Sample records for x-ray based characterization

  1. Measuring silicon pore optics

    NASA Astrophysics Data System (ADS)

    Vacanti, Giuseppe; Barrière, Nicolas; Bavdaz, Marcos; Chatbi, Abdelhakim; Collon, Maximilien; Dekker, Daniëlle; Girou, David; Günther, Ramses; van der Hoeven, Roy; Krumrey, Michael; Landgraf, Boris; Müller, Peter; Schreiber, Swenja; Vervest, Mark; Wille, Eric

    2017-09-01

    While predictions based on the metrology (local slope errors and detailed geometrical details) play an essential role in controlling the development of the manufacturing processes, X-ray characterization remains the ultimate indication of the actual performance of Silicon Pore Optics (SPO). For this reason SPO stacks and mirror modules are routinely characterized at PTB's X-ray Pencil Beam Facility at BESSY II. Obtaining standard X-ray results quickly, right after the production of X-ray optics is essential to making sure that X-ray results can inform decisions taken in the lab. We describe the data analysis pipeline in operations at cosine, and how it allows us to go from stack production to full X-ray characterization in 24 hours.

  2. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  3. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  4. Characterization of aluminum nitride based films with high resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.

    2018-02-01

    X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.

  5. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  6. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  7. Characterizing X-ray Sources in the Rich Open Cluster NGC 7789 Using XMM-Newton

    NASA Astrophysics Data System (ADS)

    Farner, William; Pooley, David

    2018-01-01

    It is well established that globular clusters exhibit a correlation between their population of exotic binaries and their rate of stellar encounters, but little work has been done to characterize this relationship in rich open clusters. X-ray observations are the most efficient means to find various types of close binaries, and optical (and radio) identifications can provide secure source classifications. We report on an observation of the rich open cluster NGC 7789 using the XMM-Newton observatory. We present the X-ray and optical imaging data, source lists, and preliminary characterization of the sources based on their X-ray and multiwavelength properties.

  8. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A.; Chabior, M.; Zanette, I.

    2014-10-15

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less

  9. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less

  10. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  11. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Stewart, G. C.; Westergaard, N. J.; Bhattacharayya, S.; Chandra, S.; Chitnis, V. R.; Dewangan, G. C.; Kothare, A. T.; Mirza, I. M.; Mukerjee, K.; Navalkar, V.; Shah, H.; Abbey, A. F.; Beardmore, A. P.; Kotak, S.; Kamble, N.; Vishwakarama, S.; Pathare, D. P.; Risbud, V. M.; Koyande, J. P.; Stevenson, T.; Bicknell, C.; Crawford, T.; Hansford, G.; Peters, G.; Sykes, J.; Agarwal, P.; Sebastian, M.; Rajarajan, A.; Nagesh, G.; Narendra, S.; Ramesh, M.; Rai, R.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Subbarao, K.; Gupta, T.; Thakkar, N.; Singh, A. K.; Bajpai, A.

    2017-06-01

    The Soft X-ray focusing Telescope (SXT), India's first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3-8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.

  12. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  13. Nanofabrication and characterization of a grating-based condenser for uniform illumination with hard X-rays.

    PubMed

    Liu, Jianpeng; Li, Xin; Chen, Shuo; Zhang, Sichao; Xie, Shanshan; Xu, Chen; Chen, Yifang; Deng, Biao; Mao, Chenwen

    2017-05-01

    In the development of full-field transmission X-ray microscopy for basic study in science and technology, a condenser capable of providing intense illumination with high uniformity and stability on tested specimens in order to achieve high-quality images is essential. The latest design of a square-shaped condenser based on diffractive gratings has demonstrated promising uniformity in illumination. This paper describes in more detail the development of such a beam shaper for hard X-rays at 10 keV with regard to its design, manufacture and optical characterization. The effect of the grating profile on the diffracted intensity has been theoretically predicted by numerical simulation using the finite-difference time-domain method. Based on this, the limitations of the grating-based condenser are discussed.

  14. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less

  15. Correspondence between AXAF TMA X-ray performance and models based upon mechanical and visible light measurements

    NASA Technical Reports Server (NTRS)

    Van Speybroeck, L.; Mckinnon, P. J.; Murray, S. S.; Primini, F. A.; Schwartz, D. A.; Zombeck, M. V.; Dailey, C. C.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.

    1986-01-01

    The AXAF Technology Mirror Assembly (TMA) was characterized prior to X-ray testing by properties measured mechanically or with visible light; these include alignment offsets, roundness and global-axial-slope errors, axial-figure errors with characteristic lengths greater than about five mm, and surface roughness with scale lengths between about 0.005 and 0.5 mm. The X-ray data of Schwartz et al. (1985) are compared with predictions based upon the mechanical and visible light measurements.

  16. X-ray near-field speckle: implementation and critical analysis

    PubMed Central

    Lu, Xinhui; Mochrie, S. G. J.; Narayanan, S.; Sandy, A. R.; Sprung, M.

    2011-01-01

    The newly introduced coherence-based technique of X-ray near-field speckle (XNFS) has been implemented at 8-ID-I at the Advanced Photon Source. In the near-field regime of high-brilliance synchrotron X-rays scattered from a sample of interest, it turns out that, when the scattered radiation and the main beam both impinge upon an X-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. A micrometer-resolution XNFS detector with a high numerical aperture microscope objective has been built and its capability for studying static structures and dynamics at longer length scales than traditional far-field X-ray scattering techniques is demonstrated. Specifically, the dynamics of dilute silica and polystyrene colloidal samples are characterized. This study reveals certain limitations of the XNFS technique, especially in the characterization of static structures, which is discussed. PMID:21997906

  17. Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Skibińska, M.; Pikus, S.

    2017-11-01

    Mesoporous ordered silica nanostructures show strong interaction with X-ray radiation in the range of small-angles. Small-angle X-ray scattering (SAXS) measurements based on the elastically scattered X-rays are important in analysis of condensed matter. In the case of mesoporous silica materials SAXS technique provides information on the distribution of electron density in the mesoporous material, in particular describing their structure and size of the unit cell as well as type of ordered structure and finally their parameters. The characterization of nanopowder materials, nanocomposites and porous materials by Small-Angle X-ray Scattering seems to be valuable and useful. In presented work, the SAXS investigation of structures from the group of mesoporous ordered silicates was performed. This work has an objective to prepare functional materials modified by noble metal ions and nanoparticles and using the small-angle X-ray scattering to illustrate their properties. We report the new procedure for describing mesoporous materials belonging to SBA-15 and MCM-41 family modified by platinum, palladium and silver nanoparticles, based on detailed analysis of characteristic peaks in the small-angle range of X-ray scattering. This procedure allows to obtained the most useful parameters for mesoporous materials characterization and their successfully compare with experimental measurements reducing the time and material consumption with good precision for particles and pores with a size below 10 nm.

  18. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    NASA Astrophysics Data System (ADS)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  19. X-Ray Properties of Lensing-Selected Clusters

    NASA Astrophysics Data System (ADS)

    Paterno-Mahler, Rachel; Sharon, Keren; Bayliss, Matthew; McDonald, Michael; Gladders, Michael; Johnson, Traci; Dahle, Hakon; Rigby, Jane R.; Whitaker, Katherine E.; Florian, Michael; Wuyts, Eva

    2017-08-01

    I will present preliminary results from the Michigan Swift X-ray observations of clusters from the Sloan Giant Arcs Survey (SGAS). These clusters were lensing selected based on the presence of a giant arc visible from SDSS. I will characterize the morphology of the intracluster medium (ICM) of the clusters in the sample, and discuss the offset between the X-ray centroid, the mass centroid as determined by strong lensing analysis, and the BCG position. I will also present early-stage work on the scaling relation between the lensing mass and the X-ray luminosity.

  20. Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures.

    PubMed

    Hayashi, Kouichi

    2010-12-01

    Based on our previous work, I review the applications of x-ray refraction and the x-ray waveguide phenomenon to organic and inorganic thin films in the present paper. Under grazing incidence conditions, observations of refracted x-rays and guided x-rays due to the x-ray waveguide phenomenon provide information about thin film structures, and thus have potential as alternative methods to x-ray reflectivity. To date, we have measured the spectra of the refracted x-rays and guided x-rays from end faces of thin films using white incident x-ray beams, and utilized them for the determination of film density and thickness. Some of this work is summarized in the present paper. At the end of this paper, I describe our recent achievement in this field, namely the in situ measurement of guided x-rays during the film degradation process due to strong synchrotron radiation damage. Moreover, I discuss the perspective of the present technique from the viewpoint of micro-characterization and real-time estimation of thin films.

  1. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar

    2017-09-01

    Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.

  2. Real-time X-ray Diffraction: Applications to Materials Characterization

    NASA Technical Reports Server (NTRS)

    Rosemeier, R. G.

    1984-01-01

    With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.

  3. [Basic concepts of radiology physics].

    PubMed

    Gambini, D-J

    2010-11-01

    An x-ray tube mainly emits low-energy X-rays, with few maximum energy E₀ (equal in keV to the voltage U in kV) x-rays. Aluminium filtration (mandatory minimum thickness of 1.5 to 2.5 mm based on tube voltage) reduces soft X-rays and provides a mean energy equal to 2/3 E₀. The half value layer of a reference material characterizes the spectrum. X-ray attenuation in tissues is due to secondary electron interactions: photoelectric effect at low-energy, especially in dense materials with high Z number; compton effect at intermediate-energy, proportional to density. The optimization of acquisition parameters of a medically necessary examination is based on appropriate selection of the highest voltage (U in kV) providing the best contrast and lowest tube current (Q in mAs) providing a diagnostic image.

  4. High resolution microtomography for density and spatial infomation about wood structures

    Treesearch

    Barbara Illman; Betsy Dowd

    1999-01-01

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...

  5. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  6. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  7. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  8. PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique

    NASA Astrophysics Data System (ADS)

    Fernandes, M.; Vygranenko, Y.; Vieira, M.

    2015-05-01

    Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.

  9. Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazzie, K.E.; Williams, J.J.; Phillips, N.C.

    2012-08-15

    Sn-rich (Pb-free) alloys serve as electrical and mechanical interconnects in electronic packaging. It is critical to quantify the microstructures of Sn-rich alloys to obtain a fundamental understanding of their properties. In this work, the intermetallic precipitates in Sn-3.5Ag and Sn-0.7Cu, and globular lamellae in Sn-37Pb solder joints were visualized and quantified using 3D X-ray synchrotron tomography and focused ion beam (FIB) tomography. 3D reconstructions were analyzed to extract statistics on particle size and spatial distribution. In the Sn-Pb alloy the interconnectivity of Sn-rich and Pb-rich constituents was quantified. It will be shown that multiscale characterization using 3D X-ray and FIBmore » tomography enabled the characterization of the complex morphology, distribution, and statistics of precipitates and contiguous phases over a range of length scales. - Highlights: Black-Right-Pointing-Pointer Multiscale characterization by X-ray synchrotron and focused ion beam tomography. Black-Right-Pointing-Pointer Characterized microstructural features in several Sn-based alloys. Black-Right-Pointing-Pointer Quantified size, fraction, and clustering of microstructural features.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokaras, D.; Andrianis, M.; Lagoyannis, A.

    The cascade L-shell x-ray emission as an incident polarized and unpolarized monochromatic radiation overpass the 1s ionization threshold is investigated for the metallic Fe by means of moderate resolution, quantitative x-ray spectrometry. A full ab initio theoretical investigation of the L-shell x-ray emission processes is performed based on a detailed straightforward construction of the cascade decay trees within the Pauli-Fock approximation. The agreement obtained between experiments and the presented theory is indicated and discussed with respect to the accuracy of advanced atomic models as well as its significance for the characterization capabilities of x-ray fluorescence (XRF) analysis.

  11. TES-Based X-Ray Microcalorimeter Performances Under AC Bias and FDM for Athena

    NASA Technical Reports Server (NTRS)

    Akamatsu, H.; Gottardi, L.; de Vries, C. P.; Adams, J. S.; Bandler, S. R.; Bruijn, M. P.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Gao, J. R.; hide

    2016-01-01

    Athena is a European X-ray observatory, scheduled for launch in 2028. Athena will employ a high-resolution imaging spectrometer called X-ray integral field unit (X-IFU), consisting of an array of 4000 transition edge sensor (TES) microcalorimeter pixels. For the readout of X-IFU, we are developing frequency domain multiplexing, which is the baseline readout system. In this paper, we report on the performance of a TES X-ray calorimeter array fabricated at Goddard Space Flight Center (GSFC) at MHz frequencies for the baseline of X-IFU detector. During single-pixel AC bias characterization, we measured X-ray energy resolutions (at 6 keV) of about 2.9 eV at both 2.3 and 3.7 MHz. Furthermore, in the multiplexing mode, we measured X-ray energy resolutions of about 2.9 eV at 1.3 and 1.7 MHz.

  12. Potential for Imaging Engineered Tissues with X-Ray Phase Contrast

    PubMed Central

    Appel, Alyssa; Anastasio, Mark A.

    2011-01-01

    As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604

  13. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  14. ON THE PUZZLING HIGH-ENERGY PULSATIONS OF THE ENERGETIC RADIO-QUIET γ-RAY PULSAR J1813–1246

    DOE PAGES

    Marelli, M.; Harding, A.; Pizzocaro, D.; ...

    2014-10-28

    In this study, we have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813–1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available Fermi ephemeris to five years. We found two glitches. The γ-ray light curve is characterized by twomore » peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the γ-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and γ-ray emission of J1813. The unique X-ray and γ-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.« less

  15. On the Puzzling High-Energy Pulsations of the Energetic Radio-Quiet -Ray Pulsar J1813-1246

    NASA Technical Reports Server (NTRS)

    Marelli, M.; Harding, Alice K.; Pizzocaro, D.; De Luca, A.; Wood, K. S.; Caraveo, P.; Salvetti, D.; Parkinson, P. M.; Acero, F.

    2014-01-01

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813-1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase.We extended the available Fermi ephemeris to five years.We found two glitches. The gamma-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the gamma-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and gamma-ray emission of J1813. The unique X-ray and gamma-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  16. Development of grating-based x-ray Talbot interferometry at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marathe, Shashidhara; Xiao Xianghui; Wojcik, Michael J.

    2012-07-31

    We report on the ongoing effort to develop hard x-ray Talbot interferometry at the Advanced Photon Source (APS), Argonne National Laboratory, USA. We describe the design of the interferometer and preliminary results obtained at 25 keV using a feather and a phantom sample lithographically fabricated of gold. We mention the future developmental goals and applications of this technique as a metrology tool for x-ray optics and beam wavefront characterization.

  17. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Jayakumar, Sangeetha; Saravanan, T.; Philip, John

    2017-11-01

    In an attempt to develop an alternate to lead-based X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd2O3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd2O3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd2O3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622 °C. The same onset temperature (403 °C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.

  18. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  19. Experimental comparison of various techniques for spot size measurement of high-energy X-ray

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Li, Cheng-Gang; Li, Hong; Long, Quan-Hong; Shi, Jin-Shui; Deng, Jian-Jun

    2016-08-01

    In flash-radiography experiments, the quality of the acquired image strongly depends on the focal size of the X-ray source spot. A variety of techniques based on imaging of the pinhole, the slit and the rollbar are adopted to measure the focal spot size of the Dragon-I linear induction accelerator. The image of the pinhole provides a two-dimensional distribution of the X-ray spot, while those of the slit and the rollbar give a line-spread distribution and an edge-spread distribution, respectively. The spot size characterized by the full-width at half-maximum and that characterized by the LANL definition are calculated for comparison.

  20. Spectral Properties, Generation Order Parameters, and Luminosities for Spin-powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhao, Yongheng

    2004-02-01

    We show the spectral properties of 15 spin-powered X-ray pulsars, and the correlation between the average power-law photon index and spin-down rate. Generation order parameters (GOPs) based on polar cap models are introduced to characterize the X-ray pulsars. We calculate three definitions of generation order parameters arising from the different effects of magnetic and electric fields on photon absorption during cascade processes, and study the relations between the GOPs and spectral properties of X-ray pulsars. There exists a possible correlation between the photon index and GOP in our pulsar sample. Furthermore, we present a method stemming from the concept of GOPs to estimate the nonthermal X-ray luminosity for spin-powered pulsars. Then X-ray luminosity is calculated in the context of our polar cap accelerator model, which is consistent with most observed X-ray pulsar data. The ratio between the X-ray luminosity estimated by our method and the pulsar's spin-down power is consistent with the LX~10-3Lsd feature.

  1. Simulation, optimization and testing of a novel high spatial resolution X-ray imager based on Zinc Oxide nanowires in Anodic Aluminium Oxide membrane using Geant4

    NASA Astrophysics Data System (ADS)

    Esfandi, F.; Saramad, S.

    2015-07-01

    In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future.

  2. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE; Department of Physics & Astronomy, University College London, London WC1E 6BT

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by specklemore » tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.« less

  3. Translation of Atherosclerotic Plaque Phase-Contrast CT Imaging from Synchrotron Radiation to a Conventional Lab-Based X-Ray Source

    PubMed Central

    Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian

    2013-01-01

    Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969

  4. Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.

    2013-02-01

    A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.

  5. X-ray resonant magnetic scattering ellipsometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z.; Randall, K.J.; Gluskin, E.

    1996-09-01

    It is very difficult to characterize the polarization of a synchrotron radiation source in the soft and/or intermediate x-ray energy region particularly from 1 to 2 keV. Conventional multilayer mirror or single-crystal polarimeters do not work over this energy region because their throughput (the reflectivities combined with the phase shift) becomes insignificant. In this paper, we present a new ellipsometer scheme that is able to fully characterize the polarization of synchrotron radiation sources in this energy region. It is based on the dichroic x-ray resonant ferromagnetic scattering that yields information on both the polarization of the x-ray and the materialmore » (element specific) dielectric-constant tensor [C.-C. Kao {ital et} {ital al}., Phys. Rev. B {bold 50}, 9599 (1994)] due to the interband ferromagnetic Kerr effect [B.R. Cooper, Phys. Rev. A {bold 139}, 1504 (1965)]. {copyright} {ital 1996 American Institute of Physics.}« less

  6. X-ray Microscopic Characterization of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.

  7. Attosecond time-energy structure of X-ray free-electron laser pulses

    NASA Astrophysics Data System (ADS)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  8. Characterization of low thermal conductivity PAN-based carbon fibers

    NASA Technical Reports Server (NTRS)

    Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.

    1992-01-01

    The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.

  9. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    NASA Technical Reports Server (NTRS)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  10. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  11. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  12. Crystal and Vibrational Structure of Energetic 3,5-dinitro 1,3,5-oxadiazinane (DOD) by Single Crystal X-ray Diffractometry and Raman Spectroscopy

    DTIC Science & Technology

    2018-03-19

    calculations using a temperature of 298 K. 15. SUBJECT TERMS 3,5-dinitro-1,3,5-oxadiazinane (DOD), X-ray crystallography , Raman, energetic material...X-ray analysis. 2.2 Characterization X-ray Crystallography . DOD crystals were characterized with a SuperNova, Dualflex, EosS2 diffractometer using

  13. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  14. Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy

    DOE PAGES

    Sneeden, Eileen Y.; Hackett, Mark J.; Cotelesage, Julien J. H.; ...

    2017-07-27

    Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s → 3p transition tomore » the singly occupied molecular orbital of the free radical. In conclusion, our results constitute the first observation of substantial levels of thiyl radicals generated by X-ray irradiation and detected by sulfur K-edge X-ray absorption spectroscopy.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandlakunta, P; Pham, R; Zhang, T

    Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source controlmore » and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.« less

  16. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  17. Advances in X-ray optics: From metrology characterization to wavefront sensing-based optimization of active optics

    DOE PAGES

    Cocco, Daniele; Idir, Mourad; Morton, Daniel; ...

    2018-03-20

    Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less

  18. Advances in X-ray optics: From metrology characterization to wavefront sensing-based optimization of active optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocco, Daniele; Idir, Mourad; Morton, Daniel

    Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less

  19. Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur

    NASA Astrophysics Data System (ADS)

    Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.

    2014-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.

  20. Analysis of Ablative Performance of C/C Composite Throat Containing Defects Based on X-ray 3D Reconstruction in a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Hui, Wei-Hua; Bao, Fu-Ting; Wei, Xiang-Geng; Liu, Yang

    2015-12-01

    In this paper, a new measuring method of ablation rate was proposed based on X-ray three-dimensional (3D) reconstruction. The ablation of 4-direction carbon/carbon composite nozzles was investigated in the combustion environment of a solid rocket motor, and the macroscopic ablation and linear recession rate were studied through the X-ray 3D reconstruction method. The results showed that the maximum relative error of the X-ray 3D reconstruction was 0.0576%, which met the minimum accuracy of the ablation analysis; along the nozzle axial direction, from convergence segment, throat to expansion segment, the ablation gradually weakened; in terms of defect ablation, the middle ablation was weak, while the ablation in both sides was more serious. In a word, the proposed reconstruction method based on X-ray about C/C nozzle ablation can construct a clear model of ablative nozzle which characterizes the details about micro-cracks, deposition, pores and surface to analyze ablation, so that this method can create the ablation curve in any surface clearly.

  1. Multiwavelength and Statistical Research in Space Astrophysics

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1997-01-01

    The accomplishments in the following three research areas are summarized: multiwavelength study of active galactic nuclei; magnetic activity of young stellar objects; and statistical methodology for astronomical data analysis. The research is largely based on observations of the ROSAT and ASCA X-ray observatories, complemented by ground-based optical and radio studies. Major findings include: discovery of inverse Compton X-ray emission from radio galaxy lobes; creation of the largest and least biased available sample of BL Lac objects; characterization of X-ray and nonthermal radio emission from T Tauri stars; obtaining an improved census of young stars in a star forming region and modeling the star formation history and kinematics; discovery of X-ray emission from protostars; development of linear regression methods and codes for interpreting astronomical data; and organization of the first cross-disciplinary conferences for astronomers and statisticians.

  2. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  3. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  4. Resonant soft X-ray scattering for polymer materials

    DOE PAGES

    Liu, Feng; Brady, Michael A.; Wang, Cheng

    2016-04-16

    Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less

  5. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  6. Characterization of X-ray emission from laser generated plasma

    NASA Astrophysics Data System (ADS)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  7. Comparison of iridium- and ruthenium-based, Pt-surface-enriched, nanosize catalysts for the oxygen-reduction reaction

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Goor, M.; Alon, M.; Tsizin, S.; Burstein, L.; Rosenberg, Y.; Popov, I.; Peled, E.

    2016-02-01

    Pt-surface-enriched nanosize catalysts (Pt-SENS catalysts) with ruthenium and iridium cores, supported on XC72, were synthesized and characterized. The structure and composition of the catalysts are determined by Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Scanning Transmission Electron Microscopy (STEM) and X-Ray Diffraction (XRD). Electrochemical characterization tests, including oxygen-reduction-catalysis activity and durability studies of catalysts are performed with the use of cyclic-voltammetry and rotating-disk-electrode (RDE) techniques at room temperature. The ORR activity of the homemade catalysts is also compared to ORR activity of commercial 50%Pt/C catalyst. It is determined that the Ir-based catalyst (Pt/Ir/XC72) shows higher ORR activity in terms of A g-1 of Pt (at 0.85 V vs. RHE) than the Ru-based catalyst (Pt/Ru/XC72) and the commercial 50%Pt/C. The Ru-based catalyst shows similar ORR activity in terms of A g-1 of Pt, to that of the commercial 50%Pt/C, but with much lower durability.

  8. Characterization of the LCLS “nanosecond two-bunch” mode for x-ray speckle visibility spectroscopy experiments

    DOE PAGES

    Sun, Yanwen; Zhu, Diling; Song, Sanghoon; ...

    2017-05-23

    The generation of two X-ray pulses with tunable nanosecond scale time separations has recently been demonstrated at the Linac Coherent Light Source using an accelerator based technique. This approach offers the opportunity to extend X-ray Photon Correlation Spectroscopy techniques to the yet unexplored regime of nanosecond timescales by means of X-ray Speckle Visibility Spectroscopy. As the two pulses originate from two independent Spontaneous Amplified Stimulated Emission processes, the beam properties fluctuate from pulse pair to pulse pair, but as well between the individual pulses within a pair. However, two-pulse XSVS experiments require the intensity of the individual pulses to bemore » either identical in the ideal case, or with a accurately known intensity ratio. We present the design and performances of a non-destructive intensity diagnostic based on measurement of scattering from a transparent target using a high-speed photo-detector. Individual pulses within a pulse pair with time delays as short as 0.7 ns can be resolved. Moreover, using small angle coherent scattering, we characterize the averaged spatial overlap of the focused pulse pairs. Furthermore, the multi-shot average-speckle contrasts from individual pulses and pulse pairs are compared.« less

  9. Methods for coherent lensless imaging and X-ray wavefront measurements

    NASA Astrophysics Data System (ADS)

    Guizar Sicairos, Manuel

    X-ray diffractive imaging is set apart from other high-resolution imaging techniques (e.g. scanning electron or atomic force microscopy) for its high penetration depth, which enables tomographic 3D imaging of thick samples and buried structures. Furthermore, using short x-ray pulses, it enables the capability to take ultrafast snapshots, giving a unique opportunity to probe nanoscale dynamics at femtosecond time scales. In this thesis we present improvements to phase retrieval algorithms, assess their performance through numerical simulations, and develop new methods for both imaging and wavefront measurement. Building on the original work by Faulkner and Rodenburg, we developed an improved reconstruction algorithm for phase retrieval with transverse translations of the object relative to the illumination beam. Based on gradient-based nonlinear optimization, this algorithm is capable of estimating the object, and at the same time refining the initial knowledge of the incident illumination and the object translations. The advantages of this algorithm over the original iterative transform approach are shown through numerical simulations. Phase retrieval has already shown substantial success in wavefront sensing at optical wavelengths. Although in principle the algorithms can be used at any wavelength, in practice the focus-diversity mechanism that makes optical phase retrieval robust is not practical to implement for x-rays. In this thesis we also describe the novel application of phase retrieval with transverse translations to the problem of x-ray wavefront sensing. This approach allows the characterization of the complex-valued x-ray field in-situ and at-wavelength and has several practical and algorithmic advantages over conventional focused beam measurement techniques. A few of these advantages include improved robustness through diverse measurements, reconstruction from far-field intensity measurements only, and significant relaxation of experimental requirements over other beam characterization approaches. Furthermore, we show that a one-dimensional version of this technique can be used to characterize an x-ray line focus produced by a cylindrical focusing element. We provide experimental demonstrations of the latter at hard x-ray wavelengths, where we have characterized the beams focused by a kinoform lens and an elliptical mirror. In both experiments the reconstructions exhibited good agreement with independent measurements, and in the latter a small mirror misalignment was inferred from the phase retrieval reconstruction. These experiments pave the way for the application of robust phase retrieval algorithms for in-situ alignment and performance characterization of x-ray optics for nanofocusing. We also present a study on how transverse translations help with the well-known uniqueness problem of one-dimensional phase retrieval. We also present a novel method for x-ray holography that is capable of reconstructing an image using an off-axis extended reference in a non-iterative computation, greatly generalizing an earlier approach by Podorov et al. The approach, based on the numerical application of derivatives on the field autocorrelation, was developed from first mathematical principles. We conducted a thorough theoretical study to develop technical and intuitive understanding of this technique and derived sufficient separation conditions required for an artifact-free reconstruction. We studied the effects of missing information in the Fourier domain, and of an imperfect reference, and we provide a signal-to-noise ratio comparison with the more traditional approach of Fourier transform holography. We demonstrated this new holographic approach through proof-of-principle optical experiments and later experimentally at soft x-ray wavelengths, where we compared its performance to Fourier transform holography, iterative phase retrieval and state-of-the-art zone-plate x-ray imaging techniques (scanning and full-field). Finally, we present a demonstration of the technique using a single 20 fs pulse from a high-harmonic table-top source. Holography with an extended reference is shown to provide fast, good quality images that are robust to noise and artifacts that arise from missing information due to a beam stop. (Abstract shortened by UMI.)

  10. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.

    2018-05-01

    This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.

  11. Polymeric and Molecular Materials for Advanced Organic Electronics

    DTIC Science & Technology

    2014-10-20

    x - ray reflectivity, grazing incidence x - ray scattering, cyclic voltam- metry...6). ix These materials are characterized by AFM, conducting AFM, XPS, x - ray reflectivity (XRR), standing wave x - ray reflectivity (SWXRR), x - ray ...radiation hard - ness measurements, and quantum chemical computation of dielectric constants. Remark- ably, for semiconductors as diverse

  12. Structural characterization and mechanical performance of calcium phosphate scaffolds and natural bones: a comparative study.

    PubMed

    Fuentes, Elena; Sáenz de Viteri, Virginia; Igartua, Amaya; Martinetti, Roberta; Dolcini, Laura; Barandika, Gotzone

    2010-01-01

    The knowledge of the mechanical response of bones and their substitutes is pertinent to numerous medical problems. Understanding the effects of mechanical influence on the body is the first step toward developing innovative treatment and rehabilitation concepts for orthopedic disorders. This was a comparative study of 5 synthetic scaffolds based on porous calcium phosphates and natural bones, with regard to their microstructural, chemical, and mechanical characterizations. The structural and chemical characterizations of the scaffolds were examined by means of X-ray diffraction, scanning electron microscopy, and X-ray spectroscopy analysis. The mechanical characterization of bones and bone graft biomaterials was carried out through compression tests using samples with noncomplex geometry. Analysis of the chemical composition, surface features, porosity, and compressive strength indicates that hydroxyapatite-based materials and trabecular bone have similar properties.

  13. Non-Destructive Characterization of Engineering Materials Using High-Energy X-rays at the Advanced Photon Source

    DOE PAGES

    Park, Jun-Sang; Okasinski, John; Chatterjee, Kamalika; ...

