DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar
X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.
Computerized tomography platform using beta rays
NASA Astrophysics Data System (ADS)
Paetkau, Owen; Parsons, Zachary; Paetkau, Mark
2017-12-01
A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.
Non-Hodgkin Lymphoma (For Parents)
... chest X-ray a computerized tomography (CT or CAT) scan , which rotates around the patient and creates an ... ray (Video) Getting an MRI (Video) Getting a CAT Scan (Video) Chemotherapy Hodgkin Lymphoma Stem Cell Transplants Can ...
... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
Carotid Angioplasty and Stenting
... and of the blood flow to the brain. Magnetic resonance angiography (MRA) or computerized tomography angiography (CTA). ... vessels by using either radiofrequency waves in a magnetic field or by using X-rays with contrast ...
... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...
Comprehensive Digital Imaging Network Project At Georgetown University Hospital
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert
1987-10-01
The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.
Biopsy: Types of Biopsy Procedures Used to Diagnose Cancer
... procedure — such as X-ray, computerized tomography (CT), magnetic resonance imaging (MRI) or ultrasound — with a needle ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...
CMT for biomedical and other applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanne, P.
This session includes two presentations describing applications for x-ray tomography using synchrotron radiation for biomedical uses and fluid flow modeling, and outlines advantages for using monoenergetic x-rays. Contrast mechanisms are briefly described and several graphs of absorbed doses and scattering of x-rays are included. Also presented are schematic diagrams of computerized tomographic instrumentation with camera head. A brief description of goals for a real time tomographic system and expected improvements to the system are described. Color photomicrographs of the Berea Sandstone and human bone are provided, as well as a 3-D microtomographic reconstruction of a human vertebra sample.
High resolution collimator system for X-ray detector
Eberhard, Jeffrey W.; Cain, Dallas E.
1987-01-01
High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.
Checking the possibility of controlling fuel element by X-ray computerized tomography
NASA Astrophysics Data System (ADS)
Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.
2017-08-01
The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinney, J.
This session is comprised of two articles by John Kinney describing biomedical and other uses for computerized tomography. In the first article, Kinney describes the use of a three-dimensional x-ray tomographic microscope to image the trabecular bone architecture of the proximal tibias of rats in vivo. Research in this field may help to detect the earliest stages of hypoestrogenemic bone loss and may help to more rapidly test the effectiveness of new clinical treatments for this major public health problem. The second article describes recent advances in X-ray tomography using synchrotron radiation to evaluate microstructures in ceramic matrix composites, bonemore » loss in osteoporosis, and the development of carries lesions in teeth.« less
el-Gamal, Osama; el-Badry, Amr
2009-07-01
We describe an objective method to evaluate kidney stone radiopacity for use in selection of cases suitable for ESWL. We recruited 76 adult patients with a solitary 1 to 2 cm renal pelvic stone. All patients underwent routine plain x-ray of the urinary tract but an aluminum step wedge (Gammex) was adapted to the cassette before x-ray exposure. This x-ray was then digitized and analyzed by histogram to calculate the gray level of the stone and of each step of the aluminum step wedge. This allowed radiographic stone density to be expressed in mm aluminum equivalent. All patients also underwent abdominopelvic computerized tomography and then ESWL was started. Stone density on plain x-ray was 1.83 to 5.93 mm aluminum equivalent. There was a positive correlation between these values and stone attenuation values on computerized tomography (r(2) 0.83, p <0.005). The 12 patients in whom ESWL failed were found to have stones of significantly higher density than stones in patients with complete stone fragmentation (mean +/- SD 4.8 +/- 0.74 vs 3.35 +/- 0.88 mm aluminum equivalent, p <0.005). There was also a positive correlation between stone radiopacity in mm aluminum equivalent and the total number of shock waves required to achieve complete fragmentation (r(2) 0.66, p <0.005). The aluminum step wedge with plain x-ray of the urinary tract provides a good reference for objectively assessing the radiopacity of renal calculi.
Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinerstein, S.L.; Kovarsky, J.
1984-08-01
A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less
Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding
NASA Astrophysics Data System (ADS)
Amans, Jean-Louis; Darier, Pierre
1986-05-01
imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.
The use of microtomography in bone tissue and biomaterial three-dimensional analysis.
Bedini, Rossella; Meleo, Deborah; Pecci, Raffaella; Pacifici, Luciano
2009-01-01
X-ray computed microtomography (micro-CT, microComputerised Tomography) is a miniaturized form of conventional computerized axial tomography (CAT ). This sophisticated technology enables 3D riconstruction of the internal structure of small X-ray opaque objects without sample destruction or preparation. The aim of this study is to show the possible applications of micro-CT in the analysis of bone graft materials of different origins (i.e. homologous, heterologous, alloplastic) in order to define their morphometric properties by means of SkyScan 1072 3D microtomography system. Since there is a close relationship between the properties of the materials and their microstructure, it is necessary to examine them using the highest levels of resolution before being able to improve existing materials or create new products.
