from a shorter duration ASM light curve.

  13. X-Rays from Galaxies Teeming with Black Holes and Neutron Stars

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2010-01-01

    Thanks to more than forty years of investment in space-based technology capable of observing the Universe in the x-ray band (0.5 - 100 keV), we have learned quite a bit about the X-ray universe. It has become clear that most of the glow of the X-ray sky is attributed to accretion onto supermassive black holes. However, as we push ever fainter in our detection methods, we find an interesting population of very faint sources arising. These are normal "Milky-way-type" galaxies that also glow in X-rays. The X-ray emission from these galaxies arises from populations of accreting black holes and neutron stars contained in binary systems. This talk will describe our understanding of this population, including some strange regularity in the production of such accreting binary systems. The future, including new technology planned for the next 5-10 years and anticipated theoretical advancements, will also be discussed.

  14. The Chandra Multi-Wavelength Project (ChaMP): A Serendipitous X-Ray Survey Using Chandra Archival Data

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    The launch of the Chandra X-ray Observatory in July 2000 opened a new era in X-ray astronomy. Its unprecedented, < 1" spatial resolution and low background is providing views of the X-ray sky 10-100 times fainter than previously possible. We have begun to carry out a serendipitous survey of the X-ray sky using Chandra archival data to flux limits covering the range between those reached by current satellites and those of the small area Chandra deep surveys. We estimate the survey will cover about 8 sq.deg. per year to X-ray fluxes (2-10 keV) in the range 10(exp -13) - 6(exp -16) erg cm2/s and include about 3000 sources per year, roughly two thirds of which are expected to be active galactic nuclei (AGN). Optical imaging of the ChaMP fields is underway at NOAO and SAO telescopes using g',r',z' colors with which we will be able to classify the X-ray sources into object types and, in some cases, estimate their redshifts. We are also planning to obtain optical spectroscopy of a well-defined subset to allow confirmation of classification and redshift determination. All X-ray and optical results and supporting optical data will be place in the ChaMP archive within a year of the completion of our data analysis. Over the five years of Chandra operations, ChaMP will provide both a major resource for Chandra observers and a key research tool for the study of the cosmic X-ray background and the individual source populations which comprise it. ChaMP promises profoundly new science return on a number of key questions at the current frontier of many areas of astronomy including solving the spectral paradox by resolving the CXRB, locating and studying high redshift clusters and so constraining cosmological parameters, defining the true, possibly absorbed, population of quasars and studying coronal emission from late-type stars as their cores become fully convective. The current status and initial results from the ChaMP will be presented.

  15. X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine

    NASA Astrophysics Data System (ADS)

    Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.

    2018-06-01

    Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.

  16. In-flight calibration of Hitomi Soft X-ray Spectrometer. (1) Background

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Sawada, Makoto; Tsujimoto, Masahiro; Angellini, Lorella; Boyce, Kevin R.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Koyama, Shu; Leutenegger, Maurice A.; Loewenstein, Michael; McCammon, Dan; Mitsuda, Kazuhisa; Nakashima, Shinya; Porter, Frederick S.; Seta, Hiromi; Takei, Yoh; Tashiro, Makoto S.; Terada, Yukikatsu; Yamada, Shinya; Yamasaki, Noriko Y.

    2018-03-01

    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 × 10-2 counts s-1 cm-2. This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.

  17. Exploring the particle nature of dark matter with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Caputo, Regina; Meyer, Manuel; Sánchez-Conde, Miguel; AMEGO

    2018-01-01

    The era of precision cosmology has revealed that ~80% of the matter in the universe is dark matter. Two leading candidates, motivated by both particle and astrophysics, are Weakly Interacting Massive Particles (WIMPs) and Weakly Interacting Sub-eV Particles (WISPs) like axions and axionlike particles. Both WIMPs and WISPs have distinct gamma-ray signatures. Data from the Fermi Large Area Telescope (Fermi-LAT) continues to be an integral part of the search for these dark matter signatures spanning the 50 MeV to >300 GeV energy range in a variety of astrophysical targets. Thus far, there are no conclusive detections; however, there is an intriguing excess of gamma rays associated with Galactic center (GCE) that could be explained with WIMP annihilation. The angular resolution of the LAT at lower energies makes source selection challenging and the true nature of the detected signal remains unknown. WISP searches using, e.g. supernova explosions, spectra of blazars, or strongly magnetized environments, would also greatly benefit from increased angular and energy resolution, as well as from polarization measurements. To address these, we are developing AMEGO, the All-sky Medium Energy Gamma-ray Observatory. This instrument has a projected energy and angular resolution that will increase sensitivity by a factor of 20-50 over previous instruments. This will allow us to explore new areas of dark matter parameter space and provide unprecedented access to its particle nature.

  18. The MIRAX Hard X-ray Transient Mission

    NASA Astrophysics Data System (ADS)

    Braga, João; Grindlay, Josh; Rothschild, Rick; Wilms, Joern; Remillard, Ron

    2012-09-01

    The MIRAX (Monitor e Imageador de Raios X) mission is designed to perform a hard X-ray (5-200 keV) survey of more than half of the sky with high localization power (~1') and high sensitivity (26 mCrab for one orbit and 0.3 mCrab for one year). This will be achieved by a set of 4 coded-mask imagers that will operate in scanning mode in a near-Equatorial circular LEO. The pointing directions will maximize the coverage of the Central Galactic Plane. The detectors are position-sensitive 5mm-thick CdZnTe with 0.6mm pitch with 756 square cm effective area at 10 keV (total for the 4 units). The energy resolution is ~2 keV at 60 keV. The main objective of MIRAX is to study with unprecedented depth and time coverage (milliseconds to years) a large sample of transient and variable phenomena on accreting neutron stars and black holes. The satellite bus and launch will be provided by Brazil, whereas the instrument development is a cooperative effort led by CfA, including INPE(Brazil), UCSD, MIT, GSFC, Caltech and the Univ. of Erlangen-Nuremberg in Germany.

  19. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  20. The Two Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.; Lysaght, M. G.; Pughe, W. L.; Schneider, S. E.; Skrutskie, M. F.; Weinberg, M. D.; Price, S. D.; Matthews, K.; Soifer, B. T.; Huchra, J. P.

    1994-01-01

    The Two Micron All Sky Survey (2MASS) will provide a uniform survey of the entire sky at three near-infrared wavebands: J(lambda(sub eff) = 1.25 micrometers), H(lambda(sub eff) = 1.65 micrometers), and K(sub s)(lambda(sub eff) = 2.16 micrometers). A major goal of the survey is to probe large scale structures in the Milky Way and in the Local Universe, exploiting the relatively high transparency of the interstellar medium in the near-infrared, and the high near-infrared luminosities of evolved low- and intermediate-mass stars. A sensitive overview of the near-infrared sky is also an essential next step to maximize the gains achievable with infrared array technology. Our assessment of the astrophysical questions that might be addressed with these new arrays is currently limited by the very bright flux limit of the only preceding large scale near-infrared sky survey, the Two Micron Sky Survey carried out at Caltech in the late 1960's. Near-infrared instruments based on the new array technology have already obtained spectra of objects 1 million times fainter than the limit of the TMSS! This paper summarizes the essential parameters of the 2MASS project and the rationale behind those choices, and gives an overview of results obtained with a prototype camera that has been in operation since May 1992. We conclude with a list of expected data products and a statement of the data release policy.

  1. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    NASA Astrophysics Data System (ADS)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  2. Spectroscopic and Temporal Properties of Supergiant Fast X-ray Transients with Swift

    NASA Astrophysics Data System (ADS)

    Romano, Patrizia; Kennea, J. A.; Vercellone, S.; Burrows, D. N.; Cusumano, G.; Esposito, P.; Farinelli, R.; Krimm, H. A.; La Parola, V.; Mangano, V.; Pagani, C.; Gehrels, N.

    2011-09-01

    We present a review of the Swift Supergiant Fast X-ray Transients (SFXT) project. Swift has recently opened a brand new way of investigating this class of High-Mass X-ray Binaries whose optical counterparts are O or B supergiant stars, and whose X-ray outbursts are about 4 orders of magnitude brighter than the quiescent state. Thanks to its scheduling flexibility, Swift has allowed us to regularly monitor a small sample of SFXTs with 2-3 observations per week (1-2 ks) with the X-Ray Telescope (XRT) over their entire visibility period (9 months/year) for over 2 years. This intense monitoring has allowed us to study them throughout all phases of their lives (outbursts, intermediate level, and quiescence) and to determine the long-term properties and their duty cycles, through very sensitive and non-serendipitous observations. We also monitored one source along its whole orbital period. Furthermore, thanks to its autonomous and rapid repointing, Swift has allowed us for the first time to catch and study, from optical to hard X-ray, the bright outbursts, and to follow them in the X-ray for days, thus determining the actual duration of the outburst episodes and the shape of their X-ray spectra through simultaneous broadband spectroscopy. We acknowledge financial contribution from the agreement ASI-INAF I/009/10/0.

  3. An Expanded Rossi X-Ray Timing Explorer Survey of X-Ray Variability in Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, A.; Edelson, R.

    2004-12-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogeneous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from ~1 day to ~3.5 yr. The 2-10 keV variability on timescales of ~1 day, as probed by ASCA, is included. All sources exhibit stronger X-ray variability toward longer timescales, but the increase is greater for relatively higher luminosity sources. Variability amplitudes are anticorrelated with X-ray luminosity and black hole mass, but amplitudes saturate and become independent of luminosity or black hole mass toward the longest timescales. The data are consistent with the models of power spectral density (PSD) movement described by Markowitz and coworkers and McHardy and coworkers, whereby Seyfert 1 galaxies' variability can be described by a single, universal PSD shape whose break frequency scales with black hole mass. The best-fitting scaling relations between variability timescale, black hole mass, and X-ray luminosity imply an average accretion rate of ~5% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all timescales. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  4. X-ray angiography systems.

    PubMed

    1993-11-01

    Despite the emergence of several alternative angiographic imaging techniques (i.e., magnetic resonance imaging, computed tomography, and ultrasound angiography), x-ray angiography remains the predominant vascular imaging modality, generating over $4 billion in revenue a year in U.S. hospitals. In this issue, we provide a brief overview of the various angiographic imaging techniques, comparing them with x-ray angiography, and discuss the clinical aspects of x-ray vascular imaging, including catheterization and clinical applications. Clinical, cost, usage, and legal issues related to contrast media are discussed in "Contrast Media: Ionic versus Nonionic and Low-osmolality Agents." We also provide a technical overview and selection guidance for a basic x-ray angiography imaging system, including the gantry and table system, x-ray generator, x-ray tube, image intensifier, video camera and display monitors, image-recording devices, and digital acquisition and processing systems. This issue also contains our Evaluation of the GE Advantx L/C cardiac angiography system and the GE Advantx AFM general-purpose angiography system; the AFM can be used for peripheral, pulmonary, and cerebral vascular studied, among others, and can also be configured for cardiac angiography. Many features of the Advantx L/C system, including generator characteristics and ease of use, also apply to the Advantx AFM as configured for cardiac angiography. Our ratings are based on the systems' ability to provide the best possible image quality for diagnosis and therapy while minimizing patient and personnel exposure to radiation, as well as its ability to minimize operator effort and inconvenience. Both units are rated Acceptable. In the Guidance Section, "Radiation Safety and Protection," we discuss the importance of keeping patient and personnel exposures to radiation as low as reasonably possible, especially in procedures such as cardiac catheterization, angiographic imaging for special procedures

  5. The LOFT perspective on neutron star thermonuclear bursts: White paper in support of the mission concept of the large observatory for X-ray timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    in't Zand, J. J.M.; Malone, Christopher M.; Altamirano, D.

    2015-01-14

    The Large Area Detector (LAD) on the Large Observatory For X-ray Timing ( LOFT ), with a 8.5 m 2 photon- collecting area in the 2–30 keV bandpass at CCD-class spectral resolving power (λ/Δλ = 10 – 100), is designed for optimum performance on bright X-ray sources. Thus, it is well-suited to study thermonuclear X-ray bursts from Galactic neutron stars. These bursts will typically yield 2 x 10 5 photon detections per second in the LAD, which is at least 15 times more than with any other instrument past, current or anticipated. The Wide Field Monitor (WFM) foreseen for LOFTmore » uniquely combines 2–50 keV imaging with large (30%) prompt sky coverage. This will enable the detection of tens of thousands of thermonuclear X-ray bursts during a 3-yr mission, including tens of superbursts. Both numbers are similar or more than the current database gathered in 50 years of X-ray astronomy.« less

  6. Zernike analysis of all-sky night brightness maps.

    PubMed

    Bará, Salvador; Nievas, Miguel; Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2014-04-20

    All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.

  7. The SPHEREx All-Sky Spectral Survey

    NASA Astrophysics Data System (ADS)

    Bock, James; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, with a single instrument, a wide-field spectral imager. SPHEREx will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power in two deep fields located near the ecliptic poles. Following in the tradition of all-sky missions such as IRAS, COBE and WISE, SPHEREx will be the first all-sky near-infrared spectral survey. SPHEREx will create spectra (0.75 – 4.2 um at R = 41; and 4.2 – 5 um at R = 135) with high sensitivity making background-limited observations using a passively-cooled telescope with a wide field-of-view for large mapping speed. During its two-year mission, SPHEREx will produce four complete all-sky maps that will serve as a rich archive for the astronomy community. With over a billion detected galaxies, hundreds of millions of high-quality stellar and galactic spectra, and over a million ice absorption spectra, the archive will enable diverse scientific investigations including studies of young stellar systems, brown dwarfs, high-redshift quasars, galaxy clusters, the interstellar medium, asteroids and comets. All aspects of the instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. SPHEREx is a partnership between Caltech and JPL, following the

  8. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  9. Fermi Bubbles: an elephant in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Malyshev, Dmitry

    2017-03-01

    The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.

