Sample records for x-ray collimation system

  1. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, S.

    1995-10-24

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

  2. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  3. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  4. Comparison of two portable solid state detectors with an improved collimation and alignment device for mammographic x-ray spectroscopy.

    PubMed

    Bottigli, U; Golosio, B; Masala, G L; Oliva, P; Stumbo, S; Delogu, P; Fantacci, M E; Abbene, L; Fauci, F; Raso, G

    2006-09-01

    We describe a portable system for mammographic x-ray spectroscopy, based on a 2 X 2 X 1 mm3 cadmium telluride (CdTe) solid state detector, that is greatly improved over a similar system based on a 3 X 3 X 2 mm3 cadmium zinc telluride (CZT) solid state detector evaluated in an earlier work. The CdTe system utilized new pinhole collimators and an alignment device that facilitated measurement of mammographic x-ray spectra. Mammographic x-ray spectra acquired by each system were comparable. Half value layer measurements obtained using an ion chamber agreed closely with those derived from the x-ray spectra measured by either detector. The faster electronics and other features of the CdTe detector allowed its use with a larger pinhole collimator than could be used with the CZT detector. Additionally, the improved pinhole collimator and alignment features of the apparatus permitted much more rapid setup for acquisition of x-ray spectra than was possible on the system described in the earlier work. These improvements in detector technology, collimation and ease of alignment, as well as low cost, make this apparatus attractive as a tool for both laboratory research and advanced mammography quality control.

  5. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOEpatents

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  6. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOEpatents

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  7. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  8. Automatic tool alignment in a backscatter X-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  9. Automatic tool alignment in a backscatter x-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  10. The HEAO-A Scanning Modulation Collimator instrument

    NASA Technical Reports Server (NTRS)

    Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.

    1977-01-01

    The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.

  11. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  12. Microfocus/Polycapillary-Optic Crystallographic X-Ray System

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Gubarev, Mikhail; Ciszak, Ewa

    2005-01-01

    A system that generates an intense, nearly collimated, nearly monochromatic, small-diameter x-ray beam has been developed for use in macromolecular crystallography. A conventional x-ray system for macromolecular crystallography includes a rotating-anode x-ray source, which is massive (.500 kg), large (approximately 2 by 2 by 1 m), and power-hungry (between 2 and 18 kW). In contrast, the present system generates a beam of the required brightness from a microfocus source, which is small and light enough to be mounted on a laboratory bench, and operates at a power level of only tens of watts. The figure schematically depicts the system as configured for observing x-ray diffraction from a macromolecular crystal. In addition to the microfocus x-ray source, the system includes a polycapillary optic . a monolithic block (typically a bundle of fused glass tubes) that contains thousands of straight or gently curved capillary channels, along which x-rays propagate with multiple reflections. This particular polycapillary optic is configured to act as a collimator; the x-ray beam that emerges from its output face consists of quasi-parallel subbeams with a small angular divergence and a diameter comparable to the size of a crystal to be studied. The gap between the microfocus x-ray source and the input face of the polycapillary optic is chosen consistently with the focal length of the polycapillary optic and the need to maximize the solid angle subtended by the optic in order to maximize the collimated x-ray flux. The spectrum from the source contains a significant component of Cu K (photon energy is 8.08 keV) radiation. The beam is monochromatized (for Cu K ) by a nickel filter 10 m thick. In a test, this system was operated at a power of 40 W (current of 897 A at an accelerating potential of 45 kV), with an anode x-ray spot size of 41+/-2 microns. Also tested, in order to provide a standard for comparison, was a commercial rotating-anode x-ray crystallographic system with a pyrolytic graphite monochromator and a 250-micron pinhole collimator, operating at a power of 3.15 kW (current of 70 mA at an accelerating potential of 45 kV). The flux of collimated Cu K radiation in this system was found to be approximately 16 times that in the rotatinganode system. Data on x-ray diffraction from crystals of tetragonal form of lysozyme (protein) in this system were found to be of high quality and to be reducible by use of standard crystallographic software.

  13. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  14. Studies of auroral X-ray imaging from high altitude spacecraft

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.; Mizera, P. F.; Rice, C. J.

    1980-01-01

    Results of a study of techniques for imaging the aurora from a high altitude satellite at X-ray wavelengths are summarized. The X-ray observations allow the straightforward derivation of the primary auroral X-ray spectrum and can be made at all local times, day and night. Five candidate imaging systems are identified: X-ray telescope, multiple pinhole camera, coded aperture, rastered collimator, and imaging collimator. Examples of each are specified, subject to common weight and size limits which allow them to be intercompared. The imaging ability of each system is tested using a wide variety of sample spectra which are based on previous satellite observations. The study shows that the pinhole camera and coded aperture are both good auroral imaging systems. The two collimated detectors are significantly less sensitive. The X-ray telescope provides better image quality than the other systems in almost all cases, but a limitation to energies below about 4 keV prevents this system from providing the spectra data essential to deriving electron spectra, energy input to the atmosphere, and atmospheric densities and conductivities. The orbit selection requires a tradeoff between spatial resolution and duty cycle.

  15. Demonstration of Laser Plasma X-Ray Source with X-Ray Collimator Final Report CRADA No. TC-1564-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, S. M.; Forber, R. A.

    2017-09-28

    This collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and JMAR Research, Inc. (JRI), was to demonstrate that LLNL x-ray collimators can effectively increase the wafer throughput of JRI's laser based x-ray lithography systems. The technical objectives were expected to be achieved by completion of the following tasks, which are separated into two task lists by funding source. The organization (LLNL or JMAR) having primary responsibility is given parenthetically for each task.

  16. Control of the Low-energy X-rays by Using MCNP5 and Numerical Analysis for a New Concept Intra-oral X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Huh, Jangyong; Ji, Yunseo; Lee, Rena

    2018-05-01

    An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.

  17. [Design of longitudinal auto-tracking of the detector on X-ray in digital radiography].

    PubMed

    Yu, Xiaomin; Jiang, Tianhao; Liu, Zhihong; Zhao, Xu

    2018-04-01

    One algorithm is designed to implement longitudinal auto-tracking of the the detector on X-ray in the digital radiography system (DR) with manual collimator. In this study, when the longitudinal length of field of view (LFOV) on the detector is coincided with the longitudinal effective imaging size of the detector, the collimator half open angle ( Ψ ), the maximum centric distance ( e max ) between the center of X-ray field of view and the projection center of the focal spot, and the detector moving distance for auto-traking can be calculated automatically. When LFOV is smaller than the longitudinal effective imaging size of the detector by reducing Ψ , the e max can still be used to calculate the detector moving distance. Using this auto-tracking algorithm in DR with manual collimator, the tested results show that the X-ray projection is totally covered by the effective imaging area of the detector, although the center of the field of view is not aligned with the center of the effective imaging area of the detector. As a simple and low-cost design, the algorithm can be used for longitudinal auto-tracking of the detector on X-ray in the manual collimator DR.

  18. Development of a Method to Assess the Precision Of the z-axis X-ray Beam Collimation in a CT Scanner

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Min

    2018-05-01

    Generally X-ray equipment specifies the beam collimator for the accuracy measurement as a quality control item, but the computed tomography (CT) scanner with high dose has no collimator accuracy measurement item. If the radiation dose is to be reduced, an important step is to check if the beam precisely collimates at the body part for CT scan. However, few ways are available to assess how precisely the X-ray beam is collimated. In this regard, this paper provides a way to assess the precision of z-axis X-ray beam collimation in a CT scanner. After the image plate cassette had been exposed to the X-ray beam, the exposed width was automatically detected by using a computer program developed by the research team to calculate the difference between the exposed width and the imaged width (at isocenter). The result for the precision of z-axis X-ray beam collimation showed that the exposed width was 3.8 mm and the overexposure was high at 304% when a narrow beam of a 1.25 mm imaged width was used. In this study, the precision of the beam collimation of the CT scanner, which is frequently used for medical services, was measured in a convenient way by using the image plate (IP) cassette.

  19. High energy collimating fine grids for HESP program

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol D.; Frazier, Edward

    1993-01-01

    There is a need to develop fine pitch x-ray collimator grids as an enabling technology for planned future missions. The grids consist of an array of thin parallel strips of x-ray absorbing material, such as tungsten, with pitches ranging from 34 microns to 2.036 millimeters. The grids are the key components of a new class of spaceborne instruments known as 'x-ray modulation collimators.' These instruments are the first to produce images of celestial sources in the hard x-ray and gamma-ray spectral regions.

  20. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  1. Use of capillary optics as a beam intensifier for a Compton x-ray source.

    PubMed

    Tompkins, P A; Abreu, C C; Carroll, F E; Xiao, Q F; MacDonald, C A

    1994-11-01

    The use of Kumakhov capillary optics will significantly enhance the performance of near-monochromatic, Compton backscattered x-ray programs. The Vanderbilt University Medical Free-Electron Laser Center is developing the capability to create these tunable x rays for medical imaging. The present transport has only reflection optics, and the beam is quite large in diameter at the laboratory. Low loss collimation of this beam would allow higher x-ray intensities after transport. This article describes experimental and computer simulation results which predict the expected performance for a multifiber Kumakhov collimator for use in the x-ray beam transport. Estimates from our research are that a multifiber optic formed of individual polycapillary fibers could be used to capture the full 7 mrad of the Vanderbilt x-ray beam and collimate it to a 1-2 mrad divergence with approximately 40%-50% transmission efficiency. This optic should increase the x-ray intensity at the laboratory level by a factor of > or = 5 by decreasing the beam divergence and subsequent spot size. Additionally, analysis of monolithic optics of fused multicapillary fibers predicts an increase in the intensity of the x rays at the laboratory by a factor of 55. These optics can have tapered channels that greatly decrease their exit divergence. This will greatly enhance the capabilities of this unique x-ray source. This article reports the initial results from a collaboration between Vanderbilt, The Center for X-Ray Optics at University at Albany, SUNY, and X-Ray Optical Systems in Albany, NY.

  2. Identification of two hard X-ray emitting Be stars using the HEAO 1 scanning modulation collimator

    NASA Technical Reports Server (NTRS)

    Steiner, J. E.; Ferrara, A.; Garcia, M.; Patterson, J.; Schwartz, D. A.; Warwick, R. S.; Watson, M. G.; Mcclintock, J. E.

    1984-01-01

    Using precise positions from the HEAO 1 Scanning Modulation Collimator experiment, two hard X-ray sources, 4U 0728 - 25 = 3A 0726 - 260 and 4U 2206 + 54 = 3A 2206 + 543, are identified with early-type stars. In both cases broad (10 A FWHM) H-alpha emission is detected. The UBV colors suggest that the optical counterparts are main-sequence B0-B2 stars at 2-6 kpc, implying a mean X-ray luminosity of order 10 to the 35th ergs/sq cm s (2-10 keV). The X-ray emission in both cases is highly variable, and it is suggested that they belong to the class of X-ray emitting Be stars, containing a neutron star in a widely separated binary system.

  3. WE-DE-BRA-10: Development of a Novel Scanning Beam Low-Energy Intraoperative Radiation Therapy (SBIORT) System for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wears, B; Mohiuddin, I; Flynn, R

    2016-06-15

    Purpose: Developing a compact collimator system and validating a 3D surface imaging module for a scanning beam low-energy x-ray radiation therapy (SBIORT) system that enables delivery of non-uniform radiation dose to targets with irregular shapes intraoperatively. Methods: SBIORT consists of a low energy x-ray source, a custom compact collimator module, a robotic arm, and a 3D surface imaging module. The 3D surface imaging system (structure sensor) is utilized for treatment planning and motion monitoring of the surgical cavity. SBIORT can deliver non-uniform dose distributions by dynamically moving the x-ray source assembly along optimal paths with various collimator apertures. The compactmore » collimator utilizes a dynamic shutter mechanism to form a variable square aperture. The accuracy and reproducibility of the collimator were evaluated using a high accuracy encoder and a high resolution camera platform. The dosimetrical characteristics of the collimator prototype were evaluated using EBT3 films with a Pantak Therapax unit. The accuracy and clinical feasibility of the 3D imaging system were evaluated using a phantom and a cadaver cavity. Results: The SBIORT collimator has a compact size: 66 mm diameter and 10 mm thickness with the maximum aperture of 20 mm. The mechanical experiment indicated the average accuracy of leaf position was 0.08 mm with a reproducibility of 0.25 mm at 95% confidence level. The dosimetry study indicated the collimator had a penumbra of 0.35 mm with a leaf transmission of 0.5%. 3D surface scans can be acquired in 5 seconds. The average difference between the acquired 3D surface and the ground truth is 1 mm with a standard deviation of 0.6 mm. Conclusion: This work demonstrates the feasibility of the compact collimator and 3D scanning system for the SBIORT. SBIORT is a way of delivering IORT with a compact system that requires minimum shielding of the procedure room. This research is supported by the University of Iowa Internal Funding Initiatives.« less

  4. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    PubMed

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  5. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  6. Observation of X-ray eclipses from LMC X-4

    NASA Technical Reports Server (NTRS)

    Li, F.; Rappaport, S.; Epstein, A.

    1978-01-01

    Observations made with the Rotation Modulation Collimator system (RMC) have revealed that X-ray source X-4 in the Large Magellanic Cloud (LMC X-4) is most likely part of a binary system. An analysis of the star's coordinates is presented, with attention given to orbital period and flux intensity variations. Stellar mass and orbital inclination angle are estimated for both X-4 and its companion star.

  7. Crystals and collimators for X-ray spectrometry. [Bragg reflection properties and design for astronomical applications

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.; Landecker, P. B.; Underwood, J. H.

    1976-01-01

    Results of the measurement of Bragg reflection properties of crystals suitable for use in X-ray astronomy are presented. Measurements with a double crystal spectrometer were performed on rubidium acid phthalate and thallium acid phthalate to yield values of the integrated reflectivity and diffraction width in the range 8-18 A, and measurements of integrated reflectivity were also performed on ammonium dihydrogen phosphate. The theory and design of an arc-minute range multigrid collimator to be flown on a rocket for solar X-ray studies are also described, along with a method for determining the collimator's X-ray axis.

  8. Diffraction effects on angular response of X-ray collimators

    NASA Technical Reports Server (NTRS)

    Blake, R. L.; Barrus, D. M.; Fenimore, E.

    1976-01-01

    Angular responses have been measured for X-ray collimators with half-widths ranging from minutes of arc down to 10 arcsec. In the seconds-of-arc range, diffraction peaks at off-axis angles can masquerade as side lobes of the collimator angular response. Measurements and qualitative physical arguments lead to a rule of thumb for collimator design; namely, the angle of first minimum in the Fraunhofer single-slit diffraction pattern should be less than one-fourth of the collimator geometrical full-width at half-maximum intensity.

  9. The UHURU X-ray instrument.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Austin, G.; Mickiewicz, S.; Goddard, R.

    1972-01-01

    On Dec. 12, 1970, the UHURU X-ray observatory was launched into equatorial orbit with the prime mission of conducting an all-sky survey of astronomical X-ray sources with intensities of 0.00005 Sco-X1 or greater. The X-ray detection system contains 12 gas-filled proportional counters, 6 behind each collimator. The aspect system is discussed together with the structure, the pulse height analyzer, the command system, the calibration system, and the power distribution system. Pulse shape discrimination circuits used on UHURU use the same technique that was used on the system originally developed for large area proportional counters described by Gorenstein and Mickiewicz (1968).

  10. Planetary X ray experiment

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1972-01-01

    Design studies for an X-ray experiment using solid state detectors and for an experiment using a proportional counter for investigating Jovian and Saturnian magnetospheres are reported. Background counting rates through the forward aperture and leakage fluxes are discussed for each design. It is concluded that the best choice of instrument appears to have following the characteristics: (1) two separate multiwire proportional counters for redundancy; (2) passive collimation to restrict the field to about 5 deg, wiregrid modulation collimation to about 0.1 deg angular resolution; (3) no active shielding system around the counter body; and (4) light passive shielding around any portion of the counter body exposed to space to absorb most of the cosmic X-ray background.

  11. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Impact of large x-ray beam collimation on image quality

    NASA Astrophysics Data System (ADS)

    Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.

    2016-03-01

    Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.

  13. TU-H-BRC-09: Validation of a Novel Therapeutic X-Ray Array Source and Collimation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trovati, S; King, GJ; Loo, BW

    2016-06-15

    Purpose: We have experimentally characterized and simulated the dosimetric properties and spatial fidelity of a novel X-ray array source and collimation system called SPHINX that has the potential to generate complex intensity modulated X-ray beams by varying the electron beam intensity only, and without any moving parts like in multi-leaf collimators. Methods: We investigated the spatial fidelity and the X-ray performances of a SPHINX prototype in tungsten, using a Cyber Knife and the experimental high-energy electron beam line at XTA at SLAC National Laboratory. Dose distributions were recorded with gafchromic films, placed at the distal end of SPHINX and atmore » several depths in a solid water phantom. The geometry of SPHINX and of the experimental set-ups was also modeled in Monte Carlo (MC) simulations with the FLUKA code, used to reproduce the experimental results and, after validation, to predict and optimize the performance and design of the SPHINX. Results: The results indicate significant particle leakage through the channels during a single-channel irradiation for high incident energies, followed by a rapid decrease for energies of clinical interest. When the collimator channels are used as target, the photon production increases, however at expense of the beam size that is also enlarged. The illumination of all channels simultaneously shows a fairly even transmission of the beam. Conclusion: With the measurements we have verified the MC models and the uniformity of beam transmission through SPHINX, and we have evaluated the importance of particle leakage through adjacent channels. These results can be used to optimize SPHINX design through the validated MC simulations. Funding: Weston Havens Foundation, Office of the Dean of Medical School and Office of the Provost (Stanford University). Loo, Maxim, Borchard, Tantawi are co-founders of TibaRay Inc. Loo and Tantawi are TibaRay Inc. board members. Loo and Maxim received grants from Varian Medical Systems and RaySearch Laboratory.« less

  14. A Fresnel zone plate collimator: potential and aberrations

    NASA Astrophysics Data System (ADS)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution < 0.1n combined with a large active area > 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  15. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1986-07-22

    This patent describes a diamond-anvil high-pressure cell having a tubular piston and a cylinder in which the piston is slidable to effect compression of a pair of opposed diamonds located between the piston and the cylinder. The piston includes a central bore opening on one end, an adjustable X-ray collimation system comprising a tubular insert engageable in the bore of the piston, the insert including a central bore and having first and second ends, with the first end of the insert being closest to the opposed diamonds and the second end of the insert extending out of the open endmore » of the piston, a collimator insertable in the bore of the tubular insert. The collimator has a central bore and having first and second ends corresponding respectively with the first and second ends of the insert, elastomeric pivot means mounted in the bore of the insert at the first end of the insert for flexibly retaining the first end of the collimator while allowing the collimator to pivot within the pivot means, and adjustable locking means located at the second end of the insert for adjusting and securing the second end of the collimator so as to be in alignment with the opposed diamonds.« less

  16. A Preliminary Research on the Development of the Hard X-Ray Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Zheng, C. X.; Cai, M. S.; Hu, Y. M.; Huang, Y. Y.; Gong, Y. Z.

    2014-03-01

    Since the 1860s, astronomers have explored a new field with the discovery of X-ray. Instead of the conventional imaging technique by using mirrors or lens, which can not work in the high-energy bands, direct imaging, coded aperture, and Fourier transform are used for the high-energy imaging. It can be implemented in various hardware configurations, among which the spatial modulation collimator are widely used. We adopt the grating collimator based on Fourier transform that is discussed in detail. This paper makes an investigation on the fabrication process of grating. The key components of the hard X-ray telescope based on the spatial modulation are developed, which contains 8 CsI-detector modules, 8-channel shaping amplifiers, and data acquisition system. The preliminary test results of readout electronics system are obtained.

  17. Adaptation, Commissioning, and Evaluation of a 3D Treatment Planning System for High-Resolution Small-Animal Irradiation

    PubMed Central

    Jeong, Jeho; Chen, Qing; Febo, Robert; Yang, Jie; Pham, Hai; Xiong, Jian-Ping; Zanzonico, Pat B.; Deasy, Joseph O.; Humm, John L.; Mageras, Gig S.

    2016-01-01

    Although spatially precise systems are now available for small-animal irradiations, there are currently limited software tools available for treatment planning for such irradiations. We report on the adaptation, commissioning, and evaluation of a 3-dimensional treatment planning system for use with a small-animal irradiation system. The 225-kV X-ray beam of the X-RAD 225Cx microirradiator (Precision X-Ray) was commissioned using both ion-chamber and radiochromic film for 10 different collimators ranging in field size from 1 mm in diameter to 40 × 40 mm2. A clinical 3-dimensional treatment planning system (Metropolis) developed at our institution was adapted to small-animal irradiation by making it compatible with the dimensions of mice and rats, modeling the microirradiator beam orientations and collimators, and incorporating the measured beam data for dose calculation. Dose calculations in Metropolis were verified by comparison with measurements in phantoms. Treatment plans for irradiation of a tumor-bearing mouse were generated with both the Metropolis and the vendor-supplied software. The calculated beam-on times and the plan evaluation tools were compared. The dose rate at the central axis ranges from 74 to 365 cGy/min depending on the collimator size. Doses calculated with Metropolis agreed with phantom measurements within 3% for all collimators. The beam-on times calculated by Metropolis and the vendor-supplied software agreed within 1% at the isocenter. The modified 3-dimensional treatment planning system provides better visualization of the relationship between the X-ray beams and the small-animal anatomy as well as more complete dosimetric information on target tissues and organs at risk. It thereby enhances the potential of image-guided microirradiator systems for evaluation of dose–response relationships and for preclinical experimentation generally. PMID:25948321

  18. Feasibility study on low-dosage digital tomosynthesis (DTS) using a multislit collimation technique

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Kim, G. A.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kang, S. Y.; Kim, K. S.; Lim, H. W.; Lee, H. W.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.

    2018-04-01

    In this study, we investigated an effective low-dose digital tomosynthesis (DTS) where a multislit collimator placed between the X-ray tube and the patient oscillates during projection data acquisition, partially blocking the X-ray beam to the patient thereby reducing the radiation dosage. We performed a simulation using the proposed DTS with two sets of multislit collimators both having a 50% duty cycle and investigated the image characteristics to demonstrate the feasibility of this proposed approach. In the simulation, all projections were taken at a tomographic angle of θ = ± 50° and an angle step of Δθ =2°. We utilized an iterative algorithm based on a compressed-sensing (CS) scheme for more accurate DTS reconstruction. Using the proposed DTS, we successfully obtained CS-reconstructed DTS images with no bright-band artifacts around the multislit edges of the collimator, thus maintaining the image quality. Therefore, the use of multislit collimation in current real-world DTS systems can reduce the radiation dosage to patients.

  19. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.

    PubMed

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-21

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  20. Handbook of X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  1. T Pyxidis: The First Cataclysmic Variable with a Collimated Jet

    NASA Technical Reports Server (NTRS)

    Shahbaz, T.; Livio, M.; Southwell, K. A.; Charles, P. A.

    1997-01-01

    We present the first observational evidence for a collimated jet in a cataclysmic variable system; the recurrent nova T Pyxidis. Optical spectra show bipolar components of H(alpha) with velocities approx. 1400 km/s, very similar to those observed in the supersoft X-ray sources and in SS 433. We argue that a key ingredient of the formation of jets in the supersoft X-ray sources and T Pyx (in addition to an accretion disk threaded by a vertical magnetic field), is the presence of nuclear burning on the surface of the white dwarf.

  2. Fluorescent scanning x-ray tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungho; Shi, Xianbo; Casa, Diego

    Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the IrL 3-edge stands at ~25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-anglemore » acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the IrL 3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.« less

  4. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.

    PubMed

    van der Velden, Sandra; Beijst, Casper; Viergever, Max A; de Jong, Hugo W A M

    2017-01-01

    X-ray-guided oncological interventions could benefit from the availability of simultaneously acquired nuclear images during the procedure. To this end, a real-time, hybrid fluoroscopic and nuclear imaging device, consisting of an X-ray c-arm combined with gamma imaging capability, is currently being developed (Beijst C, Elschot M, Viergever MA, de Jong HW. Radiol. 2015;278:232-238). The setup comprises four gamma cameras placed adjacent to the X-ray tube. The four camera views are used to reconstruct an intermediate three-dimensional image, which is subsequently converted to a virtual nuclear projection image that overlaps with the X-ray image. The purpose of the present simulation study is to evaluate the impact of gamma camera collimator choice (parallel hole versus pinhole) on the quality of the virtual nuclear image. Simulation studies were performed with a digital image quality phantom including realistic noise and resolution effects, with a dynamic frame acquisition time of 1 s and a total activity of 150 MBq. Projections were simulated for 3, 5, and 7 mm pinholes and for three parallel hole collimators (low-energy all-purpose (LEAP), low-energy high-resolution (LEHR) and low-energy ultra-high-resolution (LEUHR)). Intermediate reconstruction was performed with maximum likelihood expectation-maximization (MLEM) with point spread function (PSF) modeling. In the virtual projection derived therefrom, contrast, noise level, and detectability were determined and compared with the ideal projection, that is, as if a gamma camera were located at the position of the X-ray detector. Furthermore, image deformations and spatial resolution were quantified. Additionally, simultaneous fluoroscopic and nuclear images of a sphere phantom were acquired with a physical prototype system and compared with the simulations. For small hot spots, contrast is comparable for all simulated collimators. Noise levels are, however, 3 to 8 times higher in pinhole geometries than in parallel hole geometries. This results in higher contrast-to-noise ratios for parallel hole geometries. Smaller spheres can thus be detected with parallel hole collimators than with pinhole collimators (17 mm vs 28 mm). Pinhole geometries show larger image deformations than parallel hole geometries. Spatial resolution varied between 1.25 cm for the 3 mm pinhole and 4 cm for the LEAP collimator. The simulation method was successfully validated by the experiments with the physical prototype. A real-time hybrid fluoroscopic and nuclear imaging device is currently being developed. Image quality of nuclear images obtained with different collimators was compared in terms of contrast, noise, and detectability. Parallel hole collimators showed lower noise and better detectability than pinhole collimators. © 2016 American Association of Physicists in Medicine.

  5. Detector, collimator and real-time reconstructor for a new scanning-beam digital x-ray (SBDX) prototype.

    PubMed

    Speidel, Michael A; Tomkowiak, Michael T; Raval, Amish N; Dunkerley, David A P; Slagowski, Jordan M; Kahn, Paul; Ku, Jamie; Funk, Tobias

    Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3-4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.

  6. Radiation Transport Calculation of the UGXR Collimators for the Jules Horowitz Reactor (JHR)

    NASA Astrophysics Data System (ADS)

    Chento, Yelko; Hueso, César; Zamora, Imanol; Fabbri, Marco; Fuente, Cristina De La; Larringan, Asier

    2017-09-01

    Jules Horowitz Reactor (JHR), a major infrastructure of European interest in the fission domain, will be built and operated in the framework of an international cooperation, including the development and qualification of materials and nuclear fuel used in nuclear industry. For this purpose UGXR Collimators, two multi slit gamma and X-ray collimation mechatronic systems, will be installed at the JHR pool and at the Irradiated Components Storage pool. Expected amounts of radiation produced by the spent fuel and X-ray accelerator implies diverse aspects need to be verified to ensure adequate radiological zoning and personnel radiation protection. A computational methodology was devised to validate the Collimators design by means of coupling different engineering codes. In summary, several assessments were performed by means of MCNP5v1.60 to fulfil all the radiological requirements in Nominal scenario (TEDE < 25µSv/h) and in Maintenance scenario (TEDE < 2mSv/h) among others, detailing the methodology, hypotheses and assumptions employed.

  7. Full-field fan-beam x-ray fluorescence computed tomography system design with linear-array detectors and pinhole collimation: a rapid Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Li, Liang; Li, Ruizhe; Chen, Zhiqiang

    2017-11-01

    We present the design concept and initial simulations for a polychromatic full-field fan-beam x-ray fluorescence computed tomography (XFCT) device with pinhole collimators and linear-array photon counting detectors. The phantom is irradiated by a fan-beam polychromatic x-ray source filtered by copper. Fluorescent photons are stimulated and then collected by two linear-array photon counting detectors with pinhole collimators. The Compton scatter correction and the attenuation correction are applied in the data processing, and the maximum-likelihood expectation maximization algorithm is applied for the image reconstruction of XFCT. The physical modeling of the XFCT imaging system was described, and a set of rapid Monte Carlo simulations was carried out to examine the feasibility and sensitivity of the XFCT system. Different concentrations of gadolinium (Gd) and gold (Au) solutions were used as contrast agents in simulations. Results show that 0.04% of Gd and 0.065% of Au can be well reconstructed with the full scan time set at 6 min. Compared with using the XFCT system with a pencil-beam source or a single-pixel detector, using a full-field fan-beam XFCT device with linear-array detectors results in significant scanning time reduction and may satisfy requirements of rapid imaging, such as in vivo imaging experiments.

  8. First Results from a Microfocus X-Ray System for Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    1999-01-01

    The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.

  9. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  10. Scientific investigations with the data base HEAO-1 scanning modulator collimator

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel A.

    1992-01-01

    The hardware specification for the Scanning Modulation Collimator (MC) experiment on HEAO-1 was to measure positions of bright (greater than 10(exp -11) ergs/cm(exp 2)s), hard (1 to 15 keV) x-ray sources to 5-10 arcsec, and to measure their size and structure in three energy bands down to 10 arcsec resolution. The scientific purpose of this specification was to enable the identification of these x-ray sources with optical and radio objects in order to elucidate the x-ray emission mechanism and the nature of the candidate astronomical system. The experiment was an outstanding success. Hardware systems functioned perfectly although loss of one (out of eight) proportional counters degraded our sensitivity by about 10 percent. Our aspect solution of 7 arcsec precision, allowed us to achieve statistic-limited location precision for all but the strongest sources. We vigorously pursued a strategy of determining the scientific importance of each identification, and of publishing each scientific result as it came along.

  11. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  12. X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method

    PubMed Central

    Chen, Dongmei; Zhu, Shouping; Cao, Xu; Zhao, Fengjun; Liang, Jimin

    2015-01-01

    X-ray luminescence computed tomography (XLCT) has become a promising imaging technology for biological application based on phosphor nanoparticles. There are mainly three kinds of XLCT imaging systems: pencil beam XLCT, narrow beam XLCT and cone beam XLCT. Narrow beam XLCT can be regarded as a balance between the pencil beam mode and the cone-beam mode in terms of imaging efficiency and image quality. The collimated X-ray beams are assumed to be parallel ones in the traditional narrow beam XLCT. However, we observe that the cone beam X-rays are collimated into X-ray beams with fan-shaped broadening instead of parallel ones in our prototype narrow beam XLCT. Hence we incorporate the distribution of the X-ray beams in the physical model and collected the optical data from only two perpendicular directions to further speed up the scanning time. Meanwhile we propose a depth related adaptive regularized split Bregman (DARSB) method in reconstruction. The simulation experiments show that the proposed physical model and method can achieve better results in the location error, dice coefficient, mean square error and the intensity error than the traditional split Bregman method and validate the feasibility of method. The phantom experiment can obtain the location error less than 1.1 mm and validate that the incorporation of fan-shaped X-ray beams in our model can achieve better results than the parallel X-rays. PMID:26203388

  13. The feasibility study on 3-dimensional fluorescent x-ray computed tomography using the pinhole effect for biomedical applications.

    PubMed

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu

    2013-01-01

    We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.

  14. Projection x-ray topography system at 1-BM x-ray optics test beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Liu, Zunping; Trakhtenberg, Emil

    2016-07-27

    Projection X-ray topography of single crystals is a classic technique for the evaluation of intrinsic crystal quality of large crystals. In this technique a crystal sample and an area detector (e.g., X-ray film) collecting intensity of a chosen crystallographic reflection are translated simultaneously across an X-ray beam collimated in the diffraction scattering plane (e.g., [1, 2]). A bending magnet beamline of a third-generation synchrotron source delivering x-ray beam with a large horizontal divergence, and therefore, a large horizontal beam size at a crystal sample position offers an opportunity to obtain X-ray topographs of large crystalline samples (e.g., 6-inch wafers) inmore » just a few exposures. Here we report projection X-ray topography system implemented recently at 1-BM beamline of the Advanced Photon Source. A selected X-ray topograph of a 6-inch wafer of 4H-SiC illustrates capabilities and limitations of the technique.« less

  15. Description of a prototype emission-transmission computed tomography imaging system

    NASA Technical Reports Server (NTRS)

    Lang, T. F.; Hasegawa, B. H.; Liew, S. C.; Brown, J. K.; Blankespoor, S. C.; Reilly, S. M.; Gingold, E. L.; Cann, C. E.

    1992-01-01

    We have developed a prototype imaging system that can perform simultaneous x-ray transmission CT and SPECT phantom studies. This system employs a 23-element high-purity-germanium detector array. The detector array is coupled to a collimator with septa angled toward the focal spot of an x-ray tube. During image acquisition, the x-ray fan beam and the detector array move synchronously along an arc pivoted at the x-ray source. Multiple projections are obtained by rotating the object, which is mounted at the center of rotation of the system. The detector array and electronics can count up to 10(6) cps/element with sufficient energy-resolution to discriminate between x-rays at 100-120 kVp and gamma rays from 99mTc. We have used this device to acquire x-ray CT and SPECT images of a three-dimensional Hoffman brain phantom. The emission and transmission images may be superimposed in order to localize the emission image on the transmission map.

  16. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  17. [Evaluation of Dose Reduction of the Active Collimator in Multi Detector Row CT].

    PubMed

    Ueno, Hiroyuki; Matsubara, Kosuke

    The purpose of this study was to evaluate the performance of active collimator by changing acquisition parameters and obtaining dose profiles in z-axis direction. Dose profiles along z-axis were obtained using XRQA2 Gafchromic film. As a result, the active collimator reduced overranging about 55% compared to that without the active collimator. In addition, by changing the combination of X-ray beam width (32 mm, 40 mm), pitch factor (1.4, 0.6), and the X-ray tube rotation time (0.5 s/rot, 1.0 s/rot), the overranging changed from 19.4 to 34.9 mm. Although the active collimator is effective for reducing overranging, it is necessary to adjust acquisition parameters by taking the properties of the active collimator for acquisition parameters, especially setting beam width, into consideration.

  18. Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.

    2010-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341

  19. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  20. Advances in solar and cosmic X-ray astronomy - A survey of experimental techniques and observational results.

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Thomas, R. J.; Underwood, J. H.

    1972-01-01

    The current status of X-ray astronomy is surveyed by reviewing observational results and theoretical conclusions gained within the past two years in areas dealing with the quiet-sun, slowly-varying, and burst components of solar X-radiation and with the features of cosmic X-ray sources. Thermal and nonthermal processes responsible for a wide variety of X-ray emission mechanisms in nature are explained, and characteristics of X radiation from specific solar structures are described. Attention is given to the effects of interstellar and intergalactic matter on cosmic X-rays; the properties of galactic and extragalactic X-ray sources; and the specifications of such instruments as gas-filled ionization detectors, proportional counters, Geiger counters, scintillation detectors, photoelectric detectors, polarimeters, collimators, spectrometers, and imaging systems.

  1. [Development of an experimental apparatus for energy calibration of a CdTe detector by means of diagnostic X-ray equipment].

    PubMed

    Fukuda, Ikuma; Hayashi, Hiroaki; Takegami, Kazuki; Konishi, Yuki

    2013-09-01

    Diagnostic X-ray equipment was used to develop an experimental apparatus for calibrating a CdTe detector. Powder-type samples were irradiated with collimated X-rays. On excitation of the atoms, characteristic X-rays were emitted. We prepared Nb2O5, SnO2, La2O3, Gd2O3, and WO3 metal oxide samples. Experiments using the diagnostic X-ray equipment were carried out to verify the practicality of our apparatus. First, we verified that the collimators involving the apparatus worked well. Second, the X-ray spectra were measured using the prepared samples. Finally, we analyzed the spectra, which indicated that the energy calibration curve had been obtained at an accuracy of ±0.06 keV. The developed apparatus could be used conveniently, suggesting it to be useful for the practical training of beginners and researchers.

  2. A new CT collimator for producing two simultaneous overlapping slices from one scan. [for biomedical applications

    NASA Technical Reports Server (NTRS)

    Kwoh, Y. S.; Glenn, W. V., Jr.; Reed, I. S.; Truong, T. K.

    1981-01-01

    A new CT collimator is developed which is capable of producing two simultaneous successive overlapping images from a single scan. The collimator represents a modification of the standard EMI 5005 collimator achieved by alternately masking one end or portions of both ends of the X-ray detectors at a 13-mm beamwidth so that a set of 540 filtered projections is obtained for each scan which can be separated into two sets of interleaved projections corresponding to views 3 mm apart. Tests have demonstrated that the quality of the images produced from these two projections almost equals the quality of those produced by the standard collimator from two separate scans. The new collimator may thus be used to achieve a speed improvement in the generation of overlapping sections as well as a reduction in X-ray dosage.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.

    In the security and inspection market, there is a push towards highly mobile, reduced-dose active interrogation scanning and imaging systems to allow operation in urban environments. To achieve these goals, the accelerator system design needs to be smaller than existing systems. A smaller radiation exclusion zone may be accomplished through better beam collimation and an integrated, x-ray-source/detector-array assembly to allow feedback and control of an intensity-modulated x-ray source. A shaped low-Z target in the x-ray source can be used to generate a more forward peaked x-ray beam. Electron-beam steering can then be applied to direct the forward-peaked x rays towardmore » areas in the cargo with high attenuation. This paper presents an exploratory study to identify components and upgrades that would be required to meet the desired specifications, as well as the best technical approach to design and build a prototype.« less

  4. A versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast.

    PubMed

    Forsberg, J; Englund, C-J; Duda, L-C

    2009-08-01

    We present the design and operation of a versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast. The utility of the setup is demonstrated by results from following a corrosion process of iron in saline environment, subjected to a controlled humid atmosphere. The system includes a transmission flow-cell reactor that allows for in situ microscopic probing with soft X-rays. We employ a full field technique by using a nearly collimated X-ray beam that produces an unmagnified projection of the transmitted soft X-rays (below 1.1 keV) which is magnified and recorded by an optical CCD camera. Time lapse series with chemical contrast allow us to follow and interpret the chemical processes in detail. The obtainable lateral resolution is a few mum, sufficient to detect filiform corrosion on iron.

  5. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  6. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  7. Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Fraser, Iain; Klinger, Jill

    2011-01-01

    A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching

  8. Coronary angiography using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Rubenstein, E.; Zeman, H. D.; Hofstadter, R.; Otis, J. N.; Giacomini, J. C.; Gordon, H. J.; Brown, G. S.; Thomlinson, W.; Kernoff, R. S.

    1989-07-01

    Imaging of coronary arteries using a venous instead of an arterial injection of contrast agent could provide a much safer method to diagnose heart disease. The tunability, intensity, and collimation of synchrotron radiation x-ray beams makes possible imaging systems with greatly improved imaging sensitivity. A pair of fan x-ray beams, a movable patient chair, and a multielement x-ray detector are used to acquire a pair of x-ray images above and below the iodine K edge. The logarithmic subtraction of these two images produces an image with excellent sensitivity to contrast agent and minimal sensitivity to bone and tissue. High-quality images from a dog and preliminary images from five humans have been obtained. Improvements are being made to the system to increase the effective radiation flux and to measure the position of both x-ray beams.

  9. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  10. Fluorescent x-ray computed tomography to visualize specific material distribution

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1997-10-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.

  11. 21 CFR 872.1840 - Dental x-ray position indicating device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental x-ray position indicating device. 872.1840... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1840 Dental x-ray position indicating device. (a) Identification. A dental x-ray position indicating device is a device, such as a collimator...

  12. 21 CFR 872.1840 - Dental x-ray position indicating device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental x-ray position indicating device. 872.1840... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1840 Dental x-ray position indicating device. (a) Identification. A dental x-ray position indicating device is a device, such as a collimator...

  13. 21 CFR 872.1840 - Dental x-ray position indicating device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental x-ray position indicating device. 872.1840... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1840 Dental x-ray position indicating device. (a) Identification. A dental x-ray position indicating device is a device, such as a collimator...

  14. 21 CFR 872.1840 - Dental x-ray position indicating device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental x-ray position indicating device. 872.1840... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1840 Dental x-ray position indicating device. (a) Identification. A dental x-ray position indicating device is a device, such as a collimator...

  15. 21 CFR 872.1840 - Dental x-ray position indicating device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental x-ray position indicating device. 872.1840... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1840 Dental x-ray position indicating device. (a) Identification. A dental x-ray position indicating device is a device, such as a collimator...

  16. 21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...

  17. 21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...

  18. 21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...

  19. 21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...

  20. 21 CFR 892.1610 - Diagnostic x-ray beam-limiting device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray beam-limiting device. 892.1610... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1610 Diagnostic x-ray beam-limiting device. (a) Identification. A diagnostic x-ray beam-limiting device is a device such as a collimator, a...

  1. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  2. Proposed US Contributions to LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen

    2013-01-01

    Proposed US Enhancements include:Tantalum X -ray collimator, Additional ground station, Large Observatory for X-Ray Timing (LOFT) instrument team participation, US science support center & data archive, and Science enabled by US hardware. High-Z material with excellent stopping power. Fabricated using a combination of laser micromachining and chemical etching. Known technology capable of producing high-aspect ratio holes and large open fractions. Reduces LOFT LAD background by a factor of 3. Telemetry formats for LOFT based upon RXTE/EDS experience. Ground system software and strategies for WFM based upon RXTE/ASM automated pipeline software. MSFC engineering trade studies supporting the Ta collimator. Burst alert triggers based upon Fermi/GBM and HETE-2. Science Enhancements Enabled by US Hardware include: Tantalum collimator: Reduces background by factor of 3. Improves sensitivity to faint sources such as AGN. Eliminates contamination by bright/variable sources. outside the LAD field of view. US Ground Station: Enables continuous telemetry of all events from the WFM. Allows LAD to observe very bright >500 mCrab sources with full event resolution.

  3. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    NASA Technical Reports Server (NTRS)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  4. Variable mid-latitude X-ray source 3U 0042+32

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Clark, G. W.; Dower, R.; Doxsey, R.; Jernigan, G.; Li, F.

    1977-01-01

    A celestial location with an error circle of radius one minute is reported for the mid-latitude X-ray source 3U 0042+32; comparison of observations from the Ariel-5 and Uhuru satellites with data obtained from two independent rotation modulation collimators yields the precise position. Studies to detect regular pulsations and energy spectra of the X-ray source are also discussed. Analysis of the peak X-ray flux in the error circle, as well as certain distance constraints, suggests that the source of the flux may be a neutron star in a distant galactic binary system having a companion that undergoes episodes of mass transfer due to eruption or orbital eccentricity.

  5. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  6. Luminescence properties after X-ray irradiation for dosimetry

    NASA Astrophysics Data System (ADS)

    Hong, Duk-Geun; Kim, Myung-Jin

    2016-05-01

    To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.

