Sample records for x-ray astronomical satellite

  1. The Hard X-ray experiment on the Astronomical Netherlands Satellite

    NASA Technical Reports Server (NTRS)

    Gursky, H.; Schnopper, H.; Parsignault, D.

    1975-01-01

    The Hard X-ray Experiment flown on the Astronomical Netherlands Satellite is described. The instrument consists of two parts. One is a large-area detector of about 60 sq cm in total area, sensitive in the energy range between 1.5 and 30 keV. Two counters comprise this detector, each collimated 10 min by 3 deg and offset in the narrow direction by 4 min. The other part is a Bragg-crystal assembly consisting of two PET crystals and counters aligned to search for the silicon emission lines near 2 keV. Instrument characteristics and orbital operations are described.

  2. Modeling the spectral response for the soft X-ray imager onboard the ASTRO-H satellite

    NASA Astrophysics Data System (ADS)

    Inoue, Shota; Hayashida, Kiyoshi; Katada, Shuhei; Nakajima, Hiroshi; Nagino, Ryo; Anabuki, Naohisa; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Uchida, Hiroyuki; Nobukawa, Masayoshi; Nobukawa, Kumiko Kawabata; Washino, Ryosaku; Mori, Koji; Isoda, Eri; Sakata, Miho; Kohmura, Takayoshi; Tamasawa, Koki; Tanno, Shoma; Yoshino, Yuma; Konno, Takahiro; Ueda, Shutaro; ASTRO-H/SXI Team

    2016-09-01

    The ASTRO-H satellite is the 6th Japanese X-ray astronomical observatory to be launched in early 2016. The satellite carries four kinds of detectors, and one of them is an X-ray CCD camera, the soft X-ray imager (SXI), installed on the focal plane of an X-ray telescope. The SXI contains four CCD chips, each with an imaging area of 31 mm × 31 mm , arrayed in mosaic, covering the field-of-view of 38‧ ×38‧ , the widest ever flown in orbit. The CCDs are a P-channel back-illuminated (BI) type with a depletion layer thickness of 200 μ m . We operate the CCDs in a photon counting mode in which the position and energy of each photon are measured in the energy band of 0.4-12 keV. To evaluate the X-ray spectra obtained with the SXI, an accurate calibration of its response function is essential. For this purpose, we performed calibration experiments at Kyoto and Photon Factory of KEK, each with different X-ray sources with various X-ray energies. We fit the obtained spectra with 5 components; primary peak, secondary peak, constant tail, Si escape and Si fluorescence, and then model their energy dependence using physics-based or empirical formulae. Since this is the first adoption of P-channel BI-type CCDs on an X-ray astronomical satellite, we need to take special care on the constant tail component which is originated in partial charge collection. It is found that we need to assume a trapping layer at the incident surface of the CCD and implement it in the response model. In addition, the Si fluorescence component of the SXI response is significantly weak, compared with those of front-illuminated type CCDs.

  3. Astronomers Go Behind The Milky Way To Solve X-Ray Mystery

    NASA Astrophysics Data System (ADS)

    2001-08-01

    , conducted in February 2000, lasted 28 hours. The team observed what was known to be a "blank" region of the galactic plane where the Japanese X-ray satellite ASCA had previously observed but found no individual X-ray sources. The team also discovered 36 bright distant galaxies lurking in the background of this section of the galactic plane, while the foreground was devoid of stars or other individual objects emitting X-rays. Chandra, and now the European XMM-Newton satellite, are at long last beginning to collect light from behind our galaxy. X-radiation from the 36 newly discovered galaxies passes through the Milky Way on its journey towards Earth. This light, therefore, carries the imprint of all that it passes through and will allow astronomers to measure the distribution and physical condition of matter in our Galaxy. Participating in the Chandra observation and Science article are Yoshitomo Maeda of Pennsylvania State University; Hidehiro Kaneda of the Institute of Space and Astronautical Science in Japan; and Shigeo Yamauchi of Iwate University in Japan. Chandra observed the galactic plane with its Advanced CCD Imaging Spectrometer (ACIS) instrument, which was developed for NASA by Pennsylvania State University, University Park, and Massachusetts Institute of Technology, Cambridge. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program, and TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA.

  4. Inter-satellites x-ray communication system

    NASA Astrophysics Data System (ADS)

    Mou, Huan; Li, Bao-quan

    2017-02-01

    An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".

  5. The Chandra X-ray Observatory: An Astronomical Facility Available to the World

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.

    2006-01-01

    The Chandra X-ray observatory, one of NASA's "Great Observatories," provides high angular and spectral resolution X-ray data which is freely available to all. In this review I describe the instruments on chandra along with their current calibration, as well as the chandra proposal system, the freely-available Chandra analysis software package CIAO, and the Chandra archive. As Chandra is in its 6th year of operation, the archive already contains calibrated observations of a large range of X-ray sources. The Chandra X-ray Center is committed to assisting astronomers from any country who wish to use data from the archive or propose for observations

  6. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  7. LAMP: a micro-satellite based soft x-ray polarimeter for astrophysics

    NASA Astrophysics Data System (ADS)

    She, Rui; Feng, Hua; Muleri, Fabio; Soffitta, Paolo; Xu, Renxin; Li, Hong; Bellazzini, Ronaldo; Wang, Zhanshan; Spiga, Daniele; Minuti, Massimo; Brez, Alessandro; Spandre, Gloria; Pinchera, Michele; Sgrò, Carmelo; Baldini, Luca; Wen, Mingwu; Shen, Zhengxiang; Pareschi, Giovanni; Tagliaferri, Gianpiero; Tayabaly, Kashmira; Salmaso, Bianca; Zhan, Yafeng

    2015-08-01

    The Lightweight Asymmetry and Magnetism Probe (LAMP) is a micro-satellite mission concept dedicated for astronomical X-ray polarimetry and is currently under early phase study. It consists of segmented paraboloidal multilayer mirrors with a collecting area of about 1300 cm2 to reflect and focus 250 eV X-rays, which will be detected by position sensitive detectors at the focal plane. The primary targets of LAMP include the thermal emission from the surface of pulsars and synchrotron emission produced by relativistic jets in blazars. With the expected sensitivity, it will allow us to detect polarization or place a tight upper limit for about 10 pulsars and 20 blazars. In addition to measuring magnetic structures in these objects, LAMP will also enable us to discover bare quark stars if they exist, whose thermal emission is expected to be zero polarized, while the thermal emission from neutron stars is believed to be highly polarized due to plasma polarization and the quantum electrodynamics (QED) effect. Here we present an overview of the mission concept, its science objectives and simulated observational results.

  8. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  9. Exploring the X-Ray Universe

    NASA Astrophysics Data System (ADS)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.

    This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  10. Monocrystalline silicon and the meta-shell approach to building x-ray astronomical optics

    NASA Astrophysics Data System (ADS)

    Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2017-08-01

    Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the metashell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, WolterSchwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment

  11. Monocrystalline Silicon and the Meta-Shell Approach to Building X-Ray Astronomical Optics

    NASA Technical Reports Server (NTRS)

    Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; hide

    2017-01-01

    Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the meta-shell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, Wolter-Schwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment

  12. The X-ray astronomy satellite ASCA

    NASA Technical Reports Server (NTRS)

    Tanaka, Yasuo; Inoue, Hajime; Holt, Stephen S.

    1994-01-01

    Advanced Satellite for Cosmology and Astrophysics (ASCA) is a high-throughput X-ray astronomy observatory which is capable of simultaneous imaging and spectroscopic observations over a wide energy range 0.5-10 keV. The scientific capabilities of ASCA and some aspects related to its operation and observations are briefly described.

  13. European X-ray observatory satellite (Exosat)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Initially planned to be launched on the Ariane L6, the 510 kilogram European X-Ray Observatory Satellite (EXOSAT) is to be placed into orbit from Space Launch Complex 2 West by NASA's Delta 3914 launch vehicle. Objectives of the mission are to study the precise position, structure, and temporal and spectral characteristics of known X-ray sources as well as search for new sources. The spacecraft is described as well as its payload, principal subsystems, and the stages of the Delta 3914. The flight sequence of events, land launch operations are discussed. The ESA management structure for EXOSAT, the NASA/industry team, and contractors are listed.

  14. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.

  15. The X-ray Astronomy Recovery Mission

    NASA Astrophysics Data System (ADS)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  16. M.I.T. studies of transient X-ray phenomena. [astronomical observations

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1976-01-01

    A variety of transient X-ray phenomena have been studied. Data from the OSO-7 satellite reveal both long and short time-scale transients. Extensive observations have been made of the Lupus X-ray Nova (3U1543-47) and GX339-4(MX 1658-48) which may represent a very different type of transient source. A unique, intense X-ray flare lasting ten minutes was also recorded, and the X-ray emission from the active galaxy Cen A was found to vary significantly over a period of several days. In a recent balloon flight the Crab pulsar, NP0532, was observed to exhibit a transient pulsed component distinct from the usual main pulse and interpulse. A sounding-rocket experiment detected an ultrasoft transient X-ray source tentatively associated with SS Cygni, and preliminary results from SAS-3 show a very hard spectrum for the new source A0535 + 26. On the other hand, extensive OSO-7 null observations of both Type I and II supernovae and of the flaring radio star Algol make it unlikely that these types of objects are potent transient X-ray emitters.

  17. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christensen, F. E.; Craig, W. W.; Windt, D. L.; Jimenez-Garate, M. A.; Hailey, C. J.; Harrison, F. A.; Mao, P. H.; Chakan, J. M.; Ziegler, E.; Honkimaki, V.

    2000-09-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10<~E<~80keV) band. In this paper, we present measurements of the reflectance in the 18-170 keV energy range of a cylindrical prototype nested optic taken at the European Synchrotron Radiation Facility (ESRF). The mirror segments, mounted in a single bounce stack, are coated with depth-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution of the bilayer thicknesses, and that the coatings are uniform at the 5% level over the mirror surface. Finally, we apply the measurements to predict effective areas achievable for HEFT and Con-X HXT using these W/Si designs.

  18. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  19. Visible light scatter measurements of the Advanced X-ray Astronomical Facility /AXAF/ mirror samples

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1981-01-01

    NASA is studying the properties of mirror surfaces for X-ray telescopes, the data of which will be used to develop the telescope system for the Advanced X-ray Astronomical Facility. Visible light scatter measurements, using a computer controlled scanner, are made of various mirror samples to determine surface roughness. Total diffuse scatter is calculated using numerical integration techniques and used to estimate the rms surface roughness. The data measurements are then compared with X-ray scatter measurements of the same samples. A summary of the data generated is presented, along with graphs showing changes in scatter on samples before and after cleaning. Results show that very smooth surfaces can be polished on the common substrate materials (from 2 to 10 Angstroms), and nickel appears to give the lowest visible light scatter.

  20. Astronomical Honeymoon Continues as X-Ray Observatory Marks First Anniversary

    NASA Astrophysics Data System (ADS)

    2000-08-01

    of the X-ray background, a glow throughout the universe whose source or sources are unknown. Astronomers are now pinpointing the various sources of the X-ray glow because Chandra has resolution eight times better than that of previous X-ray telescopes, and is able to detect sources more than 20 times fainter. "The Chandra team had to develop technologies and processes never tried before," said Tony Lavoie, Chandra program manager at Marshall. "One example is that we built and validated a measurement system to make sure the huge cylindrical mirrors of the telescope were ground correctly and polished to the right shape." The polishing effort resulted in an ultra-smooth surface for all eight of Chandra's mirrors. If the state of Colorado were as smooth as the surface of Chandra's mirrors, Pike's Peak would be less than an inch tall. "Chandra has experienced a great first year of discovery and we look forward to many more tantalizing science results as the mission continues," said Alan Bunner, program director, Structure and Evolution of the universe, NASA Headquarters, Washington, DC. Marshall manages the Chandra program for the Office of Space Science, NASA Headquarters. TRW Space and Electronics Group, Redondo Beach, CA, is the prime contractor. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, CT, coated by Optical Coating Laboratory, Inc., Santa Rosa, CA, and assembled and inserted into the telescope portion of Chandra by Eastman Kodak Co., Rochester, NY. The scientific instruments were supplied by collaborations led by Pennsylvania State University, University Park; Smithsonian Astrophysical Observatory, Cambridge, MA; Massachusetts Institute of Technology, Cambridge; and the Space Research Organization Netherlands, Utrecht. The Smithsonian's Chandra X-ray Center controls science and operations from Cambridge, working with astronomers around the globe to record the activities

  1. Development of low-stress Iridium coatings for astronomical x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Wen, Mingwu; Proserpio, Laura

    2016-07-01

    Previously used mirror technologies are not suitable for the challenging needs of future X-ray telescopes. This is why the required high precision mirror manufacturing triggers new technical developments around the world. Some aspects of X-ray mirrors production are studied within the interdisciplinary project INTRAAST, a German acronym for "industry transfer of astronomical mirror technologies". The project is embedded in a cooperation of Aschaffenburg University of Applied Sciences and the Max-Planck-Institute for extraterrestrial Physics. One important task is the development of low-stress Iridium coatings for X-ray mirrors based on slumped thin glass substrates. The surface figure of the glass substrates is measured before and after the coating process by optical methods. Correlating the surface shape deformation to the parameters of coating deposition, here especially to the Argon sputtering pressure, allows for an optimization of the process. The sputtering parameters also have an influence on the coating layer density and on the micro-roughness of the coatings, influencing their X-ray reflection properties. Unfortunately the optimum coating process parameters seem to be contrarious: low Argon pressure resulted in better micro-roughness and higher density, whereas higher pressure leads to lower coating stress. Therefore additional measures like intermediate coating layers and temperature treatment will be considered for further optimization. The technical approach for the low-stress Iridium coating development, the experimental equipment, and the obtained first experimental results are presented within this paper.

  2. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  3. Data needs for X-ray astronomy satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallman, T.

    I review the current status of atomic data for X-ray astronomy satellites. This includes some of the astrophysical issues which can be addressed, current modeling and analysis techniques, computational tools, the limitations imposed by currently available atomic data, and the validity of standard assumptions. I also discuss the future: challenges associated with future missions and goals for atomic data collection.

  4. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  5. A position-sensitive X-ray detector for the HEAO-A satellite.

    NASA Technical Reports Server (NTRS)

    Held, D.; Weisskopf, M. C.

    1973-01-01

    A position-sensitive, low-energy proportional counter system is described which will be used on the High-Energy Astronomical Observatory, Mission A, spacecraft. The associated system incorporates the capability to employ pulse-shape discrimination for background rejection and interpolation circuitry to locate the centroid of an X-ray event with an accuracy of approximately one eighth the cathode-wire spacing.

  6. Improving the Determination of Eastern Elongations of Planetary Satellites in the Astronomical Almanac

    NASA Astrophysics Data System (ADS)

    Rura, Christopher; Stollberg, Mark

    2018-01-01

    The Astronomical Almanac is an annual publication of the US Naval Observatory (USNO) and contains a wide variety of astronomical data used by astronomers worldwide as a general reference or for planning observations. Included in this almanac are the times of greatest eastern and northern elongations of the natural satellites of the planets, accurate to 0.1 hour UT. The production code currently used to determine elongation times generates X and Y coordinates for each satellite (16 total) in 5 second intervals. This consequentially caused very large data files, and resulted in the program devoted to determining the elongation times to be computationally intensive. To make this program more efficient, we wrote a Python program to fit a cubic spline to data generated with a 6-minute time step. This resulted in elongation times that were found to agree with those determined from the 5 second data currently used in a large number of cases and was tested for 16 satellites between 2017 and 2019. The accuracy of this program is being tested for the years past 2019 and, if no problems are found, the code will be considered for production of this section of The Astronomical Almanac.

  7. Results from the use of the X-ray reverberation model KYNREFREV in XSPEC

    NASA Astrophysics Data System (ADS)

    Caballero-Garcia, M.

    2017-10-01

    X-ray reverberation mapping has been revealed to be a valuable tool for knowing the physical condition of the accreting black holes and the matter that surrounds them. This is an important case of interest for the exploitation of the data from the next generation of big X-ray satellites (i.e. Athena). A new model has been developed for the use of X-ray astronomical data, mainly through both timing and spectroscopy techniques. Here we present the results obtained by using the KYNREFREV model in the fits of X-ray reverberation time-lags in a sample of Active Galactic Nuclei using XSPEC. The derived constraints on the accretion disc-corona geometry will be discussed.

  8. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  9. The ASTRO-H (Hitomi) X-Ray Astronomy Satellite

    NASA Technical Reports Server (NTRS)

    Takahashi, Tadayuki; Kokubun, Motohide; Mitsuda, Kazuhisa; Kelley, Richard; Ohashi, Takaya; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; hide

    2016-01-01

    The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E greater than 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.

  10. The ASTRO-H (Hitomi) x-ray astronomy satellite

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Kokubun, Motohide; Mitsuda, Kazuhisa; Kelley, Richard; Ohashi, Takaya; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Marshall; Bialas, Thomas; Blandford, Roger; Boyce, Kevin; Brenneman, Laura; Brown, Greg; Bulbul, Esra; Cackett, Edward; Canavan, Edgar; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gilmore, Kirk; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haas, Daniel; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harayama, Atsushi; Harrus, Ilana; Hatsukade, Isamu; Hayashi, Takayuki; Hayashi, Katsuhiro; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Yoshiyuki; Inoue, Hajime; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishimura, Kosei; Ishisaki, Yoshitaka; Itoh, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Jewell, Chris; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kara, Erin; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kawano, Taro; Kawasaki, Shigeo; Khangulyan, Dmitry; Kilbourne, Caroline; Kimball, Mark; King, Ashley; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, François; Lee, Shiu-Huang; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Masters, Candace; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McGuinness, Daniel; McNamara, Brian; Mehdipour, Missagh; Miko, Joseph; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Moroso, Franco; Moseley, Harvey; Muench, Theodore; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakano, Toshio; Nakashima, Shinya; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nobukawa, Kumiko; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frederik; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Pontius, James; Porter, F. Scott; Pottschmidt, Katja; Ramsey, Brian; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Saito, Shinya; Sakai, Shin-ichiro; Sakai, Kazuhiro; Sameshima, Hiroaki; Sasaki, Toru; Sato, Goro; Sato, Yoichi; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shidatsu, Megumi; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueda, Shutaro; Ueno, Shiro; Uno, Shin'ichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Watanabe, Tomomi; Werner, Norbert; Wik, Daniel; Wilkins, Dan; Williams, Brian; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen

    2016-07-01

    The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.

  11. POLIX: A Thomson X-ray polarimeter for a small satellite mission

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit; Gopala Krishna, M. R.; Puthiya Veetil, Rishin

    2016-07-01

    POLIX is a Thomson X-ray polarimeter for a small satellite mission of ISRO. The instrument consists of a collimator, a scatterer and a set proportional counters to detect the scattered X-rays. We will describe the design, specifications, sensitivity, and development status of this instrument and some of the important scientific goals. This instrument will provide unprecedented opportunity to measure X-ray polarisation in the medium energy range in a large number of sources of different classes with a minimum detectable linear polarisation degree of 2-3%. The prime objects for observation with this instrument are the X-ray bright accretion powered neutron stars, accreting black holes in different spectral states, rotation powered pulsars, magnetars, and active galactic nuclei. This instrument will be a bridge between the soft X-ray polarimeters and the Compton polarimeters.

  12. Upper limits for X-ray emission from Jupiter as measured from the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Culhane, J. L.; Hawkins, F. J.

    1975-01-01

    X-ray telescopic observations are made by the Copernicus satellite for detecting X-ray emission from Jupiter analogous to X-rays from terrestrial aurorae. Values of X-ray fluxes recorded by three Copernicus detectors covering the 0.6 to 7.5 keV energy range are reported. The detectors employed are described and the times at which the observations were made are given. Resulting upper-limit spectra are compared with previous X-ray observations of Jupiter. The upper-limit X-ray fluxes are discussed in terms of magnetospheric activity on Jupiter.

  13. The Infrared Astronomical Satellite (IRAS) mission

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  14. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.

  15. MARXS: A Modular Software to Ray-trace X-Ray Instrumentation

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam

    2017-12-01

    To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.

  16. Satellite services system analysis study. Volume 3A: Service equipment requirements, appendix

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Spacecraft descriptions and mission sequences, mission and servicing operations functional analyses, servicing requirements, and servicing equipment are discussed for five reference satellites: the X-ray Timing Explorer, the Upper Atmospheric Research Satellite, the Advanced X-ray Astrophysics Facility, the Earth Gravity Field Survey Mission, and the Orbiting Astronomical Observatory.

  17. Time-domain Astronomy with the Advanced X-ray Imaging Satellite

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard

    2018-01-01

    The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.

  18. Onboard data-processing architecture of the soft X-ray imager (SXI) on NeXT satellite

    NASA Astrophysics Data System (ADS)

    Ozaki, Masanobu; Dotani, Tadayasu; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.

    2004-09-01

    NeXT is the X-ray satellite proposed for the next Japanese space science mission. While the satellite total mass and the launching vehicle are similar to the prior satellite Astro-E2, the sensitivity is much improved; it requires all the components to be lighter and faster than previous architecture. This paper shows the data processing architecture of the X-ray CCD camera system SXI (Soft X-ray Imager), which is the top half of the WXI (Wide-band X-ray Imager) of the sensitivity in 0.2-80keV. The system is basically a variation of Astro-E2 XIS, but event extraction speed is much faster than it to fulfill the requirements coming from the large effective area and fast exposure period. At the same time, data transfer lines between components are redesigned in order to reduce the number and mass of the wire harnesses that limit the flexibility of the component distribution.

  19. Lifting the veil on the X-ray universe

    NASA Astrophysics Data System (ADS)

    1999-11-01

    Universe. The mission will study X-rays that originate from "vampire stars" that feed upon their companions, where intense gravitational fields swirl matter from one sphere to the other in strange and terrifying ballets. XMM's high-speed cameras will examine celestial sources whose X-rays pulse rhythmically and mysteriously, and those that flash briefly, pinpointing perhaps gigantic explosions that result from colliding black holes in far off galaxies. XMM will delve into enigmatic black holes, cosmic dustbins that consign matter and light to oblivion, where tired X-rays have lost energy and time itself is slowing down. The golden X-ray eyes of ESA's observatory will try to make sense of a 'bigger picture', ascertaining how galaxies aggregate millions of stars, how these galaxies themselves form clusters and groups scattered across cosmic space. XMM will also attempt to understand the nature of the invisible dark matter that fills interstellar space. A high-flying mission The XMM spacecraft, the largest science satellite ever built in Europe, is due to be launched in December 1999 by an Ariane-5 from the European Spaceport in Kourou. After being released by the launcher, XMM will be placed in a highly eccentric 48-hour orbit, rising to a distance of 114 000 km from the Earth, then returning to within 7 000 km of our planet. This orbit has been chosen for several reasons. It offers an optimal contact between ground tracking stations and the satellite; it will allow the satellite to pass rapidly through the Earth's radiation belts which could harm its delicate science instruments; and above all it will offer astronomers the longest possible observation periods. Note to editors: No X-rays from space can penetrate the Earth's atmosphere so all X-ray astronomy is carried out with instruments on rockets, stratospheric balloons or satellites. X-rays from the Sun were first detected during sounding rocket flights in the 1950s. By 1970, more than forty X-rays sources had been

  20. Soft X-ray study of solar wind charge exchange from the Earth's magnetosphere : Suzaku observations and a future X-ray imaging mission concept

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Ishikawa, K.; Miyoshi, Y.; Fujimoto, R.; Terada, N.; Kasahara, S.; Fujimoto, M.; Mitsuda, K.; Nishijo, K.; Noda, A.

    2013-12-01

    , Ishikawa et al. have conducted the systematic search of the Suzaku's 6 years archival data for the SWCX events. From ~2000 data sets, ~40 showed correlations between the X-ray light curve and solar wind flux. The SWCX emissivity is calculated in each observation by normalizing the observed X-ray flux by the solar wind flux observed as ACE and WIND, and is discussed in the context of the exospheric neutral distribution and magnetospheric structure. These soft X-ray studies with Earth-orbiting satellites are now leading X-ray astronomers and space plasma physicists to propose an X-ray imaging mission of the Earth's magnetosphere. Soft X-ray imaging from high altitude (e.g., the Moon orbit) offers the capability of mapping plasma structures at <0.1 Re scale and time cadence at X-ray imaging spectrometer composed of ultra light-weight X-ray telescopes and active pixel sensors will be onboard. It is based on the instrument proposed for Japanese exploration to Jupiter (Ezoe et al. 2013).

  1. Comparing Data from Telescopic X-Ray Instruments: Can We Trust All Satellites?

    NASA Astrophysics Data System (ADS)

    Joyce, Quianah T.; Fortenberry, Alexander; Gendre, Bruce

    2017-01-01

    In astronomy and astrophysics, X-ray emissions from cosmic entities aid in revealing what type of sources they emanate from. Swift, NASA’s latest X-ray satellite, has not been operating at its intended configurations. The satellite is experiencing difficulties maintaining a stable temperature in its charge capture device. This research intends to determine if this complication causes discrepancies in Swift’s collected data by using gamma-ray burst data. Gamma-ray bursts are excellent comparison candidates due to their brightness and fluctuations. We compared archived data of GRB 130427A and GRB 090423A from Swift and the European Space Agency’s XMM-Newton observatory. Next, we reduced the data and produced the respective spectra. We then analyzed and compared the spectra to one another to find any discrepancies. We have determined, based on data analysis of the spectra, that Swift is working properly despite the cooling malfunction.

  2. The Advanced X-ray Imaging Satellite (AXIS)

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.; Mushotzky, Richard

    2017-08-01

    The Advanced X-ray Imaging Satellite (AXIS) will follow in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10keV band. These capabilities will enable major advances in many of the most active areas of astrophysics, including (i) mapping event horizon scale structure in AGN accretion disks and the determination of supermassive black hole (SMBH) spins through monitoring of gravitationally-microlensed quasars; (ii) dramatically deepening our understanding of AGN feedback in galaxies and galaxy clusters out to high-z through the direct imaging of AGN winds and the interaction of jets with the hot interstellar/intracluster medium; (iii) understanding the fueling of AGN by probing hot flows inside of the SMBH sphere of influence; (iv) obtaining geometric distance measurements using dust scattering halos. With a nominal 2028 launch, AXIS will be enormously synergistic with LSST, ALMA, WFIRST and ATHENA, and will be a valuable precursor to Lynx. AXIS is enabled by breakthroughs in the construction of light-weight X-ray optics from mono-crystalline silicon blocks, building on recent developments in the semiconductor industry. Here, we describe the straw-man concept for AXIS, some of the high profile science that this observatory will address, and how you can become involved.

  3. JEUMICO: Czech-Bavarian astronomical X-ray optics project

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Döhring, T.

    2017-07-01

    Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  4. Crystals for astronomical X-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Burek, A.

    1976-01-01

    Crystal spectrometric properties and the factors that affect their measurement are discussed. Theoretical and experimental results on KAP are summarized and theoretical results based on the dynamical theory of X-ray diffraction are given for the acid phthalates as well as for the commonly used planes of ADP, PET and EDDT. Anomalous dispersion is found to be important for understanding the details of crystal Bragg reflection properties at long X-ray wavelengths and some important effects are pointed out. The theory of anomalous dispersion is applied to explain the anomalous reflectivity exhibited by KAP at 23.3 A.

  5. X-Ray Snapshots Capture the First Cries of Baby Stars

    NASA Astrophysics Data System (ADS)

    2000-11-01

    activities, however, have remained hidden until now, embedded in the dense envelopes. Previous X-ray telescopes--namely the Japan-U.S. Advanced Satellite for Cosmology and Astrophysics and the German-UK-US Roentgen Satellite--discovered sporadic X rays from several Class-I protostars. These satellites did not have enough spatial resolution nor sensitivity, however, to resolve the large percentage of protostars deep inside crowded cloud cores. Movie in X-ray band of rho Ophiuchi molecular cloud core F Movie in X-ray band of rho Ophiuchi molecular cloud core F. The green bar indicates the time from 0 hours to 27 hours by the length. (Click Image to View Movie) With Chandra, astronomers from Penn State and Kyoto University in Japan have detected X rays from 17 Class-I protostars in a region with 22 known "infrared" Class-I sources. These protostars are located in the rho Ophiuchi molecular cloud 500 light years from Earth in constellation Ophiuchi. The astronomers also saw nearly a dozen X-ray flares over a 27-hour period (*see figure 1 and movie). "Virtually all the Class I protostars in the rho molecular cloud may emit X rays with extremely violent and frequent flare activity," said Kensuke Imanishi of Kyoto University, lead investigator of the rho Ophiuchi observation. "The X-ray fluxes in the flares we saw were up to 10,000 to 100,000 brighter than those in our Sun's flares." Probing deeply with Chandra into a different star-formation region, 1400 light years from Earth in constellation Orion, a second team of astronomers led by Tsuboi observed for the first time activity from Class-0 protostars. Up until now, only the protostar envelope had been seen. In the Class-0 phase, a dense molecular cloud and heavy accretion of gas onto the newly forming star enshroud the region and attenuate even the most penetrating X rays. Chandra, however, had the sensitivity to detect X-ray activity. "The X rays are heavily absorbed, possibly by a large amount of cloud gas," said Tsuboi. "It

  6. Estimate of Solar Maximum Using the 1-8 Angstrom Geostationary Operational Environmental Satellites X-Ray Measurements

    DTIC Science & Technology

    2014-12-12

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0005 TR-2015-0005 ESTIMATE OF SOLAR MAXIMUM USING THE 1–8 Å GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES X... Geostationary Operational Environmental Satellites X-Ray Measurements (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6...of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental

  7. A CATALOG OF SOLAR X-RAY PLASMA EJECTIONS OBSERVED BY THE SOFT X-RAY TELESCOPE ON BOARD YOHKOH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomczak, M.; Chmielewska, E., E-mail: tomczak@astro.uni.wroc.pl, E-mail: chmielewska@astro.uni.wroc.pl

    2012-03-01

    A catalog of X-ray plasma ejections (XPEs) observed by the Soft X-ray Telescope on board the Yohkoh satellite has been recently developed in the Astronomical Institute of University of Wroclaw. The catalog contains records of 368 events observed in years 1991-2001 including movies and cross-references to associated events like flares and coronal mass ejections (CMEs). One hundred sixty-three XPEs out of 368 in the catalog were not reported until now. A new classification scheme of XPEs is proposed in which morphology, kinematics, and recurrence are considered. The relation between individual subclasses of XPEs and the associated events was investigated. Themore » results confirm that XPEs are strongly inhomogeneous, responding to different processes that occur in the solar corona. A subclass of erupting loop-like XPEs is a promising candidate to be a high-temperature precursor of CMEs.« less

  8. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  9. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Takabe, Hideaki; Yamamoto, Norimasa; Salzmann, David; Wang, Feilu; Nishimura, Hiroaki; Li, Yutong; Dong, Quanli; Wang, Shoujun; Zhang, Yi; Rhee, Yong-Joo; Lee, Yong-Woo; Han, Jae-Min; Tanabe, Minoru; Fujiwara, Takashi; Nakabayashi, Yuto; Zhao, Gang; Zhang, Jie; Mima, Kunioki

    2009-11-01

    X-ray spectroscopy is an important tool for understanding the extreme photoionization processes that drive the behaviour of non-thermal equilibrium plasmas in compact astrophysical objects such as black holes. Even so, the distance of these objects from the Earth and the inability to control or accurately ascertain the conditions that govern their behaviour makes it difficult to interpret the origin of the features in astronomical X-ray measurements. Here, we describe an experiment that uses the implosion driven by a 3TW, 4kJ laser system to produce a 0.5keV blackbody radiator that mimics the conditions that exist in the neighbourhood of a black hole. The X-ray spectra emitted from photoionized silicon plasmas resemble those observed from the binary stars Cygnus X-3 (refs 7, 8) and Vela X-1 (refs 9, 10 11) with the Chandra X-ray satellite. As well as demonstrating the ability to create extreme radiation fields in a laboratory plasma, our theoretical interpretation of these laboratory spectra contrasts starkly with the generally accepted explanation for the origin of similar features in astronomical observations. Our experimental approach offers a powerful means to test and validate the computer codes used in X-ray astronomy.

  10. Digitization and Position Measurement of Astronomical Plates of Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Yan, D.; Yu, Y.; Zhang, H. Y.; Qiao, R. C.

    2014-05-01

    Using the advanced commercial scanners to digitize astronomical plates may be a simple and effective way. In this paper, we discuss the method of digitizing and astrometrically reducing six astronomical plates of Saturnian satellites, which were taken from the 1 m RCC (Ritchey Chretien Coude) telescope of Yunnan Observatory in 1988, by using the 10000XL scanner of Epson. The digitized images of the astronomical plates of Saturnian satellites are re-reduced, and the positions of Saturnian satellites based on the UCAC2 (The Second US Naval Observatory CCD Astrograph Catalog) catalogue are given. A comparison of our measured positions with the IMCCE (Institut de Mecanique Celeste et de Calcul des Ephemerides) ephemeris of Saturnian satellites shows the high quality of our measurements, which have an accuracy of 106 mas in right ascension and 89 mas in declination. Moreover, our measurements appear to be consistent with this ephemeris within only about 56 mas in right ascension and 9 mas in declination.

  11. X Persei - correlation between H-alpha and X-ray variability

    NASA Astrophysics Data System (ADS)

    Zamanov, R.; Stoyanov, K. A.; Petrov, N.; Nikolov, Y.; Marchev, D.; Wolter, U.

    2018-03-01

    We performed H-alpha spectroscopic observations of the Be/X-ray binary X Per, optical counterpart of the slow X-ray pulsar 4U 0352+30, using the 2.0m telescope of the Rozhen National Astronomical Observatory, Bulgaria and the 1.2m TIGRE telescope located in Mexico.

  12. Processings of the Workshop on Electron Contamination in X-Ray Astronomy Experiments. [proceedings of conference on effects of extraterrestrial radiation

    NASA Technical Reports Server (NTRS)

    Holt, S. S. (Editor)

    1974-01-01

    The proceedings of a conference to investigate the effects of extraterrestrial radiation and particle contamination of X-ray astronomical data are presented. The subjects discussed include the following: (1) electrons at low altitudes which affect soft X-ray astronomy, (2) the geographical distribution of 100 keV electrons above the earth's atmosphere, (3) midlatitude electron precipitation, (4) particle background observed by X-ray detectors on board Copernicus satellite, and (5) a survey of trapped low energy electrons near the inner boundary of the inner radiation zone as determined by OSO-7.

  13. Infrared Astronomical Satellite View of the Sky

    NASA Image and Video Library

    2009-11-03

    Nearly the entire sky, as seen in infrared wavelengths and projected at one-half degree resolution, is shown in this image, assembled from six months of data from the NASA Infrared Astronomical Satellite, or IRAS.

  14. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  15. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  16. Recent results from the Japanese X-ray astronomy satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.

    1986-01-01

    Observations of neutron stars and their environments, and the emission and absorption of iron, obtained with the Hakucho and Tenma satellites, are examined. The characteristics of X-ray bursts, neutron stars, and accretion disks, in particular spectra, color and effective temperatures, blackbody temperature and radius, the emissivity factor, and the Eddington limit luminosity, are discussed. Consideration is given to the rapid burster discovered by Lewin et al. (1976) and potential blackhole sources. 43 references.

  17. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  18. Development of a mercuric iodide solid state spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Vallerga, J.

    1983-01-01

    Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.

  19. Czechoslovak Replica X-Ray Mirrors for Astronomical Applications

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Valnicek, B.