    2017-05-30

    High energy X-rays can penetrate large components and samples made from engineering alloys. Brilliant synchrotron sources like the Advanced Photon Source (APS) combined with unique experimental setups are increasingly allowing scientists and engineers to non-destructively characterize the state of materials across a range of length scales. In this article, some of the new developments at the APS, namely the high energy diffraction microscopy technique for grain-by-grain maps and aperture-based techniques for aggregate maps, are described.

  14. Non-Destructive Characterization of Engineering Materials Using High-Energy X-rays at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jun-Sang; Okasinski, John; Chatterjee, Kamalika

    High energy X-rays can penetrate large components and samples made from engineering alloys. Brilliant synchrotron sources like the Advanced Photon Source (APS) combined with unique experimental setups are increasingly allowing scientists and engineers to non-destructively characterize the state of materials across a range of length scales. In this article, some of the new developments at the APS, namely the high energy diffraction microscopy technique for grain-by-grain maps and aperture-based techniques for aggregate maps, are described.

  15. Characterizing the X-ray Emission in Small Magellanic Cloud Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Man, Nicole; Auchettl, Katie; Lopez, Laura

    2018-01-01

    The Small Magellanic Cloud is a close, metal-poor galaxy with active star formation, and it has a diverse population of 24 supernova remnants (SNRs) that have been identified at several wavelengths. Past work has characterized the X-ray emission in these sources separately and aimed to constrain their explosive origins from observations with Chandra and XMM-Newton. Three SNRs have possible evidence for Type Ia explosions based on strong Fe-L emission in their X-ray spectra, although the environments and intermediate-mass element abundances are more consistent with those of core-collapse SNe. In this poster, we analyze the archival Chandra and XMM-Newton observations of the SMC SNR sample, and we model the sources' X-ray spectra in a systematic way to derive the plasma properties and to constrain the nature of the explosions. In one SNR, we note the presence of an X-ray binary near the source's geometric center, suggesting the compact object was produced in the SN explosion. As one of only three SNRs known in the Local Group to host a binary system, this source is worthy of follow-up investigations to probe explosions of massive stars in binary systems.

  16. Characterization of short-pulse laser-produced x-rays for diagnosing magnetically driven cylindrical isentropic compression

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat

    2017-10-01

    We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.

  17. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Hartemann, F V; Tremaine, A M

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  18. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.

    2011-02-15

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently withmore » number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.« less

  19. Optics for coherent X-ray applications.

    PubMed

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  20. Scintillating Quantum Dots for Imaging X-Rays (SQDIX) for Aircraft Inspection

    NASA Technical Reports Server (NTRS)

    Burke, E. R.; DeHaven, S. L.; Williams, P. A.

    2015-01-01

    Scintillation is the process currently employed by conventional X-ray detectors to create X-ray images. Scintillating quantum dots (StQDs) or nano-crystals are novel, nanometer-scale materials that upon excitation by X-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmentally friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread X-ray imaging. Initial work on the scintillating quantum dots for imaging X-rays (SQDIX) system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency of a StQDs based imaging sensor.

  1. Spectral structure of a polycapillary lens shaped X-ray beam

    NASA Astrophysics Data System (ADS)

    Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.

    2018-04-01

    Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.

  2. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.

  3. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  4. Construction of a quartz spherical analyzer: application to high-resolution analysis of the Ni Kα emission spectrum

    DOE PAGES

    Honnicke, Marcelo Goncalves; Bianco, Leonardo M.; Ceppi, Sergio A.; ...

    2016-08-10

    The construction and characterization of a focusing X-ray spherical analyzer based on α-quartz 4more » $$\\overline{4}$$04 are presented. For this study, the performance of the analyzer was demonstrated by applying it to a high-resolution X-ray spectroscopy study of theKα 1,2emission spectrum of Ni. An analytical representation based on physical grounds was assumed to model the shape of the X-ray emission lines. Satellite structures assigned to 3dspectator hole transitions were resolved and determined as well as their relative contribution to the emission spectrum. The present results on 1s -13d -1shake probabilities support a recently proposed calculation framework based on a multi-configuration atomic model.« less

  5. Construction of a quartz spherical analyzer: application to high-resolution analysis of the Ni Kα emission spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honnicke, Marcelo Goncalves; Bianco, Leonardo M.; Ceppi, Sergio A.

    The construction and characterization of a focusing X-ray spherical analyzer based on α-quartz 4more » $$\\overline{4}$$04 are presented. For this study, the performance of the analyzer was demonstrated by applying it to a high-resolution X-ray spectroscopy study of theKα 1,2emission spectrum of Ni. An analytical representation based on physical grounds was assumed to model the shape of the X-ray emission lines. Satellite structures assigned to 3dspectator hole transitions were resolved and determined as well as their relative contribution to the emission spectrum. The present results on 1s -13d -1shake probabilities support a recently proposed calculation framework based on a multi-configuration atomic model.« less

  6. Construction of a quartz spherical analyzer: application to high-resolution analysis of the Ni K α emission spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honnicke, Marcelo Goncalves; Bianco, Leonardo M.; Ceppi, Sergio A.

    The construction and characterization of a focusing X-ray spherical analyzer based on α-quartz 4more » $$\\bar{4}$$04 are presented. The performance of the analyzer was demonstrated by applying it to a high-resolution X-ray spectroscopy study of theKα 1,2emission spectrum of Ni. An analytical representation based on physical grounds was assumed to model the shape of the X-ray emission lines. Satellite structures assigned to 3dspectator hole transitions were resolved and determined as well as their relative contribution to the emission spectrum. The present results on 1s -13d -1shake probabilities support a recently proposed calculation framework based on a multi-configuration atomic model.« less

  7. Development of Antibacterials Targeting the MEP Pathway of Select Agents

    DTIC Science & Technology

    2013-02-01

    based assays for lead inhibitor discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of MEP pathway...inhibitors. • On-demand production and delivery of recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple

  8. RHEED-TRAXS as a tool for in-situ stoichiometry control.

    NASA Astrophysics Data System (ADS)

    Chandril, Sandeep; Keenan, Cameron; Myers, Thomas; Lederman, David

    2008-03-01

    RHEED-total reflection x-ray spectroscopy (-TRAXS) is an in-situ chemical and structural characterization technique which is highly surface sensitive. This consists of a grazing-angle electron beam from which characteristic x-rays from the sample are measured also at grazing angles. We have demonstrated that monolayer sensitivity in Y and Mn films on GaN can be achieved. We have also developed a theoretical model for the angular dependence of the x-ray Kα peaks for the thin films, based on Parratt's formalism for x-ray reflectivity and the electron trajectory simulation software CASINO, to correct for grazing angle electron beam as a source for x-rays. As the angular dependence is highly dependent upon the film thickness and the smoothness of the film, it can be used to determine the deposition rate of individual elements as well as the interface chemical roughness

  9. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses

    DOE PAGES

    Seiboth, Frank; Wittwer, Felix; Scholz, Maria; ...

    2018-01-01

    Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with σ¯ = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without priormore » lens characterization but simply based on the derived lens deformation. As a result, the performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.« less

  10. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  11. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  12. Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao

    2018-07-01

    X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.

  13. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    NASA Astrophysics Data System (ADS)

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  14. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques.

    PubMed

    Baier, S; Rochet, A; Hofmann, G; Kraut, M; Grunwaldt, J-D

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  15. Compound semiconductor detectors for X-ray astronomy: Spectroscopic measurements and material characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bavdaz, M.; Kraft, S.; Peacock, A.

    1998-12-31

    The use of some specific compound semiconductors in the fabrication of high energy X-ray detectors shows significant potential for X-ray astrophysics space missions. The authors are currently investigating three high purity crystals--CdZnTe, GaAs and TlBr--as the basis for future hard X-ray detectors (above 10 keV). In this paper the authors present the first results on CdZnTe and GaAs based detectors and evaluate the factors currently still constraining the performance. Energy resolutions (FWHM) of 0.9 keV and 1.1 keV at 14 keV and 60 keV, respectively, have been obtained with an epitaxial GaAs detector, while 0.7 keV and 1.5 keV FWHMmore » were measured at the same energies with a CdZnTe detector. Based on these results it is clear, that the next generation of X-ray astrophysics missions now in the planning phase may well consider extending the photon energy range up to {approximately} 100 keV by use of efficient detectors with reasonable spectroscopic capabilities.« less

  16. Characterizing Subpixel Spatial Resolution of a Hybrid CMOS Detector

    NASA Astrophysics Data System (ADS)

    Bray, Evan; Burrows, Dave; Chattopadhyay, Tanmoy; Falcone, Abraham; Hull, Samuel; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    The detection of X-rays is a unique process relative to other wavelengths, and allows for some novel features that increase the scientific yield of a single observation. Unlike lower photon energies, X-rays liberate a large number of electrons from the silicon absorber array of the detector. This number is usually on the order of several hundred to a thousand for moderate-energy X-rays. These electrons tend to diffuse outward into what is referred to as the charge cloud. This cloud can then be picked up by several pixels, forming a specific pattern based on the exact incident location. By conducting the first ever “mesh experiment" on a hybrid CMOS detector (HCD), we have experimentally determined the charge cloud shape and used it to characterize responsivity of the detector with subpixel spatial resolution.

  17. Characterization and analysis of Porous, Brittle solid structures by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, C. L.; Videla, A. R.; Yu, Q.; Miller, J. D.

    2010-12-01

    The internal structure of porous, brittle solid structures, such as porous rock, foam metal and wallboard, is extremely complex. For example, in the case of wallboard, the air bubble size and the thickness/composition of the wall structure are spatial parameters that vary significantly and influence mechanical, thermal, and acoustical properties. In this regard, the complex geometry and the internal texture of material, such as wallboard, is characterized and analyzed in 3-D using cone beam x-ray micro computed tomography. Geometrical features of the porous brittle structure are quantitatively analyzed based on calibration of the x-ray linear attenuation coefficient, use of a 3-D watershed algorithm, and use of a 3-D skeletonization procedure. Several examples of the 3-D analysis for porous, wallboard structures are presented and the results discussed.

  18. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs.

    PubMed

    Bioud, Youcef A; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-12-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As 2 O 3 . Finally, a qualitative model is proposed to explain the porous As 2 O 3 layer formation on p-GaAs substrate.

  19. Characterization of Beryllium Windows for Coherent X-ray Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji

    2007-01-19

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.

  20. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  1. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  2. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  3. Engine materials characterization and damage monitoring by using x ray technologies

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1993-01-01

    X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results from one-, three-, five-, and eight-ply ceramic composite specimens show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber-matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. In situ film radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction-bonded silicon nitride matrix. It is concluded that pretest, in situ, and post-test x ray imaging can provide greater understanding of ceramic matrix composite mechanical behavior.

  4. Application of a New Grain-Based Reconstruction Algorithm to Microtomography Images for Quantitative Characterization and Flow Modeling

    DTIC Science & Technology

    2008-06-01

    mapping the X-ray absorption through the sample. The amount of absorption depends on the chemical composition and structure of the material and the X...obtained by measuring the X-ray attenua- tion coefficients of the sample at different angles as the sample is rotated about the vertical axis. These... McMaster University, Hamilton, Ontario, Canada. Allen H. Reed is a geologist with the Naval Research Laboratory. His research interests are in marine

  5. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    PubMed

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.

    PubMed

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita

    2015-11-01

    Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for microcalcifications was observed using the Dexela 2923 MAM CMOS APS x-ray imager at a lower MGD (2.0 mGy). The Dexela 2923 MAM CMOS APS x-ray imager is capable to achieve a high imaging performance at spatial frequencies up to 6.7 lp/mm. Microcalcifications of 165 μm are distinguishable based on reported data and their modeling results due to the small pixel pitch of 75 μm. At the same time, potential dose reduction is expected using the studied CMOS APS x-ray imager.

  7. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  8. Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele

    2012-10-01

    The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult withmore » traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.« less

  9. Small Angle X-ray Scattering for Nanoparticle Research

    DOE PAGES

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    2016-04-07

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  10. Small Angle X-ray Scattering for Nanoparticle Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  11. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  12. Tutorial on X-ray photon counting detector characterization.

    PubMed

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  13. X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications.

    PubMed

    Tijani, Mansour Mohammedramadan; Aqsha, Aqsha; Mahinpey, Nader

    2018-04-01

    Synthesis and characterization of supported metal-based oxygen carriers were carried out to provide information related to the use of oxygen carriers for chemical looping combustion processes. The Cu, Co, Fe, Ni metals supported with Al 2 O 3 , CeO 2 , TiO 2 , ZrO 2 were prepared using the wetness impregnation technique. Then, the X-ray Diffraction (XRD) characterization of oxidized and reduced samples was obtained and presented. The kinetic analysis using Thermogravimetric analyzer (TGA) of the synthesized samples was conducted. The kinetics of reduction reaction of all samples were estimated and explained.

  14. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  15. A Many-Body Formalism of ΔSCF Approach for Simulating X-Ray Spectra from First-Principles

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter; Shirley, Eric; Prendegast, David

    Accurately reproducing X-ray spectral fingerprints for materials characterization relies heavily on how to correctly model the many-electron response to the generation of an X-ray core hole. In this talk, we present a novel first-principles theory for simulating X-ray spectra that is based on many-electron wavefunctions. The proposed theory go beyond the electron-hole correlations within the Bethe-Saltpeter Equation and consider higher-order vertex corrections up to the level of Mahan-Noziéres-De Dominicis (MND) theory. An efficient algorithm is invented to incorporate these many-electron processes by using linear algebra rather than iterating over all Feynman diag United States Department of Energy under Contact No. DE-AC02-05CH11231, No. DE-SC0004993.

  16. Philip A. Parilla | NREL

    Science.gov Websites

    atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence

  17. Synthesis, Characterization, and Gas-Sensing Properties of Mesoporous Nanocrystalline Sn(x)Ti(1-x)O2.

    PubMed

    Zhong, Cheng; Lin, Zhidong; Guo, Fei; Wang, Xuehua

    2015-06-01

    A nanocomposite mesoporous material composed by SnO2 and TiO2 with the size of -5-9 nm were prepared via a facile wet-chemical approach combining with an annealing process. The microstructure of obtained Sn(x)Ti(1-x)O2 powders were characterized by X-ray diffraction, X-ray Photo-electronic Spectroscopy, scanning electron microscope, transmission electron microscope and nitrogen adsorption-desorption experiment. The gas sensing performances to several gases of the mesoporous material were studied. The sensors of Sn(x)Ti(1-x)O2 (ST10, with 9.1% Ti) exhibited very high responses to volatile organic compounds at 160 degrees C. The order of the responses to volatile gases based on ST10 was ethanol > formaldehyde > acetone > toluene > benzene > methane. Sensor based on ST10 displays a highest sensitivity to hydrogen at 200 degrees C. Sensor responses to H2 at 200 degrees C have been measured and analyzed in a wide concentration range from 5 to 2000 ppm. The solid solution Sn(x)Ti(1-x)O2 can be served as a potential gas-sensing material for a broad range of future sensor applications.

  18. Prediction and Measurement of X-Ray Spectral and Intensity Distributions from Low Energy Electron Impact Sources

    NASA Technical Reports Server (NTRS)

    Edwards, David L.

    1999-01-01

    In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.

  19. Characterization of Beryllium Windows Using Coherent X-rays at 1-km Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Takahashi, Sunao

    2004-05-12

    Beryllium windows were characterized using coherent x-rays at the one-kilometer beamline of SPring-8. Non-uniformity of transmission x-ray images is largely due to Fresnel diffraction from deficiencies such as surface pits with diameter of order of one micron to ten microns, having no correlation with averaged surface roughness measured with an optical profilometer.

  20. Optical and x-ray characterization of two novel CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Bohndiek, Sarah E.; Arvanitis, Costas D.; Venanzi, Cristian; Royle, Gary J.; Clark, Andy T.; Crooks, Jamie P.; Prydderch, Mark L.; Turchetta, Renato; Blue, Andrew; Speller, Robert D.

    2007-02-01

    A UK consortium (MI3) has been founded to develop advanced CMOS pixel designs for scientific applications. Vanilla, a 520x520 array of 25μm pixels benefits from flushed reset circuitry for low noise and random pixel access for region of interest (ROI) readout. OPIC, a 64x72 test structure array of 30μm digital pixels has thresholding capabilities for sparse readout at 3,700fps. Characterization is performed with both optical illumination and x-ray exposure via a scintillator. Vanilla exhibits 34+/-3e - read noise, interactive quantum efficiency of 54% at 500nm and can read a 6x6 ROI at 24,395fps. OPIC has 46+/-3e - read noise and a wide dynamic range of 65dB due to high full well capacity. Based on these characterization studies, Vanilla could be utilized in applications where demands include high spectral response and high speed region of interest readout while OPIC could be used for high speed, high dynamic range imaging.

  1. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function. A new illumination apparatus required for the transfer function analysis under partially coherent illumination is also proposed. Such a characterization is essential for a proper selection of DIC optics for various transparent samples under study. Finally, optical elements used for x-ray DIC microscopy are highly absorptive and high brilliance x-ray sources such as synchrotrons are generally needed for image contrast. To extend the use of x-ray DIC microscopy to a wider variety of applications, a high efficiency large numerical aperture optical element consisting of high reflective Bragg reflectors is proposed. Using Bragg reflectors, which have 70% ˜99% reflectivity at extreme ultraviolet and soft x-rays for all angles of glancing incidence, the first order focusing efficiency is expected to increase by ˜ 8 times compared to that of a typical Fresnel zone-plate. This thesis contributes to current nanoscale x-ray phase contrast imaging research and provides new insights for biological, material, and magnetic sciences

  2. Characterization of local atomic structure in Co/Zn based ZIFs by XAFS

    NASA Astrophysics Data System (ADS)

    Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo

    2018-03-01

    The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.

  3. Microfabricated X-Ray Optics Technology Development for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2003-01-01

    During the period of this Cooperative Agreement, MIT developed advanced methods for applying silicon micro-stuctures for the precision assembly of foil x-ray optics in support of the Constellution-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team.

  4. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.

    PubMed

    Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R

    2013-04-01

    Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  5. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis.

    PubMed

    Xu, Yihui; Kuhlmann, Jan; Brennich, Martha; Komorowski, Karlo; Jahn, Reinhard; Steinem, Claudia; Salditt, Tim

    2018-02-01

    SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An IAEA multi-technique X-ray spectrometry endstation at Elettra Sincrotrone Trieste: benchmarking results and interdisciplinary applications.

    PubMed

    Karydas, Andreas Germanos; Czyzycki, Mateusz; Leani, Juan José; Migliori, Alessandro; Osan, Janos; Bogovac, Mladen; Wrobel, Pawel; Vakula, Nikita; Padilla-Alvarez, Roman; Menk, Ralf Hendrik; Gol, Maryam Ghahremani; Antonelli, Matias; Tiwari, Manoj K; Caliri, Claudia; Vogel-Mikuš, Katarina; Darby, Iain; Kaiser, Ralf Bernd

    2018-01-01

    The International Atomic Energy Agency (IAEA) jointly with the Elettra Sincrotrone Trieste (EST) operates a multipurpose X-ray spectrometry endstation at the X-ray Fluorescence beamline (10.1L). The facility has been available to external users since the beginning of 2015 through the peer-review process of EST. Using this collaboration framework, the IAEA supports and promotes synchrotron-radiation-based research and training activities for various research groups from the IAEA Member States, especially those who have limited previous experience and resources to access a synchrotron radiation facility. This paper aims to provide a broad overview about various analytical capabilities, intrinsic features and performance figures of the IAEA X-ray spectrometry endstation through the measured results. The IAEA-EST endstation works with monochromatic X-rays in the energy range 3.7-14 keV for the Elettra storage ring operating at 2.0 or 2.4 GeV electron energy. It offers a combination of different advanced analytical probes, e.g. X-ray reflectivity, X-ray absorption fine-structure measurements, grazing-incidence X-ray fluorescence measurements, using different excitation and detection geometries, and thereby supports a comprehensive characterization for different kinds of nanostructured and bulk materials.

  7. Synthesis and structure elucidation of a series of pyranochromene chalcones and flavanones using 1D and 2D NMR spectroscopy and X-ray crystallography.

    PubMed

    Pawar, Sunayna S; Koorbanally, Neil A

    2014-06-01

    A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gálvez, S.; Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.

    Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.

  9. A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Saheli, Sania; Rezvani, Alireza

    2017-01-01

    A new metal-organic framework (MOF) formulated as [Ni(H2btc)(OH)(H2O)2] (1) (H3btc = 1,3,5-benzenetricarboxylic acid) was synthesized using the hydrothermal technique. The complex 1 was characterized by elemental analysis, infrared spectroscopy, and powder X-ray diffraction in addition to single crystal X-ray diffraction. X-ray crystal structural analysis displayed that the compound belonged to the monoclinic space group P21/n with cell parameters a = 6.8658(14) Å, b = 18.849(4) Å, c = 8.5608(17) Å. In the title complex, ligand is linked to metal centers through two μ-oxo bridges and forming a 2D layer which is led to form an interesting geometry. The thermal stability and fluorescence property of 1 have also been investigated.

  10. X-ray texture analysis of paper coating pigments and the correlation with chemical composition analysis

    NASA Astrophysics Data System (ADS)

    Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.

    2007-10-01

    The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.

  11. Synthesis and characterization of CdS-based ternary composite for enhanced visible light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Sinha, A. S. K.

    2018-09-01

    Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.

  12. The Structure of the Local Hot Bubble

    NASA Technical Reports Server (NTRS)

    Liu, W.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, Dan; hide

    2016-01-01

    Diffuse X-rays from the Local Galaxy (DXL) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The cleaned maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT = 0.097 keV +/- 0.013 keV (FWHM) +/- 0.006 keV(systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas.

  13. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    NASA Astrophysics Data System (ADS)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  14. Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation

    NASA Technical Reports Server (NTRS)

    Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.

    1994-01-01

    The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.

  15. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ice, G.E.; Barbee, T.; Bionta, R.

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Genemore » Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.« less

  17. JGIXA - A software package for the calculation and fitting of grazing incidence X-ray fluorescence and X-ray reflectivity data for the characterization of nanometer-layers and ultra-shallow-implants

    NASA Astrophysics Data System (ADS)

    Ingerle, D.; Pepponi, G.; Meirer, F.; Wobrauschek, P.; Streli, C.

    2016-04-01

    Grazing incidence XRF (GIXRF) is a very surface sensitive, nondestructive analytical tool making use of the phenomenon of total external reflection of X-rays on smooth polished surfaces. In recent years the method experienced a revival, being a powerful tool for process analysis and control in the fabrication of semiconductor based devices. Due to the downscaling of the process size for semiconductor devices, junction depths as well as layer thicknesses are reduced to a few nanometers, i.e. the length scale where GIXRF is highly sensitive. GIXRF measures the X-ray fluorescence induced by an X-ray beam incident under varying grazing angles and results in angle dependent intensity curves. These curves are correlated to the layer thickness, depth distribution and mass density of the elements in the sample. But the evaluation of these measurements is ambiguous with regard to the exact distribution function for the implants as well as for the thickness and density of nanometer-thin layers. In order to overcome this ambiguity, GIXRF can be combined with X-ray reflectometry (XRR). This is straightforward, as both techniques use similar measurement procedures and the same fundamental physical principles can be used for a combined data evaluation strategy. Such a combined analysis removes ambiguities in the determined physical properties of the studied sample and, being a correlative spectroscopic method, also significantly reduces experimental uncertainties of the individual techniques. In this paper we report our approach to a correlative data analysis, based on a concurrent calculation and fitting of simultaneously recorded GIXRF and XRR data. Based on this approach we developed JGIXA (Java Grazing Incidence X-ray Analysis), a multi-platform software package equipped with a user-friendly graphic user interface (GUI) and offering various optimization algorithms. Software and data evaluation approach were benchmarked by characterizing metal and metal oxide layers on Silicon as well as Arsenic implants in Silicon. The results of the different optimization algorithms have been compared to test the convergence of the algorithms. Finally, simulations for Iron nanoparticles on bulk Silicon and on a W/C multilayer are presented, using the assumption of an unaltered X-ray Standing Wave above the surface.

  18. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  19. Experimental characterization of an ultra-fast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Slaughter, D R; Fittinghoff, D N

    We present a detailed comparison of the measured characteristics of Thomson backscattered x-rays produced at the PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in themore » laser focus, and the transverse and longitudinal phase space of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x-rays produced from the interaction are presented, and shown to agree well with the simulations.« less

  20. Noise properties and task-based evaluation of diffraction-enhanced imaging

    PubMed Central

    Brankov, Jovan G.; Saiz-Herranz, Alejandro; Wernick, Miles N.

    2014-01-01

    Abstract. Diffraction-enhanced imaging (DEI) is an emerging x-ray imaging method that simultaneously yields x-ray attenuation and refraction images and holds great promise for soft-tissue imaging. The DEI has been mainly studied using synchrotron sources, but efforts have been made to transition the technology to more practical implementations using conventional x-ray sources. The main technical challenge of this transition lies in the relatively lower x-ray flux obtained from conventional sources, leading to photon-limited data contaminated by Poisson noise. Several issues that must be understood in order to design and optimize DEI imaging systems with respect to noise performance are addressed. Specifically, we: (a) develop equations describing the noise properties of DEI images, (b) derive the conditions under which the DEI algorithm is statistically optimal, (c) characterize the imaging performance that can be obtained as measured by task-based metrics, and (d) consider image-processing steps that may be employed to mitigate noise effects. PMID:26158056

  1. Synthesis and Characterization of the Nano-TiO2 Visible Light Photocatalysts: Vanadium Surface Doping Modification

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Li, Zongbao; Jia, Lichao; Xing, Xiaobo

    2018-05-01

    A simple strategy to greatly increase the photocatalytic ability of nanocrystalline anatase has been put forward to fabricate efficient TiO2-based photocatalysts under visible irradiation. By surface modification with V ion, samples with different ratios were synthesized by using an incipient wetness impregnation method. The as-prepared specimens were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities were evaluated by using methylene blue degradations. Meanwhile, the optimized loading structure and electronic structures were calculated by using the density function theory (DFT). This work should provide a practical route to reasonably design and synthesize high-performance TiO2-based nanostructured photocatalysts.

  2. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baier, S.; Rochet, A.; Hofmann, G.

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor formore » in situ studies.« less

  3. MeV per Nucleon Ion Irradiation of Nuclear Materials with High Energy Synchrotron X-ray Characterization

    DOE PAGES

    Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; ...

    2016-01-14

    The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ~10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-raymore » and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.« less

  4. Starburst Galaxies: Hard X-ray spectra and contribution to the diffuse background

    NASA Technical Reports Server (NTRS)

    Gruber, Duane E.

    1993-01-01

    During the period of this grant two main tasks were performed: a determination of a selection criterion for starburst galaxies most likely to emit X-rays, and performance of a pilot study of the X-ray emission from nine such systems. Starburst galaxies may be expected to emit flat-spectrum X-ray at energies above 10 keV resulting from the various remnants of the short-lived massive stars which characterize the starburst. The investigation to determine the optimum sample resulted in a change from an X-ray selected (HEAO-2) sample to infrared selection based on the IRAS catalogue. A much broader sample thereby available for study, and selection could be limited to only the nearest objects and still obtain a reasonably large sample. A sample of 99 of the brightest infrared starburst galaxies was settled on for the X-ray survey. For a set of practical size, this was then reduced to a subset of 53, based on luminosity and nearness. X-ray emission from these objects was individually measured from the UCSD HEAO-1 all-sky survey in four energy bands between 13 keV to 160 keV. This data base consists of about 20 optical disk volumes. Net significance for the result was roughly two sigma, and a very hard spectral shape is indicated for the net spectrum of the surveyed galaxies. With the possibility of detection of the class, it was then felt worthwhile to examine fluxes from these sources in other archival data. This was performed with the HEAO-1 A2 data and the HEAO-2 (EINSTEIN) main archive and slew survey. Positive results were also obtained for the sample, but again at weak significance. With three independent measures of weak X-ray fluxes from nearby starburst galaxies, we wrote a letter to the Astrophysical Journal (enclosed) discussing these results and their likely significance, in particular, for the contribution to the cosmic diffuse x-ray background, perhaps as much as 25 percent.

  5. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    PubMed Central

    Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.

    2012-01-01

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies. PMID:28817018

  6. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    PubMed

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  7. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay

    2016-05-23

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less

  8. Femtosecond profiling of shaped x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiboth, Frank; Wittwer, Felix; Scholz, Maria

    Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with σ¯ = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without priormore » lens characterization but simply based on the derived lens deformation. As a result, the performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.« less

  10. Scintillating Quantum Dots for Imaging X-rays (SQDIX) for Aircraft Inspection

    NASA Technical Reports Server (NTRS)

    Burke, Eric (Principal Investigator); Williams, Phillip (Principal Investigator); Dehaven, Stan

    2015-01-01

    Scintillation is the process currently employed by conventional x-ray detectors to create x-ray images. Scintillating quantum dots or nano-crystals (StQDs) are a novel, nanometer-scale material that upon excitation by x-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmental friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread x-ray imaging. Initial work on the SQDIX system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency a StQDs based imaging sensor.

  11. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  12. TIME-SEQUENCED X-RAY OBSERVATION OF A THERMAL EXPLOSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J. W.; Molitoris, J. D.; Kercher, J. R.