  7. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  8. An upgrade beamline for combined wide, small and ultra small-angle x-ray scattering at the ESRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vaerenbergh, Pierre; Léonardon, Joachim; Sztucki, Michael

    2016-07-27

    This contribution presents the main design features of the upgraded beamline ID02 (TRUSAXS). The beamline combines different small-angle X-ray scattering techniques in one unique instrument. The key component of this instrument is an evacuated (5×10{sup −3} mbar) stainless steel detector tube of length 34 m and diameter 2 m. Three different detectors (Rayonix MX170, Pilatus 300 K and FReLoN 4M) are housed inside a motorized wagon which travels along a rail system with very low parasitic lateral movements (± 0.3 mm). This system allows automatically changing the sample-to-detector distance from about 1 m to 31 m and selecting the desiredmore » detector. In addition, a wide angle detector (Rayonix LX170) is installed just above the entrance cone of the tube for optional wide-angle X-ray scattering measurements. The beamstop system enables monitoring of the X-ray beam intensity in addition to blocking the primary beam, and automated insertion of selected masks behind the primary beamstop. The focusing optics and collimation system permit to cover a scattering vector (q) range of 0.002 nm{sup −1} ≤ q ≤ 50 nm{sup −1} with one unique setting using 0.1 nm X-ray wavelength for moderate flux (5×10{sup 12} photons/sec). However, for higher flux (6x10{sup 13} photons/sec) or higher resolution (minimum q < 0.001 nm{sup −1}), focusing and collimation, respectively need to be varied. For a sample-to-detector distance of 31 m and 0.1 nm wavelength, two dimensional ultra small-angle X-ray scattering patterns can be recorded down to q≈0.001 nm{sup −1} with far superior quality as compared to one dimensional profiles obtained with a Bonse-Hart instrument.« less

  9. Identification and properties of the M giant/X-ray system HD 154791 = 2A 1704+241

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Baliunas, S. L.; Elvis, M.; Fabbiano, G.; Patterson, J.; Schwartz, D.; Doxsey, R.; Koenigsberger, G.; Swank, J.; Watson, M. G.

    1983-01-01

    The Aerial V X-ray source 2A 1704+241 (= 4U 1700+24 = 3A 1703+241) is identified with the M3 II star HD 154791. The identification is based on a precise X-ray position determined by the HEAO 1 scanning modulation collimator and the Einstein Observatory imaging proportional counter, together with a spectrum measured by the International Ultraviolet Explorer. The ultraviolet spectrum shows strong emission of C IV 1550 A, N v 1238 A, and Mg II 2800 A, which is very unusual among M giants. This is the first X-ray detection of an M giant which has a completely normal optical spectrum. The X-ray luminosity reaches three orders of magnitude above the mean upper limit for the coronal X-ray flux from M giants. Although there is no direct evidence for a binary system, since radial velocity variations have not been observed, it is shown that a plausible neutron star binary model can be constructed.

  10. The MIT OSO-7 X-ray experiment. A five color survey of the positions and time variations of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Taylor, R. S.; Clark, G. W.

    1971-01-01

    The all-sky, X-ray measurements are made in five broad energy bands from 0.5 to 60 keV with X-ray collimators of one and three degree FWHM response. Working with the onboard star sensor source locations may be determined to a precision of plus or minus 0.1 deg. The experiment is located in wheel compartment number three of the spacecraft. A time division logic system divides each wheel rotation into 256 data bins in each of which X-ray counts are accumulated over a 190 second interval. Measurement chain circuits include provision for both geometric and risetime anticoincidence. A detailed description of the instrument is included as is pertinent operating information.

  11. Development of polycapillary x-ray optics for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.; Attenkofer, Klaus; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; O'Mahony, Aileen; Minot, Michael J.; Popecki, Mark A.

    2016-09-01

    Bundles of hollow glass capillaries can be tapered to produce quasi-focusing x-ray optics. These optics are known as Kumakhov lenses. These optics are interesting for lab-based sources because they can be used to collimate and concentrate x-rays originating from a point, such as a laser focus or an electron-beam focus in a microtube.

  12. SU-E-I-42: Measurement of X-Ray Beam Width and Geometric Efficiency in MDCT Using Radiochromic Films.

    PubMed

    Liillau, T; Liebmann, M; von Boetticher, H; Poppe, B

    2012-06-01

    The purpose of this work was to measure the x-ray beam width and geometric efficiency (GE) of a multi detector computed tomography scanner (MDCT) for different beam collimations using radiochromic films. In MDCT, the primary beam width extends the nominal beam collimation to irradiate the active detector elements uniformly (called 'over-beaming') which contributes to increased radiation dose to the patient compared to single detector CT. Therefore, the precise determination of the primary beam width and GE is of value for any CT dose calculation using Monte Carlo or analytical methods. Single axial dose profiles free in air were measured for 6 different beam collimations nT for a Siemens SOMATOM Sensation 64 Scanner with Gafchromic XR-QA2 films. The films were calibrated relative to the measured charge of a PTW semiflex ionization chamber (type: 31010) for a single rotation in the CT scanner at the largest available beam collimation of 28.8 mm. The beam energy for all measurements in this work was set to 120 kVp. For every measured dose profile and beam collimation the GEin-air and the full-width-at-half- maximum value (FWHM) as a value for the x-ray beam width was determined. Over-beaming factors FWHM / nT were calculated accordingly. For MDCT beam collimations from 7.2 (12×0.6 mm) to 28.8 (24×1.2 mm) the geometric efficiency was between 58 and 85 %. The over- beaming factor ranged from 1.43 to 1.11. For beam collimations of 1×5 mm and 1×10 mm the GE was 77 % and 84 % respectively. The over-beaming factors were close to 1, as expected. This work has shown that radiochromic films can be used for accurate x-ray beam width and geometric efficiency measurements due to their high spatial resolution. The measured free-in-air geometric efficiency and the over-beaming factor depend strongly on beam collimation. © 2012 American Association of Physicists in Medicine.

  13. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  14. New stereotactic X-ray knife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barish, R.J.; Barish, S.V.

    1988-06-01

    For many years, the irradiation of small volumes of tissue in the brain to necrotizing doses has been investigated as a non-invasive alternative to neurosurgery. We propose a new system in which a precisely machined helmet serves as a multi-port focussed X-ray collimator when it is itself irradiated by a conventional medical linear accelerator run in the electron mode. When the collimator is attached to a stereotactic frame, the geometric accuracy of delivering small radiation fields to the brain is limited primarily by the accuracy of the stereotactic localization, and is relatively independent of the positional stability of the accelerator.more » Field sizes as small as two millimeters are readily achievable. The problem of low dose rate associated with these small fields is overcome by the use of high electron beam currents.« less

  15. TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, D; Yoon, S; Adamovics, J

    Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, withmore » comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.« less

  16. A parabolic mirror x-ray collimator

    NASA Astrophysics Data System (ADS)

    Franks, A.; Jackson, K.; Yacoot, A.

    2000-05-01

    A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.

  17. Feasibility study of the neutron dose for real-time image-guided proton therapy: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kim, Jin Sung; Shin, Jung Suk; Kim, Daehyun; Shin, Eunhyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-07-01

    Two full rotating gantries with different nozzles (multipurpose nozzle with MLC, scanning dedicated nozzle) for a conventional cyclotron system are installed and being commissioned for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to use Monte Carlo simulation to investigate the neutron dose equivalent per therapeutic dose, H/D, for X-ray imaging equipment under various treatment conditions. At first, we investigated the H/D for various modifications of the beamline devices (scattering, scanning, multi-leaf collimator, aperture, compensator) at the isocenter and at 20, 40 and 60 cm distances from the isocenter, and we compared our results with those of other research groups. Next, we investigated the neutron dose at the X-ray equipment used for real-time imaging under various treatment conditions. Our investigation showed doses of 0.07 ~ 0.19 mSv/Gy at the X-ray imaging equipment, depending on the treatment option and interestingly, the 50% neutron dose reduction was observed due to multileaf collimator during proton scanning treatment with the multipurpose nozzle. In future studies, we plan to measure the neutron dose experimentally and to validate the simulation data for X-ray imaging equipment for use as an additional neutron dose reduction method.

  18. SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows

    NASA Technical Reports Server (NTRS)

    Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.; hide

    2007-01-01

    We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.

  19. Direct measurement of mammographic X-ray spectra with a digital CdTe detection system.

    PubMed

    Abbene, Leonardo; Gerardi, Gaetano; Principato, Fabio; Del Sordo, Stefano; Raso, Giuseppe

    2012-01-01

    In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate X-ray spectroscopy in mammography (1-30 keV). The DPP system performs a height and shape analysis of the detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of the characterization of the detection system both at low and high photon counting rates by using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out by using a pinhole collimator and a custom alignment device. A comparison with the attenuation curves and the half value layer values, obtained from the measured and simulated spectra, from an ionization chamber and from a solid state dosimeter, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research, calibration of dosimeters and advanced quality controls in mammography.

  20. A Compact X-Ray System for Support of High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  1. A survey of hard X-ray imaging concepts currently proposed for viewing solar flares

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W.; Davis, John M.; Emslie, A. G.

    1991-01-01

    Several approaches to imaging hard X-rays emitted from solar flares have been proposed. These include the fixed modulation collimator, the rotating modulation collimator, the spiral fresnel zone pattern, and the redundantly coded aperture. These techniques are under consideration for use in the Solar Maximum '91 balloon program, the Japanese Solar-A satellite, the Controls, Astrophysics, and Structures Experiment in Space, and the Pinhole/Occulter Facility and are outlined and discussed in the context of preliminary results from numerical modeling and the requirements derived from current ideas as to the expected hard X-ray structures in the impulsive phase of solar flares. Preliminary indications are that all of the approaches are promising, but each has its own unique set of limitations.

  2. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  3. Dynamic electronic collimation method for 3-D catheter tracking on a scanning-beam digital x-ray system

    PubMed Central

    Dunkerley, David A. P.; Slagowski, Jordan M.; Funk, Tobias; Speidel, Michael A.

    2017-01-01

    Abstract. Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3-D catheter tracking. This work proposes a method of dose-reduced 3-D catheter tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. This is achieved through the selective deactivation of focal spot positions not needed for the catheter tracking task. The technique was retrospectively evaluated with SBDX detector data recorded during a phantom study. DEC imaging of a catheter tip at isocenter required 340 active focal spots per frame versus 4473 spots in full field-of-view (FOV) mode. The dose-area product (DAP) and peak skin dose (PSD) for DEC versus full FOV scanning were calculated using an SBDX Monte Carlo simulation code. The average DAP was reduced to 7.8% of the full FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full FOV value. The root-mean-squared-deviation between DEC-based 3-D tracking coordinates and full FOV 3-D tracking coordinates was less than 0.1 mm. The 3-D distance between the tracked tip and the sheath centerline averaged 0.75 mm. DEC is a feasible method for dose reduction during SBDX 3-D catheter tracking. PMID:28439521

  4. Grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Davis, J. M.; Krieger, A. S.; Underwood, J. H.

    1982-01-01

    The necessity to work in the focal plane of the primary mirrors has been one of the factors limiting the utility of grazing incidence telescopes in X-ray astronomy. In connection with the reported investigation, computer ray tracing programs have been used to study the performance of several grazing incidence relay optics (GIRO) systems used together with a large nested solar X-ray telescope. It was found that GIRO magnifiers are useful to map appropriate sized regions of the sun onto available CCD detectors. GIRO collimators can be used together with an X-ray spectrometer to study the X-ray spectrum from very small regions on the sun. Attention is given to the stationary mode, the tracking mode, and the size of GIRO elements. It is found that for a given GIRO size and magnification a use of the diverging system has the advantage of reducing the overall length of the main telescope-GIRO combination. However, the resolution provided by the diverging GIRO may not be as good as that obtained with the corresponding converging GIRO.

  5. Molecular Imaging in the College of Optical Sciences – An Overview of Two Decades of Instrumentation Development

    PubMed Central

    Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.

    2015-01-01

    During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069

  6. X-ray Measurements of a Thermo Scientific P385 DD Neutron Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.H. Seabury; D.L. Chichester; A.J. Caffrey

    2001-08-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X-rays are a normal byproduct from a neutron generator and depending on their intensity and energy they can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measuredmore » with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x-rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and the x-ray emission appears to be axially symmetric within the neutron generator.« less

  7. Discovering structure and evolution within the coronae of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Wilkins, Daniel; Gallo, Luigi C.; Silva, Catia; Costantini, Elisa

    2017-08-01

    Detailed analysis of the reflection and reverberation of X-rays from the innermost regions of AGN accretion discs reveals the structure and processes that produce the intense continuum emission and the extreme variability we see, right down to the innermost stable orbit and event horizon of the black hole. Observations of Seyfert galaxies spanning more than a decade have enabled measurement of the geometry of the corona and how it evolves, leading to orders of magnitude in variability. They reveal processes the corona undergoes during transient events, notably the collimation and ejection of the corona during X-ray flares, reminiscent of the aborted launching of a jet.Recent reverberation studies, of the Seyfert galaxy I Zwicky 1 with XMM-Newton, are revealing structures within the corona for the very first time. A persistent collimated core is discovered, akin to the base of a jet embedded in the innermost regions alongside an extended corona related to the accretion disc. The detection of the flare in the X-ray emission enables the evolution of both the collimated and extended portions of the corona to be tracked. The flare is seen originating as an increase in activity above the accretion disc before propagating inwards, energising the collimated core at a later time, leading to a second sharp increase in the X-ray luminosity.This gives us important constraints on the processes by which energy is liberated from black hole accretion flows, how they are governed over time and how jets are launched, giving us the deepest insight to date of how these extreme objects are powered.

  8. The X-ray counterpart to the gravitational-wave event GW170817

    NASA Astrophysics Data System (ADS)

    Troja, E.; Piro, L.; van Eerten, H.; Wollaeger, R. T.; Im, M.; Fox, O. D.; Butler, N. R.; Cenko, S. B.; Sakamoto, T.; Fryer, C. L.; Ricci, R.; Lien, A.; Ryan, R. E.; Korobkin, O.; Lee, S.-K.; Burgess, J. M.; Lee, W. H.; Watson, A. M.; Choi, C.; Covino, S.; D'Avanzo, P.; Fontes, C. J.; González, J. Becerra; Khandrika, H. G.; Kim, J.; Kim, S.-L.; Lee, C.-U.; Lee, H. M.; Kutyrev, A.; Lim, G.; Sánchez-Ramírez, R.; Veilleux, S.; Wieringa, M. H.; Yoon, Y.

    2017-11-01

    A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration. The observational support for this model, however, is only indirect. A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth. Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta, observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.

  9. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum wasmore » measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.« less

  10. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    NASA Astrophysics Data System (ADS)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  11. Identification of 4U 1849-31 with V1223 Sagittarii and discovery of optical pulsations

    NASA Technical Reports Server (NTRS)

    Steiner, J. E.; Schwartz, D. A.; Jablonski, F. J.; Busko, I. C.; Watson, M. G.; Pye, J. P.; Mchardy, I. M.

    1981-01-01

    The X-ray source 4U 1849-31 is identified with the 13 mag star V1223 Sgr, on the basis of a precise HEAO 1 modulation collimator X-ray position uniquely selected by the Ariel-5 sky survey location. It is shown by optical spectroscopy and photometry that V1223 Sgr is a cataclysmic variable, displaying a photometric period of 13.2 min that is interpreted as being due to the rotation of a degenerate dwarf. The similarity of this system to H2252-035 is noted.

  12. New type of capillary for use as ion beam collimator and air-vacuum interface

    NASA Astrophysics Data System (ADS)

    Stoytschew, V.; Schulte-Borchers, M.; Božičević Mihalića, Iva; Perez, R. D.

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  13. Illicit drug detection using energy dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  14. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.

  15. High-rate x-ray spectroscopy in mammography with a CdTe detector: a digital pulse processing approach.

    PubMed

    Abbene, L; Gerardi, G; Principato, F; Del Sordo, S; Ienzi, R; Raso, G

    2010-12-01

    Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the response of the digital detection system both at low (150 cps) and at high photon counting rates (up to 500 kcps) by using monoenergetic x-ray sources and a nonclinical molybdenum anode x-ray tube. Clinical molybdenum x-ray spectrum measurements were also performed by using a pinhole collimator and a custom alignment device. The detection system shows excellent performance up to 512 kcps with an energy resolution of 4.08% FWHM at 22.1 keV. Despite the high photon counting rate (up to 453 kcps), the molybdenum x-ray spectra, measured under clinical conditions, are characterized by a low number of pile-up events. The agreement between the attenuation curves and the half value layer values, obtained from the measured spectra, simulated spectra, and from the exposure values directly measured with an ionization chamber, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research and advanced quality controls in mammography.

  16. A dark jet dominates the power output of the stellar black hole Cygnus X-1.

    PubMed

    Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian

    2005-08-11

    Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.

  17. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  18. X-ray backscatter imaging of nuclear materials

    DOEpatents

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  19. Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging

    NASA Astrophysics Data System (ADS)

    Cao, Liji; Peter, Jörg

    2012-06-01

    A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.

  20. A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.

    PubMed

    Al-Ghorabie, F H; Natto, S S; Al-Lyhiani, S H

    2001-03-01

    The Monte Carlo computer codes EGS4 and MCNP were used to develop a theoretical model of a 180 degrees geometry in vivo X-ray fluorescence system for the measurement of platinum concentration in head and neck tumors. The model included specification of the photon source, collimators, phantoms and detector. Theoretical results were compared and evaluated against X-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In Vivo Analysis and Cancer Research Group. The EGS4 results agreed well with the MCNP results. However, agreement between the measured spectral shape obtained using the experimental X-ray fluorescence system and the simulated spectral shape obtained using the two Monte Carlo codes was relatively poor. The main reason for the disagreement between the results arises from the basic assumptions which the two codes used in their calculations. Both codes assume a "free" electron model for Compton interactions. This assumption will underestimate the results and invalidates any predicted and experimental spectra when compared with each other.

  1. The Simbol-X Focal Plane

    NASA Astrophysics Data System (ADS)

    Laurent, P.

    2009-05-01

    The Simbol-X focal plane is designed to detect photons focused by the mirror in the 0.5 to 100 keV energy band. Composed of two detectors, it will measure the position, energy, and arrival time of each incoming X-ray. On top of it will be a collimator to shield all photons not coming from the mirror field of view. The whole system is surrounded by an active and passive shielding in order to ensure the required very low background.

  2. Status and expected perfomance of the MAXI mission for the JEM/ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, J.; Kawai, N.

    2008-12-24

    MAXI (Monitor of All-sky X-ray Image) is the first payload to be attached on JEM-EF (Kibo exposed facility) of ISS. It provides an all sky X-ray image every ISS orbit. Only with a few weeks scan, MAXI is expected to make a milli-Crab X-ray all sky map excluding bright region around the sun. Thus, MAXI does not only inform X-ray novae and transients rapidly to world astronomers if once they occur, but also observes long-term variability of Galact ic and extra-Galactic X-ray sources. MAXI also provides an X-ray source catalogue at that time with diffuse cosmic X-ray background. MAXI consistsmore » of two kinds of detectors, position sensitive gas-proportional counters for 2-30 keV X-rays and CCD cameras for 0.5-10 keV X-rays. All instruments of MAXI are now in final phase of pre-launching tests of their flight modules. We are also carrying out performance tests for X-ray detectors and collimators. Data processing and analysis software including alert system on ground are being developed by mission team. In this paper we report an overview of final instruments of MAXI and capability of MAXI.« less

  3. SHIELDING CONSIDERATIONS FOR THE SMALL ANIMAL RADIATION RESEARCH PLATFORM (SARRP)

    PubMed Central

    Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron

    2014-01-01

    The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m3 enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1–3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field. PMID:23532076

  4. Hard gamma-ray background from the coding collimator of a gamma-ray telescope during in conditions of a space experiment

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoj, A. N.; Gal'Per, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseev, A. A.; Ulin, S. E.; Shchvets, N. I.

    1984-11-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimator material can lead to the appearance of a gramma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.

  5. The Outer X-ray and Radio Jets in R Aquarii

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Anderson, C.; DePasquale, J.; Korreck, K.; Nichols, J.; Sokoloski, J.; Krauss, M.; Pedelty, J.

    2007-01-01

    The symbiotic star R Aquarii has been known to emit collimated outflow in the form of jets for many years. We report on five years of observations in x-rays and radio using Chandra, VLA and XMM-Newton. We discuss the evolution of the outer thermal jets, including new observations performed in June and October 2005. We see motion of the NE x-ray jet at a projected velocity of about 600 km (sup -1). The SW x-ray jet has almost disappeared between 2000.7 and 2004.0. An XMM grating spectrum of the NE jet confirms the existence of O VII He-like lines, and offers the possibility of doing plasma density diagnostics. We comment on on the physics of cooling in the SW jet and implications for the density of the x-ray emitting gas, the heating mechanism, and mass and kinetic energy in the jets and its implications for the system as a whole. This work was supported by NASA and NSF.

  6. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  7. Low Cost Balloon programme of Indian Centre for Space Physics

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.

  8. Revealing structure within the coronae of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Wilkins, D.

    2017-10-01

    Detailed analysis of the reflection and reverberation of X-rays from the innermost regions of AGN accretion discs reveals the structure and processes that produce the intense continuum emission and the extreme variability we see, right down to the innermost stable orbit and event horizon of the black hole. Observations of Seyfert galaxies spanning more than a decade have enabled measurement of the geometry of the corona and how it evolves, leading to orders of magnitude of variability. They reveal processes the corona undergoes during transient events, notably the collimation and ejection of the corona during X-ray flares, reminiscent of the aborted launching of a jet. Recent reverberation studies, including those of the Seyfert galaxy I Zwicky 1 with XMM-Newton, are revealing structures within the corona for the first time. A persistent collimated core is found, akin to the base of a jet embedded in the innermost regions. The evolution of both the collimated and extended portions point to the mechanisms powering the X-ray emission and variability. This gives us important constraints on the processes by which energy is liberated from black hole accretion flows and by which jets are launched, allowing us to understand how these extreme objects are powered.

  9. Hard gamma radiation background from coding collimator of gamma telescope under space experiment conditions

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoy, A. N.; Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseyev, A. A.; Ulin, S. Y.

    1985-09-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimation material can lead to the appearance of a gamma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.

  10. On-ground calibration of the ART-XC/SRG mirror system and detector unit at IKI. Part I

    NASA Astrophysics Data System (ADS)

    Pavlinsky, M.; Tkachenko, A.; Levin, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Krivonos, R.; Semena, A.; Semena, N.; Serbinov, D.; Shtykovsky, A.; Yaskovich, A.; Oleinikov, V.; Glushenko, A.; Mereminskiy, I.; Molkov, S.; Sazonov, S.; Arefiev, V.

    2018-05-01

    From October 2016 to September 2017, we performed tests of the ART-XC /SRG spare mirror system and detector unit at the 60-m-long IKI X-ray test facility. We describe some technical features of this test facility. We also present a brief description of the ART-XC mirror system and focal detectors. The nominal focal length of the ART-XC optics is 2700 mm. The field of view is determined by the combination of the mirror system and the detector unit and is equal to ˜0.31 square degrees. The declared operating energy range is 5-30 keV. During the tests, we illuminated the detector with a 55Fe+241 Am calibration source and also with a quasi-parallel X-ray beam. The calibration source is integrated into the detector's collimator. The X-ray beam was generated by a set of Oxford Instruments X-ray tubes with Cr, Cu and Mo targets and an Amptek miniature X-ray tube (Mini-X) with Ag transmission target. The detector was exposed to the X-ray beam either directly or through the mirror system. We present the obtained results on the detector's energy resolution, the muon on-ground background level and the energy dependence of the W90 value. The accuracy of a mathematical model of the ART-XC mirror system, based on ray-tracing simulations, proves to be within 3.5% in the main energy range of 4-20 keV and 5.4% in the "hard" energy range of 20-40 keV.

  11. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    DOEpatents

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  12. Optimal Shape of a Gamma-ray Collimator: single vs double knife edge

    NASA Astrophysics Data System (ADS)

    Metz, Albert; Hogenbirk, Alfred

    2017-09-01

    Gamma-ray collimators in nuclear waste scanners are used for selecting a narrow vertical segment in activity measurements of waste vessels. The system that is used by NRG uses tapered slit collimators of both the single and double knife edge type. The properties of these collimators were investigated by means of Monte Carlo simulations. We found that single knife edge collimators are highly preferable for a conservative estimate of the activity of the waste vessels. These collimators show much less dependence on the angle of incidence of the radiation than double knife edge collimators. This conclusion also applies to cylindrical collimators of the single knife edge type, that are generally used in medical imaging spectroscopy.

  13. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  14. Medical imaging by fluorescent x-ray CT: its preliminary clinical evaluation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Zeniya, Tsutomu; Wu, Jin; Yu, Quanwen; Lwin, Thet T.; Tsuchiya, Yoshinori; Rao, Donepudi V.; Yuasa, Tetsuya; Yashiro, Toru; Dilmanian, F. Avraham; Itai, Yuji; Akatsuka, Takao

    2002-01-01

    Fluorescent x-ray CT (FXCT) with synchrotron radiation (SR) is being developed to detect the very low concentration of specific elements. The endogenous iodine of the human thyroid and the non-radioactive iodine labeled BMIPP in myocardium were imaged by FXCT. FXCT system consists of a silicon (111) double crystal monochromator, an x-ray slit, a scanning table for object positioning, a fluorescent x-ray detector, and a transmission x-ray detector. Monochromatic x-ray with 37 keV energy was collimated into a pencil beam (from 1 mm to 0.025 mm). FXCT clearly imaged endogenous iodine of thyroid and iodine labeled BMIPP in myocardium, whereas transmission x-ray CT could not demonstrate iodine. The distribution of iodine was heterogeneous within thyroid cancer, and its concentration was lower than that of normal thyroid. Distribution of BMIPP in normal rat myocardium was almost homogeneous; however, reduced uptake was slightly shown in ischemic region. FXCT is a highly sensitive imaging modality to detect very low concentration of specific element and will be applied to reveal endogenous iodine distribution in thyroid and to use tracer study with various kinds of labeled material.

  15. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Bruce R., E-mail: whitingbrucer@gmail.com; Evans, Joshua D.; Williamson, Jeffrey F.

    2014-10-15

    Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as themore » x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on one system produced agreement with a relative error of 2%–6%. Fan beam profiles were found to differ for different filter types on a given system and between different vendors. Conclusions: A commercially available real-time dosimeter probe was found to be a convenient and accurate instrument for measuring fan beam profiles. An analysis method was developed that could handle a wide range of collimation widths by explicitly considering the finite width of the ion chamber. Relative errors in the profiles were found to be less than 5%. Measurements of five different clinical scanners demonstrate the variation in bow tie designs, indicating that generic bow tie models will not be adequate for CT system research.« less

  16. Discovery of 3.6-s X-ray pulsations from 4U0115+63

    NASA Technical Reports Server (NTRS)

    Cominsky, L.; Clark, G. W.; Li, F.; Mayer, W.; Rappaport, S.

    1978-01-01

    SAS 3 observations reveal a pulsation period of 3.61 sec for the transient X-ray source 4U0115+63. Positional measurement is accurate to approximately 30 arc s, and has led to the likely identification of an optical counterpart. The intensity of the pulses, as reported on 5.9 January 1978, is given as approximately 1.7 times that of the Crab Nebula (1-27 keV). Spectral information was also obtained from the ratios of counting rates in the first three energy channels of the center slat collimator detector (1-27 keV). Two classes of models are proposed to explain the transient nature of the X-ray sources: (1) episodic mass transfer in a binary system, and (2) eccentric binary orbits.

  17. X-rays From Quasars and Active Galaxies

    NASA Technical Reports Server (NTRS)

    Lightman, Alan P.

    1981-01-01

    Features of quasars and active galactic nuclei are discussed and include: the nature of the power source, the radiation processes, and the mechanism for the formation and collimation of long-lived jets of matter observed to emanate from the center of these of these objects. The phenomena that produce X-rays are highlighted.

  18. Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.; Gallo, L. C.; Silva, C. V.; Costantini, E.; Brandt, W. N.; Kriss, G. A.

    2017-11-01

    X-ray spectral timing analysis is presented of XMM-Newton observations of the narrow-line Seyfert 1 galaxy I Zwicky 1 taken in 2015 January. After exploring the effect of background flaring on timing analyses, X-ray time lags between the reflection-dominated 0.3-1.0 keV energy and continuum-dominated 1.0-4.0 keV band are measured, indicative of reverberation off the inner accretion disc. The reverberation lag time is seen to vary as a step function in frequency; across lower frequency components of the variability, 3 × 10-4-1.2 × 10-3 Hz a lag of 160 s is measured, but the lag shortens to (59 ± 4) s above 1.2 × 10-3 Hz. The lag-energy spectrum reveals differing profiles between these ranges with a change in the dip showing the earliest arriving photons. The low-frequency signal indicates reverberation of X-rays emitted from a corona extended at low height over the disc, while at high frequencies, variability is generated in a collimated core of the corona through which luminosity fluctuations propagate upwards. Principal component analysis of the variability supports this interpretation, showing uncorrelated variation in the spectral slope of two power-law continuum components. The distinct evolution of the two components of the corona is seen as a flare passes inwards from the extended to the collimated portion. An increase in variability in the extended corona was found preceding the initial increase in X-ray flux. Variability from the extended corona was seen to die away as the flare passed into the collimated core leading to a second sharper increase in the X-ray count rate.

  19. A Compact X-Ray System for Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  20. [Radiation exposure of children in pediatric radiology. Part 5: organ doses in chest radiography].

    PubMed

    Seidenbusch, M C; Schneider, K

    2009-05-01

    Reconstruction of organ doses of selected organs and tissues from radiographic settings and exposure data collected during chest X-ray examinations of children of various age groups performed in Dr. von Hauner's Kinderspital (children's hospital of the University of Munich, DvHK) between 1976 and 2007. The dosimetric data of all X-ray examinations performed since 1976 at DvHK were stored electronically in a database. After 30 years of data collection, the database now includes 305 107 radiological examinations (radiographs and fluoroscopies), especially 119 150 chest radiographs of all age groups. Reconstruction of organ doses in 40 organs and tissues in X-ray examinations of the chest was performed based on the conversion factor concept. The radiation exposure of organs in projection radiography is determined by the exact site of the organs relative to the edges of the X-ray field and the beam direction of X-rays. Optimal collimation in chest radiography can reduce the exposure of organs located at the periphery of the X-ray field, e. g. thyroid gland, stomach and partially the liver, by a factor of 2 to 3, while organs located in the center of the X-ray-field, e. g. thymus, breasts, lungs, esophagus and red bone marrow, are not affected by exact collimation. The high frequency of the roentgen examination of the chest in early age groups increases the collective radiation burden to radiosensitive organs. Therefore, radiation protection of the patient during chest radiographies remains of great importance.

  1. Trans-oral miniature X-ray radiation delivery system with endoscopic optical feedback.

    PubMed

    Boese, Axel; Johnson, Fredrick; Ebert, Till; Mahmoud-Pashazadeh, Ali; Arens, Christoph; Friebe, Michael

    2017-11-01

    Surgery, chemo- and/or external radiation therapy are the standard therapy options for the treatment of laryngeal cancer. Trans-oral access for the surgery reduces traumata and hospitalization time. A new trend in treatment is organ-preserving surgery. To avoid regrowth of cancer, this type of surgery can be combined with radiation therapy. Since external radiation includes healthy tissue surrounding the cancerous zone, a local and direct intraoral radiation delivery would be beneficial. A general concept for a trans-oral radiation system was designed, based on clinical need identification with a medical user. A miniaturized X-ray tube was used as the radiation source for the intraoperative radiation delivery. To reduce dose distribution on healthy areas, the X-ray source was collimated by a newly designed adjustable shielding system as part of the housing. For direct optical visualization of the radiation zone, a miniature flexible endoscope was integrated into the system. The endoscopic light cone and the field of view were aligned with the zone of the collimated radiation. The intraoperative radiation system was mounted on a semi-automatic medical holder that was combined with a frontal actuator for rotational and translational movement using piezoelectric motors to provide precise placement. The entire technical set-up was tested in a simulated environment. The shielding of the X-ray source was verified by performing conventional detector-based dose measurements. The delivered dose was estimated by an ionization chamber. The adjustment of the radiation zone was performed by a manual controlling mechanism integrated into the hand piece of the device. An endoscopic fibre was also added to offer visualization and illumination of the radiation zone. The combination of the radiation system with the semi-automatic holder and actuator offered precise and stable positioning of the device in range of micrometres and will allow for future combination with a radiation planning system. The presented system was designed for radiation therapy of the oral cavity and the larynx. This first set-up tried to cover all clinical aspects that are necessary for a later use in surgery. The miniaturized X-ray tube offers the size and the power for intraoperative radiation therapy. The adjustable shielding system in combination with the holder and actuator provides a precise placement. The visualization of radiation zone allows a targeting and observation of the radiation zone.

  2. The NuSTAR Mission: Implementation and Science Prospects

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2009-01-01

    NuSTAR is NASA's next X-ray observatory scheduled to be launched in 2011. It will have two multi-layered X-ray mirror assemblies capable of focusing X-rays in the band of 5 to 80 keV, providing unprecedented detection and imaging sensitivity in a band that only coded-mask or collimated detection has been possible. In this talk I will describe the instrumentation and the prospects of using it to perform various kinds of astronomical studies.

  3. An alignment method for mammographic X-ray spectroscopy under clinical conditions.

    PubMed

    Miyajima, S; Imagawa, K; Matsumoto, M

    2002-09-01

    This paper describes an alignment method for mammographic X-ray spectroscopy under clinical conditions. A pinhole, a fluorescent screen, a laser device and the case for a detector are used for alignment of the focal spot, a collimator and a detector. The method determines the line between the focal spot and the point of interest in an X-ray field radiographically. The method allows alignment for both central axis and off-axis directions.

  4. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.

    PubMed

    Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung

    2011-10-01

    The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Development and calibration of fine collimators for the ASTRO-H Soft Gamma-ray Detector

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Kimura, D.; Fukazawa, Y.; Furui, S.; Goto, K.; Hayashi, T.; Kawabata, K. S.; Kawano, T.; Kitamura, Y.; Shirakawa, H.; Tanabe, T.; Makishima, K.; Nakajima, K.; Nakazawa, K.; Fukuyama, T.; Ichinohe, Y.; Ishimura, K.; Ohta, M.; Sato, T.; Takahashi, T.; Uchida, Y.; Watanabe, S.; Ishibashi, K.; Sakanobe, K.; Matsumoto, H.; Miyazawa, T.; Mori, H.; Sakai, M.; Tajima, H.

    2014-07-01

    The Soft Gamma-ray Detector (SGD) is a Si/CdTe Compton telescope surrounded by a thick BGO active shield and is scheduled to be onboard the ASTRO-H satellite when it is launched in 2015. The SGD covers the energy range from 40 to 600 keV with high sensitivity, which allows us to study nonthermal phenomena in the universe. The SGD uses a Compton camera with the narrow field-of-view (FOV) concept to reduce the non-Xray background (NXB) and improve the sensitivity. Since the SGD is essentially a nonimaging instrument, it also has to cope with the cosmic X-ray background (CXB) within the FOV. The SGD adopts passive shields called "fine collimators" (FCs) to restrict the FOV to <= 0.6° for low-energy photons (<= 100 keV), which reduces contamination from CXB to less than what is expected due to NXB. Although the FC concept was already adopted by the Hard X-ray Detector onboard Suzaku, FCs for the SGD are about four times larger in size and are technically more difficult to operate. We developed FCs for the SGD and confirmed that the prototypes function as required by subjecting them to an X-ray test and environmental tests, such as vibration tests. We also developed an autocollimator system, which uses visible light to determine the transmittance and the optical axis, and calibrated it against data from the X-ray test. The acceptance tests of flight models started in December 2013: five out of six FCs were deemed acceptable, and one more unit is currently being produced. The activation properties were studied based on a proton-beam test and the results were used to estimate the in-orbit NXB.

  6. X-Ray Optics: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2010-01-01

    X-ray astronomy started with a small collimated proportional counter atop a rocket in the early 1960s. It was immediately recognized that focusing X-ray optics would drastically improve both source location accuracy and source detection sensitivity. In the past 5 decades, X-ray astronomy has made significant strides in achieving better angular resolution, large photon collection area, and better spectral and timing resolutions, culminating in the three currently operating X-ray observatories: Chandra, XMM/Newton, and Suzaku. In this talk I will give a brief history of X-ray optics, concentrating on the characteristics of the optics of these three observatories. Then I will discuss current X-ray mirror technologies being developed in several institutions. I will end with a discussion of the optics for the International X-ray Observatory that I have been developing at Goddard Space Flight Center.

  7. Development of a hemispherical rotational modulation collimator system for imaging spatial distribution of radiation sources

    NASA Astrophysics Data System (ADS)

    Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.

    2017-12-01

    Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.

  8. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  9. Research relative to high energy astrophysics. [large area modular array of reflectors, X-ray spectroscopy, and thermal control

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1984-01-01

    Various parameters which affect the design of the proposed large area modular array of reflectors (LAMAR) are considered, including thermal control, high resolution X-ray spectroscopy, pointing control, and mirror performance. The LAMAR instrument is to be a shuttle-launched X-ray observatory to carry out cosmic X-ray investigations. The capabilities of LAMAR are enumerated. Angular resolution performance of the mirror module prototype was measured to be 30 sec of ARC for 50% of the power. The LAMAR thermal pre-collimator design concepts and test configurations are discussed in detail.

  10. Calibration techniques and results in the soft X-ray and extreme ultraviolet for components of the Extreme Ultraviolet Explorer Satellite

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Jelinsky, Patrick; Bowyer, Stuart

    1986-01-01

    The calibration facilities and techniques for the Extreme Ultraviolet Explorer (EUVE) from 44 to 2500 A are described. Key elements include newly designed radiation sources and a collimated monochromatic EUV beam. Sample results for the calibration of the EUVE filters, detectors, gratings, collimators, and optics are summarized.

  11. Framework for computing the spatial coherence effects of polycapillary x-ray optics

    PubMed Central

    Zysk, Adam M.; Schoonover, Robert W.; Xu, Qiaofeng; Anastasio, Mark A.

    2012-01-01

    Despite the extensive use of polycapillary x-ray optics for focusing and collimating applications, there remains a significant need for characterization of the coherence properties of the output wavefield. In this work, we present the first quantitative computational method for calculation of the spatial coherence effects of polycapillary x-ray optical devices. This method employs the coherent mode decomposition of an extended x-ray source, geometric optical propagation of individual wavefield modes through a polycapillary device, output wavefield calculation by ray data resampling onto a uniform grid, and the calculation of spatial coherence properties by way of the spectral degree of coherence. PMID:22418154

  12. High Sensitivity SPECT for Small Animals and Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Gregory S.

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  13. An evaluation to design high performance pinhole array detector module for four head SPECT: a simulation study

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2014-09-01

    The purpose of this study is to derive optimized parameters for a detector module employing an off-the-shelf X-ray camera and a pinhole array collimator applicable for a range of different SPECT systems. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were performed to estimate the performance of the pinhole array collimators and were compared to that of low energy high resolution (LEHR) parallel-hole collimator in a four head SPECT system. A detector module was simulated to have 48 mm by 48 mm active area along with 1mm, 1.6mm and 2 mm pinhole aperture sizes at 0.48 mm pitch on a tungsten plate. Perpendicular lead septa were employed to verify overlapping and non-overlapping projections against a proper acceptance angle without lead septa. A uniform shape cylindrical water phantom was used to evaluate the performance of the proposed four head SPECT system of the pinhole array detector module. For each head, 100 pinhole configurations were evaluated based on sensitivity and detection efficiency for 140 keV γ-rays, and compared to LEHR parallel-hole collimator. SPECT images were reconstructed based on filtered back projection (FBP) algorithm where neither scatter nor attenuation corrections were performed. A better reconstruction algorithm development for this specific system is in progress. Nevertheless, activity distribution was well visualized using the backprojection algorithm. In this study, we have evaluated several quantitative and comparative analyses for a pinhole array imaging system providing high detection efficiency and better system sensitivity over a large FOV, comparing to the conventional four head SPECT system. The proposed detector module is expected to provide improved performance in various SPECT imaging.

  14. Applications of Elpasolites as a Multimode Radiation Sensor

    NASA Astrophysics Data System (ADS)

    Guckes, Amber

    This study consists of both computational and experimental investigations. The computational results enabled detector design selections and confirmed experimental results. The experimental results determined that the CLYC scintillation detector can be applied as a functional and field-deployable multimode radiation sensor. The computational study utilized MCNP6 code to investigate the response of CLYC to various incident radiations and to determine the feasibility of its application as a handheld multimode sensor and as a single-scintillator collimated directional detection system. These simulations include: • Characterization of the response of the CLYC scintillator to gamma-rays and neutrons; • Study of the isotopic enrichment of 7Li versus 6Li in the CLYC for optimal detection of both thermal neutrons and fast neutrons; • Analysis of collimator designs to determine the optimal collimator for the single CLYC sensor directional detection system to assay gamma rays and neutrons; Simulations of a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system with the optimized collimator to determine the feasibility of detecting nuclear materials that could be encountered during field operations. These nuclear materials include depleted uranium, natural uranium, low-enriched uranium, highly-enriched uranium, reactor-grade plutonium, and weapons-grade plutonium. The experimental study includes the design, construction, and testing of both a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system. Both were designed in the Inventor CAD software and based on results of the computational study to optimize its performance. The handheld CLYC multimode sensor is modular, scalable, low?power, and optimized for high count rates. Commercial?off?the?shelf components were used where possible in order to optimize size, increase robustness, and minimize cost. The handheld CLYC multimode sensor was successfully tested to confirm its ability for gamma-ray and neutron detection, and gamma?ray and neutron spectroscopy. The sensor utilizes wireless data transfer for possible radiation mapping and network?centric deployment. The handheld multimode sensor was tested by performing laboratory measurements with various gamma-ray sources and neutron sources. The single CLYC scintillator collimated directional detection system is portable, robust, and capable of source localization and identification. The collimator was designed based on the results of the computational study and is constructed with high density polyethylene (HDPE) and lead (Pb). The collimator design and construction allows for the directional detection of gamma rays and fast neutrons utilizing only one scintillator which is interchangeable. For this study, a CLYC-7 scintillator was used. The collimated directional detection system was tested by performing laboratory directional measurements with various gamma-ray sources, 252Cf and a 239PuBe source.

  15. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less

  16. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry ( e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape ( e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength ( in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  17. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    PubMed Central

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; Domning, Edward E.; Merthe, Daniel J.; Salmassi, Farhad; Smith, Brian V.

    2015-01-01

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described. PMID:25931083

  18. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE PAGES

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; ...