    Imaging X-ray mirrors has been developed in Czechoslovakia since 1970 by a way of two different replica technologies based on galvanoplastics and reactoplastics as a natural part of Czechoslovak X-ray astronomy program. Until now about 30 mirros with diameters between 1.7 and 24 cm were manufactured. Seven mirrors were flown in space experiments. The new technology used since 1981 allows to produce light-weight X-ray mirrors at relatively very low cost. The technology offers interesting possibilities in construction of (1) large arrays of identical optical systems, (2) very small (microscopic) mirros and (3) lobster-eye type optics. Advantages and drawbacks of replica techology are discussed.

  20. X-ray optic developments at NASA's MSFC

    NASA Astrophysics Data System (ADS)

    Atkins, C.; Ramsey, B.; Kilaru, K.; Gubarev, M.; O'Dell, S.; Elsner, R.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    2013-05-01

    NASA's Marshall Space Flight Center (MSFC) has a successful history of fabricating optics for astronomical x-ray telescopes. In recent years optics have been created using electroforming replication for missions such as the balloon payload HERO (High energy replicated optics) and the rocket payload FOXSI (Focusing Optics x-ray Solar Imager). The same replication process is currently being used in the creation seven x-ray mirror modules (one module comprising of 28 nested shells) for the Russian ART-XC (Astronomical Rontgen Telescope) instrument aboard the Spectrum-Roentgen-Gamma mission and for large-diameter mirror shells for the Micro-X rocket payload. In addition to MSFC's optics fabrication, there are also several areas of research and development to create the high resolution light weight optics which are required by future x-ray telescopes. Differential deposition is one technique which aims to improve the angular resolution of lightweight optics through depositing a filler material to smooth out fabrication imperfections. Following on from proof of concept studies, two new purpose built coating chambers are being assembled to apply this deposition technique to astronomical x-ray optics. Furthermore, MSFC aims to broaden its optics fabrication through the recent acquisition of a Zeeko IRP 600 robotic polishing machine. This paper will provide a summary of the current missions and research and development being undertaken at NASA's MSFC.

  1. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    In this photograph, the Chandra X-Ray Observatory (CXO) was installed and mated to the Inertial Upper Stage (IUS) inside the Shuttle Columbia's cargo bay at the Kennedy Space Center. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, the CXO was carried into low-Earth orbit by the Space Shuttle Columbia (STS-93 mission) on July 22, 1999. The Observatory was deployed from the Shuttle's cargo bay at 155 miles above the Earth. Two firings of an attached IUS rocket, and several firings of its own onboard rocket motors, after separating from the IUS, placed the Observatory into its working orbit. The IUS is a solid rocket used to place spacecraft into orbit or boost them away from the Earth on interplanetary missions. Since its first use by NASA in 1983, the IUS has supported a variety of important missions, such as the Tracking and Data Relay Satellite, Galileo spacecraft, Magellan spacecraft, and Ulysses spacecraft. The IUS was built by the Boeing Aerospace Co., at Seattle, Washington and managed by the Marshall Space Flight Center.

  2. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  3. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  4. Si(Li) X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    The general considerations involved in the choice of Si(Li) as a non-dispersive spectrometer for X-ray astronomy are discussed. In particular, its adaptation to HEAO-B is described as an example of the space-borne application of Si(Li) technology.

  5. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  7. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  8. In-Orbit Performance of the Digital Electronics for the X-Ray Microcalorimeter Onboard the Hitomi Satellite

    NASA Astrophysics Data System (ADS)

    Tsujimoto, M.; Tashiro, M. S.; Ishisaki, Y.; Yamada, S.; Seta, H.; Mitsuda, K.; Boyce, K. R.; Eckart, M. E.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.; Kelley, R. L.

    2018-03-01

    The pulse shape processor is the onboard digital electronics unit of the X-ray microcalorimeter instrument—the soft X-ray spectrometer—onboard the Hitomi satellite. It processes X-ray events using the optimum filtering with limited resources. It was operated for 36 days in orbit continuously without issues and met the requirement of processing a 150 s^{-1} event rate during the observation of bright sources. Here, we present the results obtained in orbit, focusing on its performance as the onboard digital signal processing unit of an X-ray microcalorimeter.

  9. Atomic Layer Deposition Re Ective Coatings For Future Astronomical Space Telescopes And The Solar Corona Viewed Through The Minxss (Miniature X-Ray Solar Spectrometer) Cubesats

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Samuel

    2017-11-01

    Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty

  10. Chandra Discovers X-ray Source at the Center of Our Galaxy

    NASA Astrophysics Data System (ADS)

    2000-01-01

    observations," Baganoff said. If Sagittarius A* is powered by a supermassive black hole, astronomers expected that there would be a lot of matter to suck up in a crowded place like the galactic center. The faintness of the source may indicate a dearth of matter floating toward the black hole or it may indicate that the environment of the black hole is for some reason rejecting most of the infalling material. Chandra's Powerful Vision Optical telescopes such as the Hubble Space Telescope cannot see the center of our galaxy, which is enshrouded in thick clouds of dust and gas in the plane of the galaxy. However, hot gas and charged particles moving at nearly the speed of light produce X-rays that penetrate this shroud. Only a few months after its launch, Chandra accomplished what no other optical or X-ray satellite was able to do: separate the emissions from the surrounding hot gas and nearby compact sources that prevented other satellites from detecting this new X-ray source. Mark Morris of the University of California at Los Angeles, who has studied this region intensely for 20 years, called Chandra's data "a gold mine" for astronomers. "With more observing time on Chandra in the next two or three years, we will be able to build up a spectrum that will allow us to rule out various classes of objects and either emission," Baganoff said. "If we show that the emission is from a supermassive black hole, we will then be set to begin a detailed study of the X-ray emission from the nearest analog of a quasar or active galactic nucleus." Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, was conceived and developed for NASA by Penn State University and MIT under the leadership of Penn State Professor Gordon Garmire. Related Press Press Room: Sagittarius A* Press Release (06 Jan 03) Press Room: Galactic Center (Survey) Press Release (09 Jan 02) To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0204/index

  11. Invited Review Article: The Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  12. Invited review article: The Chandra X-ray Observatory.

    PubMed

    Schwartz, Daniel A

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  13. Handbook Of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  14. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement

    NASA Technical Reports Server (NTRS)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, T. J. (Editor)

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) mission is described. An overview of the mission, a description of the satellite and its telescope system, and a discussion of the mission design, requirements, and inflight modifications are given. Data reduction, flight tests, flux reconstruction and calibration, data processing, and the formats of the IRAS catalogs and atlases are also considered.

  15. X-Ray astronomy the 1980's. [conferences

    NASA Technical Reports Server (NTRS)

    Holt, S. S. (Editor)

    1981-01-01

    The status of the current understanding of important problems to which X-ray astronomical techniques can be applied is summarized and the prospects for such research in the future is discussed. Relatively near-term X-ray astronomical research objectives are presented. The importance of a continuing program of balloon-borne research as a cost effective means by which studies at energies in excess of 20 keV may be performed is emphasized. The scientific opportunities presented by the Space Transpotation System to develop low cost experiments which are beyond the scope of balloon-borne capabilities are also highlighted.

  16. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  17. The UHURU X-ray instrument.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Austin, G.; Mickiewicz, S.; Goddard, R.

    1972-01-01

    On Dec. 12, 1970, the UHURU X-ray observatory was launched into equatorial orbit with the prime mission of conducting an all-sky survey of astronomical X-ray sources with intensities of 0.00005 Sco-X1 or greater. The X-ray detection system contains 12 gas-filled proportional counters, 6 behind each collimator. The aspect system is discussed together with the structure, the pulse height analyzer, the command system, the calibration system, and the power distribution system. Pulse shape discrimination circuits used on UHURU use the same technique that was used on the system originally developed for large area proportional counters described by Gorenstein and Mickiewicz (1968).

  18. 'Taking X-ray phase contrast imaging into mainstream applications' and its satellite workshop 'Real and reciprocal space X-ray imaging'.

    PubMed

    Olivo, Alessandro; Robinson, Ian

    2014-03-06

    A double event, supported as part of the Royal Society scientific meetings, was organized in February 2013 in London and at Chicheley Hall in Buckinghamshire by Dr A. Olivo and Prof. I. Robinson. The theme that joined the two events was the use of X-ray phase in novel imaging approaches, as opposed to conventional methods based on X-ray attenuation. The event in London, led by Olivo, addressed the main roadblocks that X-ray phase contrast imaging (XPCI) is encountering in terms of commercial translation, for clinical and industrial applications. The main driver behind this is the development of new approaches that enable XPCI, traditionally a synchrotron method, to be performed with conventional laboratory sources, thus opening the way to its deployment in clinics and industrial settings. The satellite meeting at Chicheley Hall, led by Robinson, focused on the new scientific developments that have recently emerged at specialized facilities such as third-generation synchrotrons and free-electron lasers, which enable the direct measurement of the phase shift induced by a sample from intensity measurements, typically in the far field. The two events were therefore highly complementary, in terms of covering both the more applied/translational and the blue-sky aspects of the use of phase in X-ray research. 

  19. NRAO Teams With NASA Gamma-Ray Satellite

    NASA Astrophysics Data System (ADS)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  20. In-orbit operation of the soft x-ray spectrometer onboard the Hitomi satellite

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Masahiro; Mitsuda, Kazuhisa; Kelley, Richard L.; den Herder, Jan-Willem; Bialas, Thomas G.; Boyce, Kevin R.; Chiao, Meng P.; de Vries, Cor P.; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kilbourne, Caroline A.; Koyama, Shu; Leutenegger, Maurice A.; Masters, Candace M.; Mitsuishi, Ikuyuki; Noda, Hirofumi; Okajima, Takashi; Okamoto, Atsushi; Porter, Frederic S.; Sato, Kosuke; Sato, Yohichi; Savinell, Joseph C.; Sawada, Makoto; Seta, Hiromi; Shirron, Peter J.; Sneiderman, Gary A.; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Watanabe, Tomomi; Yamada, Shinya; Yamasaki, Noriko Y.; Yatsu, Yoichi

    2018-01-01

    We summarize all of the in-orbit operations of the soft x-ray spectrometer (SXS) onboard the ASTRO-H (Hitomi) satellite. The satellite was launched on February 17, 2016, and the communication with the satellite ceased on March 26, 2016. The SXS was still in the commissioning phase, in which the set-ups were progressively changed. This paper is intended to serve as a concise reference of the events in orbit in order to properly interpret the SXS data taken during its short lifetime and as a test case for planning the in-orbit operation for future microcalorimeter missions.

  1. Overview of the Chandra X-Ray Observatory Facility

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory (originally called the Advanced X-Ray Astrophysics Facility - AXAF) is the X-Ray component of NASA's "Great Observatory" Program. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to scientific proposals for its use. The Observatory is the product of the efforts of many organizations in the United States and Europe. The Great Observatories also include the Hubble Space Telescope for space-based observations of astronomical objects primarily in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma- Ray Observatory that was designed to observe gamma-ray emission from astronomical objects, and the soon-to-be-launched Space Infrared Telescope Facility (SIRTF). The Chandra X-Ray Observatory (hereafter CXO) is sensitive to X-rays in the energy range from below 0.1 to above 10.0 keV corresponding to wavelengths from 12 to 0.12 nanometers. The relationship among the various parts of the electromagnetic spectrum, sorted by characteristic temperature and the corresponding wavelength, is illustrated. The German physicist Wilhelm Roentgen discovered what he thought was a new form of radiation in 1895. He called it X-radiation to summarize its properties. The radiation had the ability to pass through many materials that easily absorb visible light and to free electrons from atoms. We now know that X-rays are nothing more than light (electromagnetic radiation) but at high energies. Light has been given many names: radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation are all different forms. Radio waves are composed of low energy particles of light (photons). Optical photons - the only photons perceived by the human eye - are a million times more energetic than the typical radio photon, whereas the energies of X-ray photons range from hundreds to thousands of times higher than that of optical photons. Very low temperature systems

  2. 0.5-4 Å X-RAY BRIGHTENINGS IN THE MAGNETOSPHERE OBSERVED BY THE GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tetsuya T.; Miyoshi, Y., E-mail: tyamamot@stelab.nagoya-u.ac.jp

    We found 217 X-ray brightening events in Earth's magnetosphere. These events occur in the high-energy band (0.5-4 Å) of the Geostationary Operational Environmental Satellite (GOES) X-ray light curves, although GOES X-ray light curves are frequently used as indices of solar flare magnitudes. We found that (1) brightening events are absent in the low-energy band (1-8 Å), unlike those associated with solar flares; and (2) the peak fluxes, durations, and onset times of these events depend on the magnetic local time (MLT). The events were detected in 2006, 2010, and 2011 at around 19-10 MLT, that is, from night to morning.more » They typically lasted for 2-3 hr. Their peak fluxes are less than 3 × 10{sup –8} W m{sup –2} in the 0.5-4 Å band and are maximized around 0-5 MLT. From these MLT dependencies, we constructed an MLT time profile of X-ray brightening events. Because 0.5-4 and 1-8 Å fluxes were observed and had the same order of magnitude when GOES 14 passed through Earth's shadow, we expected that X-ray brightening events in the 1-8 Å band are obscured by high-background X-ray fluxes coming from the Sun. We also found coincidence between X-ray brightening events and aurora substorms. In the majority of our events, the minimum geomagnetic field values (AL index) are below –400 nT. From these results and consideration of the GOES satellite orbit, we expect that these X-ray brightening events occur in the magnetosphere. We cannot, however, clarify the radiative process of the observed X-ray brightening events.« less

  3. Monte-Carlo Estimation of the Inflight Performance of the GEMS Satellite X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Kitaguchi, Takao; Tamagawa, Toru; Hayato, Asami; Enoto, Teruaki; Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko; Black, Kevin; Hill, Joanne; Jahoda, Keith; hide

    2014-01-01

    We report a Monte-Carlo estimation of the in-orbit performance of a cosmic X-ray polarimeter designed to be installed on the focal plane of a small satellite. The simulation uses GEANT for the transport of photons and energetic particles and results from Magboltz for the transport of secondary electrons in the detector gas. We validated the simulation by comparing spectra and modulation curves with actual data taken with radioactive sources and an X-ray generator. We also estimated the in-orbit background induced by cosmic radiation in low Earth orbit.

  4. Monte-Carlo estimation of the inflight performance of the GEMS satellite x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Takao; Tamagawa, Toru; Hayato, Asami; Enoto, Teruaki; Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko; Black, Kevin; Hill, Joanne; Jahoda, Keith; Krizmanic, John; Sturner, Steven; Griffiths, Scott; Kaaret, Philip; Marlowe, Hannah

    2014-07-01

    We report a Monte-Carlo estimation of the in-orbit performance of a cosmic X-ray polarimeter designed to be installed on the focal plane of a small satellite. The simulation uses GEANT for the transport of photons and energetic particles and results from Magboltz for the transport of secondary electrons in the detector gas. We validated the simulation by comparing spectra and modulation curves with actual data taken with radioactive sources and an X-ray generator. We also estimated the in-orbit background induced by cosmic radiation in low Earth orbit.

  5. Hinode Satellite Captures Total Solar Eclipse Video Aug. 21

    NASA Image and Video Library

    2017-08-21

    The Japan Aerospace Exploration Agency, the National Astronomical Observatory of Japan and NASA released this video of Aug. 21 total solar eclipse taken by the X-ray telescope aboard the Hinode joint solar observation satellite as it orbited high above the Pacific Ocean.

  6. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; hide

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  7. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  8. The HEAO A-1 X Ray Source Catalog (Wood Et Al. 1984): Documentation for the Machine-Readable Version

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    1990-01-01

    The machine-readable version of the catalog, as it is currently being distributed from the Astronomical Data Center, is described. The catalog is a compilation of data for 842 sources detected with the U.S. Naval Research Laboratory Large Area Sky Survey Experiment flown aboard the HEAO 1 satellite. The data include source identifications, positions, error boxes, mean X-ray intensities, and cross identifications to other source designations.

  9. X-ray Flaring Activity in HBL Source PKS 2155-304

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2013-08-01

    We report an increasing X-ray flux through 0.3-10 keV band in the high-energy peaked BL Lacertae source PKS 2155-304 (z=0.117) which has been observed three times between 2013 July 25 and August 3 with the X-ray Telescope (XRT) onboard the Swift satellite. Using the data provided at the website http://www.swift.psu.edu/monitoring/ we have found that the object increased its 0.3-10 keV flux almost 3-times from 0.98+/-0.06 cts/s (July 25, ObsID=00030795114) to 2.85+/-0.08 cts/s corresponding to the observation performed July 31. The last pointing performed on August 3 (ObsID0008028002) shows even higher flux of 3.08+/-05 cts/s. No subhour flux variability at 99.9% confidence are detected from each observation, lasting 0.7 ks - 2.1 ks. On the basis of our recent study of long-term X-ray flux variability in this source (Kapanadze et al. 2013, submitted to the Monthly Notices of Royal Astronomical Society) we suggest that the similar situation was generally an indicator of the! onset of a longer-term flare with weeks-months duration. Therefore, further densely sampled observations with Swift-XRT and other X-ray instruments are highly recommended. Since X-ray flares in BL Lacertae sources are mostly followed by those in other spectral bands, we encourage intensive multiwavelength observations of PKS 2155-304.

  10. ESTIMATE OF SOLAR MAXIMUM USING THE 1-8 Å GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES X-RAY MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, L. M.; Balasubramaniam, K. S., E-mail: lwinter@aer.com

    We present an alternate method of determining the progression of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental Satellites (GOES) X-ray data in the 1-8 Å band from 1986 to the present, covering solar cycles 22, 23, and 24. The X-ray background level tracks the progression of the solar cycle through its maximum and minimum. Using the X-ray data, we can therefore make estimates of the solar cycle progression and the date of solar maximum. Based upon our analysis, we conclude that the Sun reached its hemisphere-averagedmore » maximum in solar cycle 24 in late 2013. This is within six months of the NOAA prediction of a maximum in spring 2013.« less

  11. Chandra enables study of x-ray jets

    PubMed Central

    Schwartz, Daniel

    2010-01-01

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  12. AXAF: The Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Pellerin, Charles J.; Weisskopf, Martin C.; Neal, Valerie

    2005-01-01

    X-rays are produced by violent, energetic, and explosive phenomena in the universe. The Advanced X-Ray Astrophysics Facility (AXAF) is an orbiting observatory designed to view these X-rays. The National Academy of Sciences Survey Committee on Astronomy and Astrophysics has recommended AXAF as the #1 priority among all major new astronomy programs. The scientific importance of AXAF was also highlighted by the Academy's Survey Committee on Physics. Why has AXAF earned such enthusiastic support, not only among astronomers, but also broadly within the nation's scientific community?

  13. Ray-trace analysis of glancing-incidence X-ray optical systems

    NASA Technical Reports Server (NTRS)

    Foreman, J. W., Jr.; Cardone, J. M.

    1976-01-01

    The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.

  14. Soft x-ray imager (SXI) onboard the NeXT satellite

    NASA Astrophysics Data System (ADS)

    Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu

    2006-06-01

    We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.

  15. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-09-24

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  16. Atomic Data Needs for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy; White, Nicholas E. (Technical Monitor)

    1999-01-01

    This publication contains written versions of most of the invited talks presented at the workshop on Atomic Data Needs for X-ray Astronomy which was held at NASA's Goddard Space Flight Center on December 16-1 7 1999. The idea of hosting such a workshop emerged from an imminent need to update and complete current atomic datasets in anticipation of a new era of high quality X-ray spectra starting with the launching of Chandra and XMM-Newton observatories. At first, our vision of the workshop was of a short and limited attendance event, given the specialization of the topic. But it, was soon realized, from the response to the first workshop announcement, that the topic was of much interest, to researchers working in X-ray spectra (physicists and astronomers). As a result, the workshop grew to approximately 120 participants from several countries. The kind of atomic data that interests us are those parameters needed for analysis and modeling of spectra shortward of about about 100 A and relevant to ionic species of astronomical interest. The physical mechanisms of interest in the formation of spectra include photoionization. collisional ionization, recombination (radiative and dielectronic). collisional excitation (by electrons and protons). and radiative deexcitation. Unique to X-ray spectroscopy are the ionization and excitation processes from inner-closed shells. in addition to the challenges in interpret,ing the medium resolution (epsilon/delta epsilon is about 0.05 - 0.1) data obtained by current X-ray astronomy experiments. Line wavelengths are of interest too, particularly owing to the high resolution spectra from the new experiments. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters. Spectra Modeling, and Atomic Databases. One comforting finding from the work shop is that the enthusiasm felt by X-ray astronomers about the new observational missions

  17. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  18. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-10-01

    This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)

  19. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  20. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  1. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-08-12

    NASA’s Chandra X-Ray Observatory (CXO) was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. This image was produced by combining a dozen CXO observations made of a 130 light-year region in the center of the Milky Way over the last 5 years. The colors represent low (red), medium (green) and high (blue) energy x-rays. Thanks to Chandra's unique resolving power, astronomers have now been able to identify thousands of point-like x-ray sources due to neutron stars, black holes, white dwarfs, foreground stars, and background galaxies. What remains is a diffuse x-ray glow extending from the upper left to the lower right, along the direction of the disk of the galaxy. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandra program. (NASA/CXC/UCLA/M. Muno et al.)

  2. Performance of large area x-ray proportional counters in a balloon experiment

    NASA Astrophysics Data System (ADS)

    Roy, J.; Agrawal, P. C.; Dedhia, D. K.; Manchanda, R. K.; Shah, P. B.; Chitnis, V. R.; Gujar, V. M.; Parmar, J. V.; Pawar, D. M.; Kurhade, V. B.

    2016-10-01

    ASTROSAT is India's first satellite fully devoted to astronomical observations covering a wide spectral band from optical to hard X-rays by a complement of 4 co-aligned instruments and a Scanning Sky X-ray Monitor. One of the instruments is Large Area X-ray Proportional Counter with 3 identical detectors. In order to assess the performance of this instrument, a balloon experiment with two prototype Large Area X-ray Proportional Counters (LAXPC) was carried out on 2008 April 14. The design of these LAXPCs was similar to those on the ASTROSAT except that their field of view (FOV) was 3 ∘ × 3 ∘ versus FOV of 1 ∘ × 1 ∘ for the LAXPCs on the ASTROSAT. The LAXPCs are aimed at the timing and spectral studies of X-ray sources in 3-80 keV region. In the balloon experiment, the LAXPC, associated electronics and support systems were mounted on an oriented platform which could be pre-programmed to track any source in the sky. A brief description of the LAXPC design, laboratory tests, calibration and the detector characteristics is presented here. The details of the experiment and background counting rates of the 2 LAXPCs at the float altitude of about 41 km are presented in different energy bands. The bright black hole X-ray binary Cygnus X-1 (Cyg X-1) was observed in the experiment for ˜ 3 hours. Details of Cyg X-1 observations, count rates measured from it in different energy intervals and the intensity variations of Cyg X-1 detected during the observations are presented and briefly discussed.

  3. X-Ray Flare Characteristics in lambda Eridani

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1997-01-01

    This proposal was for a joint X-ray/ultraviolet/ground-based study of the abnormal Be star lambda Eri, which has previously shown evidence of X-ray flaring from ROSAT observations in 1991. The X-ray component consisted of observations from both the ASCA and ROSAT satellites.

  4. X-Ray Flare Characteristics in Lambda Eridani

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1997-01-01

    This proposal was for a joint X-ray/ultraviolet/ground-based study of the abnormal Be star lambda Eri, which has previously shown evidence of X-ray flaring from ROSAT observations in 1991. The X-ray component consisted of observations from both the ASCA and ROSAT satellites.

  5. Laboratory Data for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.

    2000-01-01

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).

  6. Results of X-ray and optical monitoring of SCO X-1

    NASA Technical Reports Server (NTRS)

    Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.

    1974-01-01

    Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.

  7. X-ray spectroscopy of SNR E0102-72 with the ASCA satellite

    NASA Technical Reports Server (NTRS)

    Hayashi, Ichizo; Koyama, Katsuji; Ozaki, Masanobu; Miyata, Emi; Tsumeni, Hiroshi; Hughes, John P.; Petre, Robert

    1994-01-01

    The Advanced Satellite for Cosmology and Astrophysics (ASCA) satellite has obtained a moderate-resolution energy spectrum of E0102-72, the brightest Supernova Remnant (SNR) in the Small Magellanic Cloud (SMC). This paper reports on the first results of the analysis of the high quality spectrum of E0102-72. The spectrum shows resolved emission lines of He-like K alpha, H-like K alpha and K beta from oxygen, neon, and magnesium. The intensity ratios of these lines cannot be explained by a multi-component plasma model with uniform abundances, but requires abundance inhomogeneity in the plasma. We demonstrate how the spectral capabilities of the ASCA SIS make available new diagnostics of X-ray plasmas in a state of non-equilibrium ionization. Some interpretation based on the spectral analysis is also given.

  8. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; hide

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  9. Aligning, Bonding, and Testing Mirrors for Lightweight X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Saha, Timo T.; McClelland, Ryan S.; Biskach, Michael P.; Niemeyer, Jason; Schofield, Mark J.; Mazzarella, James R.; Kolos, Linette D.; Hong, Melinda M.; hide

    2015-01-01

    High-resolution, high throughput optics for x-ray astronomy entails fabrication of well-formed mirror segments and their integration with arc-second precision. In this paper, we address issues of aligning and bonding thin glass mirrors with negligible additional distortion. Stability of the bonded mirrors and the curing of epoxy used in bonding them were tested extensively. We present results from tests of bonding mirrors onto experimental modules, and on the stability of the bonded mirrors tested in x-ray. These results demonstrate the fundamental validity of the methods used in integrating mirrors into telescope module, and reveal the areas for further investigation. The alignment and integration methods are applicable to the astronomical mission concept such as STAR-X, the Survey and Time-domain Astronomical Research Explorer.

  10. Supernova SN 2014C Optical and X-Ray

    NASA Image and Video Library

    2017-01-24

    This visible-light image from the Sloan Digital Sky Survey shows spiral galaxy NGC 7331, center, where astronomers observed the unusual supernova SN 2014C . The inset images are from NASA's Chandra X-ray Observatory, showing a small region of the galaxy before the supernova explosion (left) and after it (right). Red, green and blue colors are used for low, medium and high-energy X-rays, respectively. http://photojournal.jpl.nasa.gov/catalog/PIA21088

  11. Flight programs and X-ray optics development at MSFC

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    The X-ray astronomy group at the Marshall Space Flight Center (MSFC) is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HEROES balloon payload. Our current orbital program is the fabrication of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG). A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin-shell optics to the arcsecond-level.

  12. The nature of 50 Palermo Swift-BAT hard X-ray objects through optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-Álvarez, V.; Stephen, J. B.; Ubertini, P.

    2017-06-01

    We present the nature of 50 hard X-ray emitting objects unveiled through an optical spectroscopy campaign performed at seven telescopes in the northern and southern hemispheres. These objects were detected with the Burst Alert Telescope (BAT) instrument onboard the Swift satellite and listed as of unidentified nature in the 54-month Palermo BAT catalogue. In detail, 45 sources in our sample are identified as active galactic nuclei of which, 27 are classified as type 1 (with broad and narrow emission lines) and 18 are classified as type 2 (with only narrow emission lines). Among the broad-line emission objects, one is a type 1 high-redshift quasi-stellar object, and among the narrow-line emission objects, one is a starburst galaxy, one is a X-ray bright optically normal galaxy, and one is a low ionization nuclear emission line region. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary probably with a low mass secondary star, and one is an active star. Based on observations obtained from the following observatories: Cerro Tololo Interamerican Observatory (Chile); Astronomical Observatory of Bologna in Loiano (Italy); Observatorio Astronómico Nacional (San Pedro Mártir, Mexico); Radcliffe telescope of the South African Astronomical Observatory (Sutherland, South Africa); Sloan Digital Sky Survey; Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain) and New Technology Telescope (NTT) of La Silla Observatory, Chile.

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  14. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  15. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  16. XIPE: the x-ray imaging polarimetry explorer

    NASA Astrophysics Data System (ADS)

    Soffitta, P.; Bellazzini, R.; Bozzo, E.; Burwitz, V.; Castro-Tirado, A.; Costa, E.; Courvoisier, T.; Feng, H.; Gburek, S.; Goosmann, R.; Karas, V.; Matt, G.; Muleri, F.; Nandra, K.; Pearce, M.; Poutanen, J.; Reglero, V.; Sabau Maria, D.; Santangelo, A.; Tagliaferri, G.; Tenzer, C.; Vink, J.; Weisskopf, M. C.; Zane, S.; Agudo, I.; Antonelli, A.; Attina, P.; Baldini, L.; Bykov, A.; Carpentiero, R.; Cavazzuti, E.; Churazov, E.; Del Monte, E.; De Martino, D.; Donnarumma, I.; Doroshenko, V.; Evangelista, Y.; Ferreira, I.; Gallo, E.; Grosso, N.; Kaaret, P.; Kuulkers, E.; Laranaga, J.; Latronico, L.; Lumb, D. H.; Macian, J.; Malzac, J.; Marin, F.; Massaro, E.; Minuti, M.; Mundell, C.; Ness, J. U.; Oosterbroek, T.; Paltani, S.; Pareschi, G.; Perna, R.; Petrucci, P.-O.; Pinazo, H. B.; Pinchera, M.; Rodriguez, J. P.; Roncadelli, M.; Santovincenzo, A.; Sazonov, S.; Sgro, C.; Spiga, D.; Svoboda, J.; Theobald, C.; Theodorou, T.; Turolla, R.; Wilhelmi de Ona, E.; Winter, B.; Akbar, A. M.; Allan, H.; Aloisio, R.; Altamirano, D.; Amati, L.; Amato, E.; Angelakis, E.; Arezu, J.; Atteia, J.-L.; Axelsson, M.; Bachetti, M.; Ballo, L.; Balman, S.; Bandiera, R.; Barcons, X.; Basso, S.; Baykal, A.; Becker, W.; Behar, E.; Beheshtipour, B.; Belmont, R.; Berger, E.; Bernardini, F.; Bianchi, S.; Bisnovatyi-Kogan, G.; Blasi, P.; Blay, P.; Bodaghee, A.; Boer, M.; Boettcher, M.; Bogdanov, S.; Bombaci, I.; Bonino, R.; Braga, J.; Brandt, W.; Brez, A.; Bucciantini, N.; Burderi, L.; Caiazzo, I.; Campana, R.; Campana, S.; Capitanio, F.; Cappi, M.; Cardillo, M.; Casella, P.; Catmabacak, O.; Cenko, B.; Cerda-Duran, P.; Cerruti, C.; Chaty, S.; Chauvin, M.; Chen, Y.; Chenevez, J.; Chernyakova, M.; Cheung, C. C. Teddy; Christodoulou, D.; Connell, P.; Corbet, R.; Coti Zelati, F.; Covino, S.; Cui, W.; Cusumano, G.; D'Ai, A.; D'Ammando, F.; Dadina, M.; Dai, Z.; De Rosa, A.; de Ruvo, L.; Degenaar, N.; Del Santo, M.; Del Zanna, L.; Dewangan, G.; Di Cosimo, S.; Di Lalla, N.; Di Persio, G.; Di Salvo, T.; Dias, T.; Done, C.; Dovciak, M.; Doyle, G.; Ducci, L.; Elsner, R.; Enoto, T.; Escada, J.; Esposito, P.; Eyles, C.; Fabiani, S.; Falanga, M.; Falocco, S.; Fan, Y.; Fender, R.; Feroci, M.; Ferrigno, C.; Forman, W.; Foschini, L.; Fragile, C.; Fuerst, F.; Fujita, Y.; Gasent-Blesa, J. L.; Gelfand, J.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giroletti, M.; Goetz, D.; Gogus, E.; Gomez, J.-L.; Gonzalez, D.; Gonzalez-Riestra, R.; Gotthelf, E.; Gou, L.; Grandi, P.; Grinberg, V.; Grise, F.; Guidorzi, C.; Gurlebeck, N.; Guver, T.; Haggard, D.; Hardcastle, M.; Hartmann, D.; Haswell, C.; Heger, A.; Hernanz, M.; Heyl, J.; Ho, L.; Hoormann, J.; Horak, J.; Huovelin, J.; Huppenkothen, D.; Iaria, R.; Inam Sitki, C.; Ingram, A.; Israel, G.; Izzo, L.; Burgess, M.; Jackson, M.; Ji, L.; Jiang, J.; Johannsen, T.; Jones, C.; Jorstad, S.; Kajava, J. J. E.; Kalamkar, M.; Kalemci, E.; Kallman, T.; Kamble, A.; Kislat, F.; Kiss, M.; Klochkov, D.; Koerding, E.; Kolehmainen, M.; Koljonen, K.; Komossa, S.; Kong, A.; Korpela, S.; Kowalinski, M.; Krawczynski, H.; Kreykenbohm, I.; Kuss, M.; Lai, D.; Lan, M.; Larsson, J.; Laycock, S.; Lazzati, D.; Leahy, D.; Li, H.; Li, J.; Li, L.-X.; Li, T.; Li, Z.; Linares, M.; Lister, M.; Liu, H.; Lodato, G.; Lohfink, A.; Longo, F.; Luna, G.; Lutovinov, A.; Mahmoodifar, S.; Maia, J.; Mainieri, V.; Maitra, C.; Maitra, D.; Majczyna, A.; Maldera, S.; Malyshev, D.; Manfreda, A.; Manousakis, A.; Manuel, R.; Margutti, R.; Marinucci, A.; Markoff, S.; Marscher, A.; Marshall, H.; Massaro, F.; McLaughlin, M.; Medina-Tanco, G.; Mehdipour, M.; Middleton, M.; Mignani, R.; Mimica, P.; Mineo, T.; Mingo, B.; Miniutti, G.; Mirac, S. M.; Morlino, G.; Motlagh, A. V.; Motta, S.; Mushtukov, A.; Nagataki, S.; Nardini, F.; Nattila, J.; Navarro, G. J.; Negri, B.; Negro, Matteo; Nenonen, S.; Neustroev, V.; Nicastro, F.; Norton, A.; Nucita, A.; O'Brien, P.; O'Dell, S.

    2016-07-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden.

  17. Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don

    2017-01-01

    Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.

  18. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  19. X-ray lasers: Strategic problems and potential as an in-orbit exoatmospheric ballistic missile defense system

    NASA Astrophysics Data System (ADS)

    Perusich, Karl Anthony

    1986-12-01

    The problems and potential of a single proposed ballistic missile defense system, the X-ray laser-armed satellite, are examined in this research. Specifically, the X-ray laser satellite system is examined to determine its impact on the issues of cost-effectiveness and crisis stability. To examime the cost-effectiveness and the crisis stability of the X-ray laser satellites, a simulation of a nuclear exchange was constructed. The X-ray laser satellites were assumed to be vulnerable to attack from energy satellites with limited satellite-to-satellite lethal ranges. Symmetric weapons and force postures were used. Five principal weapon classes were used in the model: ICMBs, SLBMs, X-ray laser satellites, bombers, and endo-atmospheric silo defenses. Also, the orbital dynamics of the ballistic missiles and satellites were simulated. The cost-effectiveness of the X-ray laser satellites was determined for two different operational capabilities, damage-limitation and assured destruction. The following conclusions were reached. The effects of deployment of a new weapon system on the Triad as a whole should be examined. The X-ray laser was found to have little effectiveness as a damage-limiting weapon for a defender. For an assured destruction capability, X-ray laser satellites could be part of a minimum-cost force mix with that capability.

  20. Flight Programs and X-ray Optics Development at MSFC

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, Martin

    2012-01-01

    The X-ray astronomy group at the Marshall Space Flight Center is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HERO balloon payload. Our current orbital program is the fabrication of a series of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG.) The details and status of these various programs are presented. A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin shell optics to the arcsecond-level. The status of these x-ray optics technology developments is also presented.