  10. The Transient High Energy Sky and Early Universe Surveyor

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.

    2016-04-01

    The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next

  11. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  12. Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients

    NASA Astrophysics Data System (ADS)

    Romano, P.; Ducci, L.; Mangano, V.; Esposito, P.; Bozzo, E.; Vercellone, S.

    2014-08-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are characterised by a hard X-ray (≥ 15 keV) flaring behaviour. These flares reach peak luminosities of 1036-1037 erg s-1 and last a few hours in the hard X-rays. Aims: We investigate the long-term properties of SFXTs by examining the soft (0.3-10 keV) X-ray emission of the three least active SFXTs in the hard X-ray and by comparing them with the remainder of the SFXT sample. Methods: We performed the first high-sensitivity soft X-ray long-term monitoring with Swift/XRT of three relatively unexplored SFXTs, IGR J08408-4503, IGR J16328-4726, and IGR J16465-4507, whose hard X-ray duty cycles are the lowest measured among the SFXT sample. We assessed how long each source spends in each flux state and compared their properties with those of the prototypical SFXTs. Results: The behaviour of IGR J08408-4503 and IGR J16328-4726 resembles that of other SFXTs, and it is characterised by a relatively high inactivity duty cycle (IDC) and pronounced dynamic range (DR) in the X-ray luminosity. We found DR ~ 7400, IDC ~ 67% for IGR J08408-4503, and DR ~ 750, IDC ~ 61% for IGR J16328-4726 (in all cases the IDC is given with respect to the limiting flux sensitivity of XRT, that is 1-3 × 10-12 erg cm-2 s-1). In common with all the most extreme SFXT prototypes (IGR J17544-2619, XTE J1739-302, and IGR J16479-4514), IGR J08408-4503 shows two distinct flare populations. The first one is associated with the brightest outbursts (X-ray luminosity LX ≳ 1035 - 36 erg s-1), while the second comprises dimmer events with typical luminosities of LX ≲ 1035 erg s-1. This double-peaked distribution of the flares as a function of the X-ray luminosity seems to be a ubiquitous feature of the extreme SFXTs. The lower DR of IGR J16328-4726 suggests that this is an intermediate SFXT. IGR J16465-4507 is characterised by a low IDC ~ 5% and a relatively narrow DR ~ 40, reminiscent of classical supergiant

  13. All sky imaging observations in visible and infrared waveband for validation of satellite cloud and aerosol products

    NASA Astrophysics Data System (ADS)

    Lu, Daren; Huo, Juan; Zhang, W.; Liu, J.

    A series of satellite sensors in visible and infrared wavelengths have been successfully operated on board a number of research satellites, e.g. NOAA/AVHRR, the MODIS onboard Terra and Aqua, etc. A number of cloud and aerosol products are produced and released in recent years. However, the validation of the product quality and accuracy are still a challenge to the atmospheric remote sensing community. In this paper, we suggest a ground based validation scheme for satellite-derived cloud and aerosol products by using combined visible and thermal infrared all sky imaging observations as well as surface meteorological observations. In the scheme, a visible digital camera with a fish-eye lens is used to continuously monitor the all sky with the view angle greater than 180 deg. The digital camera system is calibrated for both its geometry and radiance (broad blue, green, and red band) so as to a retrieval method can be used to detect the clear and cloudy sky spatial distribution and their temporal variations. A calibrated scanning thermal infrared thermometer is used to monitor the all sky brightness temperature distribution. An algorithm is developed to detect the clear and cloudy sky as well as cloud base height by using sky brightness distribution and surface temperature and humidity as input. Based on these composite retrieval of clear and cloudy sky distribution, it can be used to validate the satellite retrievals in the sense of real-simultaneous comparison and statistics, respectively. What will be presented in this talk include the results of the field observations and comparisons completed in Beijing (40 deg N, 116.5 deg E) in year 2003 and 2004. This work is supported by NSFC grant No. 4002700, and MOST grant No 2001CCA02200

  14. A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.; Anderson, Sharolyn J.; Luginbuhl, Christian B.; Baugh, Kimberly E.

    2018-07-01

    We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.

  15. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  16. An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomer, Chris, E-mail: chris.bloomer@diamond.ac.uk; Rehm, Guenther; Dolbnya, Igor P.

    Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experimentsmore » are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.« less

  17. A hard X-ray experiment for long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Johnson, W. N.; Kurfess, J. D.; Strickman, M. S.; Saulnier, D. M.

    The Naval Research Lab has developed a balloon-borne hard X-ray experiment which is designed for 60- to 90-day flight durations soon to be available with around the world Sky Anchor or RACOON balloon flights. The experiment's scintillation detector is sensitive to the 15 - 250 keV X-ray energy range. The experiment includes three microcomputer systems which control the data acquisition and provide the orientation and navigation information required for global balloon flights. The data system supports global data communications utilizing the GOES satellite as well as high bit rate communications through L-band li line-of-site transmissions

  18. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  19. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here preliminary results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8m Perkins telescope at Lowell Observatory. The K-band data presented herein provide the first long-term well-sampled IR light curve of GRS 1915+105. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  20. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches.

    PubMed

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li

    2014-09-01

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ~40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.

  1. Automatic Classification of Time-variable X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  2. Automatic classification of time-variable X-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, andmore » other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.« less

  3. Chapter 28: Theory SkyNode

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Norman, M. L.

    Here we present a working example of a Basic SkyNode serving theoretical data. The data is taken from the Simulated Cluster Archive (SCA), a set of simulated X-ray clusters, where each cluster was computed using four different physics models. The LCA Theory SkyNode (LCATheory) tables contain columns of the integrated physical properties of the clusters at various redshifts. The ease of setting up a Theory SkyNode is an important result, because it represents a clear way to present theory data to the Virtual Observatory. Also, our Theory SkyNode provides a prototype for additional simulated object catalogs, which will be created from other simulations by our group, and hopefully others.

  4. Maximizing the Performance of Automated Low Cost All-sky Cameras

    NASA Technical Reports Server (NTRS)

    Bettonvil, F.

    2011-01-01

    Thanks to the wide spread of digital camera technology in the consumer market, a steady increase in the number of active All-sky camera has be noticed European wide. In this paper I look into the details of such All-sky systems and try to optimize the performance in terms of accuracy of the astrometry, the velocity determination and photometry. Having autonomous operation in mind, suggestions are done for the optimal low cost All-sky camera.

  5. 100y DASCH Search for historical outbursts of Black Hole Low Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Miller, George; Gomez, Sebastian

    2018-01-01

    Black Hole Low mass X-ray binaries (BH-LMXBs) are all transients, although several (e.g. GRS1915+109 and GX339-4) are quasi-persistent. All of the now 22 dynamically confirmed BH-LMXBs were discovered by their luminous outbursts, reaching Lx ~10^37 ergs/s, with outburst durations of typically ~1-3 months. These systems then (with few exceptions) return to a deep quiescent state, with Lx reduced by factors ~10^5-6 and hard X-ray spectra. The X-ray outbursts are accompanied by optical outbursts (if not absorbed by Galactic extinction) with ~6-9 magnitude increases and similar lightcurve shapes and durations as the X-ray (discovery) outburst. Prior to this work, only 3 BH-LMXBs have had historical (before the X-ray discovery) outbursts found in the archival data: A0620-00, the first BH-LMXB to be so identified, V404 Cyg (discoverd as "Nova Cyg" in 1938 and regarded as a classical nova), and V4641-Sgr which was given its variable star name when first noted in 1975. We report on the historical outbursts now discovered from the DASCH (Digital Access to a Sky Century @ Harvard) data from scanning and digitizing the now ~210,000 glass plates in the northern Galactic Hemisphere. This was one of the primary motivations for the DASCH project: to use the detection (or lack threof) of historic outbursts to measure or constrain the Duty Cycle of the accreting black holes in these systems. This, in turn, allows the total population of BH-LMXBs to be estimated and compared with that for the very similar systems containing neutron stars as the accretor (NS-LMXBs). Whereas the ratio of BHs/NSs from stellar evolution and IMFs is expected to be <<1, the DASCH results on half the sky point to an excess of BH-LMXBs. This must constrain the formation process for these systems, of importance for understanding both BH formation and compact binary evolution.

  6. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  7. Ground calibrations of the X-ray detector system of the Solar Intensity X-ray Spectrometer (SIXS) on board BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans

    2014-05-01

    SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data

  8. VizieR Online Data Catalog: MYStIX: the Chandra X-ray sources (Kuhn+, 2013)

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Getman, K. V.; Broos, P. S.; Townsley, L. K.; Feigelson, E. D.

    2013-11-01

    X-ray observations were made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS-I) on board the Chandra X-Ray Observatory. This array of four CCD detectors subtends 17'x17' on the sky. Data were acquired from the Chandra Data Archive from 2001 Jan to Mar 2008 for 10 MYStIX fields (Flame Nebula, RCW 36, NGC 2264, Rosette Nebula, Lagoon Nebula, NGC 2362, DR 21, RCW 38, Trifid Nebula and NGC 1893); see table1. (2 data files).

  9. PSR J2032+4127/MT91 213 on approach to periastron: X-ray & optical monitoring

    NASA Astrophysics Data System (ADS)

    Coe, M. J.; Steele, I. A.; Ho, W. C. G.; Stappers, B.; Lyne, A. G.; Halpern, J. P.; Ray, P. S.; Johnson, T. L.; Ng, C.-Y.; Kerr, M.

    2017-11-01

    Swift XRT monitoring of the 50 year binary system PSR J2032+4127/MT91 213 shows a dramatic decrease in the X-ray flux as the system is in the final stages of approach to periastron (13 November 2017).

  10. Lumbar Spine X-Ray as a Standard Investigation for all Low back Pain in Ghana: Is It Evidence Based?

    PubMed

    Tannor, Abena Y

    2017-03-01

    Low back pain (LBP) has a prevalence of 84% in Africa. The commonest form of imaging is plain lumbar spine x-ray. It gives a radiation dose equivalent to 65 times a chest x-ray dose and sends one of the highest doses to the human reproductive organs. The commonest cause of LBP in Africa is degenerative disease. X-ray findings do not change mode of treatment yet most physicians still routinely request for x-rays. This is a systematic review of databases including The Cochrane, CINAHL plus, AMED, and MEDLINE. Key evidence was clinical guidelines on x-ray use for low back pain. Key search terms included low back pain, x-rays, guidelines, Ghana. Four clinical guidelines on LBP emerged from two Systematic Reviews rated excellent and four good Randomized Controlled Trials: The European guidelines for acute and sub-acute non-specific Low Back Pain, The American College of Physicians and the American Pain Society guideline for diagnostic imaging for Low Back Pain, The NICE guidelines for persistent non-specific Low Back Pain and the Ghana Standard Treatment Guidelines (GSTG). All the guidelines agree that a good history and clinical examination for all LBP patients helps in diagnosing. Only GSTG recommends routine plain spinal x-rays. There is strong evidence indicating very little benefit from routine lumbar spine x-rays for all LBP. The GSTG needs to be revised considering the increased risks of radiation exposure and the x-ray costs. None declared.

  11. 'Taking X-ray phase contrast imaging into mainstream applications' and its satellite workshop 'Real and reciprocal space X-ray imaging'.

    PubMed

    Olivo, Alessandro; Robinson, Ian

    2014-03-06

    A double event, supported as part of the Royal Society scientific meetings, was organized in February 2013 in London and at Chicheley Hall in Buckinghamshire by Dr A. Olivo and Prof. I. Robinson. The theme that joined the two events was the use of X-ray phase in novel imaging approaches, as opposed to conventional methods based on X-ray attenuation. The event in London, led by Olivo, addressed the main roadblocks that X-ray phase contrast imaging (XPCI) is encountering in terms of commercial translation, for clinical and industrial applications. The main driver behind this is the development of new approaches that enable XPCI, traditionally a synchrotron method, to be performed with conventional laboratory sources, thus opening the way to its deployment in clinics and industrial settings. The satellite meeting at Chicheley Hall, led by Robinson, focused on the new scientific developments that have recently emerged at specialized facilities such as third-generation synchrotrons and free-electron lasers, which enable the direct measurement of the phase shift induced by a sample from intensity measurements, typically in the far field. The two events were therefore highly complementary, in terms of covering both the more applied/translational and the blue-sky aspects of the use of phase in X-ray research. 

  12. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  13. First attempt of at-cavity cryogenic X-ray detection in a CEBAF cryomodule for field emission monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Rongli; Daly, Edward; Drury, Michael

    2015-09-01

    We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carriedmore » out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.« less

  14. Long-term studies with the Ariel 5 ASM. I - Hercules X-1, Vela X-1, and Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. A.