    The evolution of a thermally-initiated explosion is studied using a multiple-image x-ray system. HMX-based PBX 9501 is used in this work, enabling direct comparison to recently-published data obtained with proton radiography [1]. Multiple x-ray images of the explosion are obtained with image spacing of ten microseconds or more. The explosion is simultaneously characterized with a high-speed camera using an interframe spacing of 11 mus. X-ray and camera images were both initiated passively by signals from an embedded thermocouple array, as opposed to being actively triggered by a laser pulse or other external source. X-ray images show an accelerating reacting frontmore » within the explosive, and also show unreacted explosive at the time the containment vessel bursts. High-speed camera images show debris ejected from the vessel expanding at 800-2100 m/s in the first tens of mus after the container wall failure. The effective center of the initiation volume is about 6 mm from the geometric center of the explosive.« less

  13. Characterizing the X-ray Emission From Stellar Bow Shocks and Their Driving Stars with the Chandra Archive

    NASA Astrophysics Data System (ADS)

    Binder, Breanna

    2017-09-01

    We propose an archival study of 2.8 Msec of ACIS images to search for X-ray emission from stellar-wind bow shocks and to characterize the X-ray properties of their driving stars. Bow shocks, particularly those produced by runaway OB stars, are theorized to up-scatter IR photons via inverse Compton scattering, and may produce a significant fraction of high-energy photons in our Galaxy. However, their low X-ray luminosity makes direct detection difficult. By stacking 106 archival observations containing >100 bow shocks, we will create the deepest X-ray exposure of bow shocks to date. We will perform the first detailed comparison of bow shock driving stars to the general massive star population.

  14. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    DOE PAGES

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; ...

    2015-05-04

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers andmore » enrich capabilities and opportunities for hard X-ray microscopy.« less

  15. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers andmore » enrich capabilities and opportunities for hard X-ray microscopy.« less

  16. Precipitation and Dislocation Strengthening Behaviour of Grade X80 Steel for Pipeline with Strain Based Design

    NASA Astrophysics Data System (ADS)

    Sun, Weihua; Hu, Shu-e.; Li, Guobao; Yu, Hao

    This paper analyzes precipitation and dislocation strengthening behaviors of a 27mm thick Niobium-bearing Grade X80 steel plate for strain based design line pipe manufacture. The steel is produced by thermal-mechanical processing (TMCP) and is characterized with granular bainite and polygonal ferrite microstructure. Mechanical properties of both the steel and the UOE pipe are briefly introduced. Transmission electron microscope (TEM) is used to investigate the fine grain structure, distribution of the precipitates and dislocations in the steel. Precipitate morphologies, volume fractions of M(C,N), M3C, CaS, AlN and Cu are extensively studied respectively by Electrolytic Chemical Phase Analysis (ECPA) and X-ray Small Angle Diffraction (X-ray SAD). Dislocations in the steel are characterized with Positron Annihilation analysis. The results prove that precipitation hardening reveal a 58.1MPa strengthening contribution by the precipitates less than 20nm in size. Dislocation hardening is approximately 176MPa to the present studied steel and 198MPa to the pipe.

  17. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2016-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  18. X-ray Polarimetry with a Micro-Pattern Gas Detector

    NASA Technical Reports Server (NTRS)

    Hill, Joe

    2005-01-01

    Topics covered include: Science drivers for X-ray polarimetry; Previous X-ray polarimetry designs; The photoelectric effect and imaging tracks; Micro-pattern gas polarimeter design concept. Further work includes: Verify results against simulator; Optimize pressure and characterize different gases for a given energy band; Optimize voltages for resolution and sensitivity; Test meshes with 80 micron pitch; Characterize ASIC operation; and Quantify quantum efficiency for optimum polarization sensitivity.

  19. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E; Kozioziemski, B; Moody, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close tomore » that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.« less

  20. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  2. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  3. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization

    PubMed Central

    Dahani, Mohamed; Barret, Laurie-Anne; Raynal, Simon; Jungas, Colette; Pernot, Pétra; Polidori, Ange; Bonneté, Françoise

    2015-01-01

    The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar inter­actions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization. PMID:26144228

  4. Assessment study of ion-exchange chromatography combined with solution X-ray scattering measurement for protein characterization.

    PubMed

    Watanabe, Yasushi

    2018-03-02

    The performance of ion-exchange chromatography combined with small-angle X-ray scattering measurement was evaluated by characterization of the hen egg white lysozyme as a model protein. The X-ray transmittance was estimated using a micro-ionization chamber equipped with a sample cell holder for the real-time monitoring of the X-ray beam strength through the salt gradient elution. The radius of gyration of the eluted protein was estimated to be 1.50 ± 0.06 (n = 3) nm and 1.4 ± 0.1 nm as the value at the zero protein concentration. By using the X-ray transmittance values for the scattering intensity correction, the molecular weight of the eluted protein was estimated to be 15,200 ± 500 (n = 3) and 14,400 ± 200 as the value at the zero protein concentration. These values are close to those of the monomer of this protein. The ion-exchange chromatography combined with the small-angle X-ray scattering measurement system equipped with the X-ray transmittance monitor is a reliable method for protein characterization in solution. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER

    NASA Astrophysics Data System (ADS)

    Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele

    2004-02-01

    The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.

  6. Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id

    Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.

  7. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotronmore » techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.« less

  8. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    NASA Astrophysics Data System (ADS)

    Bottaini, C.; Mirão, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample.

  9. A Fresnel zone plate collimator: potential and aberrations

    NASA Astrophysics Data System (ADS)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution < 0.1n combined with a large active area > 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  10. Using HMXBs to Probe Massive Binary Evolution

    NASA Astrophysics Data System (ADS)

    Garofali, Kristen

    2017-09-01

    We propose using deep archival Chandra data of M33 to characterize the distribution of physical parameters for the high-mass X-ray binary (HMXB) population from X-ray spectra, X-ray lightcurves, and identified optical counterparts coupled with ground-based spectroscopy. Our analysis will provide the largest clean sample of HMXBs in M33, including hardness, short- and long-term variability, luminosity, and ages. These measurements will be compared across M33 and to HMXB studies in other nearby galaxies to test correlations between HMXB population and host properties such as metallicity and star formation rate. Furthermore, our measurements will yield empirical constraints on prescriptions for models of the formation and evolution of massive stars in binaries.

  11. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  12. X ray reflection masks: Manufacturing, characterization and first tests

    NASA Astrophysics Data System (ADS)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  13. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  14. A catalogue of optical to X-ray spectral energy distributions of z ≈ 2 quasars observed with Swift - I. First results

    NASA Astrophysics Data System (ADS)

    Lawther, D.; Vestergaard, M.; Raimundo, S.; Grupe, D.

    2017-06-01

    We present the Swift optical to X-ray spectral energy distributions (SEDs) of 44 quasars at redshifts z ≈ 2 observed by Swift, part of a larger program to establish and characterize the optical through X-ray SEDs of moderate-redshift quasars. Here, we outline our analysis approach and present preliminary analysis and results for the first third of the full quasar sample. Not all quasars in the sample are detected in X-rays; all of the X-ray-detected objects so far are radio loud. As expected for radio-loud objects, they are X-ray bright relative to radio-quiet quasars of comparable optical luminosities, with an average αox =1.39 ± 0.03 (where αox is the power-law slope connecting the monochromatic flux at 2500 Å and at 2 keV), and display hard X-ray spectra. We find integrated 3000 Å-25 keV accretion luminosities of between 0.7 × 1046 erg s-1 and 5.2 × 1047 erg s-1. Based on single-epoch spectroscopic virial black hole mass estimates, we find that these quasars are accreting at substantial Eddington fractions, 0.1 ≲ L/LEdd ≲ 1.

  15. Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; hide

    2016-01-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  16. On the Nature of the Hard X-ray Sources SWIFT J1907.3-2050, IGR J12123-5802 and IGR J19552+0044

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; De Martino, D.; Mukai, K.; Falanga, M.; Andruchow, I.; Bonnet-Bidaud, J.-M.; Masetti, N.; Gonzalez Buitrago, D. H.; Mouchet, M.; Tovmassian, G.

    2013-01-01

    The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival near-infrared/infrared data. Swift J1907.3-2050 is highly variable from hours to months-years at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 hours) binary period. IGRJ12123-5802 is variable in the X-rays on a timescale of greater than or approximately 7.6 hours. No coherent pulsations are detected, but its spectral characteristics suggest that it could be a magnetic CV of the Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, approximately 1.38 hours and approximately 1.69 hours and a X-ray spectrum characterized by a multi-temperature plasma with little absorption. We derive a low accretion rate, consistent with a CV below the orbital period gap. Its peculiar near-infrared/infrared spectrum suggests a contribution from cyclotron emission. It could either be a pre-polar or an IP with the lowest degree of asynchronism.

  17. On the Nature of the Hard X-Ray Sources SWIFT J1907.3-2050, IGR J12123-5802 and IGR J19552+0044

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; deMartino, D; Mukai, K.; Falanga, M.; Andruchow, I.; Bonnet-Bidaud, J.-M.; Masetti, N.; GonzalezBuitrago, D. H.; Mouchet, M.; Tovmassian, G.

    2014-01-01

    The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival nIR/IR data. Swift J1907.3-2050 is highly variable from hours to monthsyears at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 h) binary period. IGRJ12123-5802 is variable in the X-rays on a timescale of approximately or greater than 7.6 h. No coherent pulsations are detected, but its spectral characteristics suggest that it could be a magnetic CV of the Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, approximately 1.38 h and approximately 1.69 h and a X-ray spectrum characterized by a multi-temperature plasma with little absorption.We derive a low accretion rate, consistent with a CV below the orbital period gap. Its peculiar nIR/IR spectrum suggests a contribution from cyclotron emission. It could either be a pre-polar or an IP with the lowest degree of asynchronism.

  18. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    PubMed

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  19. Carbothermic Reduction Reactions at the Metal-Slag Interface in Ti-Bearing Slag from a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    Carbothermic reduction reactions at the metal-slag interface and the mechanisms of iron loss during the smelting of vanadium-bearing titanomagnetite in a blast furnace are still not clear as a result of the limited ability to observe the high-temperature zone of a blast furnace. The chemical composition of a Ti-bearing slag was determined by x-ray fluorescence and x-ray diffraction. The interfaces were characterized by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy. The interfacial chemical reactions were deduced based on the characterization results and on the thermodynamic calculations performed using Factsage 6.4. The results indicated that the forms of iron in the slag were iron droplets wetted by Ti(C x , N1- x ), mechanically separated by iron and iron oxide. The different forms possessed unique characteristics and were formed by different mechanisms. Iron droplets wetted by Ti(C x , N1- x ) were generated through a series of interfacial reactions between TiO2 in the slag and [C] and [N] in the metal. Iron droplets without attached Ti(C x , N1- x ) were mainly located on the edges of pores and were attributed to the reduction of Fe x O in the slag. Insufficient reduction of iron-bearing minerals made it difficult for iron droplets to aggregate and separate from the slag, which created an Fe x O-enriched zone.

  20. New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.

    2017-10-01

    This paper puts forward a new technique for measurement of x-ray patterns, which enables to solve the problem of identification and determination of precipitates (nanoscale phases) in metallic alloys of the matrix type. The minimum detection limit of precipitates in the matrix of the base material provided by this technique constitutes as little as 1%. The identification of precipitates in x-ray patterns and their analysis are implemented through a transmission mode with a larger radiation area, longer holding time and higher diffractometer resolution as compared to the conventional reflection mode. The presented technique has been successfully employed to identify and quantitatively describe precipitates formed in the Al alloy of the Al-Mg-Si system as a result of artificial aging. For the first time, the x-ray phase analysis has been used to identify and measure precipitates formed during the alloy artificial aging.

  1. X-ray grating interferometry at photon energies over 180 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Yaniz, M., E-mail: maite.ruiz-yaniz@esrf.fr; Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, James-Franck-Str. 1, 85748 Garching; Koch, F.

    2015-04-13

    We report on the implementation and characterization of grating interferometry operating at an x-ray energy of 183 keV. With the possibility to use this technique at high x-ray energies, bigger specimens could be studied in a quantitative way. Also, imaging strongly absorbing specimens will benefit from the advantages of the phase and dark-field signals provided by grating interferometry. However, especially at these high photon energies the performance of the absorption grating becomes a key point on the quality of the system, because the grating lines need to keep their small width of a couple of micrometers and exhibit a greater heightmore » of hundreds of micrometers. The performance of high aspect ratio absorption gratings fabricated with different techniques is discussed. Further, a dark-field image of an alkaline multicell battery highlights the potential of high energy x-ray grating based imaging.« less

  2. A compact and versatile tender X-ray single-shot spectrometer for online XFEL diagnostics.

    PubMed

    Rehanek, Jens; Milne, Christopher J; Szlachetko, Jakub; Czapla-Masztafiak, Joanna; Schneider, Jörg; Huthwelker, Thomas; Borca, Camelia N; Wetter, Reto; Patthey, Luc; Juranić, Pavle

    2018-01-01

    One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10 -4 , within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

  3. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  4. Fabrication of 0.25-um electrode width SAW filters using x-ray lithography with a laser plasma source

    NASA Astrophysics Data System (ADS)

    Bobkowski, Romuald; Li, Yunlei; Fedosejevs, Robert; Broughton, James N.

    1996-05-01

    A process for the fabrication of surface acoustic wave (SAW) devices with line widths of 250 nm and less, based on x-ray lithography using a laser-plasma source has been developed. The x-ray lithography process is based on keV x-ray emission from Cu plasma produced by 15 Hz, 50 ps, 248 nm KrF excimer laser pulses. The full structure of a 2 GHz surface acoustic wave filter with interdigital transducers in a split-electrode geometry has been manufactured. The devices require patterning a 150 nm thick aluminum layer on a LiNbO3 substrate with electrodes 250 nm wide. The manufacturing process has two main steps: x-ray mask fabrication employing e-beam lithography and x-ray lithography to obtain the final device. The x-ray masks are fabricated on 1 micrometers thick membranes of Si2N4. The line patterns on the masks are written into PMMA resist using a scanning electron microscope which has been interfaced to a personal computer equipped to control the x and y scan voltages. The opaque regions of the x-ray mask are then formed by electroplating fine grain gold into the open spaces in the etched PMMA. The mask and sample are mounted in an exposure cassette with a fixed spacer of 10 micrometers separating them. The sample consists of a LiNbO3 substrate coated with Shipley XP90104C x-ray resist which has been previously characterized. The x-ray patterning is carried out in an exposure chamber with flowing helium background gas in order to minimize debris deposition on the filters. After etching the x-ray resist, the final patterns are produced using metallization and a standard lift-off technique. The SAW filters are then bonded and packaged onto impedance matching striplines. The resultant devices are tested using Scalar Network Analyzers. The final devices produced had a center frequency of 1.93 GHz with a bandwidth of 98 MHz, close to the expected performance of our simple design.

  5. Development of a hard x-ray wavefront sensor for the EuXFEL

    NASA Astrophysics Data System (ADS)

    Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry

    2017-05-01

    We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

  6. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  7. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    PubMed

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  8. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less

  9. Femtosecond profiling of shaped x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M. C.; Grguras, I.; Behrens, C.

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  10. Femtosecond profiling of shaped x-ray pulses

    DOE PAGES

    Hoffmann, M. C.; Grguras, I.; Behrens, C.; ...

    2018-03-26

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  11. The Focusing Optics X-ray Solar Imager (FOXSI): Instrument and First Flight

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay; Christe, S.; Ishikawa, S.; Ramsey, B.; Takahashi, T.; Saito, S.; Lin, R. P.; Krucker, S.; FOXSI Team

    2013-04-01

    Understanding electron acceleration in solar flares requires hard X-ray studies with greater sensitivity and dynamic range than are available with current solar hard X-ray observers (i.e. the RHESSI spacecraft). Both these capabilities can be advanced by the use of direct focusing optics instead of the indirect Fourier methods of current and previous generations. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload demonstrates the feasibility and usefulness of hard X-ray focusing optics for solar observation. FOXSI flew for the first time on 2012 November 2, producing images and spectra of a microflare and performing a search for nonthermal X-rays from the quiet Sun. Such measurements are important for characterizing the impact of small "nanoflares" on the solar coronal heating problem. A spaceborne solar observer featuring similar optics could make detailed observations of hard X-rays from flare-accelerated electrons, identifying and characterizing particle acceleration sites and mapping out paths of energetic electrons as they leave these sites and propagate throughout the solar corona. Solar observations from NuSTAR are also expected to be an important step in this direction.

  12. Ionic charge distributions of energetic particles from solar flares

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Waldron, W. L.

    1986-01-01

    The effects which solar flare X-rays have on the charge states of solar cosmic rays is determined quantitatively. Rather than to characterize the charge distribution by temperature alone, it is proposed that the X-ray flux at the acceleration site also is used. The effects of flare X-rays are modeled mathematically.

  13. Neutron and X-Ray Diffraction Studies of Advanced Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong

    2010-01-01

    The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternativemore » probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It is predicted that the application of these techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future, which will contribute to the development of materials technology and industrial innovation. Specifically, the use of these techniques provides bulk material properties that further augment new characterization tools including the increased use of atom probe tomography and high-resolution transmission electron microscopy systems. The combination of these techniques greatly assists the material property models that address multi-length-scale mechanisms. Different applications of diffuse scattering for understanding the fundamental materials properties are illustrated in the articles of Welberry et al., Goossens and Welberry, Campbell, Abe et al., Gilles et al., and Zhang et al. Analysis of thin films and two-dimensional structures is described in the articles of Gramlich et al., Brock et al., Vigliante et al., Kuzel et al., and Davydok et al. Recent advances in the line profile analysis are represented by the the articles of Scardi et al., Ungar et al., and Woo et al. Characterization of modern alloys is presented by the articles of Wollmershauser et al., Eidenberger et al., Garlea et al., Jia et al., Soulami et al., Wilson et al., and Wang et al. The collected articles are written by different scientific X-ray and neutron research groups. They represent a general trend in the development and application of diffraction techniques all over the world.« less

  14. Two new intermediate polars with a soft X-ray component

    NASA Astrophysics Data System (ADS)

    Anzolin, G.; de Martino, D.; Bonnet-Bidaud, J.-M.; Mouchet, M.; Gänsicke, B. T.; Matt, G.; Mukai, K.

    2008-10-01

    Aims: We analyze the first X-ray observations with XMM-Newton of 1RXS J070407.9+262501 and 1RXS 180340.0+401214, in order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as intermediate polars. Methods: For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2-10.0 keV range to characterize the emission properties of both sources. Results: We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3-5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 h that is longer than previously estimated. Both systems show complex spectra with a hard (temperature up to 40 keV) optically thin and a soft (kT ~ 85-100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources. Conclusions: Our observations confirm the two systems as intermediate polars and also add them as new members of the growing group of “soft” systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and with the Observatoire de Haute Provence (CNRS), France.

  15. Soft x-ray transmission grating spectrometer for X-ray Surveyor and smaller missions with high resolving power

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.

    2017-01-01

    A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible with the most advanced grating spectrometer instrument designs for future soft x-ray spectroscopy missions. We will review the most recent CAT grating fabrication and x-ray test results.

  16. Characterization of X-ray Lobster Optics with a Hybrid CMOS sensor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.; Bray, Evan; McQuaide, Maria; Kern, Matthew; Wages, Mitchell; Hull, Samuel; Inneman, Adolf; Hudec, Rene; Stehlikova, Veronika

    2018-01-01

    X-ray lobster optics provide a unique way to focus X-rays onto a small focal plane imager with wide field of view imaging. Such an instrument with angular resolution of a few arcminutes can be used to study GRB afterglows, as well as the variability and spectroscopic characteristics for various astrophysical objects. At Penn State University, we have characterized a lobster optic with an H1RG X-Ray hybrid CMOS detector (100 μm thick Silicon with 18 μm pixel size). The light-weight compact lobster optic with a 25 cm focal length provides two dimensional imaging with ~25 cm2 effective area at 2 keV. We utilize a 47 meter long X-ray beam line at Penn state University to do our experiments where we characterize the overall effective area of the instrument at 1.5 - 8 keV for both on-axis and off-axis angles. In this presentation, we will describe the characterization test stand and methods, as well as the detailed results. While this is simply a proof-of-concept experiment, such an instrument with significant collecting area can be explored for future rocket or CubeSat experiments.

  17. Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy).

    PubMed

    Allegretta, Ignazio; Porfido, Carlo; Martin, Maria; Barberis, Elisabetta; Terzano, Roberto; Spagnuolo, Matteo

    2018-06-24

    Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50-80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1-3 g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.

  18. Discovering the invisible universe

    NASA Astrophysics Data System (ADS)

    Friedman, Herbert

    1991-02-01

    The history of astronomical observations outside the visible range is surveyed in a review for general readers. Consideration is given to Jansky's discovery of cosmic radio emission, the pioneering radio observers of the 1940s, the larger radio telescopes built since 1950, aperture synthesis and the Very Large Array, terrestrial and space VLBI networks, ground-based and satellite observations in the IR band, the discovery and early laboratory characterization of X-rays, and X-ray observations from sounding rockets and satellites. Extensive photographs, drawings, diagrams, and sample images are provided.

  19. PULSED GAMMA RAYS FROM THE ORIGINAL MILLISECOND AND BLACK WIDOW PULSARS: A CASE FOR CAUSTIC RADIO EMISSION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillemot, L.; Kramer, M.; Freire, P. C. C.

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by twomore » peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.« less

  20. Recent Developments in X-Ray Diagnostics for Cryogenic and Optically Dense Coaxial Rocket Sprays

    NASA Technical Reports Server (NTRS)

    Radke, Christopher D.; Kastengren, Alan L.; Meyer, Terrence R.

    2017-01-01

    The mixing and atomization of propellants is often characterized by optically dense flow fields and complex breakup dynamics. In the development of propulsion systems, the complexity of relevant physics and the range of spatio-temporal scales often makes computational simulation impractical for full scale injector elements; consequently, continued research into improved systems for experimental flow diagnostics is ongoing. One area of non-invasive flow diagnostics which has seen widespread growth is using synchrotron based x-ray diagostics. Over the past 3 years, a series of water and cryogenic based experiments were performed at the Advanced Photon Source, Argonne National Lab, on a NASA in-house designed swirl co-axial rocket injector, designed for operation using liquid oxygen and liquid methane in support of Project Morpheus. A range of techniques, such as x-ray fluorescence and time-averaged radiography were performed providing qualitative and quantitative mass and phase distributions, and were complemented by investigations using time-resolved radiography and white beam imaging, which provided information on breakup and mixing dynamics. Results of these investigations are presented, and conclusions regarding the viability of x-ray based diagnostics are discussed.

  1. NuSTAR Observations of Heavily Obscured Quasars Selected by WISE

    NASA Astrophysics Data System (ADS)

    Yan, Wei

    2017-08-01

    A key goal of the Nuclear Spectroscopic Telescope Array (NuSTAR) program is to find and characterize heavily obscured quasars, luminous accreting supermassive black holes hidden by gas and dust. Based on mid-infrared (IR) photometry from Wide-Field Infrared Survey Explorer (WISE) and optical photometry from the Sloan Digital Sky Surveys, we have selected a large population of obscured quasars; here we report the NuSTAR observations of four WISE-selected heavily obscured quasars for which we have optical spectroscopy from the Southern African Large Telescope and KECK Telescope. Three of four objects are undetected with NuSTAR, while the fourth has only a marginal detection. We confirm our objects have observed hard X-ray (10-40 keV) luminosities at or below ~1043 erg s-1. We compare IR and X-ray luminosities to obtain estimates of hydrogen column NH based on the suppression of the hard X-ray emission. We estimate NH to be at or greater than 1025 cm-2, confirming that WISE and optical selection can identify very heavily obscured quasars that may be missed in X-ray surveys.

  2. Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction

    PubMed Central

    Hart, Michael L.; Drakopoulos, Michael; Reinhard, Christina; Connolley, Thomas

    2013-01-01

    A complete calibration method to characterize a static planar two-dimensional detector for use in X-ray diffraction at an arbitrary wavelength is described. This method is based upon geometry describing the point of intersection between a cone’s axis and its elliptical conic section. This point of intersection is neither the ellipse centre nor one of the ellipse focal points, but some other point which lies in between. The presented solution is closed form, algebraic and non-iterative in its application, and gives values for the X-ray beam energy, the sample-to-detector distance, the location of the beam centre on the detector surface and the detector tilt relative to the incident beam. Previous techniques have tended to require prior knowledge of either the X-ray beam energy or the sample-to-detector distance, whilst other techniques have been iterative. The new calibration procedure is performed by collecting diffraction data, in the form of diffraction rings from a powder standard, at known displacements of the detector along the beam path. PMID:24068840

  3. Intensity correlation measurement system by picosecond single shot soft x-ray laser.

    PubMed

    Kishimoto, Maki; Namikawa, Kazumichi; Sukegawa, Kouta; Yamatani, Hiroshi; Hasegawa, Noboru; Tanaka, Momoko

    2010-01-01

    We developed a new soft x-ray speckle intensity correlation spectroscopy system by use of a single shot high brilliant plasma soft x-ray laser. The plasma soft x-ray laser is characterized by several picoseconds in pulse width, more than 90% special coherence, and 10(11) soft x-ray photons within a single pulse. We developed a Michelson type delay pulse generator using a soft x-ray beam splitter to measure the intensity correlation of x-ray speckles from materials and succeeded in generating double coherent x-ray pulses with picosecond delay times. Moreover, we employed a high-speed soft x-ray streak camera for the picosecond time-resolved measurement of x-ray speckles caused by double coherent x-ray pulse illumination. We performed the x-ray speckle intensity correlation measurements for probing the relaxation phenomena of polarizations in polarization clusters in the paraelectric phase of the ferroelectric material BaTiO(3) near its Curie temperature and verified its performance.

  4. Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Crannell, C. J.; Goetz, F.; Magun, A.; Mckenzie, D. L.

    1987-01-01

    This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again.

  5. The syntheses, molecular structure analyses and DFT studies on new benzil monohydrazone based Schiff bases

    NASA Astrophysics Data System (ADS)

    Elmacı, Gökhan; Duyar, Halil; Aydıner, Burcu; Seferoğlu, Nurgül; Naziri, Mir Abolfazl; Şahin, Ertan; Seferoğlu, Zeynel

    2018-06-01

    Benzil monohydrazone based Schiff bases were synthesized and characterized by 1H NMR, 13C NMR, HRMS as well as by single crystal X-ray diffraction. The geometries of the compounds was optimized by the DFT method and the results were compared with the X-ray diffraction data. The HOMO and LUMO energy gap and also related parameters (electronic chemical potential (μ) and global hardness (η), global electrophilicity index (ω) and softness (s)) were obtained from ground state calculations. In addition, the thermal properties of the compounds were investigated by DTA-TGA. The results showed that the compounds have good thermal properties for practical applications as optic dye.

  6. Distribution of Al atoms in the clathrate-I phase Ba8AlxSi46-x at x = 6.9.

    PubMed

    Bobnar, Matej; Böhme, Bodo; Wedel, Michael; Burkhardt, Ulrich; Ormeci, Alim; Prots, Yurii; Drathen, Christina; Liang, Ying; Nguyen, Hong Duong; Baitinger, Michael; Grin, Yuri

    2015-07-28

    The clathrate-I phase Ba8AlxSi46-x has been structurally characterized at the composition x = 6.9 (space group Pm3[combining macron]n, no. 223, a = 10.4645(2) Å). A crystal structure model comprising the distribution of aluminium and silicon atoms in the clathrate framework was established: 5.7 Al atoms and 0.3 Si atoms occupy the crystallographic site 6c, while 1.2 Al atoms and 22.8 Si atoms occupy site 24k. The atomic distribution was established based on a combination of (27)Al and (29)Si NMR experiments, X-ray single-crystal diffraction and wavelength-dispersive X-ray spectroscopy.

  7. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  8. THE STRUCTURE OF THE LOCAL HOT BUBBLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.; Galeazzi, M.; Uprety, Y.

    Diffuse X-rays from the Local Galaxy ( DXL ) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The “cleaned” maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT  = 0.097 keV ± 0.013 keV (FWHM) ± 0.006more » keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas.« less

  9. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  10. Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices

    NASA Astrophysics Data System (ADS)

    Thakur, Shashi; Gathania, Arvind K.

    2015-10-01

    YVO4:Eu nanophosphor has been synthesized by the sol-gel method. Samples were characterized by x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence, and Raman spectroscopy. The XRD profile confirms the tetragonal phase of the Eu3+-doped YVO4 nanophosphor. The efficiency of the prepared phosphor was analyzed by means of its emission spectral profile. We also observed rich red emission from the prepared phosphor on excitation by an ultraviolet source. The calculated Commission International de l'Éclairage coordinates reveal excellent color purity efficiency. Such luminescent powder is useful as red phosphor in display device applications.

  11. Structural characterization of sol-gel derived oxide nanostuctures using synchrotron x-ray techniques

    NASA Astrophysics Data System (ADS)

    Sun, Tao

    Ceramic oxides possess extraordinarily rich functionalities. With the advent of nanofabrication techniques, it is now possible to grow nanostructured oxides with precise control of composition, morphology, and microstructure, which has re-vitalized the research in the field of traditional ceramics. The unexpected behavior and enhanced properties of oxide nanostructures have been extensively reported. However, knowledge about the underlying mechanisms as well as structural implications is still quite limited. Therefore, it is imperative to develop and employ sophisticated characterization tools for unraveling the structure-property relationships for oxide nanostructures. The present thesis work aims at addressing the critical issues associated with fabrication, and more importantly, structural characterization of functional oxide nanostructures. The dissertation starts with introducing the strategy for synthesizing phase-pure and highly controlled oxide nanostructures using sol-gel deposition and an innovative approach called "soft" electron beam lithography. Some specific oxides are chosen for the present study, such as BiFeO3, CoFe2O4, and SnO2, because of their scientific and technological significance. Subsequent to fabrication of tailored oxide nanostructures, advanced synchrotron x-ray scattering techniques have been applied for structural characterization. The nucleation and growth behavior of BiFeO3 thin film was investigated using in situ grazing-incidence small-angle x-ray scattering (GISAXS) technique. The results reveal that the kinetics for early-stage nuclei growth are governed by the oriented-attachment model. Moreover, the porous structures of undoped and Pd-doped semiconducting SnOx thin films were quantitatively characterized using GISAXS. By correlating the structural parameters with H2 sensitivity of SnOx films, it is found out that the microstructure of doped film is favorable for gas sensing, but it is not the major reason for the overall property enhancement arising from the dopant. Furthermore, a novel method based on scanning x-ray microdiffraction technique is proposed and applied for probing the strain distribution around individual CoFe2O4 nanoline epitaxially grown on MgO substrate. It is demonstrated that x-ray diffuse scattering intensity can be used to gauge the edge-induced subtle strain variation. The dissertation underscores the need for quantitative understanding of structural underpinning in the mechanisms and behavior of oxide nanostructures, and highlights the role of advanced synchrotron x-ray scattering approaches.