  1. Research in X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This research grant supported an active sounding rocket program at Penn State University over a period of over 10 years. During this period, the grant supported at least 8 graduate students in Astronomy & Astrophysics for at least a portion of their research. During the same period, our group was involved in seven sounding rocket flights, launched from White Sands, New Mexico, and from Woomera, Australia. Most of these rocket flights, and most of the work supported by this grant, involved the use of X-ray CCD cameras. The first X-ray CCD camera ever flown in space was our sounding rocket observation of SN1987A (flight 36.030 in 1987). Subsequent flights utilized improved CCD detectors, culminating in the'state-of-the-art EEV detector developed for our CUBIC mission, which was flown on 36.093 last May. Data from the last three flights, which observed the diffuse X-ray background with CCDS, include detection of the OVII He(alpha) line in the high latitude diffuse background and detection of the Mg XI He(alpha) line in the North Polar Spur. These results have been reported at meetings of the American Astronomical Society and the SPIE. The analysis of flights 36.092 and 36.106 is part of Jeff Mendenhall's PhD thesis and will be published in the Astrophysical Journal next year. The 36.093 data are currently being analyzed by PhD student Laura Cawley. From 1990 to 1996 this grant supported our development and launch of the CUBIC instrument on the SAC-B satellite, which was designed to measure the spectrum of the soft X-ray diffuse background with moderate energy resolution and high S/N ratio. Unfortunately, this mission terminated shortly after launch due to a failure of the Pegasus XL launch vehicle. This work resulted in publication of 4 papers in the SPIE Proceedings and four others in refereed journals, in addition to several other conference proceedings and contributed papers. In addition to the CCD flights described above, this grant has supported preliminary

  2. X-ray nova and LMXB V404 Cyg in rare outburst

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2015-06-01

    V404 Cyg, an X-ray nova and a low mass X-ray binary (LMXB) with black hole component, is undergoing its first reported X-ray and optical outburst since 1989. Large scale, rapid variations are being reported in wavelengths from X-ray to radio by professional and amateur astronomers worldwide. Satellite and ground-based observations have been and are continuing to be made by many members of the professional community, including S. D. Barthelmy et al. (GCN Circular 17929, 15 June 2015, Swift BAT initial detection); H. Negoro et al. (ATel #7646, 17 Jun 2015); E. Kuulkers et al. (ATel #7647, 17 June 2015, Swift observations); K. Gazeas et al. (ATel #7650, 17 June 2015, optical photometry); R. M. Wagner et al. (ATel #7655, 18 June, optical spectroscopy); K. Mooley et al. (ATel #7658, 18 June, radio observations). T. Munoz-Darias et al. report P Cyg profiles were seen on 18 Jun 2015 (ATel #7659). They note that P-Cyg profiles were also observed during the 1989 outburst (Casares et al. 1991, MNRAS, 250, 712), and that V404 Cyg is so far the only black hole X-ray transient that has shown this phenomenology. Observations in all bands are requested. Filtered observations are preferred. Please use a cadence as high as possible while obtaining a suitable s/n. If spectroscopy is possible with your equipment, it is requested. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Precise observing instructions and other details are given in the full Alert Notice.

  3. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  4. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  5. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement

    NASA Technical Reports Server (NTRS)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, Thomas J. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched on January 26, 1983. During its 300-day mission, IRAS surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and data reduction.

  6. GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.

    2005-01-01

    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.

  7. The ASTRO-H X-ray astronomy satellite

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Marshall; Bialas, Thomas; Blandford, Roger D.; Boyce, Kevin; Brenneman, Laura; Brown, Gregory; Cackett, Ed; Canavan, Edgar; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gilmore, Kirk; Guainazzi, Matteo; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Harayama, Atsushi; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishimura, Kosei; Ishisaki, Yoshitaka; Itoh, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Jewell, Chris; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kawano, Taro; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimball, Mark; Kimura, Masashi; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Konami, Saori; Kosaka, Tatsuro; Koujelev, Alexander; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, François; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Markevitch, Maxim; Masters, Candace; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McGuinness, Daniel; McNamara, Brian; Miko, Joseph; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Moroso, Franco; Muench, Theodore; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Pontius, James; Porter, F. S.; Pottschmidt, Katja; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Ricci, Claudio; Russell, Helena; Safi-Harb, Samar; Saito, Shinya; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sato, Kosuke; Sato, Rie; Sato, Goro; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiroaki; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Keisuke; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yoko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Yoshihiro; Ueda, Shutaro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Watanabe, Tomomi; Werner, Norbert; White, Nicholas; Wilkins, Dan; Yamada, Shinya; Yamada, Takahiro; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen; ZuHone, John

    2014-07-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE <= 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.

  8. X-rays Provide a New Way to Investigate Exploding Stars

    NASA Astrophysics Data System (ADS)

    2007-05-01

    The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is

  9. Atomic Processes in X-ray Photoioinzed Gas

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy

    2005-01-01

    It has long been known that photoionization and photoabsorption play a dominant role in determining the state of gas in nebulae surrounding hot stars and in active galaxies. Recent observations of X-ray spectra demonstrate that these processes are also dominant in highly ionized gas near compact objects, and also affect the transmission of X-rays from the majority of astronomical sources. This has led to new insights into the understanding of what is going on in these sources. It has also pointed out the need for accurate atomic cross sections for photoionization and absorption, notably for processes involving inner shells. The xstar code can be used for calculating the heating, ionization and reprocessing of X-rays by gas in a range of ionization states and temperatures. It has recently been updated to include an improved treatment of inner shell transitions in iron. I will review the capabilities of xstar, the atomic data, and illustrate some applications to recent X-ray spectral observations.

  10. Spacecraft Navigation Using X-ray Pulsars

    DTIC Science & Technology

    2006-01-01

    95FEATURED RESEARCH 2006 NRL REVIEW Spacecraft Navigation Using X-ray Pulsars P.S. Ray, K.S. Wood, and B.F. Phlips E.O. Hulburt Center for Space...satellites and computes the range (technically pseudorange) to each satellite Pulsars are the collapsed remnants of massive stars that have become...relatively simple structure, pulsars are exceptionally stable rotators whose timing stability rivals that of conventional atomic clocks. A navigation

  11. X-ray modeling for SMILE

    NASA Astrophysics Data System (ADS)

    Sun, T.; Wang, C.; Wei, F.; Liu, Z. Q.; Zheng, J.; Yu, X. Z.; Sembay, S.; Branduardi-Raymont, G.

    2016-12-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a novel mission to explore the coupling of the solar wind-magnetosphere-ionosphere system via providing global images of the magnetosphere and aurora. As the X-ray imaging is a brand new technique applied to study the large scale magnetopause, modeling of the solar wind charge exchange (SWCX) X-ray emissions in the magnetosheath and cusps is vital in various aspects: it helps the design of the Soft X-ray Imager (SXI) on SMILE, selection of satellite orbits, as well as the analysis of expected scientific outcomes. Based on the PPMLR-MHD code, we present the simulation results of the X-ray emissions in geospace during storm time. Both the polar orbit and the Molniya orbit are used. From the X-ray images of the magnetosheath and cusps, the magnetospheric responses to an interplanetary shock and IMF southward turning are analyzed.

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-01-01

    Left image: The x-ray data from the Chandra X-Ray Observatory (CXO) has revealed a bright central star surrounded by a cloud of multimillion-degree gas in the planetary nebula known as the Cat's Eye. This CXO image, where the intensity of the x-ray emission is correlated to the brightness of the orange coloring, captures the expulsion of material from a star that is expected to collapse into a white dwarf in a few million years. The intensity of x-rays from the central star was unexpected, and it is the first time astronomers have seen such x-ray emission from the central star of a planetary nebula. Right image: An image of Cat's Eye taken by the Hubble Space Telescope (HST). By comparing the CXO data with that from the HST, researchers are able to see where the hotter, x-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by the HST. The CXO team found that the chemical abundance in the region of hot gas (its x-ray intensity is shown in purple) was not like those in the wind from the central star and different from the outer cooler material (the red and green structures.) Although still incredibly energetic and hot enough to radiate x-rays, CXO shows the hot gas to be somewhat cooler than scientists would have expected for such a system. CXO image credit: (NASA/UIUC/Y. Chu et al.) HST image credit: (NASA/HST)

  13. Planetary and satellite x ray spectroscopy: A new window on solid-body composition by remote sensing

    NASA Technical Reports Server (NTRS)

    Chenette, D. L.; Wolcott, R. W.; Selesnick, R. S.

    1993-01-01

    The rings and most of the satellites of the outer planets orbit within the radiation belts of their parent bodies. This is an environment with intense fluxes of energetic electrons. As a result, these objects are strong emitters of X-rays. The characteristic X-ray lines from these bodies depend on atomic composition, but they are not sensitive to how the material is arranged in compounds or mixtures. X-ray fluorescence spectral analysis has demonstrated its unique value in the laboratory as a qualitative and quantitative analysis tool. This technique has yet to be fully exploited in a planetary instrument for remote sensing. The characteristic X-ray emissions provide atomic relative abundances. These results are complementary to the molecular composition information obtained from IR, visible, and UV emission spectra. The atomic relative abundances are crucial to understanding the formation and evolution of these bodies. They are also crucial to the proper interpretation of the molecular composition results from the other sensors. The intensities of the characteristic X-ray emissions are sufficiently strong to be measured with an instrument of modest size. Recent developments in X-ray detector technologies and electronic miniaturization have made possible space-flight X-ray imaging and nonimaging spectrometers of high sensitivity and excellent energy resolution that are rugged enough to survive long-duration space missions. Depending on the application, such instruments are capable of resolving elemental abundances of elements from carbon through iron. At the same time, by measuring the bremsstrahlung intensity and energy spectrum, the characteristics of the source electron flux can be determined. We will discuss these concepts, including estimated source strengths, and will describe a small instrument capable of providing this unique channel of information for future planetary missions. We propose to build this instrument using innovative electronics packaging

  14. Chandra Finds Most Distant X-ray Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2001-02-01

    The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the

  15. Full-aperture x-ray tests of Kirkpatrick-Baez modules: preliminary results

    NASA Astrophysics Data System (ADS)

    Pina, L.; Marsikova, V.; Hudec, R.; Inneman, A.; Marsik, J.; Cash, W.; Shipley, A.; Zeiger, B.

    2011-05-01

    We report on preliminary results of full aperture X-ray optical tests at the X-ray test facility at the University of Colorado (USA) of four test modules of Kirkpatrick-Baez (KB) X-ray optical systems performed in August 2010. Direct experimental comparisons were made between gold-coated optics of two novel substrates: glass foils and silicon wafers. The preliminary results are promising, with full-width half-maxima of full stacks being of order of 30 arcsec in 2D full arrangement. These results justify further efforts to improve KB optics for use in low-cost, high-performance space-borne astronomical imaging instruments for X-ray wavelengths.

  16. Chandra Observations of New X-ray Supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2016-09-01

    We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.

  17. Chandra Observations of New X-ray Supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2017-09-01

    We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.

  18. Chandra Observations of New X-ray Supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2015-09-01

    We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.

  19. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-09-20

    This Chandra image reveals, in detail, the turbulent debris created by a supernova explosion that was observed by the Danish Astronomer Tycho Brahe in the year 1572. The colors show different x-ray energies, with red, green, and blue representing low, medium, and high energies, respectively. Most likely caused by the destruction of a white dwarf star, a shock wave produced by the expanding debris is outlined by the sharp blue circular arcs of 20 million degree Celsius gas seen on the outer rim. The stellar debris, visible only by x-ray, has a temperature of about 10 million degrees, and shows up as mottled yellow, green, and red fingers of gas.

  20. Time Projection Chamber Polarimeters for X-ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Hill, Joanne; Black, Kevin; Jahoda, Keith

    2015-04-01

    Time Projection Chamber (TPC) based X-ray polarimeters achieve the sensitivity required for practical and scientifically significant astronomical observations, both galactic and extragalactic, with a combination of high analyzing power and good quantum efficiency. TPC polarimeters at the focus of an X-ray telescope have low background and large collecting areas providing the ability to measure the polarization properties of faint persistent sources. TPCs based on drifting negative ions rather than electrons permit large detector collecting areas with minimal readout electronics enabling wide field of view polarimeters for observing unpredictable, bright transient sources such as gamma-ray bursts. We described here the design and expected performance of two different TPC polarimeters proposed for small explorer missions: The PRAXyS (Polarimetry of Relativistic X-ray Sources) X-ray Polarimeter Instrument, optimized for observations of faint persistent sources and the POET (Polarimetry of Energetic Transients) Low Energy Polarimeter, designed to detect and measure bright transients. also NASA/GSFC.

  1. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  2. Chandra X-Ray Observatory (CXO) on Orbit Animation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  3. Two-colour hard X-ray free-electron laser with wide tunability.

    PubMed

    Hara, Toru; Inubushi, Yuichi; Katayama, Tetsuo; Sato, Takahiro; Tanaka, Hitoshi; Tanaka, Takashi; Togashi, Tadashi; Togawa, Kazuaki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2013-01-01

    Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.

  4. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  5. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    NASA Technical Reports Server (NTRS)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; hide

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  6. Replicated x-ray optics for space applications

    NASA Astrophysics Data System (ADS)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  7. Apollo-Soyuz pamphlet no. 2: X-rays, gamma-rays. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The nature of high energy radiation and its penetration through earth's atmosphere is examined with emphasis on X-rays, gamma rays, and cosmic radiation and the instruments used in their detection. The history of radio astronomy and the capabilities of the Uhuru satellite are summarized. The ASTP soft X-ray experiment (MA-048) designed to study the spectra in the range from 0.1 to 10 keV and survey the background over a large section of the sky is described, as well as the determination of SMC C-1 as an X-ray pulsar. The crystal activation experiment (MA-151) used to measure the radioactive isotopes created by cosmic rays in crystals used for gamma ray detectors is also discussed.

  8. NASA Announces Contest to Name X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1998-04-01

    NASA is searching for a new name for the Advanced X-ray Astrophysics Facility (AXAF), currently scheduled for launch Dec. 3, 1998, from the Space Shuttle Columbia. AXAF is the third of NASA's Great Observatories, after the Hubble Space Telescope and the Compton Gamma Ray Observatory. Once in orbit around Earth, it will explore hot, turbulent regions in the universe where X-rays are produced. Dr. Alan Bunner, director of NASA's Structure and Evolution of the universe science program, will announce April 18 at the National Science Teacher's Association meeting in Las Vegas, NV, the start of a contest, open to people worldwide, to find a new name for the observatory. Entries should contain the name of a person (not living), place, or thing from history, mythology, or fiction. Contestants should describe in a few sentences why this choice would be a good name for AXAF. The name must not have been used before on space missions by NASA or other organizations or countries. The grand prize will be a trip to NASA's Kennedy Space Center in Cape Canaveral, FL, to see the launch of the satellite aboard the Space Shuttle. Ten runner-up prizes will be awarded and all entrants will receive an AXAF poster. The grand prize is sponsored by TRW Inc., AXAF's prime contractor. The AXAF Science Center in Cambridge, MA, will run the contest for NASA. NASA will announce the final selection of the winning name later this year. Entries also can be mailed to: AXAF Contest, AXAF Science Center, Office of Education and Public Outreach, 60 Garden Street, MS 83, Cambridge, MA 02138. Mailed entries must be postmarked no later than June 30, 1998. All entries must state a name for the mission, along with the reason the name would make a good choice. The observatory, now in the final stages of assembly and testing at TRW's facility in Redondo Beach, CA, is more than 45 feet long and weighs 10,500 pounds. AXAF is the largest and most powerful X-ray observatory ever constructed, and its images will be

  9. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  10. Auroral x-ray imaging from high- and low-Earth orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenzie, D.L.; Gorney, D.J.; Imhof, W.L.

    Observations of bremsstrahlung x rays emitted by energetic electrons impacting the Earth's atmosphere can be used for remotely sensing the morphology, intensity, and energy spectra of electron precipitation from the magnetosphere. The utility of the technique is derived from the broad energy range of observable x rays (2 to > 100 KeV), the simple emission process, the large x-ray mean free path in the atmosphere, and negligible background. Two auroral x-ray imagers, developed for future spaceflights, are discussed. The Polar Ionospheric X-Ray Imaging Experiment is scheduled for launch on the NASA International Solar-Terrestrial Physics/Global Geospace Science program POLAR satellite inmore » 1994. The POLAR orbit, with an apogee and perigee of 9 and 1.8 R[sub e] (Earth radii), respectively, affords the opportunity to image the aurora from a high altitude above the north pole continuously for several hours. The Magnetospheric Atmospheric X-Ray Imaging Experiment (MAXIE) was launched aboard the NOAA-I satellite on August 8, 1993. The 800-km polar orbit passes over both the northern and southern auroral zones every 101 min. MAXIE will be capable of obtaining multiple images of the same auroral region during a single satellite orbit. The experimental approaches used to exploit these very different orbits for remote sensing of the Earth's auroral zones are emphasized.« less

  11. Atomic Processes in X-ray Photoionized Gas

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy

    2005-01-01

    It has long been known that photoionization and photoabsorption play a dominant role in determining the state of gas in nebulae surrounding hot stars and in active galaxies. Recent observations of X-ray spectra demonstrate that these processes are also dominant in highly ionized gas near compact objects, and also affect the transmission of X-rays from the majority of astronomical sources. This has led to new insights into the understanding of what is going on in these sources. It has also pointed out the need for a better atomic cross sections for photoionization and absorption, notably for processes involving inner shells. In this talk I will discuss these issues, what is known and where more work is needed.

  12. X-Ray and Multi-Wavelength Observations of Gamma Ray Bursts (GRBs)

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    The launch of the Italian (with Dutch participation) satellite BeppoSAX in 1996 enabled the detection of the first X-ray GRB afterglow, which in turn led to GRB counterpart detection in multiple wavelengths. This breakthrough firmly established the cosmological nature of GRBs. However, afterglow observations of GRBs took off in large numbers after the launch of NASA's Swift satellite in 2004. Swift enabled multiple major discoveries, such as the early lightcurves of X-ray afterglows, the first detection of a short GRB afterglow and opened more questions such as where are the elusive breaks in afterglow light curves. I will describe here these results and will discuss future opportunities and improvements in the field.

  13. The simulated spectrum of the OGRE X-ray EM-CCD camera system

    NASA Astrophysics Data System (ADS)

    Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.

    2017-12-01

    The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible

  14. HEAO 1 high-energy X-ray observations of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Howe, S. K.; Primini, F. A.; Bautz, M. W.; Lang, F. L.; Levine, A. M.; Lewin, W. H. G.

    1983-01-01

    Pulsations of 4.8 sec were detected up to energies above 38 keV by the present High Energy X-ray and Low Energy Gamma-Ray HEAO 1 satellite experiment observations of Cen X-3, and an analysis of the X-ray spectrum as a function of pulse phase indicates that the spectrum hardens during an interval of about 1.2 sec which lags the pulse peak by about 0.6 sec. The results of correlated observations of pulse period and X-ray intensity include (1) the detection of a high intensity state during which the pulse period is on the average increasing, (2) the measurement of comparable high intensities during episodes of both period increase and decrease, (3) the detection of X-ray pulsations at a much reduced level during a period of low intensity, and (4) the detection of a transition between spin-down, and spin-up episodes that coincides with a rapid decrease in X-ray intensity.

  15. Support of selected X-ray studies to be performed using data from the Uhuru (SAS-A) satellite

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1976-01-01

    A new measurement of the diffuse X-ray emission sets more stringent upper limits on the fluctuations of the background and on the number counts of X-ray sources with absolute value of b 20 deg than previous measurements. A random sample of background data from the Uhuru satellite gives a relative fluctuation in excess of statistics of 2.0% between 2.4 and 6.9 keV. The hypothesis that the relative fluctuation exceeds 2.9% can be rejected at the 90% confidence level. No discernable energy dependence is evident in the fluctuations in the pulse height data, when separated into three energy channels of nearly equal width from 1.8 to 10.0 keV. The probability distribution of fluctuations was convolved with the photon noise and cosmic ray background deviation (obtained from the earth-viewing data) to yield the differential source count distribution for high latitude sources. Results imply that a maximum of 160 sources could be between 1.7 and 5.1 x 10 to the -11 power ergs/sq cm/sec (1-3 Uhuru counts).

  16. SphinX x-ray spectrophotometer

    NASA Astrophysics Data System (ADS)

    Kowaliński, Mirosław

    2012-05-01

    This paper presents assumptions to a PhD thesis. The thesis will be based on the construction of Solar Photometer in X-rays (SphinX). SphinX was an instrument developed to detect the soft X-rays from the Sun. It was flown on board the Russian CORONAS-Photon satellite from January 30, 2009 to the end of November, 2009. During 9 months in orbit SphinX provided an excellent and unique set of observations. It revealed about 750 flares and brightenings. The instrument observed in energy range 1.0 - 15.0 keV with resolution below ~0.5 keV. Here, the SphinX instrument objectives, design, performance and operation principle are described. Below results of mechanical and thermal - vacuum tests necessary to qualify the instrument to use in space environment are presented. Also the calibration results of the instrument are discussed. In particular detail it is described the Electrical Ground Support Equipment (EGSE) for SphinX. The EGSE was used for all tests of the instrument. At the end of the paper results obtained from the instrument during operation in orbit are discussed. These results are compared with the other similar measurements performed from the separate spacecraft instruments. It is suggested design changes in future versions of SphinX.

  17. SphinX: The Solar Photometer in X-Rays

    NASA Astrophysics Data System (ADS)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Kordylewski, Zbigniew; Podgorski, Piotr; Plocieniak, Stefan; Siarkowski, Marek; Sylwester, Barbara; Trzebinski, Witold; Kuzin, Sergey V.; Pertsov, Andrey A.; Kotov, Yurij D.; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2013-04-01

    Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed.

  18. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  19. EUV spectroscopy of high-redshift x-ray objects

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.

    2010-07-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.

  20. Preliminary scientific results from the first six months of the Infrared Astronomical Satellite (IRAS)

    NASA Astrophysics Data System (ADS)

    Soifer, B. T.; Beichman, C. A.; Houck, J. R.; Neugebauer, G.; Rowan-Robinson, M.

    1984-04-01

    The Infrared Astronomical Satellite (IRAS) was successfully launched on January 25, 1983. This paper presents results based on analysis of early scientific data returned from IRAS. Among the early results of IRAS are the discovery of comet IRAS-Araki-Alcock, evidence for a shell of large particles around the nearby bright star Vega, detection of stars in the process of formation, and detection of many infrared bright galaxies. These early results demonstrate that the IRAS data will be a treasure chest for astronomers for years to come.

  1. Preliminary scientific results from the first six months of the Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Beichman, C. A.; Houck, J. R.; Rowan-Robinson, M.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) was successfully launched on January 25, 1983. This paper presents results based on analysis of early scientific data returned from IRAS. Among the early results of IRAS are the discovery of comet IRAS-Araki-Alcock, evidence for a shell of large particles around the nearby bright star Vega, detection of stars in the process of formation, and detection of many infrared bright galaxies. These early results demonstrate that the IRAS data will be a treasure chest for astronomers for years to come.

  2. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    NASA Technical Reports Server (NTRS)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; hide

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  3. THE IDENTIFICATION OF THE X-RAY COUNTERPART TO PSR J2021+4026

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisskopf, Martin C.; Elsner, Ronald F.; O'Dell, Stephen L.

    2011-12-10

    We report the probable identification of the X-ray counterpart to the {gamma}-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20{sup h}21{sup m}30.{sup s}733, decl. +40 Degree-Sign 26'46.''04 (J2000) with an estimated uncertainty of 1.''3 combined statistical and systematic error. Moreover, both the X-ray to {gamma}-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray sourcemore » has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a power law and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less

  4. The Identification Of The X-Ray Counterpart To PSR J2021+4026

    DOE PAGES

    Weisskopf, Martin C.; Romani, Roger W.; Razzano, Massimiliano; ...

    2011-11-23

    We report the probable identification of the X-ray counterpart to the γ-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30s.733, Decl. +40°26'46.04" (J2000) with an estimated uncertainty of 1."3 combined statistical and systematic error. Moreover, both the X-ray to γ-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through newmore » observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less

  5. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    NASA Technical Reports Server (NTRS)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  6. Astronomers Find New Evidence for the Violent Demise of Sun-like Stars

    NASA Astrophysics Data System (ADS)

    2005-06-01

    Two astronomers have used NASA's Chandra X-ray Observatory to discover a shell of superheated gas around a dying star in the Milky Way galaxy. Joel Kastner, professor of imaging science at the Rochester Institute of Technology, and Rodolpho Montez, a graduate student in physics and astronomy at the University of Rochester, will present their results today at the American Astronomical Society meeting in Minneapolis. Their discovery shows how material ejected at two million miles per hour during the final, dying stages of sun-like stars can heat previously ejected gas to the point where it will emit X-rays. The study also offers new insight into how long the ejected gas around dying stars can persist in such a superheated state. According to Kastner, the hot gas shows up in high-resolution Chandra X-ray images of the planetary nebula NGC 40, which is located about 3,000 light years away from Earth in the direction of the constellation Cepheus. Chandra X-ray & NOAO Optical Composite of NGC 40 Chandra X-ray & NOAO Optical Composite of NGC 40 "Planetary nebulae are shells of gas ejected by dying stars," Kastner explains. "They offer astronomers a 'forecast' of what could happen to our own sun about five billion years from now - when it finally exhausts the reservoir of hydrogen gas at its core that presently provides its source of nuclear power." In his research, Montez discovered the X-ray emitting shell in NGC 40 by generating an image that uses only specific energy-selected X-rays - revealing a ring of superheated gas that lies just within the portions of the nebula that appear in optical and infrared images. "This hot bubble of gas vividly demonstrates how, as a planetary nebula forms, the gas ejection process of the central, dying star becomes increasingly energetic," Kastner notes. "Mass ejection during stellar death can result in violent collisions that can heat the ejected gas up to temperatures of more than a million degrees." The detection of X-rays from NGC

  7. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Hasan, Mohammed; Seetha, S.; Bhattacharya, Dipankar

    2018-02-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the energy range 2.5-10 keV. SSM scans the sky for X-ray transient sources in this energy range of interest. If an X-ray transient source is detected in outburst by SSM, the information will be provided to the astronomical community for follow-up observations to do a detailed study of the source in various other bands. SSM instrument, since its power-ON in orbit, has observed a number of X-ray sources. This paper discusses observations of few X-ray transients by SSM. The flux reported by SSM for few sources during its Performance Verification phase (PV phase) is studied and the results are discussed.

  8. A New High-sensitivity solar X-ray Spectrophotometer SphinX:early operations and databases

    NASA Astrophysics Data System (ADS)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Siarkowski, Marek; Bakala, Jaroslaw; Podgorski, Piotr; Trzebinski, Witold; Plocieniak, Stefan; Kordylewski, Zbigniew; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio

    The Solar Photometer in X-rays (SphinX) is an instrument operating aboard Russian CORONAS-Photon satellite. A short description of this unique instrument will be presented and its unique capabilities discussed. SphinX is presently the most sensitive solar X-ray spectrophotometer measuring solar spectra in the energy range above 1 keV. A large archive of SphinX mea-surements has already been collected. General access to these measurements is possible. The SphinX data repositories contain lightcurves, spectra, and photon arrival time measurements. The SphinX data cover nearly continuously the period since the satellite launch on January 30, 2009 up to the end-of November 2009. Present instrument status, data formats and data access methods will be shown. An overview of possible new science coming from SphinX data analysis will be discussed.

  9. Digitization and reduction of old astronomical plates of natural satellites

    NASA Astrophysics Data System (ADS)

    Yan, D.; Qiao, R. C.; Dourneau, G.; Yu, Y.; Zhang, H. Y.; Cheng, X.; Xi, X. J.

    2016-04-01

    Old astrophotographic plates are precious sources of historical data for astronomical studies, especially regarding the improvement of natural satellite orbits. Today, with the advent of new, accurate techniques, these old data can be re-processed so as to give positions that are much more accurate than those initially obtained. Various recent projects, including our Chinese project, have involved measuring and reducing these old plates again. Here we present a method for measurement and reduction that involves the digitization of plates using an advanced commercial scanner, namely the EPSON 10000 XL. We selected a set of 27 plates of the satellites of Jupiter, Saturn and Uranus taken from 1987 to 1990. A total of 125 satellite positions were derived from the new measurement and reduction of these plates using the UCAC4 catalogue. A comparison of the new observed positions with recent ephemerides has shown a general consistency with satellite theory of about 100 mas. The new positions present an accuracy equivalent to the most recent CCD observations, and better than the original positions. Moreover, nearly 30 per cent of the 125 positions obtained in this work are published for the first time here. This paper is a preliminary contribution to the larger project of new measurements and reductions of all the old Chinese plates of natural satellites, which should allow further improvements in the knowledge of the orbits of these satellites.

  10. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; hide

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  11. CIAO: CHANDRA/X-RAY DATA ANALYSIS FOR EVERYONE

    NASA Astrophysics Data System (ADS)

    McDowell, Jonathan; CIAO Team

    2018-01-01

    Eighteen years after the launch of Chandra, the archive is full of scientifically rich data and new observations continue. Improvements in recent years to the data analysis package CIAO (Chandra Interactive Analysis of Observations) and its extensive accompanying documentation make it easier for astronomers without a specialist background in high energy astrophysics to take advantage of this resource.The CXC supports hundreds of CIAO users around the world at all levels of training from high school and undergraduate students to the most experienced X-ray astronomers. In general, we strive to provide a software system which is easy for beginners, yet powerful for advanced users.Chandra data cover a range of instrument configurations and types of target (pointlike, extended and moving), requiring a flexible data analysis system. In addition to CIAO tools using the familiar FTOOLS/IRAF-style parameter interface, CIAO includes applications such as the Sherpa fitting engine which provide access to the data via Python scripting.In this poster we point prospective (and existing!) users to the high level Python scripts now provided to reprocess Chandra or other X-ray mission data, determine source fluxes and upper limits, and estimate backgrounds; and to the latest documentation including the CIAO Gallery, a new entry point featuring the system's different capabilities.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  12. Results from the X-ray polychromator on SMM

    NASA Astrophysics Data System (ADS)

    Culhane, J. L.; Acton, L. W.; Gabriel, A. H.

    Observations of the soft X-ray emitting plasma by means of the X-Ray Polychromator (XRP) on the Solar Maximum Mission satellite are described. The scientific advances achieved by use of the XRP are in the areas of: (1) flare morphology, (2) spectroscopy and plasma diagnostics, (3) chromospheric evaporation and the physics of flare loops, (4) studies of the microwave emission mechanisms of active regions, (5) the fluorescent excitation of Fe II K-alpha radiation, (6) measurement of variations of calcium abundance for X-ray plasmas, and (7) soft X-ray observations of spray transients. The findings in each of these areas are discussed.

  13. Results from the X-ray polychromator on SMM

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.; Acton, L. W.; Gabriel, A. H.

    1984-01-01

    Observations of the soft X-ray emitting plasma by means of the X-Ray Polychromator (XRP) on the Solar Maximum Mission satellite are described. The scientific advances achieved by use of the XRP are in the areas of: (1) flare morphology, (2) spectroscopy and plasma diagnostics, (3) chromospheric evaporation and the physics of flare loops, (4) studies of the microwave emission mechanisms of active regions, (5) the fluorescent excitation of Fe II K-alpha radiation, (6) measurement of variations of calcium abundance for X-ray plasmas, and (7) soft X-ray observations of spray transients. The findings in each of these areas are discussed.

  14. Here Be Dragons: Effective (X-ray) Timing with the Cospectrum

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Bachetti, Matteo

    2018-01-01

    In recent years, the cross spectrum has received considerable attention as a means of characterising the variability of astronomical sources as a function of wavelength. While much has been written about the statistics of time and phase lags, the cospectrum—the real part of the cross spectrum—has only recently been understood as means of mitigating instrumental effects dependent on temporal frequency in astronomical detectors, as well as a method of characterizing the coherent variability in two wavelength ranges on different time scales. In this talk, I will present recent advances made in understanding the statistical properties of cospectra, leading to much improved inferences for periodic and quasi-periodic signals. I will also present a new method to reliably mitigate instrumental effects such as dead time in X-ray detectors, and show how we can use the cospectrum to model highly variable sources such as X-ray binaries or Active Galactic Nuclei.

  15. The MIRAX x-ray astronomy transient mission

    NASA Astrophysics Data System (ADS)

    Braga, João; Mejía, Jorge

    2006-06-01

    The Monitor e Imageador de Raios-X (MIRAX) is a small (~250 kg) X-ray astronomy satellite mission designed to monitor the central Galactic plane for transient phenomena. With a field-of-view of ~1000 square degrees and an angular resolution of ~6 arcmin, MIRAX will provide an unprecedented discovery-space coverage to study X-ray variability in detail, from fast X-ray novae to long-term (~several months) variable phenomena. Chiefly among MIRAX science objectives is its capability of providing simultaneous complete temporal coverage of the evolution of a large number of accreting black holes, including a detailed characterization of the spectral state transitions in these systems. MIRAX's instruments will include a soft X-ray (2-18 keV) and two hard X-ray (10-200 keV) coded-aperture imagers, with sensitivities of ~5 and ~2.6 mCrab/day, respectively. The hard X-ray imagers will be built at the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil, in close collaboration with the Center for Astrophysics & Space Sciences (CASS) of the University of California, San Diego (UCSD) and the Institut fur Astronomie und Astrophysik of the University of Tubingen (IAAT) in Germany; UCSD will provide the crossed-strip position-sensitive (0.5- mm spatial resolution) CdZnTe (CZT) hard X-ray detectors. The soft X-ray camera, provided by the Space Research Organization Netherlands (SRON), will be the spare flight unit of the Wide Field Cameras that flew on the Italian-Dutch satellite BeppoSAX. MIRAX is an approved mission of the Brazilian Space Agency (Agnecia Espacial Brasileira - AEB) and is scheduled to be launched in 2011 in a low-altitude (~550 km) circular equatorial orbit. In this paper we present recent developments in the mission planning and design, as well as Monte Carlo simulations performed on the GEANT-based package MGGPOD environment (Weidenspointner et al. 2004) and new algorithms for image digital processing. Simulated images of the central Galactic plane as it

  16. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  17. ART-XC/SRG: joint calibration of mirror modules and x-ray detectors

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Pavlinsky, M.; Levin, V.; Akimov, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Yaskovich, A.; Oleinikov, V.; Gubarev, M.; Ramsey, B.

    2017-08-01

    The Astronomical Roentgen Telescope - X-ray Concentrator (ART-XC) is a hard x-ray instrument with energy response 6-30 keV that will to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. ART-XC consists of seven co-aligned mirror modules coupled with seven focal plane CdTe double-sided strip detectors. The mirror modules had been fabricated and calibrated at the NASA Marshall Space Flight Center (MSFC). The Russian Space Research Institute (IKI) has developed and tested the X-ray detectors. The joint x-ray calibration of the mirror modules and focal plane detectors was carried out at the IKI test facility. Details of the calibration procedure and an overview of the results are presented here.

  18. Measuring X-Ray Polarization in the Presence of Systematic Effects: Known Background

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald F.; O'Dell, Stephen L.; Weisskopf, Martin C.

    2012-01-01

    The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncertainties associated with x-ray polarization measurements of these sources. We have initiated a program to perform the detailed calculations that will offer insights into the uncertainties associated with x-ray polarization measurements. Here we describe a mathematical formalism for determining the 1- and 2-parameter errors in the magnitude and position angle of x-ray (linear) polarization in the presence of a (polarized or unpolarized) background. We further review relevant statistics including clearly distinguishing between the Minimum Detectable Polarization (MDP) and the accuracy of a polarization measurement.

  19. X-ray astronomy from Uhuru to HEAO-1

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1981-01-01

    The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.