    2015-04-08

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry ( e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape ( e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength ( in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  19. The ASTRO-H SXT Performance to the Large Off-Set Angles

    NASA Technical Reports Server (NTRS)

    Sato, Toshiki; Iizuka, Ryo; Mori, Hideyuki; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; hide

    2016-01-01

    The X-ray astronomy satellite ASTRO-H, which is the 6th Japanese X-ray astronomy satellite and is renamed Hitomi after launch, is designed to observe celestial X-ray objects in a wide energy band from a few hundred eV to 600 keV. The Soft X-ray Telescopes (SXTs) onboard ASTRO-H play a role of collecting and imaging X-rays up to approximately 12 keV. Although the field of view of the SXT is approximately 15' (FWHM), due to the thin-foil-nested Wolter-I type optics adopted in the SXTs, X-rays out of the field of view can reach the focal plane without experiencing a normal double reflection. This component is referred to as 'stray light'. Owing to investigation of the stray light so far, 'secondary reflection' is now identified as the main component of the stray light, which is composed of X-rays reflected only by secondary reflectors. In order to cut the secondary reflections, a 'pre-collimator' is equipped on top of the SXTs. However, we cannot cut all the stray lights with the pre-collimator in some off-axis angle domain. In this study, we measure the brightness of the stray light of the SXTs at some representative off-axis angles by using the ISAS X-ray beam line. ASTRO-H is equipped with two modules of the SXT; one is for the Soft X-ray Spectrometer (SXS), an X-ray calorimeter, and the other is for the Soft X-ray Imager (SXI), an X-ray CCD camera. These SXT modules are called SXT-S and SXT-I, respectively. Of the two detector systems, the SXI has a large field of view, a square with 38' on a side. To cope with this, we have made a mosaic mapping of the stray light at a representative off-axis angle of 30' in the X-ray beam line at the Institute of Space and Astronautical Science. The effective area of the brightest secondary reflection is found of order approximately 0.1% of the on-axis effective area at the energy of 1.49 keV. The other components are not so bright (less than 5 x 10(exp -4) times smaller than the on-axis effective area). On the other hand, we have found that the effective area of the stray light in the SXS field of view (approximately 3' x 3') at large off-axis angles (greater than 15') are approximately 1(exp -4) times smaller than the on-axis effective area (approximately 590 sq cm at 1.49 keV).

  20. A small-angle x-ray scattering system with a vertical layout.

    PubMed

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-01

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  1. Mobile system for in-situ imaging of cultural objects

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Jakubek, J.; Krejci, F.; Hradil, D.; Hradilova, J.; Mislerova, H.

    2012-01-01

    Non-invasive analytical techniques recently developed with the Timepix pixel detector have shown great potential for the inspection of objects of cultural heritage. We have developed new instrumentation and methodology for in-situ X-ray transmission radiography and X-ray fluorescence imaging and successfully tested and evaluated a mobile system for remote terrain tasks. The prototype portable imaging device comprises the radiation source tube and the spectral sensitive X-ray camera. Both components can be moreover mounted on independent motorized positioning systems allowing adaptation of irradiation geometry to the object shape. Both parts are placed onto a pair of universal portable holders (tripods). The detector is placed in a shielded box with exchangeable entrance window (beam filters and pinhole collimator). This adjustable setup allows performing in-situ measurements for both transmission and emission (XRF) radiography. The assembled system has been successfully tested in our laboratory with phantoms and real samples. The obtained and evaluated results are presented in this paper. Future work will include successive adaptation of the current system for real in-situ utilization and preparation of software allowing semi-automatic remote control of measurements.

  2. Justification and good practice in using handheld portable dental X-ray equipment: a position paper prepared by the European Academy of DentoMaxilloFacial Radiology (EADMFR)

    PubMed Central

    Suomalainen, A; Brüllmann, D; Jacobs, R; Horner, K; Stamatakis, H C

    2015-01-01

    Handheld portable X-ray devices are increasingly used for intraoral radiography. This development introduces new challenges to staff and patient safety, for which new or revised risk assessments must be made and acted upon prior to use. Major issues might be: difficulties in using rectangular collimation with beam aiming devices, more complex matching of exposure settings to the X-ray receptor used (e.g. longer exposure times), movements owing to the units' weight, protection of the operator and third persons, and the use in uncontrolled environments. These problems may result in violation of the “as low as reasonably achievable’’, that is, ALARA principle by an increase in (re)exposures compared with the other available intraoral X-ray devices. Hence, the use of handheld portable X-ray devices should be considered only after careful and documented evaluation (which might be performed based on medical physics support), when there is evidence that handheld operation has benefits over traditional modalities and when no new risks to the operators and/or third parties are caused. It is expected that the use of handheld portable X-ray devices will be very exceptional, and for justified situations only. Special attention should be drawn to beam-aiming devices, rectangular collimation, the section of the X-ray receptor, focus–skin distance, and backscatter shielding, and that the unit delivers reproducible dose over the full set of environmental conditions (e.g. battery status and temperature). PMID:25710118

  3. Direct detection of x-rays for protein crystallography employing a thick, large area CCD

    DOEpatents

    Atac, Muzaffer; McKay, Timothy

    1999-01-01

    An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

  4. Development and validation of a BEAMnrc component module for a miniature multileaf collimator.

    PubMed

    Doerner, E; Hartmann, G H

    2012-05-21

    A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.

  5. Development and validation of a BEAMnrc component module for a miniature multileaf collimator

    NASA Astrophysics Data System (ADS)

    Doerner, E.; Hartmann, G. H.

    2012-05-01

    A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.

  6. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range.

    PubMed

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.

  7. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range

    PubMed Central

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V.; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order. PMID:28009556

  8. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  9. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  10. Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.

    2011-01-01

    The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.

  11. The X-ray microscopy beamline UE46-PGM2 at BESSY

    NASA Astrophysics Data System (ADS)

    Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.

    2010-06-01

    The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

  12. Hybrid deterministic-stochastic modeling of x-ray beam bowtie filter scatter on a CT system.

    PubMed

    Liu, Xin; Hsieh, Jiang

    2015-01-01

    Knowledge of scatter generated by bowtie filter (i.e. x-ray beam compensator) is crucial for providing artifact free images on the CT scanners. Our approach is to use a hybrid deterministic-stochastic simulation to estimate the scatter level generated by a bowtie filter made of a material with low atomic number. First, major components of CT systems, such as source, flat filter, bowtie filter, body phantom, are built into a 3D model. The scattered photon fluence and the primary transmitted photon fluence are simulated by MCNP - a Monte Carlo simulation toolkit. The rejection of scattered photon by the post patient collimator (anti-scatter grid) is simulated with an analytical formula. The biased sinogram is created by superimposing scatter signal generated by the simulation onto the primary x-ray beam signal. Finally, images with artifacts are reconstructed with the biased signal. The effect of anti-scatter grid height on scatter rejection are also discussed and demonstrated.

  13. Finite element Compton tomography

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Amouzou, Pauline; Menon, Naresh; Gertsenshteyn, Michael

    2007-09-01

    In this paper a new approach to 3D Compton imaging is presented, based on a kind of finite element (FE) analysis. A window for X-ray incoherent scattering (or Compton scattering) attenuation coefficients is identified for breast cancer diagnosis, for hard X-ray photon energy of 100-300 keV. The point-by-point power/energy budget is computed, based on a 2D array of X-ray pencil beams, scanned vertically. The acceptable medical doses are also computed. The proposed finite element tomography (FET) can be an alternative to X-ray mammography, tomography, and tomosynthesis. In experiments, 100 keV (on average) X-ray photons are applied, and a new type of pencil beam collimation, based on a Lobster-Eye Lens (LEL), is proposed.

  14. An Algorithm of an X-ray Hit Allocation to a Single Pixel in a Cluster and Its Test-Circuit Implementation

    DOE PAGES

    Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel; ...

    2017-06-28

    An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less

  15. Measurements of Atomic Rayleigh Scattering Cross-Sections: A New Approach Based on Solid Angle Approximation and Geometrical Efficiency

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.

  16. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  17. POLIX: A Thomson X-ray polarimeter for a small satellite mission

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit; Gopala Krishna, M. R.; Puthiya Veetil, Rishin

    2016-07-01

    POLIX is a Thomson X-ray polarimeter for a small satellite mission of ISRO. The instrument consists of a collimator, a scatterer and a set proportional counters to detect the scattered X-rays. We will describe the design, specifications, sensitivity, and development status of this instrument and some of the important scientific goals. This instrument will provide unprecedented opportunity to measure X-ray polarisation in the medium energy range in a large number of sources of different classes with a minimum detectable linear polarisation degree of 2-3%. The prime objects for observation with this instrument are the X-ray bright accretion powered neutron stars, accreting black holes in different spectral states, rotation powered pulsars, magnetars, and active galactic nuclei. This instrument will be a bridge between the soft X-ray polarimeters and the Compton polarimeters.

  18. Search for X rays from the planet Jupiter.

    NASA Technical Reports Server (NTRS)

    Hurley, K. C.

    1972-01-01

    Actively collimated balloon-borne scintillation counters employing a special phoswich anticoincidence technique were flown a total of 5 times from Palestine, Texas. Jupiter was observed for a total of 133 min, and an upper limit to the flux of X rays present at the observation time is .016 X rays/sq cm sec in the energy range 30-100 keV. Three separate calculations are made to estimate the flux of Jovian X rays at the earth. These estimates range from .000000001 to .1 X rays/sq cm sec in the energy range 30-100 keV. It is concluded that, since there was no decametric emission at the time of the flight and there had been no significant solar activity for several days prior to the flight, no X rays were being generated at the time of the observation.

  19. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging.

    PubMed

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-10-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution.

  20. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Wallace, M. S.; Haque, S.; Neill, P.; Pereira, N. R.; Presura, R.

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  1. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    PubMed

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  2. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma.

    PubMed

    MacDonald, M J; Keiter, P A; Montgomery, D S; Biener, M M; Fein, J R; Fournier, K B; Gamboa, E J; Klein, S R; Kuranz, C C; LeFevre, H J; Manuel, M J-E; Streit, J; Wan, W C; Drake, R P

    2014-11-01

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  3. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  4. The Water Recovery X-ray Rocket (WRX-R)

    NASA Astrophysics Data System (ADS)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  5. Two-dimensional ultrahigh-density X-ray optical memory.

    PubMed

    Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H

    2007-01-01

    Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in paper, one may choose optimally the incident radiation wavelength, as well as the angle of incidence of X-ray micro beams, appropriate for proposed digital data read-out procedure.

  6. Source holder collimator for encapsulating radioactive material and collimating the emanations from the material

    DOEpatents

    Laurer, G.R.

    1974-01-22

    This invention provides a transportable device capable of detecting normal levels of a trace element, such as lead in a doughnutshaped blood sample by x-ray fluorescence with a minimum of sample preparation in a relatively short analyzing time. In one embodiment, the blood is molded into a doughnut-shaped sample around an annular array of low-energy radioactive material that is at the center of the doughnut-shaped sample but encapsulated in a collimator, the latter shielding a detector that is close to the sample and facing the same so that the detector receives secondary emissions from the sample while the collimator collimates ths primary emissions from the radioactive material to direct these emissions toward the sample around 360 deg and away from the detector. (Official Gazette)

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, G. W.; Fahim, F.; Grybos, P.

    An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel that recovers composite signals and event driven strobes to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32×32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3 μm X-ray beam. The results of these tests are given in the paper assessing physical implementation of the algorithm.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel

    An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less

  9. A small-angle x-ray scattering system with a vertical layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range.more » With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.« less

  10. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalkmore » between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.« less

  11. SU-D-206-07: CBCT Scatter Correction Based On Rotating Collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, G; Feng, Z; Yin, Y

    2016-06-15

    Purpose: Scatter correction in cone-beam computed tomography (CBCT) has obvious effect on the removal of image noise, the cup artifact and the increase of image contrast. Several methods using a beam blocker for the estimation and subtraction of scatter have been proposed. However, the inconvenience of mechanics and propensity to residual artifacts limited the further evolution of basic and clinical research. Here, we propose a rotating collimator-based approach, in conjunction with reconstruction based on a discrete Radon transform and Tchebichef moments algorithm, to correct scatter-induced artifacts. Methods: A rotating-collimator, comprising round tungsten alloy strips, was mounted on a linear actuator.more » The rotating-collimator is divided into 6 portions equally. The round strips space is evenly spaced on each portion but staggered between different portions. A step motor connected to the rotating collimator drove the blocker to around x-ray source during the CBCT acquisition. The CBCT reconstruction based on a discrete Radon transform and Tchebichef moments algorithm is performed. Experimental studies using water phantom and Catphan504 were carried out to evaluate the performance of the proposed scheme. Results: The proposed algorithm was tested on both the Monte Carlo simulation and actual experiments with the Catphan504 phantom. From the simulation result, the mean square error of the reconstruction error decreases from 16% to 1.18%, the cupping (τcup) from 14.005% to 0.66%, and the peak signal-to-noise ratio increase from 16.9594 to 31.45. From the actual experiments, the induced visual artifacts are significantly reduced. Conclusion: We conducted an experiment on CBCT imaging system with a rotating collimator to develop and optimize x-ray scatter control and reduction technique. The proposed method is attractive in applications where a high CBCT image quality is critical, for example, dose calculation in adaptive radiation therapy. We want to thank Dr. Lei Xing and Dr. Yong Yang in the Stanford University School of Medicine for this work. This work was jointly supported by NSFC (61471226), Natural Science Foundation for Distinguished Young Scholars of Shandong Province (JQ201516), and China Postdoctoral Science Foundation (2015T80739, 2014M551949).« less

  12. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    DOE PAGES

    MacDonald, M. J.; Gorkhover, T.; Bachmann, B.; ...

    2016-08-08

    Atomic clusters can serve as ideal model systems for exploring ultrafast (~100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally-resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities and ionization. Single shot x-ray Thomson scatterings signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. As a result, such measurements are important for understanding collective effects in laser-matter interactions on femtosecond timescales, opening new routes for the development of schemes for their ultrafast control.« less

  13. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Gorkhover, T.

    2016-11-15

    Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.« less

  14. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    NASA Astrophysics Data System (ADS)

    Woll, Arthur R.; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Finnefrock, Adam C.; Gordon, Robert; Hallin, Emil; Mass, Jennifer

    2014-03-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  15. Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy

    PubMed Central

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930

  16. Radiological Protection Studies for NGLS XTOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shanjie; Santana-Leitner, Mario; Rokni, Sayed

    The X-ray transport, optics and diagnostic system (XTOD) starts from the end of bending magnets sending electrons to the main dump and ends at the end wall separating the accelerator tunnel from the user experimental hall (hereafter referred as EH wall), as shown in Figure 1. Figure 1.a shows the general schematic and Figure 1.b shows the initial layout with possible shielding components. This document summarizes the extensive studies on the shielding and collimator system design necessary to meet the radiation protection requirements.

  17. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less

  18. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2015-01-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  19. Beam halo collimation in heavy ion synchrotrons

    NASA Astrophysics Data System (ADS)

    Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.

    2015-08-01

    This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.

  20. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  1. Relativistic jets in SS 433

    NASA Astrophysics Data System (ADS)

    Margon, B.

    1982-01-01

    A variety of recent optical, radio, and X-ray observations have confirmed the hypothesis that the peculiar star SS 433 is ejecting two narrow, opposed, highly collimated jets of matter at one-quarter the speed of light. This unique behavior is probably driven by mass exchange between a relatively normal star and a compact companion, either a neutron star or a black hole. However, numerous details regarding the energetics, radiation, acceleration, and collimation of the jets remain to be understood. This phenomenon may well be a miniature example of similar collimated ejection of gas by active extragalactic objects such as quasars and radio galaxies.

  2. Development of neutron imaging beamline for NDT applications at Dhruva reactor, India

    NASA Astrophysics Data System (ADS)

    Shukla, Mayank; Roy, Tushar; Kashyap, Yogesh; Shukla, Shefali; Singh, Prashant; Ravi, Baribaddala; Patel, Tarun; Gadkari, S. C.

    2018-05-01

    Thermal neutron imaging techniques such as radiography or tomography are very useful tool for various scientific investigations and industrial applications. Neutron radiography is complementary to X-ray radiography, as neutrons interact with nucleus as compared to X-ray interaction with orbital electrons. We present here design and development of a neutron imaging beamline at 100 MW Dhruva research reactor for neutron imaging applications such as radiography, tomography and phase contrast imaging. Combinations of sapphire and bismuth single crystals have been used as thermal neutron filter/gamma absorber at the input of a specially designed collimator to maximize thermal neutron to gamma ratio. The maximum beam size of neutrons has been restricted to ∼120 mm diameter at the sample position. A cadmium ratio of ∼250 with L / D ratio of 160 and thermal neutron flux of ∼ 4 × 107 n/cm2 s at the sample position has been measured. In this paper, different aspects of the beamline design such as collimator, shielding, sample manipulator, digital imaging system are described. Nondestructive radiography/tomography experiments on hydrogen concentration in Zr-alloy, aluminium foam, ceramic metal seals etc. are also presented.

  3. REgolith X-Ray Imaging Spectrometer (REXIS) Aboard NASA’s OSIRIS-REx Mission

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Allen, Branden; Grindlay, Jonathan E.; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K; Chodas, Mark; Smith, Matthew W; Bautz, Mark W.; Kissel, Steven E; Villasenor, Jesus Noel; Oprescu, Antonia

    2014-06-01

    The REgolith X-Ray Imaging Spectrometer (REXIS) is a student-led instrument being designed, built, and operated as a collaborative effort involving MIT and Harvard. It is a part of NASA's OSIRIS-REx mission, which is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of the primitive carbonaceous chondrite-like asteroid 101955 Bennu in 2019. REXIS will determine spatial variations in elemental composition of Bennu's surface through solar-induced X-ray fluorescence. REXIS consists of four X-ray CCDs in the detector plane and an X-ray mask. It is the first coded-aperture X-ray telescope in a planetary mission, which combines the benefit of high X-ray throughput of wide-field collimation with imaging capability of a coded-mask, enabling detection of elemental surface distributions at approximately 50-200 m scales. We present an overview of the REXIS instrument and the expected performance.

  4. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  5. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  6. SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo

    2017-03-01

    State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.

  7. High-energy x-ray optics with silicon saw-tooth refractive lenses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shastri, S. D.; Almer, J. A.; Ribbing, C. R.

    2007-01-01

    Silicon saw-tooth refractive lenses have been in successful use for vertical focusing and collimation of high-energy X-rays (50-100 keV) at the 1-ID undulator beamline of the Advanced Photon Source. In addition to presenting an effectively parabolic thickness profile, as required for aberration-free refractive optics, these devices allow high transmission and continuous tunability in photon energy and focal length. Furthermore, the use of a single-crystal material (i.e. Si) minimizes small-angle scattering background. The focusing performance of such saw-tooth lenses, used in conjunction with the 1-ID beamline's bent double-Laue monochromator, is presented for both short ({approx}1:0.02) and long ({approx}1:0.6) focal-length geometries, givingmore » line-foci in the 2 {micro}m-25 {micro}m width range with 81 keV X-rays. In addition, a compound focusing scheme was tested whereby the radiation intercepted by a distant short-focal-length lens is increased by having it receive a collimated beam from a nearer (upstream) lens. The collimation capabilities of Si saw-tooth lenses are also exploited to deliver enhanced throughput of a subsequently placed small-angular-acceptance high-energy-resolution post-monochromator in the 50-80 keV range. The successful use of such lenses in all these configurations establishes an important detail, that the pre-monochromator, despite being comprised of vertically reflecting bent Laue geometry crystals, can be brilliance-preserving to a very high degree.« less

  8. HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.

    1997-01-01

    The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.

  9. Frontiers of X-ray research at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehmer, J.J.

    1995-12-31

    With providential timing, the Advanced Photon Source (APS) at Argonne National Laboratory has begun to produce x-rays during the centennial year of Wilhelm Rongtgen`s discovery of a {open_quotes}new kind of rays.{close_quotes} When complete, this third-generation, 7-GeV positron storage ring will produce nearly one hundred intense x-ray beams, with a major emphasis on the laser-like (highly collimated, locally coherent) beams from undulator sources. This talk will provide an overview of (1) the important properties of the synchrotron radiation to be produced by the APS, (2) the major classes of experimental approaches that use x-rays, and (3) some speculation on the impactsmore » of the APS on the materials, chemical, biological, and environmental sciences.« less

  10. Development of a fluorescent x-ray source for medical imaging

    NASA Astrophysics Data System (ADS)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  11. Explosives detection using photoneutrons produced by X-rays

    NASA Astrophysics Data System (ADS)

    Yang, Yigang; Li, Yuanjing; Wang, Haidong; Li, Tiezhu; Wu, Bin

    2007-08-01

    The detection of explosives has become a critical issue after recent terrorist attacks. This paper describes research on explosives detection using photoneutrons from a photoneutron convertor that consists of 20 kg heavy water in an aluminum container whose shape was optimized to most effectively convert X-rays to photoneutrons. The X-rays were produced by a 9 MeV electron accelerator with an average electron current of 100 μA, resulted in a photoneutron yield of >10 11 n/s. Monte-Carlo simulations show that the radiation field is composed of X-ray pulses, fast neutron pulses and thermal neutrons. Both the X-ray and fast neutron pulses are 5 μs wide with a 300 Hz repetition frequency. The thermal neutron flux, which is higher than 10 4 n/cm 2/s, is essentially time invariant. A time shielding circuit was developed for the spectrometry system to halt the sampling process during the intense X-ray pulses. Paraffin, boron carbide and lead were used to protect the detector from interference from the X-rays, fast neutrons, thermal neutrons and background γ-rays coming from the system materials induced by photoneutrons. 5″×5″ NaI (Tl) scintillators were chosen as the detectors to detect the photoneutrons induced γ-rays from the inspected explosive simulant. Nitrogen (6.01 cps) 10.828 MeV γ-rays were detected with one detector from a 50 kg carbamide block placed 60 cm in front of the detector. A collimator was used to reduce the number of background 10.828 MeV γ-rays coming from the nitrogen in the air to improve the signal to background ratio from 0.136 to 1.81. A detector array of seven 5″×5″ NaI (Tl) detectors was used to measure the 2-D distributions of N and H in the sample. The combination of photoneutron analysis and X-ray imaging shows promise for enhancing explosives detection capabilities.

  12. High resolution X- and gamma-ray spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1984-01-01

    A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.

  13. Superior spatial resolution in confocal X-ray techniques using collimating channel array optics: elemental mapping and speciation in archaeological human bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, S.; Agyeman-Budu, D. N.; Woll, A. R.

    Confocal X-ray fluorescence imaging (CXFI) and confocal X-ray absorption spectroscopy (CXAS) respectively enable the study of three dimensionally resolved localization and speciation of elements. Applied to a thick sample, essentially any volume element of interest within the X-ray fluorescence escape depth can be examined without the need for physical thin sectioning. To date, X-ray confocal detection generally has employed a polycapillary optic in front of the detector to collect fluorescence from the probe volume formed at the intersection of its focus with the incident microfocus beam. This work demonstrates the capability of a novel Collimating Channel Array (CCA) optic inmore » providing an improved and essentially energy independent depth resolution approaching 2 μm. By presenting a comparison of elemental maps of archaeological bone collected without confocal detection, and with polycapillary- and CCA-based confocal detection, this study highlights the strengths and limitations of each mode. Unlike the polycapillary, the CCA shows similar spatial resolution in maps for both low (Ca) and high (Pb and Sr) energy X-ray fluorescence, thus illustrating the energy independent nature of the CCA optic resolution. While superior spatial resolution is demonstrated for all of these elements, the most significant improvement is observed for Ca, demonstrating the advantage of employing the CCA optic in examining light elements. In addition to CXFI, this configuration also enables the collection of Pb L3 CXAS data from micro-volumes with dimensions comparable to bone microstructures of interest. Our CXAS result, which represents the first CCA-based biological CXAS, demonstrates the ability of CCA optics to collect site specific spectroscopic information. The demonstrated combination of site-specific elemental localization and speciation data will be useful in diverse fields.« less

  14. VOXES: a high precision X-ray spectrometer for diffused sources with HAPG crystals in the 2–20 keV range

    NASA Astrophysics Data System (ADS)

    Scordo, A.; Curceanu, C.; Miliucci, M.; Shi, H.; Sirghi, F.; Zmeskal, J.

    2018-04-01

    Bragg spectroscopy is one of the best established experimental methods for high energy resolution X-ray measurements and has been widely used in several fields, going from fundamental physics to quantum mechanics tests, synchrotron radiation and X-FEL applications, astronomy, medicine and industry. However, this technique is limited to the measurement of photons produced from well collimated or point-like sources and becomes quite inefficient for photons coming from extended and diffused sources like those, for example, emitted in the exotic atoms radiative transitions. The VOXES project's goal is to realise a prototype of a high resolution and high precision X-ray spectrometer, using Highly Annealed Pyrolitic Graphite (HAPG) crystals in the Von Hamos configuration, working also for extended sources. The aim is to deliver a cost effective system having an energy resolution at the level of eV for X-ray energies from about 2 keV up to tens of keV, able to perform sub-eV precision measurements with non point-like sources. In this paper, the working principle of VOXES, together with first results, are presented.

  15. Performance characterization of a new CZT-based preclinical SPECT system: a comparative study of different collimators

    NASA Astrophysics Data System (ADS)

    Yu, A. R.; Park, S.-J.; Choi, Y. Y.; Kim, K. M.; Kim, H.-J.

    2015-09-01

    Triumph X-SPECT is a newly released CZT-based preclinical small-animal SPECT system with interchangeable collimators. The purpose of this work was to evaluate and systematically compare the imaging performances of three different collimators in the CZT-based preclinical small-animal system: a single-pinhole collimator (SPH), a multi-pinhole collimator (MPH) and a parallel-hole collimator. We measured the spatial resolutions and sensitivities of the three collimators with 99mTc sources, considering three distinct energy window widths (5, 10, and 20%), and used the NEMA NU4-2008 Image Quality phantom to test the imaging performance of the three collimators in terms of uniformity and spill-over ratio (SOR) for each energy window. With a 10% energy window width at a radius of rotation (ROR) of 30 mm, the system resolution of the SPH, MPH and parallel-hole collimators was 0.715, 0.855 and 3.270 mm FWHM, respectively. For the same energy window, the sensitivity of the system with SPH, MPH and parallel-hole collimators was 32.860, 152.514 and 49.205 counts/sec/MBq at a 100 mm source-to-detector distance and 6.790, 33.376 and 49.038 counts/sec/MBq at a 130 mm source-to-detector distance, respectively. The image noise and SORair for the three collimators were 20.137, 12.278 and 11.232 (%STDunif) and 0.106, 0.140 and 0.161, respectively. Overall, the results show that the SPH had better spatial resolution than the other collimators. The MPH had the highest sensitivity at 100 mm source-to-collimator distance, and the parallel-hole collimator had the highest sensitivity at 130 mm-source-to-detector distance. Therefore, the proper collimator for Triumph X-SPECT system must be determined by the task. These results provide valuable reference data and insight into the imaging performance of various collimators in CZT-based preclinical small-animal SPECT.

  16. Design and dosimetry of small animal radiation facilities

    NASA Astrophysics Data System (ADS)

    Rodriguez, Manuel R.

    The aim of this work was to develop an irradiation system for radiobiology studies. We designed a novel image-guided micro-irradiator capable of partial-body zebrafish embryo irradiation. The radiation source is a 50 kV photon beam from a miniature x-ray source (Xoft Inc., CA). The source is inserted in a cylindrical brass collimator, 3 cm in diameter and 3 cm in length. The collimator has a 1 mm-diameter pinhole along the longitudinal axis, which provides a well-focused beam with a sharp penumbra. A photodiode is installed at one exit of the pinhole collimator to monitor the photon dose rate. The source with the collimator is attached under a movable table. A video camera, connected to the computer, is placed above the movable table to record position of the specimens in relation to the pinhole collimator. The captured images are analyzed, and the relative distances between the specimens and the pinhole are calculated. The coordinates are sent to the computer-controlled movable table to accurately position the specimens in the beam. Monte Carlo simulations were performed to characterize dosimetric properties of the system, to determine dosimetric sensitivity, and to help in the design. The image-guidance and high precision of the movable table enable very accurate specimen position. The beam monitoring system provides accurate, fast and easy dose determination. Portability and self-shielding make this system suitable for any radiobiology laboratory. This novel micro-irradiator is appropriate for partial irradiation of zebrafish embryos; however its potential use is much wider like irradiation of cell cultures or other small specimens.

  17. Development of a multi-knife-edge slit collimator for prompt gamma ray imaging during proton beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Ready, John Francis, III

    Proton beam usage to treat cancer has recently experienced rapid growth, as it offers the ability to target dose delivery in a patient more precisely than traditional x-ray treatment methods. Protons stop within the patient, delivering the maximum dose at the end of their track--a phenomenon described as the Bragg peak. However, because a large dose is delivered to a small volume, proton therapy is very sensitive to errors in patient setup and treatment planning calculations. Additionally, because all primary beam particles stop in the patient, there is no direct information available to verify dose delivery. These factors contribute to the range uncertainty in proton therapy, which ultimately hinders its clinical usefulness. A reliable method of proton range verification would allow the clinician to fully utilize the precise dose delivery of the Bragg peak. Several methods to verify proton range detect secondary emissions, especially prompt gamma ray (PG) emissions. However, detection of PGs is challenging due to their high energy (2-10 MeV) and low attenuation coefficients, which limit PG interactions in materials. Therefore, detection and collimation methods must be specifically designed for prompt gamma ray imaging (PGI) applications. In addition, production of PGs relies on delivering a dose of radiation to the patient. Ideally, verification of the Bragg peak location exposes patients to a minimal dose, thus limiting the PG counts available to the imaging system. An additional challenge for PGI is the lack of accurate simulation models, which limit the study of PG production characteristics and the relationship between PG distribution and dose delivery. Specific limitations include incorrect modeling of the reaction cross sections, gamma emission yields, and angular distribution of emission for specific photon energies. While simulations can still be valuable assets in designing a system to detect and image PGs, until new models are developed and incorporated into Monte Carlo simulation packages, simulations cannot be used to study the production and location of PG emissions during proton therapy. This work presents a novel system to image PGs emitted during proton therapy to verify proton beam range. The imaging system consists of a multi-slit collimator paired with a position-sensitive LSO scintillation detector. This innovative design is the first collimated imaging system to implement two-dimensional (2-D) imaging for PG proton beam range verification, while also providing a larger field of view than compared to single-slit collimator systems. Other, uncollimated imaging systems have been explored for PGI applications, such as Compton cameras. However, Compton camera designs are severely limited by counting rate capabilities. A recent Compton camera study reported count rate capability of about 5 kHz. However, at a typical clinical beam current of 1.0 nA, the estimated PG emission rate would be 6 x 108 per second. After accounting for distance to the detector and interaction efficiencies, the detection system will still be overwhelmed with counts in the MHz range, causing false coincidences and hindering the operation of the imaging system. Initial measurements using 50 MeV protons demonstrated the ability of our system to reconstruct 2-D PG distributions at clinical beam currents. A Bragg peak localization precision of 1 mm (2sigma) was achieved with delivery of (1.7 +/- 0.8) x 108 protons into a PMMA target, suggesting the ability of the system to detect relative shifts in proton range while delivering fewer protons than used in a typical treatment fraction. This is key, as the ideal system allows the clinician to verify proton range when delivering only a small portion of the prescribed dose, preventing the mistreatment of the patient. Additionally, the absolute position of the Bragg peak was identified to within 1.6 mm (2sigma) with 5.6 x 1010 protons delivered. These promising results warrant further investigation and system optimization for clinical implementation. While further measurements at clinical beam energy levels will be required to verify system performance, these preliminary results provide evidence that 2-D image reconstruction, with 1-2 mm accuracy, is possible with this design. Implementing such a system in the clinical setting would greatly improve proton therapy cancer treatment outcomes.

  18. Determining the Uncertainty of X-Ray Absorption Measurements

    PubMed Central

    Wojcik, Gary S.

    2004-01-01

    X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627

  19. Influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation and nodules on 16- and 64-detector row CT systems: experimental study using chest phantom.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Kono, Astushi; Terada, Mari; Inokawa, Hiroyasu; Matsumoto, Sumiaki; Sugimura, Kazuro

    2007-12-01

    The purpose of the present study was to determine the influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation (GGA) and nodules on 16- and 64-detector row CTs, by using a commercially available chest phantom. A chest CT phantom including simulated GGAs and nodules was scanned with different detector collimations, beam pitches and tube currents. The probability and image quality of each simulated abnormality was visually assessed with a five-point scoring system. ROC-analysis and ANOVA were then performed to compare the identification and image quality of either protocol with standard values. Detection rates of low-dose CTs were significantly reduced when tube currents were set at 40mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for low pitch, and at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for high pitch (p<0.05). Image qualities of low-dose CTs deteriorated significantly when tube current was set at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for low pitch, and at 150mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for high pitch (p<0.05). Detector collimation and beam pitch were important factors for the image quality and identification of GGA and nodules by 16- and 64-detector row CT.

  20. SOFT X-RAY SPECTROSCOPY OF THE CYGNUS LOOP SUPERNOVA REMNANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakley, Phil; McEntaffer, Randall; Cash, Webster, E-mail: Oakley@mit.edu

    2013-03-20

    We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 A bandpass with a resolution up to {approx}60 ({lambda}/{Delta}{lambda}). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII tripletmore » at {approx}22 A. Another emission feature at {approx}45 A is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).« less

  1. Energy modulated electron therapy: Design, implementation, and evaluation of a novel method of treatment planning and delivery

    NASA Astrophysics Data System (ADS)

    Al-Yahya, Khalid

    Energy modulated electron therapy (EMET) is a promising treatment modality that has the fundamental capabilities to enhance the treatment planning and delivery of superficially located targets. Although it offers advantages over x-ray intensity modulated radiation therapy (IMRT), EMET has not been widely implemented to the same level of accuracy, automation, and clinical routine as its x-ray counterpart. This lack of implementation is attributed to the absence of a remotely automated beam shaping system as well as the deficiency in dosimetric accuracy of clinical electron pencil beam algorithms in the presence of beam modifiers and tissue heterogeneities. In this study, we present a novel technique for treatment planning and delivery of EMET. The delivery is achieved using a prototype of an automated "few leaf electron collimator" (FLEC). It consists of four copper leaves driven by stepper motors which are synchronized with the x-ray jaws in order to form a series of collimated rectangular openings or "fieldlets". Based on Monte Carlo studies, the FLEC has been designed to serve as an accessory tool to the current accelerator equipment. The FLEC was constructed and its operation was fully automated and integrated with the accelerator through an in-house assembled control unit. The control unit is a portable computer system accompanied with customized software that delivers EMET plans after acquiring them from the optimization station. EMET plans are produced based on dose volume constraints that employ Monte Carlo pre-generated and patient-specific kernels which are utilized by an in-house developed optimization algorithm. The structure of the optimization software is demonstrated. Using Monte Carlo techniques to calculate dose allows for accurate modeling of the collimation system as well as the patient heterogeneous geometry and take into account their impact on optimization. The Monte Carlo calculations were validated by comparing them against output measurements with an ionization chamber. Comparisons with measurements using nearly energy-independent radiochromic films were performed to confirm the Monte Carlo calculation accuracy for 1-D and 2-D dose distributions. We investigated the clinical significance of EMET on cancer sites that are inherently difficult to plan with IMRT. Several parameters were used to analyze treatment plans where they show that EMET provides significant overall improvements over IMRT.

  2. X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma.

    PubMed

    Ta Phuoc, K; Rousse, A; Pittman, M; Rousseau, J P; Malka, V; Fritzler, S; Umstadter, D; Hulin, D

    2003-11-07

    We have generated x-ray radiation from the nonlinear Thomson scattering of a 30 fs/1.5 J laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked at 0.15 keV with a significant tail up to 2 keV has been observed. These characteristics are found to depend strongly on the laser strength parameter a(0). This radiative process is dominant for a(0) greater than unity at which point the relativistic scattering of the laser light originates from MeV energy electrons inside the plasma.

  3. The cosmic X-ray experiment aboard HEAO-1

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Bolt, E.; Holt, S.; Serlemitsos, P. J.; Garmire, G.; Agrawal, P.; Reigler, G.; Bowyer, C. S.; Lampton, M.

    1978-01-01

    The HEAO-1 A-2 experiment, designed to study the large scale structure of the galaxy and the universe at X-ray energies is described. The instrument consists of six gas proportional counters of three types nominally covering the energy ranges of 0.15-3 keV, 1.2-20 keV, and 2.5-60 keV. The two low energy detectors have about 400 sq cm open area each while the four others have about 800 sq cm each. Dual field of view collimators allow the unambiguous determination of instrument internal background and diffuse X-ray brightness. Instrument characteristics and early performance are discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihailescu, Lucian

    This disclosure provides systems, methods, and apparatus related to ion beam therapy. In one aspect, a system includes a position sensitive detector and a collimator. The position sensitive detector configured to detect gamma rays generated by an ion beam interacting with a target. The collimator is positioned between the target and the position sensitive detector. The collimator includes a plurality of knife-edge slits, with a first knife-edge slit intersecting with a second knife-edge slit.

  5. Fluorescent x-ray computed tomography with synchrotron radiation using fan collimator

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Akiba, Masahiro; Yuasa, Tetsuya; Kazama, Masahiro; Hoshino, Atsunori; Watanabe, Yuuki; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1996-04-01

    We describe a new system of fluorescent x-ray computed tomography applied to image nonradioactive contrast materials in vivo. The system operates on the basis of computed tomography (CT) of the first generation. The experiment was also simulated using the Monte Carlo method. The research was carried out at the BLNE-5A bending-magnet beam line of the Tristan Accumulation Ring in Kek, Japan. An acrylic cylindrical phantom containing five paraxial channels of 5 and 4 mm diameters was imaged. The channels were filled with a diluted iodine-based contrast material, with iodine concentrations of 2 mg/ml and 500 (mu) g/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated clearly the K(alpha ) and K(beta 1) x-ray fluorescent lines, and the Compton scattering. CT images were reconstructed from projections generated by integrating the counts in these spectral lines. The method had adequate sensitivity and detection power, as shown by the experiment and predicted by the simulations, to show the iodine content of the phantom channels, which corresponded to 1 and 4 (mu) g iodine content per pixel in the reconstructed images.

  6. Possible role of magnetic reconnection in the electromagnetic counterpart of binary black hole merger

    NASA Astrophysics Data System (ADS)

    Fraschetti, F.

    2018-04-01

    We propose a qualitative scenario to interpret the argued association between the direct measurement of the gravitational wave event GW150914 by Laser Interferometer Gravitational Wave Observatory (LIGO)-Virgo collaborations and the hard X-ray transient detected by Fermi-Gamma-ray Burst Monitor (GBM) 0.4 sec after. In a binary system of two gravitationally collapsing objects with a non-vanishing electric charge, the compenetration of the two magnetospheres occurring during the coalescence, through magnetic reconnection, produces a highly collimated relativistic outflow that becomes optically thin and shines in the GBM field of view. We propose that this process should be expected as a commonplace in the future joint gravitational/electromagnetic detections and, in case of neutron star-neutron star merger event, might lead to detectable X- or γ-ray precursors to, or transients associated with, the gravitational bursts.

  7. An introduction to the water recovery x-ray rocket

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  8. X-ray rocking curve measurements of bent crystals. [used in High Resolution Spectrometer in Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.

    1988-01-01

    A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.

  9. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less

  10. A new method of determining moisture gradient in wood

    Treesearch

    Zhiyong Cai

    2008-01-01

    Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...

  11. Monitor unit settings for intensity modulated beams delivered using a step-and-shoot approach.

    PubMed

    Sharpe, M B; Miller, B M; Yan, D; Wong, J W

    2000-12-01

    Two linear accelerators have been commissioned for delivering IMRT treatments using a step-and-shoot approach. To assess beam startup stability for 6 and 18 MV x-ray beams, dose delivered per monitor unit (MU), beam flatness, and beam symmetry were measured as a function of the total number of MU delivered at a clinical dose rate of 400 MU per minute. Relative to a 100 MU exposure, the dose delivered per MU by both linear accelerators was found to be within +/-2% for exposures larger than 4 MU. Beam flatness and symmetry also met accepted quality assurance standards for a minimum exposure of 4 MU. We have found that the performance of the two machines under study is well suited to the delivery of step-and-shoot IMRT. A system of dose calculation has also been commissioned for applying head scatter corrections to fields as small as 1x1 cm2. The accuracy and precision of the relative output calculations in water was validated for small fields and fields offset from the axis of collimator rotation. For both 6 and 18 MV x-ray beams, the dose per MU calculated in a water phantom agrees with measured data to within 1% on average, with a maximum deviation of 2.5%. The largest output factor discrepancies were seen when the actual radiation field size deviated from the set field size. The measured output in water can vary by as much 16% for 1x1 cm2 fields, when the measured field size deviates from the set field size by 2 mm. For a 1 mm deviation, this discrepancy was reduced to 8%. Steps should be taken to ensure collimator precision is tightly controlled when using such small fields. If this is not possible, very small fields should not contribute to a significant portion of the treatment, or uncertainties in the collimator position may effect the accuracy of the dose delivered.

  12. Laboratory unraveling of matter accretion in young stars

    PubMed Central

    Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria; Khiar, Benjamin; Filippov, Evgeny; Argiroffi, Costanza; Higginson, Drew P.; Orlando, Salvatore; Béard, Jérôme; Blecher, Marius; Borghesi, Marco; Burdonov, Konstantin; Khaghani, Dimitri; Naughton, Kealan; Pépin, Henri; Portugall, Oliver; Riquier, Raphael; Rodriguez, Rafael; Ryazantsev, Sergei N.; Yu. Skobelev, Igor; Soloviev, Alexander; Willi, Oswald; Pikuz, Sergey; Ciardi, Andrea; Fuchs, Julien

    2017-01-01

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively. PMID:29109974

  13. Laboratory unraveling of matter accretion in young stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. Here, we observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell thatmore » envelops the shocked core, reducing escaped x-ray emission. Our finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.« less

  14. Laboratory unraveling of matter accretion in young stars

    DOE PAGES

    Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria; ...

    2017-11-01

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. Here, we observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell thatmore » envelops the shocked core, reducing escaped x-ray emission. Our finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.« less

  15. Laboratory unraveling of matter accretion in young stars.

    PubMed

    Revet, Guilhem; Chen, Sophia N; Bonito, Rosaria; Khiar, Benjamin; Filippov, Evgeny; Argiroffi, Costanza; Higginson, Drew P; Orlando, Salvatore; Béard, Jérôme; Blecher, Marius; Borghesi, Marco; Burdonov, Konstantin; Khaghani, Dimitri; Naughton, Kealan; Pépin, Henri; Portugall, Oliver; Riquier, Raphael; Rodriguez, Rafael; Ryazantsev, Sergei N; Yu Skobelev, Igor; Soloviev, Alexander; Willi, Oswald; Pikuz, Sergey; Ciardi, Andrea; Fuchs, Julien

    2017-11-01

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.

  16. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  17. The Lighthouse nebula: a run-away pulsar, its PWN, jets and parent SNR

    NASA Astrophysics Data System (ADS)

    Pavan, L.; Bordas, P.; Puhlhofer, G.; et al.

    2016-06-01

    Some 10-20 kyr ago a pulsar was born from a core collapse event, receiving right away a strong kick. Nowadays this pulsar is powering the Lighthouse Nebula (IGR J11014-6103): a complex system of outflows comprising the bow-shock PWN, and two well collimated jets extending perpendicularly to the pulsar's direction of motion. Whereas sharing some clear commonalities with the well known Guitar Nebula, the Lighthouse nebula is the only such system where the parent supernova remnant is well visible and bright in X-rays. I will describe the results from our recent Chandra X-ray campaign, and follow-up optical and radio observations, analyse the properties of the PWN, and possible interpretations on the nature of the long helicoidal jets and of the other outflows that we identified. I will also discuss the link between this system and its parent supernova remnant MSH 11-61A, which could help shedding a light on the processes that give birth to such peculiar systems.