  12. Phosphates based pigments for new anti-corrosion application: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Tbib, B.; Eddya, M.; El-Hami, K.

    2018-02-01

    Our study focused on pyrophosphates SrZn1-xMxP2O7 using four series by substituting M with manganese (Mn), cobalt (Co), nickel (Ni), and copper (Cu). They were prepared by reaction in the solid state at 1000 °C for 24 hours and then characterized by X-ray diffraction, which showed that the obtained products are pure. The characterization by UV-visible spectroscopy was used to explain the color of the obtained materials and the optical properties showing the optical energy gap and disorder of these materials. Potential application could be done using the new anti-corrosion pigments based on phosphates.

  13. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  14. Time-sequenced X-ray Observation of a Thermal Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J W; Molitoris, J D; Smilowitz, L

    The evolution of a thermally-initiated explosion is studied using a multiple-image x-ray system. HMX-based PBX 9501 is used in this work, enabling direct comparison to recently-published data obtained with proton radiography [1]. Multiple x-ray images of the explosion are obtained with image spacing of ten microseconds or more. The explosion is simultaneously characterized with a high-speed camera using an interframe spacing of 11 {micro}s. X-ray and camera images were both initiated passively by signals from an embedded thermocouple array, as opposed to being actively triggered by a laser pulse or other external source. X-ray images show an accelerating reacting frontmore » within the explosive, and also show unreacted explosive at the time the containment vessel bursts. High-speed camera images show debris ejected from the vessel expanding at 800-2100 m/s in the first tens of {micro}s after the container wall failure. The effective center of the initiation volume is about 6 mm from the geometric center of the explosive.« less

  15. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    PubMed

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-07

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  16. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study

    NASA Astrophysics Data System (ADS)

    Cho, H.-M.; Ding, H.; Ziemer, BP; Molloi, S.

    2014-12-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3  ×  3 mm2 in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  17. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  18. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles

    PubMed Central

    Mukunthan, KS; Elumalai, EK; Patel, Trupti N; Murty, V Ramachandra

    2011-01-01

    Objective To develop a simple rapid procedure for bioreduction of silver nanoparticles (AgNPs) using aqueous leaves extracts of Catharanthus roseus (C. roseus). Methods Characterization were determined by using UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 67 nm to 48 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centered cubic geometry. Conclusions C. roseus demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). This study provides evidence for developing large scale commercial production of value-added products for biomedical/nanotechnology-based industries. PMID:23569773

  19. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  20. X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo

    2017-12-01

    Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.

  1. 1-Pentyl-3-(4-methoxy-1-naphthoyl)indole and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone: X-ray structures and computational studies

    NASA Astrophysics Data System (ADS)

    Nycz, Jacek E.; Malecki, Grzegorz; Zawiazalec, Marcin; Pazdziorek, Tadeusz; Skop, Patrycja

    2010-12-01

    1-Pentyl-3-(4-methoxy-1-naphthoyl)indole (shortly named JWH-081) ( 1) and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone (shortly named JWH-250) ( 2), are examples of cannabinoids which were characterized by FTIR, UV-Vis, multinuclear NMR spectroscopy and single crystal X-ray diffraction method. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.

  2. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    DOE PAGES

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied viamore » polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.« less

  3. Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays.

    PubMed

    Liu, Yaohua; Ke, Xianglin

    2015-09-23

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces are under intensive investigation, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  4. A study of the discrepant QSO X-ray luminosity function from the HEAO-2 data archive

    NASA Technical Reports Server (NTRS)

    Margon, B.

    1984-01-01

    An in-progress investigation aimed at characterizing the X-ray luminosity of very faint QSOs is described. More than 100 faint, previously uncataloged QSOs which lie in areas imaged in X rays at very high sensitivity were discovered.

  5. Characterization and development of an event-driven hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher

    2015-06-01

    Hybrid CMOS detectors (HCD) have provided great benefit to the infrared and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. Infrared HCDs have already flown on the Hubble Space Telescope and the Wide-Field Infrared Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray detectors offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD detector makes a great step forward in the development of these detectors for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their detector requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS detectors. Next, hybrid CMOS X-ray detectors will be explained including their advantages and disadvantages. The Speedster-EXD detector and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD detector is outlined and the characterization of each parameter on two Speedster-EXD detectors is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for periodicities in its X-ray light curve. iii.

  6. Automated Classification of ROSAT Sources Using Heterogeneous Multiwavelength Source Catalogs

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas; Suchkov, A. A.; Winter, E. L.; Hanisch, R. J.; White, R. L.; Ochsenbein, F.; Derriere, S.; Voges, W.; Corcoran, M. F.

    2004-01-01

    We describe an on-line system for automated classification of X-ray sources, ClassX, and present preliminary results of classification of the three major catalogs of ROSAT sources, RASS BSC, RASS FSC, and WGACAT, into six class categories: stars, white dwarfs, X-ray binaries, galaxies, AGNs, and clusters of galaxies. ClassX is based on a machine learning technology. It represents a system of classifiers, each classifier consisting of a considerable number of oblique decision trees. These trees are built as the classifier is 'trained' to recognize various classes of objects using a training sample of sources of known object types. Each source is characterized by a preselected set of parameters, or attributes; the same set is then used as the classifier conducts classification of sources of unknown identity. The ClassX pipeline features an automatic search for X-ray source counterparts among heterogeneous data sets in on-line data archives using Virtual Observatory protocols; it retrieves from those archives all the attributes required by the selected classifier and inputs them to the classifier. The user input to ClassX is typically a file with target coordinates, optionally complemented with target IDs. The output contains the class name, attributes, and class probabilities for all classified targets. We discuss ways to characterize and assess the classifier quality and performance and present the respective validation procedures. Based on both internal and external validation, we conclude that the ClassX classifiers yield reasonable and reliable classifications for ROSAT sources and have the potential to broaden class representation significantly for rare object types.

  7. Combination of grazing incidence x-ray fluorescence with x-ray reflectivity in one table-top spectrometer for improved characterization of thin layer and implants on/in silicon wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingerle, D.; Schiebl, M.; Streli, C.

    2014-08-15

    As Grazing Incidence X-ray Fluorescence (GIXRF) analysis does not provide unambiguous results for the characterization of nanometre layers as well as nanometre depth profiles of implants in silicon wafers by its own, the approach of providing additional information using the signal from X-ray Reflectivity (XRR) was tested. As GIXRF already uses an X-ray beam impinging under grazing incidence and the variation of the angle of incidence, a GIXRF spectrometer was adapted with an XRR unit to obtain data from the angle dependent fluorescence radiation as well as data from the reflected beam. A θ-2θ goniometer was simulated by combining amore » translation and tilt movement of a Silicon Drift detector, which allows detecting the reflected beam over 5 orders of magnitude. HfO{sub 2} layers as well as As implants in Silicon wafers in the nanometre range were characterized using this new setup. A just recently published combined evaluation approach was used for data evaluation.« less

  8. Characterization of a human tooth with carious lesions using conventional and synchrotron radiation-based micro computed tomography

    NASA Astrophysics Data System (ADS)

    Dziadowiec, Iwona; Beckmann, Felix; Schulz, Georg; Deyhle, Hans; Müller, Bert

    2014-09-01

    In a dental office, every day X rays of teeth within the oral cavity are obtained. Caries induces a mineral loss and, therefore, becomes visible by reduced X-ray absorption. The detailed spatial distribution of the mineral loss, however, is inaccessible in conventional dental radiology, since the dose for such studies is intolerable. As a consequence, such measurements can only be performed after tooth extraction. We have taken advantage of synchrotron radiation-based micro computed tomography to characterize a human tooth with a rather small, natural caries lesion and an artificially induced lesion provoked by acidic etching. Both halves of the tooth were separately visualized from 2400 radiographs recorded at the beam line P07 / PETRA III (HASYLAB at DESY, Hamburg, Germany) with an asymmetric rotation axis at photon energy of 45 keV. Because of the setup, one finds an energy shift in the horizontal plane, to be corrected. After the appropriate three-dimensional registration of the data with the ones of the same crown using the better accessible phoenix nanotom® m of General Electric, Wunstorf, Germany, one can determine the joint histogram, which enable to calibrate the system with the conventional X-ray source.

  9. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  10. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography

    PubMed Central

    Zhu, Xiaohui; Hitchcock, Adam P.; Bazylinski, Dennis A.; Denes, Peter; Joseph, John; Lins, Ulysses; Marchesini, Stefano; Shiu, Hung-Wei; Tyliszczak, Tolek; Shapiro, David A.

    2016-01-01

    Characterizing the chemistry and magnetism of magnetotactic bacteria (MTB) is an important aspect of understanding the biomineralization mechanism and function of the chains of magnetosomes (Fe3O4 nanoparticles) found in such species. Images and X-ray absorption spectra (XAS) of magnetosomes extracted from, and magnetosomes in, whole Magnetovibrio blakemorei strain MV-1 cells have been recorded using soft X-ray ptychography at the Fe 2p edge. A spatial resolution of 7 nm is demonstrated. Precursor-like and immature magnetosome phases in a whole MV-1 cell were visualized, and their Fe 2p spectra were measured. Based on these results, a model for the pathway of magnetosome biomineralization for MV-1 is proposed. Fe 2p X-ray magnetic circular dichroism (XMCD) spectra have been derived from ptychography image sequences recorded using left and right circular polarization. The shape of the XAS and XMCD signals in the ptychographic absorption spectra of both sample types is identical to the shape and signals measured with conventional bright-field scanning transmission X-ray microscope. A weaker and inverted XMCD signal was observed in the ptychographic phase spectra of the extracted magnetosomes. The XMCD ptychographic phase spectrum of the intracellular magnetosomes differed from the ptychographic phase spectrum of the extracted magnetosomes. These results demonstrate that spectro-ptychography offers a superior means of characterizing the chemical and magnetic properties of MTB at the individual magnetosome level. PMID:27930297

  11. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography

    DOE PAGES

    Zhu, Xiaohui; Hitchcock, Adam P.; Bazylinski, Dennis A.; ...

    2016-12-07

    Characterizing the chemistry and magnetism of magnetotactic bacteria (MTB) is an important aspect of understanding the biomineralization mechanism and function of the chains of magnetosomes (Fe 3O 4 nanoparticles) found in such species. Images and X-ray absorption spectra (XAS) of magnetosomes extracted from, and magnetosomes in, whole Magnetovibrio blakemorei strain MV-1 cells have been recorded using soft X-ray ptychography at the Fe 2p edge. A spatial resolution of 7 nm is demonstrated. Precursor-like and immature magnetosome phases in a whole MV-1 cell were visualized, and their Fe 2p spectra were measured. Based on these results, a model for the pathwaymore » of magnetosome biomineralization for MV-1 is proposed. Fe 2p X-ray magnetic circular dichroism (XMCD) spectra have been derived from ptychography image sequences recorded using left and right circular polarization. The shape of the XAS and XMCD signals in the ptychographic absorption spectra of both sample types is identical to the shape and signals measured with conventional bright-field scanning transmission X-ray microscope. A weaker and inverted XMCD signal was observed in the ptychographic phase spectra of the extracted magnetosomes. The XMCD ptychographic phase spectrum of the intracellular magnetosomes differed from the ptychographic phase spectrum of the extracted magnetosomes. Lastly, these results demonstrate that spectro-ptychography offers a superior means of characterizing the chemical and magnetic properties of MTB at the individual magnetosome level.« less

  12. Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography.

    PubMed

    Zhu, Xiaohui; Hitchcock, Adam P; Bazylinski, Dennis A; Denes, Peter; Joseph, John; Lins, Ulysses; Marchesini, Stefano; Shiu, Hung-Wei; Tyliszczak, Tolek; Shapiro, David A

    2016-12-20

    Characterizing the chemistry and magnetism of magnetotactic bacteria (MTB) is an important aspect of understanding the biomineralization mechanism and function of the chains of magnetosomes (Fe 3 O 4 nanoparticles) found in such species. Images and X-ray absorption spectra (XAS) of magnetosomes extracted from, and magnetosomes in, whole Magnetovibrio blakemorei strain MV-1 cells have been recorded using soft X-ray ptychography at the Fe 2p edge. A spatial resolution of 7 nm is demonstrated. Precursor-like and immature magnetosome phases in a whole MV-1 cell were visualized, and their Fe 2p spectra were measured. Based on these results, a model for the pathway of magnetosome biomineralization for MV-1 is proposed. Fe 2p X-ray magnetic circular dichroism (XMCD) spectra have been derived from ptychography image sequences recorded using left and right circular polarization. The shape of the XAS and XMCD signals in the ptychographic absorption spectra of both sample types is identical to the shape and signals measured with conventional bright-field scanning transmission X-ray microscope. A weaker and inverted XMCD signal was observed in the ptychographic phase spectra of the extracted magnetosomes. The XMCD ptychographic phase spectrum of the intracellular magnetosomes differed from the ptychographic phase spectrum of the extracted magnetosomes. These results demonstrate that spectro-ptychography offers a superior means of characterizing the chemical and magnetic properties of MTB at the individual magnetosome level.

  13. Planar small-angle x-ray scattering imaging of phantoms and biological samples

    NASA Astrophysics Data System (ADS)

    Choi, M.; Badano, A.

    2017-04-01

    Coherent small-angle x-ray scattering (SAXS) provides molecular and nanometer-scale structural information. By capturing SAXS data at multiple locations across a sample, we obtained planar images and observed improved contrast given by the difference in the material scattering cross sections. We use phantoms made with 3D printing techniques, with tissue-mimicking plastic (PMMA), and with a highly scattering reference material (AgBe), which were chosen because of their well characterized scattering cross section to demonstrate and characterize the planar imaging of a laboratory SAXS system. We measure 1.07 and 2.14 nm-1 angular intensity maps for AgBe, 9.5 nm-1 for PMMA, and 12.3 nm-1 for Veroclear. The planar SAXS images show material discrimination based on their cross sectional features. The image signal-to-noise ratio (SNR) of each q image was dependent on exposure time and x-ray flux. We observed a lower SNR (91 ± 48) at q angles where no characteristic peaks for either material exist. To improve the visualization of the acquired data by utilizing all q-binned data, we describe a weighted-sum presentation method with a priori knowledge of relevant cross sections to improve the SNR (10 000 ± 6400) over the SNR from a single q-image at 1.07 nm-1 (1100 ± 620). In addition, we describe planar SAXS imaging of a mouse brain slice showing differentiation of tissue types as compared to a conventional absorption-based x-ray imaging technique.

  14. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  15. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J.

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert withmore » a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.« less

  16. The optical lens coupled X-ray in-line phase contrast imaging system for the characterization of low Z materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Lin, Wei; Dai, Fei; Li, Jun; Qi, Xiaobo; Lei, Haile; Liu, Yuanqiong

    2018-05-01

    Due to the high spatial resolution and contrast, the optical lens coupled X-ray in-line phase contrast imaging system with the secondary optical magnification is more suitable for the characterization of the low Z materials. The influence of the source to object distance and the object to scintillator distance on the image resolution and contrast is studied experimentally. A phase correlation algorithm is used for the image mosaic of a serial of X-ray phase contrast images acquired with high resolution, the resulting resolution is less than 1.0 μm, and the whole field of view is larger than 1.4 mm. Finally, the geometric morphology and the inner structure of various weakly absorbing samples and the evaporation of water in the plastic micro-shell are in situ characterized by the optical lens coupled X-ray in-line phase contrast imaging system.

  17. Syntheses, structures and properties of three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers based on 2,2'-dipyridyl-5,5'-dicarboxylate ligands.

    PubMed

    Zhao, Junwei; Cheng, Yamin; Shang, Sensen; Zhang, Fang; Chen, Li; Chen, Lijuan

    2013-12-01

    Three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers [Ln(III)Cu2(I)(Hbpdc)4] · Cl · xH2O [Ln(III) = La(III), x = 8 (1); Ln(III) = Pr(III), x=9 (2); Ln(III) = Eu(III), x = 8 (3)] (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) have been prepared under hydrothermal conditions and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. X-ray diffraction indicates that the isomorphic 1-3 display the two-dimensional sheet structure constructed from [Cu(I)(Hbpdc)2](-) fragments through Ln(3+) connectors. Moreover, the solid-state photoluminescence measurements of 3 indicate that the Eu(III) ions, Hbpdc(-) ligands and Cu(I) cations make contributions to its luminescent properties simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Compact energy dispersive X-ray microdiffractometer for diagnosis of neoplastic tissues

    NASA Astrophysics Data System (ADS)

    Sosa, C.; Malezan, A.; Poletti, M. E.; Perez, R. D.

    2017-08-01

    An energy dispersive X-ray microdiffractometer with capillary optics has been developed for characterizing breast cancer. The employment of low divergence capillary optics helps to reduce the setup size to a few centimeters, while providing a lateral spatial resolution of 100 μm. The system angular calibration and momentum transfer resolution were assessed by a detailed study of a polycrystalline reference material. The performance of the system was tested by means of the analysis of tissue-equivalent samples previously characterized by conventional X-ray diffraction. In addition, a simplified correction model for an appropriate comparison of the diffraction spectra was developed and validated. Finally, the system was employed to evaluate normal and neoplastic human breast samples, in order to determine their X-ray scatter signatures. The initial results indicate that the use of this compact energy dispersive X-ray microdiffractometer combined with a simplified correction procedure is able to provide additional information to breast cancer diagnosis.

  19. Cd(II) and Zn(II) complexes of two new hexadentate Schiff base ligands derived from different aldehydes and ethanol amine; X-ray crystal structure, IR and NMR spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Rezaeivala, Majid; Albeheshti, Leila

    2014-11-01

    Four new [Cd(H2L1)(NO3)]ClO4 (1), [Zn(H2L1)](ClO4)2 (2), [Cd(H2L2)(NO3)]ClO4 (3), and [Zn(H2L2)](ClO4)2 (4), complexes were prepared by the reaction of two new Schiff base ligands and Cd(II) and Zn(II) metal ions in equimolar ratios. The ligands H2L1 and H2L2 were synthesized by reaction of 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde and/or 2-[2-(3-formyl phenoxy)propoxy]benzaldehyde and ethanol amine and characterized by IR, 1H and 13C NMR spectroscopy. All complexes were characterized by IR, 1H and 13C NMR, COSY, and elemental analysis. Also, the complex 1 was characterized by X-ray in addition to the above methods. The X-ray crystal structure of compound 1 showed that all nitrogen and oxygen atoms of ligand (N2O4) and a molecule of nitrate with two donor oxygen atom have been coordinated to the metal ion and the Cd(II) ion is in an eight-coordinate environment that is best described as a distorted dodecahedron geometry.

  20. Measuring the Dust Grains and Distance to X Persei Via Its X-ray Halo

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    2006-09-01

    We propose to observe the X-ray halo of the high mass X-ray binary pulsar X Per to measure interstellar dust grains along the line of sight (LOS) and to determine the distance to X Per. The X-ray halo is formed by scattering from grains along the LOS, which for X Per appear to be concentrated in one molecular cloud. Unlike many other X-ray halo observations, this low-absorption high-latitude sightline is well-characterized from absorption spectroscopy done with HST, Copernicus, and FUSE. This halo observation will measure the distance to the cloud and the dust size distribution in it. We will also be able to determine the distance to X Per by measuring the time delayed pulses in the X-ray halo.

  1. Characterization of the Inner Knot of the Crab: The Site of the Gamma-Ray Flares?

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. Initially X-Ray observations took place once per month when viewing constraints allowed. More recently observations with Chandra and HST have taken place four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. Often Keck observations were obtained. The aim of this program to characterize, in depth, the X-ray, optical, and infrared variations that take place in the nebula, and, by so doing, determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have applied Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features and their behavior. The current status of the project will be discussed highlighting studies of the inner knot and possible correlations with the gamma-ray flares.

  2. Optical tomography as adjunct to x-ray mammography: methods and results

    NASA Astrophysics Data System (ADS)

    Khayat, Mario; Ichalalene, Zahia; Mincu, Niculae; Leblond, Fredéric; Guilman, Olga; Djeziri, Salim

    2007-02-01

    Recent years have seen significant efforts deployed to apply optical imaging techniques in clinical indications. Optical mammography as an adjunct to X-ray mammography is one such application. 3D optical mammography relies on the sensitivity of near-infrared light to endogenous breast chromophores in order to generate in vivo functional views of the breast. This work presents prospective tissue characterization results from a multi-site clinical study targeting optical tomography as an adjunct to conventional mammography. A 2 nd -generation multi-wavelength time-domain acquisition system was used to scan a wide population of women presenting normal or suspicious X-ray mammograms. Application specific algorithms based on a diffusive model of light transport were used to quantify the breast's optical properties and derive 3D images of physiological indices. Using histopathological findings as a gold standard, results confirm that optically derived parameters provide statistically significant discrimination between malignant and benign tissue in wide population of subjects. The methodology developed for case reviews, lesion delineation and characterization allows for better translation of the optical data to the more traditional x-ray paradigm while maintaining efficacy. They also point to the need for guidelines that facilitate correlation of optical data if those results are to be confirmed in a clinical setting.

  3. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles

    PubMed Central

    Ouf, F.-X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X.-J.; Nicolas, C.; Robert, E.; Patanen, M.; Barreda, F.-A.; Sublemontier, O.; Coppalle, A.; Yon, J.; Miserque, F.; Mostefaoui, T.; Regier, T. Z.; Mitchell, J.-B. A.; Miron, C.

    2016-01-01

    Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot’s work function obtained at different combustion conditions. PMID:27883014

  4. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles.

    PubMed

    Ouf, F-X; Parent, P; Laffon, C; Marhaba, I; Ferry, D; Marcillaud, B; Antonsson, E; Benkoula, S; Liu, X-J; Nicolas, C; Robert, E; Patanen, M; Barreda, F-A; Sublemontier, O; Coppalle, A; Yon, J; Miserque, F; Mostefaoui, T; Regier, T Z; Mitchell, J-B A; Miron, C

    2016-11-24

    Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot's work function obtained at different combustion conditions.

  5. VETA x ray data acquisition and control system

    NASA Technical Reports Server (NTRS)

    Brissenden, Roger J. V.; Jones, Mark T.; Ljungberg, Malin; Nguyen, Dan T.; Roll, John B., Jr.

    1992-01-01

    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described.

  6. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  7. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE PAGES

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...

    2016-03-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  8. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  9. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    PubMed Central

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias

    2016-01-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771

  10. X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis

    DOE PAGES

    Ye, Yifan; Kapilashrami, Mukes; Chuang, Cheng-Hao; ...

    2017-02-08

    Some recent advances in synchrotron based x-ray spectroscopy enable materials scientists to emanate fingerprints on important materials properties, e.g., electronic, optical, structural, and magnetic properties, in real-time and under nearly real-world conditions. This characterization, then, in combination with optimized materials synthesis routes and tailored morphological properties could contribute greatly to the advances in solid-state electronics and renewable energy technologies. In connection to this, such perspective reflects the current materials research in the space of emerging energy technologies, namely photocatalysis, with a focus on transition metal oxides, mainly on the Fe 2O 3- and TiO 2-based materials.

  11. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  12. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  13. Glandular radiation dose in tomosynthesis of the breast using tungsten targets.

    PubMed

    Sechopoulos, Ioannis; D'Orsi, Carl J

    2008-10-24

    With the advent of new detector technology, digital tomosynthesis imaging of the breast has, in the past few years, become a technique intensely investigated as a replacement for planar mammography. As with all other x-ray-based imaging methods, radiation dose is of utmost concern in the development of this new imaging technology. For virtually all development and optimization studies, knowledge of the radiation dose involved in an imaging protocol is necessary. A previous study characterized the normalized glandular dose in tomosynthesis imaging and its variation with various breast and imaging system parameters. This characterization was performed with x-ray spectra generated by molybdenum and rhodium targets. In the recent past, many preliminary patient studies of tomosynthesis imaging have been reported in which the x-ray spectra were generated with x-ray tubes with tungsten targets. The differences in x-ray distribution among spectra from these target materials make the computation of new normalized glandular dose values for tungsten target spectra necessary. In this study we used previously obtained monochromatic normalized glandular dose results to obtain spectral results for twelve different tungsten target x-ray spectra. For each imaging condition, two separate values were computed: the normalized glandular dose for the zero degree projection angle (DgN0), and the ratio of the glandular dose for non-zero projection angles to the glandular dose for the zero degree projection (the relative glandular dose, RGD(alpha)). It was found that DgN0 is higher for tungsten target x-ray spectra when compared with DgN0 values for molybdenum and rhodium target spectra of both equivalent tube voltage and first half value layer. Therefore, the DgN0 for the twelve tungsten target x-ray spectra and different breast compositions and compressed breast thicknesses simulated are reported. The RGD(alpha) values for the tungsten spectra vary with the parameters studied in a similar manner to that found for the molybdenum and rhodium target spectra. The surface fit equations and the fit coefficients for RGD(alpha) included in the previous study were also found to be appropriate for the tungsten spectra.

  14. Non Destructive 3D X-Ray Imaging of Nano Structures & Composites at Sub-30 NM Resolution, With a Novel Lab Based X-Ray Microscope

    DTIC Science & Technology

    2006-11-01

    NON DESTRUCTIVE 3D X-RAY IMAGING OF NANO STRUCTURES & COMPOSITES AT SUB-30 NM RESOLUTION, WITH A NOVEL LAB BASED X- RAY MICROSCOPE S H Lau...article we describe a 3D x-ray microscope based on a laboratory x-ray source operating at 2.7, 5.4 or 8.0 keV hard x-ray energies. X-ray computed...tomography (XCT) is used to obtain detailed 3D structural information inside optically opaque materials with sub-30 nm resolution. Applications include

  15. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    NASA Astrophysics Data System (ADS)

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.

    2017-05-01

    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  16. Characterizing the Nano and Micro Structure of Concrete toImprove its Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.

    2009-01-13

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools aremore » shown on this paper.« less

  17. Characterizing the nano and micro structure of concrete to improve its durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.

    2008-10-22

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools willmore » be shown on this paper.« less

  18. Searching for New γ-Ray Blazar Candidates in the Third Palermo BAT Hard X-Ray Catalog with WISE

    NASA Astrophysics Data System (ADS)

    Maselli, A.; Massaro, F.; Cusumano, G.; D'Abrusco, R.; La Parola, V.; Paggi, A.; Segreto, A.; Smith, Howard A.; Tosti, G.

    2013-06-01

    We searched for γ-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the γ-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources and WISE γ-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 γ-ray blazar candidates.

  19. Final Report for X-ray Diffraction Sample Preparation Method Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  20. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  1. X-Ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.

    2015-01-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during soil formation, however, the limited interaction with water and low temperatures may result in the formation of "immature" X-ray amorphous or SRO materials. Perhaps, a similar process contributes to the formation of the high content of X-ray amorphous materials detected on Mars.

  2. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources

    DOE PAGES

    Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.; ...

    2018-04-27

    One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less

  3. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  4. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    NASA Astrophysics Data System (ADS)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  5. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  6. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.

    One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less

  7. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used tomore » better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.« less

  8. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  9. A furnace and environmental cell for the in situ investigation of molten salt electrolysis using high-energy X-ray diffraction.

    PubMed

    Styles, Mark J; Rowles, Matthew R; Madsen, Ian C; McGregor, Katherine; Urban, Andrew J; Snook, Graeme A; Scarlett, Nicola V Y; Riley, Daniel P

    2012-01-01

    This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed.

  10. NMR crystallography of 2-acylamino-6-[1 H]-pyridones: Solid-state NMR, GIPAW computational, and single crystal X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Ośmiałowski, Borys; Kolehmainen, Erkki; Ikonen, Satu; Ahonen, Kari; Löfman, Miika

    2011-12-01

    2-Acylamino-6-[1 H]-pyridones [acyl = RCO, where R = methyl ( 1), ethyl ( 2), iso-propyl ( 3), tert-butyl ( 4), and 1-adamantyl ( 5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a "bridge" between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C dbnd O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreement with each other.

  11. LPE grown LSO:Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.

    2011-08-01

    Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.

  12. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    DOE PAGES

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; ...

    2017-07-04

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Here, our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy “Alloy 33” using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. In conclusion, our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr 2O 4) oxides, wherein the concentration of the FeCr 2O 4 phasemore » decreased from the surface to the bulk-oxide interface.« less

  13. High-rate x-ray spectroscopy in mammography with a CdTe detector: a digital pulse processing approach.

    PubMed

    Abbene, L; Gerardi, G; Principato, F; Del Sordo, S; Ienzi, R; Raso, G

    2010-12-01

    Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the response of the digital detection system both at low (150 cps) and at high photon counting rates (up to 500 kcps) by using monoenergetic x-ray sources and a nonclinical molybdenum anode x-ray tube. Clinical molybdenum x-ray spectrum measurements were also performed by using a pinhole collimator and a custom alignment device. The detection system shows excellent performance up to 512 kcps with an energy resolution of 4.08% FWHM at 22.1 keV. Despite the high photon counting rate (up to 453 kcps), the molybdenum x-ray spectra, measured under clinical conditions, are characterized by a low number of pile-up events. The agreement between the attenuation curves and the half value layer values, obtained from the measured spectra, simulated spectra, and from the exposure values directly measured with an ionization chamber, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research and advanced quality controls in mammography.