  20. ROSAT - A German X-ray satellite searches for the big bang

    NASA Astrophysics Data System (ADS)

    The scientific aims, design, development history, launch, and initial performance of the NASA/FRG orbiting X-ray observatory Rosat are reviewed and illustrated with extensive drawings, diagrams, photographs, and sample images. The main Rosat instrument is a 120-cm-long 83-cm-aperture Wolter X-ray telescope with optical surfaces ground to achieve mean microroughness of less than 1 nm and image resolution 2.5 arcsec. The Rosat mission began with a Delta II launch on June 1, 1990; its first objective is an all-sky X-ray survey which should increase the number of known X-ray sources from about 5000 to over 100,000. The second phase involves detailed observations of selected objects, including nearby normal stars, SN clouds, binary systems, hot neutron stars, and extremely distant QSOs. The first images obtained by Rosat were of the Galactic SNR Cas A, revealing the structure of the shock front and a weak X-ray halo.

  1. Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.

    2000-01-01

    This is the final performance report for our grant 'Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar.' In the first year of this grant, we received the 50,000-second ROSAT (German acronym for X-ray satellite) High Resolution Images (HRI) observation of the Crab Nebula pulsar. We used the data to create a 65-ms-resolution pulse profile and compared it to a similar pulse profile obtained in 1991. No statistically significant differences were found. These results were presented at the January 1998 meeting of the American Astronomical Society. Since then, we have performed more sensitive analyses to search for potential changes in the pulse profile shape between the two data sets. Again, no significant variability was found. In order to augment this long (six-year) baseline data set, we have analyzed archival observations of the Crab Nebula pulsar with the Rossi X-Ray Timing Explorer (RXTE). While these observations have shorter time baselines than the ROSAT data set, their higher signal-to-noise offers similar sensitivity to long-term variability. Again, no significant variations have been found, confirming our ROSAT results. This work was done in collaboration with Prof. Stephen Eikenberry, Cornell University. These analyses will be included in Cornell University graduate student Dae-Sik Moon's doctoral thesis.

  2. Future Astronomical Observatories on the Moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.

  3. A compact high-speed pnCCD camera for optical and x-ray applications

    NASA Astrophysics Data System (ADS)

    Ihle, Sebastian; Ordavo, Ivan; Bechteler, Alois; Hartmann, Robert; Holl, Peter; Liebel, Andreas; Meidinger, Norbert; Soltau, Heike; Strüder, Lothar; Weber, Udo

    2012-07-01

    We developed a camera with a 264 × 264 pixel pnCCD of 48 μm size (thickness 450 μm) for X-ray and optical applications. It has a high quantum efficiency and can be operated up to 400 / 1000 Hz (noise≍ 2:5 ° ENC / ≍4:0 ° ENC). High-speed astronomical observations can be performed with low light levels. Results of test measurements will be presented. The camera is well suitable for ground based preparation measurements for future X-ray missions. For X-ray single photons, the spatial position can be determined with significant sub-pixel resolution.

  4. The Soft X-ray Imager (SXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Tanaka, Takaaki; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.; Dotani, Tadayasu; Nakajima, Hiroshi; Anabuki, Naohisa; Nagino, Ryo; Uchida, Hiroyuki; Nobukawa, Masayoshi; Ozaki, Masanobu; Natsukari, Chikara; Tomida, Hiroshi; Ueda, Shutaro; Kimura, Masashi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Nishioka, Yusuke; Bamba, Aya; Doty, John P.

    2015-09-01

    The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38' x 38'. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.

  5. Most powerful X-ray telescope marks third anniversary

    NASA Astrophysics Data System (ADS)

    2002-08-01

    A black hole gobbles up matter in our own Milky Way Galaxy. A hot spot of X-rays pulsates from near Jupiter's poles. An intergalactic web of hot gas, hidden from view since the time galaxies formed, is finally revealed. These scenarios sound like science fiction - but to those familiar with the latest developments in X-ray astronomy, they are just a few of the real-life discoveries made by NASA's Chandra X-ray Observatory during its third year of operation. "Within the last year, Chandra has revealed another series of never-before-seen phenomena in our galaxy and beyond," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "When you combine recent discoveries with the secrets revealed during the observatory's first two years in orbit, it's amazing how much Chandra has told us about the universe in a relatively short period of time." One such discovery was an unprecedented view of a supermassive black hole devouring material in the Milky Way Galaxy - a spectacle witnessed for the first time when Chandra observed a rapid X-ray flare emitted from the direction of the black hole residing at our galaxy's center. In a just few minutes, Sagittarius A, a source of radio emission believed to be associated with the black hole, became 45 times brighter in X-rays, before declining to pre-flare levels a few hours later, offering astronomers a never-before-seen view of the energetic processes surrounding this supermassive black hole. "When we launched the Chandra Observatory, we attempted to explain its amazing capabilities in Earthly terms, such as the fact it can 'see' so well, it's like someone reading the letters of a stop sign 12 miles away," said Chandra Program Manager Tony Lavoie of the Marshall Center. "But now that the observatory has been in orbit for three years, we have unearthly proof of the technological marvel Chandra really is. Not only has it continued to operate smoothly and efficiently, it has

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-07-31

    This is a photo taken by NASA's Chandra X-ray Observatory that reveals the remains of an explosion in the form of two enormous arcs of multimillion-degree gas in the galaxy Centaurus A that appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been an explosion that occurred about 10 million years ago. A composite image made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a sturning tableau of a turbulent galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of x-ray emitting multi-million degree gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes of active galaxies. The Chandra program is managed by the Marshall Space Flight Center in Huntsville, Alabama.

  7. New technology and techniques for x-ray mirror calibration at PANTER

    NASA Astrophysics Data System (ADS)

    Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin

    2008-07-01

    The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.

  8. Most Distant X-Ray Jet Yet Discovered Provides Clues To Big Bang

    NASA Astrophysics Data System (ADS)

    2003-11-01

    The most distant jet ever observed was discovered in an image of a quasar made by NASA's Chandra X-ray Observatory. Extending more than 100,000 light years from the supermassive black hole powering the quasar, the jet of high-energy particles provides astronomers with information about the intensity of the cosmic microwave background radiation 12 billion years ago. The discovery of this jet was a surprise to the astronomers, according to team members. Astronomers had previously known the distant quasar GB1508+5714 to be a powerful X-ray source, but there had been no indication of any complex structure or a jet. "This jet is especially significant because it allows us to probe the cosmic background radiation 1.4 billion years after the Big Bang," said Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of a report on this research in the November 20th Astrophysical Journal Letters. Prior to this discovery, the most distant confirmed X-ray jet corresponded to a time about 3 billion years after the Big Bang. Quasars are thought to be galaxies that harbor an active central supermassive black hole fueled by infalling gas and stars. This accretion process is often observed to be accompanied by the generation of powerful high-energy jets. Radio image of GB1508 Radio Image of GB1508 As the electrons in the jet fly away from the quasar at near the speed of light, they move through the sea of cosmic background radiation left over from the hot early phase of the universe. When a fast-moving electron collides with one of these background photons, it can boost the photon's energy up into the X-ray band. The X-ray brightness of the jet depends on the power in the electron beam and the intensity of the background radiation. "Everyone assumes that the background radiation will change in a predictable way with time, but it is important to have this check on the predictions," said Siemiginowska. "This jet is hopefully just the

  9. Three mirror glancing incidence system for X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1974-01-01

    A telescope suitable for soft X-ray astronomical observations consists of a paraboloid section for receiving rays at a grazing angle and a hyperboloid section which receives reflections from the paraboloid at a grazing angle and directs them to a predetermined point of focus. A second hyperboloid section is centrally located from the other two surfaces and positioned to reflect from its outer surface radiation which was not first reflected by the paraboloid. A shutter is included to assist in calibration.

  10. A preliminary design study for a cosmic X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are described of theoretical and experimental investigations aimed at the development of a curved crystal cosmic X-ray spectrometer to be used at the focal plane of the large orbiting X-ray telescope on the third High Energy Astronomical Observatory. The effort was concentrated on the development of spectrometer concepts and their evaluation by theoretical analysis, computer simulation, and laboratory testing with breadboard arrangements of crystals and detectors. In addition, a computer-controlled facility for precision testing and evaluation of crystals in air and vacuum was constructed. A summary of research objectives and results is included.

  11. Chandra X-Ray Observatory Image of the Distant Galaxy, 3C294

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)

  12. Microfabrication of High Resolution X-ray Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.

    2009-12-01

    Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.

  13. Exploring transient X-ray sky with Einstein Probe

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.

    2017-10-01

    The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.

  14. The High Energy Astronomy Observatory X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Miller, R.; Austin, G.; Koch, D.; Jagoda, N.; Kirchner, T.; Dias, R.

    1978-01-01

    The High Energy Astronomy Observatory-Mission B (HEAO-B) is a satellite observatory for the purpose of performing a detailed X-ray survey of the celestial sphere. Measurements will be made of stellar radiation in the range 0.2 through 20 keV. The primary viewing requirement is to provide final aspect solution and internal alignment information to correlate an observed X-ray image with the celestial sphere to within one-and-one-half arc seconds. The Observatory consists of the HEAO Spacecraft together with the X-ray Telescope. The Spacecraft provides the required attitude control and determination system, data telemetry system, space solar power system, and interface with the launch vehicle. The X-ray Telescope includes a high resolution mirror assembly, optical bench metering structure, X-ray detectors, detector positioning system, detector electronics and aspect sensing system.

  15. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.

    1985-07-08

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies.

  16. Relationship between hard X-ray and EUV sources in solar flares

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Frost, K. J.; Donnelly, R. F.

    1979-01-01

    The high time resolution hard X-ray (not less than 15 keV) observations of medium and large impulsive solar flares made with the OSO 5 satellite are compared with the simultaneous ground-based observations of 10-1030 A EUV flux made via sudden frequency deviations (SFD) at Boulder. For most flares the agreement between the times of maxima of the impulsive hard X-ray and EUV emissions is found to be consistent with earlier studies (not less than 1 s). The rise and decay times of the EUV emission are larger than the corresponding times for X-rays not less than 30 keV. When OSO 5 hard X-ray measurements are combined with those made by OGO1, OGO 3, OGO 5, and TD 1A satellites, it is found that there is a nearly linear relationship between the energy fluxes of impulsive EUV emission and X-rays not less than 10 keV over a wide range of flare magnitudes. A model involving only a 'partial precipitation' of energetic electrons and consisting of both thick and thin target hard X-ray sources is examined.

  17. X-ray spectrophotometer SphinX and particle spectrometer STEP-F of the satellite experiment CORONAS-PHOTON. Preliminary results of the joint data analysis

    NASA Astrophysics Data System (ADS)

    Dudnik, O. V.; Podgorski, P.; Sylwester, J.; Gburek, S.; Kowalinski, M.; Siarkowski, M.; Plocieniak, S.; Bakala, J.

    2012-04-01

    A joint analysis is carried out of data obtained with the help of the solar X-ray SphinX spectrophotometer and the electron and proton satellite telescope STEP-F in May 2009 in the course of the scientific space experiment CORONAS-PHOTON. In order to determine the energies and particle types, in the analysis of spectrophotometer records data are used on the intensities of electrons, protons, and secondary γ-radiation, obtained by the STEP-F telescope, which was located in close proximity to the SphinX spectrophotometer. The identical reaction of both instruments is noted at the intersection of regions of the Brazilian magnetic anomaly and the Earth's radiation belts. It is shown that large area photodiodes, serving as sensors of the X-ray spectrometer, reliably record electron fluxes of low and intermediate energies, as well as fluxes of the secondary gamma radiation from construction materials of detector modules, the TESIS instrument complex, and the spacecraft itself. The dynamics of electron fluxes, recorded by the SphinX spectrophotometer in the vicinity of a weak geomagnetic storm, supplements the information about the processes of radial diffusion of electrons, which was studied using the STEP-F telescope.

  18. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  19. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  20. The Diffuse X-ray Background, from Earth's Exosphere to the Edge of the Universe: Or, One Astronomer's Signal is Another Astronomer's Contamination

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    The "X-ray background" means various things to various people. It's origin is comprised of emission from objects as close as Earth's exosphere to as far away as the most distant clusters of galaxies. It is comprised of the emission of truly diffusely distributed plasmas and the superposition of the emission from unresolved point-like objects. To add to the confusion, in general there is no redshift information so there is very little information on where an individual X-ray may originate. This talk will address the evolution of our understanding of origin of the X-ray background and the current best-guess about what is really going on.

  1. Crystals and collimators for X-ray spectrometry. [Bragg reflection properties and design for astronomical applications

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.; Landecker, P. B.; Underwood, J. H.

    1976-01-01

    Results of the measurement of Bragg reflection properties of crystals suitable for use in X-ray astronomy are presented. Measurements with a double crystal spectrometer were performed on rubidium acid phthalate and thallium acid phthalate to yield values of the integrated reflectivity and diffraction width in the range 8-18 A, and measurements of integrated reflectivity were also performed on ammonium dihydrogen phosphate. The theory and design of an arc-minute range multigrid collimator to be flown on a rocket for solar X-ray studies are also described, along with a method for determining the collimator's X-ray axis.

  2. Studies of auroral X-ray imaging from high altitude spacecraft

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.; Mizera, P. F.; Rice, C. J.

    1980-01-01

    Results of a study of techniques for imaging the aurora from a high altitude satellite at X-ray wavelengths are summarized. The X-ray observations allow the straightforward derivation of the primary auroral X-ray spectrum and can be made at all local times, day and night. Five candidate imaging systems are identified: X-ray telescope, multiple pinhole camera, coded aperture, rastered collimator, and imaging collimator. Examples of each are specified, subject to common weight and size limits which allow them to be intercompared. The imaging ability of each system is tested using a wide variety of sample spectra which are based on previous satellite observations. The study shows that the pinhole camera and coded aperture are both good auroral imaging systems. The two collimated detectors are significantly less sensitive. The X-ray telescope provides better image quality than the other systems in almost all cases, but a limitation to energies below about 4 keV prevents this system from providing the spectra data essential to deriving electron spectra, energy input to the atmosphere, and atmospheric densities and conductivities. The orbit selection requires a tradeoff between spatial resolution and duty cycle.

  3. Automatic classification of spectra from the Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John; Self, Matthew; Taylor, William; Goebel, John; Volk, Kevin; Walker, Helen

    1989-01-01

    A new classification of Infrared spectra collected by the Infrared Astronomical Satellite (IRAS) is presented. The spectral classes were discovered automatically by a program called Auto Class 2. This program is a method for discovering (inducing) classes from a data base, utilizing a Bayesian probability approach. These classes can be used to give insight into the patterns that occur in the particular domain, in this case, infrared astronomical spectroscopy. The classified spectra are the entire Low Resolution Spectra (LRS) Atlas of 5,425 sources. There are seventy-seven classes in this classification and these in turn were meta-classified to produce nine meta-classes. The classification is presented as spectral plots, IRAS color-color plots, galactic distribution plots and class commentaries. Cross-reference tables, listing the sources by IRAS name and by Auto Class class, are also given. These classes show some of the well known classes, such as the black-body class, and silicate emission classes, but many other classes were unsuspected, while others show important subtle differences within the well known classes.

  4. X-ray pulsars in nearby irregular galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison

  5. Absorption dips at low X-ray energies in Cygnus X-1. [observed with Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Murdin, P. G.

    1976-01-01

    Absorbing material in Cygnus X-1 jitters near the line joining the two stars, out of the orbital plane is described. Three looks with the Copernicus satellite at Cygnus X-1 have produced four examples of absorption dips (decreases in the 2 to 7 keV flux from Cygnus X-1 with an increase of spectral hardness consistent with photoelectric absorption).

  6. XIPE, the X-ray imaging polarimetry explorer: Opening a new window in the X-ray sky

    NASA Astrophysics Data System (ADS)

    Soffitta, Paolo; XIPE Collaboration

    2017-11-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a candidate ESA fourth medium size mission, now in competitive phase A, aimed at time-spectrally-spatially-resolved X-ray polarimetry of a large number of celestial sources as a breakthrough in high energy astrophysics and fundamental physics. Its payload consists of three X-ray optics with a total effective area larger than one XMM mirror but with a low mass and of three Gas Pixel Detectors at their focus. The focal length is 4 m and the whole satellite fits within the fairing of the Vega launcher without the need of an extendable bench. XIPE will be an observatory with 75% of the time devoted to a competitive guest observer program. Its consortium across Europe comprises Italy, Germany, Spain, United Kingdom, Switzerland, Poland, Sweden Until today, thanks to a dedicated experiment that dates back to the '70, only the Crab Nebula showed a non-zero polarization with large significance [1] in X-rays. XIPE, with its innovative detector, promises to make significative measurements on hundreds of celestial sources.

  7. An optical and X-ray survey of s-type Markarian galaxies

    NASA Technical Reports Server (NTRS)

    Hutter, D. J.; Mufson, S. L.

    1981-01-01

    The results of a study of 23 compact, lineless Markarian galaxies using broadband optical photometry and X-ray satellite observations are reported. The photometry shows that the sample can be broken into four groups. In one group (Mrk 180, 421, and 501) are composite objects in which a BL Lacertae object is embedded in an elliptical galaxy. For this group, the results of multiepoch X-ray observations using the HEAO-1 and -2 satellites are presented. In addition, photometry is used to decompose the optical emission into nonthermal and galactic components. In the second group are objects showing a small ultraviolet excess relative to normal galaxies. The X-ray survey indicates that the X-ray luminosity of objects in group 2 is much lower than those in group 1. This suggests that there is an intrinsic difference between objects in groups 1 and 2. The third and fourth groups are objects whose colors are indistinguishable from those of normal field galaxies and those of galactic stars, respectively. No X-ray emission was detected from objects in either of these groups.

  8. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  9. Atlas-Centaur Orbiting Astronomical Observatory Shroud Test

    NASA Image and Video Library

    1968-04-21

    Researchers at the National Aeronautics and Space Administration (NASA) Lewis Research Center conducted a series of shroud jettison tests for the second Orbiting Astronomical Observatory (OAO-2) in the Space Power Chambers during April 1968. The Orbiting Astronomical Observatory satellites were designed by Goddard Space Flight Center to study and retrieve ultraviolet data on stars and galaxies which earthbound and atmospheric telescopes could not view due to ozone absorption. The shroud jettison system was tested in the Space Power Chambers. In 1961, NASA Lewis management decided to convert its Altitude Wind Tunnel into two large test chambers and later renamed it the Space Power Chambers. The conversion, which took over two years, included removing the tunnel’s internal components and inserting bulkheads to seal off the new chambers. The larger chamber, seen here, could simulate altitudes of 100,000 feet. These chambers were used for a variety of tests on the Centaur second-stage rocket until the early 1970s. The first OAO mission in 1965 failed due to problems with the satellite. OAO-2 would be launched on an Atlas/Centaur with a modified Agena shroud. The new shroud was 18 feet longer than the normal Centaur payload shrouds. This new piece of hardware was successfully qualified during three tests at 90,000 feet altitude in the Space Power Chambers in April 1968. For the first time, x-rays were used to verify the payload clearance once the shroud was sealed. OAO-2 was launched on December 7, 1968 and proved to be an extremely successful mission.

  10. The Hard X-ray Imager (HXI) for the ASTRO-H mission

    NASA Astrophysics Data System (ADS)

    Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Kataoka, Jun; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yatsu, Yoichi; Yuasa, Takayuki

    2012-09-01

    The Hard X-ray Imager (HXI) is one of the four detectors on board the ASTRO-H mission (6th Japanese X-ray satellite), which is scheduled to be launched in 2014. Using the hybrid structure composed of double-sided silicon strip detectors and a cadmium telluride double-sided strip detector, both with a high spatial resolution of 250 μm. Combined with the hard X-ray telescope (HXT), it consists a hard X-ray imaging spectroscopic instrument covering the energy range from 5 to 80 keV with an effective area of <300 cm2 in total at 30 keV. An energy resolution of 1-2 keV (FWHM) and lower threshold of 5 keV are both achieved with using a low noise front-end ASICs. In addition, the thick BGO active shields surrounding the main detector package is a heritage of the successful performance of the Hard X-ray Detector on board the Suzaku satellite. This feature enables the instrument to achieve an extremely good reduction of background caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we present the detector concept, design, latest results of the detector development, and the current status of the hardware.

  11. IXPE - The Imaging X-Ray Polarimetry Explorer

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission that will be proposed in response to NASA's upcoming Announcement of Opportunity. IXPE will transform our understanding of the most energetic and exotic astrophysical objects, especially neutron stars and black holes, by measuring the linear polarization of astronomical objects as a function of energy, time and, where relevant, position. As the first dedicated polarimetry observatory IXPE will add a new dimension to the study of cosmic sources, enlarging the observational phase space and providing answers to fundamental questions. IXPE will feature x-ray optics fabricated at NASA/MSFC and gas pixel focal plane detectors provided by team members in Italy (INAF and INFN). This presentation will give an overview of the proposed IXPE mission, detailing the payload configuration, the expected sensitivity, and a typical observing program.

  12. ASCA measurements of the grain-scattered X-ray halos of eclipsing massive X-ray binaries: Vela X-1 and Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Woo, Jonathan W.; Clark, George W.; Day, Charles S. R.; Nagase, Fumiaki; Takeshima, Toshiaki

    1994-01-01

    We have measured the decaying dust-scattered X-ray halo of Cen X-3 during its binary eclipse with the ASCA solid-state imaging spectrometer (SIS). The surface brightness profile (SBP) of the image in the low-energy band (0.5-3 keV) lies substantially above the point-spread function (PSF) of the X-ray telescope, while the SBP in the high-energy band (5-10 keV) exhibits no significant deviation. By contrast, the SBPs of Vela X-1 during its eclipse are consistent with the PSF in both the low- and high-energy bands -- strong evidence that a dust halo is indeed present in Cen X-3. Accordingly, we modeled the SBP of Cen X-3 taken from six consecutive time segments under the principal assumptions that the dust is distributed uniformly along a segment of the line of sight, the grains have a power-law size distribution, and the low-energy source flux was the same function of orbital phase before as during our observation. The best-fit set of parameters included a grain density value of 1.3 g/cu cm, substanially less than the density of 'astronomical silicate.' This result supports the idea that interstellar grains are 'fluffy' aggregates of smaller solid particles. We attribute the failure to detect a halo of Vela X-1 during its eclipse phase to extended strong circumsource absorption that probably occurred before the eclipse and allowed the halo to decay away before the observation began.

  13. The End of Days -- Chandra Catches X-ray Glow From Supernova

    NASA Astrophysics Data System (ADS)

    1999-12-01

    Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the

  14. Extra X-rays at the Hub of Our Milky Way Galaxy

    NASA Image and Video Library

    2015-04-29

    NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has captured a new high-energy X-ray view (magenta, Figure 1) of the bustling center of our Milky Way galaxy. The smaller circle shows the area where the NuSTAR image was taken -- the very center of our galaxy, where a giant black hole resides. That region is enlarged to the right, in the larger circle, to show the NuSTAR data. The NuSTAR picture is one of the most detailed ever taken of the center of our galaxy in high-energy X-rays. The X-ray light, normally invisible to our eyes, has been assigned the color magenta. The brightest point of light near the center of the X-ray picture is coming from a spinning dead star, known as a pulsar, which is near the giant black hole. While the pulsar's X-ray emissions were known before, scientists were surprised to find more high-energy X-rays than predicted in the surrounding regions, seen here as the elliptical haze. Astronomers aren't sure what the sources of the extra X-rays are, but one possibility is a population of dead stars. The background picture was captured in infrared light by NASA's Spitzer Space Telescope. The NuSTAR image has an X-ray energy range of 20 to 40 kiloelectron volts. http://photojournal.jpl.nasa.gov/catalog/PIA19334

  15. The X-Ray Background and the AGN Luminosity Function

    NASA Astrophysics Data System (ADS)

    Hasinger, G.

    The deepest X-ray surveys performed with ROSAT were able to resolve as much as 70-80% of the 1-2 keV X-ray background into resolved sources. Optical follow-up observations were able to identify the majority of faint X-ray sources as active galactic nuclei (AGN) out to redshifts of 4.5 as well as a sizeable fraction as groups of galaxies out to redshifts of 0.7. A new population of X-ray luminous, optically innocent narrow emission line galaxies (NELGs) at the faintest X-ray fluxes is still a matter of debate, most likely many of them are also connected to AGN. First deep surveys with the Japanese ASCA satellite give us a glimpse of the harder X-ray background where the bulk of the energy density resides. Future X-ray observatories (XMM and AXAF) will be able to resolve the harder X-ray background. For the first time we are now in a position to study the cosmological evolution of the X-ray luminosity function of AGN, groups of galaxies and galaxies and simultaneously constrain their total luminosity output over cosmic time.

  16. Analysis of the Relationship Between the Solar X-Ray Radiation Intensity and the D-Region Electron Density Using Satellite and Ground-Based Radio Data

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.; Bajčetić, Jovan; Mitrović, Srdjan T.; Popović, Luka Č.

    2018-04-01

    Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT - 12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.

  17. Development of a New X-Ray Polarization Detection Device

    NASA Astrophysics Data System (ADS)

    Thompson, Jahreem R.; Hill, Joanne E.; Jahoda, Keith; Black, Kevin; Querrard, Rodney

    2018-01-01

    The aim of this research is to confirm the functionality of a Gas Electron Multiplier made of stainless steel in a detection medium of carbon dioxide and nitromethane through a series of X-ray tests in a vacuum chamber. Utilizing the photoelectric effect with carbon dioxide and nitromethane, we can confirm polarization of X-rays emitted from the most extreme astronomical conditions. We chose to use CO2 because we can confirm that it works well with the stainless-steel detector based on previous tests and nitromethane because we suspect that the ionization electrons created by the photoelectron during the photoelectric effect will experience less diffusion if they are bonded to a large molecule such as nitromethane as they diffuse towards the drift plate. The development of these new X-ray polarimeters will help to further the study of gravitational fields near black holes, their effects on matter they encounter, and the magnetic fields of neutron stars.

  18. Dynamic Processes in Be Star Atmospheres.. 6; Simultaneous X-Ray, Ultraviolet, and Optical Variations in lambda Eridani

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.; Murakami, T.; Ezuka, H.; Anandarao, B. G.; Chakraborty, A.; Corcoran, M. F.; Hirata, R.

    1995-01-01

    This report describes a joint X ray/ultraviolet/ground based study of the abnormal Be star lambda Eri which has previously shown evidence of X ray flaring from Rosat observations in 1991. The 1991 flare event caught the astronomical hot star community by surprise because x ray flares have not been observed from other single B-type stars, before or since. Both optical (H-alpha) and UV/Voyager observations provide evidence for transient heating events near the surface of lambda Eri.

  19. Soft X-ray variability over the present minimum of solar activity as observed by SphinX

    NASA Astrophysics Data System (ADS)

    Gburek, S.; Siarkowski, M.; Kepa, A.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Podgorski, P.; Kordylewski, Z.; Plocieniak, S.; Sylwester, B.; Trzebinski, W.; Kuzin, S.

    2011-04-01

    Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85-15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.

  20. Copernicus observations of a number of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.; Mason, K. O.; Sanford, P. W.; White, N. E.

    1976-01-01

    The Copernicus satellite was launched on 21 August 1972. The main experiment on board is the University of Princeton UV telescope. In addition a cosmic X-ray package of somewhat modest aperture was provided by the Mullard Space Science Laboratory (MSSL) of University College London. Following a brief description of the instrument, a list of galactic sources observed during the year is presented. Although the X-ray detection aperture is small, the ability to point the satellite for long periods of time with high accuracy makes Copernicus an ideal vehicle for the study of variable sources.

  1. X-ray Observations of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki

    A large diversity of neutron stars has been discovered by recent multi-wavelength observations from the radio band to the X-ray and gamma-ray energy range. Among different manifestation of neutron stars, magnetars are strongly magnetised objects with the magnetic field strength of B = 1014-15 G. Some of magnetars exhibit transient behaviours, in which activated state the magnetars radiate sporadic short bursts and enhanced persistent X-ray emission for a couple of weeks or more. The Suzaku X-ray satellite has observed 15 magnetars among 23 known sources in 2006-2013, including persistently bright sources and transient objects. We showed that the broadband magnetar spectra, including both of surface emission below 10 keV and magnetospheric power-law radiation above 10 keV, follow spectral evolution as a function of the magnetic field, in terms of wide-band spectral hardness ratio and of power-law photon index. Magnetars are also compared with other rotation powered pulsars on the correlation between X-ray luminosity and the spin-down luminosity. I will address future missions related with investigation of the nature of neutron stars.

  2. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  3. BL-Lacs in X-Ray Outburst

    NASA Technical Reports Server (NTRS)

    Remillard, Ronald A.; Urry, C. Megan; Aharonian, Felix; Pian, Elena; Sambruna, Rita; Coppi, Paolo

    2000-01-01

    We conducted a multifrequency campaign for the TeV blazar Markarian 421 in 1998 April. The campaign started from a pronounced high-amplitude flare recorded by BeppoSAX and Whipple; the Advanced Satellite for Cosmology and Astrophysics (ASCA) observation started three days later. In the X-ray data, we detected multiple flares, occurring on timescales of about one day. ASCA data clearly reveal spectral variability. The comparison of the data from ASCA, the Extreme Ultraviolet Explorer, and the Rossi X-Ray Timing Explorer indicates that the variability amplitudes in the low-energy synchrotron component are larger at higher photon energies. In TeV and gamma-rays, large intraday variations-which were correlated with the X-ray flux-were observed when results from three Cerenkov telescopes were combined. The rms variability of TeV and gamma-rays was similar to that observed in hard X-rays, above ten keV. The X-ray light curve reveals flares that are almost symmetric for most cases, implying that the dominant timescale is the light crossing time through the emitting region. The structure function analysis based on the continuous X-ray light curve of seven days indicates that the characteristic timescale is approx. 0.5 days. The analysis of ASCA light curves in various energy bands appears to show both soft (positive) and hard (negative) lags. These may not be real, as systematic effects could also produce these lags, which are all much smaller than an orbit. If the lags of both signs are real, these imply that the particle acceleration and X-ray cooling timescales are similar.

  4. XMM-Newton detects X-ray 'solar cycle' in distant star

    NASA Astrophysics Data System (ADS)

    2004-05-01

    whether the Sun's X-ray cycle is common among other solar-type stars, and in particular among those hosting potential rocky planets, can give scientists much needed clues on whether and where other forms of life might exist outside the Solar System. At the same time, understanding how typical and long-lasting is the solar behaviour will tell us more about the evolution of the climate on Earth. Further observations of HD 81809 and other similar stars are already planned with XMM-Newton. They will allow astronomers to study whether the large modulations in X-ray brightness observed in the Sun are indeed the norm for stars of its type. Understanding how other solar-like stars behave in general will give scientists better insight into the past and future of our own Sun. Note to editors The results described here were published in the April issue of the scientific journal Astronomy and Astrophysics (Vol. 418, p. L13). The authors of the paper are F. Favata, G. Micela, S. Baliunas, J. Schmitt, M. Guedel, F. Harnden Jr., S. Sciortino and R. Stern. A reprint of the paper can be found at: http://arxiv.org/abs/astro-ph/0403142 More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects. More information on XMM-Newton can be found at: http://www.esa.int/esaSC/SEMM8IGHZTD_1_spk.html More about SOHO SOHO is a project of international cooperation between ESA and NASA to study the Sun, from its deep core to the outer corona, and the solar wind. Fourteen European countries, led by

  5. EUV Spectroscopy of High-redshift X-ray Objects

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael Paul; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.

    2010-03-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGNs for example, will have their maxima redshifted into the EUV waveband ( 90-912 Å/0.1-0.01 keV). Consequently, a wealth of spectral diagnostics, provided by, for example, the Fe L-shell complex ( 60-6 Å/0.2-2.0 keV) and the O VII/VIII lines ( 20 Å/0.5 keV), will be lost to X-ray instruments operating at traditional ( 0.5-10 keV) and higher X-ray energies. There are precedents in other wavebands. For example, HST evolutionary studies will become largely the province of JWST. Despite the successes of EUVE, the ROSAT WFC, and the Chandra LETG, the EUV continues to be unappreciated and under-utilized, partly because of a preconception that absorption by neutral galactic Hydrogen in the ISM prevents any useful extragalactic measurements at all EUV wavelengths and, until recently, by a lack of a suitable enabling technology. Thus, if future planned X-ray missions (e.g., IXO, Gen-X) are optimized again for traditional X-ray energies, their performance (effective area, resolving power) will be cut off at ultrasoft X-ray energies or at best be radically reduced in the EUV. This opens up a critical gap in performance located right at short EUV wavelengths, where the critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nano-laminate fabrication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on

  6. ASCA Observation of an "X-Ray Shadow" in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Park, Sangwook; Ebisawa, Ken

    2001-01-01

    The diffuse X-ray background (DXB) emission near the Galactic plane (l,b approximately 25.6 degrees, 0.78 degrees) has been observed with ASCA (Advanced Satellite for Cosmology and Astrophysics). The observed region is toward a Galactic molecular cloud which was recently reported to cast a deep X-ray shadow in the 0.5 - 2.0 keV band DXB. The selection of this particular region is intended to provide a constraint on the spatial distribution of the DXB emission along the line of sight: i.e., the molecular cloud is optically thick at <2 keV and so the bulk of the observed soft X-rays must originate in the foreground of the cloud, which is at approximately 3 kpc from the Sun. In the 0.8 - 9.0 keV band, the observed spectrum is primarily from multiple components of thermal plasmas. We here report a detection of soft X-ray (0.5 - 2 keV) emission from an approximately 10(exp 7) K thermal plasma. Comparisons with the ROSAT (Roentgen Satellite) data suggest that this soft X-ray emission is absorbed by N(sub H) = 1 - 3 x 10(exp 21) cm(exp -2), which implies a path-length through the soft X-ray emitting regions of approximately less than 1 kpc from the Sun.

  7. Super DIOS: Future X-ray Spectroscopic Mission to Search for Dark Baryons

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Ichinohe, Y.; Kitazawa, S.; Kosaka, K.; Hayakawa, R.; Nunomura, K.; Mitsuda, K.; Yamasaki, N. Y.; Kikuchi, T.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Seki, D.; Otsuka, K.; Ishihara, M.; Osato, K.; Ota, N.; Tomariguchi, M.; Nagai, D.; Lau, E.; Sato, K.

    2018-04-01

    The updated program of the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS), called as Super DIOS, is planned to search for dark baryons in the form of warm-hot intergalactic medium (WHIM) with high-resolution X-ray spectroscopy. The mission will detect redshifted emission lines from OVII, OVIII and other ions, leading to an overall understanding of the physical nature and spatial distribution of dark baryons as a function of cosmological timescale. We have started the conceptual design of the satellite and onboard instruments, focusing on the era of 2030s. The major change will be an improved angular resolution of the X-ray telescope. Super DIOS will have a 10-arcsec resolution, which is an improvement by a factor of about 20 over DIOS. With this resolution, most of the contaminating X-ray sources will be separated, and the level of the diffuse X-ray background will be much reduced after subtraction of point sources. This will give us higher sensitivity to map out the WHIM in emission.

  8. The Mapping X-Ray Fluorescence Spectrometer (MAPX)

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen; hide

    2016-01-01

    MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.

  9. The Solar X-Ray Limb

    NASA Astrophysics Data System (ADS)

    Battaglia, Marina; Hudson, Hugh S.; Hurford, Gordon J.; Krucker, Säm; Schwartz, Richard A.