  18. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1987-01-01

    The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background.

  19. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  20. Microstructured Optical Fiber for X-ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  1. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  2. Use of simulation to optimize the pinhole diameter and mask thickness for an x-ray backscatter imaging system

    NASA Astrophysics Data System (ADS)

    Vella, A.; Munoz, Andre; Healy, Matthew J. F.; Lane, David; Lockley, D.

    2017-08-01

    The PENELOPE Monte Carlo simulation code was used to determine the optimum thickness and aperture diameter of a pinhole mask for X-ray backscatter imaging in a security application. The mask material needs to be thick enough to absorb most X-rays, and the pinhole must be wide enough for sufficient field of view whilst narrow enough for sufficient image spatial resolution. The model consisted of a fixed geometry test object, various masks with and without pinholes, and a 1040 x 1340 pixels' area detector inside a lead lined camera housing. The photon energy distribution incident upon masks was flat up to selected energy limits. This artificial source was used to avoid the optimisation being specific to any particular X-ray source technology. The pixelated detector was modelled by digitising the surface area represented by the PENELOPE phase space file and integrating the energies of the photons impacting within each pixel; a MATLAB code was written for this. The image contrast, signal to background ratio, spatial resolution, and collimation effect were calculated at the simulated detector as a function of pinhole diameter and various thicknesses of mask made of tungsten, tungsten/epoxy composite or bismuth alloy. A process of elimination was applied to identify suitable masks for a viable X-ray backscattering security application.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, N; Cho, S; Reynoso, F

    Purpose: To make benchtop x-ray fluorescence computed tomography (XFCT) practical for routine preclinical imaging tasks with gold nanoparticles (GNPs) by deploying, integrating, and characterizing a dedicated high-performance x-ray source and addition of simultaneous micro-CT functionality. Methods: Considerable research effort is currently under way to develop a polychromatic benchtop cone-beam XFCT system capable of imaging GNPs by stimulation and detection of gold K-shell x-ray fluorescence (XRF) photons. Recently, an ad hoc high-power x-ray source was incorporated and used to image the biodistribution of GNPs within a mouse, postmortem. In the current work, a dedicated x-ray source system featuring a liquid-cooled tungsten-targetmore » x-ray tube (max 160 kVp, ∼3 kW power) was deployed. The source was operated at 125 kVp, 24 mA. The tube’s compact dimensions allowed greater flexibility for optimizing both the irradiation and detection geometries. Incident x-rays were shaped by a conical collimator and filtered by 2 mm of tin. A compact “OEM” cadmium-telluride x-ray detector was implemented for detecting XRF/scatter spectra. Additionally, a flat panel detector was installed to allow simultaneous transmission CT imaging. The performance of the system was characterized by determining the detection limit (10-second acquisition time) for inserts filled with water/GNPs at various concentrations (0 and 0.010–1.0 wt%) and embedded in a small-animal-sized phantom. The phantom was loaded with 0.5, 0.3, and 0.1 wt% inserts and imaged using XFCT and simultaneous micro-CT. Results: An unprecedented detection limit of 0.030 wt% was experimentally demonstrated, with a 33% reduction in acquisition time. The reconstructed XFCT image accurately localized the imaging inserts. Micro-CT imaging did not provide enough contrast to distinguish imaging inserts from the phantom under the current conditions. Conclusion: The system is immediately capable of in vivo preclinical XFCT imaging with GNPs. Micro-CT imaging will require optimization of irradiation parameters to improve contrast. Supported by NIH/NCI grant R01CA155446; This investigation was supported by NIH/NCI grant R01CA155446.« less

  4. SU-F-T-670: From the OR to the Radiobiology Lab: The Journey of a Small X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, J; The University of Sydney, Sydney, NSW; The University of Newcastle, Newcastle, NSW

    Purpose: Irradiation of small animal tumor models within laboratories is vital to radiobiological experiments. Often the animals are not able to be brought back into the lab after being taken out for irradiation. Cell biology laboratories benefit from irradiation capability available around the clock without regard to patient load in an associated radiotherapy clinic. Commercial systems are available, but bulky and expensive. Methods: An intraoperative kV irradiation system (IntraBeam™) designed to deliver spherical dose distributions to surgical cavities has been repurposed for the irradiation of cell plates and small laboratory animals. An applicator has been altered to allow for simple,more » open fields. Special collimators are being developed. BEAMnrc Monte Carlo simulations with the “NRC swept BEAM” source model have been performed to characterize the dose distributions, to develop optimal collimators and as basis for dose prescription. Measurements with radiochromic film and with an ionization chamber were performed to characterize the beam and to validate the simulations. Results: Using its highest setting (50 kV and 40 µA) the x-ray unit is capable of delivering dose rates over 1 Gy/min homogeneously to standard cell plates even without an optimized collimator. Smaller areas (tumors in animals) can be irradiated with significantly higher dose rates (> 20 Gy/min) depending on distance of the source to the tumor. The HVL was found to be 0.21 mm Al which means the shielding requirements for the device are easily achievable in the lab. Conclusion: A mobile irradiation facility is feasible. It will allow easier access to radiation for radiobiology experiments. The modified system is versatile in that for cell plates homogenous irradiations can be achieved through distance from the source, while for high dose rate small field irradiations the source can be brought in close proximity to the target.« less

  5. Practical alignment method for X-ray spectral measurement in micro-CT system based on 3D printing technology.

    PubMed

    Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong

    2016-06-01

    This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a "sweet spot" with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of K α1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions.

  6. Practical alignment method for X-ray spectral measurement in micro-CT system based on 3D printing technology

    PubMed Central

    Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong

    2016-01-01

    This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a “sweet spot” with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of Kα1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions. PMID:27777787

  7. Automatic control of positioning along the joint during EBW in conditions of action of magnetic fields

    NASA Astrophysics Data System (ADS)

    Druzhinina, A. A.; Laptenok, V. D.; Murygin, A. V.; Laptenok, P. V.

    2016-11-01

    Positioning along the joint during the electron beam welding is a difficult scientific and technical problem to achieve the high quality of welds. The final solution of this problem is not found. This is caused by weak interference protection of sensors of the joint position directly in the welding process. Frequently during the electron beam welding magnetic fields deflect the electron beam from the optical axis of the electron beam gun. The collimated X-ray sensor is used to monitor the beam deflection caused by the action of magnetic fields. Signal of X-ray sensor is processed by the method of synchronous detection. Analysis of spectral characteristics of the X-ray sensor showed that the displacement of the joint from the optical axis of the gun affects on the output signal of sensor. The authors propose dual-circuit system for automatic positioning of the electron beam on the joint during the electron beam welding in conditions of action of magnetic interference. This system includes a contour of joint tracking and contour of compensation of magnetic fields. The proposed system is stable. Calculation of dynamic error of system showed that error of positioning does not exceed permissible deviation of the electron beam from the joint plane.

  8. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruetzel, Linda K.; Fischer, Stefan; Salditt, Annalena

    2016-02-15

    We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10{sup 6} photons/s at a beam size of 1.2 × 1.2 mm{sup 2} at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å{sup −1} down to 0.009 Å{sup −1} in SAXS configuration and of 0.26 Å{sup −1} up to 5.7 Å{sup −1} in wide-angle X-ray scattering (WAXS) mode. Tomore » determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5–24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å{sup −1} allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.« less

  9. Investigation of the hard x-ray background in backlit pinhole imagers.

    PubMed

    Fein, J R; Peebles, J L; Keiter, P A; Holloway, J P; Klein, S R; Kuranz, C C; Manuel, M J-E; Drake, R P

    2014-11-01

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  10. Investigation of the hard x-ray background in backlit pinhole imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P.; Peebles, J. L.

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographicmore » image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.« less

  11. High-Performance X-ray Detection in a New Analytical Electron Microscope

    NASA Technical Reports Server (NTRS)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  12. The differential absorption hard x-ray spectrometer at the Z facility

    DOE PAGES

    Bell, Kate S.; Coverdale, Christine A.; Ampleford, David J.; ...

    2017-08-03

    The Differential Absorption Hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of 7 Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the Hard X-Ray Spectrometer (HXRS) that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources drivenmore » by the Z Machine.« less

  13. A black hole nova obscured by an inner disk torus.

    PubMed

    Corral-Santana, J M; Casares, J; Muñoz-Darias, T; Rodríguez-Gil, P; Shahbaz, T; Torres, M A P; Zurita, C; Tyndall, A A

    2013-03-01

    Stellar-mass black holes (BHs) are mostly found in x-ray transients, a subclass of x-ray binaries that exhibit violent outbursts. None of the 50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2-093313 is a very faint x-ray transient detected in 2011. On the basis of spectroscopic evidence, we show that it contains a BH in a 2.8-hour orbital period. Further, high-time-resolution optical light curves display profound dips without x-ray counterparts. The observed properties are best explained by the presence of an obscuring toroidal structure moving outward in the inner disk, seen at very high inclination. This observational feature should play a key role in models of inner accretion flows and jet collimation mechanisms in stellar-mass BHs.

  14. Feasibility study of total reflection X-ray fluorescence analysis using a liquid metal jet X-ray tube

    NASA Astrophysics Data System (ADS)

    Maderitsch, A.; Smolek, S.; Wobrauschek, P.; Streli, C.; Takman, P.

    2014-09-01

    Total reflection X-ray spectroscopy (TXRF) is a powerful analytical technique for qualitative and quantitative analysis of trace and ultratrace elements in a sample with lower limits of detection (LLDs) of pg/g to ng/g in concentration and absolute high fg levels are attainable. Several X-ray sources, from low power (few W), 18 kW rotating anodes to synchrotron radiation, are in use for the excitation and lead accordingly to their photon flux delivered on the sample the detection limits specified. Not only the power, but also the brilliance and focal shape are of importance for TXRF. A microfocus of 50-100 μm spot size or the line focus of diffraction tubes is best suited. Excillum developed a new approach in the design of a source: the liquid metal jet anode. In this paper the results achieved with this source are described. A versatile TXRF spectrometer with vacuum chamber designed at Atominstitut was used for the experiments. A multilayer monochromator selecting the intensive Ga-Kα radiation was taken and the beam was collimated by 50 μm slits. Excellent results regarding geometric beam stability, high fluorescence intensities and low background were achieved leading to detection limits in the high fg range for Ni. A 100 mm2 silicon drift detector (SDD) collimated to 80 mm2 was used to collect the fluorescence radiation. The results from measurements on single element samples are presented.

  15. Driving extreme variability: the evolving corona and evidence for jet launching in Markarian 335

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.; Gallo, L. C.

    2015-05-01

    Variations in the X-ray emission from the narrow-line Seyfert 1 galaxy, Markarian 335, are studied on both long and short time-scales through observations made between 2006 and 2013 with XMM-Newton, Suzaku and NuSTAR. Changes in the geometry and energetics of the corona that give rise to this variability are inferred through measurements of the relativistically blurred reflection seen from the accretion disc. On long time-scales, we find that during the high-flux epochs the corona has expanded, covering the inner regions of the accretion disc out to a radius of 26_{-7}^{+10} rg. The corona contracts to within 12rg and 5rg in the intermediate- and low-flux epochs, respectively. While the earlier high-flux observation made in 2006 is consistent with a corona extending over the inner part of the accretion disc, a later high-flux observation that year revealed that the X-ray source had become collimated into a vertically extended jet-like corona and suggested relativistic motion of material upwards. On short time-scales, we find that an X-ray flare during a low-flux epoch in 2013 corresponded to a reconfiguration from a slightly extended corona to one much more compact, within just 2 ˜ 3rg of the black hole. There is evidence that during the flare itself, the spectrum softened and the corona became collimated and slightly extended vertically as if a jet-launching event was aborted. Understanding the evolution of the X-ray emitting corona may reveal the underlying mechanism by which the luminous X-ray sources in AGN are powered.

  16. Focusing properties of x-ray polymer refractive lenses from SU-8 resist layer

    NASA Astrophysics Data System (ADS)

    Snigirev, Anatoly A.; Snigireva, Irina; Drakopoulos, Michael; Nazmov, Vladimir; Reznikova, Elena; Kuznetsov, Sergey; Grigoriev, Maxim; Mohr, Jurgen; Saile, Volker

    2003-12-01

    Compound refractive lenses printed in Al and Be are becoming the key X-ray focusing and imaging components of beamline optical layouts at the 3rd generation synchrotron radiation sources. Recently proposed planar optical elements based on Si, diamond etc. may substantially broaden the spectrum of the refractive optics applicability. Planar optics has focal distances ranging from millimeters to tens of meters offering nano- and micro-focusing lenses, as well as beam condensers and collimators. Here we promote deep X-ray lithography and LIGA-type techniques to create high aspect-ratio lens structures for different optical geometries. Planar X-ray refractive lenses were manufactured in 1 mm thick SU-8 negative resist layer by means of deep synchrotron radiation lithography. The focusing properties of lenses were studied at ID18F and BM5 beamlines at the ESRF using monochromatic radiation in the energy range of 10 - 25 keV. By optimizing lens layout, mask making and resist processing, lenses of good quality were fabricated. The resolution of about 270 nm (FWHM) with gain in the order of 300 was measured at 14 keV. In-line holography of B-fiber was realized in imaging and projection mode with a magnification of 3 and 20, respectively. Submicron features of the fiber were clearly resolved. A radiation stability test proved that the fabricated lenses don't change focusing characteristics after dose of absorbed X-ray radiation of about 2 MJ/cm3. The unique radiation stability along with the high effficiency of SU8 lenses opens wide range of their synchrotron radiation applications such as microfocusing elements, condensers and collimators.

  17. New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics

    NASA Astrophysics Data System (ADS)

    Krumrey, Michael; Müller, Peter; Cibik, Levent; Collon, Max; Barrière, Nicolas; Vacanti, Giuseppe; Bavdaz, Marcos; Wille, Eric

    2016-07-01

    A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.

  18. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  19. Advanced Small Animal Conformal Radiation Therapy Device.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Przybyla, Beata; Webber, Jessica; Boerma, Marjan; Clarkson, Richard; Moros, Eduardo G; Corry, Peter M; Griffin, Robert J

    2017-02-01

    We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made "gantry" and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

  20. Laser schlieren crystal monitor

    NASA Technical Reports Server (NTRS)

    Owen, Robert B. (Inventor); Johnston, Mary H. (Inventor)

    1987-01-01

    A system and method for monitoring the state of a crystal which is suspended in a solution is described which includes providing a light source for emitting a beam of light along an optical axis. A collimating lens is arranged along the optical axis for collimating the emitted beam to provide a first collimated light beam consisting of parallel light rays. By passing the first collimated light beam through a transparent container, a number of the parallel light rays are deflected off the surfaces of said crystal being monitored according to the refractive index gradient to provide a deflected beam of deflected light rays. A focusing lens is arranged along optical axis for focusing the deflected rays towards a desired focal point. A knife edge is arranged in a predetermined orientation at the focal point; and a screen is provided. A portion of the deflected beam is blocked with the knife edge to project only a portion of the deflected beam. A band is created at one edge of the image of the crystal which indicates the state of change of the surface of the crystal being monitored.

  1. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    NASA Astrophysics Data System (ADS)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  2. Maxi/gsc

    NASA Astrophysics Data System (ADS)

    Mihara, T.; Maxi Team

    2010-12-01

    Gas Slit Camera (GSC) is the instrument in the MAXI mission. The GSC utilizes twelve large area proportional counters (PC), a slit and slats collimator. The energy range is 2-30 keV. The GSC has two FOVs of 160 x 3 degrees. One is toward forward direction of ISS and the other is the zenithal direction. Two arches of FOV scans the sky in every 92 minutes with ISS rotation. The slats collimator makes the narrow arc FOV, and the one-dimensional position-resolution of the PC resolves the X-ray sources within the FOV. Thus the position resolution is determined by the slats collimator and a combination of the slit and the position resolution of the detector. These make the point spread function of 1.5 x 1.5 degrees. The background is 1.2 × 10^-4 c/s/cm2 /keV, which is almost the same level with Ginga/LAC. The 5-sigma sensitivity is 15 mCrab/day, which is improved to with the sqrt (t) law. It will reach the 5 sigma confusion limit of 0.5 mCrab in 900 days, if the particle-background estimation is accurate enough.

  3. Multi-Layer Organic Squaraine-Based Photodiode for Indirect X-Ray Detection

    NASA Astrophysics Data System (ADS)

    Iacchetti, Antonio; Binda, Maddalena; Natali, Dario; Giussani, Mattia; Beverina, Luca; Fiorini, Carlo; Peloso, Roberta; Sampietro, Marco

    2012-10-01

    The paper presents an organic-based photodiode coupled to a CsI(Tl) scintillator to realize an X-ray detector. A suitable blend of an indolic squaraine derivative and of fullerene derivative has been used for the photodiode, thus allowing external quantum efficiency in excess of 10% at a wavelength of 570 nm, well matching the scintillator output spectrum. Thanks to the additional deposition of a 15 nm thin layer of a suitable low electron affinity polymer, carriers injection from the metal into the organic semiconductor has been suppressed, and dark current density as low as has been obtained, which is comparable to standard Si-based photodiodes. By using a collimated X-ray beam impinging onto the scintillator mounted over the photodiode we have been able to measure current variations in the order of 150 pA on a dark current floor of less than 50 pA when operating the X-ray tube in switching mode, thus proving the feasibility of indirect X-ray detection by means of organic semiconductors.

  4. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE PAGES

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; ...

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  5. Summary of: radiation protection in dental X-ray surgeries--still rooms for improvement.

    PubMed

    Walker, Anne

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection adviser (RPA) or medical physics expert (MPE) appointment has been made, there is often a very low level of compliance with legislative requirements. The active involvement of an RPA/MPE and continuing education on radiation protection issues has the potential to reduce radiation doses significantly further in many dental practices.

  6. Radiation protection in dental X-ray surgeries--still rooms for improvement.

    PubMed

    Hart, G; Dugdale, M

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection adviser (RPA) or medical physics expert (MPE) appointment has been made, there is often a very low level of compliance with legislative requirements. The active involvement of an RPA/MPE and continuing education on radiation protection issues has the potential to reduce radiation doses significantly further in many dental practices.

  7. Laboratory Investigation of Astrophysical Collimated Jets with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Yuan, Dawei; Li, Yutong; Tao, Tao; Wei, Huigang; Zhong, Jiayong; Zhu, Baojun; Li, Yanfei; Zhao, Jiarui; Li, Fang; Han, Bo; Zhang, Zhe; Liang, Guiyun; Wang, Feilu; Hu, Guangyue; Zheng, Jian; Jiang, Shaoen; Du, Kai; Ding, Yongkun; Zhou, Shenlei; Zhu, Baoqiang; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2018-06-01

    One of the remarkable dynamic features of the Herbig–Haro (HH) object is its highly collimated propagation far away from the accretion disk. Different factors are proposed to give us a clearly physical explanation behind these fascinating phenomena, including magnetic field, radiation cooling, surrounding medium, and so on. Laboratory astrophysics, as a new complementary method of studying astrophysical issues, can provide an insight into these behaviors in a similar and controllable laboratory environment. Here we report the scaled laboratory experiments that a well-collimated radiative jet with high Mach number is successfully created to mimic the evolution of HH objects. According to our results, we find that the radiation cooling effect within the jet and the outer rare surrounding plasmas from the X-ray (>keV) photoionized target contribute to the jet collimation. The local nonuniform density structures along the collimated radiative jet axis are caused by the pressure competition between the inner jet and the outer plasmas. The corresponding simulations performed with radiation-hydrodynamic codes FLASH reveal how the radiative jet evolves.

  8. Analysis of small-angle X-ray scattering data in the presence of significant instrumental smearing

    PubMed Central

    Bergenholtz, Johan; Ulama, Jeanette; Zackrisson Oskolkova, Malin

    2016-01-01

    A laboratory-scale small-angle X-ray scattering instrument with pinhole collimation has been used to assess smearing effects due to instrumental resolution. A new, numerically efficient method to smear ideal model intensities is developed and presented. It allows for directly using measured profiles of isotropic but otherwise arbitrary beams in smearing calculations. Samples of low-polydispersity polymer spheres have been used to show that scattering data can in this way be quantitatively modeled even when there is substantial distortion due to instrumental resolution. PMID:26937235

  9. Cautionary note concerning the CuSO4 X-ray laser. [alternative to lasing action

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Mark, H.

    1973-01-01

    For the so far unconfirmed lasing action claimed by Kepros et al. (1972) to have been obtained by focusing a 1.06-micron radiation of a q-switched Nd(3+) glass laser to a small cylindrical volume inside a CuSO4-doped gelatin medium supported between two glass plates, an alternate explanation is proposed that does not depend on the assumption of laser action in copper. The proposed explanation shows how collimated X-ray beams might be created under the experimental conditions described by Kepros et al.

  10. Characterization of a long-focal-length polycapillary optic for high-energy x-rays

    NASA Astrophysics Data System (ADS)

    Cari, Padiyar; Suparmi, -; Padiyar, Sushil D.; Gibson, Walter M.; MacDonald, Carolyn A.; Alexander, Cheryl D.; Joy, Marshall K.; Russell, Christine H.; Chen, Zewu

    2000-11-01

    Polycapillary fibers and a prototype collector for high energy x rays with a 2 m focal length have been fabricated and characterized. Measurements of a prototype collector, performed in collimating mode, show that the optic has high transmission, good uniformity, and small exit divergence. The transmission as a function of energy was analyzed using an extended single fiber geometrical optic simulation and the result shows that the simulation fits the data fairly well. Scatter transmission and contrast enhancement were measured in focusing mode using a parallel beam input.

  11. The Ophiuchus cluster - A bright X-ray cluster of galaxies at low galactic latitude

    NASA Technical Reports Server (NTRS)

    Johnston, M. D.; Bradt, H. V.; Doxsey, R. E.; Marshall, F. E.; Schwartz, D. A.; Margon, B.

    1981-01-01

    The discovery of an extended X-ray source identified with a cluster of galaxies at low galactic latitude is reported. The source, designated the Ophiuchus cluster, was detected near 4U 1708-23 with the HEAO 1 Scanning Modulation Collimator, and identified with the cluster on the basis of extended X-ray size and positional coincidence on the ESO/SRC (J) plate of the region. An X-ray flux density in the region 2-10 keV of approximately 25 microJ was measured, along with an X-ray luminosity of 1.6 x 10 to the 45th ergs/sec and an X-ray core radius of approximately 4 arcmin (0.2 Mpc) for an assumed isothermal sphere surface brightness distribution. The X-ray spectrum in the range 2-10 keV obtained with the HEAO 1 A-2 instrument is well fit by a thermal bremsstrahlung model with kT = 8 keV and a 6.7-keV iron line of equivalent width 450 eV. The steep-spectrum radio source MSH 17-203 also appears to be associated with the cluster, which is the closest and brightest representative of the class of X-ray clusters with a dominant central galaxy.

  12. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Selvakumaran, T. S.

    2006-03-01

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  13. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Despres, Philippe; Beaudoin, Gilles; Gravel, Pierre

    2005-04-01

    A new scanning slit gas detector dedicated to orthopedic x-ray imaging is presented and evaluated in terms of its fundamental imaging characteristics. The system is based on the micromesh gaseous structure detector and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for imaging at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of imaging an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected bymore » the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the images contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm{sup -1}) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 {mu}Gy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal detectors is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in sensitive clientele undergoing intensive x-ray procedures, like young scoliotic women.« less

  14. Scanning Kirkpatrick-Baez X-ray telescope to maximize effective area and eliminate spurious images - Design

    NASA Technical Reports Server (NTRS)

    Kast, J. W.

    1975-01-01

    We consider the design of a Kirkpatrick-Baez grazing-incidence X-ray telescope to be used in a scan of the sky and analyze the distribution of both properly reflected rays and spurious images over the field of view. To obtain maximum effective area over the field of view, it is necessary to increase the spacing between plates for a scanning telescope as compared to a pointing telescope. Spurious images are necessarily present in this type of lens, but they can be eliminated from the field of view by adding properly located baffles or collimators. Results of a computer design are presented.

  15. LETTER TO THE EDITOR: Combined optical and single photon emission imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Boschi, Federico; Spinelli, Antonello E.; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Sbarbati, Andrea

    2009-12-01

    In vivo optical imaging instruments are generally devoted to the acquisition of light coming from fluorescence or bioluminescence processes. Recently, an instrument was conceived with radioisotopic detection capabilities (Kodak in Vivo Multispectral System F) based on the conversion of x-rays from the phosphorus screen. The goal of this work is to demonstrate that an optical imager (IVIS 200, Xenogen Corp., Alameda, USA), designed for in vivo acquisitions of small animals in bioluminescent and fluorescent modalities, can even be employed to detect signals due to radioactive tracers. Our system is based on scintillator crystals for the conversion of high-energy rays and a collimator. No hardware modifications are required. Crystals alone permit the acquisition of photons coming from an in vivo 20 g nude mouse injected with a solution of methyl diphosphonate technetium 99 metastable (Tc99m-MDP). With scintillator crystals and collimators, a set of measurements aimed to fully characterize the system resolution was carried out. More precisely, system point spread function and modulation transfer function were measured at different source depths. Results show that system resolution is always better than 1.3 mm when the source depth is less than 10 mm. The resolution of the images obtained with radioactive tracers is comparable with the resolution achievable with dedicated techniques. Moreover, it is possible to detect both optical and nuclear tracers or bi-modal tracers with only one instrument.

  16. Evaluation of collimator rotation for volumetric modulated arc therapy lung stereotactic body radiation therapy using flattening filter free.

    PubMed

    Sandrini, Emmily Santos; da Silva, Ademir Xavier; da Silva, Claudia Menezes

    2018-05-25

    The collimator in volumetric modulated arc therapy (VMAT) planning is rotated to minimize tongue-and-groove effect and interleaf leakage. The aim of this study was to evaluate the effect of collimator angle on the dosimetric results of VMAT plan for patients with lung cancer undergoing stereotactic body radiation therapy (SBRT) treatment. In the present investigation discrepancies between the calculated dose distributions with different collimators rotations have been studied. Six different collimators rotations (0, 10, 20, 30, 45 and 90 degrees), 6 MV x-ray non-flattened from a TrueBeam accelerator equipped with High-Definition 120MLC were used, as well as two planning technique: One full arc and two half arcs. For rotation between 10 and 45 degrees there were not found a significant variation meanwhile collimator rotation of 0 and 90° may impact on dose distribution resulting in unexpected dose variation. The homogeneity, conformity and gradient indexes as well as dose in organs at risk reached their best values with the half arcs technique and collimator angle between 20° and 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A {approx}5 {mu}m ({sigma}) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) andmore » x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.« less

  18. Multiwavelength observations of Active Galactic Nuclei from the radio to the hard X-rays

    NASA Astrophysics Data System (ADS)

    Beuchert, Tobias

    2017-07-01

    Active Galaxies form a peculiar type of galaxies. Their cores, the so-called "Active Galactic Nuclei" (AGN), are the most persistent luminous objects in the universe. Accretion of several solar masses per year onto black holes of Millions to Billions of solar masses drive the immense energy output of these systems, which can exceed that of the entire galaxy. The compact energy source, however, only measures about one over a Billion times that of the entire galaxy. Subject of my thesis are observations of the two main channels of energy release of selected AGN systems, both of which are encompassed by profound and yet unanswered questions. These channels are on the one hand the pronounced X-ray emission of the hot and compact accreting environment in close vicinity of the black hole, and on the other hand the radio synchrotron emission of magnetically collimated jets that are fed by portions of the accreted matter. These jets also function as effective accelerators and drive the injected matter deep into the intergalactic medium. As the circumnuclear environment of AGN is too compact to be spatially resolved in the X-rays, I show how X-ray spectroscopy can be used to: (1) understand the effects of strong gravity to trace the geometry and physics of the X-ray source and (2) more consistently quantify matter that surrounds and dynamically absorbs our direct line of sight towards the X-ray source. Second, I unveil the valuable information contained in the polarized radio light being emitted from magnetized jet outflows. In contrast to the X-ray emitting region, I am able to spatially resolve the inner parts of the jet of a prominent galaxy with help of the Very Long Baseline Array, a large network of radio telescopes. The resulting polarization maps turn out to be exceptionally promising in answering fundamental questions related to jet physics.

  19. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  20. Sensitivity of 3D Dose Verification to Multileaf Collimator Misalignments in Stereotactic Body Radiation Therapy of Spinal Tumor.

    PubMed

    Xin-Ye, Ni; Ren, Lei; Yan, Hui; Yin, Fang-Fang

    2016-12-01

    This study aimed to detect the sensitivity of Delt 4 on ordinary field multileaf collimator misalignments, system misalignments, random misalignments, and misalignments caused by gravity of the multileaf collimator in stereotactic body radiation therapy. (1) Two field sizes, including 2.00 cm (X) × 6.00 cm (Y) and 7.00 cm (X) × 6.00 cm (Y), were set. The leaves of X1 and X2 in the multileaf collimator were simultaneously opened. (2) Three cases of stereotactic body radiation therapy of spinal tumor were used. The dose of the planning target volume was 1800 cGy with 3 fractions. The 4 types to be simulated included (1) the leaves of X1 and X2 in the multileaf collimator were simultaneously opened, (2) only X1 of the multileaf collimator and the unilateral leaf were opened, (3) the leaves of X1 and X2 in the multileaf collimator were randomly opened, and (4) gravity effect was simulated. The leaves of X1 and X2 in the multileaf collimator shifted to the same direction. The difference between the corresponding 3-dimensional dose distribution measured by Delt 4 and the dose distribution in the original plan made in the treatment planning system was analyzed with γ index criteria of 3.0 mm/3.0%, 2.5 mm/2.5%, 2.0 mm/2.0%, 2.5 mm/1.5%, and 1.0 mm/1.0%. (1) In the field size of 2.00 cm (X) × 6.00 cm (Y), the γ pass rate of the original was 100% with 2.5 mm/2.5% as the statistical standard. The pass rate decreased to 95.9% and 89.4% when the X1 and X2 directions of the multileaf collimator were opened within 0.3 and 0.5 mm, respectively. In the field size of 7.00 (X) cm × 6.00 (Y) cm with 1.5 mm/1.5% as the statistical standard, the pass rate of the original was 96.5%. After X1 and X2 of the multileaf collimator were opened within 0.3 mm, the pass rate decreased to lower than 95%. The pass rate was higher than 90% within the 3 mm opening. (2) For spinal tumor, the change in the planning target volume V 18 under various modes calculated using treatment planning system was within 1%. However, the maximum dose deviation of the spinal cord was high. In the spinal cord with a gravity of -0.25 mm, the maximum dose deviation minimally changed and increased by 6.8% than that of the original. In the largest opening of 1.00 mm, the deviation increased by 47.7% than that of the original. Moreover, the pass rate of the original determined through Delt 4 was 100% with 3 mm/3% as the statistical standard. The pass rate was 97.5% in the 0.25 mm opening and higher than 95% in the 0.5 mm opening A, 0.25 mm opening A, whole gravity series, and 0.20 mm random opening. Moreover, the pass rate was higher than 90% with 2.0 mm/2.0% as the statistical standard in the original and in the 0.25 mm gravity. The difference in the pass rates was not statistically significant among the -0.25 mm gravity, 0.25 mm opening A, 0.20 mm random opening, and original as calculated using SPSS 11.0 software with P > .05. Different analysis standards of Delt 4 were analyzed in different field sizes to improve the detection sensitivity of the multileaf collimator position on the basis of 90% throughout rate. In stereotactic body radiation therapy of spinal tumor, the 2.0 mm/2.0% standard can reveal the dosimetric differences caused by the minor multileaf collimator position compared with the 3.0 mm/3.0% statistical standard. However, some position derivations of the misalignments that caused high dose amount to the spinal cord cannot be detected. However, some misalignments were not detected when a large number of multileaf collimator were administered into the spinal cord. © The Author(s) 2015.

  1. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-09-01

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly reduced imaging dose, enhancing the imaging signal-to-noise ratio (SNR) and leading to high DQE. While thick detectors usually suffer from reduced spatial resolution, the KCD provides good spatial resolution due to high gas pressure that limits the spread of scattered electrons, and a strip-collimated beam that significantly reduces the inclusion of scatter in the imaging signal. A 10 cm wide small-field-of-view (SFOV) prototype of the KCD is presented with a complete analysis of its imaging performance. Measurements of modulation transfer function (MTF), noise power spectrum (NPS), and DQE were in good agreement with Monte Carlo simulations. Imaging signal loss from recombination within the KCD chamber was measured at different gas pressures, ion drift velocities, and strip-collimation widths. Image quality for the prototype KCD was also observed with anthropomorphic phantom imaging in comparison with various commercial and research portal imaging systems, including VEPID, flat-panel imager, and conventional and high contrast film systems. KCD-based imaging provided very good contrast and good spatial resolution at very low imaging dose (0.1 cGy per image). For the prototype KCD, measurements yielded DQE(0)=0.19 and DQE(1 cy/mm)=0.004.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J; Lindsay, P; University of Toronto, Toronto

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mmmore » circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations. Funding Support: this work is supported by funding the National Sciences and Engineering Research Council of Canada, and a Mitacs-accelerate fellowship. Conflict of Interest: Dr. Lindsay and Dr. Jaffray are listed as inventors of the small animal microirradiator described herein. This system has been licensed for commercial development.« less

  3. Cyclotron Line and Wind studies of Galactic High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Suchy, Slawomir

    High mass X-ray binaries are rotating neutron stars with very strong magnetic fields that channel accreting matter from their companion star onto the magnetic poles with subsequent collimated X-ray emission. The stars are fed either by a strong stellar wind of the optical companion or by an accretion disk, where material follows the magnetic field lines, emitting X-rays throughout this process either in the accretion column or directly from the neutron star surface. The fast rotation and the narrow collimation of the X-ray emission creates an observed pulsation, forming the concept of a pulsar. Some of the key questions of these thesis are the emission processes above the magnetic pole, including the influence of the magnetic field, the formation of the X-ray beam, and the structure of the stellar wind. An important process is the effect of the teraGauss magnetic field. Cyclotron resonance scattering creates spectral features similar to broad absorption lines (CRSFs or cyclotron lines) that are directly related to the magnetic field. The discovery of cyclotron lines ˜ 35 years ago allows for the only direct method to measure the magnetic field strength in neutron star systems. Variations in the line parameters throughout the pulse phase, and a dependence in the observed luminosity can also aid in the understanding of these processes. In this thesis I present the results of phase averaged and phase resolved analysis of the three high mass X-ray binaries CenX-3, 1A 1118--61, and GX301--2. The data used for this work were obtained with NASA's Rossi X-ray Timing Explorer and the Japanese Suzaku mission. Both satellites are ideal to cover the broad energy band, where CRSFs occur and are necessary for understanding the continuum as a whole. In the process of investigating the 3 sources, I discovered a CRSF at ˜ 55 keV in the transient binary 1A 1118--61, which indicates one of the strongest magnetic fields known in these objects. I used the variations of the CRSF in GX 301--2 throughout its pulse phase to develop a simple dipole model of the relationship between the magnetic moment vector and the spin axis of the neutron star. In Cen X-3 I use a similar model to demonstrate that the magnetic field most likely includes higher orders than just the simple dipole. The use of a wind model in high mass X-ray binaries can give information about the type of accretion, disk or wind, and the structure of the wind by measuring the amount of the material in the line of sight versus orbital phase. In Cen X-3, I used a simple spherical wind model throughout the two binary orbits and found that the observed absorption column densities are not consistent with pure wind accretion, and that either an accretion wake or a disk are needed to be consistent with the data. Similar results were observed in GX 301--2, where the neutron star may have passed through an accretion stream, increasing the observed amount of absorbed material.

  4. Hard X-ray and gamma-ray imaging spectroscopy for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Crannell, C. J.; Dennis, B. R.; Spicer, D. S.; Davis, J. M.; Hurford, G. J.; Lin, R. P.

    1990-01-01

    The objectives and principles are described of a single spectroscopic imaging package that can provide effective imaging in the hard X- and gamma-ray ranges. Called the High-Energy Solar Physics (HESP) mission instrument for solar investigation, the device is based on rotating modulation collimators with germanium semiconductor spectrometers. The instrument is planned to incorporate thick modulation plates, and the range of coverage is discussed. The optics permit the coverage of high-contrast hard X-ray images from small- and medium-sized flares with large signal-to-noise ratios. The detectors allow angular resolution of less than 1 arcsec, time resolution of less than 1 arcsec, and spectral resolution of about 1 keV. The HESP package is considered an effective and important instrument for investigating the high-energy solar events of the near-term future efficiently.

  5. VUV-soft x-ray beamline for spectroscopy and calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, R.J.; Trela, W.J.; Southworth, S.H.

    1986-01-01

    We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed.

  6. Observation of hard X-rays from the Crab pulsar and A0535+26

    NASA Technical Reports Server (NTRS)

    Wu, M.; Dai, C.; Lu, Z.; Ma, Y.; Li, G.; Fan, Z.; Zhang, C.; Xu, C.; Zhang, X.; Gu, Y.

    1985-01-01

    The Crab pulsar PSR0531+21 was observed in a balloon flight from the Xianghe Balloon Station (China). Data were obtained in the range 20 to 200 keV with a poswish hard X-ray telescope which comprised a 150 sq cm primary crystal of 5 mm thick CsI(T1) which actively shielded the lower 2 pi steradians by a 5 cm thick NaI(T1) crystal. The scintillation pulses originating in CsI and NaI crystals are distinguished by pulse shape discrimination. The telescope has a field of view of approximately 4 deg H psi H pi determined by graded shield and collimator. The effective geometric area of the detector is 116 sq cm. It is noted that when folding a data flow on a long period interference from the data acquisition, transmission and recording system considerably affect the result.

  7. X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening.

    PubMed

    Harding, G; Fleckenstein, H; Kosciesza, D; Olesinski, S; Strecker, H; Theedt, T; Zienert, G

    2012-07-01

    The steadily increasing number of explosive threat classes, including home-made explosives (HMEs), liquids, amorphous and gels (LAGs), is forcing up the false-alarm rates of security screening equipment. This development can best be countered by increasing the number of features available for classification. X-ray diffraction intrinsically offers multiple features for both solid and LAGs explosive detection, and is thus becoming increasingly important for false-alarm and cost reduction in both carry-on and checked baggage security screening. Following a brief introduction to X-ray diffraction imaging (XDI), which synthesizes in a single modality the image-forming and material-analysis capabilities of X-rays, the Multiple Inverse Fan Beam (MIFB) XDI topology is described. Physical relationships obtaining in such MIFB XDI components as the radiation source, collimators and room-temperature detectors are presented with experimental performances that have been achieved. Representative X-ray diffraction profiles of threat substances measured with a laboratory MIFB XDI system are displayed. The performance of Next-Generation (MIFB) XDI relative to that of the 2nd Generation XRD 3500TM screener (Morpho Detection Germany GmbH) is assessed. The potential of MIFB XDI, both for reducing the exorbitant cost of false alarms in hold baggage screening (HBS), as well as for combining "in situ" liquid and solid explosive detection in carry-on luggage screening is outlined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. CT Scans of NASA BSTRA Balls 5f5, f2, f3, sr2c, nb2a, hb2b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, J; Thompson, R; Perry, R

    2004-01-29

    At the request of Jose Hernandez we performed some feasibility DR/CT scanning of BSTRA Balls of different sizes. To this point we have scanned all the specimens on a single system, HECAT. This particular system employs a 9 meV LINAC as the x-ray source and a THALES 12 x 16 inch 14-bit Amorphous Silicon panel as the detector. In this report we describe the system, detail some of its properties, describe the scans performed and present the data. Figure 1 contains a couple of images of the system as fielded in the 9 MeV bay. The LINAC is in themore » right portion of the picture. The black panels in the blue frame constitute the High Energy collimator developed specifically for High Energy DR/CT scanning (known here as Stonehenge II). The holes in the collimator panels are beveled to match the distribution of the x-rays from the LINAC, and are sized to just subtend the active area of the THALES Amorphous Silicon panel. Consequently the source to detector distance is restricted to a few positions. Nominally our source to detector distance is 6 meters. The part manipulator, part holder fixturing consists of a translate-rotate assembly on a NEWPORT air bearing table. The stages are NEWPORT RV160PP for rotation and NEWPORT IMS400CC for translation. Both are interfaced through an ESP7000 controller, which is connected to our data acquisition computer over USB. The detector holder also resides on this table and includes pitch, roll and yaw adjustments for aligning the panel to the plane of the rotational table and the x-ray beam. The relatively large source to detector distance and LINAC properties (1 mm spot size) conspire to recommend rotation-only scanning. We use a VARIAN LINATRON 3000 with the small spot retrofit implemented. We have measured the source spot size at about 1 mm. Pixel size on the THALES panel is 0.127 um. Consequently we are in a low-cone angle scanning regime which enables rotation-only 3D CT scanning of objects and assemblies with little ''cone-angle'' error.« less

  9. WE-EF-BRA-07: High Performance Preclinical Irradiation Through Optimized Dual Focal Spot Dose Painting and Online Virtual Isocenter Radiation Field Targeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J; Princess Margaret Cancer Centre, University Health Network, Toronto, CA; Lindsay, P

    Purpose: Advances in radiotherapy practice facilitated by collimation systems to shape radiation fields and image guidance to target these conformal beams have motivated proposals for more complex dose patterns to improve the therapeutic ratio. Recent progress in small animal radiotherapy platforms has provided the foundation to validate the efficacy of such interventions, but robustly delivering heterogeneous dose distributions at the scale and accuracy demanded by preclinical studies remains challenging. This work proposes a dual focal spot optimization method to paint spatially heterogeneous dose regions and an online virtual isocenter targeting method to accurately target the dose distributions. Methods: Two-dimensional dosemore » kernels were empirically measured for the 1 mm diameter circular collimator with radiochromic film in a solid water phantom for the small and large x-ray focal spots on the X-RAD 225Cx microirradiator. These kernels were used in an optimization framework which determined a set of animal stage positions, beam-on times, and focal spot settings to optimally deliver a given desired dose distribution. An online method was developed which defined a virtual treatment isocenter based on a single image projection of the collimated radiation field. The method was demonstrated by optimization of a 6 mm circular 2 Gy target adjoining a 4 mm semicircular avoidance region. Results: The dual focal spot technique improved the optimized dose distribution with the proportion of avoidance region receiving more than 0.5 Gy reduced by 40% compared to the large focal spot technique. Targeting tests performed by irradiating ball bearing targets on radiochromic film pieced revealed the online targeting method improved the three-dimensional accuracy from 0.48 mm to 0.15 mm. Conclusion: The dual focal spot optimization and online virtual isocenter targeting framework is a robust option for delivering dose at the preclinical level and provides a new experimental option for unique radiobiological investigations This work is supported, in part, by the Natural Sciences and Engineering Research Council of Canada and a Mitacs-Accelerate fellowship. P.E. Lindsay, and D.A. Jaffray are listed as inventors of the system described herein. This system has been licensed to Precision X-Ray Inc. for commercial development.« less

  10. Holographic rugate structures for x-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannson, T.; Savant, G.

    1990-03-19

    Physical Optics Corporation (POC) has proposed and investigated a novel approach to x-ray optics during this DOE-sponsored three-year program, based on our well-established technologies in volume holography and holographic materials. With these technologies, a majority of conventional XUV optical elements, such as uniform and nonuniform gratings/multilayers, lenses, slanted (non-Snellian) mirrors, Fresnel zone-plates, concentrators/collimators, beam splitters, Fabry-Perot etalons, and binary optical elements, can be fabricated using a unified, low cost process. Furthermore, volume holography offer nonconventional optical elements, such as x-ray holographic optical elements (HOEs) with any desirable wavefront formation characteristics and multiple gratings multiplexed in the same volume to performmore » different operations for different wavelengths, that are difficult or even impossible to produce with the existing technologies.« less

  11. Experimental study of spectral and spatial distribution of solar X-rays

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Catura, R. C.; Culhane, J. L.