  14. Demonstration of x-ray Thomson scattering using picosecond K-α x-ray sources in the characterization of dense heated matter

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Lee, H. J.; ...

    2008-10-31

    Here, we present K-α x-ray Thomson scattering from shock compressed matter for use as a diagnostic in determining the temperature, density, and ionization state with picosecond resolution. The development of this source as a diagnostic as well as stringent requirements for successful K-α x-ray Thomson scattering are addressed. Here, the first elastic and inelastic scattering measurements on a medium size laser facility have been observed. We present scattering data from solid density carbon plasmas with >1X 10 5 photons in the elastic peak that validate the capability of single shot characterization of warm dense matter and the ability to usemore » this scattering source at future free electron lasers and for fusion experiments at the National Ignition Facility (NIF), LLNL.« less

  15. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  16. High-power laser interaction with low-density C–Cu foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, F.; Colvin, J. D.; May, M. J.

    2015-11-15

    We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.

  17. High-power laser interaction with low-density C–Cu foams

    DOE PAGES

    Pérez, F.; Colvin, J. D.; May, M. J.; ...

    2015-11-19

    Here, we study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.

  18. X-ray coherent scattering tomography of textured material (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  19. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  20. The Morphologies and Alignments of Gas, Mass, and the Central Galaxies of CLASH Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Donahue, Megan; Ettori, Stefano; Rasia, Elena; Sayers, Jack; Zitrin, Adi; Meneghetti, Massimo; Voit, G. Mark; Golwala, Sunil; Czakon, Nicole; Yepes, Gustavo; Baldi, Alessandro; Koekemoer, Anton; Postman, Marc

    2016-03-01

    Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova survey with Hubble Space Telescope (CLASH) used weak and strong lensing to measure the distribution of matter within a sample of 25 clusters, 20 of which were deemed to be “relaxed” based on their X-ray morphology and alignment of the X-ray emission with the Brightest Cluster Galaxy. Toward a quantitative characterization of this important sample of clusters, we present uniformly estimated X-ray morphological statistics for all 25 CLASH clusters. We compare X-ray morphologies of CLASH clusters with those identically measured for a large sample of simulated clusters from the MUSIC-2 simulations, selected by mass. We confirm a threshold in X-ray surface brightness concentration of C ≳ 0.4 for cool-core clusters, where C is the ratio of X-ray emission inside 100 h70-1 kpc compared to inside 500 {h}70-1 kpc. We report and compare morphologies of these clusters inferred from Sunyaev-Zeldovich Effect (SZE) maps of the hot gas and in from projected mass maps based on strong and weak lensing. We find a strong agreement in alignments of the orientation of major axes for the lensing, X-ray, and SZE maps of nearly all of the CLASH clusters at radii of 500 kpc (approximately 1/2 R500 for these clusters). We also find a striking alignment of clusters shapes at the 500 kpc scale, as measured with X-ray, SZE, and lensing, with that of the near-infrared stellar light at 10 kpc scales for the 20 “relaxed” clusters. This strong alignment indicates a powerful coupling between the cluster- and galaxy-scale galaxy formation processes.

  1. SU-F-J-51: A Cone-Based Scintillator Detector for IGRT QA for Scattered and Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesten, H; Clasie, B; Jee, K

    Purpose: IGRT commissioning and QA are critical components for precise delivery of proton treatment beams to patients. In order to ensure high quality IGRT, a new cone-based scintillator detector was evaluated for our QA activities for double-scattered and scanning proton modalities. This allows a routine evaluation of the gantry-angle dependent position offset between the radiation and imaging. Methods: The cone-based scintillator detector (XRV-124, Logos Systems, Int’l CA, USA) features a unique configuration of measuring stereotactic paths of proton and x-ray beams in a single setup with arbitrary gantry angles. For the beams-eye-view (BEV) analysis of x-ray crosshair images, a cylindricalmore » representation of the cone image was newly developed. The calibration accuracy was evaluated using different CT resolutions for a range of 55 – 95mm in patient’s cranial direction and ±9mm in the lateral direction. Energy-dependent spot sizes (σ) of pencil beams were characterized and compared to measurements by the MatriXX detector (IBA, Germany). Iso-centric deviations between radiation and x-ray imaging were characterized as a function of gantry angle. Results: The position calibration of the detector was successfully verified with a reproducible positioning by x-ray imaging. The measurements were reproducible within clinical tolerances (±1mm). The spot size vs. energy at zero gantry angle measured with the scintillating cone detector agreed with the MatriXX detector measurements within 17%. Conclusion: The new approach to investigate the accuracy of IGRT and pencil beam properties could successfully be implemented into the QA program. The system will improve efficiency in our QA activities for proton treatments.« less

  2. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowiak, Konrad J.; Wilson, William; James, Simon

    2015-01-15

    A novel approach for the chemo-mechanical characterization of cement-based materials is presented, which combines the classical grid indentation technique with elemental mapping by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). It is illustrated through application to an oil-well cement system with siliceous filler. The characteristic X-rays of major elements (silicon, calcium and aluminum) are measured over the indentation region and mapped back on the indentation points. Measured intensities together with indentation hardness and modulus are considered in a clustering analysis within the framework of Finite Mixture Models with Gaussian component density function. The method is able to successfully isolate themore » calcium-silica-hydrate gel at the indentation scale from its mixtures with other products of cement hydration and anhydrous phases; thus providing a convenient means to link mechanical response to the calcium-to-silicon ratio quantified independently via X-ray wavelength dispersive spectroscopy. A discussion of uncertainty quantification of the estimated chemo-mechanical properties and phase volume fractions, as well as the effect of chemical observables on phase assessment is also included.« less

  3. The development and characterization of a first generation carbon nanotube x-ray based microbeam radiation therapy system

    NASA Astrophysics Data System (ADS)

    Hadsell, Michael John, Jr.

    Microbeam radiation therapy (MRT) is a new type of cancer treatment currently being studied at scattered synchrotron sites throughout the world. It has been shown to be capable of ablating aggressive brain tumors in rats while almost completely sparing the surrounding normal tissue. This promising technique has yet to find its way to the clinic, however, because the radiobiological mechanisms behind its efficacy are still largely unknown. This is partly due to the lack of a compact device that could facilitate more large scale research. The challenges inherent to creating a compact device lie within the structure of MRT, which uses parallel arrays of ultra high-dose, orthovoltage, microplanar beams on the order of 100mum thick and separated by four to ten times their width. Because of focal spot limitations, current commercial orthovoltage devices are simply not capable of creating such arrays at dose rates high enough for effective treatment while maintaining the microbeam pattern necessary to retain the high therapeutic ratio of the technique. Therefore, the development of a compact MRT device using carbon nanotube (CNT) cathode based X-ray technology is presented here. CNT cathodes have been shown to be capable of creating novel focal spot arrays on a single anode while being robust enough for long-term use in X-ray tubes. Using these cathodes, an X-ray tube with a single focal line has been created for the delivery of MRT dose distributions in radiobiological studies on small animals. In this work, the development process and final design of this specialized device will be detailed, along with the optimization and stabilization of its use for small animal studies. In addition, a detailed characterization of its final capabilities will be given; including a comprehensive measurement of its X-ray focal line dimensions, a description and evaluation of its collimator alignment and microbeam dimensions, and a full-scale phantom-based quantification of its dosimetric output. Finally, future project directions will be described briefly along with plans for a second generation device. Based on the results of this work, it is the author's belief that compact CNT MRT devices have definite commercialization potential for radiobiological research.

  4. THE X-RAY DETECTABILITY OF ELECTRON BEAMS ESCAPING FROM THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Hilaire, Pascal; Krucker, Saem; Christe, Steven

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams ({approx}>10{sup 35} electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number ofmore » escaping electrons (above 10 keV) to {approx}>3 x 10{sup 36} for RHESSI, {approx}>3 x 10{sup 35} for Hinode/XRT, and {approx}>10{sup 33} electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.« less

  5. Strain and lattice orientation distribution in SiN/Ge complementary metal–oxide–semiconductor compatible light emitting microstructures by quick x-ray nano-diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahine, G. A.; Schülli, T. U.; Zoellner, M. H.

    2015-02-16

    This paper presents a study of the spatial distribution of strain and lattice orientation in CMOS-fabricated strained Ge microstripes using high resolution x-ray micro-diffraction. The recently developed model-free characterization tool, based on a quick scanning x-ray diffraction microscopy technique can image strain down to levels of 10{sup −5} (Δa/a) with a spatial resolution of ∼0.5 μm. Strain and lattice tilt are extracted using the strain and orientation calculation software package X-SOCS. The obtained results are compared with the biaxial strain distribution obtained by lattice parameter-sensitive μ-Raman and μ-photoluminescence measurements. The experimental data are interpreted with the help of finite element modelingmore » of the strain relaxation dynamics in the investigated structures.« less

  6. Temporal cross-correlation of x-ray free electron and optical lasers using soft x-ray pulse induced transient reflectivity.

    PubMed

    Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W

    2012-05-07

    The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.

  7. X-ray and dielectric characterization of Co doped tetragonal BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Bujakiewicz-Koronska, R.; Vasylechko, L.; Markiewicz, E.; Nalecz, D. M.; Kalvane, A.

    2017-01-01

    The crystal structure modifications of BaTiO3 induced by cobalt doping were studied. The polycrystalline (1 - x)BaTiO3 + xCo2O3 samples, with x ≤ 10 wt.%, were prepared by high temperature sintering conventional method. According to X-ray phase and structural characterization, performed by full-profile Rietveld refinement technique, all synthesized samples showed tetragonal symmetry perovskite structure with minor amount of parasitic phases. Pure single-phase composition has been detected only in the low level of doping BaTiO3. It was indicated that substitution of Co for the Ti sites in the (1 - x)BaTiO3 + xCo2O3 series led to decrease of tetragonality (c/a) of the BaTiO3 perovskite structure. This effect almost vanished in the (1 - x)BaTiO3 + xCo2O3 samples with nominal Co content higher than ∼1 wt.%, in which precipitation of parasitic Co-containing phases CoO and Co2TiO4 has been observed. Based on the results, the solubility limit of Co in Ti sub-lattice in the (1 - x)BaTiO3 + xCo2O3 series is estimated as x = 0.75 wt.%.

  8. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  9. Future Development Trajectories for Imaging X-rays Spectrometers Based on Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Bandler, Simon R.

    2013-01-01

    Future development trajectories for imaging x-ray spectrometers based on microcalorimeters. Since their invention 30 years ago, the capability of X-ray microcalorimeters has increased steadily, with continual improvements in energy resolution, speed, and array size. Arrays of up to 1024 pixels have been produced, and resolution better than 1 eV at 1.5 keV has been achieved. These detectors can be optimized for the highest priority science, such as designing for the highest resolving power at low energies at the expense of dynamic range, or the greatest focal-plane coverage at the expense of speed. Three types of X-ray microcalorimeters presently dominate the field, each characterized by the thermometer technology. The first two types use temperature-sensitive resistors: semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a magnetically coupled thermometer, and is at an earlier stage of development than the other two. The Soft X-ray Spectrometer (SXS) on Astro-H, expected to launch in 2015, will use an array of silicon thermistors with HgTe X-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays. Kilopixel arrays of the superconducting calorimeters are being produced, and much larger arrays may require the non-dissipative advantage of magnetically coupled thermometers. I will project the development trajectories of these detectors and their read-out technologies and assess what their capabilities and limitations will be 10 - 20 years from now.

  10. A mirror for lab-based quasi-monochromatic parallel x-rays

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  11. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  12. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations

    PubMed Central

    Li, Xinhua; Shi, Jim Q.; Zhang, Da; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2015-01-01

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the geant4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization. PMID:26520720

  13. Direct measurement of mammographic X-ray spectra with a digital CdTe detection system.

    PubMed

    Abbene, Leonardo; Gerardi, Gaetano; Principato, Fabio; Del Sordo, Stefano; Raso, Giuseppe

    2012-01-01

    In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate X-ray spectroscopy in mammography (1-30 keV). The DPP system performs a height and shape analysis of the detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of the characterization of the detection system both at low and high photon counting rates by using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out by using a pinhole collimator and a custom alignment device. A comparison with the attenuation curves and the half value layer values, obtained from the measured and simulated spectra, from an ionization chamber and from a solid state dosimeter, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research, calibration of dosimeters and advanced quality controls in mammography.

  14. Dynamic and static structure studies of colloidal suspensions with XPCS, SAXS and XNFS

    NASA Astrophysics Data System (ADS)

    Lu, Xinhui

    In the first project, I studied the onset of structural arrest and glass formation in a suspension of silica nanoparticles in a water-lutidine binary mixture near its consolute point using X-ray Photon Correlation Spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS). I obtained the temperature evolution of the static and dynamic structure, revealing that glass transitions occur both on cooling and on heating, and an unusual logarithmic relaxation within the intermediate liquid between the two glasses, as predicted by mode-coupling theory. In another project, I implemented and exploited the recently-introduced, coherence-based technique of X-ray Near-Field Speckle (XNFS) to characterize the structure and dynamics of micrometer-sized particles. In XNFS, the measured speckles originate from the interference between the incident and scattered beams, and enable truly ultra-small angle x-ray scattering measurements with a simple setup. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrated its capability of studying static structures and dynamics in longer length scale than traditional far field x-ray techniques by measuring dilute silica and polystyrene samples. We also discussed the limitation of this technique.

  15. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    PubMed

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  16. Phased Contrast X-Ray Imaging

    ScienceCinema

    Miller, Erin

    2018-02-07

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  17. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  18. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  19. EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures

    NASA Astrophysics Data System (ADS)

    Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank

    2018-03-01

    The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.

  20. Non-destructive in situ study of "Mad Meg" by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Van Pevenage, Jolien; De Langhe, Kaat; De Wolf, Robin; Vekemans, Bart; Vincze, Laszlo; Vandenabeele, Peter; Martens, Maximiliaan P. J.

    2014-07-01

    "Mad Meg", a figure of Flemish folklore, is the subject of a famous oil-on-panel painting by the Flemish renaissance artist Pieter Bruegel the Elder, exhibited in the Museum Mayer van den Bergh (Antwerp, Belgium). This article reports on the in situ chemical characterization of this masterpiece by using currently available state-of-the-art portable analytical instruments. The applied non-destructive analytical approach involved the use of a) handheld X-ray fluorescence instrumentation for retrieving elemental information and b) portable X-ray fluorescence/X-ray diffraction instrumentation and laser-based Raman spectrometers for obtaining structural/molecular information. Next to material characterization of the used pigments and of the different preparation layers of the painting, also the verification of two important historical iconographic hypotheses is performed concerning the economic way of painting by Brueghel, and whether or not he used blue smalt pigment for painting the boat that appears towards the top of the painting. The pigments identified are smalt pigment (65% SiO2 + 15% K2O + 10% CoO + 5% Al2O3) for the blue color present in all blue areas of the painting, probably copper resinate for the green colors, vermillion (HgS) as red pigment and lead white is used to form different colors. The comparison of blue pigments used on different areas of the painting gives no differences in the elemental fingerprint which confirms the existing hypothesis concerning the economic painting method by Bruegel.

  1. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe 2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe 2 O 4. A phase pure tetragonal CuFe 2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structuremore » (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  2. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    PubMed

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  3. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    NASA Astrophysics Data System (ADS)

    Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.

    2014-11-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  4. Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity.

    PubMed

    Wan, Caichao; Li, Jian

    2016-08-01

    Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ultrasonically-enhanced preparation, characterization of CaFe-layered double hydroxides with various interlayer halide, azide and oxo anions (CO32-, NO3-, ClO4-).

    PubMed

    Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István

    2018-01-01

    An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  7. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    PubMed

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  8. Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with < 3.0 eV full-width-half-maximum energy resolution at 6 keV and at count-rates of up to 50 counts/pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument.

  9. Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.

    2008-11-01

    Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.

  10. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin

    We use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated and therebymore » the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  11. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin

    Here, we use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated andmore » thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  12. Crystals for krypton helium-alpha line emission microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Jeffrey A.; Haugh, Michael J.

    2018-04-17

    A system for reflecting and recording x-ray radiation from an x-ray emitting event to characterize the event. A crystal is aligned to receive radiation along a first path from an x-ray emitting event. Upon striking the crystal, the x-ray reflects from the crystal along a second path due to a reflection plane of the crystal defined by one of the following Miller indices: (9,7,3) or (11,3,3). Exemplary crystalline material is germanium. The x-rays are reflected to a detector aligned to receive reflected x-rays that are reflected from the crystal along the second path and the detector generates a detector signalmore » in response to x-rays impacting the detector. The detector may include a CCD electronic detector, film plates, or any other detector type. A processor receives and processes the detector signal to generate reflection data representing the x-rays emitted from the x-ray emitting event.« less

  13. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE PAGES

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin; ...

    2017-09-05

    Here, we use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated andmore » thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  14. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  15. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials.

    PubMed

    Alonso-Sierra, S; Velázquez-Castillo, R; Millán-Malo, B; Nava, R; Bucio, L; Manzano-Ramírez, A; Cid-Luna, H; Rivera-Muñoz, E M

    2017-11-01

    Hydroxyapatite-based materials have been used for dental and biomedical applications. They are commonly studied due to their favorable response presented when used for replacement of bone tissue. Those materials should be porous enough to allow cell penetration, internal tissue growth, vascular incursion and nutrient supply. Furthermore, their morphology should be designed to guide the growth of new bone tissue in anatomically applicable ways. In this work, the mechanical performance and 3D X-ray microtomography (X-ray μCT) study of a biomimetic, organic-inorganic composite material, based on hydroxyapatite, with physicochemical, structural, morphological and mechanical properties very similar to those of natural bone tissue is reported. Ceramic pieces in different shapes and several porous sizes were produced using a Modified Gel Casting Method. Pieces with a controlled and 3D hierarchical interconnected porous structure were molded by adding polymethylmethacrylate microspheres. Subsequently, they were subject to a thermal treatment to remove polymers and to promote a sinterization of the ceramic particles, obtaining a HAp scaffold with controlled porosity. Then, two different organic phases were used to generate an organic-inorganic composite material, so gelatin and collagen, which was extracted from bovine tail, were used. The biomimetic organic-inorganic composite material was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and 3D X-ray microtomography techniques. Mechanical properties were characterized in compression tests, obtaining a dramatic and synergic increment in the mechanical properties due to the chemical and physical interactions between the two phases and to the open-cell cellular behavior of the final composite material; the maximum compressive strength obtained corresponds to about 3 times higher than that reported for natural cancellous bone. The pore size distribution obtained could be capable to allow cell penetration, internal tissue in-growth, vascular incursion and nutrient supply and this material has tremendous potential for use as a replacement of bone tissue or in the manufacture and molding of prosthesis with desired shapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique offers an accurate and efficient way to calibrate the energy response of a photon-counting detector. PMID:25471962

  17. Electrochemical characterization of nano-sized Pd-based catalysts as cathode materials in direct methanol fuel cells.

    PubMed

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.

  18. Operando characterization of batteries using x-ray absorption spectroscopy: advances at the beamline XAFS at synchrotron Elettra

    NASA Astrophysics Data System (ADS)

    Aquilanti, Giuliana; Giorgetti, Marco; Dominko, Robert; Stievano, Lorenzo; Arčon, Iztok; Novello, Nicola; Olivi, Luca

    2017-02-01

    X-ray absorption spectroscopy is a synchrotron radiation based technique that is able to provide information on both local structure and electronic properties in a chemically selective manner. It can be used to characterize the dynamic processes that govern the electrochemical energy storage in batteries, and to shed light on the redox chemistry and changes in structure during galvanostatic cycling to design cathode materials with improved properties. Operando XAS studies have been performed at beamline XAFS at Elettra on different systems. For Li-ion batteries, a multiedge approach revealed the role of the different cathode components during the charge and discharge of the battery. In addition, Li-S batteries for automotive applications were studied. Operando sulfur K-edge XANES and EXAFS analysis was used to characterize the redox chemistry of sulfur, and to relate the electrochemical mechanism to its local structure.

  19. Synthesis and characterization of Cu3Se2 nanofilms by an underpotential deposition based electrochemical codeposition technique

    NASA Astrophysics Data System (ADS)

    Aydın, Zehra Yazar; Abacı, Serdar

    2017-12-01

    The Cu3Se2 nanofilms were synthesized with underpotential deposition based electrochemical codeposition technique for the first time in the literature. The electrochemical behaviors of copper and selenium were investigated in 0.1 M H2SO4 on Au electrode. The effects of concentration and scan rate on the electrochemical behavior of selenium were studied. The electrochemical behaviors in underpotential deposition and bulk regions of the Cu-Se system were investigated in acidic solution by cyclic voltammetry and electrolysis techniques. X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, and ultraviolet and visible absorption spectroscopy techniques were used for characterization of synthesized films. According to the X-ray photoelectron spectroscopy spectrum, Cu/Se ratio was determined to be approximately 3/2. Copper selenide nanofilms are two phases and polycrystalline according to X-ray diffraction. The films mainly formed tetragonal Cu3Se2 (umangite mineral structure) structure and the particle size was approximately 45.95 nm. Scanning electron microscopy images showed that Cu3Se2 nanofilms consisted of uniform, nano-sizes and two-dimensional. It was found through AFM that the surface roughness of the film was 6.173 nm, with a mean particle size of around 50 nm. Depending on the deposition time, the band gaps of the Cu3Se2 films were in the range of 2.86-3.20 eV. Three characteristic vibrational modes belonging to Cu3Se2 nanofilms were recorded in the Raman spectrum.

  20. The X-ray Detectability of Electron Beams Escaping from the Sun

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Krucker, Säm; Christe, Steven; Lin, Robert P.

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (gsim1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to gsim3 × 1036 for RHESSI, gsim3 × 1035 for Hinode/XRT, and gsim1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.

  1. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both radiograph and CT. Conclusions: Using the phase retrieval and dewrapping methods proposed to deal with the phenomenon of twin peaks in PSCs and phase wrapping, the performance of grating-based x-ray differential phase contrast radiography and CT can be significantly improved.« less

  2. Synthesis, X-ray crystallography, thermal studies, spectroscopic and electrochemistry investigations of uranyl Schiff base complexes.

    PubMed

    Asadi, Zahra; Shorkaei, Mohammad Ranjkesh

    2013-03-15

    Some tetradentate salen type Schiff bases and their uranyl complexes were synthesized and characterized by UV-Vis, NMR, IR, TG, C.H.N. and X-ray crystallographic studies. From these investigations it is confirmed that a solvent molecule occupied the fifth position of the equatorial plane of the distorted pentagonal bipyramidal structure. Also, the kinetics of complex decomposition by using thermo gravimetric methods (TG) was studied. The thermal decomposition reactions are first order for the studied complexes. To examine the properties of uranyl complexes according to the substitutional groups, we have carried out the electrochemical studies. The electrochemical reactions of uranyl Schiff base complexes in acetonitrile were reversible. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Comparison of Ti-Based Coatings on Silicon Nanowires for Phosphopeptide Enrichment and Their Laser Assisted Desorption/Ionization Mass Spectrometry Detection

    PubMed Central

    Kurylo, Ievgen; Hamdi, Abderrahmane; Addad, Ahmed; Coffinier, Yannick

    2017-01-01

    We created different TiO2-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO2 based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum. PMID:28914806

  4. Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode

    PubMed Central

    Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T. T.; Chua, Daniel H. C.; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken

    2013-01-01

    Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized. PMID:24152932

  5. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  6. Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids.

    PubMed

    Said, Zafar; Allagui, Anis; Abdelkareem, Mohammad Ali; Alawadhi, Hussain; Elsaid, Khaled

    2018-06-15

    Carbon-based nanofluids are viewed as promising thermal fluids for heat transfer applications. However, other properties, such as electrical conductivity and electrochemical behavior, are usually overlooked and rarely investigated despite their importance for the overall performance characterization of a given application. In this study, we synthesized PAN-based carbon nanofibers (CNF) by electrospinning, and characterized them using electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Thermoelectrical and electrochemical measurements were carried out on nanofluids. We found that, although CNF nanofluids exhibit good thermal and electrical properties with a negligible corrosive effect, the suspensions tend to sediment within a few days. However, acid treatment of CNF (F-CNF), which resulted in the shortening of the fibers and the appearance of surface-oxygenated species, made F-CNF-based nanofluids exhibit superior stability in water that extended for more than 90 days, with consistent and superior thermal and electrical properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Synthesis and Characterization of Highly Crystalline Graphene Aerogels

    DOE PAGES

    Worsley, Marcus A.; Pham, Thang T.; Yan, Aiming; ...

    2014-10-06

    Aerogels are used in a broad range of scientific and industrial applications due to their large surface areas, ultrafine pore sizes, and extremely low densities. Recently, a large number of reports have described graphene aerogels based on the reduction of graphene oxide (GO). Though these GO-based aerogels represent a considerable advance relative to traditional carbon aerogels, they remain significantly inferior to individual graphene sheets due to their poor crystallinity. Here, we report a straightforward method to synthesize highly crystalline GO-based graphene aerogels via high-temperature processing common in commercial graphite production. The crystallization of the graphene aerogels versus annealing temperature ismore » characterized using Raman and X-ray absorption spectroscopy, X-ray diffraction, and electron microscopy. Nitrogen porosimetry shows that the highly crystalline graphene macrostructure maintains a high surface area and ultrafine pore size. Because of their enhanced crystallinity, these graphene aerogels exhibit a ~200 °C improvement in oxidation temperature and an order of magnitude increase in electrical conductivity.« less

  8. Characterization of composite materials based on cement-ceramic powder blended binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulovaná, Tereza; Pavlík, Zbyšek

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less

  9. Ronchi test for characterization of X-ray nanofocusing optics and beamlines.

    PubMed

    Uhlén, Fredrik; Rahomäki, Jussi; Nilsson, Daniel; Seiboth, Frank; Sanz, Claude; Wagner, Ulrich; Rau, Christoph; Schroer, Christian G; Vogt, Ulrich

    2014-09-01

    A Ronchi interferometer for hard X-rays is reported in order to characterize the performance of the nanofocusing optics as well as the beamline stability. Characteristic interference fringes yield qualitative data on present aberrations in the optics. Moreover, the visibility of the fringes on the detector gives information on the degree of spatial coherence in the beamline. This enables the possibility to detect sources of instabilities in the beamline like vibrations of components or temperature drift. Examples are shown for two different nanofocusing hard X-ray optics: a compound refractive lens and a zone plate.

  10. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array.

    PubMed

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Mancini, Derrick C; Ilavsky, Jan

    2015-05-01

    The needs both for increased experimental throughput and for in operando characterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to follow the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample under identical experimental conditions in simultaneous measurements. In the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around the world.

  11. Characterization of gallium arsenide X-ray mesa p-i-n photodiodes at room temperature

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Meng, X.; Ng, J. S.; Barnett, A. M.

    2016-03-01

    Two GaAs mesa p+-i-n+ photodiodes intended for photon counting X-ray spectroscopy, having an i layer thickness of 7 μm and diameter of 200 μm, have been characterized electrically, for their responsivity at the wavelength range 580 nm to 980 nm and one of them for its performance at detection of soft X-rays, at room temperature. Dark current and capacitance measurements as a function of applied forward and reverse bias are presented. The results show low leakage current densities, in the range of nA/cm2 at the maximum internal electric field (22 kV/cm). The unintentional doping concentration of the i layer, calculated from capacitance measurements, was found to be <1014 cm-3. Photocurrent measurements were performed under visible and near infrared light illumination for both diodes. The analysis of these measurements suggests the presence of a non-active (dead) layer (0.16 μm thickness) at the p+ side top contact interface, where the photogenerated carriers do not contribute to the photocurrent, possibly due to recombination. One of the diodes, D1, was also characterized as detector for room temperature photon counting X-ray spectroscopy; the best energy resolution achieved (FWHM) at 5.9 keV was 745 eV. The noise analysis of the system, based on spectra obtained at different shaping times and applied reverse biases, showed that the dominant source of noise is the dielectric noise. It was also calculated that there was at least (165±24) eV charge trapping noise at 0 V.

  12. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  13. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    PubMed Central

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS were found to be different due to the difference in the tomosynthesis image reconstruction algorithms. Conclusions: It is feasible to simultaneously generate x-ray differential phase contrast, phase contrast, and absorption contrast tomosynthesis images using a grating-based data acquisition setup. The method shows promise in improving the visibility of several low-density materials and therefore merits further investigation. PMID:24387511

  14. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Sio, H.; Gatu Johnson, M.; Birkel, A.; Doeg, E.; Frankel, R.; Kabadi, N. V.; Lahmann, B.; Manzin, M.; Simpson, R. A.; Parker, C. E.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Hahn, K.; Ruiz, C. L.; Sangster, T. C.; Hilsabeck, T.

    2017-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV, linear electrostatic ion accelerator; DT and DD neutron sources; and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s- 1 are routinely achieved. The DT and DD neutron sources generate up to 6×108 and 1×107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  15. Synthesis, characterization and dissolution of three pharmaceutical cocrystals based on deferiprone

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Tian, Yuyang; Jia, Jiangtao; Zhang, Tingting; Zhu, Guangshan

    2016-03-01

    In this paper we present three new cocrystals based on deferiprone which is the first oral medicine as iron chelator. Solitary deferiprone possesses some known problems due to its good solubility and frequent dosing side effects. For these three novel co crystals, deferiprone is the active pharmaceutical ingredient (API), p-hydroxybenzoic acid (1, C7H9NO2·C7H6O3), 2, 5-dihydroxybenzoic acid (2, C7H9NO2·C7H6O4) and maleic acid (3, C7H9NO2·C4H4O4) are used as cocrystal formers (CCFs), respectively. Their structures were characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD) analysis, thermogravimetric analyses (TGA), differential thermal analysis (DTA), elemental analysis (EA) and infrared spectral analysis (IR). Single crystal X-ray diffraction demonstrates that all three cocrystals (1-3) possess strong hydrogen-bondings assembled through hydroxyl of API and carboxylic acids of CCFs. The PXRD results indicate their high purity of as-synthesized samples. TGA, DTA, EA, IR and dissolution study of API and cocrystals were also measured and discussed, respectively. The results suggest that the cocrystals exhibit low dissolution rates comparing with solitary deferiprone, which is very advantageous for the oral medicine with frequent dosing side effects.