    2017-07-01

    We describe a new technique to measure the height of the X-ray limb with observations from occulted X-ray flare sources as observed by the RHESSI (the Reuven Ramaty High-Energy Spectroscopic Imager) satellite. This method has model dependencies different from those present in traditional observations at optical wavelengths, which depend upon detailed modeling involving radiative transfer in a medium with complicated geometry and flows. It thus provides an independent and more rigorous measurement of the “true” solar radius, which means that of the mass distribution. RHESSI’s measurement makes use of the flare X-ray source’s spatial Fourier components (the visibilities), which are sensitive to the presence of the sharp edge at the lower boundary of the occulted source. We have found a suitable flare event for analysis, SOL2011-10-20T03:25 (M1.7), and report a first result from this novel technique here. Using a four-minute integration over the 3-25 keV photon energy range, we find {R}{{X} - {ray}}=960.11+/- 0.15+/- 0.29 arcsec, at 1 au, where the uncertainties include statistical uncertainties from the method and a systematic error. The standard VAL-C model predicts a value of 959.94 arcsec, which is about 1σ below our value.

  10. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Waite, J. Hunter, Jr.; Gladstone, G. Randall; Cravens, Thomas E.; Ford, Peter G.

    2005-01-01

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn s non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn s X-ray emissions are found to be highly variable on time scales of tens of minutes to weeks. Unlike Jupiter, X-rays from Saturn s polar (auroral) region have characteristics similar to those from its disk and varies in brightness inversely to the FUV auroral emissions observed by the Hubble Space Telescope. This report establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  11. China hones plans for ambitious x-ray probe

    NASA Astrophysics Data System (ADS)

    Normile, Dennis

    2018-03-01

    China is raising the stakes in its bid to become a major player in space science. At a kick-off meeting in Beijing last week, China's National Space Science Center began detailed design studies for a satellite that would round out an array of orbiting platforms for probing x-rays from the most violent corners of the cosmos. The enhanced X-Ray Timing and Polarimetry (eXTP) mission would be China's most ambitious space science satellite yet—and its most expensive, with an estimated price tag of $473 million. To pull it off, China is assembling a collaboration involving more than 200 scientists so far from dozens of institutions in 20 countries. If the eXTP mission passes a final review next year, it would launch around 2025.

  12. A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.

    Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.

  13. Canadian Led X-ray Polarimeter Mission CXP

    NASA Technical Reports Server (NTRS)

    Kaspi, V.; Hanna, D.; Weisskopf, M.; Ramsey, B.; Ragan, K.; Vachon, B.; Elsner, R.; Heyl, J.; Pavlov, G.; Cumming, A.; hide

    2006-01-01

    We propose a Canadian-led X-ray Polarimetry Mission (CXP), to include a scattering X-ray Polarimeter and sensitive All-Sky X-ray Monitor (ASXM). Polarimetry would provide a new observational window on black holes, neutron stars, accretion disks and jets, and the ASXM would offer sensitive monitoring of the volatile X-ray sky. The envisioned polarimeter consists of a hollow scattering beryllium cone surrounded by an annular proportional counter, in a simple and elegant design that is reliable and low-risk. It would be sensitive in the 6-30 keV band to approx. 3% polarization in approx. 30 Galactic sources and 2 AGN in a baseline 1-yr mission, and have sensitivity greater than 10 times that of the previous X-ray polarimeter flown (NASA's OSO-8, 1975-78) for most sources. This X-ray polarimeter would tackle questions like, Do black holes spin?, How do pulsars pulse?, What is the geometry of the magnetic field in accreting neutron stars? Where and how are jets produced in microquasars and AGN?, What are the geometries of many of the most famous accretion-disk systems in the sky? This will be done using a novel and until-now unexploited technique that will greatly broaden the available observational phase space of compact objects by adding to timing and spectroscopy observations of polarization fraction and position angle as a function of energy. The All-Sky X-ray Monitor would scan for transients, both as potential targets for the polarimeter but also as a service to the worldwide astronomical community. The entire CXP mission could be flown for $40- 60M CDN, according to estimates by ComDev International, and could be built entirely in Canada. It would fall well within the CSA's SmallSat envelope and would empower the growing and dynamic Canadian High-Energy Astrophysics community with world leadership in a potentially high impact niche area.

  14. The x-ray luminosity-redshift relationship of quasars

    PubMed Central

    Segal, I. E.; Segal, W.

    1980-01-01

    Chronometric cosmology provides an excellent fit for the phenomenological x-ray luminosity-redshift relationship for 49 quasars observed by the Einstein satellite. Analysis of the data on the basis of the Friedmann cosmology leads to a correlation of absolute x-ray luminosity with redshift of >0.8, which is increased to ∼1 in the bright envelope. Although the trend might be ascribed a priori to an observational magnitude bias, it persists after nonparametric, maximum-likelihood removal of this bias. PMID:16592826

  15. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  16. Identification of high-mass X-ray binaries selected from XMM-Newton observations of the LMC★

    NASA Astrophysics Data System (ADS)

    van Jaarsveld, N.; Buckley, D. A. H.; McBride, V. A.; Haberl, F.; Vasilopoulos, G.; Maitra, C.; Udalski, A.; Miszalski, B.

    2018-04-01

    The Large Magellanic Cloud (LMC) currently hosts around 23 high-mass X-ray binaries (HMXBs) of which most are Be/X-ray binaries. The LMC XMM-Newton survey provided follow-up observations of previously known X-ray sources that were likely HMXBs, as well as identifying new HMXB candidates. In total, 19 candidate HMXBs were selected based on their X-ray hardness ratios. In this paper we present red and blue optical spectroscopy, obtained with Southern African Large Telescope and the South African Astronomical Observatory 1.9-m telescope, plus a timing analysis of the long-term optical light curves from OGLE to confirm the nature of these candidates. We find that nine of the candidates are new Be/X-ray binaries, substantially increasing the LMC Be/X-ray binary population. Furthermore, we present the optical properties of these new systems, both individually and as a group of all the BeXBs identified by the XMM-Newton survey of the LMC.

  17. A web service framework for astronomical remote observation in Antarctica by using satellite link

    NASA Astrophysics Data System (ADS)

    Jia, M.-h.; Chen, Y.-q.; Zhang, G.-y.; Jiang, P.; Zhang, H.; Wang, J.

    2018-07-01

    Many telescopes are deployed in Antarctica as it offers excellent astronomical observation conditions. However, because Antarctica's environment is harsh to humans, remote operation of telescope is necessary for observation. Furthermore, communication to devices in Antarctica through satellite link with low bandwidth and high latency limits the effectiveness of remote observation. This paper introduces a web service framework for remote astronomical observation in Antarctica. The framework is based on Python Tornado. RTS2-HTTPD and REDIS are used as the access interface to the telescope control system in Antarctica. The web service provides real-time updates through WebSocket. To improve user experience and control effectiveness under the poor satellite link condition, an agent server is deployed in the mainland to synchronize the Antarctic server's data and send it to domestic users in China. The agent server will forward the request of domestic users to the Antarctic master server. The web service was deployed and tested on Bright Star Survey Telescope (BSST) in Antarctica. Results show that the service meets the demands of real-time, multiuser remote observation and domestic users have a better experience of remote operation.

  18. X-Ray Outburst from Young Star in McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  19. Calibration of the ART-XC/SRG X-ray Mirror Modules

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Kolodziejczak, J.; Elsner, R.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2014-01-01

    Seven x-ray mirror modules are being fabricated at the Marshall Space Flight Center (MSFC) for the Astronomical Roentgen Telescope (ART) instrument to be launched on board of the Spektrum Roentgen Gamma (SRG) Mission. As they are completed, the modules are tested and calibrated at the MSFC's 104-m Stray Flight Facility. The results of these calibration measurements and comparisons with theoretical models will be presented.

  20. Design and modeling of an additive manufactured thin shell for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter

    2017-09-01

    Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.

  1. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    NASA Technical Reports Server (NTRS)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  2. X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  3. Forming Mandrels for X-Ray Mirror Substrates

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Saha, Timo; Zhang, Will; O'Dell, Stephen; Kester, Thomas; Jones, William

    2011-01-01

    Future x-ray astronomical missions, like the International X-ray Observatory (IXO), will likely require replicated mirrors to reduce both mass and production costs. Accurately figured and measured mandrels - upon which the mirror substrates are thermally formed - are essential to enable these missions. The challenge of making these mandrels within reasonable costs and schedule has led the Goddard and Marshall Space Flight Centers to develop in-house processes and to encourage small businesses to attack parts of the problem. Both Goddard and Marshall have developed full-aperture polishing processes and metrologies that yield high-precision axial traces of the finished mandrels. Outside technologists have been addressing challenges presented by subaperture CNC machining processes: particularly difficult is the challenge of reducing mid-spatial frequency errors below 2 nm rms. The end-product of this approach is a realistic plan for the economically feasible production of mandrels that meet program requirements in both figure and quantity.

  4. The Si/CdTe semiconductor camera of the ASTRO-H Hard X-ray Imager (HXI)

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Hagino, Kouichi; Watanabe, Shin; Genba, Kei; Harayama, Atsushi; Kanematsu, Hironori; Kataoka, Jun; Katsuragawa, Miho; Kawaharada, Madoka; Kobayashi, Shogo; Kokubun, Motohide; Kuroda, Yoshikatsu; Makishima, Kazuo; Masukawa, Kazunori; Mimura, Taketo; Miyake, Katsuma; Murakami, Hiroaki; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Onishi, Mitsunobu; Saito, Shinya; Sato, Rie; Sato, Tamotsu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin`ichiro; Yuasa, Takayuki

    2016-09-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard the ASTRO-H mission [1-4] to be launched in early 2016. The HXI is the focal plane detector of the hard X-ray reflecting telescope that covers an energy range from 5 to 80 keV. It will execute observations of astronomical objects with a sensitivity for point sources as faint as 1/100,000 of the Crab nebula at > 10 keV. The HXI camera - the imaging part of the HXI - is realized by a hybrid semiconductor detector system that consists of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors. Here, we present the final design of the HXI camera and report on the development of the flight model. The camera is composed of four layers of Double-sided Silicon Strip Detectors (DSSDs) and one layer of CdTe Double-sided Strip Detector (CdTe-DSD), each with an imaging area of 32 mm×32 mm. The strip pitch of the Si and CdTe sensors is 250 μm, and the signals from all 1280 strips are processed by 40 Application Specified Integrated Circuits (ASICs) developed for the HXI. The five layers of sensors are vertically stacked with a 4 mm spacing to increase the detection efficiency. The thickness of the sensors is 0.5 mm for the Si, and 0.75 mm for the CdTe. In this configuration, soft X-ray photons will be absorbed in the Si part, while hard X-ray photons will go through the Si part and will be detected in the CdTe part. The design of the sensor trays, peripheral circuits, power connections, and readout schemes are also described. The flight models of the HXI camera have been manufactured, tested and installed in the HXI instrument and then on the satellite.

  5. AM Herculis - Simultaneous X-ray, optical, and near-IR coverage

    NASA Technical Reports Server (NTRS)

    Szkody, P.; Tuohy, I. R.; Cordova, F. A.; Stockman, H. S.; Angel, J. R. P.; Wisniewski, W.

    1980-01-01

    A 6 hour X-ray pointing at AM Her using the HEAO 1 satellite is correlated with simultaneous broadband V and I photometry and visual circular polarimetry. The absence of correlations on either a flickering or an orbital time scale implies distinct regions for the visual and X-ray emission. Significant changes in the light curves are observed from one binary cycle to the next.

  6. Automatic Reacquisition of Satellite Positions by Detecting Their Expected Streaks in Astronomical Images

    NASA Astrophysics Data System (ADS)

    Levesque, M.

    Artificial satellites, and particularly space junk, drift continuously from their known orbits. In the surveillance-of-space context, they must be observed frequently to ensure that the corresponding orbital parameter database entries are up-to-date. Autonomous ground-based optical systems are periodically tasked to observe these objects, calculate the difference between their predicted and real positions and update object orbital parameters. The real satellite positions are provided by the detection of the satellite streaks in the astronomical images specifically acquired for this purpose. This paper presents the image processing techniques used to detect and extract the satellite positions. The methodology includes several processing steps including: image background estimation and removal, star detection and removal, an iterative matched filter for streak detection, and finally false alarm rejection algorithms. This detection methodology is able to detect very faint objects. Simulated data were used to evaluate the methodology's performance and determine the sensitivity limits where the algorithm can perform detection without false alarm, which is essential to avoid corruption of the orbital parameter database.

  7. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  8. Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy

    NASA Technical Reports Server (NTRS)

    Myers, Richard A.

    2008-01-01

    An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.

  9. News on the X-ray emission from hot subdwarf stars

    NASA Astrophysics Data System (ADS)

    Palombara, Nicola La; Mereghetti, Sandro

    2017-12-01

    In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  10. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. Illustration of a Magnetar Illustration of a Magnetar The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that

  11. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova

  12. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  13. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    PubMed

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  14. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  15. Kinematic Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Mazzarella, James R.; Saha, Timo T.; Zhang, William W.; Mcclelland, Ryan S.; Biskack, Michael P.; Riveros, Raul E.; Allgood, Kim D.; Kearney, John D.; Sharpe, Marton V.; hide

    2017-01-01

    Optics for the next generation's high-resolution, high throughput x-ray telescope requires fabrication of well-formed lightweight mirror segments and their integration at arc-second precision. Recent advances in the fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror alignment and integration. In this method, stiff silicon mirrors are aligned quasi-kinematically and are bonded in an interlocking fashion to produce a "meta-shell" with large collective area. We address issues of aligning and bonding mirrors with this method and show a recent result of 4 seconds-of-arc for a single pair of mirrors tested at soft x-rays.

  16. Biomimetics and astronomical X-ray optics

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Remisova, K.

    2017-07-01

    Some sea and water animals have strange mirror eyes which have (or might have) potential application in science and technology in general and in X—ray astrophysics in particular. While the principles of mirror eyes of decapods (lobsters, crayfishes) are already applied in space and ground—based imaging experiments, the mirror eyes of specific fishes are still very little investigated.

  17. The Sun's X-ray Emission During the Recent Solar Minimum

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  18. The Mapping X-Ray Fluorescence Spectrometer (mapx)

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.; Downs, R. T.; Gailhanou, M.; Marchis, F.; Ming, D. W.; Morris, R. V.; Sole, V. A.; Thompson, K.; Walter, P.; Wilson, M.; Yen, A. S.; Webb, S.

    2016-12-01

    MapX will provide elemental imaging at ≤100 µm spatial resolution over 2.5 X 2.5 cm areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or α-particles / γ-rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of ≤100 µm and quantitative XRF spectra from Regions of Interest (ROI) 2 cm ≤ x ≤ 100 µm. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa. [1] Schoonjans, T. et al.(2012). Spectrachim. Acta Part B, 70, 10-23. [2] Agostinelli, S. et al. (2003). Nucl. Instr. and Methods in Phys. Research A, 506, 250-303. [3] V.A. Solé et al. (2007). Spectrochim. Acta Part B, 62, 63-68.

  19. Contact binary stars. I - An X-ray survey

    NASA Technical Reports Server (NTRS)

    Cruddace, R. G.; Dupree, A. K.

    1984-01-01

    X-ray emission from a contact binary star was first detected by the HEAO 1 satellite in 1977. Spectroscopic observations of 44i Boo and VW Cep by IUE established the presence of high-temperature chromospheric and transition region emission lines in the spectra of these stars. The HEAO 1 and IUE results implied that the processes causing X-ray emission from VW Cep might be similar to those energizing the solar corona, and that X-ray emission might be a common occurrence among contact binary stars. A series of observations of these stars was, therefore, conducted with the aid of the HEAO 2 (Einstein) Observatory. The present investigation is concerned with the results of these observations, giving attention to their implications with respect to the nature of contact binary stars. The results are compared with similar HEAO 2 studies of coronal X-ray sources in the local region of the Galaxy, in the Hyades, and other rapidly rotating systems.

  20. X-ray observations of two short but intense solar flares

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki; Dennis, Brian R.; Kiplinger, Alan L.

    1990-01-01

    This paper presents continuum X-ray spectra of impulsive emission in two short but intense solar flares which have relatively weak soft X-ray emissions, combining data obtained with soft X-ray and hard X-ray spectrometers on board two satellites, the SMM and Hinotori. In both flares, photon spectra of the impulsive component are found to flatten toward low energies, suggesting that a low-energy cutoff of the electron spectrum could be greater than about 50 keV and that the total energy contained in the electrons is significantly less than that usually quoted for a cutoff energy of about 20 keV. Different shapes of the X-ray spectrum at energies below 50 keV in other flares can be attributed to the variety in the relative strength of gradual and impulsive emissions. In one of the two flares, observations with the imager on Hinotori suggest that hard X-ray emission is likely to be associated with loop footpoints. It is argued that contamination by the gradual soft X-ray emission and/or the asymmetry of loops could explain the detection of single sources in the majority of flares that have been imaged in hard X-rays.

  1. An X-ray investigation of the unusual supernova remnant CTB 80

    NASA Technical Reports Server (NTRS)

    Wang, Z. R.; Seward, F. D.

    1984-01-01

    The X-ray properties of SNR CTB 80 (G68.8 + 2.8) are discussed based on both low- and high-resolution images from the Einstein satellite. The X-ray maps show a point source coinciding with the region of maximum radio emission. Diffuse X-ray emission is evident mainly along the radio lobe extending about 8 arcmin east of the point source and aligned with the projected magnetic field lines. The observed X-ray luminosity is 3.2 x 10 to the 34th ergs/s with 1.0 x 10 to the 3th ergs/s from the point source (assuming a distance of 3 kpc). There is also faint, diffuse, X-ray emission south of the point source, where radio emission is absent. The unusual radio and X-ray morphologies are interpreted as a result of relativistic jets energized by the central object, and the possible association of CTB 80 with SN 1408 as recorded by Chinese observers is discussed.

  2. Study of the Jupiter X-ray imaging spectrometer on JMO

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ezoe, Y.; Kasahara, S.; Miyoshi, Y.; Yamazaki, A.; Fujimoto, M.; JMO X-ray Experiment Team

    2011-12-01

    In 2000's, the new generation X-ray observatories (Chandra, XMM-Newton and Suzaku) have revealed various new X-ray phenomena in the Jupiter system. The detected objects include Jupiter's aurorae, disk (middle and low-latitude emission), Io, Europa, the Io Plasma Torus, and radiation belts. For example, Jupiter's aurorae emit time variable X-rays via bremsstrahlung by keV electrons and charge exchange by MeV ions (Gladstone et al. 2002 Nature). A diffuse X-ray emission associated with the Jupiter's radiation belts suggests an inverse Compton scattering of tens MeV electrons (Ezoe et al. 2010 ApJ). Hence, the X-ray emission can be a unique diagnostic tool to investigate key fundamental problems on the Jupiter system such as the relativistic particle acceleration and the Jupiter-satellite reaction. However, since these observations have been done with the X-ray astronomy satellites orbiting the Earth, the photon statistics of X-ray spectra and light curves, and the angular resolution of X-ray images were severely limited. In this context, we have started to study design of an X-ray imaging spectrometer for JMO (Jupiter Magnetospheric Orbiter) which is expected to collaborate with international Jupiter exploration mission JUICE (JUpiter ICy moon Explorer). JUICE is originally EJSM (Europa Jupiter System Mission) but recently renamed JUICE as ESA-lead mission, which is proposed to be launched in 2020's. It consists of one main flight element developed by ESA to explore icy moons of Jupiter, and JMO by JAXA is expected to perform high-latitude (10-30 deg inclination) measurements of the Jupiter system and overview the magnetospheric activities. The in-situ measurements by EJSM JMO provide us with an unprecedented opportunity to observe Jupiter with extremely high photon statistics, high time and angular resolution. To realize the in-situ X-ray instrument for EJSM JMO, stringent mass and power limitations must be fulfilled. Furthermore, the radiation and the contamination

  3. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  4. Performance of NICER flight x-ray concentrator

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Soong, Yang; Balsamo, Erin R.; Enoto, Teruaki; Olsen, Larry; Koenecke, Richard; Lozipone, Larry; Kearney, John; Fitzsimmons, Sean; Numata, Ai; Kenyon, Steven J.; Arzoumanian, Zaven; Gendreau, Keith

    2016-07-01

    Neutron star Interior Composition ExploreR (NICER) is a NASA instrument to be onboard International Space Station, which is equipped with 56 pairs of an X-ray concentrator (XRC) and a silicon drift detector for high timing observations. The XRC is based on an epoxy replicated thin aluminum foil X-ray mirror, similar to those of Suzaku and ASTRO-H (Hitomi), but only a single stage parabolic grazing incidence optic. Each has a focal length of 1.085m and a diameter of 105 mm, with 24 confocally aligned parabolic shells. Grazing incident angles to individual shells range from 0.4 to 1.4 deg. The flight 56 XRCs have been completed and successfully delivered to the payload integration. All the XRC was characterized at the NASA/GSFC 100-m X-ray beamline using 1.5 keV X-rays (some of them are also at 4.5 keV). The XRC performance, effective area and point spread function, was measured by a CCD camera and a proportional counter. The average effective area is about 44 cm2 at 1.5 keV and about 18 cm2 at 4.5 keV, which is consistent with a micro-roughness of 0.5nm from individual shell reflectivity measurements. The XRC focuses about 91% of X-rays into a 2mm aperture at the focal plane, which is the NICER detector window size. Each XRC weighs only 325 g. These performance met the project requirement. In this paper, we will present summary of the flight XRC performance as well as co-alignment results of the 56 XRCs on the flight payload as it is important to estimate the total effective for astronomical observations.

  5. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; hide

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-07-01

    This image shows the central region of the spiral galaxy NGC 4631 as seen edge-on from the Chandra X-Ray Observatory (CXO) and the Hubble Space Telescope (HST). The Chandra data, shown in blue and purple, provide the first unambiguous evidence for a halo of hot gas surrounding a galaxy that is very similar to our Milky Way. The structure across the middle of the image and the extended faint filaments, shown in orange, represent the observation from the HST that reveals giant bursting bubbles created by clusters of massive stars. Scientists have debated for more than 40 years whether the Milky Way has an extended corona, or halo, of hot gas. Observations of NGC 4631 and similar galaxies provide astronomers with an important tool in the understanding our own galactic environment. A team of astronomers, led by Daniel Wang of the University of Massachusetts at Amherst, observed NGC 4631 with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS). The observation took place on April 15, 2000, and its duration was approximately 60,000 seconds.

  7. Differential Deposition to Correct Surface Figure Deviations in Astronomical Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.

    2011-01-01

    A coating technique is being developed to correct the surface figure deviations in reflective-grazing-incidence X-ray optics. These optics are typically designed to have precise conic profiles, and any deviation in this profile, as a result of fabrication, results in a degradation of the imaging performance. To correct the mirror profiles, physical vapor deposition has been utilized to selectively deposit a filler material inside the mirror shell. The technique, termed differential deposition, has been implemented as a proof of concept on miniature X-ray optics developed at MSFC for medical-imaging applications. The technique is now being transferred to larger grazing-incidence optics suitable for astronomy and progress to date is reported.

  8. Thermal analyses for initial operations of the soft x-ray spectrometer onboard the Hitomi satellite

    NASA Astrophysics Data System (ADS)

    Noda, Hirofumi; Mitsuda, Kazuhisa; Okamoto, Atsushi; Ezoe, Yuichiro; Ishikawa, Kumi; Fujimoto, Ryuichi; Yamasaki, Noriko; Takei, Yoh; Ohashi, Takaya; Ishisaki, Yoshitaka; Mitsuishi, Ikuyuki; Yoshida, Seiji; DiPirro, Michel; Shirron, Peter

    2018-01-01

    The soft x-ray spectrometer (SXS) onboard the Hitomi satellite achieved a high-energy resolution of ˜4.9 eV at 6 keV with an x-ray microcalorimeter array cooled to 50 mK. The cooling system utilizes liquid helium, confined in zero gravity by means of a porous plug (PP) phase separator. For the PP to function, the helium temperature must be kept lower than the λ point of 2.17 K in orbit. To determine the maximum allowable helium temperature at launch, taking into account the uncertainties in both the final ground operations and initial operation in orbit, we constructed a thermal mathematical model of the SXS dewar and PP vent and carried out time-series thermal simulations. Based on the results, the maximum allowable helium temperature at launch was set at 1.7 K. We also conducted a transient thermal calculation using the actual temperatures at launch as initial conditions to determine flow and cooling rates in orbit. From this, the equilibrium helium mass flow rate was estimated to be ˜34 to 42 μg/s, and the lifetime of the helium mode was predicted to be ˜3.9 to 4.7 years. This paper describes the thermal model and presents simulation results and comparisons with temperatures measured in the orbit.

  9. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.

    2001-12-01

    In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.

  10. The X-ray view of radio-loud active galactic nuclei: The central engine and its environment

    NASA Astrophysics Data System (ADS)

    Donato, Davide

    The non-thermal emission from many Active Galactic Nuclei (AGN) is obscured by optically thick circumnuclear matter, particularly at optical and ultraviolet wavelengths. In radio-loud (RL) sources, the AGN activity is coupled with the presence of a bipolar jet that emit radio through g-ray light which is relativistically beamed along the jet axes. The combination of absorption and beaming produces highly anisotropic radiation. The understanding of the origin and magnitude of this radiation allows astronomers to unify different classes of AGN; that is, to identify each single, underlying AGN type that gives rise to different classes through different orientations with respect to the jet axis. This is the fundamental notion behind what are called "unification models" of AGN. Although this general idea is well accepted, many aspects remain matter of debate. In fact, the explanation of the wide and complex variety of AGN phenomena must be searched in a combination of apparent differences (like orientation) and real differences in a number of physical parameters (like gas/dust content and distribution, luminosity, etc.). The goal of this thesis is to address some of the RL unification open questions using X-ray data. The improved sensitivity and angular resolution of a new generation of satellites, combined with the fact that X-rays provide useful information on a variety of AGN phenomena, will allow me to: (1) Study the broadband X-ray continua of BL Lacertae objects (BL Lacs) and Flat Spectrum Radio Quasars (FSRQs); (2) Probe the emission from the very inner region of an AGN; (3) Determine the presence and characteristic of extended X-ray emission from the AGN environment. The results obtained from theses studies will provide me insights into (1) the X-ray average spectral properties of BL Lacs and FSRQs and the physical processes responsible of the emission; (2) the presence of the obscuring torus and the amount of absorption, (3) the nature of X-ray emission, and (4

  11. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  12. Astronomers Discover Spectacular Structure in Distant Galaxy

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many

  13. Penn State University ground software support for X-ray missions.

    NASA Astrophysics Data System (ADS)

    Townsley, L. K.; Nousek, J. A.; Corbet, R. H. D.

    1995-03-01

    The X-ray group at Penn State is charged with two software development efforts in support of X-ray satellite missions. As part of the ACIS instrument team for AXAF, the authors are developing part of the ground software to support the instrument's calibration. They are also designing a translation program for Ginga data, to change it from the non-standard FRF format, which closely parallels the original telemetry format, to FITS.

  14. Correlation between X-ray flux and rotational acceleration in Vela X-1

    NASA Technical Reports Server (NTRS)

    Deeter, J. E.; Boynton, P. E.; Shibazaki, N.; Hayakawa, S.; Nagase, F.

    1989-01-01

    The results of a search for correlations between X-ray flux and angular acceleration for the accreting binary pulsar Vela X-1 are presented. Results are based on data obtained with the Hakucho satellite during the interval 1982 to 1984. In undertaking this correlation analysis, it was necessary to modify the usual statistical method to deal with conditions imposed by generally unavoidable satellite observing constraints, most notably a mismatch in sampling between the two variables. The results are suggestive of a correlation between flux and the absolute value of the angular acceleration, at a significance level of 96 percent. The implications of the methods and results for future observations and analysis are discussed.

  15. Studies of an x ray selected sample of cataclysmic variables. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.

    1986-01-01

    Just prior to the thesis research, an all-sky survey in hard x rays with the HEAO-1 satellite and further observations in the optical resulted in a catalog of about 700 x-ray sources with known optical counterparts. This sample includes 43 cataclysmic variables, which are binaries consisting of a detached white-dwarf and a Roche lobe filling companion star. This thesis consists of studies of the x-ray selected sample of catalcysmic variables.

  16. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  17. Reply to ``Comment on `Relation between copper {ital L} x-ray fluorescence and 2{ital p} x-ray photoelectron spectroscopies` ``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, J.; Maeda, K.; Nakajima, K.

    1995-08-15

    Ohno`s preceding Comment [Phys. Rev. B 52, 6127 (1995)] was based on experimental raw spectra of copper {ital L} x-ray emission. The Cu {ital L} x-ray emission spectra were, however, heavily smeared by the self-absorption effect, which was a source of contradiction. The electronic structure of divalent copper oxide was calculated placing one core hole and two 3{ital d} holes, with the result that the spectator 3{ital d} holes were delocalized in the adiabatic limit. This implies that the spectator 3{ital d} hole produced by the {ital L}{sub 1,2}{ital L}{sub 3}{ital M}{sub 4,5} Coster-Kronig transition preceding the {ital L}{sub 3}-{italmore » M} x-ray emission will be mostly delocalized at the time of the {ital L}{sub 3}-{ital M} x-ray emission, and thus the spectator satellite will be weaker than is expected for the free atom. Ohno did not consider this delocalization, which was another source of contradiction.« less

  18. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  19. DynamiX, numerical tool for design of next-generation x-ray telescopes.

    PubMed

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-07-20

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  20. Origin of Lα{sup x} satellite in the light rare earths on the basis of plasmon theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Manjula, E-mail: rainbow-mjain@yahoo.co.in; Shrivastava, B. D., E-mail: rashmibasant@gmail.com

    The origin of most of the X-ray satellites can be explained on the basis of multiple ionization theory. However, there are several satellites which can be explained on the basis of plasmon theory. When a plasmon is excited during the X-ray emission process, one can get a low energy satellite because energy is used up in exciting the plasmon oscillations in the electron gas. A plasmon on decay can also transfer its energy to the transiting electron which subsequently fills the core vacancy giving rise to a high energy satellite. In our laboratory, a new high energy satellite Lα{sup x}more » has been observed in the Lα - emission spectra of the oxides of some light rare earths on the high energy side of the diagram line Lα{sub 1}. In the present paper, the origin of this high energy satellite has been explained using the theory of plasma oscillations in solids. The energy separation of the satellite from the emission line Lα{sub 1} has been calculated and then compared with the theoretical separation based on the plasmon theory. The agreement between the theoretical and experimental values is found to be good. Hence, the observed satellite can be designated as plasmon satellite.« less

  1. Ultraviolet, X-ray, and infrared observations of HDE 226868 equals Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Treves, A.; Chiappetti, L.; Tanzi, E. G.; Tarenghi, M.; Gursky, H.; Dupree, A. K.; Hartmann, L. W.; Raymond, J.; Davis, R. J.; Black, J.

    1980-01-01

    During April, May, and July of 1978, HDE 226868, the optical counterpart of Cygnus X-1, was repeatedly observed in the ultraviolet with the IUE satellite. Some X-ray and infrared observations have been made during the same period. The general shape of the spectrum is that expected from a late O supergiant. Strong absorption features are apparent in the ultraviolet, some of which have been identified. The equivalent widths of the most prominent lines appear to be modulated with the orbital phase. This modulation is discussed in terms of the ionization contours calculated by Hatchett and McCray, for a binary X-ray source in the stellar wind of the companion.

  2. X-Ray Astronomy Research at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Austin, Robert A.

    1999-01-01

    For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.

  3. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  4. Extreme X-ray Behaviour of Mrk 421

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2013-03-01

    In ATel #4864 (B. Kapanadze, M4k 421 Still Active through X-rays), we reported the flaring activity in the high-energy peaked BL Lacertae source Mrk 421 (z=0.031) detected via the observations performed during March 1-5, 2013, by the X-ray Telescope (XRT) onboard the Swift satellite. The recent observations, performed by this telescope, show increasing X-ray activity of this source. The data, allocated at the webpage http://www.swift.psu.edu/monitoring/ , show that the source was extremely active on hours timescale during the March 17 pointing: the 0.3-10 keV flux dropped from 16.83+0.17 cts/s (Orbit 1) to 12.46+0.24 cts/s (Orbit 5) in about 4.2 hr; it increased then to 24.60+0.14 cts/s for next orbit (in 1.45 hr) and afterwards drooped again to 16.01+0.15 cts/s in the case of next orbit (in 1.7 hr).

  5. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-09-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  6. Active x-ray optics for high resolution space telescopes

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  7. The X-ray Lightcurve of Eta Carinae, 1996-2014

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Hamaguchi, Kenji; Liburd, Jamar; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony F. J.; Richardson, Noel; Russell, Christopher Michael Post; Pollock, A.; Owocki, Stanley P.

    2015-01-01

    Eta Carinae is the nearest example of a supermassive, superluminous, unstable star. Mass loss from the system is important in shaping its circumstellar medium and in determining the ultimate fate of the star. Eta Car loses mass via a dense, slow stellar wind and possesses one of the largest mass loss rates known. It is prone to episodes of extreme mass ejection via eruptions from some as-yet unspecified cause; the best examples of this are the large-scale eruptions which occurred in the mid-19th century, and then again about 50 years later. Eta Car is a colliding wind binary in which strong variations in X-ray emission and in other wavebands are driven by the violent collision of the wind of Eta Car and the fast, less dense wind of an otherwise hidden companion star. X-ray variations are the simplest diagnostic we have to study the wind-wind collision and allow us to measure the state of the stellar mass loss from both stars. We present the X-ray lightcurve over the last 20 years from monitoring observations with the Rossi X-ray Timing Explorer and the X-ray Telescope on the Swift satellite, and compare and contrast the behavior of the X-ray emission from the system over that timespan, including surprising variations during the 2014 X-ray minimum.

  8. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  9. Performance of ASTRO-H Hard X-Ray Telescope (HXT)

    NASA Technical Reports Server (NTRS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Furuzawa, Akihiro; Haba, Yohsito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Itoh, Masayuki; hide

    2016-01-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and two hard X-ray imagers (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with PtC depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8 BL20B2 in Japan, and found that total effective area of two HXTs was about 350 sq cm at 30 keV, and the half power diameter of HXT was about 1.9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomis data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that estimated by the ground calibrations.

  10. Variable mid-latitude X-ray source 3U 0042+32

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Clark, G. W.; Dower, R.; Doxsey, R.; Jernigan, G.; Li, F.

    1977-01-01

    A celestial location with an error circle of radius one minute is reported for the mid-latitude X-ray source 3U 0042+32; comparison of observations from the Ariel-5 and Uhuru satellites with data obtained from two independent rotation modulation collimators yields the precise position. Studies to detect regular pulsations and energy spectra of the X-ray source are also discussed. Analysis of the peak X-ray flux in the error circle, as well as certain distance constraints, suggests that the source of the flux may be a neutron star in a distant galactic binary system having a companion that undergoes episodes of mass transfer due to eruption or orbital eccentricity.

  11. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  12. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    2006-06-01

    With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  13. Discovery of X-ray emission associated with the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Garmire, G.

    1992-01-01

    The Gum Nebula was observed by the A-2 LED proportional counters on the HEAO-1 satellite as part of the all-sky survey. The first detection of X-ray emission associated with the Gum Nebula is reported. Soft X-ray spectra were constructed from the A-2 LED PHA data. Single temperature Raymond-Smith models were fitted to the observed spectra to yield temperature, column density and emission measure. The temperature is 6 x 10 exp 5 K, the column density 4 x 10 exp 20/sq cm, and the emission measure 5 cm exp-6 pc. The X-ray and optical properties of the Gum Nebula are consistent with a supernova remnant in the shell stage of evolution, which was the product of an energetic (3 x 10 exp 51 ergs) supernova explosion which occurred about 2 x 10 exp 6 yr ago.

  14. Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran

    2014-03-01

    We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.