    1972-01-01

    The study of the physical conditions within the solar corona and the development of instrumentation and technical expertise necessary for advanced studies of solar X-ray emission are reported. Details are given on the Aerobee-borne-X-ray spectrometer/monochromator and also on the observing program. Preliminary discussions of some results are presented and include studies of helium-like line emission, mapping O(VII) and Ne(IX) lines, survey of O(VII) and Ne(IX) lines, study of plage regions and small flares, and analysis of line emission from individual active regions. It is concluded that the use of large-area collimated Bragg spectrometers to scan narrow wavelength intervals and the capability of the SPARCS pointing control to execute a complex observing program are established.

  12. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    PubMed

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  13. Evaluation of observed blast loading effects on NIF x-ray diagnostic collimators.

    PubMed

    Masters, N D; Fisher, A; Kalantar, D; Prasad, R; Stölken, J S; Wlodarczyk, C

    2014-11-01

    We present the "debris wind" models used to estimate the impulsive load to which x-ray diagnostics and other structures are subject during National Ignition Facility experiments. These models are used as part of the engineering design process. Isotropic models, based on simulations or simplified "expanding shell" models, are augmented by debris wind multipliers to account for directional anisotropy. We present improvements to these multipliers based on measurements of the permanent deflections of diagnostic components: 4× for the polar direction and 2× within the equatorial plane-the latter relaxing the previous heuristic debris wind multiplier.

  14. The Hard X-ray experiment on the Astronomical Netherlands Satellite

    NASA Technical Reports Server (NTRS)

    Gursky, H.; Schnopper, H.; Parsignault, D.

    1975-01-01

    The Hard X-ray Experiment flown on the Astronomical Netherlands Satellite is described. The instrument consists of two parts. One is a large-area detector of about 60 sq cm in total area, sensitive in the energy range between 1.5 and 30 keV. Two counters comprise this detector, each collimated 10 min by 3 deg and offset in the narrow direction by 4 min. The other part is a Bragg-crystal assembly consisting of two PET crystals and counters aligned to search for the silicon emission lines near 2 keV. Instrument characteristics and orbital operations are described.

  15. The Current Performance of the Wide Range (90-2500 eV) Soft X-ray Beamline at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowie, B. C. C.; Tadich, A.; Thomsen, L.

    2010-06-23

    The Soft X-ray beamline at the Australian synchrotron has been constructed around a collimated light Plane Grating Monochromator taking light from an Elliptically Polarized Undulator (EPU). The beamline covers a wide photon energy range between 90 to 2500 eV, using two gratings of 250 l/mm and 1200 l/mm. At present the output from the monochromator is directed into one branchline with a dedicated UHV endstation. The measured performance of the beamline in flux and resolution is shown to be very close to that of theoretical calculations.

  16. Theory and optical design of x-ray echo spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvyd'ko, Yuri

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  17. Theory and optical design of x-ray echo spectrometers

    DOE PAGES

    Shvyd'ko, Yuri

    2017-08-02

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  18. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  19. Discovery of soft X-ray flux from 2A 1102+384 = Markarian 421

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.; Marshall, F. J.; Jernigan, J. G.

    1979-01-01

    During April 1976 a soft X-ray flux was detected with SAS 3 from the vicinity of 2A 1102+384. The average flux densities were 4.3 x 10 to the -11th and 14 x 10 to the -11th erg/sq cm per sec in the energy bands 0.1-0.28 keV and 1-6 keV, respectively. There is an indication of variability over about 0.5 day in the lowest energy band. An upper limit of 3 x 10 to the 20th H atoms per sq cm is found for the gas column density to the X-ray source. In May 1978, observations with the modulation collimators of SAS 3 yielded an accurate (40 arcsec error radius) position for the X-ray source (2-6 keV) at right ascension 11 h 1 m 39.7 s, declination + 38 deg 28 min 51 sec (equinox 1950). The earlier tentative identification by Ricketts et al. (1976) with the BL Lacertae object B2 1101+38 = Markarian 421 is thus confirmed.

  20. Application of lead-acrylic compensating filters in chiropractic full spine radiography: a technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehler, M.T.; Hrejsa, A.F.

    X-raying the entire spinal column in the standing position in a single exposure (mainly the AP projection) is an often-used chiropractic radiography procedure which has also found some application in medical scoliosis screening program. Aside from any controversy of clinical objectives or medical necessity, the primary agreed-upon requisite for such procedure is twofold; achieving the best possible film image quality with the least amount of radiation exposure to the patient. A popular method of accomplishing this objective is by the use of collimator-attached devices designed to selectively filter the primary x-ray beam in accordance with regional variations of body thicknessmore » and/or density. This study was conducted to evaluate the use of a new lead-acrylic filter system under specialized chiropractic conditions. In comparison to other available systems, it was concluded that this new system; a) is generally equivalent in its radiation dose reduction capabilities; b) is capable of producing full spine radiographs with good to above average image quality; and c) is appreciably easier to use.« less

  1. Performance summary on a high power dense plasma focus x-ray lithography point source producing 70 nm line features in AlGaAs microcircuits

    NASA Astrophysics Data System (ADS)

    Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John

    2004-08-01

    A high average power dense plasma focus (DPF), x-ray point source has been used to produce ˜70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ˜1 keV effective wavelength in ˜2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ˜0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ˜170 eV and ˜5.1019 cm-3, respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source.

  2. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  3. X-ray Spectropolarimetry of Z-pinch Plasmas with a Single-Crystal Technique

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Pereira, Nino; Presura, Radu

    2017-10-01

    When directed beams of energetic electrons exist in a plasma the resulting x-rays emitted by the plasma can be partially polarized. This makes plasma x-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution. X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. X-ray polarization measurements are typically performed employing two crystals, both at a 45° Bragg angle. A single-crystal spectropolarimeter can replace two crystal schemes by utilizing two matching sets of internal planes for polarization-splitting. The polarization-splitting planes diffract the incident x-rays into two directions that are perpendicular to each other and the incident beam as well, so the two sets of diffracted x-rays are linearly polarized perpendicularly to each other. An X-cut quartz crystal with surface along the [11-20] planes and a paired set of [10-10] planes in polarization-splitting orientation is now being used on aluminum z-pinches at the University of Nevada, Reno. Past x-ray polarization measurements have been reserved for point-like sources. Recently a slotted collimating aperture has been used to maintain the required geometry for polarization-splitting enabling the spectropolarimetry of extended sources. The design of a single-crystal x-ray spectropolarimeter and experimental results will be presented. Work was supported by U.S. DOE, NNSA Grant DE-NA0001834 and cooperative agreement DE-FC52-06NA27616.

  4. A hard X-ray and gamma ray observation of the 22 November 1977 solar flare. [experimental design

    NASA Technical Reports Server (NTRS)

    Chambon, G.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.; Likine, O. B.; Kouznetsov, A. V.; Estouline, I. V.

    1978-01-01

    The Franco-Soviet experiment package Signe 2 MP for solar and cosmic X and gamma ray observations, launched aboard a Soviet Prognoz satellite into a highly eccentric earth orbit is described. An uncollimated NaI detector 37 mm thick by 90 mm diameter, placed on the upper surface of the satellite faced the sun. A collimated lateral NaI detector 14 mm thick by 38 mm diameter also faced the sun, and a similar lateral detector faced the anti-solar direction. Data tapes reveal an intense solar flare up to energies of up to 5 MeV, with evidence for line emission at 2.23 MeV and possibly 4.4 MeV. The event observed was associated with the Mc Math Plage Region 15031, and an H-alpha flare of importance 2B. It is not yet clear what radio emission is associated with the X-ray observation.

  5. Novel X-ray backscatter technique for detection of dangerous materials: application to aviation and port security

    NASA Astrophysics Data System (ADS)

    Kolkoori, S.; Wrobel, N.; Osterloh, K.; Zscherpel, U.; Ewert, U.

    2013-09-01

    Radiological inspections, in general, are the nondestructive testing (NDT) methods to detect the bulk of explosives in large objects. In contrast to personal luggage, cargo or building components constitute a complexity that may significantly hinder the detection of a threat by conventional X-ray transmission radiography. In this article, a novel X-ray backscatter technique is presented for detecting suspicious objects in a densely packed large object with only a single sided access. It consists of an X-ray backscatter camera with a special twisted slit collimator for imaging backscattering objects. The new X-ray backscatter camera is not only imaging the objects based on their densities but also by including the influences of surrounding objects. This unique feature of the X-ray backscatter camera provides new insights in identifying the internal features of the inspected object. Experimental mock-ups were designed imitating containers with threats among a complex packing as they may be encountered in reality. We investigated the dependence of the quality of the X-ray backscatter image on (a) the exposure time, (b) multiple exposures, (c) the distance between object and slit camera, and (d) the width of the slit. At the end, the significant advantages of the presented X-ray backscatter camera in the context of aviation and port security are discussed.

  6. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koren, S; Kindler, J; Reich, E

    Purpose: We propose the use of a HDR X-ray source collimator to apply a conformal, relatively small, radiation suitable for a single fraction with short delivery time. In addition, this technique can be applied using a radioactive source. Methods: We have built a stainless steel 1.5 mm thick applicator, to accommodate the needle applicator of the Intra-Beam X-ray source. Additional cavity is created in the applicator to allow the hosting/nesting/positioning of a LED diode. This LED is allowing a pre-irradiation beam marking on the tissue. The visible light emitted from the opening of the collimated applicator will delineate/verify the aperturemore » of the kV beam to be applied, as well as serve as distance indicator and will assist in the determination of dose to be delivered. For the evaluation of the collimated spatial dose distribution we have performed water tank measurements using (IBA Dosimetry) with a 0.4 cc ion chamber (IBA Dosimetry). We have scanned a two dimensional array with 1mm pitch in depth and 0.3 mm step size laterally. Additional verifications were conducted using Gaf-Chromic film for PDD measurements and Optical Stimulated Luminescence Dosimetry (OSLD, Landauer inc.) for absolute dosimetry. Results: The collimated applicator enables a conformal irradiated cross-section of about 3 mm square at the applicator surface was used in this study. A 180 seconds of 50 kVp delivery yielded 29 Gy, 20.6 Gy and 14.5 Gy at 5, 10 and 15 mm depths respectively. These results are in good agreement with the needle applicator depth dose curve published data. Conclusion: We have demonstrated the feasibility of focal HDR brachytherapy for conjunctival and ocular tumors, using the Intra-Beam needle applicator with in-house developed collimator. The delivery time was found to be several minutes- suitable for an intra-operative procedure and will allow dose fractionation deliveries.« less

  8. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology.

    PubMed

    Schreiber, Eric C; Chang, Sha X

    2012-08-01

    Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy∕min∕A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Monte Carlo simulations demonstrate that the proposed compact MRT system design is capable of delivering a sufficient dose rate and peak-to-valley ratio for small animal MRT studies.

  9. MO-FG-CAMPUS-IeP1-04: Kerma Area Product Calculation for Non-Uniform X-Ray Fields Using a Skin Dose Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Xiong, Z; Rudin, S

    Purpose: The functionality of the Dose-Tracking System (DTS) has been expanded to include the calculation of the Kerma-Area Product (KAP) for non-uniform x-ray fields such as result from the use of compensation filters during fluoroscopic procedures Methods: The DTS calculates skin dose during fluoroscopic interventions and provides a color-coded dose map on a patient-graphic model. The KAP is the integral of air kerma over the x-ray field and is usually measured with a transmission-ionization chamber that intercepts the entire x-ray beam. The DTS has been modified to determine KAP when there are beam non-uniformities that can be modeled. For example,more » the DTS includes models of the three compensation filters with tapered edges located in the collimator assembly of the Toshiba Infinix fluoroscopic C-Arm and can track their movement. To determine the air kerma after the filters, DTS includes transmission factors for the compensation filters as a function of kVp and beam filtration. A virtual KAP dosimeter is simulated in the DTS by an array of graphic vertices; the air kerma at each vertex is corrected by the field non-uniformity, which in this case is the attenuation factor for those rays which pass through the filter. The products of individual vertex air-kerma values for all vertices within the beam times the effective-area-per-vertex are summed for each x-ray pulse to yield the KAP per pulse and the cumulative KAP for the procedure is then calculated. Results: The KAP values estimated by DTS with the compensation filter inserted into the x-ray field agree within ± 6% with the values displayed on the fluoroscopy unit monitor, which are measured with a transmission chamber. Conclusion: The DTS can account for field non-uniformities such as result from the use of compensation filters in calculating KAP and can obviate the need for a KAP transmission ionization chamber. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  10. A search for low energy gamma rays from CG 195+4

    NASA Technical Reports Server (NTRS)

    Haymes, R. C.; Meegan, C. A.; Fishman, G. J.

    1979-01-01

    A 13-deg-wide region of sky containing the high-energy gamma-ray source CG 195+4 was searched for X-ray and gamma-ray emission in the energy interval from 0.035 to 8.737 MeV. The balloon-altitude measurements were undertaken on October 4, 1977, at Palestine, Texas, and used an actively collimated scintillation counter. As a result of the measurements, low upper limits have been found for the spectrum from the source. Combined with the positive detections made with satellites at high energies, the measurements show that the photon number spectrum must have a spectral index harder than 2.0. The data appear inconsistent with models of the source in which the presumed neutron star is surrounded by a cloud thick to X-rays. Negative results of the search for periodicity are discussed.

  11. Anatomy-based transmission factors for technique optimization in portable chest x-ray

    NASA Astrophysics Data System (ADS)

    Liptak, Christopher L.; Tovey, Deborah; Segars, William P.; Dong, Frank D.; Li, Xiang

    2015-03-01

    Portable x-ray examinations often account for a large percentage of all radiographic examinations. Currently, portable examinations do not employ automatic exposure control (AEC). To aid in the design of a size-specific technique chart, acrylic slabs of various thicknesses are often used to estimate x-ray transmission for patients of various body thicknesses. This approach, while simple, does not account for patient anatomy, tissue heterogeneity, and the attenuation properties of the human body. To better account for these factors, in this work, we determined x-ray transmission factors using computational patient models that are anatomically realistic. A Monte Carlo program was developed to model a portable x-ray system. Detailed modeling was done of the x-ray spectrum, detector positioning, collimation, and source-to-detector distance. Simulations were performed using 18 computational patient models from the extended cardiac-torso (XCAT) family (9 males, 9 females; age range: 2-58 years; weight range: 12-117 kg). The ratio of air kerma at the detector with and without a patient model was calculated as the transmission factor. Our study showed that the transmission factor decreased exponentially with increasing patient thickness. For the range of patient thicknesses examined (12-28 cm), the transmission factor ranged from approximately 21% to 1.9% when the air kerma used in the calculation represented an average over the entire imaging field of view. The transmission factor ranged from approximately 21% to 3.6% when the air kerma used in the calculation represented the average signals from two discrete AEC cells behind the lung fields. These exponential relationships may be used to optimize imaging techniques for patients of various body thicknesses to aid in the design of clinical technique charts.

  12. The Origin of the UCSD X-ray Astronomy Program - A Personal Perspective

    NASA Astrophysics Data System (ADS)

    Peterson, Laurence E.

    2013-01-01

    I was a graduate student in the late 1950’s at the University of Minnesota in the Cosmic Ray Group under Prof. John R. Winckler. He had a project monitoring Cosmic ray time variations from an extensive series of balloon flights using simple detectors during the International Geophysical Year 1957-58. During the 20 March 1958 flight, a short 18 sec. burst of high energy radiation was observed simultaneously with a class II Solar flare. From the ratio of the Geiger counter rate to the energy loss in the ionization chamber, it was determined this radiation was likely hard X-rays or low-energy gamma rays and not energetic particles. Further analysis using information from other concurrent observations indicated the X-rays were likely due to Bremsstrahlung from energetic electrons accelerated in the solar flare magnetic field; these same electrons produced radio emissions. This first detection of extra-terrestrial X- or gamma rays showed the importance of non-thermal processes in Astrophysical phenomena. Winckler and I were interested by the possibility of non-solar hard X-rays. While completing my thesis on a Cosmic ray topic, I initiated a balloon program to develop more sensitive collimated low-background scintillation counters. This led to a proposal to the newly formed NASA to place an exploratory instrument on the 1st Orbiting Solar Observatory launched 7 March 1962. In August that year, I assumed a tenure-track position at UCSD; the data analysis of OSO-1 and the balloon program were transferred to UCSD to initiate the X-ray Astronomy program. The discovery of Cosmic X-ray sources in the 1-10 Kev range on a rocket flight in June 1962 by Giacconi and colleagues gave impetus to the UCSD activities. It seemed evident cosmic X-ray sources could be detected above 20 Kev using high-flying balloons. Early results included measurements of the 50 million K gas in SCO X-1, and the X-ray continuum from the Crab Nebula characterized by a power-law dN/dE ~ E-2.2. The instrument developments resulted in ever more sophisticated and sensitive counter systems. Follow-on instruments were flown on OSO-III and OSO-VII by the early 70’s, the HEAO-1 in 1976, and the RXTE in 1995. These provided many new results on Cosmic X-rays.

  13. SU-E-T-93: Activation of Psoralen at Depth Using Kilovoltage X-Rays: Physics Considerations in Implementing a New Teletherapy Paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, J; Yoon, P; Liu, L

    2015-06-15

    Purpose: Psoralen is a UV-light activated anti-cancer biotherapeutic used for treating skin lesions (PUVA) and advanced cutaneous T-cell lymphoma (ECP). To date psoralen has not been used to treat deep seated tumors due to difficulty in generating UV-light at depth. We recently demonstrated psoralen activation at depth by introducing energy converting particles that absorb kV x-ray radiation and re-emit UV-light. Our in-vitro work found that 0.2–1Gy using 40–100kVp x-rays combined with psoralen and particles can induce a substantial apoptotic response beyond that expected from the sum of individual components. In preparation for a phase I clinical trial of canine companionmore » animals, we address the physics and dosimetry considerations for applying this new teletherapy paradigm to an in-vivo setting. Methods: The kV on-board imaging (OBI) system mounted on a medical linear accelerator (Varian) was commissioned to deliver the prescribed dose (0.6Gy) using 80 and 100kVp. Dosimetric measurements included kVp, HVL, depth dose, backscatter factors, collimator and phantom scatter factors, field size factors, and blade leakage. Absolute dosimetry was performed following AAPM TG61 recommendations and verified with an independent kV dose meter. We also investigated collimated rotational delivery to minimize skin dose using simple dose calculations on homogeneous cylindrical phantoms. Results: Single beam delivery is feasible for shallow targets (<5cm) without exceeding skin tolerance, while a rotational delivery may be utilized for deeper targets; skin dose is ∼75% of target dose for 80kVp collimated rotational delivery to a 3cm target within a 20cm phantom. Heat loading was tolerable; 0.6Gy to 5cm can be delivered before the anode reaches 75% capacity. Conclusion: KV teletherapy for Psoralen activation in deep seated tissue was successfully commissioned for a Varian OBI machine for use in a phase I clinical trial in canines. Future work will use Monte Carlo dosimetry to investigate dose in presence of bone. Research funded by Immunolight LLC. H. Walder, Z. Fathi, & W. Beyer are employees of Immunolight LLC which holds a patent on the technology. Drs. Adamson and Oldham are consultants to Immunolight LLC.« less

  14. Design of a radiation facility for very small specimens used in radiobiology studies

    NASA Astrophysics Data System (ADS)

    Rodriguez, Manuel; Jeraj, Robert

    2008-06-01

    A design of a radiation facility for very small specimens used in radiobiology is presented. This micro-irradiator has been primarily designed to irradiate partial bodies in zebrafish embryos 3-4 mm in length. A miniature x-ray, 50 kV photon beam, is used as a radiation source. The source is inserted in a cylindrical brass collimator that has a pinhole of 1.0 mm in diameter along the central axis to produce a pencil photon beam. The collimator with the source is attached underneath a computer-controlled movable table which holds the specimens. Using a 45° tilted mirror, a digital camera, connected to the computer, takes pictures of the specimen and the pinhole collimator. From the image provided by the camera, the relative distance from the specimen to the pinhole axis is calculated and coordinates are sent to the movable table to properly position the samples in the beam path. Due to its monitoring system, characteristic of the radiation beam, accuracy and precision of specimen positioning, and automatic image-based specimen recognition, this radiation facility is a suitable tool to irradiate partial bodies in zebrafish embryos, cell cultures or any other small specimen used in radiobiology research.

  15. Response function and linearity for high energy γ-rays in large volume LaBr3:Ce detectors

    NASA Astrophysics Data System (ADS)

    Gosta, G.; Blasi, N.; Camera, F.; Million, B.; Giaz, A.; Wieland, O.; Rossi, F. M.; Utsunomiya, H.; Ari-izumi, T.; Takenaka, D.; Filipescu, D.; Gheorghe, I.

    2018-01-01

    The response function to high energy γ-rays of two large volume LaBr3:Ce crystals (3.5"x8") and the linearity of the coupled PMT's were investigated at the NewSUBARU facility, where γ-rays in the energy range 6-38 MeV were produced and sent into the detectors. Monte Carlo simulations were performed to reproduce the experimental spectra. The photopeak and interaction efficiencies were also evaluated both in case of a collimated beam and an isotropic source.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yale, S H

    A survey was conducted of x-ray facilities in 2000 dental offices under actual operating conditions. Each of 10 dental schools in the United States collected data on 200 local dental offices to implement geographic analysis of the status of radiation hygiene in the offices. The data provided records of roentgen (r) output of each machine, relative r dose to patient, and dose to operator. In addition, specific information relating to both operator and machine was coiiected and evaluated. Some dentists were found to be operating under unsafe conditions, but the average dentist covered in the survey was statistically safe. Onmore » the basis of the survey, it was concluded that the probiem of radiation hazards in dentistry will be resolved when all dental x-ray machines are properly filtered and collimated and high-speed dental x-ray film is used. (P.C.H.)« less

  17. High efficiency spectrographs for the EUV and soft X-rays

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.

  18. A prototype PET/SPECT/X-rays scanner dedicated for whole body small animal studies.

    PubMed

    Rouchota, Maritina; Georgiou, Maria; Fysikopoulos, Eleftherios; Fragogeorgi, Eirini; Mikropoulos, Konstantinos; Papadimitroulas, Panagiotis; Kagadis, George; Loudos, George

    2017-01-01

    To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm 2 . The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm 2 . The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm 2 . The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and acquisition strategies.

  19. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors.

    PubMed

    Russ, M; Shankar, A; Setlur Nagesh, S V; Ionita, C N; Bednarek, D R; Rudin, S

    2017-02-11

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  20. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  1. Report on the Brazilian Scientific Balloon Program

    NASA Astrophysics Data System (ADS)

    Braga, Joao

    We report on the recent scientific ballooning activities in Brazil, including important international collaborations, and present the plans for the next few years. We also present the recent progress achieved in the development and calibration of the protoMIRAX balloon experiment, especially about the detector system. protoMIRAX is a balloon-borne X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The experiment consists essentially in a hard X-ray (30-200 keV) coded-aperture imager which employs a square array of 196 10mm x 10mm x 2mm CdZnTe (CZT) planar detector. A collimator defines a fully-coded field-of-view of 20(°) x 20(°) , with 4(°) x 4(°) of full sensitivity. The angular resolution will be of 1.7(°) , defined by the use of a 1mm-thick lead coded-mask with an extended (˜4x4) 13x13 MURA pattern will 20mm-side cells, placed at a distance of 650 mm from the detector plane. We describe the design and development of the front-end electronics, with charge preamplifiers and shaping amplifiers customized for these detectors. We present spectral results obtained in the laboratory as well as initial calibration results of the acquisition system designed to get positions and energies in the detector plane. We show simulations of the flight background and the expected flight images of bright sources.

  2. An in-line optical image translator with applications in x-ray videography.

    PubMed

    Picot, P A; Cardinal, H N; Fenster, A

    1990-01-01

    Many applications in radiography require, or would benefit from, the ability to translate, i.e. move, an optical image in the detector plane. In this paper, we describe the design and characterization of a prism-based optical image translator for insertion into existing XRII-video imaging systems. A pair of prisms rotatable about the optical axis form a very compact in-line optical image translator for installation in the parallel light path between an x-ray image intensifier and its video camera. Rotation of the prisms translates the XRII optical image on the camera target. With the addition of x-ray and light collimators to limit the image to a single video line, x-ray streak images may be acquired. By rotating an object in the x-ray beam during a streak, a complete computed tomography (CT) data set may be acquired. This image translator can translate an image anywhere in the focal plane of a 50-mm-output lens within a 40-mm-diam circle. The prisms have an aperture of 50 mm, permitting an optical speed of F/2 with a 50-mm output lens. The design is insensitive to angular alignment errors. This image translator is achromatic, since the spectral width of the output phosphorus of image intensifiers is sufficient to introduce blurring in a nonacrhomatic design. A prism-based image translator introduces image distortion, since the prisms do not operate at minimum deviation. The distortion is less than 4% over all parts of a typical detector area, and less than 1% in the central region of the image.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shedlock, Daniel; Dugan, Edward T.; Jacobs, Alan M.

    X-ray backscatter radiography by selective detection (RSD) is a field tested and innovative approach to non-destructive evaluation (NDE). RSD is an enhanced single-side x-ray Compton backscatter imaging (CBI) technique which selectively detects scatter components to improve image contrast and quality. Scatter component selection is accomplished through a set of specially designed detectors with fixed and movable collimators. Experimental results have shown that this NDE technique can be used to detect boric acid deposition on a metallic plate through steel foil reflective insulation commonly covering reactor pressure vessels. The current system is capable of detecting boric acid deposits with sub-millimeter resolution,more » through such insulating materials. Industrial systems have been built for Lockheed Martin Space Co. and NASA. Currently the x-ray backscatter RSD scanning systems developed by the University of Florida are being used to inspect the spray-on foam insulation (SOFI) used on the external tank of the space shuttle. RSD inspection techniques have found subsurface cracking in the SOFI thought to be responsible for the foam debris which separated from the external tank during the last shuttle launch. These industrial scanning systems can be customized for many applications, and a smaller, lighter, more compact unit design is being developed. The smaller design is approximately four inches wide, three inches high, and about 12 inches in length. This smaller RSD system can be used for NDE of areas that cannot be reached with larger equipment. X-ray backscatter RSD is a proven technology that has been tested on a wide variety of materials and applications. Currently the system has been used to inspect materials such as aluminum, plastics, honeycomb laminates, reinforced carbon composites, steel, and titanium. The focus of RSD is for one-sided detection for applications where conventional non-destructive examination methods either will not work or give poor results. Acquired images have clearly shown, for a variety of conditions, that proper selection of x-ray field scatter components leads to a significant improvement in image quality and contrast. Improvements are significant enough in some cases that objects not visible to conventional CBI or transmission radiography become readily discernable with RSD. (authors)« less

  4. Development of Ni-based multilayers for future focusing soft gamma ray telescopes

    NASA Astrophysics Data System (ADS)

    Girou, David A.; Massahi, Sonny; Sleire, Erlend K.; Jakobsen, Anders C.; Christensen, Finn E.

    2015-09-01

    Ni-based multilayers are a possible solution to extend the upper energy range of hard X-ray focusing telescopes currently limited at ≈79:4 keV by the Pt-K absorption edge. In this study 10 bilayers multilayers with a constant bilayer thickness were coated with the DC magnetron sputtering facility at DTU Space, characterized at 8 keV using X-ray reectometry and fitted using the IMD software. Ni/C multilayers were found to have a mean interface roughness ≈ 1:5 times lower than Ni/B4C multilayers. Reactive sputtering with ≈ 76% of Ar and ≈ 24% of N2 reduced the mean interface roughness by a factor of ≈ 1:7. It also increased the coating rate of C by a factor of ≈ 3:1 and lead to a coating process going ≈ 1:6 times faster. Honeycomb collimation proved to limit the increase in mean interface roughness when the bilayer thickness increases at the price of a coating process going ≈ 1:9 times longer than with separator plates. Finally a Ni/C 150 bilayers depth-graded mutilayer was coated with reactive sputtering and honeycomb collimation and then characterized from 10 keV to 150 keV. It showed 10% reectance up to 85 keV.

  5. Method for minimizing the radiation exposure from scoliosis radiographs. [X ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Smet, A.A.; Fritz, S.L.; Asher, M.A.

    1981-01-01

    The radiation exposure resulting from standard scoliosis radiographs was determined for eighteen adolescent girls. The risk of inducing breast cancer was estimated from the skin-exposure doses. The average skin exposure to the breasts was 59.6 millirads (0.59 mGy) for the anteroposterior radiograph. Assuming a total of twenty-two anteroposterior radiographs during a course of treatment, the cumulative exposure would result in a 1.35% relative increase in the risk of development of breast cancer. By utilizing collimation of the x-ray beam and proper selection of grids, films, and screens, the radiation risk of scoliosis radiographs is minimized.

  6. Correcting X-ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    NASA Technical Reports Server (NTRS)

    Chartas, G.; Flanagan, K.; Hughes, J. P.; Kellogg, E. M.; Nguyen, D.; Zombek, M.; Joy, M.; Kolodziejezak, J.

    1993-01-01

    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters, correcting for the reflectivity of the mirror and convolving with the detector response.

  7. Correcting x ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    NASA Technical Reports Server (NTRS)

    Chartas, G.; Flanagan, Kathy; Hughes, John P.; Kellogg, Edwin M.; Nguyen, D.; Zombeck, M.; Joy, M.; Kolodziejezak, J.

    1992-01-01

    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response.

  8. SU-F-T-131: No Increase in Biological Effectiveness Through Collimator Scattered Low Energy Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, T; Takao, S; Matsuzaki, Y

    Purpose: To reduce the lateral penumbra of low-energy proton beams, brass collimators are often used in spot-scanning proton therapy (SSPT). This study investigates the increase in biological effectiveness through collimator scattered protons in SSPT. Methods: The SSPT system of the Hokkaido University Hospital Proton Beam Therapy Center, which consists of a scanning nozzle, a 2-cm thick brass collimator, and a 4-cm thick energy absorber, was simulated with our validated Geant4 Monte Carlo code (ver. 9.3). A water phantom was irradiated with proton pencil beams of 76, 110, and 143 MeV. The tested collimator opening areas (COA) were 5×5, 10×10, andmore » 15×15 cm{sup 2}. Comparisons were made among the dose-averaged LET values of protons that hit the collimators (LETDColl), protons that did not hit the collimators (LETDNoColl), and all protons (LETDTotal). X-ray equivalent doses (Deq) were calculated using the linear-quadratic model with LETDNoColl and LETDTotal, and their maximum difference was determined over regions where the physical dose was greater than 10% of the peak dose of 2 Gy. Results: The ratio of the dose contribution of collimator scattered protons to that of all protons, defined as λ, was large at high proton energies and large COAs. The maximum λ value ranged from 3% (76 MeV, 5×5 cm{sup 2}) to 29% (143 MeV, 15×15 cm{sup 2}). Moreover, a large difference between LETDColl and LETDNoColl was only found in regions where λ was below 20% (ΔLETD > 2 keV/µm) and 8% (ΔLETD > 5 keV/µm). Consequently, the maximum difference between LETDNoColl and LETDTotal was as small as 0.8 keV/µm in all simulated voxels, and the difference of Deq reached a maximum of 1.5% that of the peak dose obtained at the water surface with a 76 MeV beam. Conclusion: Although collimator scattered protons have high LET, they only increase the physical dose, not the biological effectiveness.« less

  9. Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph

    2017-03-01

    Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.

  10. Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.

    1993-11-01

    We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.

  11. A Three-Year Program of Micro- and Nano-System Technology Development for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Canizares, Claude R.

    1997-01-01

    For many years the work at MIT aimed at the development of new concepts and technologies for space experiments in high-energy astrophysics, but not explicitly supported by flight programs, has been supported. This work has yielded new devices and techniques for X-ray astronomy, primarily low-noise, deep-depletion charge-coupled devices (CCDS) for spectrally-resolved X-ray imaging, and high-performance transmission gratings for high-resolution X-ray spectroscopy. Among the most significant recent achievements have been the development by G. Ricker and associates of the X-ray CCD camera flying on ASCA, and currently in development for AXAF and Astro-E, and the development by C. Canizares and associates of thick, 200 nm-period transmission gratings employing the phenomenon of phase shifting for high-resolution X-ray spectroscopy up to energies of 8- 1 0 keV that is essential for the operation of the AXAF High Energy Transmission Grating Spectrometer (HETGS). Through the current SR&T grant, the latter technology is now being extended successfully to the fabrication of 100 nm-period transmission gratings, which have twice the dispersion of the AXAF gratings. We note that, among other outcomes, the modest investments of past SR&T Grants at MIT resulted in the development of the key technologies for fully one-half of the scientific instrumentation on AXAF. In addition, NASA flight programs that have benefited from previous SR&T support at MIT include the SAS 3 X-ray Observatory, which carried the first rotation modulation collimator, the Focal Plane Crystal Spectrometer (FPCS) on the Einstein Observatory, the CCD cameras on ASCA and planned for Astro-E, the High Energy Transient Experiment (HETE), the Solar EUV Monitor on the Solar and Heliospheric Observatory (SOHO), the Medium Energy Neutral Atom imager (MENA) on the Image for Magnetopause-to-aurora Global Exploration (IMAGE) mission, and the recently-approved Two Wide-Angle Imaging Neutral-atom Spectrometers (TWINS) Mission of Opportunity.

  12. Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging

    NASA Astrophysics Data System (ADS)

    Samant, Sanjiv S.; Gopal, Arun; Jain, Jinesh; Xia, Junyi; DiBianca, Frank A.

    2007-04-01

    High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ˜50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm -1. The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications.

  13. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Q; Juang, T; Bache, S

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindricalmore » dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D dosimetry system shows promise, but further work is required to validate and investigate accuracy and artifacts. This work was supported by NIH R01CA100835.« less

  14. Planetary Observations in the Soft X-ray band; Present status and Future CMOS based technology

    NASA Astrophysics Data System (ADS)

    Kenter, A.; Kraft, R.; Murray, S.; Smith, R.; George, F.; Branduardi-Raymont, G.; Roediger, E.; Forman, W.; Elvis, M.

    2013-12-01

    Virtually every object in the Solar system emits X-rays, and X-ray studies of these objects often provides information that cannot be obtained by observations in other bands. The Solar Wind Charge Exchange (SWX) has revealed the nature and constituents of everything from comets, to the magnetosphere of the Earth and the gas giants. X-ray fluorescence observations of atmosphere-less rocky bodies have revealed their surface composition and gross morphology. Existing data, however, have been limited by observations with state of the art Earth-orbiting telescopes (e.g. Chandra, XMM-Newton, and Suzaku) or in-situ instruments with limited capabilities. We are developing CMOS imaging detectors optimized for use as soft x-ray imaging spectrometers. These devices, when coupled to a light-weight focusing optic or mechanical collimator, would be ideal for examining X-ray emission within the Solar System with unprecedented spatial, spectral and temporal resolution. CMOS devices, apart from their observational capabilities, would be ideal for a planetary mission as they consume very little power (~mW) and require only modest cooling. Furthermore, CMOS devices, unlike conventional CCDs, are extremely radiation hard (>5MRad) and could withstand even the hostile radiation environment of a Jovian orbit with little or no performance degradation. The devices can also be read at high (hundreds to thousands of frames per second) frame rates at low noise, a critical requirement given the high count rates (thousands of cts per second). Our CMOS imaging detectors are back thinned and optimized to detect very soft X-ray emission from light elements such as C,N,O,P,S as well as emission from higher Z elements such as Fe and Ti. This sensor can also resolve the strong CX emission lines of O present is the magnetospheric X-ray emission of the gas giants, as well as thermal and non-thermal bremsstrahlung. We could also detect and study the temporal evolution X-ray synchrotron emission from ultra-relativistic electrons, indicative of strong magnetohydrodynamic shocks. In this poster we outline some of the planetary investigations that could be made with this technology, and present the current status of our instrumentation development. We also compare the capabilities of our X-ray imaging spectrometer on a dedicated mission to Jupiter with the results obtained with Chandra. Our instrument, on a dedicated mission to Jupiter, could obtain more data on the Jovian auroras and the Io plasma torus in five minutes than we could with weeks of continuous Chandra observation.

  15. PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Anderson, S G; Barty, C J

    2003-12-15

    The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV),more » high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.« less

  16. Analysis of Microflares from the Second Sounding Rocket Flight of the Focusing Optics X-ray Solar Imager (FOXSI-2)

    NASA Astrophysics Data System (ADS)

    Vievering, J. T.; Glesener, L.; Krucker, S.; Christe, S.; Buitrago-Casas, J. C.; Ishikawa, S. N.; Ramsey, B.; Takahashi, T.; Watanabe, S.

    2016-12-01

    Observations of the sun in hard x-rays can provide insight into many solar phenomena which are not currently well-understood, including the mechanisms behind particle acceleration in flares. Currently, RHESSI is the only solar-dedicated spacecraft observing in the hard x-ray regime. Though RHESSI has greatly added to our knowledge of flare particle acceleration, the method of rotation modulation collimators is limited in sensitivity and dynamic range. By instead using a direct imaging technique, the structure and evolution of even small flares and active regions can be investigated in greater depth. FOXSI (Focusing Optics X-ray Solar Imager), a hard x-ray instrument flown on two sounding rocket campaigns, seeks to achieve these improved capabilities by using focusing optics for solar observations in the 4-20 keV range. During the second of the FOXSI flights, flown on December 11, 2014, two microflares were observed, estimated as GOES class A0.5 and A2.5 (upper limits). Preliminary analysis of these two flares will be presented, including imaging spectroscopy, light curves, and photon spectra. Through this analysis, we investigate the capabilities of FOXSI in enhancing our knowledge of smaller-scale solar events.

  17. Liquid metal anode x-ray tubes: interesting, but are they useful?

    NASA Astrophysics Data System (ADS)

    Harding, Geoffrey

    2004-10-01

    An analysis is presented of factors affecting the specific loadability (W mm-2 K-1) of electron impact liquid metal anode x-ray sources (LIMAX). It is shown that in general, the limit to loadability is set by energy deposited in the electron window by inelastic electron scattering. Removal of this energy through convection cooling by the liquid metal stream represents the least efficient thermal transport process in LIMAX. As the electron window energy loss is approximately inversely proportional to the electron beam energy, the power loadability of a LIMAX source operated under otherwise constant conditions scales roughly with the square of the tube voltage. A comparison of the loadability of the liquid metal anode x-ray concept to conventional stationary anode x-ray tubes demonstrates the superiority of the former. The utility of LIMAX-based computed tomography in the field of air cargo container inspection is briefly discussed. In particular its characteristics relative to linac-based air cargo container inspection are highlighted: these include a higher contrast-to-noise ratio (CNR); compact radiation shielding and collimation; reduced detector cross-talk; improved image contrast; and the possibility of combining container CT with material-specific alarm resolution capability based on x-ray diffraction tomography.

  18. A Jet Break in the X-ray Light Curve of Short GRB 111020A: Implications for Energetics and Rates

    NASA Technical Reports Server (NTRS)

    Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Troja, E.; Czekala, I.; Chornock, R.; Gehrels, N.; Sakamoto, T.; Fox, D. B.; hide

    2012-01-01

    We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning approx.100 s to 10 days after the burst, reveals a significant break at (delta)t approx. = 2 days with pre- and post-break decline rates of (alpha)X,1 approx. = -0.78 and (alpha)X,2 < or approx. 1.7, respectively. Interpreted as a jet break, we infer a collimated outflow with an opening angle of (theta)j approx. = 3deg - 8deg. The resulting beaming-corrected gamma-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) x 10(exp 48) erg and (0.3-2) x 10(exp 49) erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of <39 micro-Jy (3(sigma)) from Expanded Very Large Array observations that, along with our finding that v(sub c) < v(sub X), constrains the circumburst density to n(sub 0) approx.0.01 0.1/cu cm. Optical observations provide an afterglow limit of i > or approx.24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i approx. = 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0".80+/-0".11 (1(sigma))from this galaxy corresponding to an offset of 5.7 kpc for z = 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5+/-2.0) x 10(exp 21)/sq cm (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of > or approx.100-1000 Gpc(sup -3)/yr, in good agreement with the NS-NS merger rate of approx. = 200-3000 Gpc(sup -3)/ yr. This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.

  19. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.

    PubMed

    Diffenderfer, Eric S; Ainsley, Christopher G; Kirk, Maura L; McDonough, James E; Maughan, Richard L

    2011-11-01

    To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10(-4) Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a (60)Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. The neutron and combined proton plus γ-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 ± 0.4) × 10(- 5) Gy/Gy. The neutron dose with brass was (6.4 ± 0.7) × 10(- 5) Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 ± 0.6) × 10(- 6) Gy/Gy and (6.3 ± 0.7) × 10(- 6) Gy/Gy, respectively. The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore, the choice of tungsten alloy in constructing the leaves of a proton MLC is appropriate, and does not lead to a substantial increase in the secondary neutron dose to the patient compared to that generated in a brass collimator.