    1979-01-01

    Twelve hundred days of 3-6 keV X-ray data from Her X-1, Vela X-1, and Cen X-3 accumulated with the Ariel 5 All-Sky Monitor are interrogated. The binary periodicities of all three can be clearly observed, as can the 35 day variation of Her X-1, for which we can refine the period to 34.875 plus or minus 0.030 days. No such longer-term periodicity less than 200 days is observed from Vela X-1. The 26.6 days low-state recurrence period for Cen X-3 is not observed, but a 43.0 day candidate periodicity is found which may be consistent with the precession of an accretion disk in that system. The present results are illustrative of the long-term studies which can be performed on approximately 50 sources over a temporal base which will ultimately extend to at least 1800 days.

  15. Eleven years of monitoring the Seyfert 1 Mrk 335 with Swift: Characterizing the X-ray and UV/optical variability

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Blue, D. M.; Grupe, D.; Komossa, S.; Wilkins, D. R.

    2018-05-01

    The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10 - 100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (˜1800 Å in the source frame) structure function appears to have two breaks and two different slopes between 10 - 160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.

  16. In-Line Monitoring of Fab Processing Using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gittleman, Bruce; Kozaczek, Kris

    2005-09-01

    As the materials shift that started with Cu continues to advance in the semiconductor industry, new issues related to materials microstructure have arisen. While x-ray diffraction (XRD) has long been used in development applications, in this paper we show that results generated in real time by a unique, high throughput, fully automated XRD metrology tool can be used to develop metrics for qualification and monitoring of critical processes in current and future manufacturing. It will be shown that these metrics provide a unique set of data that correlate to manufacturing issues. For example, ionized-sputtering is the current deposition method of choice for both the Cu seed and TaNx/Ta barrier layers. The alpha phase of Ta is widely used in production for the upper layer of the barrier stack, but complete elimination of the beta phase requires a TaNx layer with sufficient N content, but not so much as to start poisoning the target and generating particle issues. This is a well documented issue, but traditional monitoring by sheet resistance methods cannot guarantee the absence of the beta phase, whereas XRD can determine the presence of even small amounts of beta. Nickel silicide for gate metallization is another example where monitoring of phase is critical. As well being able to qualify an anneal process that gives only the desired NiSi phase everywhere across the wafer, XRD can be used to determine if full silicidation of the Ni has occurred and characterize the crystallographic microstructure of the Ni to determine any effect of that microstructure on the anneal process. The post-anneal nickel silicide phase and uniformity of the silicide microstructure can all be monitored in production. Other examples of the application of XRD to process qualification and production monitoring are derived from the dependence of certain processes, some types of defect generation, and device performance on crystallographic texture. The data presented will show that CMP dishing

  17. Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer

    2016-08-01

    Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.

  18. Digital 3D Microstructure Analysis of Concrete using X-Ray Micro Computed Tomography SkyScan 1173: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.

    2017-11-01

    Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.

  19. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  20. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  1. Distant Cluster Hunting. II; A Comparison of X-Ray and Optical Cluster Detection Techniques and Catalogs from the ROSAT Optical X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.

    2002-01-01

    We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster

  2. The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.

    1992-01-01

    Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.

  3. Wavelet-based techniques for the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  4. Uncovering extreme AGN variability in serendipitous X-ray source surveys

    NASA Astrophysics Data System (ADS)

    Moran, Edward C.; Garcia Soto, Aylin; LaMassa, Stephanie; Urry, Meg

    2018-01-01

    Constraints on the duty cycle and duration of accretion episodes in active galactic nuclei (AGNs) are vital for establishing how most AGNs are fueled, which is essential for a complete picture of black hole/galaxy co-evolution. Perhaps the best handle we have on these activity parameters is provided by AGNs that have displayed dramatic changes in their bolometric luminosities and, in some cases, spectroscopic classifications. Given that X-ray emission is directly linked to black-hole accretion, X-ray surveys should provide a straightforward means of identifying AGNs that have undergone dramatic changes in their accretion states. However, it appears that such events are very rare, so wide-area surveys separated in time by many years are needed to maximize discovery rates. We have cross-correlated the Einstein IPC Two-Sigma Catalog with the ROSAT All-Sky Survey Faint Source Catalog to identify a sample of soft X-ray sources that varied by factors ranging from 7 to more than 100 over a ten year timescale. When possible, we have constructed long-term X-ray light curves for the sources by combining the Einstein and RASS fluxes with those obtained from serendipitous pointed observations by ROSAT, Chandra,XMM, and Swift. Optical follow-up observations indicate that many of the extremely variable sources in our sample are indeed radio-quiet AGNs. Interestingly, the majority of objects that dimmed between ~1980 and ~1990 are still (or are again) broad-line AGNs rather than“changing-look” candidates that have more subtle AGN signatures in their spectra — despite the fact that none of the sources examined thus far has returned to its highest observed luminosity. Future X-ray observations will provide the opportunity to characterize the X-ray behavior of these anonymous, extreme AGNs over a four decade span.

  5. New X-ray outburst of accreting millisecond pulsar SWIFT J1756.9-2508 detected by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Mereminskiy, I. A.; Grebenev, S. A.; Krivonos, R. A.; Sunyaev, R. A.

    2018-04-01

    During recent observations (1-2 Apr 2018, PI: E.Bozzo) of the weak X-ray burster IGR J17379-3747 (#11447,#11487, Chelovekov et al. 2006, AstL, 32, 456) and regular observations of Galactic center region (2-3 Apr 2018, PI: R.A. Sunyaev) we detected a new X-ray transient in 20-60 keV sky maps obtained by IBIS/ISGRI.

  6. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  7. Did LMC X-3 Undergo a 'Her X-1-like' Anomalous Low State?

    NASA Technical Reports Server (NTRS)

    Boyd, Patricia t.

    2008-01-01

    The black hole X-ray binary LMC X-3 has been monitored by the Rossi X-ray Timing Explorer (RXTE) from its launch to the present by the All-Sky Monitor (ASM). This well-sampled light curve is supplemented by frequent pointed observations with the PCA and HEXTE instruments which provide improved sensitivity, time resolution and spectral information. The long-term X-ray luminosity of the system is strongly modulated on timescales of hundreds of days. The mean 2-10 kev X-ray flux varies by a factor of more than 100 during this long-term cycle. This variability has been attributed to the precession of a bright, tilted, and warped accretion disk---the mechanism also invoked to explain the 35-day super-orbital period in the X-ray binary pulsar system Her X-1. The ASM light curve displays a unique episode, starting in December 2003, during which LMC X-3 displayed a very low, nearly constant flux, for about 80 days. This is markedly different from the typical low-flux excursions in LMC X-3, which smoothly evolve toward and then away from a minimum flux on about a 10-day time scale. The character of the long-term variability, as measured by amplitude and characteristic time scale, is not the same after this long low state as it was before. Similar shifts in long-term period and amplitude are seen after the so-called "anomalous low states" in Her X-1, when the 35-day X-ray modulation ceases for an unpredictable length of time. These similar shifts in the long-term amplitude and timescale in the two systems suggests they share a similar mechanism which gives rise to the anomalous low states

  8. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  9. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.

    PubMed

    Gessner, Oliver; Gühr, Markus

    2016-01-19

    The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and

  10. EX56a study of extended X-ray emission around isolated galaxies EX56b identification and spectra of bright X-ray sources at high galactic latitude

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel A.

    1987-01-01

    The EXOSAT observations confirmed the identification and extended nature of PKS 2345-35. It gave a good 2 to 10 keV X-ray spectrum and a detailed spatial profile indicating asymmetry of the structure. In the high galactic latitidue investigation, the BL Lac object identified with the HEAO-1 source 1430+423 was detected, and the first X-ray spectrum was obtained. Several simulataneous observations of H0323+022 were obtained over a broad range of electromagnetic spectrum. Studies of luminous active galactic nuclei have given significant information on the spectrum of the quasar PKS 0558-504. In a study of Southern sky cataclysmic variables, the EXOSAT was used to determine the X-ray spectrum and search for periodicities in two objects. Studies of complete identifications have revealed that X-ray sources in two high galactic latitude fields are stars, and therefore are to be excluded from the Piccinotti extragalactic sample. Only one Piccinotti source remains to be identified.

  11. Explanatory Supplement to the WISE All-Sky Release Products

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) surveyed the entire sky at 3.4, 4.6, 12 and 22 microns in 2010, achieving 5-sigma point source sensitivities per band better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic. The WISE All-Sky Data Release, conducted on March 14, 2012, incorporates all data taken during the full cryogenic mission phase, 7 January 2010 to 6 August 20l0,that were processed with improved calibrations and reduction algorithms. Release data products include: (1) an Atlas of 18,240 match-filtered, calibrated and coadded image sets; (2) a Source Catalog containing positions and four-band photometry for over 563 million objects, and (3) an Explanatory Supplement. Ancillary products include a Reject Table that contains 284 million detections that were not selected for the Source Catalog because they are low signal-to-noise ratio or spurious detections of image artifacts, an archive of over 1.5 million sets of calibrated WISE Single-exposure images, and a database of 9.4 billion source extractions from those single images, and moving object tracklets identified by the NEOWISE program (Mainzer et aI. 2011). The WISE All-Sky Data Release products supersede those from the WISE Preliminary Data Release (Cutri et al. 2011). The Explanatory Supplement to the WISE All-Sky Data Release Products is a general guide for users of the WISE data. The Supplement contains an overview of the WISE mission, facilities, and operations, a detailed description of WISE data processing algorithms, a guide to the content and formals of the image and tabular data products, and cautionary notes that describe known limitations of the All-Sky Release products. Instructions for accessing the WISE data products via the services of the NASA/IPAC Infrared Science Archive are provided. The Supplement also provides analyses of the achieved sky coverage, photometric and astrometric characteristics and completeness and reliability of the All-Sky

  12. EXTREME ULTRAVIOLET EXPLORER OBSERVATIONS OF HERCULES X-1 OVER A 35 DAY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leahy, D. A.; Dupuis, Jean, E-mail: leahy@ucalgary.c

    2010-06-01

    Observations of Hercules X-1 by the Extreme Ultraviolet Explorer covering most of the 35 day cycle are reported here. This is the only long extreme ultraviolet (EUV) observation of Her X-1. Simultaneous X-ray observations with the Rossi X-ray Timing Explorer All-Sky Monitor (RXTE/ASM) X-ray show that Her X-1 is in an X-ray anomalous low state. The first 4 days are also observed with the RXTE proportional counter array (PCA), which shows that the X-ray properties are nearly the same as for normal low states in Her X-1 with flux reduced by a factor of 2. In contrast, the EUV emissionmore » from Her X-1 is reduced by a factor of {approx}4 compared to normal low states. The twisted-tilted accretion disk responsible for the normal 35 day X-ray cycle can be modified to explain this behavior. An increased disk twist reduces the X-ray illumination of HZ Her by a factor of {approx}2 and of the disk surface by a somewhat larger factor, leading to a larger reduction in EUV flux compared to X-ray flux.« less

  13. Soft X-ray study of solar wind charge exchange from the Earth's magnetosphere : Suzaku observations and a future X-ray imaging mission concept

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Ishikawa, K.; Miyoshi, Y.; Fujimoto, R.; Terada, N.; Kasahara, S.; Fujimoto, M.; Mitsuda, K.; Nishijo, K.; Noda, A.

    2013-12-01

    Soft X-ray observations of solar wind charge exchange (SWCX) emission from the Earth's magnetosphere using the Japanese X-ray astronomy satellite Suzaku are shown, together with our X-ray imaging mission concept to characterize the solar wind interaction with the magnetosphere. In recent years, the SWCX emission from the Earth's magnetosphere, originally discovered as unexplained noise during the soft X-ray all sky survey (Snowden et al. 1994), is receiving increased attention on studying geospace. The SWCX is a reaction between neutrals in exosphere and highly charged ions in the magnetosphere originated from solar wind. Robertson et al. (2005) modeled the SWCX emission as seen from an observation point 50 Re from Earth. In the resulting X-ray intensities, the magnetopause, bow shock and cusp were clearly visible. High sensitivity soft X-ray observation with CCDs onboard recent X-ray astronomy satellites enables us to resolve SWCX emission lines and investigate time correlation with solar wind as observed with ACE and WIND more accurately. Suzaku is the 5th Japanese X-ray astronomy satellite launched in 2005. The line of sight direction through cusp is observable, while constraints on Earth limb avoidance angle of other satellites often limits observable regions. Suzaku firstly detected the SWCX emission while pointing in the direction of the north ecliptic pole (Fujimoto et al. 2007). Using the Tsyganenko 1996 magnetic field model, the distance to the nearest SWCX region was estimated as 2-8 Re, implying that the line of sight direction can be through magnetospheric cusp. Ezoe et al. (2010) reported SWCX events toward the sub-solar side of the magnetosheath. These cusp and sub-solar side magnetosheath regions are predicted to show high SWCX fluxes by Robertson et al. (2005). On the other hand, Ishikawa et al. (2013) discovered a similarly strong SWCX event when the line of sight direction did not transverse these two regions. Motivated by these detections

  14. Long-term studies with the Ariel-5 asm. 1: Her X-1, Vela X-1 and Cen X-3. [periodic variations

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. J.