  15. NASA's Swift Satellite Catches First Supernova in The Act of Exploding

    NASA Astrophysics Data System (ADS)

    2008-05-01

    GREENBELT, Md.- Thanks to a fortuitous observation with NASA’s Swift satellite, astronomers for the first time have caught a star in the act of exploding. Astronomers have previously observed thousands of stellar explosions, known as supernovae, but they have always seen them after the fireworks were well underway. "For years we have dreamed of seeing a star just as it was exploding, but actually finding one is a once in a lifetime event," says team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University in Princeton, N.J. "This newly born supernova is going to be the Rosetta stone of supernova studies for years to come." A typical supernova occurs when the core of a massive star runs out of nuclear fuel and collapses under its own gravity to form an ultradense object known as a neutron star. The newborn neutron star compresses and then rebounds, triggering a shock wave that plows through the star’s gaseous outer layers and blows the star to smithereens. Astronomers thought for nearly four decades that this shock "break-out" will produce bright X-ray emission lasting a few minutes. X-ray Image X-ray Images But until this discovery, astronomers have never observed this signal. Instead, they have observed supernovae brightening days or weeks later, when the expanding shell of debris is energized by the decay of radioactive elements forged in the explosion. "Seeing the shock break-out in X-rays can give a direct view of the exploding star in the last minutes of its life and also provide a signpost to which astronomers can quickly point their telescopes to watch the explosion unfold," says Edo Berger, a Carnegie-Princeton Fellow at Princeton University. Soderberg's discovery of the first shock breakout can be attributed to luck and Swift's unique design. On January 9, 2008, Soderberg and Berger were using Swift to observe a supernova known as SN 2007uy in the spiral galaxy NGC 2770, located 90 million light-years from Earth in the

  16. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  17. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  18. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.

    2011-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  19. UBAT of UFFO/ Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Panasyuk, M. I.; Reglero, V.; Connell, P.; Kim, M. B.; Lee, J.; Rodrigo, J. M.; Ripa, J.; Eyles, C.; Lim, H.; Gaikov, G.; Jeong, H.; Leonov, V.; Chen, P.; Castro-Tirado, A. J.; Nam, J. W.; Svertilov, S.; Yashin, I.; Garipov, G.; Huang, M.-H. A.; Huang, J.-J.; Kim, J. E.; Liu, T.-C.; Petrov, V.; Bogomolov, V.; Budtz-Jørgensen, C.; Brandt, S.; Park, I. H.

    2018-02-01

    The Ultra-Fast Flash Observatory (UFFO) Burst Alert and Trigger Telescope (UBAT) has been designed and built for the localization of transient X-ray sources such as Gamma Ray Bursts (GRBs). As one of main instruments in the UFFO payload onboard the Lomonosov satellite (hereafter UFFO/ Lomonosov), the UBAT's roles are to monitor the X-ray sky, to rapidly locate and track transient sources, and to trigger the slewing of a UV/optical telescope, namely Slewing Mirror Telescope (SMT). The SMT, a pioneering application of rapid slewing mirror technology has a line of sight parallel to the UBAT, allowing us to measure the early UV/optical GRB counterpart and study the extremely early moments of GRB evolution. To detect X-rays, the UBAT utilizes a 191.1 cm2 scintillation detector composed of Yttrium Oxyorthosilicate (YSO) crystals, Multi-Anode Photomultiplier Tubes (MAPMTs), and associated electronics. To estimate a direction vector of a GRB source in its field of view, it employs the well-known coded aperture mask technique. All functions are written for implementation on a field programmable gate array to enable fast triggering and to run the device's imaging algorithms. The UFFO/ Lomonosov satellite was launched on April 28, 2016, and is now collecting GRB observation data. In this study, we describe the UBAT's design, fabrication, integration, and performance as a GRB X-ray trigger and localization telescope, both on the ground and in space.

  20. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  1. Unveiling the nature of INTEGRAL objects through optical spectroscopy. IX. Twenty two more identifications, and a glance into the far hard X-ray Universe

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Parisi, P.; Jiménez-Bailón, E.; Palazzi, E.; Chavushyan, V.; Bassani, L.; Bazzano, A.; Bird, A. J.; Dean, A. J.; Galaz, G.; Landi, R.; Malizia, A.; Minniti, D.; Morelli, L.; Schiavone, F.; Stephen, J. B.; Ubertini, P.

    2012-02-01

    Since its launch in October 2002, the INTEGRAL satellite has revolutionized our knowledge of the hard X-ray sky thanks to its unprecedented imaging capabilities and source detection positional accuracy above 20 keV. Nevertheless, many of the newly-detected sources in the INTEGRAL sky surveys are of unknown nature. The combined use of available information at longer wavelengths (mainly soft X-rays and radio) and of optical spectroscopy on the putative counterparts of these new hard X-ray objects allows us to pinpoint their exact nature. Continuing our long-standing program that has been running since 2004, and using 6 different telescopes of various sizes together with data from an online spectroscopic survey, here we report the classification through optical spectroscopy of 22 more unidentified or poorly studied high-energy sources detected with the IBIS instrument onboard INTEGRAL. We found that 16 of them are active galactic nuclei (AGNs), while the remaining 6 objects are within our Galaxy. Among the identified extragalactic sources, the large majority (14) is made up of type 1 AGNs (i.e. with broad emission lines); of these, 6 lie at redshift larger than 0.5 and one (IGR J12319-0749) has z = 3.12, which makes it the second farthest object detected in the INTEGRAL surveys up to now. The remaining AGNs are of type 2 (that is, with narrow emission lines only), and one of the two cases is confirmed as a pair of interacting Seyfert 2 galaxies. The Galactic objects are identified as two cataclysmic variables, one high-mass X-ray binary, one symbiotic binary and two chromospherically active stars, possibly of RS CVn type. The main physical parameters of these hard X-ray sources were also determined using the multiwavelength information available in the literature. We thus still find that AGNs are the most abundant population among hard X-ray objects identified through optical spectroscopy. Moreover, we note that the higher sensitivity of the more recent INTEGRAL

  2. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  3. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  4. Hard X-Ray Emission and the Ionizing Source in LINERs

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.

    2000-01-01

    We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.

  5. Performance of the EGRET astronomical gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hofstadter, R.; Hughes, E. B.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.

    1992-01-01

    On April 5, 1991, the Space Shuttle Atlantis carried the Compton Gamma Ray Observatory (CGRO) into orbit, deploying the satellite on April 7. The EGRET instrument was activated on April 15, and the first month of operations was devoted to verification of the instrument performance. Measurements made during that month and in the subsequent sky survey phase have verified that the instrument time resolution, angular resolution, and gamma ray detection efficiency are all within nominal limits.

  6. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    NASA Astrophysics Data System (ADS)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  7. The Diffuse Soft X-ray Background: Trials and Tribulations

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.

    2013-01-01

    I joined the University of Wisconsin-Madison sounding rocket group at its inception. It was an exciting time, as nobody knew what the X-ray sky looked like. Our group focused on the soft X-ray background, and built proportional counters with super thin (2 micron thick) windows. As the inter gas pressure of the counters was about 1 atmosphere, it was no mean feat to get payload to launch without the window bursting. On top of that we built all our own software from space solutions to unfolding the spectral data. For we did it then as now: Our computer code modeled the detector response and then folded various spectral shapes through the response and compared the results with the raw data. As far as interpretation goes, here are examples of how one can get things wrong: The Berkeley group published a paper of the soft X-ray background that disagreed with ours. Why? It turned out they had **assumed** the galactic plane was completely opaque to soft X-ray and hence corrected for detector background that way. It turns out that the ISM emits in soft X-rays! Another example was the faux pas of the Calgary group. They didn’t properly shield their detector from the sounding rocket telemetry. Thus they got an enormous signal, which to our amusement some (ambulance chaser) theoreticians tried to explain! So back then as now, mistakes were made, but at least we all knew how our X-ray systems worked from soup (the detectors) to nuts (the data analysis code) where as toady “anybody” with a good idea but only a vague inkling of how detectors, mirrors and software work, can be an X-ray astronomer. On the one hand, this has made the field accessible to all, and on the other, errors in interpretation can be made as the X-ray telescope user can fall prey to running black box software. Furthermore with so much funding going into supporting observers, there is little left to make the necessary technology advances or keep the core expertise in place to even to stay even with

  8. Feasibility of spectro-photometry in X-rays (SPHINX) from the moon

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar

    2010-08-01

    Doing space Astronomy on lunar surface has several advantages. We present here feasibility of an All Sky Monitoring Payload for Spectro-photometry in X-rays (SPHINX) which can be placed on a lander on the moon or in a space craft orbiting around the moon. The Si-PIN photo-diodes and CdTe crystals are used to detect solar flares, bright gamma bursts, soft gamma-ray repeaters from space and also X-ray fluorescence (XRF) from lunar surface. We present the complete Geant4 simulation to study the feasibility of such an instrument in presence of Cosmic Diffused X-Ray Background (CDXRB). We find that the signal to noise ratio is sufficient for moderate to bright GRBs (above 5 keV), for the quiet sun (up to 100 keV), solar flares, soft gamma-ray repeaters, X-ray Fluorescence (XRF) of lunar surface etc. This is a low-cost system which is capable of performing multiple tasks while stationed at the natural satellite of our planet.

  9. Orbiting Astronomical Observatory-C (OAO-C): Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.

    1972-01-01

    Mission planning for the Orbiting Astronomical Observatory-C (OAO-C) is presented. The characteristics of the observatory and its capabilities are described. The following experiments are discussed: (1) Princeton Experiment Package, (2) X-ray experiment, and (3) guest investigator program. Results of the OAO-2 observatory are presented. A tabulation of flight events is included.

  10. Chandra and the VLT Jointly Investigate the Cosmic X-Ray Background

    NASA Astrophysics Data System (ADS)

    2001-03-01

    in three different wavebands. PR Photo 09b/01 : A VLT/FORS1 spectrum of a 'Type II Quasar' discovered during this programme. The 'Chandra Deep Field South' and the X-Ray Background ESO PR Photo 09a/01 ESO PR Photo 09a/01 [Preview - JPEG: 400 x 183 pix - 76k] [Normal - JPEG: 800 x 366 pix - 208k] [Hires - JPEG: 3000 x 1453 pix - 1.4M] Caption : PR Photo 09a/01 shows optical/infrared images in three wavebands ('Blue', 'Red', 'Infrared') from ESO telescopes of the Type II Quasar CXOCDFS J033229.9 -275106 (at the centre), one of the distant X-ray sources identified in the Chandra Deep Field South (CDFS) area during the present study. Technical information about these photos is available below. The 'Chandra Deep Field South (CDFS)' is a small sky area in the southern constellation Fornax (The Oven). It measures about 16 arcmin across, or roughly half the diameter of the full moon. There is unusually little gas and dust within the Milky Way in this direction and observations towards the distant Universe within this field thus profit from an particularly clear view. That is exactly why this sky area was selected by an international team of astronomers [1] to carry out an ultra-deep survey of X-ray sources with the orbiting Chandra X-Ray Observatory . In order to detect the faintest possible sources, NASA's satellite telescope looked in this direction during an unprecedented total of almost 1 million seconds of exposure time (11.5 days). The main scientific goal of this survey is to understand the nature and evolution of the elusive sources that make up the 'X-ray background' . This diffuse glare in the X-ray sky was discovered by Riccardo Giacconi and his collaborators during a pioneering rocket experiment in 1962. The excellent imaging quality of Chandra (the angular resolution is about 1 arcsec) makes it possible to do extremely deep exposures without encountering problems introduced by the "confusion effect". This refers to the overlapping of images of sources that are

  11. X-ray optical units made of glass: achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Basso, S.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Tagliaferri, G.; Vecchi, G.; Burwitz, V.; Hartner, G. D.; Menz, B.

    2014-07-01

    Future X-ray telescopes with very large collecting area, like the proposed Athena with more than 2 m2 effective area at 1 keV, need to be realized as assemblies of a large number of X-ray optical units, named X-ray Optical Units (XOUs). The Brera Astronomical Observatory (INAF-OAB) is developing a new technology to manufacture these modular elements, compatible with an angular resolution of 5 arcsec HEW (Half-Energy-Width). This technique consists in stacking in a Wolter-I configuration several layers of thin foils of glass, previously formed by direct hot slumping. The achievable global angular resolution of the optics relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments operated trough a dedicated Integration Machine (IMA). In this paper we provide an overview of the project development, reporting on the very promising results achieved so far, including in-focus full illumination X-ray tests of the prototype (Proof of Concept, POC#2, integrated at the beginning of 2013) for which an HEW of 22.1'' has been measured at Panter/MPE. Moreover we report on the on-going activities, with a new integrated prototype (PoC#3). X-ray test in pencil beam revealed that at least a segment between two external ribs is characterized by an HEW well below 10''. Lastly, the overall process up-grade to go from 20 m to 12m focal length (to be compatible with Athena+ configuration) is presented.

  12. VizieR Online Data Catalog: WATCH Solar X-Ray Burst Catalogue (Crosby+ 1998)

    NASA Astrophysics Data System (ADS)

    Crosby, N.; Lund, N.; Vilmer, N.; Sunyaev, R.

    1998-01-01

    Catalogue containing solar X-ray bursts measured by the Danish Wide Angle Telescope for Cosmic Hard X-Rays (WATCH) experiment aboard the Russian satellite GRANAT in the deca-keV energy range. Table 1 lists the periods during which solar observations with WATCH are available (WATCH ON-TIME) and where the bursts listed in the catalogue have been observed. (2 data files).

  13. X-ray imaging spectroscopic diagnostics on Nike

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Ralchenko, Yu.

    2017-10-01

    Electron temperature and density diagnostics of the laser plasma produced within the focal spot of the NRL's Nike laser are being explored with the help of X-ray imaging spectroscopy. Spectra of He-like and H-like ions were taken by Nike focusing spectrometers in a range of lower (1.8 kev, Si XIV) and higher (6.7 kev, Fe XXV) x-ray energies. Data that were obtained with spatial resolution were translated into the temperature and density as functions of distance from the target. As an example electron density was determined from He-like satellites to Ly-alpha in Si XIV. The dielectronic satellites with intensity ratios that are sensitive to collisional transfer of population between different triplet groups of double-excited states 2l2l' in Si XIII were observed with high spatial and spectral resolution Lineouts taken at different axial distances from the planar Si target show changing spectral shapes due to the different electron densities as determined by supporting non-LTE simulations. These shapes are relatively insensitive to the plasma temperature which was measured using different spectral lines. This work was supported by the US DOE/NNSA.

  14. Chandra X-Rays from the Redshift 7.54 Quasar ULAS J1342+0928

    NASA Astrophysics Data System (ADS)

    Bañados, Eduardo; Connor, Thomas; Stern, Daniel; Mulchaey, John; Fan, Xiaohui; Decarli, Roberto; Farina, Emanuele P.; Mazzucchelli, Chiara; Venemans, Bram P.; Walter, Fabian; Wang, Feige; Yang, Jinyi

    2018-04-01

    We present a 45 ks Chandra observation of the quasar ULAS J1342+0928 at z = 7.54. We detect {14.0}-3.7+4.8 counts from the quasar in the observed-frame energy range 0.5–7.0 keV (6σ detection), representing the most distant non-transient astronomical source identified in X-rays to date. The present data are sufficient only to infer rough constraints on the spectral parameters. We find an X-ray hardness ratio of { \\mathcal H }{ \\mathcal R }=-{0.51}-0.28+0.26 between the 0.5–2.0 keV and 2.0–7.0 keV ranges and derive a power-law photon index of {{Γ }}={1.95}-0.53+0.55. Assuming a typical value for high-redshift quasars of Γ = 1.9, ULAS J1342+0928 has a 2–10 keV rest-frame X-ray luminosity of {L}2-10={11.6}-3.5+4.3× {10}44 {erg} {{{s}}}-1. Its X-ray-to-optical power-law slope is {α }OX}=-{1.67}-0.10+0.16, consistent with the general trend indicating that the X-ray emission in the most bolometrically powerful quasars is weaker relative to their optical emission.

  15. Kepler's Supernova Remnant: A View from Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site] Figure 1

    Each top panel in the composite above shows the entire remnant. Each color in the composite represents a different region of the electromagnetic spectrum, from X-rays to infrared light. The X-ray and infrared data cannot be seen with the human eye. Astronomers have color-coded those data so they can be seen in these images.

    The bottom panels are close-up views of the remnant. In the bottom, center image, Hubble sees fine details in the brightest, densest areas of gas. The region seen in these images is outlined in the top, center panel.

    The images indicate that the bubble of gas that makes up the supernova remnant appears different in various types of light. Chandra reveals the hottest gas [colored blue and colored green], which radiates in X-rays. The blue color represents the higher-energy gas; the green, the lower-energy gas. Hubble shows the brightest, densest gas [colored yellow], which appears in visible light. Spitzer unveils heated dust [colored red], which radiates in infrared light.

  16. Automatic Classification of Time-variable X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  17. Automatic classification of time-variable X-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, andmore » other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.« less

  18. Probes of Fundamental Physics using X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.

    2016-04-01

    The advent of X-ray polarimetry as an astronomical discipline is on the near horizon. Prospects of Explorer class missions currently under study in the NASA SMEX program, the Xipe mission under ESA study in Europe, and beyond to initiatives under development in Asia, indicate that the worldwide high energy astrophysics community view this as a high priority. The focal goal of X-ray polarization measurements is often to discern the geometry of a source, for example an accreting black hole, pulsing neutron star or a relativistic jet; these are addressed in other talks in this HEAD special session. In this talk, I discuss a parallel agenda, to employ X-ray polarimetry to glean insights into fundamental physics that is presently difficult or impossible to test in laboratory settings. Much of this is centered around neutron stars, and I willaddress theoretically-expected signatures of vacuum birefringence and photon splitting, predictions of QED theory in the strong magnetic fields possessed by pulsars and magnetars. Of particular note is that time-dependent polarimetry coupled with spectroscopy can help disentangle purely geometrical effects and fundamental physics ones. A brief discussion of possible tests of Lorentz invariance violation, expected in some theories of quantum gravity, will also be presented. Instrument requirements to realize such science goals will also be briefly covered.

  19. First Images From Chandra X-Ray Observatory to be Released

    NASA Astrophysics Data System (ADS)

    1999-08-01

    The first images from the world's most powerful X-ray telescope, NASA's Chandra X-ray Observatory, will be unveiled at a media briefing at 1 p.m. EDT, Thursday, Aug. 26. The briefing will be held in the James E. Webb Auditorium at NASA Headquarters, 300 E St. SW, Washington, DC. The images include the spectacular remnants of a supernova and other astronomical objects. Panelists will be: - Dr. Edward Weiler, Associate Administrator for Space Science, NASA Headquarters, Washington, DC; - Dr. Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X-ray Center, Cambridge, MA; - Dr. Martin Weisskopf, NASA's Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL; and - Dr. Robert Kirshner, astrophysicist, Harvard University, Cambridge, MA. The event will be carried live on NASA Television with question-and-answer capability for reporters covering the briefing from participating NASA centers and from the Chandra Operations Control Center in Cambridge. NASA Television is available on transponder 9C, satellite GE-2 at 85 degrees West longitude, vertical polarization, frequency 3880 MHz, audio of 6.8 MHz. Chandra has been undergoing activation and checkout since it was placed into orbit during Space Shuttle mission STS-93 in July. Chandra will examine exploding stars, black holes, colliding galaxies and other high-energy cosmic phenomena to help scientists gain a better understanding of the structure and evolution of the universe. Chandra images and additional information will be available following the briefing on the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second

  20. NASA Names Premier X-Ray Observatory and Schedules Launch

    NASA Astrophysics Data System (ADS)

    1998-12-01

    NASA's Advanced X-ray Astrophysics Facility has been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. The telescope is scheduled to be launched no earlier than April 8, 1999 aboard the Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins. Chandrasekhar, known to the world as Chandra, which means "moon" or "luminous" in Sanskrit, was a popular entry in a recent NASA contest to name the spacecraft. The contest drew more than six thousand entries from fifty states and sixty-one countries. The co-winners were a tenth grade student in Laclede, Idaho, and a high school teacher in Camarillo, CA. The Chandra X-ray Observatory Center (CXC), operated by the Smithsonian Astrophysical Observatory, will control science and flight operations of the Chandra X-ray Observatory for NASA from Cambridge, Mass. "Chandra is a highly appropriate name," said Harvey Tananbaum, Director of the CXC. "Throughout his life Chandra worked tirelessly and with great precision to further our understanding of the universe. These same qualities characterize the many individuals who have devoted much of their careers to building this premier X-ray observatory." "Chandra probably thought longer and deeper about our universe than anyone since Einstein," said Martin Rees, Great Britain's Astronomer Royal. "Chandrasekhar made fundamental contributions to the theory of black holes and other phenomena that the Chandra X-ray Observatory will study. His life and work exemplify the excellence that we can hope to achieve with this great observatory," said NASA Administrator Dan Goldin. Widely regarded as one of the foremost astrophysicists of the 20th century, Chandrasekhar won the Nobel Prize in 1983 for his theoretical studies of physical processes important to the structure and evolution of stars. He and his wife immigrated from India to the U.S. in 1935. Chandrasekhar served on the faculty of the University of

  1. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. II. X-Ray Variability

    NASA Astrophysics Data System (ADS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Nazé, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.

    2015-08-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ≈ 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 Å is confirmed, with a maximum amplitude of about ±15% within a single ≈ 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S xv, Si xiii, and Ne ix. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at ϕ = 0.0 when the secondary δ Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. Based on data from the Chandra X-ray Observatory and the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

  2. Inelastic losses in X-ray absorption theory

    NASA Astrophysics Data System (ADS)

    Campbell, Luke Whalin

    There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a

  3. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  4. Additive manufactured x-ray optics for astronomy

    NASA Astrophysics Data System (ADS)

    Atkins, Carolyn; Feldman, Charlotte; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Doel, Peter; Willingale, Richard; Hugot, Emmanuel

    2017-08-01

    Additive manufacturing, more commonly known as 3D printing, has become a commercially established technology for rapid prototyping and the fabrication of bespoke intricate parts. Optical components, such as mirrors and lenses, are now being fabricated via additive manufacturing, where the printed substrate is polished in a post-processing step. One application of additively manufactured optics could be within the astronomical X-ray community, where there is a growing need to demonstrate thin, lightweight, high precision optics for a beyond Chandra style mission. This paper will follow a proof-of-concept investigation, sponsored by the UK Space Agency's National Space Technology Programme, into the feasibility of applying additive manufacturing in the production of thin, lightweight, precision X-ray optics for astronomy. One of the benefits of additive manufacturing is the ability to construct intricate lightweighting, which can be optimised to minimise weight while ensuring rigidity. This concept of optimised lightweighting will be applied to a series of polished additively manufactured test samples and experimental data from these samples, including an assessment of the optical quality and the magnitude of any print-through, will be presented. In addition, the finite element analysis optimisations of the lightweighting development will be discussed.

  5. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  6. The X-Ray Counterpart to LAT PSR J2021+4026 and Its Interesting Spectrum

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Becker, W.; Carraminana, A.; De Luca, A.; Dormandy, M.; Harding, A.; Kanbach, G.; O'Dell, S. L.; Parkinson, P. Saz; Ray, P.; hide

    2011-01-01

    We report on the likely identification of the X-ray counterpart to LAT PSR J2021+4026, using the Chandra X-Ray Observatory ACIS-S3 and timing analysis of Large Area telescope (LAT) data from the Fermi satellite. The X-ray source that lies closest (10 arcsec) to the position determined from the Fermi-LAT timing solution has no cataloged infrared-to-visible counterpart and we have set an upper limit to its optical I and R band emission. The source exhibits a X-ray spectrum which is different when compared to Geminga and CTA 1, and this may have implications for the evolutionary track of radio-quiet gamma-ray pulsars.

  7. X-ray Binaries in the Galaxy and the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Cowley, Anne P.

    1993-05-01

    For more than two decades astronomers have been aware that the most X-ray luminous stellar sources (L_x > 10(35) erg s(-1) ) are interacting binaries where one component is a neutron star or black hole. While other types of single and multiple stars are known X-ray sources, none compare in X-ray luminosity with the ``classical" X-ray binaries. In these systems X-ray emission results from accretion of material from a non-degenerate companion onto the compact star through several alternate mechanisms including Roche lobe overflow, stellar winds, or periastron effects in non-circular orbits. It has been recognized for many years that X-ray binaries divide into two broad groups, characterized primarily by the mass of the non-degenerate star: 1) massive X-ray binaries (MXRB), in which the optical primary is a bright, early-type star, and 2) low-mass X-ray binaries (LMXB), where a lower main-sequence or subgiant star is the mass donor. A broad variety of observational characteristics further subdivide these classes. In the Galaxy these two groups appear to be spatially and kinematically associated with the disk and the halo populations, respectively. A few dozen MXRB are known in the Galaxy. A great deal of information about their physical properties has been learned from observational study. Their optical primaries can be investigated by conventional techniques. Furthermore, most MXRB contain X-ray pulsars, allowing accurate determination of their orbital parameters. From these data masses have been determined for the neutron stars, all of which are ~ 1.4 Msun, within measurement errors. By contrast, the LMXB have been much more difficult to study. Although there are ~ 150 LMXB in the Galaxy, most are distant and faint, requiring use of large telescopes for their study. Their optical light is almost always dominated by an accretion disk, rather than the mass-losing star, making interpretation of their spectral and photometric properties difficult. Their often uncertain

  8. Astronomical Surveys, Catalogs, Databases, and Archives

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-06-01

    All-sky and large-area astronomical surveys and their cataloged data over the whole range of electromagnetic spectrum are reviewed, from γ-ray to radio, such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and II based catalogues (APM, MAPS, USNO, GSC) in optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio and many others, as well as most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS) and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). Most important astronomical databases and archives are reviewed as well, including Wide-Field Plate DataBase (WFPDB), ESO, HEASARC, IRSA and MAST archives, CDS SIMBAD, VizieR and Aladin, NED and HyperLEDA extragalactic databases, ADS and astro-ph services. They are powerful sources for many-sided efficient research using Virtual Observatory tools. Using and analysis of Big Data accumulated in astronomy lead to many new discoveries.

  9. A coordinated X-ray, optical, and microwave study of the flare star Proxima Centauri

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Linsky, J. L.; Slee, O. B.; Hearn, D. R.; Walker, A. R.; Rydgren, A. E.; Nicolson, G. D.

    1978-01-01

    Results are reported for a three-day coordinated observing program to monitor the flare star Proxima Centauri in the X-ray, optical, and radio spectrum. During this interval 30 optical flares and 12 possible radio bursts were observed. The SAS 3 X-ray satellite made no X-ray detections. An upper limit of 0.08 on the X-ray/optical luminosity ratio is derived for the brightest optical flare. The most sensitive of the radio telescopes failed to detect 6-cm emission during one major and three minor optical flares, and on this basis an upper limit on the flare radio emission (1 hundred-thousandth of the optimal luminosity) is derived.

  10. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  11. Large Area X-ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, Harvey

    1996-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission study concept has evolved strongly over the last year culminating in the merging of LAXS with the Goddard Space Flight Center (GSFC) proposal for a similar mission, the Next Generation X-ray Observatory (NGXO, PI: Nick White). The resulting merger, re-named the High Throughput X-rays Spectroscopy (HTXS) Mission has also expanded by the inclusion of another SAO proposed new mission concept proposal, the Hard X-Ray Telescope (PI: Paul Gorenstein). The resultant multi-instrument mission retains much of heritage from the LAXS proposal, including the use of multiple satellites for robustness. These mergers resulted from a series of contacts between various team members, via e-mail, telecons, and in-person meetings. The impetus for the mergers was the fundamental similarity between the missions, and the recognition that all three proposal teams had significant contributions to make in the effort to define the next stage in the X-ray exploration of the universe. We have enclosed four items that represent some of the work that has occurred during the first year of the study: first, a presentation at the Leicester meeting, second a presentation that was made to Dan Goldin following the merging of LAXS and NGXO, third a copy of the first announcement for the Workshop, and finally the interim report that was prepared by the HTXS study team towards the end of the first year. This last document provides the foundation for the HTXS Technology Roadmap that is being generated. The HTXS roadmap will define the near-term goals that the merged mission must achieve over the next few years. A web site has been developed and populated that contains much of the material that has been generated over the past year.

  12. Flare Characteristics from X-ray Light Curves

    NASA Astrophysics Data System (ADS)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  13. Time Resolved X-Ray Diffraction Study of Acoustoelectrically Amplified Phonons.

    NASA Astrophysics Data System (ADS)

    Chapman, Leroy Dean

    X-rays diffracted by nearly perfect crystals of n-type InSb have been investigated in the presence of intense acoustoelectrically (A.E.) amplified phonons. The fact that these phonons are nearly monochromatic and have a well defined propagation and polarization direction presents an excellent opportunity to investigate the nature of x -ray photon-phonon scattering in a diffracting crystal. The Debye-Waller factor which accounts for the attenuation of diffracted x-ray intensities due to thermal phonons is reflection dependent owing to its sin (theta)/(lamda) dependence. We have performed experiments comparing the (004) and (008) anomalously transmitted intensities as a function of A.E. amplified flux. The attenuation of both reflections due to the amplified phonons was the same in direct contradiction to an expected sin (theta)/(lamda) dependence. Some possible reasons for this failure are discussed. In a Bragg reflection scattering geometry, the intense monochromatic amplified phonons give rise to satellite peaks symmetrically located about the central elastic Brag peak in a rocking profile. We report in this thesis on the first observation of satellites in a thin crystal Laue transmission geometry. We have theoretically simulated the rocking profiles with some success. The A.E. amplification process in InSb is strongly favored for {110} propagation fast transverse (FT) phonons. In earlier experiments it was found that non-{110} FT phonons were also produced during the amplification process. We have developed a time resolved x-ray counting system which, in conjunction with a spatially resolved x-ray beam and a localized, traveling A.E. phonon distribution, allow the time evolution of the amplified distribution to be followed. We report on time resolved measurements for both the symmetric Bragg and Laue geometries from which we can determine when and where non-{110 } FT flux is generated and restrict the possible mechanisms for its generation.

  14. PE-46 The Design of the Lynx X-Ray Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Bandler, Simon; Dipirro, Michael; Eckart, Megan; Sakai, Kazuhiro; Smith, Stephen; Yoon, Wonsik; Bennett, Douglas; Kotsubo, Vincent; Mates, Benjamin; Swetz, Daneil; hide

    2017-01-01

    Lynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be the next astrophysics flagship mission after WFIRST. One of Lynx's three instruments is an imaging spectrometer consisting of an x-ray microcalorimeter behind an X-ray optic with an angular resolution of 0.5 arc-seconds and approximately 3 sq m of area at 1 keV. This instrument will provide unparalleled diagnostics of distant extended structures and in particular will allow the detailed study of the role of cosmic feedback in the evolution of the Universe. We discuss the design and read-out of the of the array configuration including a number of sub-array options for increasing the capabilities to maximize the scientific return of the Lynx observatory.

  15. Suzaku Observation of Two Ultraluminous X-ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Mushotzky, R.F.; hide

    2007-01-01

    TA study was made of two ultraluminous X-ray sources (ULXs) in the nearby faceon, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The o.4-10keV X-ray luminosity was measured. For X-1, the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.00 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. The spectrum of X-2 in fainter phase is presented by a multicolor disk blackbody model.

  16. On the Geometry of the X-Ray Emission from Pulsars. I. Model Formulation and Tests

    NASA Astrophysics Data System (ADS)

    Cappallo, Rigel; Laycock, Silas G. T.; Christodoulou, Dimitris M.

    2017-12-01

    X-ray pulsars are complex magnetized astronomical objects in which many different attributes shape the pulse profiles of the emitted radiation. For each pulsar, the orientation of the spin axis relative to our viewing angle, the inclination of the magnetic dipole axis relative to the spin axis, and the geometries of the emission regions all play key roles in producing its unique pulse profile. In this paper, we describe in detail a new geometric computer model for X-ray emitting pulsars and the tests that we carried out in order to ensure its proper operation. This model allows for simultaneous tuning of multiple parameters for each pulsar and, by fitting observed profiles, it has the potential to determine the underlying geometries of many pulsars whose pulse profiles have been cataloged and made public in modern X-ray databases.

  17. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  18. Advanced X-ray Astrophysics Facility (AXAF) science instruments

    NASA Technical Reports Server (NTRS)

    Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.

    1991-01-01

    The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.

  19. The increasing X-Ray Activity of PKS 2155-304

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2016-10-01

    The southern TeV-detected HBL source PKS 2155-304 (z=0.116) is prominent with its very strong TeV/X-ray flaring behaviour (see, e.g., Aharonian et al. 2009, A & A, 502, 749; Abramowski et al. 2012, A & A, 539; Kapanadze et al. 2014, MNRAS, 444; 1076), and, therefore, it represents one of the frequent Swift targets (203 observations since 2005 November 17). In the framework of our Target of Opportunity (ToO) request Number 8344, the source was pointed nine time by X-Ray Telescope onboard the Swift satellite (Swift-XRT) since 2016 August 5 with one week intervals between the successive observations.

  20. Optical and x-ray alignment approaches for off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  1. Satellite Observations of Rapidly Varying Cosmic X-ray Sources. Ph.D. Thesis - Catholic Univ.

    NASA Technical Reports Server (NTRS)

    Maurer, G. S.

    1979-01-01

    The X-ray source data obtained with the high energy celestial X-ray detector on the Orbiting Solar Observatory -8 are presented. The results from the 1977 Crab observation show nonstatistical fluctuations in the pulsed emission and in the structure of the integrated pulse profile which cannot be attributed to any known systematic effect. The Hercules observations presented here provide information on three different aspects of the pulsed X-ray emission: the variation of pulsed flux as a function of the time from the beginning of the ON-state, the variation of pulsed flux as a function of binary phase, and the energy spectrum of the pulse emission.

  2. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  3. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  4. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  5. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  6. An Overview of the Performance of the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2004-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA s Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST - formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel support also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  7. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  8. X-ray line coincidence photopumping in a solar flare

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; Rose, S. J.; Flowerdew, J.; Hynes, D.; Christian, D. J.; Nilsen, J.; Johnson, W. R.

    2018-03-01

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significant intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.

  9. A hard X-ray experiment for long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Johnson, W. N.; Kurfess, J. D.; Strickman, M. S.; Saulnier, D. M.

    The Naval Research Lab has developed a balloon-borne hard X-ray experiment which is designed for 60- to 90-day flight durations soon to be available with around the world Sky Anchor or RACOON balloon flights. The experiment's scintillation detector is sensitive to the 15 - 250 keV X-ray energy range. The experiment includes three microcomputer systems which control the data acquisition and provide the orientation and navigation information required for global balloon flights. The data system supports global data communications utilizing the GOES satellite as well as high bit rate communications through L-band li line-of-site transmissions

  10. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  11. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  12. A hard X-ray and gamma ray observation of the 22 November 1977 solar flare. [experimental design

    NASA Technical Reports Server (NTRS)

    Chambon, G.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.; Likine, O. B.; Kouznetsov, A. V.; Estouline, I. V.

    1978-01-01

    The Franco-Soviet experiment package Signe 2 MP for solar and cosmic X and gamma ray observations, launched aboard a Soviet Prognoz satellite into a highly eccentric earth orbit is described. An uncollimated NaI detector 37 mm thick by 90 mm diameter, placed on the upper surface of the satellite faced the sun. A collimated lateral NaI detector 14 mm thick by 38 mm diameter also faced the sun, and a similar lateral detector faced the anti-solar direction. Data tapes reveal an intense solar flare up to energies of up to 5 MeV, with evidence for line emission at 2.23 MeV and possibly 4.4 MeV. The event observed was associated with the Mc Math Plage Region 15031, and an H-alpha flare of importance 2B. It is not yet clear what radio emission is associated with the X-ray observation.