  20. SU-G-IeP3-07: High-Resolution, High-Sensitivity Imaging and Quantification of Intratumoral Distributions of Gold Nanoparticles Using a Benchtop L-Shell XRF Imaging System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, N; Diagaradjane, P; Krishnan, S

    2016-06-15

    Purpose: To demonstrate the ability to perform high-resolution imaging and quantification of sparse distributions of gold nanoparticles (GNPs) within ex vivo tumor samples using a highly-sensitive benchtop L-shell x-ray fluorescence (XRF) imaging system. Methods: An optimized L-shell XRF imaging system was assembled using a tungsten-target x-ray source (operated at 62 kVp and 45 mA). The x-rays were filtered (copper: 0.08 mm & aluminum: 0.04 mm) and collimated (lead: 5 cm thickness, 3 cm aperture diameter) into a cone-beam in order to irradiate small samples or objects. A collimated (stainless steel: 4 cm thickness, 2 mm aperture diameter) silicon drift detector,more » capable of 2D translation, was placed at 90° with respect to the beam to acquire XRF/scatter spectra from regions of interest. Spectral processing involved extracting XRF signal from background, followed by attenuation correction using a Compton scatter-based normalization algorithm. Calibration phantoms with water/GNPs (0 and 0.00001–10 mg/cm{sup 3}) were used to determine the detection limit of the system at a 10-second acquisition time. The system was then used to map the distribution of GNPs within a 12×11×2 mm{sup 3} slice excised from the center of a GNP-loaded ex vivo murine tumor sample; a total of 110 voxels (2.65×10{sup −3} cm{sup 3}) were imaged with 1.3-mm spatial resolution. Results: The detection limit of the current cone-beam benchtop L-shell XRF system was 0.003 mg/cm{sup 3} (3 ppm). Intratumoral GNP concentrations ranging from 0.003 mg/cm{sup 3} (3 ppm) to a maximum of 0.055 mg/cm{sup 3} (55 ppm) and average of 0.0093 mg/cm{sup 3} (9.3 ppm) were imaged successfully within the ex vivo tumor slice. Conclusion: The developed cone-beam benchtop L-shell XRF imaging system can immediately be used for imaging of ex vivo tumor samples containing low concentrations of GNPs. With minor finetuning/optimization, the system can be directly adapted for performing routine preclinical in vivo imaging tasks. Supported by NIH/NCI grant R01CA155446 This investigation was supported by NIH/NCI grant R01CA155446.« less

  1. Scatter correction using a primary modulator on a clinical angiography C-arm CT system.

    PubMed

    Bier, Bastian; Berger, Martin; Maier, Andreas; Kachelrieß, Marc; Ritschl, Ludwig; Müller, Kerstin; Choi, Jang-Hwan; Fahrig, Rebecca

    2017-09-01

    Cone beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray source and the object. This modulation enables estimation of the scatter in the projection domain by optimizing an objective function with respect to the scatter estimate. Up to now the approach has not been implemented on a clinical angiography C-arm CT system. In our work, the iPMSE method is transferred to a clinical C-arm CBCT. Additional processing steps are added in order to compensate for the C-arm scanner motion and the automatic X-ray tube current modulation. These challenges were overcome by establishing a reference modulator database and a block-matching algorithm. Experiments with phantom and experimental in vivo data were performed to evaluate the method. We show that scatter correction using primary modulation is possible on a clinical C-arm CBCT. Scatter artifacts in the reconstructions are reduced with the newly extended method. Compared to a scan with a narrow collimation, our approach showed superior results with an improvement of the contrast and the contrast-to-noise ratio for the phantom experiments. In vivo data are evaluated by comparing the results with a scan with a narrow collimation and with a constant scatter correction approach. Scatter correction using primary modulation is possible on a clinical CBCT by compensating for the scanner motion and the tube current modulation. Scatter artifacts could be reduced in the reconstructions of phantom scans and in experimental in vivo data. © 2017 American Association of Physicists in Medicine.

  2. High brightness--multiple beamlets source for patterned X-ray production

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA; Ji, Qing [Albany, CA; Barletta, William A [Oakland, CA; Jiang, Ximan [El Cerrito, CA; Ji, Lili [Albany, CA

    2009-10-27

    Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.

  3. 2D-3D μXRF elemental mapping of archeological samples

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Massussi, M.; Tucci, S.; Sardella, R.; Sciancalepore, A.; Polese, C.; Dabagov, S. B.

    2017-07-01

    Recently opened for users at LNF XLab-Frascati a μ XRF station, named "Rainbow X-ray" - RXR, has been optimized for most of X-ray analytical research fields. The basic principle of the station is in the use of various geometrical combinations of polycapillary optics for X-ray beam shaping (focusing/collimation) at specially designed laboratory unit. In this work we have presented the results of archaeological studies on the artifacts of Paleolithic period and Iron Age (9th century BC to the midway of the 8th BC). The elemental analysis of these artifacts has been first performed by compact laboratory setup. Superficial (2D) and bulk (3D) micro-fluorescence mapping provides useful informations for the geologists in order to identify the possible artifacts provenience and origin. The results presented in this work are a part of wider anthropological/archeological investigations aimed at the understanding of social and economical relations of prehistorical communities.

  4. Results of the Apollo 15 and 16 X-ray experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J. I.; Schmadebeck, R.; Lowman, P.; Blodget, H.; Yin, L.; Eller, E.; Podwysocki, M.; Weidner, J. R.; Bickel, A. L.

    1973-01-01

    Except for some minor modifications the Apollo 16 X-ray fluorescence experiment was similar to that flown aboard Apollo 15. The Apollo 16 provided data for a number of features not previously covered such as Mare Cognitum, Mare Nubium, Ptolemaeus, Descartes, Mendeleev, and other areas. Many data points were obtained by the X-ray experiments, so that comparisons could be drawn between Apollo 15 and 16 flights. The agreement was generally within about 10%. Al/Si concentration ratios ranged from 0.38% in Mare Cognitum to 0.67% in the Descartes area highlands. A comparison of the Apollo 16 data Al/Si values with optical albedo values along the ground tracks showed the same positive correlation as in the Apollo 15 flight. A reexamination of the detector and collimator geometries showed that the spatial resolution was better by almost a factor of two than the initial estimates.

  5. A Bragg beam splitter for hard x-ray free-electron lasers.

    PubMed

    Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2013-02-11

    We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 μm by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)λ] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications.

  6. Recent technologic advances in multi-detector row cardiac CT.

    PubMed

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  7. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  8. Aberration-free aspherical lens shape for shortening the focal distance of an already convergent beam

    PubMed Central

    Sutter, John P.; Alianelli, Lucia

    2017-01-01

    The shapes of single lens surfaces capable of focusing divergent and collimated beams without aberration have already been calculated. However, nanofocusing compound refractive lenses (CRLs) require many consecutive lens surfaces. Here a theoretical example of an X-ray nanofocusing CRL with 48 consecutive surfaces is studied. The surfaces on the downstream end of this CRL accept X-rays that are already converging toward a focus, and refract them toward a new focal point that is closer to the surface. This case, so far missing from the literature, is treated here. The ideal surface for aberration-free focusing of a convergent incident beam is found by analytical computation and by ray tracing to be one sheet of a Cartesian oval. An ‘X-ray approximation’ of the Cartesian oval is worked out for the case of small change in index of refraction across the lens surface. The paraxial approximation of this surface is described. These results will assist the development of large-aperture CRLs for nanofocusing. PMID:29091055

  9. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  10. Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator.

    PubMed

    Zhu, X R; Jursinic, P A; Grimm, D F; Lopez, F; Rownd, J J; Gillin, M T

    2002-08-01

    A new type of radiographic film, Kodak EDR2 film, was evaluated for dose verification of intensity modulated radiation therapy (IMRT) delivered by a static multileaf collimator (SMLC). A sensitometric curve of EDR2 film irradiated by a 6 MV x-ray beam was compared with that of Kodak X-OMAT V (XV) film. The effects of field size, depth and dose rate on the sensitometric curve were also studied. It is found that EDR2 film is much less sensitive than XV film. In high-energy x-ray beams, the double hit process is the dominant mechanism that renders the grains on EDR2 films developable. As a result, in the dose range that is commonly used for film dosimetry for IMRT and conventional external beam therapy, the sensitometric curves of EDR2 films cannot be approximated as a linear function, OD = c * D. Within experimental uncertainty, the film sensitivity does not depend on the dose rate (50 vs 300 MU/min) or dose per pulse (from 1.0 x 10(-4) to 4.21 x 10(-4) Gy/pulse). Field sizes and depths (up to field size of 10 x 10 cm2 and depth = 10 cm) have little effect on the sensitometric curves. Percent depth doses (PDDs) for both 6 and 23 MV x rays were measured with both EDR2 and XV films and compared with ion chamber data. Film data are within 2.5% of the ion chamber results. Dose profiles measured with EDR2 film are consistent with those measured with an ion chamber. Examples of measured IMRT isodose distributions versus calculated isodoses are presented. We have used EDR2 films for verification of all IMRT patients treated by SMLC in our clinic. In most cases, with EDR2 film, actual clinical daily fraction doses can be used for verification of composite isodose distributions of SMLC-based IMRT.

  11. X-ray inverse Compton emission from the radio halo of M87

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.

    1984-01-01

    A significant fraction of known galaxies contain an active galactic nucleus (AGN) at their cores, the site of violent activity and non-stellar radiation seen across the entire electromagnetic spectrum. This activity is thought to be due to the accretion of gas onto a massive black hole. A fraction of AGNs also eject collimated beams of energetic material, usually seen by virtue of its synchrotron emission in the radio band. Efforts to study these jets from AGNs in the X-ray band with the Einstein Observatory has led to several detections, most notably the jets in the nearby radio galaxies Centaurus A and Virgo A = M87. In their study of M87, Schreier, Gorenstein and Feigelson (1982) noted that, in addition to the synchrotron jet 10"-20" from the nucleus, X-rays appear to be generated in the diffuse radio halo 2'-5' from the nucleus. This finding may be particularly important as it may constitute the first known case of X-ray inverse Compton emission from AGN ejecta, allowing for the first time direct determination of the magnetic field strengths.

  12. Density and structure of jadeite melt at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Yu, T.; Jing, Z.; Park, C.; Shen, G.; Wang, Y.

    2011-12-01

    Knowledge of density of magma is important for understanding magma-related processes such as volcanic activity and differentiation in the Earth's early history. Since these processes take place in Earth's interior, we need to measure the density of magma in situ at high pressures. It is also necessary to relate the density with the structure of silicate melts at high pressure and temperature and further understand the densification mechanism of magma with pressure. Here we report the density and structural data for jadeite melt up to 7 GPa,. The density measurements were carried out using a DIA-type cubic press at the 13-BM-D beamline at APS using monochromatic radiation tuned to the desired energy (~20 keV) with a Si (111) double-crystal monochromator. Intensities of the incident and transmitted X-rays were measured by two ion chambers placed before and after the press for X-ray absorption measurements. Incident and transmitted X-ray intensities were obtained by moving the incident slits perpendicular to the X-ray beam direction at 0.010 mm steps crosses the sample. Lambert-Beer law was then applied to the normalized intensities as a function of the sample position across the assembly. Density of jadeite melt was determined up to 7 GPa and 2300 K. For structural determination, high-pressure and high-temperature energy-dispersive XRD experiments were carried out by using a Paris-Edinburgh press installed at the 16-BM-B of APS. Incident X-rays were collimated by a vertical slit (0.5 mm) and a horizontal slit (0.1 mm) to irradiate the sample. Diffracted X-rays were detected by a Ge solid state detector with a 4k multi-channel analyzer, through a collimator and 5.0mm (V) by and 0.1mm (H) receiving slits. Diffraction patterns were collected until the highest intensity reached 2000 counts, at 12 angles (2theta=3, 4, 5, 7, 9, 11, 15, 20, 25, 30, 35, 39.5 degrees). The structural measurements were carried out in the pressure range from 1 to 5 GPa and at 1600 to 2000 K. Pressure and temperature dependence of density of jadeite melt will be presented, along with structure factor S(Q) and radial distribution function G(r) of jadeite melt at high pressure and high temperature. The density-structure relationships will be discussed.

  13. Preliminary study on X-ray fluorescence computed tomography imaging of gold nanoparticles: Acceleration of data acquisition by multiple pinholes scheme

    NASA Astrophysics Data System (ADS)

    Sasaya, Tenta; Sunaguchi, Naoki; Seo, Seung-Jum; Hyodo, Kazuyuki; Zeniya, Tsutomu; Kim, Jong-Ki; Yuasa, Tetsuya

    2018-04-01

    Gold nanoparticles (GNPs) have recently attracted attention in nanomedicine as novel contrast agents for cancer imaging. A decisive tomographic imaging technique has not yet been established to depict the 3-D distribution of GNPs in an object. An imaging technique known as pinhole-based X-ray fluorescence computed tomography (XFCT) is a promising method that can be used to reconstruct the distribution of GNPs from the X-ray fluorescence emitted by GNPs. We address the acceleration of data acquisition in pinhole-based XFCT for preclinical use using a multiple pinhole scheme. In this scheme, multiple projections are simultaneously acquired through a multi-pinhole collimator with a 2-D detector and full-field volumetric beam to enhance the signal-to-noise ratio of the projections; this enables fast data acquisition. To demonstrate the efficacy of this method, we performed an imaging experiment using a physical phantom with an actual multi-pinhole XFCT system that was constructed using the beamline AR-NE7A at KEK. The preliminary study showed that the multi-pinhole XFCT achieved a data acquisition time of 20 min at a theoretical detection limit of approximately 0.1 Au mg/ml and at a spatial resolution of 0.4 mm.

  14. A new device for energy-dispersive x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Swoboda, Walter; Kanngiesser, Birgit; Beckhoff, Burkhard; Begemann, Klaus; Neuhaus, Hermann; Scheer, Jens

    1991-12-01

    A new measuring chamber for energy-dispersive x-ray fluorescence is presented, which allows excitation of the sample by three (commonly applied) modes: secondary target excitation, Barkla scattering, and Bragg reflection. In spite of the short distances required to obtain high intensities, the transmission of the radiator through the bulk matter of the chamber wall and the collimators could be kept negligibly small. In the case of Bragg reflection, the adjustment of all degrees of freedom of the crystal is performed independently and reproducibly under vacuum conditions. The device allows the choice of excitation mode optimized for the respective analytical problem. An experimental test using an environmental specimen shows the detection limits obtainable.

  15. Outflows in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Diaz Trigo, M.

    2017-10-01

    Accretion onto neutron stars and black holes powers the most luminous phenomena in the Universe. Associated to it is the existence of outflows, in the form of uncollimated winds or highly collimated relativistic jets. The origin of outflows and their feedback to the environment is one of the most debated topics in astrophysics today. In this talk I will review the current understanding of accretion disc winds in X-ray binaries, their launching mechanism and their relation to specific accretion states. I will also discuss the potential interplay between the appearance/disappearance of such winds and relativistic jets and the insight gained with ongoing multi-wavelength observational programmes focused on the variability of such phenomena.

  16. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  17. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source.

    PubMed

    MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A

    2004-11-01

    At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  18. Baseline design of the filters for the LAD detector on board LOFT

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Winter, B.; Coker, J.; Feroci, M.; Kennedy, T.; Walton, D.; Zane, S.

    2014-07-01

    The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions selected for the phase A study in the ESA's Cosmic Vision program. LOFT is designed to perform high-time-resolution X-ray observations of black holes and neutron stars. The main instrument on the LOFT payload is the Large Area Detector (LAD), a collimated experiment with a nominal effective area of ~10 m2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV. These performances are achieved covering a large collecting area with more than 2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator based on lead-glass micro-channel plates. In order to reduce the thermal load onto the detectors, which are open to Sky, and to protect them from out of band radiation, optical-thermal filter will be mounted in front of the SDDs. Different options have been considered for the LAD filters for best compromise between high quantum efficiency and high mechanical robustness. We present the baseline design of the optical-thermal filters, show the nominal performances, and present preliminary test results performed during the phase A study.

  19. Analysis of induced effects in matter during pulsed Nd:YAG laser welding by flash radiography

    NASA Astrophysics Data System (ADS)

    Pascal, G.; Noré, D.; Girard, K.; Perret, O.; Naudy, P.

    2000-05-01

    Tantalum and TA6V (titanium alloy) are respectively used in corrosive chemical product containers and in aircraft and aerospace industries. The objective of this study was to analyze the dynamic behavior of the matter during deep laser spot welding of these materials. The obtained images should allow a better understanding of laser-matter interaction and should validate a model developed for porosities formation. Because of the afterglow of detectors, classical video x-ray systems are not suitable for the analysis of short dynamic effects during and after the laser pulse. An experimental device, based on a flash x-ray generator EUROPULSE 600 kV and a QUANTEL pulsed Nd:YAG laser, has been used. The flash x-ray generator is triggered, after a programmed delay, by the laser shot. The x-ray pulse duration is 30 ns. Welding parameters (pulse duration and energy) yield molten zones of 2 mm depth. Both materials, tantalum and TA6V, have been tested. Radiological films BIOMAX coupled with radioluminescent screens and direct exposure film (DEF) were respectively used for tantalum and TA6V samples. A fine collimation was studied to avoid the scattering effect in the material and in the radioluminescent screen. Radiological test samples, made of tantalum and TA6V, were performed to estimate the images qualities obtained by flash radiography. About 270 laser/x-rays shots were performed. The radiographic images have been digitalized and processed. The results show a deep and narrow capillary hole called "keyhole" which appears a few milliseconds after the beginning of the interaction. The "keyhole" hollows until the end of the laser pulse. After the end of the laser pulse, the molten bath collapses in less than 1 ms, trapping cavities.

  20. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  1. Holographic Optics for Missile Guidance Systems.

    DTIC Science & Technology

    1978-12-20

    according to SnelPs Law when the ray encounters a change in index of refraction (i.e., a change in the speed of light ). Conventional lenses and prisms are...AA ’ to change the magnification of the system , or individual light sources may be used to address each lens group . Each lens group consists of four...individual lens elements. Element I collimates the light from a source H, 17—mm away . Element II uses the collimated light beam , 8 —. now propagat

  2. A Monte Carlo simulation study for the gamma-ray/neutron dual-particle imager using rotational modulation collimator (RMC).

    PubMed

    Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun

    2018-03-01

    The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.

  3. Fiber-optic dosimeters for radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Archer, James

    2017-10-01

    According to the figures provided by the World Health Organization, cancer is a leading cause of death worldwide, accounting for 8.8 million deaths in 2015. Radiation therapy, which uses x-rays to destroy or injure cancer cells, has become one of the most important modalities to treat the primary cancer or advanced cancer. The newly developed microbeam radiation therapy (MRT), which uses highly collimated, quasi-parallel arrays of x-ray microbeams (typically 50 μm wide and separated by 400 μm) produced by synchrotron sources, represents a new paradigm in radiotherapy and has shown great promise in pre-clinical studies on different animal models. Measurements of the absorbed dose distribution of microbeams are vitally important for clinical acceptance of MRT and for developing quality assurance systems for MRT, hence are a challenging and important task for radiation dosimetry. On the other hand, during the traditional LINAC based radiotherapy and breast cancer brachytherapy, skin dose measurements and treatment planning also require a high spatial resolution, tissue equivalent, on-line dosimeter that is both economical and highly reliable. Such a dosimeter currently does not exist and remains a challenge in the development of radiation dosimetry. High resolution, water equivalent, optical and passive x-ray dosimeters have been developed and constructed by using plastic scintillators and optical fibers. The dosimeters have peak edge-on spatial resolutions ranging from 50 to 500 microns in one dimension, with a 10 micron resolution dosimeter under development. The developed fiber-optic dosimeters have been test with both LINAC and synchrotron x-ray beams. This work demonstrates that water-equivalent and high spatial resolution radiation detection can be achieved with scintillators and optical fiber systems. Among other advantages, the developed fiber-optic probes are also passive, energy independent, and radiation hard.

  4. Minibeam radiotherapy with small animal irradiators; in vitro and in vivo feasibility studies

    NASA Astrophysics Data System (ADS)

    Bazyar, Soha; Inscoe, Christina R.; O'Brian, E. Timothy; Zhou, Otto; Lee, Yueh Z.

    2017-12-01

    Minibeam radiation therapy (MBRT) delivers an ultrahigh dose of x-ray (⩾100 Gy) in 200-1000 µm beams (peaks), separated by wider non-irradiated regions (valleys) usually as a single temporal fraction. Preclinical studies performed at synchrotron facilities revealed that MBRT is able to ablate tumors while maintaining normal tissue integrity. The main purpose of the present study was to develop an efficient and accessible method to perform MBRT using a conventional x-ray irradiator. We then tested this new method both in vitro and in vivo. Using commercially available lead ribbon and polyethylene sheets, we constructed a collimator that converted the cone beam of an industrial irradiator to 44 identical beams (collimator size  ≈  4  ×  10 cm). The dosimetry characteristics of the generated beams were evaluated using two different radiochromic films (beam FWHM  =  246  ±  32 µm center-to-center  =  926  ±  23 µm peak-to-valley dose ratio  =  24.35  ±  2.10 collimator relative output factor  =  0.84  ±  0.04). Clonogenic assays demonstrated the ability of our method to induce radiobiological cell death in two radioresistant murine tumor cell lines (TRP  =  glioblastoma B16-F10  =  melanoma). A radiobiological equivalent dose (RBE) was calculated by evaluating the acute skin response to graded doses of MBRT and conventional radiotherapy (CRT). Normal mouse skin demonstrated resistance to doses up to 150 Gy on peak. MBRT significantly extended the survival of mice with flank melanoma tumors compared to CRT when RBE were applied (overall p  <  0.001). Loss of spatial resolution deep in the tissue has been a major concern. The beams generated using our collimator maintained their resolution in vivo (mouse brain tissue) and up to 10 cm deep in the radiochromic film. In conclusion, the initial dosimetric, in vitro and in vivo evaluations confirmed the utility of this affordable and easy-to-replicate minibeam collimator for future preclinical studies.

  5. Pin-photodiode array for the measurement of fan-beam energy and air kerma distributions of X-ray CT scanners.

    PubMed

    Haba, Tomonobu; Koyama, Shuji; Aoyama, Takahiko; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao; Kameyama, Hiroshi; Tsutsumi, Yoshinori

    2016-07-01

    Patient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner. Each X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem - front and rear photodiodes - and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively. The pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner. The fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Berger, E.; Fong, W.; Guidorzi, C.; Alexander, K. D.; Metzger, B. D.; Blanchard, P. K.; Cowperthwaite, P. S.; Chornock, R.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Annis, J.; Brown, D. A.; Chen, H.; Doctor, Z.; Frieman, J. A.; Holz, D. E.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory (CXO) at t≈ 2.3 days post-merger reveal no significant emission, with {L}x≲ 3.2× {10}38 {erg} {{{s}}}-1 (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching {L}x≈ 9× {10}38 {erg} {{{s}}}-1 at ≈ 15.1 days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy {E}k˜ {10}49-50 {erg}, viewed off-axis with {θ }{obs}˜ 20^\\circ {--}40^\\circ . Our models favor a circumbinary density n˜ {10}-4{--}{10}-2 {{cm}}-3, depending on the value of the microphysical parameter {ɛ }B={10}-4{--}{10}-2. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at t≳ 100 days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on {θ }{obs} are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.

  7. Investigation to improve the resolution and range of a light imaging system for very thick tissues

    NASA Astrophysics Data System (ADS)

    Wist, Abund O.; Moon, Peter; Herr, Steven L.; Fatouros, Panos P.

    1995-05-01

    A high resolution light imaging system has been developed utilizing an HeNe (628 nm, 32 mW) and a receiver with post collimation mounted on an x, y table to scan the object. The image can be either recorded on a film or stored in a computer for display on a terminal. Tests show that the system in the regular mode is capable of detecting the spine and soft tissues in anesthetized mice, and of transilluminating fully an adult skull bone with a resolution for details better than one third mm. In teeth, all regular carious lesions, including incipient lesions larger than one third of a mm, can be seen in front or in the back of the tooth, none of which could be detected by dental x-ray systems. Applying a new high resolution mode, the resolution can be increased in teeth to less than 0.1 mm. Some difficulty still exists in detecting small lesions on occlusal or approximal surfaces.

  8. A new approach to estimate the geometrical factors, solid angle approximation, geometrical efficiency and their use in basic interaction cross section measurements

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Takeda, T.; Itai, Y.; Akatsuka, T.

    2002-10-01

    A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic Kα radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires anmore » extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.« less

  10. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.

    PubMed

    Manohar, Nivedh; Reynoso, Francisco J; Cho, Sang Hyun

    2013-08-01

    To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg∕cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence∕scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm×15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73×10(-2) cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies.

  11. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10−2 cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. Conclusions:L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies. PMID:23927295

  12. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    DOE PAGES

    Margutti, Raffaella; Berger, E.; Fong, W.; ...

    2017-10-16

    Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less

  13. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margutti, Raffaella; Berger, E.; Fong, W.

    Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less

  14. An Adaptation of the Distance Driven Projection Method for Single Pinhole Collimators in SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Ihsani, Alvin; Farncombe, Troy

    2016-02-01

    The modelling of the projection operator in tomographic imaging is of critical importance especially when working with algebraic methods of image reconstruction. This paper proposes a distance-driven projection method which is targeted to single-pinhole single-photon emission computed tomograghy (SPECT) imaging since it accounts for the finite size of the pinhole, and the possible tilting of the detector surface in addition to other collimator-specific factors such as geometric sensitivity. The accuracy and execution time of the proposed method is evaluated by comparing to a ray-driven approach where the pinhole is sub-sampled with various sampling schemes. A point-source phantom whose projections were generated using OpenGATE was first used to compare the resolution of reconstructed images with each method using the full width at half maximum (FWHM). Furthermore, a high-activity Mini Deluxe Phantom (Data Spectrum Corp., Durham, NC, USA) SPECT resolution phantom was scanned using a Gamma Medica X-SPECT system and the signal-to-noise ratio (SNR) and structural similarity of reconstructed images was compared at various projection counts. Based on the reconstructed point-source phantom, the proposed distance-driven approach results in a lower FWHM than the ray-driven approach even when using a smaller detector resolution. Furthermore, based on the Mini Deluxe Phantom, it is shown that the distance-driven approach has consistently higher SNR and structural similarity compared to the ray-driven approach as the counts in measured projections deteriorates.

  15. Formation of Polarized Beams in Chains of Dielectric Spheres and Cylinders

    DTIC Science & Technology

    2013-10-15

    Three different types of coupling to the PFMs. (a) Collimated rays, (b) spherical emitter, and (c) a multimode fiber inserted inside a hollow waveguide...oscillating along the (a) y axis and (b) z axis. (c) The intensity profiles of the focused beams calculated 0.62 μm away from the tip of the end cylinder...ray. In a geometrical optics limit (D ≫ 10λ) the results are not depen- dent on D and λ. (b) d HWG Fiber (c) S Polarizer+Detectors (a) x z y Fig. 3

  16. Gamma-Ray Burst Afterglows with ALMA

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Huang, K.; Takahashi, S.

    2015-12-01

    We present multi-wavelength observations including sub-millimeter follow-ups for two GRB afterglows. The rapid SMA and multi-wavelength observations for GRB120326A revealed their complex emissions as the synchrotron self-inverse Compton radiation from reverse shock. The observations including ALMA for GRB131030A also showed the significant X-ray excess from the standard forward shock synchrotron model. Based on these results, we also discuss further observations for (A) constraining of the mass of progenitor with polarization, (B) the first confirmation of GRB jet collimation, and (C) revealing the origin of optically dark GRBs.

  17. Dosimetric investigation of dual energy photon beams with assymmetric collimator jaws

    NASA Astrophysics Data System (ADS)

    Varatharaj, C.; Ravikumar, M.; Supe, Sanjay S.; Sathiyan, S.; Ganesh, K. M.; Arunkumar, T.

    2008-01-01

    Many modern linear accelerators are equipped with asymmetric collimators or jaws that can be moved independently. Asymmetric jaws have got many clinical applications in radiation therapy. In the present study, the dosimetric characteristics of asymmetric collimators from our linear accelerator with 6 and 18 MV X-rays were carried out. The field size factors (FSF) and half value layer (HVL) were measured in a water phantom using 0.6 cc Farmer chamber for symmetric and asymmetric fields for both 6 and 18 MV X-rays. Measurements of beam penumbra, percentage depth dose (PDD), cross beam profiles and calculated isodose curves were measured by RFA 300 for both asymmetric and symmetric fields. The FSF were found to agree with in 3% for symmetric and asymmetric fields. The HVL in water was found to be 15.8 cm and 14.4 cm for 6 MV photons and 26 cm and 22.9 cm for 18 MV photons at the central axis and at 20 cm off the central axis. At 30 cm depth the percentage depth dose for symmetric and asymmetric fields were found to differ as high as 6% for 6 MV and 4% for 18 MV fields. No observable difference in penumbra was noticed for symmetric and asymmetric fields of same dimensions. The constrictions of isodose curves at the edge nearer to central axis were noticed for asymmetrically placed fields. The observed differences could be due to the passage of primary beam through differential thickness of the flattening filter which alters the beam quality.

  18. Free-form surface design method for a collimator TIR lens.

    PubMed

    Tsai, Chung-Yu

    2016-04-01

    A free-form (FF) surface design method is proposed for a general axial-symmetrical collimator system consisting of a light source and a total internal reflection lens with two coupled FF boundary surfaces. The profiles of the boundary surfaces are designed using a FF surface construction method such that each incident ray is directed (refracted and reflected) in such a way as to form a specified image pattern on the target plane. The light ray paths within the system are analyzed using an exact analytical model and a skew-ray tracing approach. In addition, the validity of the proposed FF design method is demonstrated by means of ZEMAX simulations. It is shown that the illumination distribution formed on the target plane is in good agreement with that specified by the user. The proposed surface construction method is mathematically straightforward and easily implemented in computer code. As such, it provides a useful tool for the design and analysis of general axial-symmetrical optical systems.

  19. Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Hong; Bu, De-Fu

    2018-05-01

    It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.

  20. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; hide

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  1. Microcrystallography using single-bounce monocapillary optics

    PubMed Central

    Gillilan, R. E.; Cook, M. J.; Cornaby, S. W.; Bilderback, D. H.

    2010-01-01

    X-ray microbeams have become increasingly valuable in protein crystallography. A number of synchrotron beamlines worldwide have adapted to handling smaller and more challenging samples by providing a combination of high-precision sample-positioning hardware, special visible-light optics for sample visualization, and small-diameter X-ray beams with low background scatter. Most commonly, X-ray microbeams with diameters ranging from 50 µm to 1 µm are produced by Kirkpatrick and Baez mirrors in combination with defining apertures and scatter guards. A simple alternative based on single-bounce glass monocapillary X-ray optics is presented. The basic capillary design considerations are discussed and a practical and robust implementation that capitalizes on existing beamline hardware is presented. A design for mounting the capillary is presented which eliminates parasitic scattering and reduces deformations of the optic to a degree suitable for use on next-generation X-ray sources. Comparison of diffraction data statistics for microcrystals using microbeam and conventional aperture-collimated beam shows that capillary-focused beam can deliver significant improvement. Statistics also confirm that the annular beam profile produced by the capillary optic does not impact data quality in an observable way. Examples are given of new structures recently solved using this technology. Single-bounce monocapillary optics can offer an attractive alternative for retrofitting existing beamlines for microcrystallography. PMID:20157276

  2. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.

    2013-05-15

    We present a multicrystal Johann-type hard x-ray spectrometer ({approx}5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88 Degree-Sign -74 Degree-Sign ) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmosphericmore » pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4{pi} sr. The typical resolving power is in the order of (E/{Delta}E){approx}10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.« less

  3. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, P., E-mail: pchow@carnegiescience.edu; Xiao, Y. M.; Rod, E.

    2015-07-15

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input fieldmore » of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.« less

  4. Development of a guinea pig cutaneous radiation injury model using low penetrating X-rays.

    PubMed

    Rodgers, Kathleen E; Tan, Alick; Kim, Lila; Espinoza, Theresa; Meeks, Christopher; Johnston, William; Maulhardt, Holly; Donald, Melissa; Hill, Colin; diZerega, Gere S

    2016-08-01

    A guinea pig skin model was developed to determine the dose-dependent response to soft X-ray radiation into the dermis. X-ray exposure (50 kVp) was defined to a 4.0 × 4.0 cm area on the lateral surface of a guinea pig using lead shielding. Guinea pigs were exposed to a single fraction of X-ray irradiation ranging from 25-79 Gy via an XRAD320ix Biological Irradiator with the collimator removed. Gross skin changes were measured using clinical assessments defined by the Kumar scale. Skin contracture was assessed, as well as histological evaluations. Loss of dermal integrity was shown after a single dose of soft X-ray radiation at or above 32 Gy with the central 2.0 × 2.0 cm of the exposed site being the most affected. Hallmarks of the skin injury included moist desquamation, ulceration and wound contracture, as well as alterations in epithelium, dermis, muscle and adipose. Changes in the skin were time- and radiation dose-dependent. Full-thickness injury occurred without animal mortality or gross changes in the underlying organs. The guinea pig is an appropriate small animal model for the short-term screening of countermeasures for cutaneous radiation injury (CRI).

  5. 3D visualization of optical ray aberration and its broadcasting to smartphones by ray aberration generator

    NASA Astrophysics Data System (ADS)

    Hellman, Brandon; Bosset, Erica; Ender, Luke; Jafari, Naveed; McCann, Phillip; Nguyen, Chris; Summitt, Chris; Wang, Sunglin; Takashima, Yuzuru

    2017-11-01

    The ray formalism is critical to understanding light propagation, yet current pedagogy relies on inadequate 2D representations. We present a system in which real light rays are visualized through an optical system by using a collimated laser bundle of light and a fog chamber. Implementation for remote and immersive access is enabled by leveraging a commercially available 3D viewer and gesture-based remote controlling of the tool via bi-directional communication over the Internet.

  6. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to soft X-ray), less periodicities are detected, which provides an evidence that the emission from high energy band (hard X-ray) comes primarily from jets, and the emission from low energy band (soft X-ray) may originate from the medium around binary systems. The multiple X-ray periods obtained from the present studies provide the necessary basis for the analysis of multi-wavelength data and the dynamics of the central engine system of SS 433.

  7. MO-DE-BRA-04: Hands-On Fluoroscopy Safety Training with Real-Time Patient and Staff Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderhoek, M; Bevins, N

    Purpose: Fluoroscopically guided interventions (FGI) are routinely performed across many different hospital departments. However, many involved staff members have minimal training regarding safe and optimal use of fluoroscopy systems. We developed and taught a hands-on fluoroscopy safety class incorporating real-time patient and staff dosimetry in order to promote safer and more optimal use of fluoroscopy during FGI. Methods: The hands-on fluoroscopy safety class is taught in an FGI suite, unique to each department. A patient equivalent phantom is set on the patient table with an ion chamber positioned at the x-ray beam entrance to the phantom. This provides a surrogatemore » measure of patient entrance dose. Multiple solid state dosimeters (RaySafe i2 dosimetry systemTM) are deployed at different distances from the phantom (0.1, 1, 3 meters), which provide surrogate measures of staff dose. Instructors direct participating clinical staff to operate the fluoroscopy system as they view live fluoroscopic images, patient entrance dose, and staff doses in real-time. During class, instructors work with clinical staff to investigate how patient entrance dose, staff doses, and image quality are affected by different parameters, including pulse rate, magnification, collimation, beam angulation, imaging mode, system geometry, distance, and shielding. Results: Real-time dose visualization enables clinical staff to directly see and learn how to optimize their use of their own fluoroscopy system to minimize patient and staff dose, yet maintain sufficient image quality for FGI. As a direct result of the class, multiple hospital departments have implemented changes to their imaging protocols, including reduction of the default fluoroscopy pulse rate and increased use of collimation and lower dose fluoroscopy modes. Conclusion: Hands-on fluoroscopy safety training substantially benefits from real-time patient and staff dosimetry incorporated into the class. Real-time dose display helps clinical staff visualize, internalize, and ultimately utilize the safety techniques learned during the training. RaySafe/Unfors/Fluke lent us a portable version of their RaySafe i2 Dosimetry System for 6 months.« less

  8. NGST/XRCF Design and Build Wavescope System Pallet

    NASA Technical Reports Server (NTRS)

    Geary, Joe

    1999-01-01

    Based on the successful Wavescope demonstration at MSFC at the end of March, the decision was made by the optical testing team to purchase an upgraded Wavescope from AOA. The MSFC version would include: a higher resolution camera (1000 x 1000 pixels); a higher density lenslet array (150 x 150); updated software; and longer cables (to accommodate the remote operation of the Wavescope optical head which was resident in the Beam Guide Tube). The AOA proposal for the new instrument was received in mid-April, and delivered to MSFC in mid-July. A considerable amount of effort was expended to provide the infrastructure needed for Wavescope operation, and to incorporate it into the overall test system. This was provided by the Wavescope System Pallet (WSP) built by UAH. The WSP is illustrated. Several instruments are incorporated on this pallet. These include the: Wavescope optical head; a PDI wavefront sensor; a point spread function sensor; a Leica light-based distance measuring sensor. In addition there is a single mode fiber point source (fed from a separate source pallet) which serves both as a reference for the Wavescope and as a source point for the test mirror. There is a dual function lens which both collimates the beam from the test image point, and images the test mirror onto the lenslet array. There is a high quality Collimator which can provide a flat input wavefront directly into the Wavescope. There are also various aids such as an alignment laser, an alignment telescope, alignment sticks and apertures. The WSP was delivered to MSFC on 7/28/99. An picture shows the WSP installed in the Guide Tube at the X-Ray Calibration Facility (XRCF).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, P. E., E-mail: Patricia.Lindsay@rmp.uhn.on.ca; Granton, P. V.; Hoof, S. van

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization ofmore » the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the dosimetric and geometric properties of the three systems. This underscores the need for careful commissioning of each individual system for use in radiobiological experiments.« less

  10. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    PubMed Central

    Gelover, Edgar; Wang, Dongxu; Hill, Patrick M.; Flynn, Ryan T.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark; Hyer, Daniel E.

    2015-01-01

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σx1,σx2,σy1,σy2) together with the spatial location of the maximum dose (μx,μy). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets. PMID:25735287

  11. Nondestructive Evaluation of Aircraft Composites Using Terahertz Time Domain Spectroscopy

    DTIC Science & Technology

    2008-12-10

    substrate lenses : collimating and aplanatic. In a collimating lens , the rays emitted near the optic axis emerge as a collimated beam, while the rays...emitted at larger angles emerge at substantial angles or are internally reflected and lost. The aplanatic hyperhemispherical lens design, which...propagates out of the lens before it spreads. Many of the hemispherical designs result in the spreading of the THz beam at a given angle , which can then be

  12. Proof of Principle for Electronic Collimation of a Gamma Ray Detector

    DTIC Science & Technology

    2016-01-01

    complete the Environmental Baseline Survey mission for soldiers. The monitoring of radioactive waste handling, as well as other sources of radioactive ...electronic collimation of a gamma ray spectroscopic detector will include identifying and characterizing environmentally hazardous radioactivity to

  13. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans.

    PubMed

    Bai, Chuanyong; Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-06-01

    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 muSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 +/- .003/cm in the uniform region of the ACR phantom, .151 +/- .003/cm and .151 +/- .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 +/- 6.5 before and 87.9 +/- 3.3 after AC (average +/- standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC.

  14. Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae

    NASA Astrophysics Data System (ADS)

    Pratim Basumallick, Partha; Gupta, Nayantara

    2017-07-01

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.

  15. Alkali halide microstructured optical fiber for X-ray detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHaven, S. L., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Albin, S., E-mail: salbin@nsu.edu

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. Themore » results and associated materials difference are discussed.« less

  16. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  17. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  18. [Creation of a crystalline lens radiation exposure defense cover and the effect of radiation exposure decrease on neuro-interventions].

    PubMed

    Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo

    2007-11-20

    A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.

  19. Fast collimated neutron flux measurement using stilbene scintillator and flashy analog-to-digital converter in JT-60U

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.; Itoga, T.; Okuji, T.; Nakhostin, M.; Shinohara, K.; Hayashi, T.; Sukegawa, A.; Baba, M.; Nishitani, T.

    2006-10-01

    A line-integrated neutron emission profile is routinely measured using the radial neutron collimator system in JT-60U tokamak. Stilbene neuron detectors (SNDs), which combine a stilbene organic crystal scintillation detector (SD) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure collimated neutron flux. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to ˜1×105counts/s due to the analog PSD circuit. To overcome this issue, a digital signal processing system (DSPS) using a flash analog-to-digital converter (Acqiris DC252, 8GHz, 10bits) has been developed at Cyclotron and Radioisotope Center in Tohoku University. In this system anode signals from photomultiplier of the SD are directory stored and digitized. Then, the PSD between neutrons and gamma rays is performed using software. The DSPS has been installed in the vertical neutron collimator system in JT-60U and applied to deuterium experiments. It is confirmed that the PSD is sufficiently performed and collimated neutron flux is successfully measured with count rate up to ˜5×105counts/s without the effect of pileup of detected pulses. The performance of the DSPS as a neutron detector, which supersedes the SND, is demonstrated.

  20. Quasi-mosaicity of (311) planes in silicon and its use in a Laue lens with high-focusing power

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo; Paternò, Gianfranco; Bellucci, Valerio; Guidi, Vincenzo

    2014-12-01

    (311) curved planes can be exploited for efficiently focus hard X-rays. With this purpose, a self-standing bent crystal was manufactured at the Sensor and Semiconductor Laboratory of Ferrara (Italy). The crystal was designed as an optical component for a X-ray concentrator such as a Laue lens. The curvature of (311) planes was obtained through the quasi-mosaic effect. The diffraction efficiency of the sample was tested at the Institut Laue Langevin of Grenoble (France) by using a collimated monochromatic X-ray beam. This was the first prove of the diffraction properties of (311) quasi-mosaic planes. Diffraction efficiency resulted 35 % with a 182 keV X-ray beam, in agreement with the theoretical expectation. It corresponded to a reflectivity of 33 %. While the chosen orientation is not the most performing lying of planes, it can be used, in addition to smaller-index planes, in order to raise the total effective area of a Laue lens. To quantify it, a Laue lens based on quasi-mosaic silicon and germanium crystals, exploiting (111), (422) and (311) diffracting planes, was achieved and simulated with the LaueGen code.

  1. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: identifying regional elemental enrichment on asteroids

    NASA Astrophysics Data System (ADS)

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-09-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid's surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 em for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.

  2. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Macrander, A. T.

    Using the 1-BM-C beamline at the Advanced Photon Source (APS), we have performed the initial indirect x - ray imaging point-spread-function (PSF) test of a unique 88-mm diameter YAG:Ce single crystal of only 100 - micron thickness. The crystal was bonded to a fiber optic plat e (FOP) for mechanical support and to allow the option for FO coupling to a large format camera. This configuration resolution was compared to that of self - supported 25-mm diameter crystals, with and without an Al reflective coating. An upstream monochromator was used to select 17-keV x-rays from the broadband APS bending magnetmore » source of synchrotron radiation. The upstream , adjustable Mo collimators were then used to provide a series of x-ray source transverse sizes from 200 microns down to about 15-20 microns (FWHM) at the crystal surface. The emitted scintillator radiation was in this case lens coupled to the ANDOR Neo sCMOS camera, and the indirect x-ray images were processed offline by a MATLAB - based image processing program. Based on single Gaussian peak fits to the x-ray image projected profiles, we observed a 10.5 micron PSF. This sample thus exhibited superior spatial resolution to standard P43 polycrystalline phosphors of the same thickness which would have about a 100-micron PSF. Lastly, this single crystal resolution combined with the 88-mm diameter makes it a candidate to support future x-ray diffraction or wafer topography experiments.« less

  4. Nondestructive Evaluation of Foam Insulation on the Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Richter, Joel; Walker, James L.