    1978-01-01

    Twelve hundred days of 3-6 keV X-ray data from Her X-1, Vela X-1 and Cen X-3 accumulated with the Ariel-5 all-sky monitor are interrogated. The binary periodicities of all three can be clearly observed, as can the approximately 35-d variation of Her X-1, for which we can refine the period to 34.875 plus or minus .030-d. No such longer-term periodicity less than 200-d is observed from Vela X-1. The 26.6-d low-state recurrence period for Cen X-3 previously suggested is not observed, but a 43.0-d candidate periodicity is found which may be consistent with the precession of an accretion disk in that system. The present results are illustrative of the long-term studies which can be performed on approximately 50 sources over a temporal base which will ultimately extend to at least 1800 days.

  15. All-sky homogeneity of precipitable water vapour over Paranal

    NASA Astrophysics Data System (ADS)

    Querel, Richard R.; Kerber, Florian

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 μm) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.32 mm (peak to valley) or 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 10-15% (peak to valley) and 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared that can only be conducted during periods of very good atmospheric transmission and hence low PWV. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be

  16. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  17. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramkrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  18. In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramakrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  19. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    PubMed Central

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-01-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420

  20. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    NASA Astrophysics Data System (ADS)

    Kataoka, R.; Miyoshi, Y.; Shigematsu, K.; Hampton, D.; Mori, Y.; Kubo, T.; Yamashita, A.; Tanaka, M.; Takahei, T.; Nakai, T.; Miyahara, H.; Shiokawa, K.

    2013-09-01

    A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR) cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge) to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  1. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here first results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8 m Perkins telescope at Lowell Observatory. The first long-term well-sampled IR light curve of GRS 1915+105 is presented herein and is consistent with the interpretation of this source as a long-period binary. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  2. The Status of the NASA All Sky Fireball Network

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Moser, Danielle E.

    2011-01-01

    Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.

  3. Connecting optical and X-ray tracers of galaxy cluster relaxation

    NASA Astrophysics Data System (ADS)

    Roberts, Ian D.; Parker, Laura C.; Hlavacek-Larrondo, Julie

    2018-04-01

    Substantial effort has been devoted in determining the ideal proxy for quantifying the morphology of the hot intracluster medium in clusters of galaxies. These proxies, based on X-ray emission, typically require expensive, high-quality X-ray observations making them difficult to apply to large surveys of groups and clusters. Here, we compare optical relaxation proxies with X-ray asymmetries and centroid shifts for a sample of Sloan Digital Sky Survey clusters with high-quality, archival X-ray data from Chandra and XMM-Newton. The three optical relaxation measures considered are the shape of the member-galaxy projected velocity distribution - measured by the Anderson-Darling (AD) statistic, the stellar mass gap between the most-massive and second-most-massive cluster galaxy, and the offset between the most-massive galaxy (MMG) position and the luminosity-weighted cluster centre. The AD statistic and stellar mass gap correlate significantly with X-ray relaxation proxies, with the AD statistic being the stronger correlator. Conversely, we find no evidence for a correlation between X-ray asymmetry or centroid shift and the MMG offset. High-mass clusters (Mhalo > 1014.5 M⊙) in this sample have X-ray asymmetries, centroid shifts, and Anderson-Darling statistics which are systematically larger than for low-mass systems. Finally, considering the dichotomy of Gaussian and non-Gaussian clusters (measured by the AD test), we show that the probability of being a non-Gaussian cluster correlates significantly with X-ray asymmetry but only shows a marginal correlation with centroid shift. These results confirm the shape of the radial velocity distribution as a useful proxy for cluster relaxation, which can then be applied to large redshift surveys lacking extensive X-ray coverage.

  4. X-ray emission from an Ap star /Phi Herculis/ and a late B star /Pi Ceti/

    NASA Technical Reports Server (NTRS)

    Cash, W.; Snow, T. P., Jr.; Charles, P.

    1979-01-01

    Using the HEAO 1 soft X-ray sky survey, a search was conducted for X-ray emission from 18 stars in the spectral range B5-A7. The detection of 0.25 keV X-ray sources consistent with the positions of Pi Ceti, a normal B7 V star, and Phi Herculis, a classic Ap star was reported. The detection of these stars argues for large mass motions in the upper layers of stars in this spectral range, and argues against radiative diffusion as the source of abundance anomalies in Ap stars.

  5. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectricmore » actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.« less

  6. Chandra X-Ray Observatory Image of Crab Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  7. X-Ray Emission from "Uranium" Stars

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric; Mushotzky, Richard (Technical Monitor)

    2005-01-01

    The project aims to secure XMM observations of two targets with extremely low abundances of the majority of heavy elements (e.g., log[Fe/H] $\\sim$-4), but that show absorption lines of uranium. The presence of an r-process element such as uranium requires a binary star system in which the companion underwent a supernova explosion. A binary star system raises the distinct possibility of the existence of a compact object, most likely a neutron star, in the binary, assuming it survived the supernova blast. The presence of a compact object then suggests X-ray emission if sufficient matter accretes to the compact object. The observations were completed less than one year ago following a series of reobservations to correct for significant flaring that occurred during the original observations. The ROSAT all-sky survey was used to report on the initial assessment of X-ray emission from these objects; only upper limits were reported. These upper limits were used to justify the XMM observing time, but with the expectation that upper limits would merely be pushed lower. The data analysis hinges critically on the quality and degree of precision with which the background is handled. During the past year, I have spent some time learning the ins and outs of XMM data analysis. In the coming year, I can apply that learning to the analysis of the 'uranium' stars.

  8. SETI at X-energies - parasitic searches from astrophysical observations.

    NASA Astrophysics Data System (ADS)

    Corbet, R. H. D.

    1997-01-01

    If a sufficiently advanced civilization can either modulate the emission from an X-ray binary, or make use of the natural high luminosity to power an artificial transmitter, these can serve as good beacons for interstellar communication without involving excessive energy costs to the broadcasting civilization. In addition, the small number of X-ray binaries in the Galaxy considerably reduces the number of targets that must be investigated compared to searches in other energy bands. Low mass X-ray binaries containing neutron stars in particular are considered as prime potential natural and artificial beacons and high time resolution (better than 1ms) observations are encouraged. All sky monitors provide the capability of detecting brief powerful artificial signals from isolated neutron stars. New capabilities of X-ray astronomy satellites developed for astrophysical purposes are enabling SETI in new parameter regimes. For example, the X-ray Timing Explorer satellite provides the capability of exploring the sub-millisecond region. Other planned X-ray astronomy satellites should provide significantly improved spectral resolution. While SETI at X-ray energies is highly speculative (and rather unfashionable) by using a parasitic approach little additional cost is involved. The inclusion of X-ray binaries in target lists for SETI at radio and other wavebands is also advocated.

  9. ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraljic, David; Rummel, Markus; Conlon, Joseph P., E-mail: David.Kraljic@physics.ox.ac.uk, E-mail: Markus.Rummel@physics.ox.ac.uk, E-mail: j.conlon1@physics.ox.ac.uk

    2015-01-01

    It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (ALPs) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from ALP to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by ALP tomore » photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed ALP-photon couplings are derived.« less

  10. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  11. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  12. The Transient High Energy Sky and Early Universe Surveyor (THESEUS)

    NASA Astrophysics Data System (ADS)

    Amati, Lorenzo; O'Brien, Paul T.; Götz, Diego

    2016-07-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept under development by a large international collaboration aimed at exploiting gamma-ray bursts for investigating the early Universe. The main scientific objectives of THESEUS include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 9-10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.6m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to unveil and study the population of soft and sub-energetic GRBs, and, more in general, to perform monitoring and survey of the X-ray sky with unprecedented sensitivity.

  13. Estimating photometric redshifts for X-ray sources in the X-ATLAS field using machine-learning techniques

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Corral, A.; Masoura, V. A.; Georgantopoulos, I.; Ruiz, A.; Georgakakis, A.; Carrera, F. J.; Fotopoulou, S.

    2017-12-01

    We present photometric redshifts for 1031 X-ray sources in the X-ATLAS field using the machine-learning technique TPZ. X-ATLAS covers 7.1 deg2 observed with XMM-Newton within the Science Demonstration Phase of the H-ATLAS field, making it one of the largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. All of the sources have available SDSS photometry, while 810 additionally have mid-IR and/or near-IR photometry. A spectroscopic sample of 5157 sources primarily in the XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, was used to train the algorithm. Our analysis reveals that the algorithm performs best when the sources are split, based on their optical morphology, into point-like and extended sources. Optical photometry alone is not enough to estimate accurate photometric redshifts, but the results greatly improve when at least mid-IR photometry is added in the training process. In particular, our measurements show that the estimated photometric redshifts for the X-ray sources of the training sample have a normalized absolute median deviation, nmad ≈ 0.06, and a percentage of outliers, η = 10-14%, depending upon whether the sources are extended or point like. Our final catalogue contains photometric redshifts for 933 out of the 1031 X-ray sources with a median redshift of 0.9. The table of the photometric redshifts is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A39

  14. Time-domain Astronomy with the Advanced X-ray Imaging Satellite

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard

    2018-01-01

    The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.

  15. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  16. Swift/BAT and RXTE Observations of the Peculiar X-ray Binary 4U 2206+54 - Disappearance of the 9.6 Day Modulation

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; Markwardt, C.; Tueller, J.

    2007-01-01

    Observations of the high-mass X-ray binary 4U 2206+54 with the Swift Burst Alert Telescope (BAT) do not show modulation at the previously reported period of 9.6 days found from observations made with the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Instead, the strongest peak in the power spectrum of the BAT light curve occurs at a period of 19.25+/-0.08 days, twice the period found with the RXTE ASM. The maximum of the folded BAT light curve is also delayed compared to the maximum of the folded ASM light curve. The most recent ASM data folded on twice the 9.6 day period show 'similar morphology to the folded BAT light curve. This suggests that the apparent period doubling is a recent secular change rather than an energy-dependent effect. The 9.6 day period is thus not a permanent strong feature of the light curve. We suggest that the orbital period of 4U 2206+54 may be twice the previously proposed value.

  17. Half-value-layer increase owing to tungsten buildup in the x-ray tube: fact or fiction.

    PubMed

    Stears, J G; Felmlee, J P; Gray, J E

    1986-09-01

    The half-value layer (HVL) of an x-ray beam is generally believed to increase with x-ray tube use. This increase in HVL has previously been attributed to the hardening of the x-ray beam as a result of a buildup of tungsten on the x-ray tube glass window. Radiographs and HVL measurements were obtained to determine the effect of tungsten deposited on the x-ray tube windows. This work, along with the HVL data from approximately 200 functioning x-ray tubes used for all applications that were monitored for more than 8 years, indicated there is no significant increase in HVL with diagnostic x-ray tube use.

  18. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Youhong, E-mail: youhong.zhang@mail.tsinghua.edu.cn

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binariesmore » (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 {+-} 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.« less

  19. A US Coordination Facility for the Spectrum-X-Gamma Observatory

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1999-01-01

    Spectrum-X Gamma (SXG) is a world-class, orbiting astronomical observatory, with capabilities for all-sky monitoring, polarimetry, and high resolution spectroscopy, and wavelength coverage extending from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray (SPIN) regimes. SXG is a multi-national mission developed under the sponsorship of the Russian Academy of Sciences, with participation from several European countries and the U.S. The U.S. involvement in SXG includes both instrumentation and data rights. The U.S. Spectrum X Gamma Coordination Facility (SXGCF) supports U.S. observers in proposing for SXG SODART observations, analyzing SXG data, and conducting archival research. The SXGCF also has the responsibility for organizing the U.S. archive of SXG data, which will eventually include approximately half of the data from most SXG instruments. This report summarizes the activities of the SXGCF scientific and technical staff during the period from Feb. 1 through July 31, 1999.

  20. ATLAS: A High-cadence All-sky Survey System

    NASA Astrophysics Data System (ADS)

    Tonry, J. L.; Denneau, L.; Heinze, A. N.; Stalder, B.; Smith, K. W.; Smartt, S. J.; Stubbs, C. W.; Weiland, H. J.; Rest, A.

    2018-06-01

    Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the “Asteroid Terrestrial-impact Last Alert System” (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m < 19) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalog of 5 × 106 sources. This is the first of a series of articles describing ATLAS, devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient light curves.

  1. Finite element analyses of thin film active grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.

  2. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Snowden, S. L.

    1990-01-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law.

  3. X-ray superbubbles

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    Four regions of the galaxy, the Cygnus Superbubble, the Eta Carina complex, the Orion/Eridanus complex, and the Gum Nebula, are discussed as examples of collective effects in the interstellar medium. All four regions share certain features, indicating a common structure. The selection effects which determine the observable X-ray properties of the superbubbles are discussed, and it is demonstrated that only a very few more in our Galaxy can be detected in X rays. X-ray observation of extragalactic superbubbles is shown to be possible but requires the capabilities of a large, high quality, AXAF class observatory.

  4. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    set of two major x-ray astronomy missions based on the concepts I developed and demonstrated under this SR&T grant. The first Maxim is to image the sky at 100 micro-arcsecond resolution. That is one thousand times higher resolution than Hubble. The full Maxim has the ultimate goal of imaging the event horizon of a black hole in an active galactic nucleus (ALAN). This will require 0.1 micro-arcsecond resolution - one million times higher than Hubble! Nonetheless, using the techniques developed under this grant, it has become possible. Maxim Pathfinder is now in the NASA planning for a new start in approximately 20 10. The full Maxim is carried as a vision mission for the post 2015 timeframe. Finally, this grant is the evolved version of the SR&T grant we carried during the 1980s and up to 1994. At that point in time this grant was also working on x-ray optics, but concentrating on x-ray spectroscopy. The techniques developed by 1990 were not chosen for use on Chandra or XMM-Newton because they were too new. During the last year, however, the Constellation-X mission recognized the need for better spectroscopy techniques and tapped our expertise. We were able to support the initial work on Con-X through this program. It now appears that the off-plane mount will be used in Con-X, increasing performance and decreasing cost and risk.