  13. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    NASA Astrophysics Data System (ADS)

    2000-11-01

    NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such

  14. Geant4 simulations of a wide-angle x-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing

    2017-06-01

    The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.

  15. X-ray Surveys of the Hot and Energetic Cosmos

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Urry, C. Megan

    A science meeting is an opportunity to exchange ideas with colleagues, to hear of new results and to learn from comprehensive reviews of a topic. Much of it happens in the meeting room and much of it also happens in the corridors of the meeting venue and in restaurants and perhaps bars near the meeting location. Its a combination of people and of place that is a bit [hard to predict] but when it goes well, you know it. All these elements came together for IAU Focus Meeting 6, X-ray Surveys of the Hot and Energetic Cosmos, in Honolulu last August. There are not many places more pleasant for an astronomical meeting than Hawaii, and the speakers did an outstanding job of reviewing the field and relaying the latest results. X-ray surveys have been a staple of astrophysics for nearly 50 years. There are large surveys and small, deep surveys and shallow, soft X-ray energies and hard. The combination gives us invaluable information about the hottest and/or most relativistic environments known. Theory helps us interpret the data in terms of the underlying physics. The heady combination of all of the above shaken and mixed in Hawaiian paradise has given us all a deeper understanding of the Universe. Please read on to see why.

  16. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  17. A Burst Chasing X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne; Hill, Joe; Barthelmy, S.; Black, K.; Deines-Jones, P.; Jahoda, K.; Sakamoto, T.; Kaaret, P.; McConnell, M.; Bloser, P.; hide

    2007-01-01

    Tihs is a viewgraph presentation of a discussion of the X-ray Polarimeter. Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect is the dominant interaction process We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts, the Gamma-Ray Burst Polarimeter (GRBP) for thc U S Naval Academy satellite MidSTAR-2, and thc Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission.

  18. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  19. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  20. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  1. A Magnetron Sputter Deposition System for the Development of X-Ray Multilayer Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David

    2015-01-01

    The project objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and extreme ultraviolet (EUV) optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance NASA Marshall Space Flight Center's (MSFC's) position as a world leader in the design of innovative x-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures are absolutely necessary in order to advance the field of x-ray astronomy by pushing the limit for observing the universe to ever-increasing photon energies (i.e., up to 200 keV or higher), well beyond Chandra's (approx.10 keV) and NuStar's (approx.75 keV) capability. The addition of multilayer technology would significantly enhance the x-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication, and design of innovative x-ray instrumentation, which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments. To this aim, a magnetron vacuum sputter deposition system for the deposition of novel multilayer thin film x-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and x-ray optics for a broad range of applications including medical imaging.

  2. Hard x-ray imager for the NeXT mission

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Fukazawa, Yasushi; Kamae, Tuneyoshi; Kataoka, Jun; Kokubun, Motohide; Makishima, Kazuo; Mizuno, Tsunefumi; Murakami, Toshio; Nomachi, Masaharu; Tajima, Hiroyasu; Takahashi, Tadayuki; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Watanabe, Shin; Yamaoka, Kazutaka; Yonetoku, Daisuke

    2006-06-01

    The hard X-ray imager (HXI) is the primary detector of the NeXT mission, proposed to explore high-energy non-thermal phenomena in the universe. Combined with a novel hard X-ray mirror optics, the HXI is designed to provide better than arc-minutes imaging capability with 1 keV level spectroscopy, and more than 30 times higher sensitivity compared with any existing hard X-ray instruments. The base-line design of the HXI is improving to secure high sensitivity. The key is to reduce the detector background as far as possible. Based on the experience of the Suzaku satellite launched in July 2005, the current design has a well-type tight active shield and multi layered, multi material imaging detector made of Si and CdTe. Technology has been under development for a few years so that we have reached the level where a basic detector performance is satisfied. Design tuning to further improve the sensitivity and reliability is on-going.

  3. Observations of galactic X-ray sources by OSO-7

    NASA Technical Reports Server (NTRS)

    Markert, T. H.; Canizares, C. R.; Clark, G. W.; Hearn, D. R.; Li, F. K.; Sprott, G. F.; Winkler, P. F.

    1977-01-01

    We present the MIT data from the OSO-7 satellite for observations of the galactic plane between 1971 and 1974. A number of sources discovered in the MIT all-sky survey are described in detail: MX 0049 + 59, MX 0836 - 42, MX 1353 - 64, MX 1406 - 61, MX 1418 - 61, MX 1709 - 40, and MX 1608 - 52 (the persistent source suggested to be associated with the X-ray burst source XB 1608 - 52). Upper limits to the X-ray emission from a number of interesting objects are also derived. General results describing all of our observations of galactic sources are presented. Specifically, we display the number-intensity diagrams, luminosity functions, and color-color diagrams for all of the sources we detected. The data are divided between disk and bulge populations, and the characteristics of the two groups are contrasted. Finally, the concept of X-ray source populations and the relationship of globular cluster sources and burst sources to the disk and bulge populations are discussed.

  4. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  5. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs makemore » a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.« less

  6. Search for an X-ray identification of a strong gamma-ray source. [sas-3 observations

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.

    1979-01-01

    X-rays from Cygnus X-3 were observed during early 1978 with the detectors of the SAS-3 satellite. These observations in conjunction with earlier UHURU and ANS data indicate that the 4.8 hr period of Cygnus X-3 is increasing at the rate of P/P = (5/1 plus or minus 1.3) x 10 to the minus 6 power/1 yr. The sign and magnitude for this change are incompatible with a rotation model for the period and are in reasonable agreement with model predictions for orbital changes associated with mass loss and transfer in a binary system.

  7. Composite Image of the Cat's Eye From Chandra X-Ray Observatory and Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Left image: The x-ray data from the Chandra X-Ray Observatory (CXO) has revealed a bright central star surrounded by a cloud of multimillion-degree gas in the planetary nebula known as the Cat's Eye. This CXO image, where the intensity of the x-ray emission is correlated to the brightness of the orange coloring, captures the expulsion of material from a star that is expected to collapse into a white dwarf in a few million years. The intensity of x-rays from the central star was unexpected, and it is the first time astronomers have seen such x-ray emission from the central star of a planetary nebula. Right image: An image of Cat's Eye taken by the Hubble Space Telescope (HST). By comparing the CXO data with that from the HST, researchers are able to see where the hotter, x-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by the HST. The CXO team found that the chemical abundance in the region of hot gas (its x-ray intensity is shown in purple) was not like those in the wind from the central star and different from the outer cooler material (the red and green structures.) Although still incredibly energetic and hot enough to radiate x-rays, CXO shows the hot gas to be somewhat cooler than scientists would have expected for such a system. CXO image credit: (NASA/UIUC/Y. Chu et al.) HST image credit: (NASA/HST)

  8. VizieR Online Data Catalog: X-ray line ratios for diverse ion collisions (Mullen+, 2017)

    NASA Astrophysics Data System (ADS)

    Mullen, P. D.; Cumbee, R. S.; Lyons, D.; Gu, L.; Kaastra, J.; Shelton, R. L.; Stancil, P. C.

    2018-03-01

    Charge exchange (CX) has emerged in X-ray emission modeling as a significant process that must be considered in many astrophysical environments- particularly comets. Comets host an interaction between solar wind ions and cometary neutrals to promote solar wind charge exchange (SWCX). X-ray observatories provide astronomers and astrophysicists with data for many X-ray emitting comets that are impossible to accurately model without reliable CX data. Here, we utilize a streamlined set of computer programs that incorporate the multi-channel Landau-Zener theory and a cascade model for X-ray emission to generate cross sections and X-ray line ratios for a variety of bare and non-bare ion single electron capture (SEC) collisions. Namely, we consider collisions between the solar wind constituent bare and H-like ions of C, N, O, Ne, Na, Mg, Al, and Si and the cometary neutrals H2O, CO, CO2, OH, and O. To exemplify the application of this data, we model the X-ray emission of Comet C/2000 WM1 (linear) using the CX package in SPEX and find excellent agreement with observations made with the XMM-Newton RGS detector. Our analyses show that the X-ray intensity is dominated by SWCX with H, while H2O plays a secondary role. This is the first time, to our knowledge, that CX cross sections have been implemented into a X-ray spectral fitting package to determine the H to H2O ratio in cometary atmospheres. The CX data sets are incorporated into the modeling packages SPEX and Kronos. (1 data file).

  9. ROSAT X-ray detection of a young brown dwarf in the chamaeleon I dark cloud

    PubMed

    Neuhauser; Comeron

    1998-10-02

    Photometry and spectroscopy of the object Cha Halpha 1, located in the Chamaeleon I star-forming cloud, show that it is a approximately 10(6)-year-old brown dwarf with spectral type M7.5 to M8 and 0.04 +/- 0.01 solar masses. Quiescent x-ray emission was detected in a 36-kilosecond observation with 31.4 +/- 7.7 x-ray photons, obtained with the Rontgen Satellite (ROSAT), with 9final sigma detection significance. This corresponds to an x-ray luminosity of 2.57 x 10(28) ergs per second and an x-ray to bolometric luminosity ratio of 10(-3.44). These are typical values for late M-type stars. Because the interior of brown dwarfs may be similar to that of convective late-type stars, which are well-known x-ray sources, x-ray emission from brown dwarfs may indicate magnetic activity.

  10. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  11. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation ofmore » quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.« less

  12. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  13. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  14. ASCA X-ray observations of pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, S. L.; Walter, F. M.; Yamauchi, S.

    1996-01-01

    The results of recent Advanced Satellite for Cosmology and Astrophysics (ASCA) X-ray observations of two pre-main sequence stars are presented: the weak emission line T Tauri star HD 142361, and the Herbig Ae star HD 104237. The solid state imaging spectrometer spectra for HD 142361 shows a clear emission line from H-like Mg 7, and spectral fits reveal a multiple temperature plasma with a hot component of at least 16 MK. The spectra of HD 104237 show a complex temperature structure with the hottest plasma at temperatures of greater than 30 MK. It is concluded that mechanisms that predict only soft X-ray emission can be dismissed for Herbig Ae stars.

  15. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    NASA Astrophysics Data System (ADS)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  16. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  17. Chandra X-Ray Observatory Image of Crab Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  18. Adaptive x-ray optics development at AOA-Xinetics

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cavaco, Jeff L.; Brooks, Audrey D.; Ezzo, Kevin; Pearson, David D.; Wellman, John A.

    2013-05-01

    Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOA-Xinetics.

  19. Adaptive x-ray optics development at AOA-Xinetics

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Pearson, David D.; Cavaco, Jeffrey L.; Plinta, Audrey D.; Wellman, John A.

    2012-10-01

    Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOAXinetics.

  20. Lessons from X-Ray Astronomy Applied to HST

    NASA Astrophysics Data System (ADS)

    Schreier, Ethan J.; Doxsey, Rodger

    2000-09-01

    Riccardo Giacconi, probably more than any other single individual, established x-ray astronomy as an essential sub-discipline of astronomy. Its incorporation into the mainstream of astronomy was substantially completed with the Einstein Observatory which, with its imaging capabilities and its Guest Observer program, invited non-x-ray astronomers to use the facility. It was therefore perhaps fitting that when optical astronomy moved into space, with the Hubble Space Telescope, it called on Riccardo to oversee the transition. He brought with him lessons about building and operating space observatories, experience working with NASA on large science projects, a business-like approach to attacking tasks, and his unique vision and abilities. Among the guiding principles he brought to HST were: involvement of a strong scientific research staff in all aspects of the program; establishment of a vital, active research environment; attention to "science system engineering" and applying a rational scientific approach to problems; creation of an atmosphere of "ruthless intellectual honesty" and maintenance of the highest regard for process. These formed the basis both for attacking the problems of HST, and for building an Institute to do so.

  1. Performance assessment study of the balloon-borne astronomical soft gamma-ray polarimeter PoGOLite

    NASA Astrophysics Data System (ADS)

    Arimoto, M.; Kanai, Y.; Ueno, M.; Kataoka, J.; Kawai, N.; Tanaka, T.; Yamamoto, K.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Axelsson, M.; Kiss, M.; Marini Bettolo, C.; Carlson, P.; Klamra, W.; Pearce, M.; Chen, P.; Craig, B.; Kamae, T.; Madejski, G.; Ng, J. S. T.; Rogers, R.; Tajima, H.; Thurston, T. S.; Saito, Y.; Takahashi, T.; Gunji, S.; Bjornsson, C.-I.; Larsson, S.; Ryde, F.; Bogaert, G.; Varner, G.

    2007-12-01

    Measurements of polarization play a crucial role in the understanding of the dominant emission mechanism of astronomical sources. Polarized Gamma-ray Observer-Light version (PoGOLite) is a balloon-borne astronomical soft gamma-ray polarimeter at the 25 80 keV band. The PoGOLite detector consists of a hexagonal close-packed array of 217 Phoswich detector cells (PDCs) and side anti-coincidence shields (SASs) made of BGO crystals surrounding PDCs. Each PDC consists of a slow hollow scintillator, a fast scintillator and a BGO crystal that connects to a photomultiplier tube at the end. To examine the PoGOLite's capability and estimate the performance, we conducted experiments with the PDC using radioisotope 241Am. In addition, we compared this result with performance expected by Monte Carlo simulation with Geant4. As a result, we found that the actual PDC has the capability to detect a 100 m Crab source until 80 keV.

  2. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  3. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  4. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  5. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  6. NASA Unveils First Images From Chandra X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  7. Fast transient X-rays from flare stars and RS CVn binaries

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    1987-12-01

    The authors have studied the fast transient X-ray (FTX) observations of the Ariel V satellite. They find that the FTX have characteristics very similar to the stellar flares detected in flare stars and RS CVn binaries by other satellites. It is found that, of the possible candidate objects, only the flare stars and RS CVn binaries can be associated with the Ariel V observations. 11 new flare stars and RS CVn binaries are associated with the FTX. This brings the total number of identifications with the flare stars and RS CVn binaries to 17. The authors further study the flare properties and correlate the peak X-ray luminosity of these Ariel V sources with the bolometric luminosity of the candidate stars. They discuss a solar flare model and show that the observed correlation can be explained under the assumption of constant temperature loops of binary sizes.

  8. Report of the Joint Scientific Mission Definition Team for an infrared astronomical satellite

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The joint effort is reported of scientists and engineers from the Netherlands, the United Kingdom, and the United States working as a team for the purpose of exploring the possibility of a cooperative venture. The proposed mission builds upon experience gained from the successful Astronomical Netherlands Satellite (ANS). This satellite will be in a polar orbit at an altitude of 900 km. It will carry an 0.6 m diameter telescope cooled with helium to a temperature near 10K. An array of approximately 100 detectors will be used to measure the infrared flux in four wavelength bands centered at 10, 20, 50, and 100 microns. Sources will be located on the sky with positional accuracy of 1/2 arcminute. The instrument should be able to investigate the structure of extended sources with angular scales up to 1.0 deg. The entire sky will be surveyed and the full lifetime of the mission of about one year will be necessary to complete the survey. Special observational programs will also be incorporated into the mission.

  9. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  10. A Preliminary Research on the Development of the Hard X-Ray Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Zheng, C. X.; Cai, M. S.; Hu, Y. M.; Huang, Y. Y.; Gong, Y. Z.

    2014-03-01

    Since the 1860s, astronomers have explored a new field with the discovery of X-ray. Instead of the conventional imaging technique by using mirrors or lens, which can not work in the high-energy bands, direct imaging, coded aperture, and Fourier transform are used for the high-energy imaging. It can be implemented in various hardware configurations, among which the spatial modulation collimator are widely used. We adopt the grating collimator based on Fourier transform that is discussed in detail. This paper makes an investigation on the fabrication process of grating. The key components of the hard X-ray telescope based on the spatial modulation are developed, which contains 8 CsI-detector modules, 8-channel shaping amplifiers, and data acquisition system. The preliminary test results of readout electronics system are obtained.

  11. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  12. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  13. Constellation X-Ray Observatory Unlocking the Mysteries of Black Holes, Dark Matter and Life Cycles of Matter in the Universe

    NASA Technical Reports Server (NTRS)

    Weaver, Kim; Wanjek, Christopher

    2004-01-01

    This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.

  14. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  15. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  16. Detection of U Sco in X-rays

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric M.; Schaefer, Brad; Pagnotta, Ashley; Page, Kim; Osborne, Julian; Drake, Jeremy; Orio, Marina; Takei, Dai; Kuulkers, Erik; Ness, Jan-Uwe

    2010-02-01

    Eric M. Schlegel (UT-San Antonio); Brad Schaefer and Ashley Pagnotta (LSU); Kim Page and Julian Osborne (Leicester); Jeremy Drake (SAO); Marina Orio (Wisconsin), Dai Takei (Rikkyo Univ.), and Erik Kuulkers and Jan-Uwe Ness (ESA/ESAC), representing a large collaboration, report that U Sco has been detected in the X-ray band using the Swift satellite following the optical outburst discovery at V=8.05 on 2010 January 28.4743 (www.aavso.org/publications/alerts/alert415.shtml).

  17. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    retrieving polarization information from few of such spectroscopic instruments like RHESSI, INTEGRAL-IBIS, INTEGRAL-SPI. Cadmium Zinc Telluride Imager (CZTI) onboard Astrosat, India's first astronomical mission, is one of such instruments which is expected to provide sensitive polarization measurements for bright X-ray sources. CZTI consists of 64 CZT detector modules, each of which is 5 mm thick and 4 cm × 4 cm in size. Each CZT module is subdivided into 256 pixels with pixel pitch of 2.5 mm. Due to its pixelation nature and significant Compton scattering efficiency at energies beyond 100 keV, CZTI can work as a sensitive Compton polarimeter in hard X-rays. Detailed Geant-4 simulations and polarization experiments with the flight configuration of CZTI show that CZTI will have significant polarization measurement capability for bright sources in hard X-rays. CZTI is primarily a spectroscopic instrument with coded mask imaging. To properly utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix for CZTI, which in turn requires precise modelling of the CZT lines shapes for monoenergetic X-ray interaction. CZT detectors show an extended lower energy tail of an otherwise Gaussian line shape due to low mobility and lifetime of the charge carriers. On the other hand, interpixel charge sharing may also contribute to the lower energy tail making the line shape more complicated. We have developed a model to predict the line shapes from CZTI modules taking into account the mobility and lifetime of the charge carriers and charge sharing fractions. The model predicts the line shape quite well and can be used to generate pixel-wise response matrix for CZTI.

  18. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    NASA Astrophysics Data System (ADS)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  19. Proton radiation damage experiment on P-Channel CCD for an X-ray CCD camera onboard the ASTRO-H satellite

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Nishioka, Yusuke; Ohura, Satoshi; Koura, Yoshiaki; Yamauchi, Makoto; Nakajima, Hiroshi; Ueda, Shutaro; Kan, Hiroaki; Anabuki, Naohisa; Nagino, Ryo; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Kohmura, Takayoshi; Ikeda, Shoma; Murakami, Hiroshi; Ozaki, Masanobu; Dotani, Tadayasu; Maeda, Yukie; Sagara, Kenshi

    2013-12-01

    We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the ASTRO-H satellite. The device was exposed up to 109 protons cm-2 at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed. We performed a proton radiation damage experiment on a new P-channel CCD. The device was exposed up to 109 protons cm-2 at 6.7 MeV. We confirmed that it is radiation tolerant enough for space use. We confirmed that a charge-injection technique reduces the CTI. We confirmed that lowering the operating temperature also reduces the CTI.

  20. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  1. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2017-12-09

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  2. ASM observations of X-ray flares from 4U 0115+63 and ASM 1354-64.

    NASA Astrophysics Data System (ADS)

    Tsunemi, H.; Kitamoto, S.

    The authors report two X-ray flares detected with the All Sky Monitor (ASM) on board the GINGA satellite. One is from the recurrent X-ray pulsar 4U 0115+63 and the other is from the probable recurrent X-ray nova named ASM 1354-64. The maximum intensity for 4U 0115+63 was 180 mCrab and its duration was at least 22 days. Its spectrum was hard and resembled those of X-ray pulsars. The maximum intensity of ASM 1354-64 was 300 mCrab. It faded down below the detection limit at the end of August 1987. Its spectrum was soft and was similar to those of black hole candidates.

  3. Simbol-X: Imaging The Hard X-ray Sky with Unprecedented Spatial Resolution and Sensitivity

    NASA Astrophysics Data System (ADS)

    Tagliaferri, Gianpiero; Simbol-X Joint Scientific Mission Group

    2009-01-01

    Simbol-X is a hard X-ray mission, with imaging capability in the 0.5-80 keV range. It is based on a collaboration between the French and Italian space agencies with participation of German laboratories. The launch is foreseen in late 2014. It relies on a formation flight concept, with two satellites carrying one the mirror module and the other one the focal plane detectors. The mirrors will have a 20 m focal length, while the two focal plane detectors will be put one on top of the other one. This combination will provide over two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion physics and census, and to particle acceleration mechanisms. We will give an overall description of the mission characteristics, performances and scientific objectives.

  4. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  5. Bidirectional reflectance distribution function of the Infrared Astronomical Satellite solar-shield material

    NASA Technical Reports Server (NTRS)

    Hubbs, J. E.; Nofziger, M. J.; Bartell, F. O.; Wolfe, W. L.; Brooks, L. D.

    1982-01-01

    The Infrared Astronomical Satellite (IRAS) telescope has an outer shield on it which is used to reduce the amount of thermal radiation that enters the telescope. The shield forms the first part of the baffle structure which reduces the photon incidence on the focal plane. It was, therefore, necessary to model this structure for scattering, and a required input for such modeling is the scattering characteristic of this surface. Attention is given to the measurement of the bidirectional reflectance distribution function (BRDF), the reflected radiance divided by the incident irradiance at 10.6 micrometers, 118 micrometers, and at several angles of incidence. Visual observation of the gold sample shows that there are striations which line up in a single direction. The data were, therefore, taken with the sample oriented in each of two directions.

  6. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  7. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approx. 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  8. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Elsner, R. F.; ODell, S.; Kilaru, K.; Atkins, C.; McCracken, J.; Pavlinsky, M.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  9. Structure of high-resolution K β1 ,3 x-ray emission spectra for the elements from Ca to Ge

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Tochio, T.; Yamashita, M.; Fukushima, S.; Vlaicu, A. M.; Syrocki, Ł.; Słabkowska, K.; Weder, E.; Polasik, M.; Sawicka, K.; Indelicato, P.; Marques, J. P.; Sampaio, J. M.; Guerra, M.; Santos, J. P.; Parente, F.

    2018-05-01

    The K β x-ray spectra of the elements from Ca to Ge have been systematically investigated using a high-resolution antiparallel double-crystal x-ray spectrometer. Each K β1 ,3 natural linewidth has been corrected using the instrumental function of this type of x-ray spectrometer, and the spin doublet energies have been obtained from the peak position values in K β1 ,3 x-ray spectra. For all studied elements the corrected K β1 x-ray lines FWHM increase linearly as a function of Z . However, for K β3 x-ray lines this dependence is generally not linear in the case of 3 d elements but increases from Sc to Co elements. It has been found that the contributions of satellite lines are considered to be [K M ] shake processes. Our theoretically predicted synthetic spectra of Ca, Mn, Cu, and Zn are in very good agreement with our high-resolution measurements, except in the case of Mn, due to the open-shell valence configuration effect (more than 7000 transitions for diagram lines and more than 100 000 transitions for satellite lines) and the influence of the complicated structure of the metallic Mn.

  10. The particle background observed by the X-ray detectors onboard Copernicus

    NASA Technical Reports Server (NTRS)

    Davison, P. J. N.

    1974-01-01

    The design and characteristics of low energy detectors on the Copernicus satellite are described. The functions of the sensors in obtaining data on the particle background. The procedure for processing the data obtained by the satellite is examined. The most significant positive deviations are caused by known weak X-ray sources in the field of view. In addition to small systemic effects, occasional random effects where the count rate increases suddenly and decreases within a few frames are analyzed.

  11. Deepest X-Rays Ever Reveal universe Teeming With Black Holes

    NASA Astrophysics Data System (ADS)

    2001-03-01

    For the first time, astronomers believe they have proof black holes of all sizes once ruled the universe. NASA's Chandra X-ray Observatory provided the deepest X-ray images ever recorded, and those pictures deliver a novel look at the past 12 billion years of black holes. Two independent teams of astronomers today presented images that contain the faintest X-ray sources ever detected, which include an abundance of active super massive black holes. "The Chandra data show us that giant black holes were much more active in the past than at present," said Riccardo Giacconi, of Johns Hopkins University and Associated Universities, Inc., Washington, DC. The exposure is known as "Chandra Deep Field South" since it is located in the Southern Hemisphere constellation of Fornax. "In this million-second image, we also detect relatively faint X-ray emission from galaxies, groups, and clusters of galaxies". The images, known as Chandra Deep Fields, were obtained during many long exposures over the course of more than a year. Data from the Chandra Deep Field South will be placed in a public archive for scientists beginning today. "For the first time, we are able to use X-rays to look back to a time when normal galaxies were several billion years younger," said Ann Hornschemeier, Pennsylvania State University, University Park. The group’s 500,000-second exposure included the Hubble Deep Field North, allowing scientists the opportunity to combine the power of Chandra and the Hubble Space Telescope, two of NASA's Great Observatories. The Penn State team recently acquired an additional 500,000 seconds of data, creating another one-million-second Chandra Deep Field, located in the constellation of Ursa Major. Chandra Deep Field North/Hubble Deep Field North Press Image and Caption The images are called Chandra Deep Fields because they are comparable to the famous Hubble Deep Field in being able to see further and fainter objects than any image of the universe taken at X-ray

  12. X ray absorption by dark nebulae (HEAO-2 guest investigator program)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.

    1991-01-01

    A study is described of data obtained from the Imaging Proportional Counter (IPC) x ray detector aboard the HEAO-2 satellite (Einstein Observatory). The research project involved a search for absorption of diffuse low energy x ray background emission by galactic dark nebulae. The commonly accepted picture that the bulk of the C band emission originates locally, closer that a few hundred parsec, and the bulk of the M band emission originates farther away than a few hundred parsec, was tested. The idea was to look for evidence of absorption of the diffuse background radiation by nearby interstellar clouds.

  13. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  14. Extended X-Ray Jet in Nearby Galaxy Reveals Energy Source

    NASA Astrophysics Data System (ADS)

    1999-10-01

    NASA's Chandra X-ray Observatory has made an extraordinary image of Centaurus A, a nearby galaxy noted for its explosive activity. The image shows X-ray jets erupting from the center of the galaxy over a distance of 25,000 light years. Also detected are a group of X-ray sources clustered around the nucleus, which is believed to harbor a supermassive black hole. The X-ray jets and the cluster of sources may be a byproduct of a titanic collision between galaxies several hundred million years ago. "This image is great," said Dr. Ethan Schreier of the Space Telescope Science Institute, "For twenty years we have been trying to understand what produced the X rays seen in the Centaurus A jet. Now we at last know that the X-ray emission is produced by extremely high-energy electrons spiraling around a magnetic field." Schreier explained that the length and shape of the X-ray jet pinned down the source of the radiation. The entire length of the X-ray jet is comparable to the diameter of the Milky Way Galaxy. Other features of the image excite scientists. "Besides the jets, one of the first things I noticed about the image was the new population of sources in the center of the galaxy," said Dr. Christine Jones from the Harvard-Smithsonian Center for Astrophysics . "They are grouped in a sphere around the nucleus, which must be telling us something very fundamental about how the galaxy, and the supermassive black hole in the center, were formed." Astronomers have accumulated evidence with optical and infrared telescopes that Centaurus A collided with a small spiral galaxy several hundred million years ago. This collision is believed to have triggered a burst of star formation and supplied gas to fuel the activity of the central black hole. more - According to Dr. Giuseppina Fabbiano, of Harvard-Smithsonian, "The Chandra image is like having a whole new laboratory to work in. Now we can see the main jet, the counter jet, and the extension of the jets beyond the galaxy. It is

  15. The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan

    1994-01-01

    We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.

  16. Design of MiSolFA Hard X-Ray Imager

    NASA Astrophysics Data System (ADS)

    Lastufka, Erica; Casadei, Diego

    2017-08-01

    Advances in the study of coronal electron-accelerating regions have so far been limited by the dynamic range of X-ray instruments. A quick and economical alternative to desirable focusing optics technology is stereo observation. The micro-satellite MiSolFA (Micro Solar-Flare Apparatus) is designed both as a stand-alone X-ray imaging spectrometer and a complement to the Spectrometer/Telescope for Imaging X-rays (STIX) mission. These instruments will be the first pair of cross-calibrated X-ray imaging spectrometers to look at solar flares from very different points of view. MiSolFA will achieve indirect imaging between 10 and 60 keV and provide spectroscopy up to 100 keV, equipped with grids producing moiré patterns in a similar way to STIX. New manufacturing techniques produce gold gratings on a graphite or silicon substrate, with periods ranging from 15 to 225 micrometers, separated by a distance of 15.47 cm, to achieve a spatial resolutions from 10" to 60" (as compared to RHESSI's separation of 150 cm and 1" resolution). We present the progress of the imager design, the performance of the first prototypes, and reach out to the community for further scientific objectives to consider in optimizing the final design.

  17. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 7: The small scale structure catalog

    NASA Technical Reports Server (NTRS)

    Helou, George (Editor); Walker, D. W. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched January 26, 1983. During its 300-day mission, it surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and the data reduction process. Volumes 2 through 6 present the observations of the approximately 245,000 individual point sources detected by IRAS; each volume gives sources within a specified range of declination. Volume 7 gives the observations of the approximately 16,000 sources spatially resolved by IRAS and smaller than 8'. This is Volume 7, The Small Scale Structure Catalog.

  18. Detection of absorption lines in the spectra of X-ray bursts from X1608-52

    NASA Astrophysics Data System (ADS)

    Nakamura, Norio; Inoue, Hajime; Tanaka, Yasuo

    X-ray bursts from X 1608-52 were observed with the gas scintillation proportional counters on the Tenma satellite. Absorption features were detected in the spectra of three bursts among 17 bursts observed. These absorption features are consistent with a common absorption line at 4.1 keV. The energy and the properties of the absorption lines of the X 1608-52 bursts are very similar to those observed from the X 1636-53 bursts by Waki et al. (1984). Near equality of the absorption-line energies for X 1636-53 and X 1608-52 would imply that mass and radius of the neutron stars in these two systems are very similar to each other.

  19. X-ray line coincidence photopumping in a solar flare

    DOE PAGES

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; ...

    2017-11-23

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significantmore » intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.« less

  20. X-ray line coincidence photopumping in a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significantmore » intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.« less

  1. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  2. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  3. Gamma-ray Bursts May Originate in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    2001-04-01

    New findings from two X-ray satellites suggest that gamma-ray bursts, some of the most intense blasts in the universe, may be created in the same area where stars are born. Dr. Luigi Piro of the Consiglio Nazionale delle Ricerche (CNR) in Rome, Italy, presented data from NASA's Chandra X-ray Observatory and the Italian-Dutch ASI BeppoSAX observatory today at the Gamma Ray 2001 conference in Baltimore, MD. "We know that when a gamma-ray burst explodes, it produces a blast of material called a fireball, which expands at relativistic speeds like a rapidly inflating bubble," said Piro, who works within CNR's Istituto di Astrofisica Spaziale. "Our team found evidence that the blast wave caused by the fireball brakes against a wall of very dense gas, which we believe is the crowded region where stars form." Several theories exist about what causes gamma-ray bursts. Among more popular theories are that gamma-ray bursts come from various combinations of merging neutron stars and black holes, or, from the explosion of massive stars, called hypernovae. "Because gamma-ray bursts are going off in extremely distant galaxies, it is difficult to 'see' the regions that harbor them," said Piro. "We can only gather circumstantial evidence as to where and how they form." Piro's observations support the hypernova model. Scientists believe that within dense star-forming regions, the massive star required for a hypernova explosion evolves extremely rapidly. On astronomical time scales, the supermassive star would evolve over the course of only about one million years. Thus, the hypernova explosion may occur in the same stellar environment that originally produced the massive star itself, and perhaps may trigger even more star formation. The hint that gamma-ray bursts can occur in dense media came during a Chandra observation of an afterglow that occurred on September 26, 2000. Prof. Gordon Garmire of Pennsylvania State University, University Park, PA, found X-ray emission to be greater

  4. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  5. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  6. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  7. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  8. Observation of pulsed hard X-rays/gamma-rays from PSR 1509-58

    NASA Astrophysics Data System (ADS)

    Gunji, S.; Hirayama, M.; Kamae, T.; Miyazaki, S.; Sekimoto, Y.; Takahashi, T.; Tamura, T.; Tanaka, M.; Yamasaki, N.; Yamagami, T.; Nomachi, M.; Murakami, H.; Braga, J.; Neri, J. A.

    1994-06-01

    We observed a young rotation-powered pulsar, PSR 1509-58, in the hard X-ray/gamma-ray or the soft gamma-ray band with a balloon-borne detector in Brazil on 1991 November 19 (UT). With a timing analysis we detected pulsations in the energy band 94-240 keV at the 150.687 ms period determined from radio observations. The pulsating flux is (7.1 +/- 1.7) x 10-4 per sq cm per sec in this band, and the energy spectrum follows a power law with photon index alpha = 1.64 +/- 0.4. The averaged pulse profile shows a broad single peak with a sharp rise and has a duty cycle around 50% or higher: these features are similar to what have been observed in the X-ray band by the Ginga satellite. Based on the data available now, the fraction of energy transformed from rotational energy loss to pulsed/nonpulsed soft gamma-ray radiation is estimated. If the solid angle swept by the pulsed beam is about the same as for the Crab pulsar (PSR 0531+21) and the Vela pulsar (PSR 0833-45), PSR 1509-58 turn out to be an extremely efficient pulsar, converting a large fraction of its rotational energy loss to radiation, as the outer gap model predicts. The observed pulsed spectrum, however, is strong in the soft gamma-ray band, in a sharp contrast to what has been observed in the Vela pulsar, a pulsar expected to be similar PSR 1509-58 in the outer gap model. The fact that the pulse profile remains broad and single-peaked in the soft gamma-ray band is also new for Crab-like pulsars. In these regards, PSR 1509-58 may require some alteration to the standard outer gap model or even a new model for gamma-ray emission in pulsars.

  9. Columbia University OSO-8 instrument for stellar and solar X-ray spectroscopy and polarimetry

    NASA Technical Reports Server (NTRS)

    Wolff, R. S.

    1976-01-01

    A spectrometer and a polarimeter consisting of large-area panels of mosaic crystals have been constructed and prepared for use in the OSO-8 satellite. The instrumentation is planned for study of stellar and solar X-ray spectra between 1.8-8 keV and stellar X-ray polarization at 2.6 keV. Aspects of the design which enable the instrument to make measurements of the diverse range of stellar and solar phenomena are described. Some of the unique features, such as high sensitivity, high temporal resolution, and spectral range, are discussed. The applicability of the spectrometer and polarimeter to various current problems in X-ray astronomy is considered.

  10. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi's measurement in a low Earth orbit

    NASA Astrophysics Data System (ADS)

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; Koi, Tatsumi; Madejski, Greg; Mizuno, Tsunefumi; Ohno, Masanori; Saito, Shinya; Sato, Tamotsu; Wright, Dennis H.; Enoto, Teruaki; Fukazawa, Yasushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Kobayashi, Shogo B.; Kokubun, Motohide; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Maier, Daniel; Makishima, Kazuo; Mimura, Taketo; Miyake, Katsuma; Mori, Kunishiro; Murakami, Hiroaki; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Ohta, Masayuki; Ozaki, Masanobu; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yasuda, Tetsuya; Yatsu, Yoichi; Yuasa, Takayuki; Zoglauer, Andreas

    2018-05-01

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi4Ge3O12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.