    2006-01-01

    Foam loss on the External Tank (ET) during launch can be caused by a number of factors. Voids are the best understood mechanism of foam loss, although it is known that delaminations, cracks and crushed foam can also lead to liberation of foam. Shortly after the Columbia accident, work began on non-destructive evaluation of foam targeted at finding voids and delaminations. After several months of searching for candidate methods capable of inspecting ET foam, the five most promising techniques were taken through a blind test and narrowed down to two methods to develop and use for inspection of the ET. These methods were backscatter radiography and terahertz imaging. The backscatter radiography system measures a test part by detecting Compton backscattered x-ray energy generated by a collimated beam of x-rays directed at the test subject. This collimated beam is scanned across the subject, recording scatter intensity data one pixel at a time until the area of interest is covered. The resulting data can be used to generate an image similar to a radiograph. Some depth information can be gathered utilizing apertures or collimation on the detectors. The detectors are located around the collimated source, making this a single sided inspection. The void detection limit with the currently utilized system is around 0.5 inches in diameter by 0.2 inches high. The terahertz imaging system inspects a test part by utilizing a transceiver to emit a pulse focused at the aluminum skin of the ET, which reflects it back to the transceiver where it is analyzed. The transceiver is scanned across the area of interest until a measurement has been taken at every location. Amplitude, time delay and frequency content are examined to note any discontinuities which may be the result of a void or other type of defect. The pulse currently utilized is in the millimeter wave regime. The void detection limit with this system is around 0.5 inches in diameter by 0.2 inches high. With increased interest in other causes of foam loss following the flight of Discovery in July 2005, laser shearography was added to the techniques used for inspecting ET foam. The shearography method records a sheared image of a laser speckle pattern projected on a test part before And after some sort of excitation. The resultant fringe pattern allows the slope of the out of plane displacement to be measured. For crushed and delaminated foam applications, a non-contact air coupled acoustic force is used to excite the surface of the foam. Regions without defects tend to respond differently to the sound energy than do regions with defects, generating a map of the foam integrity. Foam crushed to a depth of about 0.1 inches is detectable with shearography even after it has relaxed to its original shape.

  5. Toward Simultaneous Real-Time Fluoroscopic and Nuclear Imaging in the Intervention Room.

    PubMed

    Beijst, Casper; Elschot, Mattijs; Viergever, Max A; de Jong, Hugo W A M

    2016-01-01

    To investigate the technical feasibility of hybrid simultaneous fluoroscopic and nuclear imaging. An x-ray tube, an x-ray detector, and a gamma camera were positioned in one line, enabling imaging of the same field of view. Since a straightforward combination of these elements would block the lines of view, a gamma camera setup was developed to be able to view around the x-ray tube. A prototype was built by using a mobile C-arm and a gamma camera with a four-pinhole collimator. By using the prototype, test images were acquired and sensitivity, resolution, and coregistration error were analyzed. Nuclear images (two frames per second) were acquired simultaneously with fluoroscopic images. Depending on the distance from point source to detector, the system resolution was 1.5-1.9-cm full width at half maximum, the sensitivity was (0.6-1.5) × 10(-5) counts per decay, and the coregistration error was -0.13 to 0.15 cm. With good spatial and temporal alignment of both modalities throughout the field of view, fluoroscopic images can be shown in grayscale and corresponding nuclear images in color overlay. Measurements obtained with the hybrid imaging prototype device that combines simultaneous fluoroscopic and nuclear imaging of the same field of view have demonstrated the feasibility of real-time simultaneous hybrid imaging in the intervention room. © RSNA, 2015

  6. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    PubMed Central

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  7. Development and deployment of the Collimated Directional Radiation Detection System

    NASA Astrophysics Data System (ADS)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  8. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    DOE PAGES

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.; ...

    2017-10-16

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less

  9. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova.

    PubMed

    Evans, P A; Cenko, S B; Kennea, J A; Emery, S W K; Kuin, N P M; Korobkin, O; Wollaeger, R T; Fryer, C L; Madsen, K K; Harrison, F A; Xu, Y; Nakar, E; Hotokezaka, K; Lien, A; Campana, S; Oates, S R; Troja, E; Breeveld, A A; Marshall, F E; Barthelmy, S D; Beardmore, A P; Burrows, D N; Cusumano, G; D'Aì, A; D'Avanzo, P; D'Elia, V; de Pasquale, M; Even, W P; Fontes, C J; Forster, K; Garcia, J; Giommi, P; Grefenstette, B; Gronwall, C; Hartmann, D H; Heida, M; Hungerford, A L; Kasliwal, M M; Krimm, H A; Levan, A J; Malesani, D; Melandri, A; Miyasaka, H; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Palmer, D M; Perri, M; Pike, S; Racusin, J L; Rosswog, S; Siegel, M H; Sakamoto, T; Sbarufatti, B; Tagliaferri, G; Tanvir, N R; Tohuvavohu, A

    2017-12-22

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction ( Y e ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow). Copyright © 2017, American Association for the Advancement of Science.

  10. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less

  11. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.

  12. SU-F-T-425: Head-Scatter Off-Axis for FFF Megavoltage Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, T; Penjweini, R; Dimofte, A

    Purpose: Head-scatter photons inside a clinical accelerator cause the output to change with collimator setting. On the central-axis, this contribution is well-described by output factor in air (or head-scatter factor). However, a few studies have examined this component at off-axis points. Methods: We define the head-scatter off-axis ratio, HOA, as the ratio of the water kerma in air due to head-scatter photons at the off-axis position x to the water kerma from direct primary photons on the central axis: HOA(cx,cy,xy) = (Q(cx,cy,x) – QP(cx,cy,x))/QP(cx,cy,0), where Q(cx, cy,x), QP(cx,cy,x) are charges measured by an ionization chamber in a miniphantom for collimatormore » setting cx × cy and cx × 3 cm, respectively, at off-axis point x. “Direct primary” is those photons that come from the source without interactions in the intervening structures. Results: We measured HOA for two energies (6XFFF and 6X) along X and Y jaw directions for various collimator settings. The shape of HOA has well defined penumbra for collimator setting larger than 10 × 10 cm2. Conclusion: The narrow gaussian component is interpreted as the source of photons scattered in the flattening filter and the primary collimator. The broad component is attributed to photons scattered in the secondary (variable) collimators. By a direct comparison between 6X and 6XFFF beams, we can confirm that the second component is indeed coming from collimator jaws and identify the parts coming from the primary collimator and the flattening filter, respectively.« less

  13. Changes in the Long-Term Intensity Variations in Cygnus X-2 and LMC X-3

    NASA Astrophysics Data System (ADS)

    Paul, B.; Kitamoto, S.; Makino, F.

    2000-01-01

    We report the detection of changes in the long-term intensity variations in two X-ray binaries, Cyg X-2 and LMC X-3. In this work, we have used the long-term light curves obtained with the All-Sky Monitors (ASMs) of the Rossi X-Ray Timing Explorer (RXTE), Ginga, Ariel 5, and Vela 5B and the scanning modulation collimator of HEAO 1. It is found that in the light curves of both the sources, obtained with these instruments at various times over the last 30 years, more than one periodic or quasi-periodic component is always present. The multiple prominent peaks in the periodograms have frequencies unrelated to each other. In Cyg X-2, RXTE-ASM data show strong peaks at 40.4 and 68.8 days, and Ginga-ASM data show strong peaks at 53.7 and 61.3 days. Multiple peaks are also observed in LMC X-3. The various strong peaks in the periodograms of LMC X-3 appear at 104, 169, and 216 days (observed with RXTE-ASM) and 105, 214, and 328 days (observed with Ginga-ASM). The present results, when compared with the earlier observations of periodicities in these two systems, demonstrate the absence of any stable long period. The 78 day periodicity detected earlier in Cyg X-2 was probably due to the short time base in the RXTE data that were used, and the periodicity of 198 days in LMC X-3 was due to a relatively short duration of observation with HEAO 1.

  14. Gamma ray spectroscopy monitoring method and apparatus

    DOEpatents

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  15. A Monte Carlo study on {sup 223}Ra imaging for unsealed radionuclide therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Miwa, Kenta; Sasaki, Masayuki

    Purpose: Radium-223 ({sup 223}Ra), an α-emitting radionuclide, is used in unsealed radionuclide therapy for metastatic bone tumors. The demand for qualitative {sup 223}Ra imaging is growing to optimize dosimetry. The authors simulated {sup 223}Ra imaging using an in-house Monte Carlo simulation code and investigated the feasibility and utility of {sup 223}Ra imaging. Methods: The Monte Carlo code comprises two modules, HEXAGON and NAI. The HEXAGON code simulates the photon and electron interactions in the tissues and collimator, and the NAI code simulates the response of the NaI detector system. A 3D numeric phantom created using computed tomography images of amore » chest phantom was installed in the HEXAGON code. {sup 223}Ra accumulated in a part of the spine, and three x-rays and 19 γ rays between 80 and 450 keV were selected as the emitted photons. To evaluate the quality of the {sup 223}Ra imaging, the authors also simulated technetium-99m ({sup 99m}Tc) imaging under the same conditions and compared the results. Results: The sensitivities of the three photopeaks were 147 counts per unit of source activity (cps MBq{sup −1}; photopeak: 84 keV, full width of energy window: 20%), 166 cps MBq{sup −1} (154 keV, 15%), and 158 cps MBq{sup −1} (270 keV, 10%) for a low-energy general-purpose (LEGP) collimator, and those for the medium-energy general-purpose (MEGP) collimator were 33, 13, and 8.0 cps MBq{sup −1}, respectively. In the case of {sup 99m}Tc, the sensitivity was 55 cps MBq{sup −1} (141 keV, 20%) for LEGP and 52 cps MBq{sup −1} for MEGP. The fractions of unscattered photons of the total photons reflecting the image quality were 0.09 (84 keV), 0.03 (154 keV), and 0.02 (270 keV) for the LEGP collimator and 0.41, 0.25, and 0.50 for the MEGP collimator, respectively. Conversely, this fraction was approximately 0.65 for the simulated {sup 99m}Tc imaging. The sensitivity with the LEGP collimator appeared very high. However, almost all of the counts were because of photons that penetrated or were scattered in the collimator; therefore, the proportions of unscattered photons were small. Conclusions: Their simulation study revealed that the most promising scheme for {sup 223}Ra imaging is an 84-keV window using an MEGP collimator. The sensitivity of the photopeaks above 100 keV is too low for {sup 223}Ra imaging. A comparison of the fractions of unscattered photons reveals that the sensitivity and image quality are approximately two-thirds of those for {sup 99m}Tc imaging.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhyadhom, A; McGuinness, C; Descovich, M

    Purpose: To develop a methodology for validation of a Monte-Carlo dose calculation model for robotic small field SRS/SBRT deliveries. Methods: In a robotic treatment planning system, a Monte-Carlo model was iteratively optimized to match with beam data. A two-part analysis was developed to verify this model. 1) The Monte-Carlo model was validated in a simulated water phantom versus a Ray-Tracing calculation on a single beam collimator-by-collimator calculation. 2) The Monte-Carlo model was validated to be accurate in the most challenging situation, lung, by acquiring in-phantom measurements. A plan was created and delivered in a CIRS lung phantom with film insert.more » Separately, plans were delivered in an in-house created lung phantom with a PinPoint chamber insert within a lung simulating material. For medium to large collimator sizes, a single beam was delivered to the phantom. For small size collimators (10, 12.5, and 15mm), a robotically delivered plan was created to generate a uniform dose field of irradiation over a 2×2cm{sup 2} area. Results: Dose differences in simulated water between Ray-Tracing and Monte-Carlo were all within 1% at dmax and deeper. Maximum dose differences occurred prior to dmax but were all within 3%. Film measurements in a lung phantom show high correspondence of over 95% gamma at the 2%/2mm level for Monte-Carlo. Ion chamber measurements for collimator sizes of 12.5mm and above were within 3% of Monte-Carlo calculated values. Uniform irradiation involving the 10mm collimator resulted in a dose difference of ∼8% for both Monte-Carlo and Ray-Tracing indicating that there may be limitations with the dose calculation. Conclusion: We have developed a methodology to validate a Monte-Carlo model by verifying that it matches in water and, separately, that it corresponds well in lung simulating materials. The Monte-Carlo model and algorithm tested may have more limited accuracy for 10mm fields and smaller.« less

  17. The CheMin XRD on the Mars Science Laboratory Rover Curiosity: Construction, Operation, and Quantitative Mineralogical Results from the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2015-01-01

    The Mars Science Laboratory mission was launched from Cape Canaveral, Florida on Nov. 26, 2011 and landed in Gale crater, Mars on Aug. 6, 2012. MSL's mission is to identify and characterize ancient "habitable" environments on Mars. MSL's precision landing system placed the Curiosity rover within 2 km of the center of its 20 X 6 km landing ellipse, next to Gale's central mound, a 5,000 meter high pile of laminated sediment which may contain 1 billion years of Mars history. Curiosity carries with it a full suite of analytical instruments, including the CheMin X-ray diffractometer, the first XRD flown in space. CheMin is essentially a transmission X-ray pinhole camera. A fine-focus Co source and collimator transmits a 50µm beam through a powdered sample held between X-ray transparent plastic windows. The sample holder is shaken by a piezoelectric actuator such that the powder flows like a liquid, each grain passing in random orientation through the beam over time. Forward-diffracted and fluoresced X-ray photons from the sample are detected by an X-ray sensitive Charge Coupled Device (CCD) operated in single photon counting mode. When operated in this way, both the x,y position and the energy of each photon are detected. The resulting energy-selected Co Kalpha Debye-Scherrer pattern is used to determine the identities and amounts of minerals present via Rietveld refinement, and a histogram of all X-ray events constitutes an X-ray fluorescence analysis of the sample.The key role that definitive mineralogy plays in understanding the Martian surface is a consequence of the fact that minerals are thermodynamic phases, having known and specific ranges of temperature, pressure and composition within which they are stable. More than simple compositional analysis, definitive mineralogical analysis can provide information about pressure/temperature conditions of formation, past climate, water activity and the like. Definitive mineralogical analyses are necessary to establish the origin or provenance of a sample. The search for evidence of extant or extinct life on Mars will initially be a search for evidence of present or past conditions supportive of life (e.g., evidence of water), not for life itself.Results of the first 1,000 sols (Mars days) will be discussed, including the discovery of the first habitable environment on Mars.

  18. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  19. Simbol-X: a formation flight mission with an unprecedented imaging capability in the 0.5-80 keV energy band

    NASA Astrophysics Data System (ADS)

    Tagliaferri, Gianpiero; Ferrando, Philippe; Le Duigou, Jean-Michel; Pareschi, Giovanni; Laurent, Philippe; Malaguti, Giuseppe; Clédassou, Rodolphe; Piermaria, Mauro; La Marle, Olivier; Fiore, Fabrizio; Giommi, Paolo

    2017-11-01

    The discovery of X-ray emission from cosmic sources in the 1960s has opened a new powerful observing window on the Universe. In fact, the exploration of the X-ray sky during the 70s-90s has established X-ray astronomy as a fundamental field of astrophysics. Today, the emission from astrophysical sources is by large best known at energies below 10 keV. The main reason for this situation is purely technical since grazing incidence reflection has so far been limited to the soft X-ray band. Above 10 keV all the observations have been obtained with collimated detectors or coded mask instruments. To make a leap step forward in Xray astronomy above 10 keV it is necessary to extend the principle of focusing X ray optics to higher energies, up to 80 keV and beyond. To this end, ASI and CNES are presently studying the implementation of a X-ray mission called Simbol-X. Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push grazing incidence imaging up to 80 keV and beyond, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This technological breakthrough will open a new highenergy window in astrophysics and cosmology. Here we will address the problematic of the development for such a distributed and deformable instrument. We will focus on the main performances of the telescope, like angular resolution, sensitivity and source localization. We will also describe the specificity of the calibration aspects of the payload distributed over two satellites and therefore in a not "frozen" configuration.

  20. Volume of interest CBCT and tube current modulation for image guidance using dynamic kV collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca; Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@nshealth.ca

    2016-04-15

    Purpose: The focus of this work is the development of a novel blade collimation system enabling volume of interest (VOI) CBCT with tube current modulation using the kV image guidance source on a linear accelerator. Advantages of the system are assessed, particularly with regard to reduction and localization of dose and improvement of image quality. Methods: A four blade dynamic kV collimator was developed to track a VOI during a CBCT acquisition. The current prototype is capable of tracking an arbitrary volume defined by the treatment planner for subsequent CBCT guidance. During gantry rotation, the collimator tracks the VOI withmore » adjustment of position and dimension. CBCT image quality was investigated as a function of collimator dimension, while maintaining the same dose to the VOI, for a 22.2 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Dose distributions were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field CBCT distributions to quantify dose reduction and localization to the target volume. A novel method of optimizing x-ray tube current during CBCT acquisition was developed and assessed with regard to contrast-to-noise ratio (CNR) and imaging dose. Results: Measurements show that the VOI CBCT method using the dynamic blade system yields an increase in contrast-to-noise ratio by a factor of approximately 2.2. Depending upon the anatomical site, dose was reduced to 15%–80% of the full-field CBCT value along the central axis plane and down to less than 1% out of plane. The use of tube current modulation allowed for specification of a desired SNR within projection data. For approximately the same dose to the VOI, CNR was further increased by a factor of 1.2 for modulated VOI CBCT, giving a combined improvement of 2.6 compared to full-field CBCT. Conclusions: The present dynamic blade system provides significant improvements in CNR for the same imaging dose and localization of imaging dose to a predefined volume of interest. The approach is compatible with tube current modulation, allowing optimization of the imaging protocol.« less

  1. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igarashi, Noriyuki, E-mail: noriyuki.igarashi@kek.jp; Nitani, Hiroaki; Takeichi, Yasuo

    BL-15A is a new x-ray undulator beamline at the Photon Factory. It will be dedicated to two independent research activities, simultaneous XAFS/XRF/XRD experiments, and SAXS/WAXS/GI-SAXS studies. In order to supply a choice of micro-focus, low-divergence and collimated beams, a double surface bimorph mirror was recently developed. To achieve further mirror surface optimization, the pencil beam scanning method was applied for “in-situ” beam inspection and the Inverse Matrix method was used for determination of optimal voltages on the piezoelectric actuators. The corrected beam profiles at every focal spot gave good agreement with the theoretical values and the resultant beam performance ismore » promising for both techniques. Quick and stable switching between highly focused and intense collimated beams was established using this new mirror with the simple motorized stages.« less

  3. SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.D.; Scherrer, B; Don, S

    Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient.more » The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund.« less

  4. A Deep Chandra ACIS Study of NGC 4151. I. The X-ray Morphology of the 3 kpc Diameter Circum-nuclear Region and Relation to the Cold Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-03-01

    We report on the imaging analysis of ~200 ks sub-arcsecond resolution Chandra Advanced CCD Imaging Spectrometer (ACIS-S) observations of the nearby Seyfert 1 galaxy NGC 4151. Bright, structured soft X-ray emission is observed to extend from 30 pc to 1.3 kpc in the southwest from the nucleus, much farther than seen in earlier X-ray studies. The terminus of the northeastern X-ray emission is spatially coincident with a CO gas lane, where the outflow likely encounters dense gas in the host galactic disk. X-ray emission is also detected outside the boundaries of the ionization cone, which indicates that the gas there is not completely shielded from the nuclear continuum, as would be the case for a molecular torus collimating the bicone. In the central r < 200 pc region, the subpixel processing of the ACIS data recovers the morphological details on scales of <30 pc (<0farcs5) first discovered in Chandra High Resolution Camera images. The X-ray emission is more absorbed toward the boundaries of the ionization cone, as well as perpendicular to the bicone along the direction of a putative torus in NGC 4151. The innermost region where X-ray emission shows the highest hardness ratio is spatially coincident with the near-infrared-resolved H2 emission and dusty spirals we find in an Hubble Space Telescope V - H color image. The agreement between the observed H2 line flux and the value predicted from X-ray-irradiated molecular cloud models supports photo-excitation by X-rays from the active nucleus as the origin of the H2 line, although contribution from UV fluorescence or collisional excitation cannot be ruled out with current data. The discrepancy between the mass of cold molecular gas inferred from recent CO and near-infrared H2 observations may be explained by the anomalous CO abundance in this X-ray-dominated region. The total H2 mass derived from the X-ray observation agrees with the recent measurement by Storchi-Bergmann et al.

  5. Evaluation of a CdTe semiconductor based compact γ camera for sentinel lymph node imaging.

    PubMed

    Russo, Paolo; Curion, Assunta S; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caracò, Corradina; Aloj, Luigi; Lastoria, Secondo

    2011-03-01

    The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. The room-temperature CdTe pixel detector (1 mm thick) has 256 x 256 square pixels arranged with a 55 microm pitch (sensitive area 14.08 x 14.08 mm2), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. For 99 mTc, at 50 mm distance, a background-subtracted sensitivity of 6.5 x 10(-3) cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3 x 10(-2) cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq 99 mTc and prior localization with standard gamma camera lymphoscintigraphy. The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.

  6. Collimating slicer for optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Hénault, François

    2016-07-01

    Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element of a given field. It is a powerful tool which rearranges the data cube represented by two spatial dimensions defining the field and the spectral decomposition (x, y, λ) in a detector plane. In IFS, the "spatial" unit reorganizes the field, the "spectral" unit is being composed of a classical spectrograph. For the spatial unit, three main techniques - microlens array, microlens array associated with fibres and image slicer - are used in astronomical instrumentations. The development of a Collimating Slicer is to propose a new type of optical integral field spectroscopy which should be more compact. The main idea is to combine the image slicer with the collimator of the spectrograph mixing the "spatial" and "spectral" units. The traditional combination of slicer, pupil and slit elements and spectrograph collimator is replaced by a new one composed of a slicer and spectrograph collimator only. After testing few configurations, this new system looks very promising for low resolution spectrographs. In this paper, the state of art of integral field spectroscopy using image slicers will be described. The new system based onto the development of a Collimating Slicer for optical integral field spectroscopy will be depicted. First system analysis results and future improvements will be discussed.

  7. GRB 060605: multi-wavelength analysis of the first GRB observed using integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrero, P.; Klose, S.; Kann, D. A.; Savaglio, S.; Schulze, S.; Palazzi, E.; Maiorano, E.; Böhm, P.; Grupe, D.; Oates, S. R.; Sánchez, S. F.; Amati, L.; Greiner, J.; Hjorth, J.; Malesani, D.; Barthelmy, S. D.; Gorosabel, J.; Masetti, N.; Roth, M. M.

    2009-04-01

    The long and relatively faint gamma-ray burst GRB 060605 detected by Swift/BAT lasted about 20 s. Its afterglow could be observed with Swift/XRT for nearly 1 day, while Swift/UVOT could detect the afterglow during the first 6 h after the event. Here, we report on integral field spectroscopy of its afterglow performed with PMAS/PPak mounted at the Calar Alto 3.5 m telescope. In addition, we report on a detailed analysis of XRT and UVOT data and on the results of deep late-time VLT observations that reveal the GRB host galaxy. We find that the burst occurred at a redshift of z = 3.773, possibly associated with a faint, RC = 26.4 ± 0.3 host. Based on the optical and X-ray data, we deduce information on the SED of the afterglow, the position of the cooling frequency in the SED, the nature of the circumburst environment, its collimation factor, and its energetics. We find that the GRB fireball was expanding into a constant-density medium and that the explosion was collimated with a narrow half-opening angle of about 2.4 degrees. The initial Lorentz factor of the fireball was about 250; however, its beaming-corrected energy release in the gamma-ray band was comparably low. The optical, X-ray afterglow, on the other hand, was rather luminous. Finally, we find that the data are consistent within the error bars with an achromatic evolution of the afterglow during the suspected jet break time at about 0.27 days after the burst. Based on observations collected at the German-Spanish Calar Alto Observatory in Spain (Programme F06-3.5-055) and at the European Southern Observatory, La Silla and Paranal, Chile (ESO Programme 177.D-0591).

  8. Self-similar semi-analytical RMHD jet model: first steps towards a more comprehensive jet modelling for data fitting

    NASA Astrophysics Data System (ADS)

    Markoff, Sera; Ceccobello, Chiara; Heemskerk, Martin; Cavecchi, Yuri; Polko, Peter; Meier, David

    2017-08-01

    Jets are ubiquitous and reveal themselves at different scales and redshifts, showing an extreme diversity in energetics, shapes and emission. Indeed jets are found to be characteristic features of black hole systems, such as X-ray binaries (XRBs) and active galactic nuclei (AGN), as well as of young stellar objects (YSOs) and gamma-ray bursts (GRBs). Observations suggest that jets are an energetically important component of the system that hosts them, because the jet power appears to be comparable to the accretion power. Significant evidence has been found of the impact of jets not only in the immediate proximity of the central object, but as well on their surrounding environment, where they deposit the energy extracted from the accretion flow. Moreover, the inflow/outflow system produces radiation over the entire electromagnetic spectrum, from radio to X-rays. Therefore it is a compelling problem to be solved and deeply understood. I present a new integration scheme to solve radial self-similar, stationary, axisymmetric relativistic magneto-hydro-dynamics (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (the Alfvén point and the modified slow/fast points). For the first time, the integration can be performed all the way from the disk mid-plane to downstream of the modified fast point. I will discuss an ensemble of jet solutions showing diverse jet dynamics (jet Lorentz factor ~ 1-10) and geometric properties (i.e. shock height ~ 103 - 107 gravitational radii), which makes our model suitable for application to many different systems where a relativistic jet is launched.

  9. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  10. Investigation of attenuation coefficients of some stainless steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Caner, Zafer; Tufan, Mustafa ćaǧatay

    2018-02-01

    In this study, attenuation coefficients of two different stainless steel alloys (AISI 304 and AISI 310), which have a wide range of applications from home appliances to the automotive sector, and two different aluminum alloys (6013 and 5083), which have a high mechanical strength and a light weight structure and are used in many fields from aviation to military vehicles, has been determined. For this purpose, we used gamma spectrometer system with NaI(Tl) detector. In our measurements, we used Eu-152, Ra-226 and Co-60 as gamma ray sources. To narrow the beam of gamma rays, we designed the new steel based collimator. We also investigated the effect of using collimator. Obtained results were compared with the NIST XCOM values.

  11. Active Galaxy Unification in the Era of X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2010-01-01

    Active galactic nuclei (AGNs), Seyfert galaxies, and quasars are powered by luminous accretion and often accompanied by winds that are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes that are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption (warm absorbers). Here, we show that such gas will have a distinct signature when viewed in polarized X-rays. Observations of such polarization can test models for the geometry of the flow and the gas responsible for launching and collimating it. We present calculations that show that the polarization depends on the hydrodynamics of the flow, the quantum mechanics of resonance-line scattering, and the transfer of polarized X-ray light in the highly ionized moving gas. The results emphasize the three-dimensional nature of the wind for modeling spectra. We show that the polarization in the 0.1-10 keV energy range is dominated by the effects of resonance lines. We predict a 5%-25% X-ray polarization signature of type-2 objects in this energy range. These results are generalized to flows that originate from a cold torus-like structure, located approximately 1 pc from the BH, which wraps the BH and is ultimately responsible for the apparent dichotomy between type 1 and type 2 AGNs. Such signals will be detectable by future dedicated X-ray polarimetry space missions, such as the NASA Gravity and Extreme Magnetism Small Explorer SMEX, "GEMS" Swank et al. (2008).

  12. Hard X-ray Emission From A Flare-related Jet

    NASA Astrophysics Data System (ADS)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    Solar X-ray jets were first observed by Yohkoh (Shibata 1992, Strong 1992). During these events, collimated flows of plasma are accelerated in the corona. Previous observations have detected jet-related electrons directly in space as well as via radio signatures (type III bursts). However the major diagnostic of fast electrons is bremsstrahlung X-ray emission, but until now we have never seen any evidence of hard X-ray emission directly from the jet in the corona. This could be because it is rare to find a coronal jet dense enough to provide a bremsstrahlung target for the electrons, or hot enough to generate high energy thermal emission. We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. The event occurred on the 22nd of August 2002 and its evolution was observed by a number of instruments. In particular we study the pre-impulsive and impulsive phase of the flare using data from RHESSI, TRACE and the Nobeyama Radioheliograph. During this period RHESSI observed significant hard X-ray emission to energies as high as 50 keV in the jet. Radio observations from the Nobeyama Radioheliograph show a positive spectral index for the ejected material, which may be explained by optically-thick gyrosynchrotron emission from non-thermal electrons in the jet. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  13. Design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals

    NASA Astrophysics Data System (ADS)

    Tsui, Benjamin M. W.; Hugg, James W.; Xu, Jingyan; Chen, Si; Meier, Dirk; Edelstein, William; El-Sharkawy, Abdel; Wagenaar, Douglas J.; Patt, Bradley E.

    2011-03-01

    We describe a continuing design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals. A first generation prototype SPECT system was designed and constructed to fit inside a MRI system with a gradient bore inner diameter of 12 cm. It consists of 3 angularly offset rings of 8 detectors (1"x1", 16x16 pixels MR-compatible solid-state CZT). A matching 24-pinhole collimator sleeve, made of a tungsten-compound, provides projections from a common FOV of ~25 mm. A birdcage RF coil for MRI data acquisition surrounds the collimator. The SPECT system was tested inside a clinical 3T MRI system. Minimal interference was observed on the simultaneously acquired SPECT and MR images. We developed a sparse-view image reconstruction method based on accurate modeling of the point response function (PRF) of each of the 24 pinholes to provide artifact-free SPECT images. The stationary SPECT system provides relatively low resolution of 3-5 mm but high geometric efficiency of 0.5- 1.2% for fast dynamic acquisition, demonstrated in a SPECT renal kinetics study using Tc-99m DTPA. Based on these results, a second generation prototype MR-compatible SPECT system with an outer diameter of 20 cm that fits inside a mid-sized preclinical MRI system is being developed. It consists of 5 rings of 19 CZT detectors. The larger ring diameter allows the use of optimized multi-pinhole collimator designs, such as high system resolution up to ~1 mm, high geometric efficiency, or lower system resolution without collimator rotation. The anticipated performance of the new system is supported by simulation data.

  14. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.

    2015-03-15

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEVmore » parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.« less

  15. A method to reduce patient's eye lens dose in neuro-interventional radiology procedures

    NASA Astrophysics Data System (ADS)

    Safari, M. J.; Wong, J. H. D.; Kadir, K. A. A.; Sani, F. M.; Ng, K. H.

    2016-08-01

    Complex and prolonged neuro-interventional radiology procedures using the biplane angiography system increase the patient's risk of radiation-induced cataract. Physical collimation is the most effective way of reducing the radiation dose to the patient's eye lens, but in instances where collimation is not possible, an attenuator may be useful in protecting the eyes. In this study, an eye lens protector was designed and fabricated to reduce the radiation dose to the patients' eye lens during neuro-interventional procedures. The eye protector was characterised before being tested on its effectiveness in a simulated aneurysm procedure on an anthropomorphic phantom. Effects on the automatic dose rate control (ADRC) and image quality are also evaluated. The eye protector reduced the radiation dose by up to 62.1% at the eye lens. The eye protector is faintly visible in the fluoroscopy images and increased the tube current by a maximum of 3.7%. It is completely invisible in the acquisition mode and does not interfere with the clinical procedure. The eye protector placed within the radiation field of view was able to reduce the radiation dose to the eye lens by direct radiation beam of the lateral x-ray tube with minimal effect on the ADRC system.

  16. Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.

    2007-01-01

    Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37kV with a stored energy of 4.8kJ and a deuterium filling pressure of 2.75torr. Distributions of protons and neutrons are measured with CR-39 Lantrack® nuclear track detectors, on 1.8×0.9cm2 chips, 500μm thick. A set of detectors was placed on a semicircular Teflon® holder, 13cm away from the plasma column, and covered with 15μm Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after ±40°, the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.

  17. High flux table-top ultrafast soft X-ray source generated by high harmonic generation

    NASA Astrophysics Data System (ADS)

    Thiré, Nicolas; Schmidt, Bruno E.; Fourmeaux, Sylvain; Beaulieu, Samuel; Cardin, Vincent; Negro, Matteo; Kieffer, Jean-Claude; Vozzi, Caterina; Legare, François

    2014-05-01

    Generation of ultrafast soft X-ray pulses is a major challenge for conventional laboratories. Using the process of HHG enables generation of such short wavelength photons. Intense laser sources in the infrared are necessary to reach the soft X-ray spectral range as the HHG cut-off scales with Iλ2. However, in the limit of the single atom response, increasing the laser wavelength leads to a significant decrease of the HHG flux. To compensate, one has to increase the number of emitters with high ionization potential. At the Advanced Laser Light Source, we have addressed this challenge by using a new gas cell design and developing a 10 mJ - 30 fs source at 1.8 μm. Using this setup, we have been able to generate harmonics in the water window spectral range for neon and helium with short time duration (<30 fs) in a conventional laboratory. A flux measurement has been performed showing ~ 2 × 105 photons/shot between 280 and 540 eV, making it possible to see the carbon k-edge at 280eV in a single shot manner. This soft X-ray beam is also extremely well collimated (0.1 mrad) making it this table-top beamline ideal for a number of applications.

  18. Optical Fabrication and Measurement: AR&C and NGST

    NASA Technical Reports Server (NTRS)

    Martin, Greg; Engelhaupt, Darell

    1997-01-01

    The need exists at MSFC for research and development within three major areas: (1) Automated Rendezvous and Capture (AR&C) including Video Guidance System (VGS); (2) Next Generation Space Telescope, (NGST); and (3) replicated optics. AR&C/VGS is a laser retroreflection guidance and tracking device which is used from the shuttle to provide video information regarding deployment and guidance of released satellites. NGST is the next large telescope for space to complement Hubble Space Telescope. This will be larger than HST and may be produced in segments to be assembled and aligned in space utilizing advanced mechanisms and materials. The replicated optics will involve a variety of advanced procedures and materials to produce x-ray collimating as well as imaging telescopes and optical components.

  19. Elemental mapping of teeth using μSRXRF

    NASA Astrophysics Data System (ADS)

    Anjos, M. J.; Barroso, R. C.; Pérez, C. A.; Braz, D.; Moreira, S.; Dias, K. R. H. C.; Lopes, R. T.

    2004-01-01

    Human teeth were analysed by X-ray microfluorescence analysis using synchrotron radiation (μSRXRF). The aim of this work was to study the elemental distribution for Ca, Zn and Sr along the dental regions, enamel, dentine and pulp from patterns of relative fluorescence intensities. The measurements were performed in standard geometry of 45° incidence, exciting with a white beam and using a conventional system collimation (orthogonal slits) in the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The results show that Ca distribution is quite constant and it is independent of the tooth type and individuals characteristics. An increase of the Zn concentration was found for the pulp region and for untreated carious areas. Ca and Sr distributions show a similar behavior.

  20. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    PubMed

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.

  1. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    NASA Astrophysics Data System (ADS)

    Sossin, Artur; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  2. Efficiency and coherence preservation studies of Be refractive lenses for XFELO application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Tomasz; Stoupin, Stanislav; Grizolli, Walan

    2018-02-14

    Performance tests of parabolic beryllium refractive lenses, considered as X-ray focusing elements in the future X-ray free-electron laser oscillator (XFELO), are reported. Single and double refractive lenses were subject to X-ray tests, which included: surface profile, transmissivity measurements, imaging capabilities and wavefront distortion with grating interferometry. Optical metrology revealed that surface profiles were close to the design specification in terms of the figure and roughness. The transmissivity of the lenses is >94% at 8 keV and >98% at 14.4 and 18 keV. These values are close to the theoretical values of ideal lenses. Images of the bending-magnet source obtained withmore » the lenses were close to the expected ones and did not show any significant distortion. Grating interferometry revealed that the possible wavefront distortions produced by surface and bulk lens imperfections were on the level of ~λ/60 for 8 keV photons. Thus the Be lenses can be succesfully used as focusing and beam collimating elements in the XFELO.« less

  3. 3D-printed focused collimator for intra-operative gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Nikolov, Hristo N.; Pollmann, Steven I.

    2017-03-01

    Recent developments in targeted radiopharmaceutical labels have increased the need for sensitive, real-time gamma detection during cancer surgery and biopsy. Additive manufacturing (3D printing) in metal has now made it possible to design and fabricate complex metal collimators for compact gamma probes. We describe the design and implementation of a 3D-printed focused collimator that allows for real-time detection of gamma radiation from within a small volume of interest, using a single-crystal large-area detector. The collimator was fabricated using laser melting of powdered stainless steel (316L), using a commercial 3D metal printer (AM125, Renishaw plc). The prototype collimator is 20 mm thick, with hexagonal close-packed holes designed to focus to a point 35 mm below the surface of the collimator face. Tests were carried out with a low-activity (<1 μCi) 241 Am source, using a conventional gamma-ray detector probe, incorporating a 2.5 cm diameter, 2.5 cm thick NaI crystal coupled to a photomultiplier. The measured full-width half maximum (FWHM) was less than 5.6 mm, and collimator detection efficiency was 44%. The ability to fabricate fine features in solid metal makes it possible to develop optimized designs for high-efficiency, focused gamma collimators for real-time intraoperative imaging applications.

  4. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    NASA Technical Reports Server (NTRS)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  5. Fabricating Blazed Diffraction Gratings by X-Ray Lithography

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel

    2004-01-01

    Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the nonlinearity and produce a desired groove profile. An example of grating grooves generated by this technique is shown in Figure 2. A maximum relative efficiency of 88 percent has been demonstrated.

  6. Statistical data of X-ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Deursen, D. V.

    2011-12-01

    In this study we present a summary of the data of 1331 long laboratory sparks in atmospheric pressure intended for a statistical analysis. A 2 MV, 17kJ Marx generator were used to generate 1.2/52μs shape pulses positive and negative polarity. The generator was connected to a spark gap with cone-shaped electrodes. The distance between high-voltage and grounded electrodes was 1.08 meters. Breakdown voltage between electrodes was about 1MV. X-rays have been detected during the development of the discharge channel. The currents through the grounded electrode and through the high-voltage electrode were recorded separately and simultaneously with the voltage and the X-ray signal. X-rays were registered by two LaBr3(Ce+) scintillation detectors in different positions with respect to the forming discharge channel. Detector D1 was placed immediately under the grounded electrode at 15cm distance. Detector D2 was placed at horizontal distances of 143cm and 210cm, at mid-gap height. We also used lead shields of 1.5, 3, and 4 mm thickness for radiation attenuation measurements. For detector collimation we used shields up to 2 cm thickness. Also no metallic objects with pointed surfaces were present within 2 m from the spark gap. Typical plot of positive discharge presented in Figure 1a. Table 1 shows the summary of the X-ray registrations. Signal detection occurred significantly more for positive polarity discharges than for negative. This dependence was observed for both detectors. For detector D2 the probability of X-ray registration decreased proportional to 1/d2 with increasing the distance d to the breakdown gap from 1m43 to 2m10. Detailed energy spectra and time distribution of X-ray emission were obtained; see for example Fig. 1b. For both polarities of the high voltage, the X-rays only occurred when there was a current at the cathode.

  7. Apparatus and method for variable angle slant hole collimator

    DOEpatents

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  8. Characterization of the Shielded Neutron Source at Triangle Universities Nuclear Laboratory

    NASA Astrophysics Data System (ADS)

    Hobson, Chad; Finch, Sean; Howell, Calvin; Malone, Ron; Tornow, Wernew

    2016-09-01

    In 2015, Triangle Universities Nuclear Laboratory rebuilt its shielded neutron source (SNS) with the goal of improving neutron beam collimation and reducing neutron and gamma-ray backgrounds. Neutrons are produced via the 2H(d,n)3He reaction and then collimated by heavy shielding to form a beam. The SNS has the ability to produce both a rectangular and circular neutron beam through use of two collimators with different beam apertures. Our work characterized both the neutron beam profiles as well as the neutron and gamma-ray backgrounds at various locations around the SNS. This characterization was performed to provide researchers who use the SNS with beam parameters necessary to plan and conduct an experiment. Vertical and horizontal beam profiles were measured at two different distances from the neutron production cell by scanning a small plastic scintillator across the face of the beam at various energies for each collimator. Background neutron and gamma-ray intensities were measured using time-of-flight techniques at 10 MeV and 16 MeV with the rectangular collimator. We present results on the position and size of neutron beam as well as on the structure and magnitude of the backgrounds.

  9. SU-G-TeP2-04: Comprehensive Machine Isocenter Evaluation with Separation of Gantry, Collimator, and Table Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, S; Clements, C; Hyer, D

    2016-06-15

    Purpose: To develop and demonstrate application of a method that characterizes deviation of linac x-ray beams from the centroid of the volumetric radiation isocenter as a function of gantry, collimator, and table variables. Methods: A set of Winston-Lutz ball-bearing images was used to determine the gantry radiation isocenter as the midrange of deviation values resulting from gantry and collimator rotation. Also determined were displacement of table axis from gantry isocenter and recommended table axis adjustment. The method, previously reported, has been extended to include the effect of collimator walkout by obtaining measurements with 0 and 180 degree collimator rotation formore » each gantry angle. Twelve images were used to characterize the volumetric isocenter for the full range of available gantry, collimator, and table rotations. Results: Three Varian True Beam, two Elekta Infinity and four Versa HD linacs at five institutions were tested using identical methodology. Varian linacs exhibited substantially less deviation due to head sag than Elekta linacs (0.4 mm vs. 1.2 mm on average). One linac from each manufacturer had additional isocenter deviation of 0.3 to 0.4 mm due to jaw instability with gantry and collimator rotation. For all linacs, the achievable isocenter tolerance was dependent on adjustment of collimator position offset, transverse position steering, and alignment of the table axis with gantry isocenter, facilitated by these test results. The pattern and magnitude of table axis wobble vs. table angle was reproducible and unique to each machine. Conclusion: This new method provides a comprehensive set of isocenter deviation values including all variables. It effectively facilitates minimization of deviation between beam center and target (ball-bearing) position. This method was used to quantify the effect of jaw instability on isocenter deviation and to identify the offending jaw. The test is suitable for incorporation into a routine machine QA program. Software development was performed by Radiological Imaging Technology, Inc.« less

  10. Driving extreme variability: Measuring the evolving coronæ and evidence for jet launching in AGN

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.

    2016-05-01

    Relativistically blurred reflection from the accretion disc provides a powerful probe of the extreme environments close to supermassive black holes; the inner regions of the accretion flow and the corona that produces the intense X-ray continuum. Techniques by which the geometry and extent of the corona can be measured through the observed X-ray spectrum are reviewed along with the evolution in the structure of the corona that is seen to accompany variations in the X-ray luminosity both on long and short timescales. Detailed analyses of the narrow line Seyfert 1 galaxies Mrk 335 and 1H 0707-495, over observations with XMM-Newton as well as Suzaku and NuSTAR spanning nearly a decade reveal that increases in the X-ray luminosity coincide with an expansion of the corona to cover a larger area of the inner accretion disc. Underlying this long timescale variability lie more complex patterns of behaviour on short timescales. Flares in the X-ray emission during a low flux state of Mrk 335 observed in 2013 and 2014 are found to mark a reconfiguration of the corona while there is evidence that the flares were caused by a vertical collimation and ejection of coronal material, reminiscent of an aborted jet-launching event. Measurements of the corona and reflecting accretion disc are combined to infer the conditions on the inner disc that lead to the flaring event.

  11. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  12. Investigation of Energy Release in Microflares Observed by the Second Sounding Rocket Flight of the Focusing Optics X-ray Solar Imager (FOXSI-2)

    NASA Astrophysics Data System (ADS)

    Vievering, J. T.; Glesener, L.; Panchapakesan, S. A.; Ryan, D.; Krucker, S.; Christe, S.; Buitrago-Casas, J. C.; Inglis, A. R.; Musset, S.