  5. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  6. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  7. Swift-BAT: Transient Source Monitoring

    NASA Astrophysics Data System (ADS)

    Barbier, L. M.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Markwardt, C.; Mushotzky, R.; Parsons, A.; Sakamoto, T.; Tueller, J.; Fenimore, E.; Palmer, D.; Skinner, G.; Swift-BAT Team

    2005-12-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets of time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing ( ˜20 minutes) to the full mission duration for the hard X-ray survey program. In the transient monitor program, sky images are processed to detect astrophysical sources in six energy bands covering 15-350 keV. The detected flux or upper limit in each energy band is calculated for >300 objects on time scales up to one day. In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is ˜1500 - 3000 seconds, with a 1-sigma sensitivity of ˜4mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. The BAT team will soon make the results of the transient monitor public to the astrophysical community through the Swift mission web page. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  8. X-Ray Nanoscopy of a Bulk Heterojunction

    NASA Astrophysics Data System (ADS)

    Patil, Nilesh; Torbjørn, Eirik; Skjønsfjell, Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner

    2016-07-01

    Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.

  9. X-Ray Nanoscopy of a Bulk Heterojunction.

    PubMed

    Patil, Nilesh; Skjønsfjell, Eirik Torbjørn Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner

    2016-01-01

    Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.

  10. Starburst Galaxies: Hard X-ray spectra and contribution to the diffuse background

    NASA Technical Reports Server (NTRS)

    Gruber, Duane E.

    1993-01-01

    During the period of this grant two main tasks were performed: a determination of a selection criterion for starburst galaxies most likely to emit X-rays, and performance of a pilot study of the X-ray emission from nine such systems. Starburst galaxies may be expected to emit flat-spectrum X-ray at energies above 10 keV resulting from the various remnants of the short-lived massive stars which characterize the starburst. The investigation to determine the optimum sample resulted in a change from an X-ray selected (HEAO-2) sample to infrared selection based on the IRAS catalogue. A much broader sample thereby available for study, and selection could be limited to only the nearest objects and still obtain a reasonably large sample. A sample of 99 of the brightest infrared starburst galaxies was settled on for the X-ray survey. For a set of practical size, this was then reduced to a subset of 53, based on luminosity and nearness. X-ray emission from these objects was individually measured from the UCSD HEAO-1 all-sky survey in four energy bands between 13 keV to 160 keV. This data base consists of about 20 optical disk volumes. Net significance for the result was roughly two sigma, and a very hard spectral shape is indicated for the net spectrum of the surveyed galaxies. With the possibility of detection of the class, it was then felt worthwhile to examine fluxes from these sources in other archival data. This was performed with the HEAO-1 A2 data and the HEAO-2 (EINSTEIN) main archive and slew survey. Positive results were also obtained for the sample, but again at weak significance. With three independent measures of weak X-ray fluxes from nearby starburst galaxies, we wrote a letter to the Astrophysical Journal (enclosed) discussing these results and their likely significance, in particular, for the contribution to the cosmic diffuse x-ray background, perhaps as much as 25 percent.

  11. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.

    2014-06-01

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.

  12. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.

    2014-06-10

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuummore » blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less

  13. Innovative space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.; Ticha, H.; Brozek, V.

    2017-11-01

    We report on the progress in innovative X-ray mirror development with focus on requirements of future X-ray astronomy space projects. Various future projects in X-ray astronomy and astrophysics will require large lightweight but highly accurate segments with multiple thin shells or foils. The large Wolter 1 grazing incidence multiple mirror arrays, the Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (shaped, bent or flat foils) with high X-ray reflectivity and excellent mechanical stability.

  14. Ultra-long Duration Balloon Mission Concept Study: EXIST-LITE Hard X-ray Imaging Survey

    NASA Technical Reports Server (NTRS)

    2003-01-01

    We carried out a mission concept Study for an ultra-long duration balloon (ULDB) mission to conduct a high-sensitivity hard x-ray (approx. 20-600 keV) imaging sky survey. The EXIST-LITE concept has been developed, and critical detector technologies for realistic fabrication of very large area Cd-Zn-Te imaging detector arrays are now much better understood. A ULDB mission such as EXIST-LITE is now even more attractive as a testbed for the full Energetic X-ray Imaging Survey Telescope (EXIST) mission, recommended by the Decadal Survey, and now included in the NASA Roadmap and Strategic Plan as one of the 'Einstein Probes'. In this (overdue!) Final Report we provide a brief update for the science opportunities possible with a ULDB mission such as EXIST-LITE and relate these to upcoming missions (INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift) as well as the ultimate very high sensitivity sky survey mission EXIST. We then review the progress made over this investigation in Detector/Telescope design concept, Gondola and Mission design concept, and Data Handling/Analysis.

  15. Extensive Broadband X-Ray Monitoring During the Formation of a Giant Radio Jet Base in Cyg X-3 with AstroSat

    NASA Astrophysics Data System (ADS)

    Pahari, Mayukh; Yadav, J. S.; Verdhan Chauhan, Jai; Rawat, Divya; Misra, Ranjeev; Agrawal, P. C.; Chandra, Sunil; Bagri, Kalyani; Jain, Pankaj; Manchanda, R. K.; Chitnis, Varsha; Bhattacharyya, Sudip

    2018-01-01

    We present X-ray spectral and timing behavior of Cyg X-3 as observed by AstroSat during the onset of a giant radio flare on 2017 April 1–2. Within a timescale of a few hours, the source shows a transition from the hypersoft state (HPS) to a more luminous state (we termed as the very high state), which coincides with the time of the steep rise in radio flux density by an order of magnitude. Modeling the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) spectra jointly in 0.5–70.0 keV, we found that the first few hours of the observation is dominated by the HPS with no significant counts above 17 keV. Later, an additional flat power-law component suddenly appeared in the spectra that extends to very high energies with the power-law photon index of {1.49}-0.03+0.04. Such a flat power-law component has never been reported from Cyg X-3. Interestingly the fitted power-law model in 25–70 keV, when extrapolated to the radio frequency, predicts the radio flux density to be consistent with the trend measured from the RATAN-600 telescope at 11.2 GHz. This provides direct evidence of the synchrotron origin of flat X-ray power-law component and the most extensive monitoring of the broadband X-ray behavior at the moment of decoupling the giant radio jet base from the compact object in Cyg X-3. Using SXT and LAXPC observations, we determine the giant flare ejection time as MJD 57845.34 ± 0.08 when 11.2 GHz radio flux density increases from ∼100 to ∼478 mJy.

  16. Real-Time Processing System for the JET Hard X-Ray and Gamma-Ray Profile Monitor Enhancement

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana M.; Pereira, Rita C.; Neto, André; Valcárcel, Daniel F.; Alves, Diogo; Sousa, Jorge; Carvalho, Bernardo B.; Kiptily, Vasily; Syme, Brian; Blanchard, Patrick; Murari, Andrea; Correia, Carlos M. B. A.; Varandas, Carlos A. F.; Gonçalves, Bruno

    2014-06-01

    The Joint European Torus (JET) is currently undertaking an enhancement program which includes tests of relevant diagnostics with real-time processing capabilities for the International Thermonuclear Experimental Reactor (ITER). Accordingly, a new real-time processing system was developed and installed at JET for the gamma-ray and hard X-ray profile monitor diagnostic. The new system is connected to 19 CsI(Tl) photodiodes in order to obtain the line-integrated profiles of the gamma-ray and hard X-ray emissions. Moreover, it was designed to overcome the former data acquisition (DAQ) limitations while exploiting the required real-time features. The new DAQ hardware, based on the Advanced Telecommunication Computer Architecture (ATCA) standard, includes reconfigurable digitizer modules with embedded field-programmable gate array (FPGA) devices capable of acquiring and simultaneously processing data in real-time from the 19 detectors. A suitable algorithm was developed and implemented in the FPGAs, which are able to deliver the corresponding energy of the acquired pulses. The processed data is sent periodically, during the discharge, through the JET real-time network and stored in the JET scientific databases at the end of the pulse. The interface between the ATCA digitizers, the JET control and data acquisition system (CODAS), and the JET real-time network is provided by the Multithreaded Application Real-Time executor (MARTe). The work developed allowed attaining two of the major milestones required by next fusion devices: the ability to process and simultaneously supply high volume data rates in real-time.

  17. The MIRAX x-ray astronomy transient mission

    NASA Astrophysics Data System (ADS)

    Braga, João; Mejía, Jorge

    2006-06-01

    The Monitor e Imageador de Raios-X (MIRAX) is a small (~250 kg) X-ray astronomy satellite mission designed to monitor the central Galactic plane for transient phenomena. With a field-of-view of ~1000 square degrees and an angular resolution of ~6 arcmin, MIRAX will provide an unprecedented discovery-space coverage to study X-ray variability in detail, from fast X-ray novae to long-term (~several months) variable phenomena. Chiefly among MIRAX science objectives is its capability of providing simultaneous complete temporal coverage of the evolution of a large number of accreting black holes, including a detailed characterization of the spectral state transitions in these systems. MIRAX's instruments will include a soft X-ray (2-18 keV) and two hard X-ray (10-200 keV) coded-aperture imagers, with sensitivities of ~5 and ~2.6 mCrab/day, respectively. The hard X-ray imagers will be built at the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil, in close collaboration with the Center for Astrophysics & Space Sciences (CASS) of the University of California, San Diego (UCSD) and the Institut fur Astronomie und Astrophysik of the University of Tubingen (IAAT) in Germany; UCSD will provide the crossed-strip position-sensitive (0.5- mm spatial resolution) CdZnTe (CZT) hard X-ray detectors. The soft X-ray camera, provided by the Space Research Organization Netherlands (SRON), will be the spare flight unit of the Wide Field Cameras that flew on the Italian-Dutch satellite BeppoSAX. MIRAX is an approved mission of the Brazilian Space Agency (Agnecia Espacial Brasileira - AEB) and is scheduled to be launched in 2011 in a low-altitude (~550 km) circular equatorial orbit. In this paper we present recent developments in the mission planning and design, as well as Monte Carlo simulations performed on the GEANT-based package MGGPOD environment (Weidenspointner et al. 2004) and new algorithms for image digital processing. Simulated images of the central Galactic plane as it

  18. Laser power meters as an X-ray power diagnostic for LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less

  19. Laser power meters as an X-ray power diagnostic for LCLS-II.

    PubMed

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.

  20. Laser power meters as an X-ray power diagnostic for LCLS-II

    DOE PAGES

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less

  1. Bragg x-ray survey spectrometer for ITER.

    PubMed

    Varshney, S K; Barnsley, R; O'Mullane, M G; Jakhar, S

    2012-10-01

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  2. The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog of Low-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson, C. A.; Fishman, G. J.; Connaughton, V.; Henze, W.; Paciesas, W. S.; Finger, M. H.; McCollough, M. L.; Sahi, M.; Peterson, B.

    2004-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the low-energy gamma-ray sky (approx. 20-1000 keV) between 1991 April and 2000 May (9.1 yr). BATSE monitored the high-energy sky using the Earth occultation technique (EOT) for point sources whose emission extended for times on the order of the CGRO orbital period (approx. 92 min) or greater. Using the EOT to extract flux information, a catalog of sources using data from the BATSE Large Area Detectors has been prepared. The first part of the catalog consists of results from the all-sky monitoring of 58 sources, mostly Galactic, with intrinsic variability on timescales of hours to years. For these sources, we have included tables of flux and spectral data, and outburst times for transients. Light curves (or flux histories) have been placed on the World Wide Web. We then performed a deep sampling of these 58 objects, plus a selection of 121 more objects, combining data from the entire 9.1 yr BATSE data set. Source types considered were primarily accreting binaries, but a small number of representative active galaxies, X-ray-emitting stars, and supernova remnants were also included. The sample represents a compilation of sources monitored and/or discovered with BATSE and other high-energy instruments between 1991 and 2000, known sources taken from the HEAO 1 A-4 and Macomb & Gehrels catalogs. The deep sample results include definite detections of 83 objects and possible detections of 36 additional objects. The definite detections spanned three classes of sources: accreting black hole and neutron star binaries, active galaxies, and Supernova remnants. The average fluxes measured for the fourth class, the X-ray emitting stars, were below the confidence limit for definite detection.

  3. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. BAT AGN Spectroscopic Survey. V. X-Ray Properties of the Swift/BAT 70-month AGN Catalog

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Trakhtenbrot, B.; Koss, M. J.; Ueda, Y.; Del Vecchio, I.; Treister, E.; Schawinski, K.; Paltani, S.; Oh, K.; Lamperti, I.; Berney, S.; Gandhi, P.; Ichikawa, K.; Bauer, F. E.; Ho, L. C.; Asmus, D.; Beckmann, V.; Soldi, S.; Baloković, M.; Gehrels, N.; Markwardt, C. B.