  16. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong

    2014-12-01

    Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.

  17. Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.

    PubMed

    Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic

    2009-12-21

    The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.

  18. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu; Konstantinidis, Anastasios C.

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterizedmore » and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for microcalcifications was observed using the Dexela 2923 MAM CMOS APS x-ray imager at a lower MGD (2.0 mGy). Conclusions: The Dexela 2923 MAM CMOS APS x-ray imager is capable to achieve a high imaging performance at spatial frequencies up to 6.7 lp/mm. Microcalcifications of 165 μm are distinguishable based on reported data and their modeling results due to the small pixel pitch of 75 μm. At the same time, potential dose reduction is expected using the studied CMOS APS x-ray imager.« less

  19. X-ray characterization of solid small molecule organic materials

    DOEpatents

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  20. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  1. The ROSAT Deep Survey. 2; Optical Identification, Photometry and Spectra of X-Ray Sources in the Lockman Field

    NASA Technical Reports Server (NTRS)

    Schmidt, M.; Hasinger, G.; Gunn, J.; Schneider, D.; Burg, R.; Giacconi, R.; Lehmann, I.; MacKenty, J.; Truemper, J.; Zamorani, G.

    1998-01-01

    The ROSAT Deep Survey includes a complete sample of 50 X-ray sources with fluxes in the 0.5 - 2 keV band larger than 5.5 x 10(exp -15)erg/sq cm/s in the Lockman field (Hasinger et al., Paper 1). We have obtained deep broad-band CCD images of the field and spectra of many optical objects near the positions of the X-ray sources. We define systematically the process leading to the optical identifications of the X-ray sources. For this purpose, we introduce five identification (ID) classes that characterize the process in each case. Among the 50 X-ray sources, we identify 39 AGNs, 3 groups of galaxies, 1 galaxy and 3 galactic stars. Four X-ray sources remain unidentified so far; two of these objects may have an unusually large ratio of X-ray to optical flux.

  2. Polymorphism of a new Mannich base - [-4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol

    NASA Astrophysics Data System (ADS)

    Ayeni, Ayowole O.; Watkins, Gareth M.; Hosten, Eric C.

    2018-05-01

    Two polymorphs (forms I and II) of a new Mannich base 4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol have been isolated and characterized by single crystal and powder (experimental and theoretical) X-ray diffraction, thermal analysis (differential scanning calorimetry), Fourier transform infrared spectroscopy. 1H and 13C nuclear magnetic resonance spectroscopy was employed in characterising the new Mannich base. Single crystal X-ray diffraction revealed that the two polymorphs contain different conformers of the Mannich base whose hydrogen bonding schemes and packing arrangements in their respective crystals are different. Thermal analysis led to the conclusion that the two polymorphs are enantiotropically related, with a transition temperature of 138.5 °C.

  3. Characterization and application of automated in-vacuum PIXE/EBS system for direct analysis of chloride and sulfate ions attack in cementitious materials

    NASA Astrophysics Data System (ADS)

    Rihawy, M. S.; Alwazzeh, M.; Abbas, K.

    2018-01-01

    Ion beam analysis (IBA) techniques (Particle Induced X-ray Emission, PIXE and Elastic Backscattering Spectrometry, EBS), were applied to investigate chloride and sulfate ions diffusion into laboratory prepared mortar samples. Development and characterization of an automated in-vacuum macro PIXE/EBS system is thoroughly discussed. Depth profile information of both chloride and sulfate ions in laboratory prepared mortar samples, after immersion in sea water for nine months, was rapidly and easily obtained at fairly low cost and with standardless analysis, demonstrating the value of the application of IBA to elemental depth profiling in cementitious materials. Chloride and sulfate depth profiles were obtained for two sets of mortar samples, one prepared with different water/cement (W/C) ratios and the other with different sand/cement (S/C) ratios. Results showed higher diffusion rates of both chloride and sulfate ions when both ratios are increased. Additionally, the W/C ratio has a stronger influence in both sulfate and chloride penetration than the S/C ratio, and chloride ions penetrate faster than sulfates. Advantages and limitations of applying IBA techniques in this investigation are discussed. The comparison between PIXE and other X-ray based analytical techniques, namely X-ray fluorescence (XRF) and energy and wavelength dispersive X-rays (EDX/WDX), as well as other traditional wet chemical methods is reviewed, and industrial applications are discussed.

  4. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  5. Curved focusing crystals for hard X-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, C., E-mail: ferrari@imem.cnr.it; Buffagni, E.; Bonnini, E.

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  6. Soft X-ray Foucault test: A path to diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.

    1994-08-01

    We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.

  7. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori

    2003-01-01

    We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.

  8. X-ray irradiation-induced structural changes on Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Bardi, N.; Jurewicz, I.; King, A. K.; Alkhorayef, M. A.; Bradley, D.; Dalton, A. B.

    2017-11-01

    Dosimetry devices based on Carbon Nanotubes are a promising new technology. In particular using devices based on single wall Carbon Nanotubes may offer a tissue equivalent response with the possibility for device miniaturisation, high scale manufacturing and low cost. An important precursor to device fabrication requires a quantitative study of the effects of X-ray radiation on the physical and chemical properties of the individual nanotubes. In this study, we concentrate on the effects of relatively low doses, 20 cGy and 45 cGy , respectively. We use a range of characterization techniques including scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to quantify the effects of the radiation dose on inherent properties of the nanotubes. Specifically we find that the radiation exposure results in a reduction in the sp2 nature of the nanotube bond structure. Moreover, our analysis indicates that the exposure results in nanotubes that have an increased defect density which ultimately effects the electrical properties of the nanotubes.

  9. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    DOE PAGES

    Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.; ...

    2015-12-09

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less

  10. X-ray spectroscopic characterization of Co(IV) and metal–metal interactions in Co 4O 4: Electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadt, Ryan G.; Hayes, Dugan; Brodsky, Casey N.

    2016-08-12

    In this paper, the formation of high-valent states is a key factor in making highly active transition metal-based catalysts of the oxygen-evolving reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which is difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co 4O 4 cubanes, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combinationmore » of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allow Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the ligand field environment and covalency of the t 2g-based redox active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co 4O 4. Guided by the data, calculations show electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co 4O 4 to CoM 3O 4 structures (M = redox-inactive metal) defines electronic structure contri-butions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E 0 over hundreds of mVs.« less

  11. Exploring interface morphology of a deeply buried layer in periodic multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar; Srivastava, A. K.; Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in

    2016-06-27

    Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection conditionmore » is used to probe the different constituent layers of the W- B{sub 4}C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B{sub 4}C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.« less

  12. Parametric studies and characterization measurements of x-ray lithography mask membranes

    NASA Astrophysics Data System (ADS)

    Wells, Gregory M.; Chen, Hector T. H.; Engelstad, Roxann L.; Palmer, Shane R.

    1991-08-01

    The techniques used in the experimental characterization of thin membranes are considered for their potential use as mask blanks for x-ray lithography. Among the parameters of interest for this evaluation are the film's stress, fracture strength, uniformity of thickness, absorption in the x-ray and visible spectral regions and the modulus and grain structure of the material. The experimental techniques used for measuring these properties are described. The accuracy and applicability of the assumptions used to derive the formulas that relate the experimental measurements to the parameters of interest are considered. Experimental results for silicon carbide and diamond films are provided. Another characteristic needed for an x-ray mask carrier is radiation stability. The number of x-ray exposures expected to be performed in the lifetime of an x-ray mask on a production line is on the order of 107. The dimensional stability requirements placed on the membranes during this period are discussed. Interferometric techniques that provide sufficient sensitivity for these stability measurements are described. A comparison is made between the different techniques that have been developed in term of the information that each technique provides, the accuracy of the various techniques, and the implementation issues that are involved with each technique.

  13. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  14. Synthesis, characterization and crystal structure of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata

    2018-03-01

    The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.

  15. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  16. Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-09-01

    Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.

  17. X-ray absorption and Mössbauer spectroscopies characterization of iron nanoclusters prepared by the gas aggregation technique.

    PubMed

    Sánchez-Marcos, J; Laguna-Marco, M A; Martínez-Morillas, R; Céspedes, E; Menéndez, N; Jiménez-Villacorta, F; Prieto, C

    2012-11-01

    Partially oxidized iron nanoclusters have been prepared by the gas-phase aggregation technique with typical sizes of 2-3 nm. This preparation technique has been reported to obtain clusters with interesting magnetic properties such as very large exchange bias. In this paper, a sample composition study carried out by Mössbauer and X-ray absorption spectroscopies is reported. The information reached by these techniques, which is based on the iron short range order, results to be an ideal way to have a characterization of the whole sample since the obtained data are an average over a very large amount of the clusters. In addition, our results indicate the presence of ferrihydrite, which is a compound typically ignored when studying this type of systems.

  18. Mineralogical Characterization of Copper Slag from Tongling Nonferrous Metals Group China

    NASA Astrophysics Data System (ADS)

    Chun, Tiejun; Ning, Chao; Long, Hongming; Li, Jiaxin; Yang, Jialong

    2016-09-01

    In this paper, the mineralogical characterization of typical copper slag supplied by the Tongling Nonferrous Metals Group China was performed based on x-ray fluorescence, x-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy. The results show that the dominant phases of the slag are fayalite, glassy substance and magnetite. The minor accessory phases consist of copper matte, metallic copper and other complex lead and zinc minerals. The contents of iron, copper, lead and zinc in copper slag are 40.21%, 0.79%, 0.24%, and 2.80%, respectively. The mineralogy of copper slag indicates that these valuable elements are difficult to recover by beneficiation processes due to the complicated occurrences. Instead, the pyro-metallurgical processes appear promising in recovering the valuable metals from copper slag.

  19. Synthesis and physico-chemical characterization of a polysialate-hydroxyapatite composite for potential biomedical application

    NASA Astrophysics Data System (ADS)

    Zoulgami, M.; Lucas-Girot, A.; Michaud, V.; Briard, P.; Gaudé, J.; Oudadesse, H.

    2002-09-01

    New composite materials based on aluminosilicate materials were developed to be used in orthopaedic or maxillo-facial surgery. They are called geopolymers or polysialate-siloxo (PSS) and were studied alone or mixed with hydroxyapatite (HAP). The properties of these materials were investigated for potential use in biological or surgery applications. In this work, the chemistry involved in materials preparation was described. Samples were characterized by some physico-chemical methods like X-ray diffraction (XRD), infrared spectrometry (IR) and electron dispersion X-ray spectrometry (EDX). Results indicate that the mixing hydroxyapatite-geopolymer (PSS) leads to a neutral porous composite material with interesting physico-chemical properties. A preliminary evaluation of its cytotoxicity reveals an harmlessness towards fibroblasts. These properties allow to envisage this association as a potential biomaterial.

  20. Pulsed Gamma Rays From The Original Millisecond And Black Widow Pulsars: A Case For Caustic Radio Emission?

    DOE PAGES

    Guillemot, L.; Johnson, T. J.; Venter, C.; ...

    2011-12-12

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, con rming the X-ray emission properties of PSR B1937+21 and nding evidence (~ 4σ) for pulsed emission from PSR B1957+20 for the rst time. In both cases the gamma-ray emission pro le is characterized bymore » two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.« less

  1. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; hide

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  2. A detailed X-ray investigation of ζ Puppis. IV. Further characterization of the variability

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Ramiaramanantsoa, Tahina; Stevens, Ian R.; Howarth, Ian D.; Moffat, Anthony F. J.

    2018-01-01

    Context. One of the optically brightest and closest massive stars, ζ Pup, is also a bright X-ray source. Previously, its X-ray emission was found to be variable with light curves harbouring "trends" with a typical timescale longer than the exposure length, i.e. >1 d. The origin of these changes was proposed to be linked to large-scale structures in the wind of ζ Pup, but further characterization of the variability at high energies was needed to investigate this scenario. Aims: Since the previous papers of this series, a number of new X-ray observations have become available. Furthermore, a cyclic behaviour with a 1.78 d period was identified in long optical photometric runs, which is thought to be associated with the launching mechanism of large-scale wind structures. Methods: We analysed these new X-ray data, revisited the old data, and compared the X-ray light curves with the optical data, notably those taken simultaneously. Results: The behaviour of ζ Pup in X-rays cannot be explained in terms of a perfect clock because the amplitude and shape of its variations change with time. For example, ζ Pup was much more strongly variable between 2007 and 2011 than before and after this interval. Comparing the X-ray spectra of the star at maximum and minimum brightness yields no compelling difference beyond the overall flux change: the temperatures, absorptions, and line shapes seem to remain constant, well within errors. The only common feature between X-ray datasets is that the variation amplitudes appear maximum in the medium (0.6-1.2 keV) energy band. Finally, no clear and coherent correlation can be found between simultaneous X-ray and optical data. Only a subgroup of observations may be combined coherently with the optical period of 1.78 d, although the simultaneous optical behaviour is unknown. Conclusions: The currently available data do not reveal any obvious, permanent, and direct correlation between X-ray and optical variations. The origin of the X-ray variability therefore still needs to be ascertained, highlighting the need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.

  3. Dual-energy contrast-enhanced digital mammography (DE-CEDM): optimization on digital subtraction with practical x-ray low/high-energy spectra

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew P.; Parikh, Samir; Parisky, Yuri

    2006-03-01

    Dual-energy contrast enhanced digital mammography (DE-CEDM), which is based upon the digital subtraction of low/high-energy image pairs acquired before/after the administration of contrast agents, may provide physicians physiologic and morphologic information of breast lesions and help characterize their probability of malignancy. This paper proposes to use only one pair of post-contrast low / high-energy images to obtain digitally subtracted dual-energy contrast-enhanced images with an optimal weighting factor deduced from simulated characteristics of the imaging chain. Based upon our previous CEDM framework, quantitative characteristics of the materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filters, breast tissues / lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systemically modeled. Using the base-material (polyethylene-PMMA) decomposition method based on entrance low / high-energy x-ray spectra and breast thickness, the optimal weighting factor was calculated to cancel the contrast between fatty and glandular tissues while enhancing the contrast of iodized lesions. By contrast, previous work determined the optimal weighting factor through either a calibration step or through acquisition of a pre-contrast low/high-energy image pair. Computer simulations were conducted to determine weighting factors, lesions' contrast signal values, and dose levels as functions of x-ray techniques and breast thicknesses. Phantom and clinical feasibility studies were performed on a modified Selenia full field digital mammography system to verify the proposed method and computer-simulated results. The resultant conclusions from the computer simulations and phantom/clinical feasibility studies will be used in the upcoming clinical study.

  4. The Experimental Study of Characterized Noble Gas Puffs Irradiated by Ultra-Short Laser Pulses Compared with X-Pinches as an X-Ray Source

    NASA Astrophysics Data System (ADS)

    Schultz, Kimberly Ann

    The goal of this dissertation is to study the basic physics and X-ray emission (1-10 keV) of two X-ray sources: X-pinch plasmas and a clustered gas-puff irradiated by an ultrashort laser pulse. X-pinches and other typical X-ray sources using solid targets create hot debris that can damage sensitive equipment. Therefore, to perform sensitive backlighting or X-ray effects testing, debris-free sources of radiation must be investigated. In this work, the author presents a broad study of clustered noble gas puffs including characterization measurements and laser heating experiments using several gas nozzles and multiple gases. Ultimately, the goal is to compare the laser-irradiated gas-puff and X-pinch plasmas as X-ray sources. Characterization of the gas puffs is performed at the Radiation Physics Laboratory at the University of Nevada, Reno (UNR) Physics Department using optical interferometry and Rayleigh scattering to determine density and cluster radius. By changing the gas-puff variables control of both the density and cluster size of the gas jets is obtained. Two laser systems provide the high intensities desired for the laser-irradiated gas puff experiments: the UNR Leopard Laser (1-2x1019 W/cm2) and the Lawrence Livermore National Laboratory's Titan Laser (7x1019 W/cm2). X-ray emission is studied as a function of laser pulse parameters, gas target type, gas puff density, and the gas-delay timing between puff initiation and laser interaction with the puff. The tested gases are Ar, Kr, Xe, and four mixtures of the noble gases. Time-resolved X-ray measurements are captured with Silicon diodes and photoconducting diamond detectors. Electron beam detectors include Faraday cups and a high-energy (> 1 MeV) electron spectrometer. Modeling of spectra from X-ray crystal spectrometers provides plasma density and temperature measurement and a molecular dynamics (MD) code describes cluster interactions with the laser pulse. The conversion of laser energy into X rays is also measured. Laser beam transmission through and absorption by the gas puff reveal the complexity of using laser-irradiated gas puffs as X-ray sources. A strong anisotropy of X-ray and electron emissions were observed at both laser facilities. X-pinch plasmas can provide intense hard X rays and strong electron beams originating from small sources with many applications. Recent research has been conducted into four-wire X-pinches at the UNR Zebra machine, a 1-MA pulsed power generator. Two different wire materials are considered in this study, Ag and Mo. We observe a relatively linear correlation between load mass and implosion time for Mo X-pinches; in fact, this relationship also extends to include Ag. Interestingly, X-ray burst features drastically change in shape when the load mass is varied. Advantages of laser-irradiated gas puffs include a lack of damaging debris, high repetition rate, and ease of control. Its disadvantages include its inefficiency at converting electrical energy to X-rays, which is mostly limited by laser efficiency, and relatively low total energy yield. X-pinches, on the other hand, produced kJ of energy in a broad spectral region. However, they create a large amount of debris, have a low repetition rate, and, at 1-MA, have hard-to-predict implosion times.

  5. Characterization of SiGe thin films using a laboratory X-ray instrument

    PubMed Central

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-01-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si0.4Ge0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2–6 nm layers. For another set of partially relaxed layers, 50–200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation. PMID:24046495

  6. Characterization of SiGe thin films using a laboratory X-ray instrument.

    PubMed

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-08-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si 0.4 Ge 0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2-6 nm layers. For another set of partially relaxed layers, 50-200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation.

  7. X-ray Diffraction Crystal Calibration and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael J. Haugh; Richard Stewart; Nathan Kugland

    2009-06-05

    National Security Technologies’ X-ray Laboratory is comprised of a multi-anode Manson type source and a Henke type source that incorporates a dual goniometer and XYZ translation stage. The first goniometer is used to isolate a particular spectral band. The Manson operates up to 10 kV and the Henke up to 20 kV. The Henke rotation stages and translation stages are automated. Procedures have been developed to characterize and calibrate various NIF diagnostics and their components. The diagnostics include X-ray cameras, gated imagers, streak cameras, and other X-ray imaging systems. Components that have been analyzed include filters, filter arrays, grazing incidencemore » mirrors, and various crystals, both flat and curved. Recent efforts on the Henke system are aimed at characterizing and calibrating imaging crystals and curved crystals used as the major component of an X-ray spectrometer. The presentation will concentrate on these results. The work has been done at energies ranging from 3 keV to 16 keV. The major goal was to evaluate the performance quality of the crystal for its intended application. For the imaging crystals we measured the laser beam reflection offset from the X-ray beam and the reflectivity curves. For the curved spectrometer crystal, which was a natural crystal, resolving power was critical. It was first necessary to find sources of crystals that had sufficiently narrow reflectivity curves. It was then necessary to determine which crystals retained their resolving power after being thinned and glued to a curved substrate.« less

  8. SEARCHING FOR NEW {gamma}-RAY BLAZAR CANDIDATES IN THE THIRD PALERMO BAT HARD X-RAY CATALOG WITH WISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maselli, A.; Cusumano, G.; La Parola, V.

    We searched for {gamma}-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the {gamma}-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources andmore » WISE {gamma}-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 {gamma}-ray blazar candidates.« less

  9. Characterization results from several commercial soft X-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Stradling, G. L.; Studebaker, J. K.; Cavailler, C.; Launspach, J.; Planes, J.

    The spatio-temporal performance of four soft X-ray streak cameras has been characterized. The objective in evaluating the performance capability of these instruments is to enable us to optimize experiment designs, to encourage quantitative analysis of streak data and to educate the ultra high speed photography and photonics community about the X-ray detector performance which is available. These measurements have been made collaboratively over the space of two years at the Forge pulsed X-ray source at Los Alamos and at the Ketjak laser facility an CEA Limeil-Valenton. The X-ray pulse lengths used for these measurements at these facilities were 150 psec and 50 psec respectively. The results are presented as dynamically-measured modulation transfer functions. Limiting temporal resolution values were also calculated. Emphasis is placed upon shot noise statistical limitations in the analysis of the data. Space charge repulsion in the streak tube limits the peak flux at ultra short experiments duration times. This limit results in a reduction of total signal and a decrease in signal to no ise ratio in the streak image. The four cameras perform well with 20 1p/mm resolution discernable in data from the French C650X, the Hadland X-Chron 540 and the Hamamatsu C1936X streak cameras. The Kentech X-ray streak camera has lower modulation and does not resolve below 10 1p/mm but has a longer photocathode.

  10. X-ray source characterization of aluminum X-pinch plasmas driven by the 0. 5 TW LION accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, N.; Hammer, D.A.; Kalantar, D.H.

    1989-12-01

    Recent experiments at Cornell have been performed to investigate X-pinch plasmas as intense x-ray sources which might be used to pump resonant photoexcitation lasers. Crossed Al wires have been driven by up to 600 kA current for 40 ns. High density bright spots are observed at the crossing point(s). Various diagnostics were used to characterize the X-pinch plasmas as a function of initial mass loading for several specific wire configurations. The optimum mass loading for different ionization stages of Al, and the total x-ray energy yields, which are on the order of hundreds of Joules, were examined. Estimates of plasmamore » density, {similar to}10{sup 20} cm{sup {minus}3}, and temperature, about 400 eV, were obtained.« less

  11. Soft X-ray characterization technique for Li batteries under operating conditions.

    PubMed

    Petersburg, Cole F; Daniel, Robert C; Jaye, Cherno; Fischer, Daniel A; Alamgir, Faisal M

    2009-09-01

    O K-edge and Co L-edge near-edge X-ray absorption fine structure has been used to examine the cathode of an intact solid-state lithium ion battery. The novel technique allowed for the simultaneous acquisition of partial electron yield and fluorescence yield data during the first charge cycle of a LiCoO(2)-based battery below the intercalation voltage. The chemical environments of oxygen and cobalt at the surface are shown to differ chemically from those in the bulk. The present design enables a wide variety of in situ spectroscopies, microscopies and scattering techniques.

  12. A New Star-shaped Carbazole Derivative with Polyhedral Oligomeric Silsesquioxane Core: Crystal Structure and Unique Photoluminescence Property.

    PubMed

    Xu, Zixuan; Yu, Tianzhi; Zhao, Yuling; Zhang, Hui; Zhao, Guoyun; Li, Jianfeng; Chai, Lanqin

    2016-01-01

    A new inorganic–organic hybrid material based on polyhedral oligomeric silsesquioxane (POSS) capped with carbazolyl substituents, octakis[3-(carbazol-9-yl)propyldimethylsiloxy]-silsesquioxane (POSS-8Cz), was successfully synthesized and characterized. The X-ray crystal structure of POSS-8Cz were described. The photophysical properties of POSS-8Cz were investigated by using UV–vis,photoluminescence spectroscopic analysis. The hybrid material exhibits blue emission in the solution and the solid film.The morphology and thermal stablity properties were measured by X-ray diffraction (XRD) and TG-DTA analysis.

  13. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less

  14. A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro

    PubMed Central

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398

  15. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    DOE PAGES

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...

    2015-01-05

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less

  16. Status of the laboratory infrastructure for detector calibration and characterization at the European XFEL

    NASA Astrophysics Data System (ADS)

    Raab, N.; Ballak, K.-E.; Dietze, T.; Ekmedzič, M.; Hauf, S.; Januschek, F.; Kaukher, A.; Kuster, M.; Lang, P. M.; Münnich, A.; Schmitt, R.; Sztuk-Dambietz, J.; Turcato, M.

    2016-12-01

    The European X-ray Free Electron Laser (XFEL.EU) will provide unprecedented peak brilliance and ultra-short and spatially coherent X-ray pulses in an energy range of 0.25 to 25 keV . The pulse timing structure is unique with a burst of 2700 pulses of 100 fs length at a temporal distance of 220 ns followed by a 99.4 ms gap. To make optimal use of this timing structure and energy range a great variety of detectors are being developed for use at XFEL.EU, including 2D X-ray imaging cameras that are able to detect images at a rate of 4.5 MHz, provide dynamic ranges up to 105 photons per pulse per pixel under different operating conditions and covering a large range of angular resolution \\cite{requirements,Markus}. In order to characterize, commission and calibrate this variety of detectors and for testing of detector prototypes the XFEL.EU detector group is building up an X-ray test laboratory that allows testing of detectors with X-ray photons under conditions that are as similar to the future beam line conditions at the XFEL.EU as is possible with laboratory sources [1]. A total of four test environments provide the infrastructure for detector tests and calibration: two portable setups that utilize low power X-ray sources and radioactive isotopes, a test environment where a commercial high power X-ray generator is in use, and a pulsed X-ray/electron source which will provide pulses as short as 25 ns in XFEL.EU burst mode combined with target anodes of different materials. The status of the test environments, three of which are already in use while one is in commissioning phase, will be presented as well as first results from performance tests and characterization of the sources.

  17. THE CHARACTERIZATION OF A SOLID SORBENT WITH CRYSTALLITE SIZE AND STRAIN DATA FROM X-RAY DIFFRACTION LINE BROADENING

    EPA Science Inventory

    The paper gives results of the characterization of a solid sorbent with crystallite size and strain data from x-ray diffraction line broadening, as part of an EPA investigation of the injection of dry Ca(OH)2 into coal-fired electric power plant burners for the control of SO2 emi...

  18. X-ray photoelectron spectroscopy for characterization of wood surfaces in adhesion studies

    Treesearch

    James F. Beecher; Charles R. Frihart

    2005-01-01

    X-ray photoelectron spectroscopy (XPS) is one of a set of tools that have been used to characterize wood surfaces. Among the advantages of XPS are surface sensitivity, identification of nearly all elements, and frequently, discrimination of bonding states. For these reasons, XPS seemed to be an appropriate tool to help explain the differences in bond strength under wet...

  19. The Massive Star-Forming Regions Omnibus X-Ray Catalog

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Bouwman, Jeroen; Povich, Matthew S.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.

    2014-07-01

    We present the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from Chandra/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc. Additionally, we show the morphology of the unresolved X-ray emission that remains after the cataloged X-ray point sources are excised from the ACIS data, in the context of Spitzer and WISE observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, we have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics.

  20. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  1. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  2. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    PubMed

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  3. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32.

    PubMed

    Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B

    2016-03-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014.

  4. Characterizing Complexity of Containerized Cargo X-ray Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangxing; Martz, Harry; Glenn, Steven

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  5. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    PubMed

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  6. The MIRAX x-ray astronomy transient mission

    NASA Astrophysics Data System (ADS)

    Braga, João; Mejía, Jorge

    2006-06-01

    The Monitor e Imageador de Raios-X (MIRAX) is a small (~250 kg) X-ray astronomy satellite mission designed to monitor the central Galactic plane for transient phenomena. With a field-of-view of ~1000 square degrees and an angular resolution of ~6 arcmin, MIRAX will provide an unprecedented discovery-space coverage to study X-ray variability in detail, from fast X-ray novae to long-term (~several months) variable phenomena. Chiefly among MIRAX science objectives is its capability of providing simultaneous complete temporal coverage of the evolution of a large number of accreting black holes, including a detailed characterization of the spectral state transitions in these systems. MIRAX's instruments will include a soft X-ray (2-18 keV) and two hard X-ray (10-200 keV) coded-aperture imagers, with sensitivities of ~5 and ~2.6 mCrab/day, respectively. The hard X-ray imagers will be built at the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil, in close collaboration with the Center for Astrophysics & Space Sciences (CASS) of the University of California, San Diego (UCSD) and the Institut fur Astronomie und Astrophysik of the University of Tubingen (IAAT) in Germany; UCSD will provide the crossed-strip position-sensitive (0.5- mm spatial resolution) CdZnTe (CZT) hard X-ray detectors. The soft X-ray camera, provided by the Space Research Organization Netherlands (SRON), will be the spare flight unit of the Wide Field Cameras that flew on the Italian-Dutch satellite BeppoSAX. MIRAX is an approved mission of the Brazilian Space Agency (Agnecia Espacial Brasileira - AEB) and is scheduled to be launched in 2011 in a low-altitude (~550 km) circular equatorial orbit. In this paper we present recent developments in the mission planning and design, as well as Monte Carlo simulations performed on the GEANT-based package MGGPOD environment (Weidenspointner et al. 2004) and new algorithms for image digital processing. Simulated images of the central Galactic plane as it would be seen by MIRAX are shown.

  7. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.

  8. Absorbed dose determination using experimental and analytical predictions of x-ray spectra

    NASA Astrophysics Data System (ADS)

    Edwards, David Lee

    1999-10-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.