    2017-12-01

    Observations of the Sun in hard x-rays can provide insight into many solar phenomena which are not currently well-understood, including the mechanisms behind particle acceleration in flares. RHESSI is the only solar-dedicated imager currently operating in the hard x-ray regime. Though RHESSI has greatly added to our knowledge of flare particle acceleration, the indirect imaging method of rotating collimating optics is fundamentally limited in sensitivity and dynamic range. By instead using a direct imaging technique, the structure and evolution of even small flares and active regions can be investigated in greater depth. FOXSI (Focusing Optics X-ray Solar Imager), a hard x-ray instrument flown on two sounding rocket campaigns, seeks to achieve these improved capabilities by using focusing optics for solar observations in the 4-20 keV range. During the second of the FOXSI flights, flown on December 11, 2014, two microflares were observed, estimated as GOES class A0.5 and A2.5 (upper limits). Here we present current imaging and spectral analyses of these microflares, exploring the nature of energy release and comparing to observations from other instruments. Additionally, we feature the first analysis of data from the FOXSI-2 CdTe strip detectors, which provide improved efficiency above 10 keV. Through this analysis, we investigate the capabilities of FOXSI in enhancing our knowledge of smaller-scale solar events.

  13. Inverse Compton Scattered Merger-nova: Late X-Ray Counterpart of Gravitational-wave Signals from NS–NS/BH Mergers

    NASA Astrophysics Data System (ADS)

    Ai, Shunke; Gao, He

    2018-01-01

    The recent observations of GW170817 and its electromagnetic (EM) counterparts show that double neutron star mergers could lead to rich and bright EM emissions. Recent numerical simulations suggest that neutron star and neutron star/black hole (NS–NS/BH) mergers would leave behind a central remnant surrounded by a mildly isotropic ejecta. The central remnant could launch a collimated jet and when the jet propagates through the ejecta, a mildly relativistic cocoon would be formed and the interaction between the cocoon and the ambient medium would accelerate electrons via external shock in a wide angle, so that the merger-nova photons (i.e., thermal emission from the ejecta) would be scattered into higher frequency via an inverse Compton (IC) process when they propagate through the cocoon shocked region. We find that the IC scattered component peaks at the X-ray band and it will reach its peak luminosity on the order of days (simultaneously with the merger-nova emission). With current X-ray detectors, such a late X-ray component could be detected out to 200 Mpc, depending on the merger remnant properties. It could serve as an important electromagnetic counterpart of gravitational-wave signals from NS–NS/BH mergers. Nevertheless, simultaneous detection of such a late X-ray signal and the merger-nova signal could shed light on the cocoon properties and the concrete structure of the jet.

  14. Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.

    PubMed

    Kozlovska, Michaela; Cerny, Radek; Otahal, Petr

    2015-11-01

    A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.

  15. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacementmore » which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner.« less

  16. Collimated Propagation of Fast Electron Beams Accelerated by High-Contrast Laser Pulses in Highly Resistive Shocked Carbon.

    PubMed

    Vaisseau, X; Morace, A; Touati, M; Nakatsutsumi, M; Baton, S D; Hulin, S; Nicolaï, Ph; Nuter, R; Batani, D; Beg, F N; Breil, J; Fedosejevs, R; Feugeas, J-L; Forestier-Colleoni, P; Fourment, C; Fujioka, S; Giuffrida, L; Kerr, S; McLean, H S; Sawada, H; Tikhonchuk, V T; Santos, J J

    2017-05-19

    Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism-observed only for times before the shock breakout at the inner cone tip-is due to self-generated resistive magnetic fields of ∼0.5-1  kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.

  17. SMSS J130522.47-293113.0: a high-latitude stellar X-ray source with pc-scale outflow relics?

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.; Soria, R.; Farrell, S. A.; Bayliss, D.; Bessell, M. S.; Vogt, F. P. A.; Zhou, G.; Points, S. D.; Beers, T. C.; López-Sánchez, Á. R.; Bannister, K. W.; Bell, M.; Hancock, P. J.; Burlon, D.; Gaensler, B. M.; Sadler, E. M.; Tingay, S.; Keller, S. C.; Schmidt, B. P.; Tisserand, P.

    2018-06-01

    We report the discovery of an unusual stellar system SMSS J130522.47-293113.0. The optical spectrum is dominated by a blue continuum together with emission lines of hydrogen, neutral, and ionized helium, and the N III, C III blend at ˜4640-4650 Å. The emission-line profiles vary in strength and position on time-scales as short as 1 d, while optical photometry reveals fluctuations of as much as ˜0.2 mag in g on time-scales as short as 10-15 min. The system is a weak X-ray source (f0.3-10 = (1.2 ± 0.1) × 10-13 ergs cm2 s-1 in the 0.3-10 keV band) but is not detected at radio wavelengths (3σ upper limit of 50 μJy at 5.5 GHz). The most intriguing property of the system, however, is the existence of two `blobs', a few arcsec in size, that are symmetrically located 3{^'.}8 (2.2 pc for our preferred system distance of ˜2 kpc) each side of the central object. The blobs are detected in optical and near-IR broad-band images but do not show any excess emission in H α images. We discuss the interpretation of the system, suggesting that the central object is most likely a nova-like CV, and that the blobs are relics of a pc-scale accretion-powered collimated outflow.

  18. Hydrodynamic collimation of gamma-ray-burst fireballs

    PubMed

    Levinson; Eichler

    2000-07-10

    Analytic solutions are presented for the hydrodynamic collimation of a relativistic fireball by a surrounding baryonic wind emanating from a torus. The opening angle is shown to be the ratio of the power output of the inner fireball to that of the exterior baryonic wind. The gamma ray burst 990123 might thus be interpreted as a baryon-poor jet (BPJ) with an energy output of order 10(50) erg or less, collimated by a baryonic wind from a torus with an energy output of order 10(52.5) erg, roughly the geometric mean of the BPJ and its isotropic equivalent.

  19. Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi

    2015-11-01

    We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.

  20. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor.

    PubMed

    Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro

    2015-03-01

    The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Design and development of new collimator cones for fractionated stereotactic radiation therapy in Samsung Medical Center.

    PubMed

    Ahn, Y C; Ju, S G; Kim, D Y; Choi, D R; Huh, S J; Park, Y H; Lim, D H; Kim, M K

    1999-05-01

    In stereotactic radiotherapy using X-Knife system, the commercially supplied collimator cone system had a few mechanical limitations. The authors have developed new collimator cones to overcome these limitations and named them "SMC type" collimator cones. We made use of cadmium-free cerrobend alloy within the stainless steel cylinder housing. We made nine cones of relatively larger sizes (3.0 cm to 7.0 cm in diameter) and of shorter length with bigger clearance from the isocenter than the commercial cones. The cone housing and the collimator cones were designed to insert into the wedge mount of the gantry head to enable double-exposure linac-gram taking. The mechanical accuracy of pointing to the isocenter was tested by ball test and cone rotation test, and the dosimetric measurements were performed, all of which were with satisfactory results. A new innovative quality assurance procedure using linac-grams on the patients at the actual treatment setup was attempted after taking 10 sets of AP and lateral linac-grams and the overall mechanical isocenter accuracy was excellent (average error = 0.4 +/- 0.2 mm). We have developed the SMC type collimator cone system mainly for fractionated stereotactic radiation therapy use with our innovative ideas. The new cones' mechanical accuracy and physical properties were satisfactory for clinical use, and the verification of the isocenter accuracy on the actual treatment setup has become possible.

  2. Knowledge-based automated technique for measuring total lung volume from CT

    NASA Astrophysics Data System (ADS)

    Brown, Matthew S.; McNitt-Gray, Michael F.; Mankovich, Nicholas J.; Goldin, Jonathan G.; Aberle, Denise R.

    1996-04-01

    A robust, automated technique has been developed for estimating total lung volumes from chest computed tomography (CT) images. The technique includes a method for segmenting major chest anatomy. A knowledge-based approach automates the calculation of separate volumes of the whole thorax, lungs, and central tracheo-bronchial tree from volumetric CT data sets. A simple, explicit 3D model describes properties such as shape, topology and X-ray attenuation, of the relevant anatomy, which constrain the segmentation of these anatomic structures. Total lung volume is estimated as the sum of the right and left lungs and excludes the central airways. The method requires no operator intervention. In preliminary testing, the system was applied to image data from two healthy subjects and four patients with emphysema who underwent both helical CT and pulmonary function tests. To obtain single breath-hold scans, the healthy subjects were scanned with a collimation of 5 mm and a pitch of 1.5, while the emphysema patients were scanned with collimation of 10 mm at a pitch of 2.0. CT data were reconstructed as contiguous image sets. Automatically calculated volumes were consistent with body plethysmography results (< 10% difference).

  3. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans

    PubMed Central

    Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-01-01

    Background We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 μSv). Methods We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. Results The reconstructed attenuation coefficient of water at 140 keV was .150 ± .003/cm in the uniform region of the ACR phantom, .151 ± .003/cm and .151 ± .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 ± 6.5 before and 87.9 ± 3.3 after AC (average ± standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. Conclusion The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC. PMID:20169476

  4. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful are coded-aperture imagers, which have flown on ART-P, Integral, and Swift. The shadow pattern from a 50% full mask allows the distribution of X-rays from a wide (10s of degrees) field of view to be imaged, but uniform emission presents difficulties. A version of a coded-aperture plus CCD detector for airless bodies study is being built for OSIRIS-REx as the student experiment REXIS. We will show the quality of the spectra that can be expected from this class of instrument.

  5. Compact 2100 nm laser diode module for next-generation DIRCM

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  6. Analysis of eddy currents induced by transverse and longitudinal gradient coils in different tungsten collimators geometries for SPECT/MRI integration.

    PubMed

    Samoudi, Amine M; Van Audenhaege, Karen; Vermeeren, Günter; Poole, Michael; Tanghe, Emmeric; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-12-01

    We investigated the temporal variation of the induced magnetic field due to the transverse and the longitudinal gradient coils in tungsten collimators arranged in hexagonal and pentagonal geometries with and without gaps between the collimators. We modeled x-, y-, and z-gradient coils and different arrangements of single-photon emission computed tomography (SPECT) collimators using FEKO, a three-dimensional electromagnetic simulation tool. A time analysis approach was used to generate the pulsed magnetic field gradient. The approach was validated with measurements using a 7T MRI scanner. Simulations showed an induced magnetic field representing 4.66% and 0.87% of the applied gradient field (gradient strength = 500 mT/m) for longitudinal and transverse gradient coils, respectively. These values can be reduced by 75% by adding gaps between the collimators for the pentagonal arrangement, bringing the maximum induced magnetic field to less than 2% of the applied gradient for all of the gradient coils. Characterization of the maximum induced magnetic field shows that by adding gaps between the collimators for an integrated SPECT/MRI system, eddy currents can be corrected by the MRI system to avoid artifact. The numerical model was validated and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils. © 2014 Wiley Periodicals, Inc.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less

  8. SU-E-T-299: Dosimetric Characterization of Small Field in Small Animal Irradiator with Radiochromic Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S; Kim, K; Jung, H

    Purpose: The small animal irradiator has been used with small animals to optimize new radiation therapy as preclinical studies. The small animal was irradiated by whole- or partial-body exposure. In this study, the dosimetric characterizations of small animal irradiator were carried out in small field using Radiochromic films Material & Methods: The study was performed in commercial animal irradiator (XRAD-320, Precision x-ray Inc, North Brantford) with Radiochromic films (EBT2, Ashland Inc, Covington). The calibration curve was generated between delivery dose and optical density (red channel) and the films were scanned by and Epson 1000XL scanner (Epson America Inc., Long Beach,more » CA).We evaluated dosimetric characterization of irradiator using various filter supported by manufacturer in 260 kV. The various filters were F1 (2.0mm Aluminum (HVL = about 1.0mm Cu) and F2 (0.75mm Tin + 0.25mm Copper + 1.5mm Aluminum (HVL = about 3.7mm Cu). According to collimator size (3, 5, 7, 10 mm, we calculated percentage depth dose (PDD) and the surface –source distance(SSD) was 17.3 cm considering dose rate. Results: The films were irradiated in 260 kV, 10mA and we increased exposure time 5sec. intervals from 5sec. to 120sec. The calibration curve of films was fitted with cubic function. The correlation between optical density and dose was Y=0.1405 X{sup 3}−2.916 X{sup 2}+25.566 x+2.238 (R{sup 2}=0.994). Based on the calibration curve, we calculated PDD in various filters depending on collimator size. When compared PDD of specific depth (3mm) considering animal size, the difference by collimator size was 4.50% in free filter and F1 was 1.53% and F2 was within 2.17%. Conclusion: We calculated PDD curve in small animal irradiator depending on the collimator size and the kind of filter using the radiochromic films. The various PDD curve was acquired and it was possible to irradiate various dose using these curve.« less

  9. Photoelectric-enhanced radiation therapy with quasi-monochromatic computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Gregor; Mensing, Tristan; Golfier, Sven

    2009-06-15

    Photoelectric-enhanced radiation therapy is a bimodal therapy, consisting of the administration of highly radiation-absorbing substances into the tumor area and localized regional irradiation with orthovoltage x-rays. Irradiation can be performed by a modified computed tomography (CT) unit equipped with an additional x-ray optical module which converts the polychromatic, fan-shaped CT beam into a monochromatized and focused beam for energy-tuned photoelectric-enhanced radiotherapy. A dedicated x-ray optical module designed for spatial collimation, focusing, and monochromatization was mounted at the exit of the x-ray tube of a clinical CT unit. Spectrally resolved measurements of the resulting beam were performed using an energy-dispersive detectionmore » system calibrated by synchrotron radiation. The spatial photon fluence was determined by film dosimetry. Depth-dose measurements were performed and compared to the polychromatic CT and a therapeutic 6 MV beam. The spatial dose distribution in phantoms using a rotating radiation source (quasi-monochromatic CT and 6 MV, respectively) was investigated by gel dosimetry. The photoelectric dose enhancement for an iodine fraction of 1% in tissue was calculated and verified experimentally. The x-ray optical module selectively filters the energy of the tungsten K{alpha} emission line with an FWHM of 5 keV. The relative photon fluence distribution demonstrates the focusing characteristic of the x-ray optical module. A beam width of about 3 mm was determined at the isocenter of the CT gantry. The depth-dose measurements resulted in a half-depth value of approximately 36 mm for the CT beams (quasi-monochromatic, polychromatic) compared to 154 mm for the 6 MV beam. The rotation of the radiation source leads to a steep dose gradient at the center of rotation; the gel dosimetry yields an entrance-to-peak dose ratio of 1:10.8 for the quasi-monochromatic CT and 1:37.3 for a 6 MV beam of the same size. The photoelectric dose enhancement factor increases from 2.2 to 2.4 by using quasi-monochromatic instead of polychromatic radiation. An additional increase in the radiation dose by a factor of 1.4 due to the focusing characteristic of the x-ray optical module was calculated. Photoelectric-enhanced radiation therapy based on a clinical CT unit combined with an x-ray optical module is a novel therapy option in radiation oncology. The optimized quasi-monochromatic radiation is strongly focused and ensures high photoelectric dose enhancement for iodine.« less

  10. Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays.

    PubMed

    Hosoi, Y; Watanabe, Y; Sugita, R; Tanaka, Y; Nagamine, K; Ono, T; Sakamoto, K

    1995-12-01

    Non-destructive elemental analysis with muonic X-rays was performed on human vertebral bone and lumbar torso phantoms. It can provide quantitative information on all elements in small deep-seated localized volumes. The experiment was carried out using the superconducting muon channel at TRIUMF in Vancouver, Canada and a lithium drifted germanium detector with an active area of 18.5 cm2. The muon channel produced backward-decayed negative muons with wide kinetic energy range from 0.5 to 54.2 MeV. The muon beam was collimated to a diameter of 18 mm. The number of incoming muons was about 4 x 10(6) approximately 5 x 10(7) per data point. In the measurements with human vertebral bones fixed with neutralized formaldehyde, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.0003. In the measurements with lumbar torso phantoms, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.02. The results suggest that elemental analysis in vertebral body trabecular bone using muonic X-rays closely correlates with measurements by atomic absorption analysis.

  11. The feasibility of polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: a Monte Carlo study.

    PubMed

    Jones, Bernard L; Cho, Sang Hyun

    2011-06-21

    A recent study investigated the feasibility to develop a bench-top x-ray fluorescence computed tomography (XFCT) system capable of determining the spatial distribution and concentration of gold nanoparticles (GNPs) in vivo using a diagnostic energy range polychromatic (i.e. 110 kVp) pencil-beam source. In this follow-up study, we examined the feasibility of a polychromatic cone-beam implementation of XFCT by Monte Carlo (MC) simulations using the MCNP5 code. In the current MC model, cylindrical columns with various sizes (5-10 mm in diameter) containing water loaded with GNPs (0.1-2% gold by weight) were inserted into a 5 cm diameter cylindrical polymethyl methacrylate phantom. The phantom was then irradiated by a lead-filtered 110 kVp x-ray source, and the resulting gold fluorescence and Compton-scattered photons were collected by a series of energy-sensitive tallies after passing through lead parallel-hole collimators. A maximum-likelihood iterative reconstruction algorithm was implemented to reconstruct the image of GNP-loaded objects within the phantom. The effects of attenuation of both the primary beam through the phantom and the gold fluorescence photons en route to the detector were corrected during the image reconstruction. Accurate images of the GNP-containing phantom were successfully reconstructed for three different phantom configurations, with both spatial distribution and relative concentration of GNPs well identified. The pixel intensity of regions containing GNPs was linearly proportional to the gold concentration. The current MC study strongly suggests the possibility of developing a bench-top, polychromatic, cone-beam XFCT system for in vivo imaging.

  12. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India.

    PubMed

    Sonawane, A U; Singh, Meghraj; Sunil Kumar, J V K; Kulkarni, Arti; Shirva, V K; Pradhan, A S

    2010-10-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  13. Low-temperature high magnetic field powder x-ray diffraction setup for field-induced structural phase transition studies from 2 to 300 K and at 0 to 8-T field

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Kumar, Dhirendra; Yadav, Poonam; Bhardwaj, Preeti; Ghodke, Nandkishor; Singh, Kiran; Lalla, N. P.; Chaddah, P.

    2016-10-01

    A low-temperature and high magnetic field powder x-ray diffractometer (XRD) has been developed at UGC-DAE CSR (UGC: University Grant Commission, DAE: Department of Atomic Energy, and CSR: Consortium for scientific research), Indore, India. The setup has been developed around an 18 kW rotating anode x-ray source delivering Cu-Kα x-rays coming from a vertical line source. It works in a symmetric θ-2θ parallel beam geometry. It consists of a liquid helium cryostat with an 8 T split-pair Nb-Ti superconducting magnet comprising two x-ray windows each covering an angular range of 65°. This is mounted on a non-magnetic type heavy duty goniometer equipped with all necessary motions along with data collection accessories. The incident x-ray beam has been made parallel using a parabolic multilayer mirror. The scattered x-ray is detected using a NaI detector through a 0.1° acceptance solar collimator. To control the motions of the goniometer, a computer programme has been developed. The wide-angle scattering data can be collected in a range of 2°-115° of 2θ with a resolution of ˜0.1°. The whole setup is tightly shielded for the scattered x-rays using a lead hutch. The functioning of the goniometer and the artifacts arising possibly due to the effect of stray magnetic field on the goniometer motions, on the x-ray source, and on the detector have been characterized by collecting powder XRD data of a National Institute of Standards and Technology certified standard reference material LaB6 (SRM-660b) and Si powder in zero-field and in-field conditions. Occurrence of field induced structural-phase transitions has been demonstrated on various samples like Pr0.5Sr0.5MnO3, Nd0.49Sr0.51MnO3-δ and La0.175Pr0.45Ca0.375MnO3 by collecting data in zero field cool and field cool conditions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Liu, B; Liang, B

    Purpose: Current CyberKnife treatment planning system (TPS) provided two dose calculation algorithms: Ray-tracing and Monte Carlo. Ray-tracing algorithm is fast, but less accurate, and also can’t handle irregular fields since a multi-leaf collimator system was recently introduced to CyberKnife M6 system. Monte Carlo method has well-known accuracy, but the current version still takes a long time to finish dose calculations. The purpose of this paper is to develop a GPU-based fast C/S dose engine for CyberKnife system to achieve both accuracy and efficiency. Methods: The TERMA distribution from a poly-energetic source was calculated based on beam’s eye view coordinate system,more » which is GPU friendly and has linear complexity. The dose distribution was then computed by inversely collecting the energy depositions from all TERMA points along 192 collapsed-cone directions. EGSnrc user code was used to pre-calculate energy deposition kernels (EDKs) for a series of mono-energy photons The energy spectrum was reconstructed based on measured tissue maximum ratio (TMR) curve, the TERMA averaged cumulative kernels was then calculated. Beam hardening parameters and intensity profiles were optimized based on measurement data from CyberKnife system. Results: The difference between measured and calculated TMR are less than 1% for all collimators except in the build-up regions. The calculated profiles also showed good agreements with the measured doses within 1% except in the penumbra regions. The developed C/S dose engine was also used to evaluate four clinical CyberKnife treatment plans, the results showed a better dose calculation accuracy than Ray-tracing algorithm compared with Monte Carlo method for heterogeneous cases. For the dose calculation time, it takes about several seconds for one beam depends on collimator size and dose calculation grids. Conclusion: A GPU-based C/S dose engine has been developed for CyberKnife system, which was proven to be efficient and accurate for clinical purpose, and can be easily implemented in TPS.« less

  15. A comparison between cobalt and linear accelerator-based treatment plans for conformal and intensity-modulated radiotherapy.

    PubMed

    Adams, E J; Warrington, A P

    2008-04-01

    The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.

  16. Nonradial and nonpolytropic astrophysical outflows. X. Relativistic MHD rotating spine jets in Kerr metric

    NASA Astrophysics Data System (ADS)

    Chantry, L.; Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.

    2018-04-01

    Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner- or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future γ-ray telescope CTA. Aims: In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods: The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results: Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions: These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In particular, we discuss the relevance of our solutions to modeling the M 87 spine-jet. We study the efficiency of the central black hole spin to collimate a spine-jet and show that the jet power is of the same order as that determined by numerical simulations.

  17. Direct design of achromatic lens for Lambertian sources in collimating illumination

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  18. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  19. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.

    PubMed

    Holeman, G R; Price, K W; Friedman, L F; Nath, R

    1977-01-01

    High-energy x-ray radiotherapy machines in the supermegavoltage region generate complex neutron energy spectra which make an exact evaluation of neutron shielding difficult. Fast neutrons resulting from photonuclear reactions in the x-ray target and collimators undergo successive collisions in the surrounding materials and are moderated by varying amounts. In order to examine the neutron radiation exposures quantitatively, the neutron energy spectra have been measured inside and outside the treatment room of a Sagittaire medical linear accelerator (25-MV x rays) located at Yale-New Haven Hospital. The measurements were made using a Bonner spectrometer consisting of 2-, 3-, 5-, 8-, 10- and 12-in.-diameter polyethylene spheres with 6Li and 7Li thermoluminescent dosimeter (TLD) chips at the centers, in addition to bare and cadmium-covered chips. The individual TLD chips were calibrated for neutron and photon response. The spectrometer was calibrated using a known PuBe spectrum Spectrometer measurements were made at Yale Electron Accelerator Laboratory and results compared with a neutron time-of-flight spectrometer and an activation technique. The agreement between the results from these independent methods is found to be good, except for the measurements in the direct photon beam. Quality factors have been inferred for the neutron fields inside and outside the treatment room. Values of the inferred quality factors fall primarily between 4 and 8, depending on location.

  20. Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam

    PubMed Central

    Belley, Matthew D.; Stanton, Ian N.; Hadsell, Mike; Ger, Rachel; Langloss, Brian W.; Lu, Jianping; Zhou, Otto; Chang, Sha X.; Therien, Michael J.; Yoshizumi, Terry T.

    2015-01-01

    Purpose: Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). Methods: The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. Results: The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s−1, a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s−1). The nano-FOD-determined lateral beam full-width half max value of 420 μm exceeded that measured using radiochromic film (320 μm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). Conclusions: This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape. PMID:25832087

  1. Gamma-Ray Attenuation to Evaluate Soil Porosity: An Analysis of Methods

    PubMed Central

    Pires, Luiz F.; Pereira, André B.

    2014-01-01

    Soil porosity (ϕ) is of a great deal for environmental studies due to the fact that water infiltrates and suffers redistribution in the soil pore space. Many physical and biochemical processes related to environmental quality occur in the soil porous system. Representative determinations of ϕ are necessary due to the importance of this physical property in several fields of natural sciences. In the current work, two methods to evaluate ϕ were analyzed by means of gamma-ray attenuation technique. The first method uses the soil attenuation approach through dry soil and saturated samples, whereas the second one utilizes the same approach but taking into account dry soil samples to assess soil bulk density and soil particle density to determine ϕ. The results obtained point out a good correlation between both methods. However, when ϕ is obtained through soil water content at saturation and a 4 mm collimator is used to collimate the gamma-ray beam the first method also shows good correlations with the traditional one. PMID:24616640

  2. The WFM Instrument of the LOFT mission

    NASA Astrophysics Data System (ADS)

    Gálvez, J. L.; Hernanz, M.; Álvarez, L.; LOFT/WFM Team

    2013-05-01

    LOFT, the Large Observatory For X-ray Timing, was selected by ESA in 2011 as one of the four M3 (medium class) missions concepts of the Cosmic Vision programme that will compete for a launch opportunity at the start of the 2020s. LOFT includes two instruments: the Large Area Detector (LAD), a ˜10 m^2 collimated X-ray detector in the 2-50 keV range (up to 80 keV in extended mode), and the Wide Field Monitor (WFM), a coded-mask wide field X-ray monitor based on silicon radiation detectors. We, the Institute of Space Sciences (CSIC-IEEC) in Barcelona, are deeply involved in the LOFT mission, sharing the leadership of the WFM instrument with DTU Space in Denmark. We are responsible of the mechanics of the WFM, including the structural and thermal design. The WFM baseline is a set of 4 units (each unit corresponds to 2 co-aligned cameras) arranged in arch, covering a field of view at zero response of 180°× 90°, and one more unit pointing to the anti-sun direction. The structure of each camera lies on its own coded mask of Tungsten, 150 μm thick, a collimator and the detector plane (20 cm below the mask) providing a fine (arc minutes) angular resolution. The camera detector plane (182 cm^2) will operate at -20°C in order to achieve an energy resolution FWHM of less than 500 eV in the 2-50 keV energy range. The WFM has the main scope of catching good triggering sources to be pointed with the LAD. Its large field of view will permit to observe in the same energy range of the LAD about 50% of the sky at once. The WFM is designed also to catch transient/bursting events down to a few mCrab fluxes and will provide for them data with fine spectral and timing resolution (up to 10 μsec).

  3. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    PubMed

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and techniques effectively reduces ionizing radiation exposure and should be routinely used in practice.

  4. Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle.

    PubMed

    Di Lillo, Francesca; Mettivier, Giovanni; Castriconi, Roberta; Sarno, Antonio; Stevenson, Andrew W; Hall, Chris J; Häusermann, Daniel; Russo, Paolo

    2018-05-01

    The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.

  5. Optimizing Imaging Instruments for Emission Mammography

    NASA Astrophysics Data System (ADS)

    Weinberg, Irving N.

    1996-05-01

    Clinical studies have demonstrated that radiotracer methods can noninvasively detect breast cancers in vivo(L.P. Adler, J.P.Crowe, N.K. Al-Kaisis, et al, Radiology 187,743-750 (1993)) (I. Khalkhali, I. Mena, E. Jouanne, et al, J. Am. Coll. Surg. 178, 491-497 (1994)). Due to spatial resolution and count efficiency considerations, users of conventional nuclear medicine instruments have had difficulty in detecting subcentimeter cancers. This limitation is unfortunate, since cancer therapy is generally most efficacious when tumor diameter at detection is less than a centimeter. A more subtle limitation of conventional nuclear medicine imaging instruments is that they are poorly suited to guiding interventions. With the assistance of C.J. Thompson from McGill University, and the CEBAF Detector Physics Group, we have explored the possibility of configuring detectors for nuclear medicine imaging devices into geometries that resemble conventional x-ray mammography cameras(I.N. Weinberg, U.S.Patent 5,252,830 (1993)). Phantom and pilot clinical studies suggest that applying breast compression within such geometries may offer several advantages(C.J. Thompson, K. Murthy, I.N. Weinberg, et al, Med. Physics 21, 259-538 (1994)): For coincident detection of positron emitters, efficiency and spatial resolution are improved by bringing the detectors very close to the source (the breast tumor). For single-photon detection, attenuation due to overlying tissue is reduced. Since, for a high-efficiency collimator, spatial resolution worsens with increasing source to collimator distance, adoption of compression allows more efficient collimators to be employed. Economics are favorable in that detectors can be deployed in the region of interest, rather than around the entire body, and that such detectors can be mounted in conventional mammographic gantries. The application of conventional mammographic geometry promises to assist physicians in conducting radiotracer-guided biopsies, and in correlating biochemical with x-ray data. The primary challenge of conducting studies with dedicated emission mammography devices has been dealing with high count rates due to cardiac activity.

  6. Dose distribution of a 125 keV mean energy microplanar x-ray beam for basic studies on microbeam radiotherapy.

    PubMed

    Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao; Umetani, Keiji; Imai, Yasuhiko; Uesugi, Kentaro; Yagi, Naoto

    2008-07-01

    A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 microm high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 microm-thick polyimide sheets that were separated by 175 microm-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of the dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.

  7. Accelerated gradient methods for the x-ray imaging of solar flares

    NASA Astrophysics Data System (ADS)

    Bonettini, S.; Prato, M.

    2014-05-01

    In this paper we present new optimization strategies for the reconstruction of x-ray images of solar flares by means of the data collected by the Reuven Ramaty high energy solar spectroscopic imager. The imaging concept of the satellite is based on rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade, greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of different accelerated gradient methods for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function by means of a discrepancy principle accounting for the Poisson nature of the noise affecting the data.

  8. Comparison of radioactive transmission and mechanical properties of Portland cement and a modified cement with trommel sieve waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boncukcuoglu, Recep; Icelli, Orhan; Erzeneoglu, Salih

    2005-06-01

    In this study, it was aimed to stabilize trommel sieve waste (TSW) occurring during manufacture of borax from tincal. The effects of TSW added on the mechanical properties and radioactive transmission of modified cement prepared by adding TSW to clinker was investigated. The properties which TSW as additive caused the cement to gain were tested and compared with normal Portland cement. Measurements have been made to determine variation of mass attenuation coefficients of TSW and cement by using an extremely narrow-collimated-beam transmission method in the energy range 15.746-40.930 keV with X-ray transmission method. The characteristic K{alpha} and K{beta} X-rays ofmore » the different elements (Zr, Mo, Ag, In, Sb, Ba and Pr) passed through TSW and cement were detected with a high-resolution Si(Li) detector. Results are presented and discussed in this paper.« less

  9. Parts per Million Powder X-ray Diffraction

    DOE PAGES

    Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; ...

    2015-10-14

    Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less

  10. Analysis of the X-ray emission of nine Swift afterglows

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.; Mészáros, P.; Gehrels, N.; Burrows, D.; Nousek, J.

    2006-03-01

    The X-ray light curves of nine Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408 and 050505) display a complex behaviour: a steep t-3.0+/-0.3 decay until ~400 s, followed by a significantly slower t-0.65+/-0.20 fall-off, which at 0.2-2 day after the burst evolves into a t-1.7+/-0.5 decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t1.0+/-0.5, is required for five afterglows and could be at work in the other four as well. For some afterglows, there may be other mechanisms that can explain the t < 400 s fast falling-off X-ray light curve (e.g. the large-angle gamma-ray burst emission), the 400 s to 5 h slow decay (e.g. a structured outflow), or the steepening at 0.2-2 day (e.g. a jet-break, a collimated outflow transiting from a wind with a r-3 radial density profile to a homogeneous or outward-increasing density region). Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with a universal value.

  11. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.

  12. Terrestrial gamma-ray flashes monitor demonstrator on CubeSat

    NASA Astrophysics Data System (ADS)

    Dániel, V.; Pína, L.; Inneman, A.; Zadražil, V.; Báča, T.; Platkevič, M.; Stehlíková, V.; Nentvich, O.; Urban, M.

    2016-09-01

    The CubeSat mission with the demonstrator of miniaturized X-ray telescope is presented. The paper presents one of the mission objectives of using the instrument for remote sensing of the Terrestrial Gamma-ray Flashes (TGFs). TGFs are intense sources of gamma-rays associated with lightning bolt activity and tropical thunderstorms. The measurement of TGFs exists and was measured by sounding rockets, high altitude balloons or several satellite missions. Past satellite missions were equipped with different detectors working from 10 keV up to 10 MeV. The RHESSI mission spectrum measurement of TGFs shows the maximum counts per second around 75 keV. The used detectors were in general big in volume and cannot be utilized by the CubeSat mission. The presented CubeSat is equipped with miniaturized X-ray telescope using the Timepix non-cooled pixel detector. The detector works between 3 and 60 keV in counting mode (dosimetry) or in spectrum mode with resolution 5 keV. The wide-field X-ray "Lobster-eye" optics/collimator (depending on energy) is used with a view angle of 3 degrees for the source location definition. The UV detectors with FOV 30 degrees and 1.5 degrees are added parallel with the optic as a part of the telescope. The telescope is equipped with software distinguishing between the photons and other particles. Using this software the TGF's detection is possible also in the field of South Atlantic anomaly. For the total ionization dose, the additional detector is used based on Silicone (12-60 keV) and CdTe (20 keV - 1 MeV). The presented instruments are the demonstrators suitable also for the astrophysical, sun and moon observation. The paper shows the details of TGF's observation modes, detectors details, data processing and handling system and mission. The CubeSat launch is planned to summer 2016.

  13. EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures

    NASA Astrophysics Data System (ADS)

    Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank

    2018-03-01

    The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.

  14. Introduction of a novel ultrahigh sensitivity collimator for brain SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Mi-Ae, E-mail: miaepark@bwh.harvard.edu; Kij

    Purpose: Noise levels of brain SPECT images are highest in central regions, due to preferential attenuation of photons emitted from deep structures. To address this problem, the authors have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. This hybrid collimator consisted of ultrashort cone-beam holes in the central regions and slant-holes in the periphery (USCB). We evaluated this collimator for quantitative brain imaging tasks. Methods: Owing to the uniqueness of the USCB collimation, the hole pattern required substantial variations in collimator parameters. To utilize themore » lead-casting technique, the authors designed two supporting plates to position about 37 000 hexagonal, slightly tapered pins. The holes in the supporting plates were modeled to yield the desired focal length, hole length, and septal thickness. To determine the properties of the manufactured collimator and to compute the system matrix, the authors prepared an array of point sources that covered the entire detector area. Each point source contained 32 μCi of Tc-99m at the first scan time. The array was imaged for 5 min at each of the 64 shifted locations to yield a 2-mm sampling distance, and hole parameters were calculated. The sensitivity was also measured using a point source placed along the central ray at several distances from the collimator face. High-count projection data from a five-compartment brain phantom were acquired with the three collimators on a dual-head SPECT/CT system. The authors calculated Cramer-Rao bounds on the precision of estimates of striatal and background activity concentration. In order to assess the new collimation system to detect changes in striatal activity, the authors evaluated the precision of measuring a 5% decrease in right putamen activity. The authors also reconstructed images of projection data obtained by summing data from the individual phantom compartments. Results: The sensitivity of the novel cone-beam collimator varied with distance from the detector face; it was higher than that of the fan-beam collimator by factors ranging from 2.7 to 162. Examination of the projections of the point sources revealed that only a few holes were distorted or partially blocked, indicating that the intensive manual fabrication process was very successful. Better reconstructed phantom images were obtained from the USCB+FAN collimator pair than from either LEHR or FAN collimation. For the left caudate, located near the center of the brain, the detected counts were 9.8 (8.3) times higher for UCSB compared with LEHR (FAN), averaged over 60 views. The task-specific SNR for detecting a 5% decrease in putamen uptake was 7.4 for USCB and 3.2 for LEHR. Conclusions: The authors have designed and manufactured a novel collimator for brain SPECT imaging. The sensitivity is much higher than that of a fan-beam collimator. Because of differences between the manufactured collimator and its design, reconstruction of the data requires a measured system matrix. The authors have demonstrated the potential of USCB collimation for improved precision in estimating striatal uptake. The novel collimator may be useful for early detection of Parkinson’s disease, and for monitoring therapy response and disease progression.« less

  15. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  16. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denison, K; Smith, S

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, whichmore » optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The DICOM Radiation Dose Structured Report (RDSR) generates a dose report at the conclusion of every examination. Dose Check preemptively notifies CT operators when scan parameters exceed user-defined dose thresholds. DoseWatch is an information technology application providing vendor-agnostic dose tracking and analysis for CT (and all other diagnostic x-ray modalities) SnapShot Pulse improves coronary CTA dose management. VolumeShuttle uses two acquisitions to increase coverage, decrease dose, and conserve on contrast administration. Color-Coding for Kids applies the Broselow-Luten Pediatric System to facilitate pediatric emergency care and reduce medical errors. FeatherLight achieves dose optimization through pediatric procedure-based protocols. Adventure Series scanners provide a child-friendly imaging environment promoting patient cooperation with resultant reduction in retakes and patient motion. Philips CT Dose Optimization Tools and Advanced Reconstruction Presentation Time: 11:45 ‘ 12:15 PM The first part of the talk will cover “Dose Reduction and Dose Optimization Technologies” present in Philips CT Scanners. The main Technologies to be presented include: DoseRight and tube current modulation (DoseRight, Z-DOM, 3D-DOM, DoseRight Cardiac) Special acquisition modes Beam filtration and beam shapers Eclipse collimator and ClearRay collimator NanoPanel detector DoseRight will cover automatic tube current selection that automatically adjusts the dose for the individual patient. The presentation will explore the modulation techniques currently employed in Philips CT scanners and will include the algorithmic concepts as well as illustrative examples. Modulation and current selection technologies to be covered include the Automatic Current Selection component of DoseRight, ZDOM longitudinal dose modulation, 3D-DOM (combination of longitudinal and rotational dose modulation), Cardiac Dose right (an ECG based dose modulation scheme), and the DoseRight Index (DRI) IQ index. The special acquisition modes covers acquisition techniques such as prospective gating that is designed to reduce exposure to the patient through the Cardiac Step and Shoot scan mode. This mode can substitute the much higher dose retrospective scan modes for certain types of cardiac imaging. The beam filtration and beam shaper portion will discuss the variety of filtration and beam shaping configurations available on Philips scanners. This topic includes the x-ray beam characteristics, tube filtration as well as dose compensator characteristics. The Eclipse collimator, ClearRay collimator and the NanoPanel detector portion will discuss additional technologies specific to wide coverage CT that address some of the unique challenges encountered and techniques employed to optimize image quality and optimize dose utilization. The Eclipse collimator reduces extraneous exposure by actively blocking the radiation tails at either end of helical scans that do not contribute to the image generation. The ClearRay collimator and the NanoPanel detector optimize the quality of the signal that reaches the detectors by addressing the increased scattered radiation present in wide coverage and the NanoPanel detector adds superior electronic noise characteristics valuable when imaging at a low dose level. The second part of the talk will present “Advanced Reconstruction Technologies” currently available on Philips CT Scanners. The talk will cover filtered back projection (FBP), iDose4 and Iterative Model Reconstruction (IMR). Each reconstruction method will include a discussion of the algorithm as well as similarities and differences between the algorithms. Examples illustrating the merits of each algorithm will be presented, and techniques and metrics to characterize the performance of each type of algorithm will be presented. The Filtered Back projection portion will discuss and provide a brief summary of relevant standard image reconstruction techniques in common use, and discuss the common tradeoffs when using the FBP algorithm. The iDose4 portion will present the algorithms used for iDose4 as well the different levels. The meaning of different levels of iDose4 available will be presented and quantified. Guidelines for selection iDose4 parameters based on the imaging need will be explained. The different image quality goals available with iDose4 and specifically how iDose4 enables noise reduction, spatial resolution improvement or both will be explained. The approaches to leveraging the benefits of iDose4 such as improved spatial resolution, decreased noise, and artifact prevention will be described and quantified; and measurements and metrics behind the improvements will be presented. The image quality benefits in specific imaging situations as well as how to best combine the technology with other dose reduction strategies to ensure the best image quality at a given dose level will be presented. Insight into the IMR algorithm as well as contrast to the iDose4 techniques and performance characteristics will be discussed. Metrics and techniques for characterizing this class of algorithm and IQ performance will be presented. The image quality benefits and the dose reduction capabilities of IMR will be explored. Illustrative examples of the noise reduction, spatial resolution improvement, and low contrast detectability improvements of the reconstruction method will be presented: clinical cases and phantom measurements demonstrating the benefits of IMR in the areas of low dose imaging, spatial resolution and low contrast resolution are discussed and the technical details behind the measurements will be presented compared to both iDose4 and traditional filtered back projection (FBP)« less

  17. Giant collimated gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Benedetti, Alberto; Tamburini, Matteo; Keitel, Christoph H.

    2018-06-01

    Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm-3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107-108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s-1 mrad-2 mm-2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s-1) gamma-ray pulses.

  18. MCNP simulation of a Theratron 780 radiotherapy unit.

    PubMed

    Miró, R; Soler, J; Gallardo, S; Campayo, J M; Díez, S; Verdú, G

    2005-01-01

    A Theratron 780 (MDS Nordion) 60Co radiotherapy unit has been simulated with the Monte Carlo code MCNP. The unit has been realistically modelled: the cylindrical source capsule and its housing, the rectangular collimator system, both the primary and secondary jaws and the air gaps between the components. Different collimator openings, ranging from 5 x 5 cm2 to 20 x 20 cm2 (narrow and broad beams) at a source-surface distance equal to 80 cm have been used during the study. In the present work, we have calculated spectra as a function of field size. A study of the variation of the electron contamination of the 60Co beam has also been performed.

  19. SPECTIX, a PETAL+ X-ray spectrometer: design, calibration and preliminary tests

    NASA Astrophysics Data System (ADS)

    Reverdin, C.; Bastiani, S.; Batani, D.; Brambrink, E.; Boutoux, G.; Duval, A.; Hulin, S.; Jakubowska, K.; Koenig, M.; Lantuéjoul-Thfoin, I.; Lecherbourg, L.; Szabo, C. I.; Vauzour, B.

    2018-01-01

    The present article describes the design, the calibration and preliminary tests of the X-ray transmission crystal spectrometer SPECTIX (Spectromètre PEtal à Cristaux en Transmission X) built in the framework of the PETAL (PETawatt Aquitaine Laser) project and located in the Laser MégaJoule (LMJ) facility [1,2]. SPECTIX aims at characterizing the hard x-ray Kα emission generated by the interaction of the PETAL ps ultra high-energy laser with a target. The broad spectral range covered by this spectrometer (7 to 150 keV) is achieved by using two measurement channels composed by two distinct crystals. Due to the harsh environment experienced by the spectrometer during a LMJ-PETAL shot, passive detection with image plates is used. Shielding has been dimensioned in order to protect the detector against PETAL shot products. It includes a magnetic dipole to remove electrons entering the spectrometer, a 20 mm thick tungsten frontal collimation and a 6 mm thick lead housing. The SPECTIX performances, including the shielding efficiency, have been tested during an experimental campain performed at the PICO 2000 laser facility at LULI. Improvements inferred from these tests are currently being implemented. Full commissioning of SPECTIX is planned on PETAL shots at the end of 2017.

  20. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diametermore » at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.« less

Top