    2017-12-01

    Hard X-ray (≥10 keV) observations of active galactic nuclei (AGNs) can shed light on some of the most obscured episodes of accretion onto supermassive black holes. The 70-month Swift/BAT all-sky survey, which probes the 14-195 keV energy range, has currently detected 838 AGNs. We report here on the broadband X-ray (0.3-150 keV) characteristics of these AGNs, obtained by combining XMM-Newton, Swift/XRT, ASCA, Chandra, and Suzaku observations in the soft X-ray band (≤slant 10 keV) with 70-month averaged Swift/BAT data. The nonblazar AGNs of our sample are almost equally divided into unobscured ({N}{{H}}< {10}22 {{cm}}-2) and obscured ({N}{{H}}≥slant {10}22 {{cm}}-2) AGNs, and their Swift/BAT continuum is systematically steeper than the 0.3-10 keV emission, which suggests that the presence of a high-energy cutoff is almost ubiquitous. We discuss the main X-ray spectral parameters obtained, such as the photon index, the reflection parameter, the energy of the cutoff, neutral and ionized absorbers, and the soft excess for both obscured and unobscured AGNs.

  5. Discovery of a Be/X-Ray Binary Consistent with the Location of GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen; Weisskopf, Martin; Finger, Mark H.; Coe, M. J.; Greiner, Jochen; Reig, Pablo; Papamastorakis, Giannis

    2005-01-01

    GRO J2058+42 is a 195 s transient X-ray pulsar discovered in 1995 with BATSE. In 1996, RXTE located GRO J2058+42 to a 90% confidence error circle with a 4 radius. On 2004 February 20, the region including the error circle was observed with Chandra ACIS-I. No X-ray sources were detected within the error circle; however, two faint sources were detected in the ACIS-I field of view. We obtained optical observations of the brightest object, CXOU J205847.5+414637, which had about 64 X-ray counts and was just 013 outside the error circle. The optical spectrum contains a strong Ha line and corresponds to an inhued object in the Two Micron All Sky Survey catalog, indicating a Be/X-ray binary system. Pulsations were not detected in the Chandra observations, but similar flux variations and distance estimates suggest that CXOU J205847.5+414637 and GRO J2058+42 are the same object. We present results from the Chandra observation, optical observations, new and previously unreported RXTE observations, and a reanalysis of a ROSAT observation.

  6. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, A.; André, M.; Anton, G.

    2017-04-01

    ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008–2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional andmore » temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.« less

  7. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2017-04-01

    ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.

  8. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    PubMed

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  9. High Contrast X-ray Flares In The Anchors Database

    NASA Astrophysics Data System (ADS)

    McCleary, Jacqueline; Wolk, S.

    2010-01-01

    The X-ray light curves of pre-main sequence stars can show variability in the form of flares altering a baseline characteristic activity level; the largest X-ray flares are characterized by a rapid rise to 10 or more times the characteristic count rate, followed by a slower quasi-exponential decay. Analysis of these high-contrast X-ray flares enables the study of the innermost magnetic fields of pre-main sequence stars. We have scanned the ANCHORS database of Chandra observations of star-forming regions to extend the study of flare events on pre-main sequence stars both in sky coverage and in volume. We developed a sample of 30 high-contrast flares out of the 14,000 stars available in ANCHORS at the time of our study. By not biasing our sample by cluster, age, or spectral type, we increased the number of X-ray flare events studied and subsequently the strength of any statements about their properties. Applying the generally accepted methods of time-resolved spectral analysis developed by Reale et al. (1997), we measured the temperatures, confining magnetic field strengths, and loop lengths of these large flares. The results of the flare analysis were compared to the 2MASS and Spitzer data available for the stars in our sample. We found that the longest flare loop lengths (of order several stellar radii) are only seen on stars whose IR data indicates the presence of disks, which suggests that the longest flares may stretch all the way to the disk. Such long flares tend to be more tenuous (rarified) than the other large flares studied. A wide range of loop lengths were observed, indicating that two types of flares may occur on disked young stellar objects: either compact and analogous to flares on evolved stars, or long and the result of star-disk magnetic connections.

  10. The All-Sky Automated Survey for Supernovae

    NASA Astrophysics Data System (ADS)

    Bersier, D.

    2016-12-01

    This is an overview of the All-Sky Automated Survey for SuperNovae - ASAS-SN. We briefly present the hardware and capabilities of the survey and describe the most recent science results, in particular tidal disruption events and supernovae, including the brightest SN ever found.

  11. Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants

    NASA Technical Reports Server (NTRS)

    Clark, III, Benton C. (Inventor); Thornton, Michael G. (Inventor)

    1991-01-01

    A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.

  12. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  13. The hard x-ray imager (HXI) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Sato, Goro; Kokubun, Motohide; Enoto, Teruaki; Fukazawa, Yasushi; Hagino, Kouichi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2016-07-01

    Hitomi X-ray observatory launched in 17 February 2016 had a hard X-ray imaging spectroscopy system made of two hard X-ray imagers (HXIs) coupled with two hard X-ray telescopes (HXTs). With 12 m focal length, they provide fine (2' half-power diameter; HPD) imaging spectroscopy at 5 to 80 keV. The HXI main imagers are made of 4 layers of Si and a CdTe semiconductor double-sided strip detectors, stacked to enhance detection efficiency as well as to enable photon interaction-depth sensing. Active shield made of 9 BGO scintillators surrounds the imager to provide with low background. Following the deployment of the Extensible Optical Bench (EOB) on 28 February, the HXI was gradually turned on. Two imagers successfully started observation on 14 March, and was operational till the incident lead to Hitomo loss, on 26 March. All detector channels, 1280 ch of imager and 11 channel of active shields and others each, worked well and showed performance consistent with those seen on ground. From the first light observation of G21.5-0.9 and the following Crab observations, 5-80 keV energy coverage and good detection efficiency were confirmed. With blank sky observations, we checked our background level. In some geomagnetic region, strong background continuum, presumably caused by trapped electron with energy 100 keV, is seen. But by cutting the high-background time-intervals, the background became significantly lower, typically with 1-3 x 10-4 counts s-1 keV-1 cm-2 (here cm2 is shown with detector geometrical area). Above 30 keV, line and continuum emission originating from activation of CdTe was significantly seen, though the level of 1-4 x 10-4 counts s-1 keV-1 cm-2 is still comparable to those seen in NuSTAR. By comparing the effective area and background rate, preliminary analysis shows that the HXI had a statistical sensitivity similar to NuSTAR for point sources, and more than twice better for largely extended sources.

  14. An unbiased view of X-ray obscuration amongst active galactic nuclei with NuLANDS

    NASA Astrophysics Data System (ADS)

    Boorman, Peter Gregory; Gandhi, Poshak; Stern, Daniel; Harrison, Fiona; NuSTAR Obscured AGN Team

    2018-01-01

    Nearly all active galactic nuclei (AGN) are obscured in X-rays behind column densities of NH ≥ 1022 cm-2. Hard X-ray studies have proven very effective to quanitfy the levels of obscuration amongst AGN, up to and just above the Compton-thick limit (NH ˜ 1.5 × 1024 cm-2). However, Compton-thick sources with NH values beyond this limit are typically missed in hard X-ray all-sky surveys such as Swift/BAT, requiring many studies to apply considerable bias corrections to account for the loss. Incorrectly quanitfying the heavily obscured AGN population can have a dramatic effect on synthesis models designed to fit the Cosmic X-ray Background spectrum, due to their significant contribution to the peak flux of the background at ~30 keV. This is what motivated the NuSTAR Local AGN NH Distribution Survey (NuLANDS) - a NuSTAR 1 Ms legacy survey of an obscuration-independent, infrared selected sample of AGN, undetected by BAT and unobserved by NuSTAR before - a considerable number of which are predicted to be heavily obscured. NuSTAR is the first true X-ray focusing instrument capable of spectral analysis > 10 keV, and as such can and will place robust constraints on the NH values of these elusive AGN. In this poster, I will present the first results from NuLANDS, including multiple newly identified Compton-thick AGN, previously undetected in the Swift/BAT 70-month catalog. I will further highlight the exciting prospects for the complete NuLANDS sample, with the ultimate goal of constructing a representative NH distribution of AGN in the local Universe, requiring minimal bias corrections.

  15. Interactions of X-ray Binaries with Their Surrounding Material

    NASA Astrophysics Data System (ADS)

    Servillat, Mathieu; Chaty, S.; Coleiro, A.; Tang, S.; Grindlay, J. E.; Los, E.

    2013-04-01

    We can observe the interactions of high mass X-ray binaries with their surrounding material in two complementary ways: variability over long time scales, and direct infrared observation of dust/gas. This gives unprecedented clues on the formation and evolution of those systems. Using Herschel infrared observations of high mass X-ray binaries and of ultra-luminous X-ray sources, we aim to detect and characterize the surrounding material. In the case of ultra-luminous X-ray sources, due to the enormous amount of energy radiated, strong interactions with their environment are expected, particularly if the emission is not beamed and if they host an intermediate mass black hole. This provides a unique test for the existence of such objects. The Digital Access to a Sky Century at Harvard (DASCH) is a project to digitize and analyze the scientific data contained in the 530 000 Harvard College Observatory plates taken between the 1880s and 1990s, which is a unique resource for studying temporal variations in the universe on 10-100 yr timescales. The Be star SAO 49275 shows significant slow variability of 1 magnitude on time scales 10-50 years. This variability seems connected to the formation and disappearance of the decretion disk of the Be star, maybe triggered by the presence of a compact object companion, possibly a white dwarf.

  16. Using All-Sky Imaging to Improve Telescope Scheduling (Abstract)

    NASA Astrophysics Data System (ADS)

    Cole, G. M.

    2017-12-01

    (Abstract only) Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute-by-minute time series image stream and a self-maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.

  17. X-Ray Radiography of Gas Turbine Ceramics.

    DTIC Science & Technology

    1979-10-20

    Microfocus X-ray equipment. 1a4ihe definition of equipment concepts for a computer assisted tomography ( CAT ) system; and 4ffthe development of a CAT ...were obtained from these test coupons using Microfocus X-ray and image en- hancement techniques. A Computer Assisted Tomography ( CAT ) design concept...monitor. Computer reconstruction algorithms were investigated with respect to CAT and a preferred approach was determined. An appropriate CAT algorithm

  18. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  19. Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA: MASCARA

    NASA Astrophysics Data System (ADS)

    Snellen, Ignas A. G.; Stuik, Remko; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; le Poole, Rudolf

    2012-09-01

    The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.

  20. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  1. The X-Ray View of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Guedel, Manuel

    2007-08-01

    X-rays offer ideal access to high-energy phenomena in young, accreting stars. The energy released in magnetic flares has profound effects on the stellar environment. Star-disk magnetic reconnection has been suggested as a possible origin of bipolar jets. Such jets from have been detected at X-ray wavelengths, offering new diagnostics for the energy release and jet shock physics. Finally, eruptive phenomena of FU Ori and EX Lup-type stars have been monitored in X-rays. I will discuss observations and suggest simple models for high-energy eruptive phenomena in young stars.

  2. Narrow-line Seyfert 1 galaxies at hard X-rays

    NASA Astrophysics Data System (ADS)

    Panessa, F.; de Rosa, A.; Bassani, L.; Bazzano, A.; Bird, A.; Landi, R.; Malizia, A.; Miniutti, G.; Molina, M.; Ubertini, P.

    2011-11-01

    Narrow-line Seyfert 1 (NLSy1) galaxies are a peculiar class of type 1 active galactic nuclei (broad-line Seyfert 1 galaxies, hereinafter BLSy1). The X-ray properties of individual objects belonging to this class are often extreme and associated with accretion at high Eddington ratios. Here, we present a study on a sample of 14 NLSy1 galaxies selected at hard X-rays (>20 keV) from the fourth INTEGRAL/IBIS catalogue. The 20-100 keV IBIS spectra show hard-X-ray photon indices flatly distributed (Γ20-100 keV ranging from ˜1.3 to ˜3.6) with an average value of <Γ20-100 keV>= 2.3 ± 0.7, compatible with a sample of hard-X-ray BLSy1 average slopes. Instead, NLSy1 galaxies show steeper spectral indices with respect to BLSy1 galaxies when broad-band spectra are considered. Indeed, we combine XMM-Newton and Swift/XRT with INTEGRAL/IBIS data sets to obtain a wide energy spectral coverage (0.3-100 keV). A constraint on the high energy cut-off and on the reflection component is achieved only in one source, SWIFT J2127.4+5654 (Ecut-off˜ 50 keV, R= 1.0+0.5- 0.4). Hard-X-ray-selected NLSy1 galaxies do not display particularly strong soft excess emission, while absorption fully or partially covering the continuum is often measured as well as Fe line emission features. Variability is a common trait in this sample, both at X-rays and at hard X-rays. The fraction of NLSy1 galaxies in the hard-X-ray sky is likely to be ˜15 per cent, in agreement with estimates derived in optically selected NLSy1 samples. We confirm the association of NLSy1 galaxies with small black hole masses with a peak at 107 M⊙ in the distribution; however, hard-X-ray NLSy1 galaxies seem to occupy the lower tail of the Eddington ratio distribution of classical NLSy1 galaxies. Based on observations obtained with the INTEGRAL/IBIS, XMM-Newton and Swift/XRT.