  11. The Most Distant X-Ray Clusters

    NASA Technical Reports Server (NTRS)

    Dickinson, Mark

    1999-01-01

    In this program we have used ROSAT (Roentgen Satellite Mission) to observe X-ray emission around several high redshift radio galaxies in a search for extended, hot plasma which may indicate the presence of a rich galaxy cluster. When this program was begun, massive, X-ray emitting galaxy clusters were known to exist out to to z=0.8, but no more distant examples had been identified. However, we had identified several apparently rich clusters around 3CR radio galaxies at z greater than 0.8, and hoped to use ROSAT to confirm the nature of these structures as massive, virialized clusters. We have written up our results and submitted them as a paper to the Astrophysical Journal. This paper has been refereed and requires some significant revisions to accommodate the referees comments. We are in the process of doing this, adding some additional analysis as well. We will resubmit the paper early in 2000, and hopefully will meet with the referee's approval. We are including three copies of the submitted paper here, although it has not yet been accepted for publication.

  12. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    NASA Astrophysics Data System (ADS)

    Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R.

    2010-03-01

    Aims: We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations in early 2006. Methods: We analyze the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. Because of degeneracy, we guide the fits with a realistic choice of the input parameters and a constraint for spectral smoothness. Results: The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an unrealistically high albedo of the Earth. The derived spectrum of the GRXE confirms the presence of a minimum around 80 keV with improved statistics and yields an estimate of ~0.6 M⊙ for the average mass of white dwarfs in the Galaxy. The analysis also provides updated normalizations for the spectra of the Earth's albedo and the cosmic-ray induced atmospheric emission. Conclusions: This study demonstrates the potential of INTEGRAL Earth-occultation observations to derive the hard X-ray spectra of three fundamental components: the CXB, the GRXE and the Earth emission. Further observations would be extremely valuable to confirm our results with improved statistics.

  13. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  14. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  16. Phonon-mediated superconducting transition-edge sensor X-ray detectors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Leman, Steven W.; Martinez-Galarce, Dennis S.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Morse, Kathleen; Stern, Robert A.; Tomada, Astrid

    2004-09-01

    Superconducting Transition-Edge Sensors (TESs) are generating a great deal of interest in the areas of x-ray astrophysics and space science, particularly to develop them as large-array, imaging x-ray spectrometers. We are developing a novel concept that is based on position-sensitive macro-pixels placing TESs on the backside of a silicon or germanium absorber. Each x-ray absorbed will be position (X/δX and Y/δY ~ 100) and energy (E/δE ~ 1000) resolved via four distributed TES readouts. In the future, combining such macropixels with advances in multiplexing could lead to 30 by 30 arrays of close-packed macro-pixels equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to a plausible solar satellite mission and plans for future development.

  17. The Infrared Astronomical Satellite /IRAS/ Scientific Data Analysis System /SDAS/ sky flux subsystem

    NASA Technical Reports Server (NTRS)

    Stagner, J. R.; Girard, M. A.

    1980-01-01

    The sky flux subsystem of the Infrared Astronomical Satellite Scientific Data Analysis System is described. Its major output capabilities are (1) the all-sky lune maps (8-arcminute pixel size), (2) galactic plane maps (2-arcminute pixel size) and (3) regional maps of small areas such as extended sources greater than 1-degree in extent. The major processing functions are to (1) merge the CRDD and pointing data, (2) phase the detector streams, (3) compress the detector streams in the in-scan and cross-scan directions, and (4) extract data. Functional diagrams of the various capabilities of the subsystem are given. Although this device is inherently nonimaging, various calibrated and geometrically controlled imaging products are created, suitable for quantitative and qualitative scientific interpretation.

  18. The KLEM High-Energy Cosmic Ray Collector for the Nucleon Satellite Mission

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    The basic objective of the KLEM (Kinematic Lightweight Energy Meter) Project is to directly measure the elemental energy spectra of very high-energy (10(exp 11) - 10(exp 16) eV) cosmic rays by determining the angular distribution of secondaries produced in a target layer. A small-scale version of a KLEM device has been designed for inclusion in the NUCLEON Russian satellite mission. Despite its 3 relatively small size of 36 x 36 x 30 cubic cm, this instrument has an aperture of about 0.12 square m sr and can thus make an important contribution to data concerning the elemental energy spectra of cosmic rays up to 10(exp 15) eV. Details of the experiment and the astrophysical significance of the mission will be presented.

  19. NASA's Chandra Finds That Saturn Reflects X-rays From Sun

    NASA Astrophysics Data System (ADS)

    2005-05-01

    When it comes to mysterious X-rays from Saturn, the ringed planet may act as a mirror, reflecting explosive activity from the sun, according to scientists using NASA's Chandra X-ray Observatory. The findings stem from the first observation of an X-ray flare reflected from Saturn's low-latitudes - the region that correlates to Earth's equator and tropics. Led by Dr. Anil Bhardwaj, a planetary scientist at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., the study revealed that Saturn acts as a diffuse mirror for solar X-rays. Counting photons - particles that carry electromagnetic energy including X-rays - was critical to this discovery. For every few thousand X-ray photons Saturn receives from the sun, it reflects a single X-ray photon back. Previous studies revealed that Jupiter, with a diameter 11 times that of Earth, behaves in a similar fashion. Saturn is about 9.5 times as big as Earth, but is twice as far from Earth as Jupiter. "The bigger the planet and nearer to the Sun, the more solar photons it will intercept - resulting in more reflected X-rays," said Bhardwaj. "These results imply we could use giant planets like Jupiter and Saturn as remote-sensing tools. By reflecting solar activity back to us, they could help us monitor X-ray flaring on portions of the sun facing away from Earth's space satellites." Massive solar explosions called flares often accompany coronal mass ejections, which emit solar material and magnetic field. When directed toward the Earth, these ejections can wreak havoc on communication systems from cell phones to satellites. Even as the research appears to have solved one mystery - the source of Saturn's X-rays, it fueled longstanding questions about magnetic fields. Earth's magnetic field is the reason compasses work, since the field acts like a huge bar magnet, causing the magnetic north pole of a compass to point to the magnetic south pole of the Earth. In addition, migratory birds seem to sense the magnetic field

  20. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  1. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  2. The broad-band X-ray spectral variability of Mrk 841

    NASA Technical Reports Server (NTRS)

    George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.

    1993-01-01

    A detailed spectral analysis of five X-ray observations of Mrk 841 with the EXOSAT, Ginga, and ROSAT satellites is reported. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above, 1 keV, the spectra are adequately modeled by a power law with a strong emission line of equivalent width 450 eV. The large equivalent width of the emission line indicates a strongly enhanced reflection component of the source compared with other Seyferts observed with Ginga. The implications of the results of the analysis for physical models of the emission regions in this and other X-ray bright Seyferts are briefly examined.

  3. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  4. Soft X-ray observations of two BL Lacertae objects - Markarian 421 and 501

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Garmire, G. P.

    1985-01-01

    This paper reports on the soft X-ray (0.15-2.8 keV) observations of two BL Lacertae-type objects, viz., Mrk 421 and Mrk 501. The observations were made with the low-energy detectors on the HEAO 1 satellite during the period 1977 August-1978 December. Steep, soft X-ray power-law spectra with photon index Gamma = 3 are found for both Mrk 421 and Mrk 501. The power-law models are found to give a significantly better fit than the thermal models to the observed pulse-height spectra of Mrk 421 and Mrk 501. Day-to-day soft X-ray (0.25 keV band) intensity variations are observed only in Mrk 501. No significant change is found in Gamma from both the BL Lac objects during the period of observations. However, the sum of all the X-ray observations from 1976 until 1980 can be understood in terms of two spectral components of variable intensity to account for the X-ray emission observed between 0.15 and 20 keV from Mrk 421 and Mrk 501.

  5. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  6. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  7. Use of the transect method in satellite survey missions with application to the infrared astronomical satellite /IRAS/

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.; Lundy, S. A.; Ling, H. Y.; Stroberg, M. W.

    1980-01-01

    The coverage of the celestial sphere or the surface of the earth with a narrow-field instrument onboard a satellite can be described by a set of swaths on the sphere. A transect is a curve on this sphere constructed to sample the coverage. At each point on the transect the number of times that the field-of-view of the instrument has passed over the point is recorded. This information is conveniently displayed as an integer-valued histogram over the length of the transect. The effectiveness of the transect method for a particular observing plan and the best placement of the transects depends upon the structure of the set of observations. Survey missions are usually characterized by a somewhat parallel alignment of the instrument swaths. Using autocorrelation and cross-correlation functions among the histograms the structure of a survey has been analyzed into two components, and each is illustrated by a simple mathematical model. The complex, all-sky survey to be performed by the Infrared Astronomical Satellite (IRAS) is synthesized in some detail utilizing the objectives and constraints of that mission. It is seen that this survey possesses the components predicted by the simple models and this information is useful in characterizing the properties of the IRAS survey and the placement of the transects as a function of celestial latitude and certain structural properties of the coverage.

  8. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  9. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  10. The Astronomer's Telegram: A Web-based Short-Notice Publication System for the Professional Astronomical Community

    NASA Astrophysics Data System (ADS)

    Rutledge, Robert E.

    1998-06-01

    The Astronomer's Telegram (ATEL) is a web-based short-notice (<4000 characters) publication system for reporting and commenting on new astronomical observations, offering for the first time in astronomy effectively instantaneous distribution of time-critical information for the entire professional community. It is designed to take advantage of the World Wide Web's simple user interface and the ability of computer programs to provide nearly all the necessary functions. This makes ATEL fast, efficient, and free. In practice, one may post a Telegram, which is instantly (<1 s) available at the web site and is distributed by e-mail within 24 hours through the Daily Email Digest, which is tailored to the subject selections of each reader. In addition, authors reporting new outbursts of transients or coordinates of new objects (for example, gamma-ray bursts or microlensing events) may request distribution by Instant Email Notices, which instantly (~minutes) distributes their new Telegram by e-mail to self-identified workers interested in the same topic. This speed in distribution is obtained because no editing or reviewing is performed after posting-the last person to review the text before distribution is the author. Telegrams are enumerated chronologically, permanently archived, and referenceable. While ATEL will be of particular use to observers of transient objects (such as gamma-ray bursts, microlenses, supernovae, novae, or X-ray transients) or in fields that are rapidly evolving observationally, there are no restrictions on subject matter.

  11. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  12. Searches for Decaying Sterile Neutrinos with the X-Ray Quantum Calorimeter Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Goldfinger, David; XQC Collaboration

    2016-01-01

    Rocket borne X-ray spectrometers can produce high-resolution spectra for wide field-of-view observations. This is useful in searches for dark matter candidates that produce X-ray lines in the Milky Way, such as decaying keV scale sterile neutrinos. In spite of exposure times and effective areas that are significantly smaller than satellite observatories, similar sensitivity to decaying sterile neutrinos can be attained due to the high spectral resolution and large field of view. We present recent results of such a search analyzing the telemetered data from the 2011 flight of the X-Ray Quantum Colorimeter instrument as well as ongoing progress in expanding the data set to include the more complete onboard data over additional flights.

  13. GIANT LOBES OF CENTAURUS A RADIO GALAXY OBSERVED WITH THE SUZAKU X-RAY SATELLITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawarz, L.; Gandhi, P.; Takahashi, T.

    2013-03-20

    We report on Suzaku observations of selected regions within the southern giant lobe of the radio galaxy Centaurus A. In our analysis we focus on distinct X-ray features detected with the X-ray Imaging Spectrometer within the range 0.5-10 keV, some of which are likely associated with fine structure of the lobe revealed by recent high-quality radio intensity and polarization maps. With the available photon statistics, we find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas with temperatures kT > 1 keV, or with a power-law radiation continuum characterized by photonmore » indices {Gamma} {approx} 2.0 {+-} 0.5. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons up to {approx}> 10 TeV energies is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions associated with extended and highly polarized radio filaments. We also present a detailed analysis of the diffuse X-ray emission filling the whole field of view of the instrument, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of kT {approx} 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe and mixed with the non-thermal plasma, rather than to the alternative scenario involving a condensation of the hot intergalactic medium around the edges of the expanding radio structure. If correct, this would be the first detection of the thermal content of the extended lobes of a radio galaxy in X-rays. The corresponding number density of the thermal gas in such a case is n{sub g} {approx} 10{sup -4} cm{sup -3}, while its pressure appears to be in almost exact equipartition with the volume-averaged non

  14. Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Moore, Christopher; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Palo, Scott; Solomon, Stanley C.

    2016-01-01

    The miniature x-ray solar spectrometer is a three-unit CubeSat developed at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at University of Colorado, Boulder and from Laboratory for Atmospheric and Space Physics scientists and engineers. The scientific objective of the miniature x-ray solar spectrometer is to study processes in the dynamic sun, from quiet sun to solar flares, and to further understand how these changes in the sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays. The enabling technology providing the advanced solar soft x-ray spectral measurements is the Amptek X123, a commercial off-the-shelf silicon drift detector. The Amptek X123 has a low mass (approx. 324 g after modification), modest power consumption (approx. 2.50 W), and small volume (6.86 x 9.91 x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the miniature x-ray solar spectrometer mission: the science objectives, project history, subsystems, and lessons learned, which can be useful for the small-satellite community.

  15. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  16. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  17. X-ray emission associated with radio galaxies in the Perseus cluster

    NASA Technical Reports Server (NTRS)

    Rhee, George; Burns, Jack O.; Kowalski, Michael P.

    1994-01-01

    In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.

  18. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  19. Hard x-ray characterization of a HEFT single-reflection prototype

    NASA Astrophysics Data System (ADS)

    Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Jimenez-Garate, Mario A.; Windt, David L.; Harrison, Fiona A.; Mao, Peter H.; Ziegler, Eric; Honkimaki, Veijo; Sanchez del Rio, Manuel; Freund, Andreas K.; Ohler, M.

    2000-07-01

    We have measured the hard X-ray reflectivity and imaging performance from depth graded W/Si multilayer coated mirror segments mounted in a single reflection cylindrical prototype for the hard X-ray telescopes to be flown on the High Energy Focusing Telescope (HEFT) balloon mission. Data have been obtained in the energy range from 18 - 170 keV at the European Synchrotron Radiation Facility and at the Danish Space Research Institute at 8 keV. The modeling of the reflectivity data demonstrate that the multilayer structure can be well described by the intended power law distribution of the bilayer thicknesses optimized for the telescope performance and we find that all the data is consistent with an interfacial width of 4.5 angstroms. We have also demonstrated that the required 5% uniformity of the coatings is obtained over the mirror surface and we have shown that it is feasible to use similar W/Si coatings for much higher energies than the nominal energy range of HEFT leading the way for designing Gamma-ray telescopes for future astronomical applications. Finally we have demonstrate 35 arcsecond Half Power Diameter imaging performance of the one bounce prototype throughout the energy range of the HEFT telescopes.

  20. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  1. Calibration sources and filters of the soft x-ray spectrometer instrument on the Hitomi spacecraft

    NASA Astrophysics Data System (ADS)

    de Vries, Cor P.; Haas, Daniel; Yamasaki, Noriko Y.; Herder, Jan-Willem den; Paltani, Stephane; Kilbourne, Caroline; Tsujimoto, Masahiro; Eckart, Megan E.; Leutenegger, Maurice A.; Costantini, Elisa; Dercksen, Johannes P. C.; Dubbeldam, Luc; Frericks, Martin; Laubert, Phillip P.; van Loon, Sander; Lowes, Paul; McCalden, Alec J.; Porter, Frederick S.; Ruijter, Jos; Wolfs, Rob

    2018-01-01

    The soft x-ray spectrometer was designed to operate onboard the Japanese Hitomi (ASTRO-H) satellite. In the beam of this instrument, there was a filter wheel containing x-ray filters and active calibration sources. This paper describes this filter wheel. We show the purpose of the filters and the preflight calibrations performed. In addition, we present the calibration source design and measured performance. Finally, we conclude with prospects for future missions.

  2. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  3. Satellite characterization of four interesting sites for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Cavazzani, S.; Zitelli, V.

    2013-03-01

    In this paper we have evaluated the amount of available telescope time at four interesting sites for astronomical instrumentation. We use the GOES 12 data for years 2008 and 2009. We use a homogeneous methodology presented in several previous papers to classify the nights as clear (completely cloud-free), mixed (partially cloud-covered) or covered. Additionally, for the clear nights we have evaluated the number of satellite-stable nights, corresponding to the number of ground-based photometric nights, and the clear nights, corresponding to the spectroscopic nights. We have applied this model to two sites in the Northern Hemisphere (San Pedro Martir (SPM), Mexico and Izaña, Canary Islands) and to two sites in the Southern Hemisphere (El Leoncito, Argentina and San Antonio de Los Cobres (SAC), Argentina). We have obtained, for the two years considered, mean percentages of cloud-free nights of 68.6 per cent at Izaña, 76.0 per cent at SPM, 70.6 per cent at Leoncito and 70.0 per cent at SAC. We have evaluated, amongst the cloud-free nights, a proportion of stable nights of 62.6 per cent at Izaña, 69.6 per cent at SPM, 64.9 per cent at Leoncito and 59.7 per cent at SAC.

  4. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  5. A systematic search for new X-ray pulsators in ROSAT fields

    NASA Astrophysics Data System (ADS)

    Israel, G. L.

    1996-10-01

    powered neutron stars, some of which were observed in the X-ray band, can show highly coherent signals as well. Photospheric oscillations due to opacity instability in a layer close to the surface of an isolated hot white dwarf or pre-white dwarf star can be also observed in the very soft X-ray band. Light curves with increased statistical quality, time resolution and duration have become available in recent years for a variety of astronomical objects and over different bands of the electromagnetic spectrum. Power spectrum analysis is probably the single most important technique that is applied to time series, in order to detect periodicities and quasi-periodicities by the presence of significant power spectrum peaks. Applications to time series of high energy astronomical data have been especially numerous and successful over the last decade, as a consequence of the pronounced variability (often both periodic and non-periodic in character) detected in many sources. ROSAT, an acronym for the German word Rontgensatellit, is an X-ray satellite launched in June 1990. Its X-ray telescope covers the soft X-ray band from 0.05 keV to 2.4 keV. The main aim of the mission was to perform the first all-sky survey (RASS) with imaging telescopes, possessing an X-ray sensitivity of about a factor 1000 higher than that of UHURU. The survey took the first 6 months of the operations of ROSAT. After that the satellite has been used to carry out pointed observations of selected targets. These observations cover a much smaller portion of the sky than the RASS, but afford a factor 10-1000 higher sensitivity. A systematic exploitation of the public domain ROSAT pointed observations with the Position Sensitive Proportional Counter (PSPC; about 10% of the sky and about 5300 fields until May 1996) was carried out by several groups. NASA-HEASARC and MPE have produced catalogues containing about 60000 serendipitous sources (WGA by White, Giommi & Angelini 1994; ROSATSRC by Zimmermann 1994). This

  6. Observations of the Non-Thermal X-ray Emission from the Galactic Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Pannuti, Thomas G.; Allen, Glenn E.

    2002-01-01

    G347.3-0.5 (ALEX J1713.7-3946) is a member of the new class of shell-type Galactic supernova remnants (SNRs) that feature non-thermal components to their X-ray emission. We have analyzed the X-ray spectrum of this SNR over a broad energy range (0.5 to 30 key) using archived data from observations made with two satellites, the R6ntgensatellit (ROSA I) and the Advanced Satellite for Cosmology and Astrophysics (ASCA), along with data from our own observations made with the Rossi X-ray Timing Explorer (RXTE) Using a combination of the models EQUIL and SRCUT to fit thermal and non-thermal emission, respectively, from this SNR, we find evidence for a modest thermal component to G347.30.5's diffuse emission with a corresponding energy of kT approx. = 1.4 key. We also obtain an estimate of 70 Texas for the maximum energy of the cosmic-ray electrons that, have been accelerated by this SNR.

  7. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  8. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  9. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  10. CIAO: A Modern Data Analysis System for X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fruscione, Antonella

    2017-08-01

    It is now eighteen years after launch and Chandra continues to produce spectacular results!A portion of the success is to be attributed to the data analysis software CIAO (Chandra Interactive Analysis of Observations) that the Chandra X-Ray Center (CXC) continues to improve and release year after year.CIAO is downloaded more than 1200 times a year and it is used by a wide variety of users around the world: from novice to experienced X-ray astronomers, high school, undergraduate and graduate students, archival users (many new to X-ray or Chandra data), users with extensive resources and others from smaller countries and institutions.The scientific goals and kinds of datasets and analysis cover a wide range: observations spanning from days to years, different instrument configurations and different kinds of targets, from pointlike stars and quasars, to fuzzy galaxies and clusters, to moving solar objects. These different needs and goals require a variety of specialized software and careful and detailed documentation which is what the CIAO software provides. In general, we strive to build a software system which is easy for beginners, yet powerful for advanced users.The complexity of the Chandra data require a flexible data analysis system which provides an environment where the users can apply our tools, but can also explore and construct their own applications. The main purpose of this talk is to present CIAO as a modern data analysis system for X-ray data analysis.CIAO has grown tremendously over the years and we will highlight (a) the most recent advancements with a particular emphasis on the newly developed high-level scripts which simplify the analysis steps for the most common cases making CIAO more accessible to all users - including beginners and users who are not X-ray astronomy specialists, (b) the python-based Sherpa modelling and fitting application and the new stand-alone version openly developed and distributed on Github and (c) progress on methods to

  11. LONG-DURATION X-RAY FLASH AND X-RAY-RICH GAMMA-RAY BURSTS FROM LOW-MASS POPULATION III STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakauchi, Daisuke; Kashiyama, Kazumi; Nakamura, Takashi

    2012-11-10

    Recent numerical simulations suggest that Population III (Pop III) stars were born with masses not larger than {approx}100 M {sub Sun} and typically {approx}40 M {sub Sun }. By self-consistently considering the jet generation and propagation in the envelope of these low-mass Pop III stars, we find that a Pop III blue supergiant star has the possibility of giving rise to a gamma-ray burst (GRB) even though it keeps a massive hydrogen envelope. We evaluate observational characteristics of Pop III GRBs and predict that Pop III GRBs have a duration of {approx}10{sup 5} s in the observer frame and amore » peak luminosity of {approx}5 Multiplication-Sign 10{sup 50} erg s{sup -1}. Assuming that the E {sub p}-L {sub p} (or E {sub p}-E {sub {gamma},iso}) correlation holds for Pop III GRBs, we find that the spectrum peak energy falls at approximately a few keV (or {approx}100 keV) in the observer frame. We discuss the detectability of Pop III GRBs by future satellite missions such as EXIST and Lobster. If the E {sub p}-E {sub {gamma},iso} correlation holds, we have the possibility to detect Pop III GRBs at z {approx} 9 as long-duration X-ray-rich GRBs by EXIST. Conversely, if the E {sub p}-L {sub p} correlation holds, we have the possibility to detect Pop III GRBs up to z {approx} 19 as long-duration X-ray flashes by Lobster.« less

  12. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  13. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi ’s measurement in a low Earth orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation ofmore » isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. As a result, the simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4Ge 3O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.« less

  14. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi ’s measurement in a low Earth orbit

    DOE PAGES

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; ...

    2018-02-19

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation ofmore » isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. As a result, the simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4Ge 3O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.« less

  15. Astronomers Find Rare Beast by New Means

    NASA Astrophysics Data System (ADS)

    2010-01-01

    For the first time, astronomers have found a supernova explosion with properties similar to a gamma-ray burst, but without seeing any gamma rays from it. The discovery, using the National Science Foundation's Very Large Array (VLA) radio telescope, promises, the scientists say, to point the way toward locating many more examples of these mysterious explosions. "We think that radio observations will soon be a more powerful tool for finding this kind of supernova in the nearby Universe than gamma-ray satellites," said Alicia Soderberg, of the Harvard-Smithsonian Center for Astrophysics. The telltale clue came when the radio observations showed material expelled from the supernova explosion, dubbed SN2009bb, at speeds approaching that of light. This characterized the supernova, first seen last March, as the type thought to produce one kind of gamma-ray burst. "It is remarkable that very low-energy radiation, radio waves, can signal a very high-energy event," said Roger Chevalier of the University of Virginia. When the nuclear fusion reactions at the cores of very massive stars no longer can provide the energy needed to hold the core up against the weight of the rest of the star, the core collapses catastrophically into a superdense neutron star or black hole. The rest of the star's material is blasted into space in a supernova explosion. For the past decade or so, astronomers have identified one particular type of such a "core-collapse supernova" as the cause of one kind of gamma-ray burst. Not all supernovae of this type, however, produce gamma-ray bursts. "Only about one out of a hundred do this," according to Soderberg. In the more-common type of such a supernova, the explosion blasts the star's material outward in a roughly-spherical pattern at speeds that, while fast, are only about 3 percent of the speed of light. In the supernovae that produce gamma-ray bursts, some, but not all, of the ejected material is accelerated to nearly the speed of light. The superfast

  16. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  17. Hard X-Ray Constraints on Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, David M.; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Hannah, Iain; Vievering, Juliana; Ishikawa, Shin-Nosuke; Krucker, Sam; Christe, Steven

    2017-08-01

    A large body of evidence suggests that the solar corona is heated impulsively. Small-scale heating events known as nanoflares may be ubiquitous in quiet and active regions of the Sun. Hard X-ray (HXR) observations with unprecedented sensitivity >3 keV have recently been enabled through the use of focusing optics. We analyze active region spectra from the FOXSI-2 sounding rocket and the NuSTAR satellite to constrain the physical properties of nanoflares simulated with the EBTEL field-line-averaged hydrodynamics code. We model a wide range of X-ray spectra by varying the nanoflare heating amplitude, duration, delay time, and filling factor. Additional constraints on the nanoflare parameter space are determined from energy constraints and EUV/SXR data.

  18. Study of lobster eye optics with iridium coated x-ray mirrors for a rocket experiment

    NASA Astrophysics Data System (ADS)

    Stehlikova, Veronika; Urban, Martin; Nentvich, Ondrej; Inneman, Adolf; Döhring, Thorsten; Probst, Anne-Catherine

    2017-05-01

    In the field of astronomical X-ray telescopes, different types of optics based on grazing incidence mirrors can be used. This contribution describes the special design of a lobster-eye optics in Schmidt's arrangement, which uses dual reflection to increase the collecting area. The individual mirrors of this wide-field telescope are made of at silicon wafers coated with reflecting iridium layers. This iridium coatings have some advantages compared to more common gold layers as is shown in corresponding simulations. The iridium coating process for the X-ray mirrors was developed within a cooperation of the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague. Different mirror parameters essential for a proper function of the X-ray optics, like the surface microroughness and the problematic of a good adhesion quality of the coatings were studied. After integration of the individual mirrors into the final lobster-eye optics and the corresponding space qualification testing it is planned to fly the telescope in a recently proposed NASA rocket experiment.

  19. Chandra Reveals The X-Ray Glint In The Cat's Eye

    NASA Astrophysics Data System (ADS)

    2001-01-01

    SAN DIEGO -- Scientists have discovered a glowing bubble of hot gas and an unexpected X-ray bright central star within the planetary nebula known as the Cat's Eye using NASA's Chandra X-ray Observatory. The new results, presented today at the American Astronomical Society meeting, provide insight into the ways that stars like our Sun end their lives. Scientists believe they are witnessing the expulsion of material from a star that is in the last stages of its existence as a normal star. Material shed by the star is flying away at a speed of about 4 million miles per hour, and the star itself is expected to collapse to become a white dwarf star in a few million years. The X-ray data from the Cat's Eye Nebula, also known as NGC 6543, clearly show a bright central star surrounded by a cloud of multimillion-degree gas. By comparing the Chandra data with those from the Hubble Space Telescope, researchers are able to see where the hotter, X-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by Hubble. "Despite the complex optical appearance of the nebula, the X-ray emission illustrates unambiguously that the hot gas in the central bubble is driving the expansion of the optical nebula," said You-Hua Chu of the University of Illinois and lead author of the paper submitted to the Astrophysical Journal. "The Chandra data will help us to better understand how stars similar to our Sun produce planetary nebulas and evolve into white dwarfs as they grow old." With Chandra, astronomers measured the temperature of the central bubble of X-ray emitting material, and this presents a new puzzle. Though still incredibly energetic and hot enough to emit X-rays, this hot gas is cooler than scientists would have expected from the stellar wind that has come to stagnation from the initial high speed of 4 million miles per hour. At first, the researchers thought that the cooler, outer shell might have mixed with the energetic material closer to the

  20. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  1. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  2. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  3. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  4. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket, first flight

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, L.; Ishikawa, S.; Ramsey, B.; Takahashi, T.; Watanabe, S.; Saito, S.; Lin, R. P.; Krucker, S.

    2013-07-01

    Understanding electron acceleration in solar flares requires X-ray studies with greater sensitivity and dynamic range than are available with current solar hard X-ray observers (i.e. the RHESSI spacecraft). RHESSI employs an indirect Fourier imaging method that is intrinsically limited in dynamic range and therefore can rarely image faint coronal flare sources in the presence of bright footpoints. With greater sensitivity and dynamic range, electron acceleration sites in the corona could be studied in great detail. Both these capabilities can be advanced by the use of direct focusing optics. The recently flown Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload demonstrates the feasibility and usefulness of hard X-ray focusing optics for observations of solar hard X-rays. FOXSI features grazing-incidence replicated nickel optics made by the NASA Marshall Space Flight Center and fine-pitch silicon strip detectors developed by the Astro-H team at JAXA/ISAS. FOXSI flew successfully on November 2, 2012, producing images and spectra of a microflare and performing a search for nonthermal emission (4-15 keV) from nanoflares in the quiet Sun. Nanoflares are a candidate for providing the required energy to heat the solar corona to its high temperature of a few million degrees. A future satellite version of FOXSI, featuring similar optics and detectors, could make detailed observations of hard X-rays from flare-accelerated electrons, identifying and characterizing particle acceleration sites and mapping out paths of energetic electrons as they leave these sites and propagate throughout the solar corona.Abstract (2,250 Maximum Characters): Understanding electron acceleration in solar flares requires X-ray studies with greater sensitivity and dynamic range than are available with current solar hard X-ray observers (i.e. the RHESSI spacecraft). RHESSI employs an indirect Fourier imaging method that is intrinsically limited in dynamic range and therefore can

  5. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  6. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  7. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  8. AXIS - Advanced X-ray Imaging Sarellite

    NASA Astrophysics Data System (ADS)

    Loewenstein, Michael; AXIS Team

    2018-01-01

    We present an overview of the Advanced X-ray Imaging Satellite (AXIS), a probe mission concept under study to the 2020 Decadal survey. AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band over a 15' field of view. These capabilities are designed to attain a wide range of science goals such as (i) measuring the event horizon scale structure in AGN accretion disks and the spin of supermassive black holes through monitoring of gravitationally microlensed quasars; (ii) understanding AGN and starburst feedback in galaxies and galaxy clusters through direct imaging of winds and interaction of jets and via spatially resolved imaging of galaxies at high-z; (iii) probing the fueling of AGN by resolving the SMBH sphere of influence in nearby galaxies; (iv) investigating hierarchical structure formation and the SMBH merger rate through measurement of the occurrence rate of dual AGN and occupation fraction of SMBHs; (v) advancing SNR physics and galaxy ecology through large detailed samples of SNR in nearby galaxies; (vi) measuring the Cosmic Web through its connection to cluster outskirts. With a nominal 2028 launch, AXIS benefits from natural synergies with LSST, ELTs, ALMA, WFIRST and ATHENA, and will be a valuable precursor to Lynx. AXIS utilizes breakthroughs in the construction of light-weight X-ray optics from mono-crystalline silicon blocks, and developments in the fabrication of large format, small pixel, high readout detectors.

  9. Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot

    2017-11-01

    The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.

  10. Continuing data analysis of the AS/E grazing incidence X-ray telescope experiment on the OSO-4 satellite

    NASA Technical Reports Server (NTRS)

    Vaiana, G.; Haggerty, R.; Kahler, S.; Krieger, A.; Landini, M.; Timothy, A.; Webb, D.

    1973-01-01

    The work to correct and extend the calculation of the theoretical solar X-ray spectrum produced during earlier OSO-4 data analysis is reported along with the work to formulate models of active regions, and compare these models with the experimental values. An atlas of solar X-ray photographs is included, and solar X-ray observations are correlated with the solar wind.

  11. X-Ray Exam: Hip

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What ... Have Questions Print What It Is A hip X-ray is a safe and painless test that ...

  12. X-Ray Exam: Forearm

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: Forearm What's in this article? What ... Have Questions Print What It Is A forearm X-ray is a safe and painless test that ...

  13. X-Ray Exam: Ankle

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What ... Have Questions Print What It Is An ankle X-ray is a safe and painless test that ...

  14. X-Ray Exam: Foot

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: Foot What's in this article? What ... Have Questions Print What It Is A foot X-ray is a safe and painless test that ...

  15. X-Ray Exam: Wrist

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: Wrist What's in this article? What ... Have Questions Print What It Is A wrist X-ray is a safe and painless test that ...

  16. X-Ray Exam: Finger

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: Finger What's in this article? What ... Have Questions Print What It Is A finger X-ray is a safe and painless test that ...

  17. X-Ray Exam: Pelvis

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: Pelvis What's in this article? What ... Have Questions Print What It Is A pelvis X-ray is a safe and painless test that ...

  18. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  19. Optical studies of the X-ray globular cluster NGC 6624

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Grindlay, J. E.; Hiltner, W. A.; Liller, W.; Mcclintock, J. E.

    1978-01-01

    Photographic, photometric, and spectroscopic studies of the core of the globular cluster NGC 6624 have been undertaken with the aim of obtaining some evidence regarding the location and nature of the associated X-ray source 3U 1820-30. The studies include an extended simultaneous observation with the SAS 3 satellite, which was carried out to search (unsuccessfully) for optical emission during X-ray bursts. All the results reported are shown to be negative, but serve to set some constraints on the source properties. The photometric results are used to derive a core radius of 5.0 + or - 0.5 arcsec (0.19 + or 0.02 pc at 8 kpc) and a central density of 110,000 solar masses per cu pc for the cluster. It is found that NGC 6624 is one of the most centrally dense globular clusters but otherwise normal and that the colors and spectrum of the nucleus are the same as those of the cluster as a whole. An X-ray source similar to HZ Her at maximum light is ruled out.

  20. Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere

    NASA Astrophysics Data System (ADS)

    Mahajan, K. K.; Lodhi, Neelesh K.; Upadhayaya, Arun K.

    2010-12-01

    Most studies dealing with solar flare effects in the upper ionosphere, where ionization is caused by EUV photons, have been based upon X-ray fluxes measured by the SOLRAD and GOES series of satellites. To check the validity of such studies, we compare simultaneous observations of GOES X-ray fluxes and SOHO EUV fluxes for 10 X-class solar flares which occurred during the maximum phase of sunspot cycle 23. These include the greatest flare of 4 November 2003, the fourth greatest flare of 28 October 2003 and the 14 July 2000 Bastille Day flare. We find that the peak intensities of the X-ray and EUV fluxes for these flares are poorly correlated, and this poor correlation is again seen when larger data containing 70 X-class flares, which occurred during the period January 1996 to December 2006, are examined. However, this correlation improves vastly when the central meridian distance (CMD) of the flare location is taken into account. We also study the response of the upper ionosphere to these fluxes by using the midday total electron content (TEC), observed for these flares by Liu et al. (2006). We find that peak enhancement in TEC is highly correlated with peak enhancement in EUV flux. The correlation, though poor with the X-ray flux, improves greatly when the CMD of flare location is considered.