  9. The Weak Fe Fluorescence Line and Long-Term X-Ray Evolution of the Compton-Thick Active Galactic Nucleus in NGC7674

    NASA Technical Reports Server (NTRS)

    Ghandi, P.; Annuar, A.; Lansbury, G. B.; Stern, D.; Alexander, D. M.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.; hide

    2017-01-01

    We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC7674.The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe K(alpha) emission line (equivalent width [EW] of approximately 0.4 keV) and a strong Fe XXVI ionized line (EW approximately 0.2 keV).We construct an updated long-term X-ray light curve of NGC7674 and find that the observed 2-10 keV flux has remained constant for the past approximately 20 yr, following a high-flux state probed by Ginga. Light travel time arguments constrain the minimum radius of the reflector to be approximately 3.2 pc under the switched-off AGN scenario, approximately 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density (N(sub H)) of 3 x 10(exp 24) cm(exp -2) at present, and yields an intrinsic 2-10 keV luminosity of (3-5) x 10(exp 43) erg s(exp -1). Realistic uncertainties span the range of approximately (1-13) x 10(exp 43) erg s1. The source has one of the weakest fluorescence lines amongst bona fide CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionized Fe emission. It exemplifies the difficulty of identification and proper characterization of distant CTAGN based on the strength of the neutral Fe K line

  10. The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.

    2017-09-01

    We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.

  11. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  12. Characterization of CdTe and (CdZn)Te detectors with different metal contacts

    NASA Astrophysics Data System (ADS)

    Pekárek, J.; Belas, E.; Grill, R.; Uxa, Å.; James, R. B.

    2013-09-01

    In the present work we studied an influence of different types of surface etching and surface passivation of high resistivity CdZnTe-based semiconductor detector material. The aim was to find the optimal conditions to improve the properties of metal-semiconductor contact. The main effort was to reduce the leakage current and thus get better X-ray and gamma-ray spectrum, i.e. to create a detector operating at room temperature based on this semiconductor material with sufficient energy resolution and the maximum charge collection efficiency. Individual surface treatments were characterized by I-V characteristics, spectral analysis and by determination of the profile of the internal electric field.

  13. Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.

    2008-11-15

    Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV.more » In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.« less

  14. The Chandra Source Catalog: Statistical Characterization

    NASA Astrophysics Data System (ADS)

    Primini, Francis A.; Nowak, M. A.; Houck, J. C.; Davis, J. E.; Glotfelty, K. J.; Karovska, M.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Evans, I. N.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) will ultimately contain more than ˜250000 x-ray sources in a total area of ˜1% of the entire sky, using data from ˜10000 separate ACIS and HRC observations of a multitude of different types of x-ray sources (see Evans et al. this conference). In order to maximize the scientific benefit of such a large, heterogeneous dataset, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Our Characterization efforts include both extensive simulations of blank-sky and point source datasets, and detailed comparisons of CSC results with those of other x-ray and optical catalogs. We present here a summary of our characterization results for CSC Release 1 and preliminary plans for future releases. This work is supported by NASA contract NAS8-03060 (CXC).

  15. Effect of Ar9+ irradiation on Zr-1Nb-1Sn-0.1Fe alloy characterized by Grazing Incidence X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita

    2018-03-01

    The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).

  16. Fabrication of Three-Dimensional Nanostructures for Thermal Study

    DTIC Science & Technology

    2013-01-01

    Cu2O Inverse Opal …………………………………24 3.4 X - ray Analysis of the Structure …………………………………………………….26 3.5 Discussion and Future Direction...2.3 Characterization of Silicon Inverse Opal The 80 nm and 40 nm silicon inverse opal material properties were characterized by x - ray diffraction... x - ray beam of 1 ° relative to the surface of the sample was used due to the low amounts silicon present in the thin porous structure to enhance the

  17. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Bonnie; Hitchcock, Adam; Brash, John

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. Amore » phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.« less

  19. M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, Biing-Chiau; Selvam, TamilSelvi; Tsai, Miao-Hsin

    2016-11-15

    A series of 1-D double-zigzag (([M(papx){sub 2}(H{sub 2}O){sub 2}](ClO{sub 4}){sub 2}){sub n}; M=Mn, x=s (1), x=o (3); M=Co, x=s (4), x=o (5); M=Ni, x=s (6), x=o (7)) and 2-D polyrotaxane ([Mn(paps){sub 2}(ClO{sub 4}){sub 2}]{sub n} (2)) frameworks were synthesized by reactions of M(ClO{sub 4}){sub 2} (M=Mn, Co, and Ni) with papx (paps, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenylthioether; papo, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenyl ether), which have been isolated and structurally characterized by X-ray diffraction. Based on powder X-ray diffraction (PXRD) experiments, heating the double-zigzag frameworks underwent structural transformation to give the respective polyrotaxane ones. Moreover, grinding the solid samples of the respective polyrotaxanes in the presence of moisturemore » also resulted in the total conversion to the original double-zigzag frameworks. In this study, we have successfully extended studies to Mn{sup II}, Co{sup II}, and Ni{sup II} frameworks from the previous Zn{sup II}, Cd{sup II}, and Cu{sup II} ones, and interestingly such structural transformation is able to be proven experimentally by powder and single-crystal X-ray diffraction studies as well. - Graphical abstract: 1-D double-zigzag and 2-D polyrotaxane frameworks of M(II)-papx (x=s, o; M=Mn, Co, Ni) frameworks can be interconverted by heating and grinding in the presence of moiture, and such structural transformation has be proven experimentally by powder and single-crystal X-ray diffraction studies.« less

  20. Correlated high-resolution x-ray diffraction photoluminescence and atom probe tomography analysis of continuous and discontinuous In xGa 1-xN quantum wells

    DOE PAGES

    Ren, Xiaochen; Riley, James R.; Koleske, Daniel; ...

    2015-07-14

    In this study, atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of In xGa 1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate.more » Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.« less

  1. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  2. Surface and interface analysis of nanomaterials at microfocus beamline (BL-16) of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar, E-mail: rnrrsgangadhar@gmail.com; Tiwari, M. K., E-mail: mktiwati@rrcat.gov.in; Homi Bhabha National Institute, RRCAT

    2016-05-06

    Analysis of chemical nature and electronic structure at the interface of a thin film medium is important in many technological applications as well as to understand overall efficiency of a thin film device. Synchrotron radiation based x-ray spectroscopy is a promising technique to study interface nature of the nanomaterials with atomic resolutions. A combined x-ray reflectivity and grazing incidence x-ray fluorescence measurement facility has been recently constructed at the BL-16 microfocus beamline of Indus-2 synchrotron facility to accomplish surface-interface microstructural characterization of thin layered materials. It is also possible to analyze contaminates or adsorbed ad-atoms on the surface of themore » thin nanostructure materials. The BL-16 beamline also provides an attractive platform to perform a variety of analytical research activities especially in the field of micro x-ray fluorescence and ultra-trace elements analysis using Synchrotron radiation. We describe various salient features of the BL-16 reflectometer experimental station and the detailed description of its capabilities through the measured results, obtained for various thin layered nanomaterials.« less

  3. Radio Videos of Orion Protostars (with X-ray Colors!)

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Wolk, Scott; Menten, Karl; Reid, Mark; Osten, Rachel

    2013-07-01

    High-energy processes in Young Stellar Objects (YSOs) can be observed both in X-rays and in the centimetric radio wavelength range. While the past decade has brought a lot of progress in the field of X-ray observations of YSOs, (proto)stellar centimetric radio astronomy has only recently begun to catch up with the advent of the newly expanded Karl G. Jansky Very Large Array (JVLA). The enhanced sensitivity is fundamentally improving our understanding of YSO radio properties by providing unprecedented sensitivity and thus spectral as well as temporal resolution. As a result, it is becoming easier to disentangle coronal-type nonthermal radio emission emanating from the immediate vicinity of YSOs from thermal emission on larger spatial scales, for example ionized material at the base of outflows. Of particular interest is the correlation of the by now relatively well-characterized X-ray flaring variability with the nonthermal radio variability. We present first results of multi-epoch simultaneous observations using Chandra and the JVLA, targeting the Orion Nebula Cluster and highlighting the capabilities of the JVLA for radio continuum observations of YSOs.

  4. Graphene-based microfluidics for serial crystallography.

    PubMed

    Sui, Shuo; Wang, Yuxi; Kolewe, Kristopher W; Srajer, Vukica; Henning, Robert; Schiffman, Jessica D; Dimitrakopoulos, Christos; Perry, Sarah L

    2016-08-02

    Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We demonstrate excellent signal-to-noise in our X-ray diffraction measurements using a 1.5 μs polychromatic X-ray exposure, and validate our approach via on-chip structure determination using hen egg white lysozyme (HEWL) as a model system. Although this work is focused on the use of graphene for protein crystallography, we anticipate that this technology should find utility in a wide range of both X-ray and other lab on a chip applications.

  5. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE PAGES

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike; ...

    2018-01-01

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  6. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Kissick, D. J.; Venugopalan, N.

    Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less

  7. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Kissick, D. J.; Venugopalan, N.

    Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity atmore » optimal alignment.« less

  8. X-Ray Optics for the 2020's

    NASA Technical Reports Server (NTRS)

    Zhang, Will

    2010-01-01

    X-ray optics is an essential and enabling technology for x-ray astronomy. This slide presentation presents the authors views on the requirements for x-ray optics as progress is made toward building IXO and preparing for the 2020's. The presentation reviews the status of several technologies that are being developed and outlines the steps that we as a community needs to take to move toward x-ray optics meeting the five key requirements: (1) high angular resolution, (2) large effective area, (3) low mass, (4) fast production, and (5) low cost. There is discussion of segmentation vs full shell, size of the mirror segment, mirror segment frabrication, post-slumping figure improvement, and characterization of coating quality.

  9. High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter

    2017-09-01

    The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline

  10. Phosphate Remediation and Recovery using Iron Oxide-based Adsorbents

    EPA Science Inventory

    E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-...

  11. Synchrotron X-ray topographic study on nature of threading mixed dislocations in 4H–SiC crystals grown by PVT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jianqiu; Yang, Yu; Wu, Fangzhen

    Synchrotron X-ray Topography is a powerful technique to study defects structures particularly dislocation configurations in single crystals. Complementing this technique with geometrical and contrast analysis can enhance the efficiency of quantitatively characterizing defects. In this study, the use of Synchrotron White Beam X-ray Topography (SWBXT) to determine the line directions of threading dislocations in 4H–SiC axial slices (sample cut parallel to the growth axis from the boule) is demonstrated. This technique is based on the fact that the projected line directions of dislocations on different reflections are different. Another technique also discussed is the determination of the absolute Burgers vectorsmore » of threading mixed dislocations (TMDs) using Synchrotron Monochromatic Beam X-ray Topography (SMBXT). This technique utilizes the fact that the contrast from TMDs varies on SMBXT images as their Burgers vectors change. By comparing observed contrast with the contrast from threading dislocations provided by Ray Tracing Simulations, the Burgers vectors can be determined. Thereafter the distribution of TMDs with different Burgers vectors across the wafer is mapped and investigated.« less

  12. IGR J19294+1816: a new Be-X-ray binary revealed through infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodes-Roca, J. J.; Bernabeu, G.; Magazzù, A.; Torrejón, J. M.; Solano, E.

    2018-05-01

    The aim of this work is to characterize the counterpart to the INTErnational Gamma-Ray Astrophysics Laboratory high-mass X-ray binary candidate IGR J19294+1816 so as to establish its true nature. We obtained H-band spectra of the selected counterpart acquired with the Near Infrared Camera and Spectrograph instrument mounted on the Telescopio Nazionale Galileo 3.5-m telescope which represents the first infrared spectrum ever taken of this source. We complement the spectral analysis with infrared photometry from UKIDSS, 2MASS, WISE, and NEOWISE data bases. We classify the mass donor as a Be star. Subsequently, we compute its distance by properly taking into account the contamination produced by the circumstellar envelope. The findings indicate that IGR J19294+1816 is a transient source with a B1Ve donor at a distance of d = 11 ± 1 kpc, and luminosities of the order of 1036-37 erg s-1, displaying the typical behaviour of a Be-X-ray binary.

  13. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  14. In situ chemical analyses of extraterrestrial bodies

    NASA Technical Reports Server (NTRS)

    Economou, Thanasis E.; Turkevich, Anthony L.

    1988-01-01

    One of the most important tasks on any sample return mission will have to be a quick sample characterization in order to guarantee a variety of collected samples. An alpha particle instrument with alpha, proton and X-ray modes can provide a quick and almost complete chemical analysis of Mars samples. This instrument is based on three interactions of the alpha particles from a radioactive source with matter: elastic scattering of the alpha particles by nuclei (alpha mode), (alpha,p) nuclear reaction with some light elements (proton mode), and excitation of the atomic structure of atoms by alpha particles, leading to emission of characteristic X-rays of the lunar surface at three sites during the Surveyor mission of 1967 to 1968. Since then the instrument has been improved and miniaturized substantially. As shown in the past, the alpha particle instrument can operate under Martian conditions without any degradation in the performance. The alpha and proton modes can provide vital information about the light elements, while the X-ray mode with its ambient temperature X-ray detector will be useful for the heavier elements. The excitation of the atomic structure is provided by the same alpha radioactive source that is used by alpha and proton modes or by an auxiliary X-ray source that is selected to enhance the sensitivity to some important geochemical elements.

  15. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  16. Progress Towards Improved Analysis of TES X-ray Data Using Principal Component Analysis

    NASA Technical Reports Server (NTRS)

    Busch, S. E.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Fixsen, D. J.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; hide

    2015-01-01

    The traditional method of applying a digital optimal filter to measure X-ray pulses from transition-edge sensor (TES) devices does not achieve the best energy resolution when the signals have a highly non-linear response to energy, or the noise is non-stationary during the pulse. We present an implementation of a method to analyze X-ray data from TESs, which is based upon principal component analysis (PCA). Our method separates the X-ray signal pulse into orthogonal components that have the largest variance. We typically recover pulse height, arrival time, differences in pulse shape, and the variation of pulse height with detector temperature. These components can then be combined to form a representation of pulse energy. An added value of this method is that by reporting information on more descriptive parameters (as opposed to a single number representing energy), we generate a much more complete picture of the pulse received. Here we report on progress in developing this technique for future implementation on X-ray telescopes. We used an 55Fe source to characterize Mo/Au TESs. On the same dataset, the PCA method recovers a spectral resolution that is better by a factor of two than achievable with digital optimal filters.

  17. X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview

    PubMed Central

    Zanotto, Edgar Dutra

    2018-01-01

    X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses. PMID:29382102

  18. Three-dimensional mapping of soil chemical characteristics at micrometric scale: Statistical prediction by combining 2D SEM-EDX data and 3D X-ray computed micro-tomographic images

    NASA Astrophysics Data System (ADS)

    Hapca, Simona

    2015-04-01

    Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential in predicting chemical composition in particular for iron, which is generally sparsely distributed in soil. For carbon, silicon and oxygen, which are more densely distributed, the additional kriging of the regression tree residuals improved significantly the prediction, whereas prediction based on co-kriging was less consistent across replicates, underperforming regression-tree kriging. The present study shows a great potential in integrating geo-statistical methods with imaging techniques to unveil the 3D chemical structure of soil at very fine scales, the framework being suitable to be further applied to other types of imaging data such as images of biological thin sections for characterization of microbial distribution. Key words: X-ray CT, SEM-EDX, segmentation techniques, spatial correlation, 3D soil images, 2D chemical maps.

  19. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  20. Rejuvenation of the Innocent Bystander: Results from a Pilot X-ray Study of Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Mazzoni, Fernando; Montez, Rodolfo; Green, Paul

    2018-01-01

    We present the results of a pilot study by the Chandra X-ray Observatory of X-ray emission from dwarf Carbon (dC) stars. Carbon stars were thought to be exclusively AGB stars but main sequence dwarfs showing carbon molecular bands appear to be the dominant variety. The existence of dC stars is surprising since dwarf stars cannot intrinsically produce carbon as an AGB star can. It is hypothesized that dC stars are polluted by an evolved companion star. Evidence of past pollution can appear in X-ray emission where increased coronal activity (“spin-up”) or mass accretion via a disk can be detected. Using the Chandra X-ray Observatory we detected X-ray photons in the vicinity of all the dC stars in our a pilot sample. For each detection we characterized the X-ray emission and compared to the emission expected from potential emission scenarios. Although the process that produces the X-ray emission from dC stars is presently unclear and our pilot sample is small, our results suggest that X-ray emission might be a universal characteristic of dC stars. Further examination of the X-ray emission plus future X-ray and multiwavelength observations will help us better understand the nature of these intriguing stars.

  1. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  2. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Lake, P.; Gard, P.; Dunham, G.; Nielsen-Weber, L.; Wu, M.; Norris, E.

    2016-11-01

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  3. Reprint of: Combining theory and experiment for X-ray absorption spectroscopy and resonant X-ray scattering characterization of polymers

    DOE PAGES

    Su, Gregory M.; Cordova, Isvar A.; Brady, Michael A.; ...

    2016-11-01

    An improved understanding of fundamental chemistry, electronic structure, morphology, and dynamics in polymers and soft materials requires advanced characterization techniques that are amenable to in situ and operando studies. Soft X-ray methods are especially useful in their ability to non-destructively provide information on specific materials or chemical moieties. Analysis of these experiments, which can be very dependent on X-ray energy and polarization, can quickly become complex. Complementary modeling and predictive capabilities are required to properly probe these critical features. Here in this paper, we present relevant background on this emerging suite of techniques. We focus on how the combination ofmore » theory and experiment has been applied and can be further developed to drive our understanding of how these methods probe relevant chemistry, structure, and dynamics in soft materials.« less

  4. Combining theory and experiment for X-ray absorption spectroscopy and resonant X-ray scattering characterization of polymers

    DOE PAGES

    Su, Gregory M.; Cordova, Isvar A.; Brady, Michael A.; ...

    2016-07-04

    We present that an improved understanding of fundamental chemistry, electronic structure, morphology, and dynamics in polymers and soft materials requires advanced characterization techniques that are amenable to in situ and operando studies. Soft X-ray methods are especially useful in their ability to non-destructively provide information on specific materials or chemical moieties. Analysis of these experiments, which can be very dependent on X-ray energy and polarization, can quickly become complex. Complementary modeling and predictive capabilities are required to properly probe these critical features. Here, we present relevant background on this emerging suite of techniques. Finally, we focus on how the combinationmore » of theory and experiment has been applied and can be further developed to drive our understanding of how these methods probe relevant chemistry, structure, and dynamics in soft materials.« less

  5. Characterization of CuHal-intercalated carbon nanotubes with x-ray absorption spectroscopy combined with x-ray photoelectron and resonant photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M.; Generalov, A.; Vinogdradov, A.; Eliseev, A.

    2013-04-01

    Encapsulated single-walled carbon nanotubes (SWCNTs) with inner channels filled by different compounds present the new class of composite materials. Such CNTs give opportunity to form 1D nanocrystals as well as quantum nanowires with new physical and chemical properties inside the tubes. The present study is aimed to characterize the possible chemical interaction between CuHal (Hal=I, Cl, Br) and SWCNTs in CuHal@SWCNTs and electronic structure of the latter using high-resolution near edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with high-resolution X-ray photoelectron spectroscopy and resonant photoemission spectroscopy. The present study has shown that there is a chemical interaction between the filler and π-electron subsystem of CNTs which is accompanied by changes of the atomic and electronic structure of the filler during the encapsulating it inside CNTs.

  6. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and DQE metrics for clinical EPID and CBCT systems based on a novel adaptation of a traditional line-pair resolution bar-pattern. This research provides two significant benefits to radiotherapy: the characterization of a new generation of thick scintillator based megavoltage x-ray imagers for CBCT based IGRT, and the novel adaptation of fundamental imaging metrics from imaging research to routine clinical performance monitoring.

  7. Framework for computing the spatial coherence effects of polycapillary x-ray optics

    PubMed Central

    Zysk, Adam M.; Schoonover, Robert W.; Xu, Qiaofeng; Anastasio, Mark A.

    2012-01-01

    Despite the extensive use of polycapillary x-ray optics for focusing and collimating applications, there remains a significant need for characterization of the coherence properties of the output wavefield. In this work, we present the first quantitative computational method for calculation of the spatial coherence effects of polycapillary x-ray optical devices. This method employs the coherent mode decomposition of an extended x-ray source, geometric optical propagation of individual wavefield modes through a polycapillary device, output wavefield calculation by ray data resampling onto a uniform grid, and the calculation of spatial coherence properties by way of the spectral degree of coherence. PMID:22418154

  8. Ultrathin inorganic molecular nanowire based on polyoxometalates

    PubMed Central

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Runchen; Yu, Shimeng, E-mail: shimengy@asu.edu; School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287

    The total ionizing dose (TID) effect of gamma-ray (γ-ray) irradiation on HfOx based resistive random access memory was investigated by electrical and material characterizations. The memory states can sustain TID level ∼5.2 Mrad (HfO{sub 2}) without significant change in the functionality or the switching characteristics under pulse cycling. However, the stability of the filament is weakened after irradiation as memory states are more vulnerable to flipping under the electrical stress. X-ray photoelectron spectroscopy was performed to ascertain the physical mechanism of the stability degradation, which is attributed to the Hf-O bond breaking by the high-energy γ-ray exposure.

  10. An observation of the Galactic center hard X-ray source, 1E 1740.7-2942, with the Caltech coded-aperture telescope

    NASA Technical Reports Server (NTRS)

    Heindl, William A.; Cook, Walter R.; Grunsfeld, John M.; Palmer, David M.; Prince, Thomas A.; Schindler, Stephen M.; Stone, Edward C.

    1993-01-01

    The Galactic center region hard X-ray source IE 1740.7-2942 has been observed with the Caltech Gamma-Ray Imaging Payload (GRIP) from Alice Springs, Australia, on 1988 April 12 and on 1989 April 3 and 4. We report here results from the 1989 measurements based on 14 hr of observation of the Galactic center region. The observations showed IE 1740.7-2942 to be in its normal state, having a spectrum between 35 and 200 keV characterized by a power law with an exponent of -2.2 +/- 0.3 and flux at 100 keV of (7.0 +/- 0.7) x 10 exp -5 sq cm s keV. No flux was detected above 200 keV. A search for time variability in the spectrum of IE 1740.7-2942 on one hour time scales showed no evidence for variability.

  11. Controlled vapor crystal growth of N a4I r3O8 : A three-dimensional quantum spin liquid candidate

    NASA Astrophysics Data System (ADS)

    Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.; Ren, Yang; Chen, Yu-Sheng; Dally, Rebecca; Wilson, Stephen D.; Islam, Zahirul; Mitchell, J. F.

    2018-04-01

    We report the successful bulk single-crystal growth of the hyperkagome lattice iridate N a4I r3O8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q =(1 /3 ,1 /3 ,1 /3 ) based on the cubic substructure with cell parameter a =8.986 (1 )Å . This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ions at the notionally disordered Na sites as a plausible origin for the observed superlattice.

  12. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  13. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  14. Controlled vapor crystal growth of N a 4 I r 3 O 8 : A three-dimensional quantum spin liquid candidate

    DOE PAGES

    Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.; ...

    2018-04-24

    In this work, we report the successful bulk single-crystal growth of the hyperkagome lattice iridate Na 4Ir 3O 8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q=(1/3,1/3,1/3) based on the cubic substructure with cell parameter a=8.986(1)Å. This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ionsmore » at the notionally disordered Na sites as a plausible origin for the observed superlattice.« less

  15. X-ray morphological study of galaxy cluster catalogues

    NASA Astrophysics Data System (ADS)

    Democles, Jessica; Pierre, Marguerite; Arnaud, Monique

    2016-07-01

    Context : The intra-cluster medium distribution as probed by X-ray morphology based analysis gives good indication of the system dynamical state. In the race for the determination of precise scaling relations and understanding their scatter, the dynamical state offers valuable information. Method : We develop the analysis of the centroid-shift so that it can be applied to characterize galaxy cluster surveys such as the XXL survey or high redshift cluster samples. We use it together with the surface brightness concentration parameter and the offset between X-ray peak and brightest cluster galaxy in the context of the XXL bright cluster sample (Pacaud et al 2015) and a set of high redshift massive clusters detected by Planck and SPT and observed by both XMM-Newton and Chandra observatories. Results : Using the wide redshift coverage of the XXL sample, we see no trend between the dynamical state of the systems with the redshift.

  16. Controlled vapor crystal growth of N a 4 I r 3 O 8 : A three-dimensional quantum spin liquid candidate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.

    In this work, we report the successful bulk single-crystal growth of the hyperkagome lattice iridate Na 4Ir 3O 8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q=(1/3,1/3,1/3) based on the cubic substructure with cell parameter a=8.986(1)Å. This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ionsmore » at the notionally disordered Na sites as a plausible origin for the observed superlattice.« less

  17. Characterization of ceramic powders by an X-ray measuring method

    NASA Technical Reports Server (NTRS)

    Ziegler, B.

    1983-01-01

    X-ray line broadening analysis gives quantitative data on structural changes of ceramic powders after different processing steps. Various Al2O3 powders were investigated and the following points are discussed on the basis of these results: X-ray line broadening analysis, structural changes during grinding, structural changes during annealing, influence of structural properties on sintering behavior and application of line broadening analysis to quality control of powders.

  18. X-ray spectrometer based on a bent diamond crystal for high repetition rate free-electron laser applications

    DOE PAGES

    Boesenberg, Ulrike; Samoylova, Liubov; Roth, Thomas; ...

    2017-02-03

    A precise spectral characterization of every single pulse is required in many x-ray free-electron laser (XFEL) experiments due to the fluctuating spectral content of self-amplified spontaneous emission (SASE) beams. Bent single-crystal spectrometers can provide sufficient spectral resolution to resolve the SASE spikes while also covering the full SASE bandwidth. To better withstand the high heat load induced by the 4.5 MHz repetition rate of pulses at the forthcoming European XFEL facility, a spectrometer based on single-crystal diamond has been developed. Here, we report a direct comparison of the diamond spectrometer with its Si counterpart in experiments performed at the Linacmore » Coherent Light Source.« less

  19. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of a 3D lanthanum(III) MOFs as a multi-chemosensor to Cr(VI)-containing anion and Fe(III) cation based on a flexible ligand

    NASA Astrophysics Data System (ADS)

    Ma, Yang-Min; Liu, Tong; Huang, Wen-Huan

    2018-02-01

    Based on La(NO3)3·6H2O and 4,4‧-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid (H3cpbda), a 3D porous MOFs, [La(cpbda)(H2O)1.5]n (1), was synthesized by hydrothermal method and further characterized by single-crystal X-ray diffraction, power X-ray diffraction, IR spectroscopy, thermal-gravimetric analysis and fluorescence spectroscopy. Owing to its good stabilities and fluorescence property, the sensing experiments on sixteen cations and eleven anions were implemented. Moreover, the further titration processes show 1 can sensitively detect the Fe(III) cation and Cr(VI)-containing anions by quenching responses.

  1. Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J.; Schneider, M. B.

    2008-10-15

    The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}mmore » thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less

  2. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2012-05-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.

  3. Heating the Primordial Soup: X-raying the Circumstellar Disk of RY Lupi

    NASA Astrophysics Data System (ADS)

    Principe, David

    2015-09-01

    X-ray irradiation of circumstellar disks plays a vital role in their chemical evolution yet few high resolution X-ray observations exist characterizing both the disk-illuminating radiation field and the soft energy spectrum absorbed by the disk. We propose HETG spectroscopic observations of RY Lupi, a rare example of a nearly edge-on, actively accreting star-disk system within 150 pc. We aim to take advantage of its unique viewing geometry with the goals of (a) determining the intrinsic X-ray spectrum of the central pre-MS star so as to establish whether its X-ray emission can be attributed to accretion shocks or coronal emission, and (b) model the spectrum of X-rays absorbed by its gaseous disk. These results will serve as essential input to models of irradiated, planet-forming disks.

  4. A long-term space astrophysics research program: An x-ray perspective of the components and structure of galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.

    1995-01-01

    X-ray studies of galaxies by the Smithsonian Astrophysical Observatory (SAO) and MIT are described. Activities at SAO include ROSAT PSPC x-ray data reduction and analysis pipeline; x-ray sources in nearby Sc galaxies; optical, x-ray, and radio study of ongoing galactic merger; a radio, far infrared, optical, and x-ray study of the Sc galaxy NGC247; and a multiparametric analysis of the Einstein sample of early-type galaxies. Activities at MIT included continued analysis of observations with ROSAT and ASCA, and continued development of new approaches to spectral analysis with ASCA and AXAF. Also, a new method for characterizing structure in galactic clusters was developed and applied to ROSAT images of a large sample of clusters. An appendix contains preprints generated by the research.

  5. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-up of the First Shear-selected Galaxy Cluster Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David, E-mail: amrejd@physics.rutgers.edu, E-mail: jph@physics.rutgers.edu, E-mail: dwittman@physics.ucdavis.edu

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shearmore » peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L {sub X} − T {sub X} relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (∼48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined.« less

  6. Relationship of microstructure properties to oxygen impurities in nanocrystalline silicon photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wen, C.; Liu, H.; Li, Z. P.; Shen, W. Z.

    2013-03-01

    We have fully investigated the correlation of microstructure properties and oxygen impurities in hydrogenated nanocrystalline silicon photovoltaic films. The achievement has been realized through a series of different hydrogen dilution ratio treatment by plasma enhanced chemical vapor deposition system. Raman scattering, x-ray diffraction, and ultraviolet-visible transmission techniques have been employed to characterize the physical structural characterization and to elucidate the structure evolution. The bonding configuration of the oxygen impurities was investigated by x-ray photoelectron spectroscopy and the Si-O stretching mode of infrared-transmission, indicating that the films were well oxidized in SiO2 form. Based on the consistence between the proposed structure factor and the oxygen content, we have demonstrated that there are two dominant disordered structure regions closely related to the post-oxidation contamination: plate-like configuration and clustered microvoids.