  3. SkyProbeBV: dual-color absolute sky transparency monitor to optimize science operations

    NASA Astrophysics Data System (ADS)

    Cuillandre, Jean-Charles; Magnier, Eugene; Sabin, Dan; Mahoney, Billy

    2008-07-01

    Mauna Kea (4200 m elevation, Hawaii) is known for its pristine seeing conditions, but sky transparency can be an issue for science operations: 25% of the nights are not photometric, a cloud coverage mostly due to high-altitude thin cirrus. The Canada-France-Hawaii Telescope (CFHT) is upgrading its real-time sky transparency monitor in the optical domain (V-band) into a dual-color system by adding a B-band channel and redesigning the entire optical and mechanical assembly. Since 2000, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (30 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 95% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. If the absorption is too high, exposures can be repeated, or the observing can be done for a lower ranked science program. The new dual color system (simultaneous B & V bands) will allow a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools

  4. Swift/BAT X-ray monitoring indicates a new outburst of the black hole transient H 1743-322

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Yu, Wenfei; Yan, Zhen; Lin, Jie

    2017-07-01

    H 1743-322 is a black hole X-ray binary with frequent outbursts. Recent Swift/BAT monitoring observations (Krimm et al. 2013) show that this source has turned into a new outburst after been in quiescence for about nine months since the most recent outburst in 2016.

  5. Swift/BAT Detects Increase in Hard X-ray Emission from the Ultra-compact X-ray Binary 4U 1543-624

    NASA Astrophysics Data System (ADS)

    Ludlam, Renee; Miller, Jon M.; Miller-Jones, James; Reynolds, Mark

    2017-08-01

    The Swift/BAT detected an increase in hard X-ray emission (15-50 keV) coming from the ultra-compact X-ray binary 4U 1543-624 around 2017 August 9. The MAXI daily monitoring also shows a gradual increase in 2.0-20.0 keV X-ray intensity as of 2017 August 19. Swift/XRT ToO monitoring of the source was triggered and shows an increase in unabsorbed flux to 1.06E-9 ergs/cm2/s in the 0.3-10.0 keV energy band as of 2017 August 26. ATCA performed ToO observations for approximately 4 hours in the 5.5 GHz and 9.0 GHz bands while the antennas were in the 1.5A array configuration from 11:25-16:09 UTC on 2017 August 23. The source was not detected in either band.

  6. Long-Term X-Ray Variability of Circinus X-1

    NASA Technical Reports Server (NTRS)

    Saz Parkinson, P. M.; Tournear, D. M.; Bloom, E. D.; Focke, W. B.; Reilly, K. T.

    2003-01-01

    We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms to search for the approx. 16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. We obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.

  7. Status and expected perfomance of the MAXI mission for the JEM/ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, J.; Kawai, N.

    2008-12-24

    MAXI (Monitor of All-sky X-ray Image) is the first payload to be attached on JEM-EF (Kibo exposed facility) of ISS. It provides an all sky X-ray image every ISS orbit. Only with a few weeks scan, MAXI is expected to make a milli-Crab X-ray all sky map excluding bright region around the sun. Thus, MAXI does not only inform X-ray novae and transients rapidly to world astronomers if once they occur, but also observes long-term variability of Galact ic and extra-Galactic X-ray sources. MAXI also provides an X-ray source catalogue at that time with diffuse cosmic X-ray background. MAXI consistsmore » of two kinds of detectors, position sensitive gas-proportional counters for 2-30 keV X-rays and CCD cameras for 0.5-10 keV X-rays. All instruments of MAXI are now in final phase of pre-launching tests of their flight modules. We are also carrying out performance tests for X-ray detectors and collimators. Data processing and analysis software including alert system on ground are being developed by mission team. In this paper we report an overview of final instruments of MAXI and capability of MAXI.« less

  8. Chandra and the VLT Jointly Investigate the Cosmic X-Ray Background

    NASA Astrophysics Data System (ADS)

    2001-03-01

    -years (corresponding to a redshift of about 1 and a look-back time of 57% of the age of the Universe [2]) . It is generally believed that all these sources are powered by massive black holes at their centres. Previous X-ray surveys missed most of these objects because they were too faint to be observed by the telescopes then available, in particular at short X-ray wavelengths ('hard X-ray photons') where more radiation from the highly active centres is able to pass through the surrounding, heavily absorbing gas and dust clouds. Other types of well-known X-ray sources, e.g., QSOs ('quasars' = high-luminosity AGN) as well as clusters or groups of galaxies were also detected during these observations. Studies of all classes of objects in the CDFS are also being carried out by several other European groups. This sky field, already a standard reference in the southern hemisphere, will be the subject of several multi-wavelength investigations for many years to come. A prime example will be the Great Observatories Origins Deep Survey (GOODS) which will be carried out by the NASA SIRTF infrared satellite in 2003. Discovery of a distant Type II Quasar ESO PR Photo 09b/01 ESO PR Photo 09b/01 [Preview - JPEG: 400 x 352 pix - 56k] [Normal - JPEG: 800 x 703 pix - 128k] Caption : PR Photo 09b/01 displays the optical spectrum of the distant Type II Quasar CXOCDFS J033229.9 -275106 in the Chandra Deep Field South (CDFS), obtained with the FORS1 multi-mode instrument at VLT ANTU. Strong, redshifted emission lines of Hydrogen and ionised Helium, Oxygen, Nitrogen and Carbon are marked. Technical information about this photo is available below. One particular X-ray source that was identified with the VLT during the present investigation has attracted much attention - it is the discovery of a dust-enshrouded quasar (QSO) at very high redshift ( z = 3.7, corresponding to a distance of about 12,000 million light-years; [2]), cf. PR Photo 09a/01 and PR Photo 09b/01 . It is the first very distant

  9. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makita, M.; Karvinen, P.; Zhu, D.

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 10 4. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  10. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGES

    Makita, M.; Karvinen, P.; Zhu, D.; ...

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 10 4. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  11. Gaia, an all-sky survey for standard photometry

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Weiler, M.; Jordi, C.; Fabricius, C.

    2017-03-01

    Gaia ESA's space mission (launched in 2013) includes two low resolution spectroscopic instruments (one in the blue, BP, and another in the red, RP, wavelength domains) to classify and derive the astrophysical parameters of the observed sources. As it is well known, Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full extent (a minimum of 5 years) of the mission. Gaia data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for current and future on-ground and space projects, like LSST, PLATO, EUCLID and J-PAS/J-PLUS among others. These projects will benefit from the large amount (more than one billion) and wide variety of objects observed by Gaia with good quality spectrophotometry. Synthetic photometry derived from Gaia spectrophotometry for any passband can be used to expand the set of standard sources for these new instruments to come. In the current Gaia data release scenario, BP/RP spectrophotometric data will be available in the third release (in 2018, TBC). Current preliminary results allow us to estimate the precision of synthetic photometry derived from the Gaia data. This already allows the preparation of the on-going and future surveys and space missions. We discuss here the exploitation of the Gaia spectrophotometry as standard reference due to its full-sky coverage and its expected photometric uncertainties derived from the low resolution Gaia spectra.

  12. Searching the Gamma-Ray Sky for Counterparts to Gravitational Wave Sources Fermi Gamma-Ray Burst Monitor and Large Area Telescope Observations of LVT151012 and GW151226

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Burns, E.; Goldstein, A.; Connaughton, V.; Wilson-Hodge, C. A.; Jenke, P.; Blackburn, L.; Briggs, M. S.; Broida, J.; Camp, J.; hide

    2017-01-01

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.

  13. Fuzzy intelligent quality monitoring model for X-ray image processing.

    PubMed

    Khalatbari, Azadeh; Jenab, Kouroush

    2009-01-01

    Today's imaging diagnosis needs to adapt modern techniques of quality engineering to maintain and improve its accuracy and reliability in health care system. One of the main factors that influences diagnostic accuracy of plain film X-ray on detecting pathology is the level of film exposure. If the level of film exposure is not adequate, a normal body structure may be interpretated as pathology and vice versa. This not only influences the patient management but also has an impact on health care cost and patient's quality of life. Therefore, providing an accurate and high quality image is the first step toward an excellent patient management in any health care system. In this paper, we study these techniques and also present a fuzzy intelligent quality monitoring model, which can be used to keep variables from degrading the image quality. The variables derived from chemical activity, cleaning procedures, maintenance, and monitoring may not be sensed, measured, or calculated precisely due to uncertain situations. Therefore, the gamma-level fuzzy Bayesian model for quality monitoring of an image processing is proposed. In order to apply the Bayesian concept, the fuzzy quality characteristics are assumed as fuzzy random variables. Using the fuzzy quality characteristics, the newly developed model calculates the degradation risk for image processing. A numerical example is also presented to demonstrate the application of the model.

  14. Single crystal CVD diamond membranes as Position Sensitive X-ray Detector

    NASA Astrophysics Data System (ADS)

    Desjardins, K.; Menneglier, C.; Pomorski, M.

    2017-12-01

    Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.

  15. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy.

    PubMed

    Ravel, B; Attenkofer, K; Bohon, J; Muller, E; Smedley, J

    2013-10-01

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  16. Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elshahat, Bassem; Gill, Hardeep Singh; Kumar, Jayant

    2015-07-15

    Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60–150 kVp. Methods: Experiments were designed to optimize the detector’s x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C{sub 61} butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode. Themore » authors measured the radiation-induced electric current at zero bias voltage in all fabricated OPV cells. Results: The net OPV current as a function of beam potential (kVp) was proportional to kVp{sup −0.5} when normalized to x-ray tube output, which varies with kVp. Of the tested configurations, the best combination of parameters was 270 nm active layer thicknesses with 0.7 cm{sup 2} electrode area, which provided the highest signal per electrode area. For this cell, the measured current ranged from approximately 0.7 to 2.4 nA/cm{sup 2} for 60–150 kVp, corresponding to about 0.09 nA–0.06 nA/mGy air kerma, respectively. When compared to commercial amorphous silicon thin film photovoltaic cells irradiated under the same conditions, this represents 2.5 times greater sensitivity. An additional 40% signal enhancement was observed when a 1 mm layer of plastic scintillator was attached to the cells’ beam-facing side. Conclusions: Since both OPVs can be produced as flexible devices and they do not require external bias voltage, they open the possibility for use as thin film in vivo detectors for dose monitoring in diagnostic x-ray imaging.« less

  17. RXTE and BeppoSAX Observations of the Transient X-ray Pulsar XTE J 18591+083

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; intZand, J. J. M.; Levine, A. M.; Marshall, F. E.

    2008-01-01

    We present observations of the 9.8 s X-ray pulsar XTE J159+083 made with the All-Sky Monitor (ASM) and Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer (RXTE), and the Wide Field Cameras (WFC) on board BeppoSAX. The ASM data cover a 12 year time interval and show that an extended outburst occurred between approximately MJD50, 250, and 50, 460 (1996 June 16 to 1997 January 12). The ASM data excluding this outburst interval suggest a possible 61 day modulation. Eighteen sets of PCA observations were obtained over an approx. one month interval in 1999. The flux variability measured with the PCA appears consistent with the possible period found with the ASM. The PCA measurements of the pulse period showed it to decrease non-monotonically and then to increase significantly. Doppler shifts due to orbital motion rather than accretion torques appear to be better able to explain the pulse period changes. Observations with the WFC during the extended outburst give an error box which is consistent with a previously determined PCA error box but is significantly smaller. The transient nature of XTE J1859+083 and the length of its pulse period are consistent with it being a Be/neutral star binary. The possible 61 day orbital period would be of the expected length for a Be star system with a 9.8 s pulse period.

  18. Exploring Cosmic X-ray Source Polarization

    NASA Technical Reports Server (NTRS)

    Swank, Jean Hebb; Jahodal, K.; Kallman, T. R.; Kaaret, P.

    2008-01-01

    Cosmic X-ray sources are expected to be polarized, either because of their asymmetry and the role of scattering in their emission or the role of magnetic fields. Polarization at other wavelengths has been useful. X-ray polarization will provide a new handle on black hole parameters, in particular the spin, on accretion flows and outflows, on neutron star spin orientations and emission mechanisms, on the quantum mechanical effects of super-strong magnetic fields of magnetars, and on the structure of supernovae shocks. The proposed Gravity and Extreme Magnetism SMEX (GEMS) will use high efficiency polarimeters behind thin foil mirrors. The statistical sensitivity and control of systematics will allow measurement of polarization fractions as small as 1% from many galactic and extragalactic sources. Targets which should be polarized at the level that GEMS can easily measure include stellar black holes, Seyfert galaxies and quasars, blazars, rotation-powered and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. The polarimeters are Time Projection Chambers that allow reconstruction of images of photoelectron tracks for 2-10 keV Xrays. They can be deep without sacrificing modulation. These polarimeters do not image the sky, but the telescope point spread function and detector collimation allow structure to be resolved at the 10 arcmin level. Rotation of the spacecraft is not needed for the signal measurement in the Time Projection Chambers, but provides for measurement and correction of systematic errors. It also allows a small Bragg reflection soft X-ray experiment to be included that can be used for isolated neutron stars and blazars.