  7. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    DOEpatents

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  8. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  9. Classification of X-ray sources in the direction of M31

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.

    2012-01-01

    M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.

  10. Observations of the May 1979 outburst of Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Raymand, J. C.; Dupree, A. K.

    1982-01-01

    The IUE spectra of the X-ray transient/X-ray burst source Cen X-4 at three intervals during the peak and decline of the May 1979 transient event were studied. The spectrum is characterized by a blue continuum and strong emission lines of N V lambda 1240, Si IV lambda 1398 and C IV lambda 1550. The origin of these emission components in the context of an X-ray dwarf nova model is investigated. It is suggested that an accretion disk plays a prominent role in the generation of the continuum emission and that X-ray heating of the accretion disk and the companion star may be important in the formation of the emission lines.

  11. New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics

    NASA Astrophysics Data System (ADS)

    Krumrey, Michael; Müller, Peter; Cibik, Levent; Collon, Max; Barrière, Nicolas; Vacanti, Giuseppe; Bavdaz, Marcos; Wille, Eric

    2016-07-01

    A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, V.V.; Conley, R.; Anderson, E.H.

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binarypseudo-random (BPR) gratings and arrays has been suggested and and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer. Here we describe the details of development of binarypseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electronmore » microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML testsamples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less

  13. Sonochemical synthesis and structural characterization of a new nanostructured Co(II) supramolecular coordination polymer with Lewis base sites as a new catalyst for Knoevenagel condensation.

    PubMed

    Joharian, Monika; Abedi, Sedigheh; Morsali, Ali

    2017-11-01

    A new Co(II) mixed-ligand coordination supramolecular polymer with composition [Co 2 (ppda)(4-bpdh) 2 (NO 3 ) 2 ] n (1) (where, ppda=p-phenylenediacrylic acid, 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) was synthesized using solvothermal, mechanochemical and sonochemical methods. Compound 1 and the new nanostructure have been characterized by single-crystal X-ray, infrared spectroscopy (IR), powder X-ray diffraction (PXRD) analysis and scanning electron microscopy (SEM). The thermal stability of compound 1 was also studied by thermal gravimetric analysis (TGA). The surface area of these compounds was determined by BET. The single-crystal X-ray data shows a new interesting two-dimensional coordination polymer (CP). In addition, the effect of various sonication concentrations of initial reagents, power of ultrasound irradiation and also the time on the size and morphology of nano-structured coordination polymer 1 were evaluated. Moreover, it has been demonstrated that the nanostructure of the CP1 can be used as a catalyst in Knoevenagel condensation reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction--a benchmark structure-property study.

    PubMed

    Lock, Nina; Jensen, Ellen M L; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B

    2013-07-14

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  15. Novel synthesis and characterization of pristine Cu nanoparticles for the non-enzymatic glucose biosensor.

    PubMed

    Dayakar, T; Rao, K Venkateswara; Bikshalu, K; Rajendar, V; Park, Si-Hyun

    2017-07-01

    Non enzymatic electrochemical glucose sensing was developed based on pristine Cu Nanopartilces (NPs)/Glassy Carbon Electrode (GCE) which can be accomplished by simple green method via ocimum tenuiflorum leaf extract. Then, the affect of leaf extract addition on improving Structural, Optical and electrochemical properties of pristine cu NPs was investigated. The synthesized Cu NPs were characterized with X-ray diffraction (X-ray), Uv-Visible spectroscopy (Uv-Vis), Fourier transformation infrared spectroscopy (FTIR), Particle size distribution (PSA), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM) for structural optical and morphological studies respectively. The synthesized Cu NPs were coated over glassy carbon electrode (GCE) to study the electrochemical response of glucose by cyclic voltammetry and ampherometer. The results indicates that the modified biosensor shows a remarkable sensitivity (1065.21 μA mM -1  cm -2 ), rapid response time (<3s), wide linear range (1 to 7.2 mM), low detection limit (0.038 μM at S/N = 3). Therefore, the prepared Cu NPs by the Novel Bio-mediated route were exploited to construct a non-enzymatic glucose biosensor for sustainable clinical field applications.

  16. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J.; Nau, S.

    2015-08-21

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filamentsmore » and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.« less

  17. Calibration of the Microcalorimeter Spectrometer On-Board the Hitomi (Astro-H) Observatory (invited)

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Boyce, K. R.; Brown, G. V.; Chiao, M. P.; Fujimoto, R.; Haas, D.; Den Herder, J.-W.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carreras, Alejo C., E-mail: acarreras@famaf.unc.edu.ar; Cangiano, María de los A.; Ojeda, Manuel W.

    The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. Inmore » the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys.« less

  19. LABORATORY EVALUATION OF SIX NEW/MODIFIED PORTABLE X-RAY FLUORESCENCE SPECTROMETERS FOR THE MEASUREMENT OF LEAD IN CHARACTERIZED PAINT FILMS AND RESEARCH MATERIAL BOARDS (TECHNICAL REPORT)

    EPA Science Inventory

    A laboratory study was performed in 1994-1995 to identify and estimate the influence of key characteristics for evaluating the performance of portable X-ray fluorescence (XRF) spectrometers. Six new/modified spectrometers, including HNU SEFA-Pb, Metorex X-MET, Niton X-L, Radiat...

  20. LABORATORY EVALUATION OF SIX NEW/MODIFIED PORTABLE X-RAY FLUORESCENCE SPECTROMETERS FOR THE MEASUREMENT OF LEAD IN CHARACTERIZED PAINT FILMS AND RESEARCH MATERIAL BOARDS (APPENDICES)

    EPA Science Inventory

    A laboratory study was performed in 1994-1995 to identify and estimate the influence of key characteristics for evaluating the performance of portable X-ray fluorescence (XRF) spectrometers. Six new/modified spectrometers, including HNU SEFA-Pb, Metorex X-MET, Niton X-L, Radiat...

  1. First Year PIDDP Report on gamma-ray and x-ray spectroscopy: X-ray remote sensing and in situ spectroscopy for planetary exploration missions and gamma-ray remote sensing and in situ spectroscopy for planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J. S.; Truax, J. A.

    1994-01-01

    Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. In addition, it is important to characterize a detector system at uneven portions of its life cycle, for example after exposure to different amounts of radiation. A calibration and response characterization facility has been constructed at Schlumberger-Doll Research for all types of gamma- and x-ray detectors that may be used for planetary measurement. This facility is currently being tested. Initial use is expected for the MARS 94 detectors. The facility will then also be available for calibrating other detectors as well as arrays of detectors such as the NEAR detector with its central Nal(TI) crystal surrounded with a large BGO crystal. Cadmium telluride detectors are investigated for applications in space explorations. These detectors show an energy resolution of 5 keV for the 122 keV 57Co line. Earlier reported polarization effects are not observed. The detectors can be used at temperatures up to 100 C, although with reduced energy resolution. The thickness of standard detectors is limited to 2 mm. These detectors become fully efficient at bias voltages above 200 V. Initial results for a 1 cm thick detector show that the quality of the material is inferior to the thinner standard detectors and hole trapping affects the pulse height. A detailed characterization of the detector is in progress. Prototypes of photomultipliers based on a Channel Electron Multiplier (CEM) are being built to study their performance. Such photomultipliers promise better timing characteristics and a higher dynamic range while being more compact and of lower in weight.

  2. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    NASA Astrophysics Data System (ADS)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  3. X-ray photoelectron spectroscopy and atomic force microscopy characterization of the effects of etching Zn xCd 1- xTe surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.

    1993-10-01

    X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.

  4. Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    NASA Technical Reports Server (NTRS)

    Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)

    2016-01-01

    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.

  5. An all-diamond X-ray position and flux monitor using nitrogen-incorporated ultra-nanocrystalline diamond contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Mengnan; Gaowei, Mengjia; Zhou, Tianyi

    Diamond X-ray detectors with conducting nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD) films as electrodes were fabricated to measure X-ray beam flux and position. Structural characterization and functionality tests were performed for these devices. The N-UNCD films grown on unseeded diamond substrates were compared with N-UNCD films grown on a seeded silicon substrate. The feasibility of the N-UNCD films acting as electrodes for X-ray detectors was confirmed by the stable performance in a monochromatic X-ray beam. The fabrication process is able to change the surface status which may influence the signal uniformity under low bias, but this effect can be neglected under fullmore » collection bias.« less

  6. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can bemore » resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)« less

  7. VizieR Online Data Catalog: New gamma-ray blazar candidates in the 3PBC (Maselli+, 2013)

    NASA Astrophysics Data System (ADS)

    Maselli, A.; Massaro, F.; Cusumano, G.; D'Abrusco, R.; La Parola, V.; Paggi, A.; Segreto, A.; Smith, H. A.; Tosti, G.

    2013-06-01

    We searched for γ-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the γ-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources and WISE γ-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 γ-ray blazar candidates. (2 data files).

  8. Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction1

    PubMed Central

    Mikhalychev, Alexander; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Ulyanenkov, Alex

    2015-01-01

    Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data. PMID:26089760

  9. Development of Antibacterials Targeting the MEP Pathway of Select Agents

    DTIC Science & Technology

    2014-05-01

    discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of the MEP pathway enzymes MEP synthase and...recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes • A manuscript detailing the characterization of the Y. pestis MEP...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang, Chung, Oldenburg (1999) A Simple Statistical

  10. Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-ray Diffraction.

    PubMed

    Schroth, Philipp; Jakob, Julian; Feigl, Ludwig; Mostafavi Kashani, Seyed Mohammad; Vogel, Jonas; Strempfer, Jörg; Keller, Thomas F; Pietsch, Ullrich; Baumbach, Tilo

    2018-01-10

    We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.

  11. Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles

    PubMed Central

    Guan, Panpan; Li, Yongjian; Zhang, Jie; Li, Wei

    2016-01-01

    Copper oxide (CuO)-decorated cerium oxide (CeO2) nanoparticles were synthesized and used to detect glucose non-enzymatically. The morphological characteristics and structure of the nanoparticles were characterized through transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The sensor responses of electrodes to glucose were investigated via an electrochemical method. The CuO/CeO2 nanocomposite exhibited a reasonably good sensitivity of 2.77 μA mM−1cm−2, an estimated detection limit of 10 μA, and a good anti-interference ability. The sensor was also fairly stable under ambient conditions. PMID:28335287

  12. Bayesian performance metrics of binary sensors in homeland security applications

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz P.; Forrester, Thomas C.

    2008-04-01

    Bayesian performance metrics, based on such parameters, as: prior probability, probability of detection (or, accuracy), false alarm rate, and positive predictive value, characterizes the performance of binary sensors; i.e., sensors that have only binary response: true target/false target. Such binary sensors, very common in Homeland Security, produce an alarm that can be true, or false. They include: X-ray airport inspection, IED inspections, product quality control, cancer medical diagnosis, part of ATR, and many others. In this paper, we analyze direct and inverse conditional probabilities in the context of Bayesian inference and binary sensors, using X-ray luggage inspection statistical results as a guideline.

  13. Characterization of x-ray framing cameras for the National Ignition Facility using single photon pulse height analysis.

    PubMed

    Holder, J P; Benedetti, L R; Bradley, D K

    2016-11-01

    Single hit pulse height analysis is applied to National Ignition Facility x-ray framing cameras to quantify gain and gain variation in a single micro-channel plate-based instrument. This method allows the separation of gain from detectability in these photon-detecting devices. While pulse heights measured by standard-DC calibration methods follow the expected exponential distribution at the limit of a compound-Poisson process, gain-gated pulse heights follow a more complex distribution that may be approximated as a weighted sum of a few exponentials. We can reproduce this behavior with a simple statistical-sampling model.

  14. Petrographic characterization of lunar soils: Application of x ray digital-imaging to quantitative and automated analysis

    NASA Technical Reports Server (NTRS)

    Higgins, Stefan J.; Patchen, Allan; Chambers, John G.; Taylor, Lawrence A.; Mckay, David S.

    1994-01-01

    The rocks and soils of the moon will be the raw materials for various engineering needs at a lunar base, such as sources of hydrogen, oxygen, metals, etc. The material of choice for most of the bulk needs is the regolith and its less than 1 cm fraction, the soil. For specific mineral resources it may be necessary to concentrate minerals from either rocks or soils. Therefore, quantitative characterizations of these rocks and soils are necessary in order to better define their mineral resource potential. However, using standard point-counting microscopic procedures, it is difficult to quantitatively determine mineral abundances and virtually impossible to obtain data on mineral distributions within grains. As a start to fulfilling these needs, Taylor et al. and Chambers et al. have developed a procedure for characterization of crushed lunar rocks using x ray digital imaging. The development of a similar digital imaging procedure for lunar soils as obtained from a spectrometer is described.

  15. Structure, Nanomechanics and Dynamics of Dispersed Surfactant-Free Clay Nanocomposite Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhao, Jing; Snyder, Chad; Karim, Alamgir; National Institute of Standards; Technology Collaboration

    Natural Montmorillonite particles were dispersed as tactoids in thin films of polycaprolactone (PCL) through a flow coating technique assisted by ultra-sonication. Wide angle X-ray scattering (WAXS), Grazing-incidence wide angle X-ray scattering (GI-WAXS), and transmission electron microscopy (TEM) were used to confirm the level of dispersion. These characterization techniques are in conjunction with its nanomechanical properties via strain-induced buckling instability for modulus measurements (SIEBIMM), a high throughput technique to characterize thin film mechanical properties. The linear strengthening trend of the elastic modulus enhancements was fitted with Halpin-Tsai (HT) model, correlating the nanoparticle geometric effects and mechanical behaviors based on continuum theories. The overall aspect ratio of dispersed tactoids obtained through HT model fitting is in reasonable agreement with digital electron microscope image analysis. Moreover, glass transition behaviors of the composites were characterized using broadband dielectric relaxation spectroscopy. The segmental relaxation behaviors indicate that the associated mechanical property changes are due to the continuum filler effect rather than the interfacial confinement effect.

  16. Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hui; Cummings, Marvin; Camino, Fernando

    Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less

  17. Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM

    DOE PAGES

    Yan, Hui; Cummings, Marvin; Camino, Fernando; ...

    2015-08-05

    Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less

  18. Multi-scale analytical investigation of fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Aboustait, Mohammed B.

    Much research has been conducted to find an acceptable concrete ingredient that would act as cement replacement. One promising material is fly ash. Fly ash is a by-product from coal-fired power plants. Throughout this document work on the characterization of fly ash structure and composition will be explored. This effort was conducted through a mixture of cutting edge multi-scale analytical X-ray based techniques that use both bulk experimentation and nano/micro analytical techniques. Furtherly, this examination was coupled by performing Physical/Mechanical ASTM based testing on fly ash-enrolled-concrete to examine the effects of fly ash introduction. The most exotic of the cutting edge characterization techniques endorsed in this work uses the Nano-Computed Tomography and the Nano X-ray Fluorescence at Argonne National Laboratory to investigate single fly ash particles. Additional Work on individual fly ash particles was completed by laboratory-based Micro-Computed Tomography and Scanning Electron Microscopy. By combining the results of individual particles and bulk property tests, a compiled perspective is introduced, and accessed to try and make new insights into the reactivity of fly ash within concrete.

  19. Metallurgical characterization of experimental Ag-based soldering alloys.

    PubMed

    Ntasi, Argyro; Al Jabbari, Youssef S; Silikas, Nick; Al Taweel, Sara M; Zinelis, Spiros

    2014-10-01

    To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627-762 °C for AgGa and 631-756 °C for AgGaSn. The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys.

  20. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  1. The Lunar X-ray Observatory (LXO)/Magnetosheath Explorer in X-Rays (MagEX)

    NASA Technical Reports Server (NTRS)

    Collier, M.R.; Abbey, T.F.; Bannister, N.P.; Carter, J.A.; Choi, M.; Cravens, T.; Evans, M.; Fraser, G.W.; Hills, H.K.; Kuntz, K.; hide

    2009-01-01

    X-ray observations of solar wind charge exchange (SWCX) emission, a nuisance to astrophysicists, will dramatically enhance our ability to determine the structure and variability of the Earth's magnetosheath. Such observations could be made from the lunar surface or an Earth-orbiting spacecraft and will resolve key controversies about magnetopause physics as well as better characterize SWCX emission with the aim of avoiding or removing it from astrophysical observations.

  2. Characterizing X-ray Attenuation of Containerized Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, N.; Divin, C.; Glenn, S.

    X-ray inspection systems can be used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, the attenuation characteristics of imported cargo need to be determined. This project focused on developing image processing algorithms for segmenting cargo and using x-ray attenuation to quantify equivalent steel thickness to determine cargo density. These algorithms were applied to over 450 cargo radiographs. The results are summarized in this report.

  3. Frontiers in imaging magnetism with polarized x-rays

    DOE PAGES

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. Furthermore, the opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  4. US Air Force 1989 Research Initiation Program. Volume 3

    DTIC Science & Technology

    1992-06-25

    like x - ray and hole-drilling are not applicable to the plastics used for transparent enclosures. ThL above research has raised questions about the curre...Techniques . . . . . ... 2.4.1.1 Visual Inspection. . . . . . .... 2.4.1.2 Ultrasonic C-scan. . . . . . .... 2.4.1.3 X - Ray Radiography...Characterization. ............ 4.8.1 Ultrasonic C-scan Results of Damage .... 4.8.2 Deply Results of Damaged Plates . . .... 4.8.3 X - Ray Radiography Results of

  5. X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall

    2003-01-01

    In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary features --- fixed aperture mask and movable sub-aperture mask --- to facilitate X-ray characterization of the optics. Although the OAPZ was designed to- have low sensitivity to temperature offsets and gradients, analyses showed the necessity of active temperature control for the X-ray performance testing. Thus, the Smithsonian Astrophysical Observatory (SAO) implemented a thermal control and monitoring system, designed to hold the OAP2 close to its assembly.

  6. Structural and morphological study of Fe-doped Bi-based superconductor

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath; Kumar, Rohitash

    2018-05-01

    In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.

  7. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Haugh and M. B. Schneider

    2008-10-31

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. Amore » multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less

  8. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruetzel, Linda K.; Fischer, Stefan; Salditt, Annalena

    2016-02-15

    We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10{sup 6} photons/s at a beam size of 1.2 × 1.2 mm{sup 2} at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å{sup −1} down to 0.009 Å{sup −1} in SAXS configuration and of 0.26 Å{sup −1} up to 5.7 Å{sup −1} in wide-angle X-ray scattering (WAXS) mode. Tomore » determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5–24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å{sup −1} allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.« less

  9. Diagnostic x-ray dosimetry using Monte Carlo simulation.

    PubMed

    Ioppolo, J L; Price, R I; Tuchyna, T; Buckley, C E

    2002-05-21

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 x 10(7)) than required for the calculation of dose profiles (1 x 10(9)). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  10. An in-line optical image translator with applications in x-ray videography.

    PubMed

    Picot, P A; Cardinal, H N; Fenster, A

    1990-01-01

    Many applications in radiography require, or would benefit from, the ability to translate, i.e. move, an optical image in the detector plane. In this paper, we describe the design and characterization of a prism-based optical image translator for insertion into existing XRII-video imaging systems. A pair of prisms rotatable about the optical axis form a very compact in-line optical image translator for installation in the parallel light path between an x-ray image intensifier and its video camera. Rotation of the prisms translates the XRII optical image on the camera target. With the addition of x-ray and light collimators to limit the image to a single video line, x-ray streak images may be acquired. By rotating an object in the x-ray beam during a streak, a complete computed tomography (CT) data set may be acquired. This image translator can translate an image anywhere in the focal plane of a 50-mm-output lens within a 40-mm-diam circle. The prisms have an aperture of 50 mm, permitting an optical speed of F/2 with a 50-mm output lens. The design is insensitive to angular alignment errors. This image translator is achromatic, since the spectral width of the output phosphorus of image intensifiers is sufficient to introduce blurring in a nonacrhomatic design. A prism-based image translator introduces image distortion, since the prisms do not operate at minimum deviation. The distortion is less than 4% over all parts of a typical detector area, and less than 1% in the central region of the image.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Highly Reversible Water Oxidation at Ordered Nanoporous Iridium Electrodes Based on an Original Atomic Layer Deposition.

    PubMed

    Schlicht, Stefanie; Haschke, Sandra; Mikhailovskii, Vladimir; Manshina, Alina; Bachmann, Julien

    2018-05-01

    Nanoporous iridium electrodes are prepared and electrochemically investigated towards the water oxidation (oxygen evolution) reaction. The preparation is based on 'anodic' aluminum oxide templates, which provide straight, cylindrical nanopores. Their walls are coated using atomic layer deposition (ALD) with a newly developed reaction which results in a metallic iridium layer. The ALD film growth is quantified by spectroscopic ellipsometry and X-ray reflectometry. The morphology and composition of the electrodes are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Their catalytic activity is quantified for various pore geometries by cyclic voltammetry, steady-state electrolysis, and electrochemical impedance spectroscopy. With an optimal pore length of L ≈17-20 μm, we achieve current densities of J =0.28 mA cm -2 at pH 5 and J =2.4 mA cm -2 at pH 1. This platform is particularly competitive for achieving moderate current densities at very low overpotentials, that is, for a high degree of reversibility in energy storage.

  12. Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry

    PubMed Central

    Walker, Peter

    2017-01-01

    Abstract The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. PMID:28108663

  13. Microporous Cd(II) metal-organic framework as fluorescent sensor for nitroaromatic explosives at the sub-ppm level

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Po; Han, Lu-Lu; Wang, Zhi; Guo, Ling-Yu; Sun, Di

    2016-03-01

    A novel Cd(II) metal-organic framework (MOF) based on a rigid biphenyltetracarboxylic acid, [Cd4(bptc)2(DMA)4(H2O)2·4DMA] (1) was successfully synthesized under the solvothermal condition and characterized by single-crystal X-ray diffraction and further consolidated by elemental analyses, powder X-ray diffraction (PXRD), infrared spectra (IR) and luminescent measurements. Single crystal X-ray diffraction analysis reveals that compound 1 is 4-connected PtS (Point symbol: {42·84}) network based on [Cd2(COO)4] secondary building units (SBUs). Its inherent porous and emissive characteristics make them to be a suitable fluorescent probe to sense small solvents and nitroaromatic explosives. Compound 1 shows obviously solvent-dependent emissive behaviors, especially for acetone with very high fluorescence quenching effect. Moreover, compound 1 displays excellent sensing of nitroaromatic explosives at sub-ppm level, giving a detection limit of 0.43 ppm and 0.37 ppm for nitrobenzene (NB) and p-nitrotoluene (PNT), respectively. This shows this Cd(II) MOF can be used as fluorescence probe for the detection of nitroaromatic explosives.

  14. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  15. Characterization of CaMn2O4 By X-Ray Magnetic Linear Dichroism

    NASA Astrophysics Data System (ADS)

    Holroyd, Johnathon; Bhatkar, Harshawardhan; Arenholz, Elke; White, Ben; Neumeier, John; Idzerda, Yves

    2008-05-01

    Perovskite manganite such as LaxCa(1-x)MnO3 (LCMO) have recently drawn attention for their useful electronic and magnetic properties such as Colossal Magnetoresistance. It has been shown that under stress, LCMO thin films show changes in La and Ca concentrations near the interface. One potential impurity under La depleted conditions is antiferromagnetic CaMn2O4. In order to better understand the range of properties available within LCMO systems, it is important to be able to identify and characterize CaMn2O4 within LCMO thin films. X-ray absorption spectroscopy (XAS) and X-ray magnetic linear dichroism (XMLD) are well suited to this task due to their element specificity, sensitivity, and ability to characterize the measure the magnetic properties of antiferromagnetic systems. XAS and XMLD were measured on high quality single crystals of CaMn2O4. These spectra are distinguished from CaMnO3 and demonstrate antiferromagnetic structure.

  16. Characterizing the potency and impact of carbon ion therapy in a primary mouse model of soft tissue sarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownstein, Jeremy Michael; Wisdom, Amy Jordan; Castle, Katherine D.

    Carbon ion therapy (CIT) offers several potential advantages for treating cancers compared with X-ray and proton radiotherapy, including increased biological efficacy and more conformal dosimetry. However, CIT potency has not been characterized in primary tumor animal models. Here in this paper, we calculate the relative biological effectiveness (RBE) of carbon ions compared to X-rays in an autochthonous mouse model of soft tissue sarcoma. We used Cre/loxP technology to generate primary sarcomas in KrasLSL-G12D/+; p53fl/fl mice. Primary tumors were irradiated with a single fraction of carbon ions (10 Gy), X-rays (20, 25, or 30 Gy), or observed as controls. The RBEmore » was calculated by determining the dose of X-rays that resulted in similar time to post-treatment tumor volume quintupling and growth rate as 10 Gy carbon ions. The median tumor volume quintupling time and growth rate of sarcomas treated with 10 Gy carbon ions and 30 Gy X-rays were similar: 27.3 days and 28.1 days, and 0.060 mm3/day and 0.059 mm3/day, respectively. Tumors treated with lower doses of X-rays had faster regrowth. Thus, the RBE of carbon ions in this primary tumor model is 3. When isoeffective treatments of carbon ions and X-rays were compared, we observed significant differences in tumor growth kinetics, proliferative indices, and immune infiltrates. We found that carbon ions were three times as potent as X-rays in this aggressive tumor model and identified unanticipated differences in radiation response that may have clinical implications.« less

  17. Characterizing the potency and impact of carbon ion therapy in a primary mouse model of soft tissue sarcoma

    DOE PAGES

    Brownstein, Jeremy Michael; Wisdom, Amy Jordan; Castle, Katherine D.; ...

    2018-02-07

    Carbon ion therapy (CIT) offers several potential advantages for treating cancers compared with X-ray and proton radiotherapy, including increased biological efficacy and more conformal dosimetry. However, CIT potency has not been characterized in primary tumor animal models. Here in this paper, we calculate the relative biological effectiveness (RBE) of carbon ions compared to X-rays in an autochthonous mouse model of soft tissue sarcoma. We used Cre/loxP technology to generate primary sarcomas in KrasLSL-G12D/+; p53fl/fl mice. Primary tumors were irradiated with a single fraction of carbon ions (10 Gy), X-rays (20, 25, or 30 Gy), or observed as controls. The RBEmore » was calculated by determining the dose of X-rays that resulted in similar time to post-treatment tumor volume quintupling and growth rate as 10 Gy carbon ions. The median tumor volume quintupling time and growth rate of sarcomas treated with 10 Gy carbon ions and 30 Gy X-rays were similar: 27.3 days and 28.1 days, and 0.060 mm3/day and 0.059 mm3/day, respectively. Tumors treated with lower doses of X-rays had faster regrowth. Thus, the RBE of carbon ions in this primary tumor model is 3. When isoeffective treatments of carbon ions and X-rays were compared, we observed significant differences in tumor growth kinetics, proliferative indices, and immune infiltrates. We found that carbon ions were three times as potent as X-rays in this aggressive tumor model and identified unanticipated differences in radiation response that may have clinical implications.« less

  18. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-upof the First Shear-selected Galaxy Cluster Sample

    NASA Astrophysics Data System (ADS)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David

    2017-04-01

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shear peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L X -T X relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (˜48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. A Search for the Location of the Gamma-ray Flares

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin

    2012-01-01

    Subsequent to announcements by the AGILE and by the Fermi-LAT teams of the discovery of gamma-ray flares from the Crab Nebula in the fall of 2010, an international collaboration has been monitoring X-Ray emission from the Crab on a regular basis using the Chandra X-Ray Observatory. Observations occurred typically once per month when viewing constraints allow. A notable exception occurred in 2011 April, when we triggered a set of Chandra Target-of-Opportunity observations in conjunction with the brightest -ray flare yet observed. The aim of the program is to characterize in depth the X-Ray variations within the Nebula, and, if possible, to much more precisely locate the origin of the -ray flares. We briefly summarize the April X-ray observations and the information we have gleaned to date.

  20. Synthesis, physical properties and self-assembly behavior of azole-fused pyrene derivatives

    NASA Astrophysics Data System (ADS)

    Xiao, Jinchong; Xiao, Xuyu; Zhao, Yanlei; Wu, Bo; Liu, Zhenying; Zhang, Xuemin; Wang, Sujuan; Zhao, Xiaohui; Liu, Lei; Jiang, Li

    2013-05-01

    A novel selenadiazole-fused pyrene derivative PySe was successfully synthesized and characterized. Its single structure is almost planar and adopts a sandwich-herringbone packing model. The self-assembly behaviors based on compound PySe and its analogue thiadiazole-fused pyrene derivative PyS were studied in detail and the as-formed nanostructures were fully characterized by means of UV-vis absorption, emission spectra, X-ray diffraction, field emission SEM and TEM. We attribute the bathochromic shift absorption and emission spectra of PyS and PySe in aqueous solution to the formation of J-type aggregation. In addition, our investigation demonstrated that the shape and size of the as-prepared nanostructures could be tuned by different chalcogen analogues and the volume ratio of water to organic solvent.A novel selenadiazole-fused pyrene derivative PySe was successfully synthesized and characterized. Its single structure is almost planar and adopts a sandwich-herringbone packing model. The self-assembly behaviors based on compound PySe and its analogue thiadiazole-fused pyrene derivative PyS were studied in detail and the as-formed nanostructures were fully characterized by means of UV-vis absorption, emission spectra, X-ray diffraction, field emission SEM and TEM. We attribute the bathochromic shift absorption and emission spectra of PyS and PySe in aqueous solution to the formation of J-type aggregation. In addition, our investigation demonstrated that the shape and size of the as-prepared nanostructures could be tuned by different chalcogen analogues and the volume ratio of water to organic solvent. Electronic supplementary information (ESI) available: TGA analysis, spectra characterization data for compound 1, 2, 3 and X-ray crystallographic data for compound PySe (2, CIF). CCDC 917821. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr00523b

Top