  19. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  20. Periodicities in the high-mass X-ray binary system RXJ0146.9+6121/LSI+61°235

    NASA Astrophysics Data System (ADS)

    Sarty, Gordon E.; Kiss, László L.; Huziak, Richard; Catalan, Lionel J. J.; Luciuk, Diane; Crawford, Timothy R.; Lane, David J.; Pickard, Roger D.; Grzybowski, Thomas A.; Closas, Pere; Johnston, Helen; Balam, David; Wu, Kinwah

    2009-01-01

    The high-mass X-ray binary RXJ0146.9+6121, with optical counterpart LSI+61°235 (V831Cas), is an intriguing system on the outskirts of the open cluster NGC663. It contains the slowest Be type X-ray pulsar known with a pulse period of around 1400s and, primarily from the study of variation in the emission line profile of Hα, it is known to have a Be decretion disc with a one-armed density wave period of approximately 1240d. Here we present the results of an extensive photometric campaign, supplemented with optical spectroscopy, aimed at measuring short time-scale periodicities. We find three significant periodicities in the photometric data at, in order of statistical significance, 0.34, 0.67 and 0.10d. We give arguments to support the interpretation that the 0.34 and 0.10d periods could be due to stellar oscillations of the B-type primary star and that the 0.67d period is the spin period of the Be star with a spin axis inclination of 23+10-8 degrees. We measured a systemic velocity of -37.0 +/- 4.3kms-1 confirming that LSI+61°235 has a high probability of membership in the young cluster NGC663 from which the system's age can be estimated as 20-25Myr. From archival RXTE All Sky Monitor (ASM) data we further find `super' X-ray outbursts roughly every 450d. If these super outbursts are caused by the alignment of the compact star with the one-armed decretion disc enhancement, then the orbital period is approximately 330d.

  1. 2MASS - The 2 Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.

    1992-01-01

    This paper describes a new sky survey to be carried out in three wavebands, J(1.25 m), H(1.65 m), and K(2.2 m). The limiting sensitivity of the survey, 10 sigma detection of point sources with K not greater than 14 mag, coupled with its all-sky coverage, were selected primarily to support studies of the large-scale structure of the Milky Way and the Local Universe. The survey requires construction of a pair of observing facilities, one each for the Northern and Southern Hemispheres. Operations are scheduled to begin in 1995. The data will begin becoming publicly available soon thereafter.

  2. X ray attenuation measurements for high-temperature materials characterization and in-situ monitoring of damage accumulation. Ph.D. Thesis - Cleveland State Univ., 1991

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1992-01-01

    The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.

  3. Why is the rapid burster different from all other galactic-bulge X-ray sources?

    NASA Astrophysics Data System (ADS)

    Milgrom, M.

    1987-01-01

    It is suggested that the rapid X-ray burster exhibits unique behavior because it contains a neutron star whose stellar radius is smaller than the minimum radius of a circular orbit that is stable according to general relativity. The star accretes from a disk that extends down to the last stable orbit. In this state, the disk is unstable against a rapid fall and accretion of its innermost part onto the star. The sudden dumping of mass gives rise to a burst of X-rays. The disk then heals, refilling the inner region at a pace that is dictated mainly by the global accretion rate, in order to ready itself for the next burst. In all other galactic-bulge-type sources, the neutron star is larger than the last stable orbit.

  4. X-ray microlensing in the quadruply lensed quasar Q2237+0305

    NASA Astrophysics Data System (ADS)

    Zimmer, F.; Schmidt, R. W.; Wambsganss, J.

    2011-05-01

    We use archival data of NASA's Chandra X-ray telescope to compile an X-ray light curve of all four images of the quadruply lensed quasar Q2237+0305 (zQ= 1.695) from 2006 January to 2007 January. We fit simulated point spread functions to the four individual quasar images using Cash's C-statistic to account for the Poissonian nature of the X-ray signal. The quasar images display strong flux variations up to a factor of ˜4 within one month. We can disentangle the intrinsic quasar variability from flux variations due to gravitational microlensing by looking at the flux ratios of the individual quasar images. Doing this, we find evidence for microlensing in image A. In particular, the time sequence of the flux ratio A/B in the X-ray regime correlates with the corresponding sequence in the optical monitoring by OGLE in the V band. The amplitudes in the X-ray light curve are larger. For the most prominent peak, the increase of the X-ray ratio A/B is larger by a factor of ˜1.6 compared to the signal in the optical. In agreement with theory and other observations of multiply-imaged quasars, this suggests that the X-ray emission region of this quasar is significantly smaller than the optical emission region.

  5. The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.

    2012-10-01

    Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  6. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  7. Gamma-ray Monitoring of Active Galactic Nuclei with HAWC

    NASA Astrophysics Data System (ADS)

    Lauer, Robert; HAWC Collaboration

    2016-03-01

    Active Galactic Nuclei (AGN) are extra-galactic sources that can exhibit extreme flux variability over a wide range of wavelengths. TeV gamma rays have been observed from about 60 AGN and can help to diagnose emission models and to study cosmic features like extra-galactic background light or inter-galactic magnetic fields. The High Altitude Water Cherenkov (HAWC) observatory is a new extensive air shower array that can complement the pointed TeV observations of imaging air Cherenkov telescopes. HAWC is optimized for studying gamma rays with energies between 100 GeV and 100 TeV and has an instantaneous field of view of ~2 sr and a duty cycle >95% that allow us to scan 2/3 of the sky every day. By performing an unbiased monitoring of TeV emissions of AGN over most of the northern and part of the southern sky, HAWC can provide crucial information and trigger follow-up observations in collaborations with pointed TeV instruments. Furthermore, HAWC coverage of AGN is complementary to that provided by the Fermi satellite at lower energies. In this contribution, we will present HAWC flux light curves of TeV gamma rays from various sources, notably the bright AGN Markarian 421 and Markarian 501, and highlight recent results from multi-wavelengths and multi-instrument studies.

  8. Current developments and tests of small x-ray optical systems for space applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Hudec, R.; Inneman, A.; Doubravová, D.; Marsikova, V.

    2017-05-01

    The paper addresses the X-ray monitoring for astrophysical applications. A novel approach based on the use of 1D and 2D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV was further studied. Wide-field optical system of this type has not been used in space yet. Designed wide-field optical system combined with Timepix X-ray detector is described together with latest experimental results obtained during laboratory tests. Proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases where intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system is considered to be used in a student rocket experiment.

  9. Night-sky brightness monitoring in Hong Kong: a city-wide light pollution assessment.

    PubMed

    Pun, Chun Shing Jason; So, Chu Wing

    2012-04-01

    Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light-sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe-the urban night skies (sky brightness at 15.0 mag arcsec(- 2)) are on average ~ 100 times brighter than at the darkest rural sites (20.1 mag arcsec(- 2)), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag arcsec(- 2) can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by human factors such as land utilization and population density of the observation sites, together with meteorological and/or environmental factors. Moreover, earlier night skies (at 9:30 p.m. local time) are generally brighter than later time (at 11:30 p.m.), which can be attributed to some public and commercial lightings being turned off later at night. On the other hand, no concrete relationship between the observed sky brightness and air pollutant concentrations could be established with the limited survey sampling. Results from this survey will serve as an important database for the public to assess whether new rules and regulations are necessary to control the use of outdoor lightings in Hong Kong.

  10. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  11. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  12. Evidence for a 17-day periodicity from Cyg-X-3

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.; Pravdo, S. H.; Peacock, A.; Elvis, M.; Watson, M. G.; Pounds, K. A.

    1975-01-01

    Data taken from the Ariel-5 All Sky Monitor and the Ariel-5 Sky Survey Experiment are analyzed. It is hypothesized that a periodicity of 17d is characteristic of CygX-3. Results of the analysis are given.

  13. VizieR Online Data Catalog: Candidate X-ray OB stars in MYStIX regions (Povich+, 2017)

    NASA Astrophysics Data System (ADS)

    Povich, M. S.; Busk, H. A.; Feigelson, E. D.; Townsley, L. K.; Kuhn, M. A.

    2017-10-01

    X-ray point source catalogs for the 18 Massive Young Star-forming Complex Study in Infrared and X-Rays (MYStIX) regions studied here were produced by Kuhn+ (2010, J/ApJ/725/2485 and 2013, J/ApJS/209/27) and Townsley (2014+, J/ApJS/213/1) from archival Chandra Advanced CCD Imaging Camera (ACIS) observations. MYStIX JHKs NIR photometry was obtained from images taken with the United Kingdom Infrared Telescope (UKIRT) Wide-field Camera or from the Two-Micron All-Sky Survey (2MASS). See section 2 for further details. Spitzer MIR photometry at 3.6, 4.5, 5.8, and 8.0um was provided either by the Galactic Legacy Mid-Plane Survey Extraordinaire (GLIMPSE; Benjamin+ 2003PASP..115..953B) or by Kuhn+ (2013, J/ApJS/209/29). (4 data files).

  14. Extreme Radio Flares and Associated X-Ray Variability from Young Stellar Objects in the Orion Nebula Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbrich, Jan; Reid, Mark J.; Wolk, Scott J.

    Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look formore » the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.« less

  15. Design, implementation, and performance of the Astro-H soft x-ray spectrometer aperture assembly and blocking filters

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kripps, Kari L.; Lairson, Bruce M.; Leutenegger, Maurice A.; Lopez, Heidi C.; McCammon, Dan; McGuinness, Daniel S.; Mitsuda, Kazuhisa; Moseley, Samuel J.; Porter, F. Scott; Schweiss, Andrea N.; Takei, Yoh; Thorpe, Rosemary Schmidt; Watanabe, Tomomi; Yamasaki, Noriko Y.; Yoshida, Seiji

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that made the SXS array a powerful x-ray spectrometer also made it sensitive to photons from the entire electromagnetic band as well as particles. If characterized as a bolometer, it would have had a noise equivalent power of <4 × 10 ? 18 W / (Hz)0.5. Thus, it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. In addition, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs were addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that blocked long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly was a system of barriers, baffles, filter carriers, and filter mounts that supported the filters and inhibited their potential contamination. The three outer filters also had been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  16. Combining X-ray and neutron crystallography with spectroscopy.

    PubMed

    Kwon, Hanna; Smith, Oliver; Raven, Emma Lloyd; Moody, Peter C E

    2017-02-01

    X-ray protein crystallography has, through the determination of the three-dimensional structures of enzymes and their complexes, been essential to the understanding of biological chemistry. However, as X-rays are scattered by electrons, the technique has difficulty locating the presence and position of H atoms (and cannot locate H + ions), knowledge of which is often crucially important for the understanding of enzyme mechanism. Furthermore, X-ray irradiation, through photoelectronic effects, will perturb the redox state in the crystal. By using single-crystal spectrophotometry, reactions taking place in the crystal can be monitored, either to trap intermediates or follow photoreduction during X-ray data collection. By using neutron crystallography, the positions of H atoms can be located, as it is the nuclei rather than the electrons that scatter neutrons, and the scattering length is not determined by the atomic number. Combining the two techniques allows much greater insight into both reaction mechanism and X-ray-induced photoreduction.

  17. First X-ray Statistical Tests for Clumpy Torii Models: Constraints from RXTE monitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2015-09-01

    We summarize two papers providing the first X-ray-derived statistical constraints for both clumpy-torus model parameters and cloud ensemble properties. In Markowitz, Krumpe, & Nikutta (2014), we explored multi-timescale variability in line-of-sight X-ray absorbing gas as a function of optical classification. We examined 55 Seyferts monitored with the Rossi X-ray Timing Explorer, and found in 8 objects a total of 12 eclipses, with durations between hours and years. Most clouds are commensurate with the outer portions of the BLR, or the inner regions of infrared-emitting dusty tori. The detection of eclipses in type Is disfavors sharp-edged tori. We provide probabilities to observe a source undergoing an absorption event for both type Is and IIs, yielding constraints in [N_0, sigma, i] parameter space. In Nikutta et al., in prep., we infer that the small cloud angular sizes, as seen from the SMBH, imply the presence of >10^7 clouds in BLR+torus to explain observed covering factors. Cloud size is roughly proportional to distance from the SMBH, hinting at the formation processes (e.g. disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces (e.g. magnetic fields, ambient pressure) are needed to contain them, or otherwise the clouds must be short-lived. Finally, we infer that the radial cloud density distribution behaves as 1/r^{0.7}, compatible with VLTI observations. Our results span both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for short-term eclipses observed with XMM-Newton, Suzaku, and Chandra.

  18. The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.

    2018-04-01

    Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.

  19. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  20. CFHT's SkyProbe: a real-time sky-transparency monitor

    NASA Astrophysics Data System (ADS)

    Cuillandre, Jean-Charles; Magnier, Eugene A.; Isani, Sidik; Sabin, Daniel; Knight, Wiley; Kras, Simon; Lai, Kamson

    2002-12-01

    We have developed a system at the Canada-France-Hawaii Telescope (CFHT), SkyProbe, which allows for the direct measurement of the true attenuation by clouds once per minute, within a percent, directly on the field pointed by the telescope. It has been possible to make this system relatively inexpensively due to the low-cost CCD cameras from the amateur market. A crucial addition to this hardware is the quite recent availability of a full-sky photometry catalog at the appropriate depth: the Tycho catalog, from the Hipparcos mission. The central element is the automatic data analysis pipeline developed at CFHT, Elixir, for the improved operation of the CFHT wide-field imagers, CFH12K and MegaCam. SkyProbe"s FITS images are processed in real-time and the pipeline output (a zero point attenuation) provides the current sky transmission to the observers and helps immediate decision making. These measurements are also attached to the archived data, adding a key criteria for future use by other astronomers.