Lemke, John; Sardariani, Edmond; Phipps, Joseph Bradley; Patel, Niki; Itri, Loretta M; Caravelli, James; Viscusi, Eugene R
2016-09-01
Fentanyl iontophoretic transdermal system (fentanyl ITS, IONSYS(®)) is a patient-controlled analgesia system used for the management of acute postoperative pain, designed to be utilized in a hospital setting. The objective of the two studies was to determine if fentanyl ITS could be safely used with X-rays, computerized tomography (CT) scans and radiofrequency identification (RFID) devices. The ITS system has two components: controller and drug unit; the studies utilized ITS systems without fentanyl, referred to as the ITS Placebo system. The first study evaluated the effect of X-radiation on the operation of an ITS Placebo system. Five ITS Placebo systems were exposed to X-rays (20 and 200 mSv total radiation dose-the 200 mSv radiation dose represents a tenfold higher exposure than in clinical practice) while operating in the Ready Mode and five were exposed while operating in the Dose Mode. The second study evaluated the effect of RFID (worst-case scenario of direct contact with an RFID transmitter) on the operation of an ITS Placebo system. During these tests, observations of the user interface and measurements of output voltage confirmed proper function throughout all operational modes (Ready Mode, Dose Mode, End-of-Use Mode, and End-of-Life Mode). The ITS Placebo system met all specifications and no functional anomalies were observed during and following X-ray exposure at two radiation dose levels or exposure at six different combinations of RFID frequencies and field strengths. The performance of the ITS system was unaffected by X-ray exposure levels well beyond those associated with diagnostic X-rays and CT scans, and by exposure to radiofrequency field strengths typically generated by RFID devices. These results provide added confidence to clinicians that the fentanyl ITS system does not need to be removed during diagnostic X-rays and CT scans and can also be utilized in close proximity to RFID devices. The studies and writing of this manuscript were supported financially by The Medicines Company.
R. Edward Thomas
2013-01-01
Determining the defects located within a log is crucial to understanding the tree/log resource for efficient processing. However, existing means of doing this non-destructively requires the use of expensive x-ray/CT (computerized tomography), MRI (magnetic resonance imaging), or microwave technology. These methods do not lend themselves to fast, efficient, and cost-...
Glick, Stephen J.; Didier, Clay
2013-01-01
A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion in the spectral response with decreasing detector element size. If not corrected for, this caused a large bias in estimating tissue density parameters for material decomposition. It was also observed that degradation of the spectral response due to characteristic x-rays caused worsening precision in the estimation of tissue density parameters. It was observed that characteristic x-rays do cause some degradation in the spatial and spectral resolution of thin CZT detectors operating under breast CT conditions. These degradations should be manageable with careful selection of the detector element size. Even with the observed spectral distortion from characteristic x-rays, it is still possible to correctly estimate tissue parameters for material decomposition using spectral CT if accurate modeling is used. PMID:24187383
Dual scan CT image recovery from truncated projections
NASA Astrophysics Data System (ADS)
Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat
2017-12-01
There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.
Screening and Biosensor-Based Approaches for Lung Cancer Detection
Wang, Lulu
2017-01-01
Early diagnosis of lung cancer helps to reduce the cancer death rate significantly. Over the years, investigators worldwide have extensively investigated many screening modalities for lung cancer detection, including computerized tomography, chest X-ray, positron emission tomography, sputum cytology, magnetic resonance imaging and biopsy. However, these techniques are not suitable for patients with other pathologies. Developing a rapid and sensitive technique for early diagnosis of lung cancer is urgently needed. Biosensor-based techniques have been recently recommended as a rapid and cost-effective tool for early diagnosis of lung tumor markers. This paper reviews the recent development in screening and biosensor-based techniques for early lung cancer detection. PMID:29065541
Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu; Paige, David F.
2014-04-15
High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °Cmore » ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.« less
Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V
2009-04-01
We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, <0.001 and 0.0002, respectively). When comparing measurement errors between stones of different composition in vitro, the error for calcium oxalate calculi was significantly different from the gold standard for all methods except bone window settings with magnification. For uric acid calculi the measurement error was observed only in standard soft tissue window settings. In vivo 4.0x magnified bone windows was superior to 4.0x magnified soft tissue windows in measurement accuracy. Magnified bone window measurements were not statistically different from digital caliper measurements (mean underestimation vs digital caliper 0.3 mm, p = 0.4), while magnified soft tissue windows were statistically distinct (mean underestimation 1.4 mm, p = 0.001). In this study magnified bone windows were the most accurate method of stone measurements in vitro and in vivo. Therefore, we recommend the routine use of magnified bone windows for computerized tomography measurement of stones. In vitro the measurement error in calcium oxalate stones was greater than that in uric acid stones, suggesting that stone composition may be responsible for measurement inaccuracies.
Moosavi Tayebi, Rohollah; Wirza, Rahmita; Sulaiman, Puteri S B; Dimon, Mohd Zamrin; Khalid, Fatimah; Al-Surmi, Aqeel; Mazaheri, Samaneh
2015-04-22
Computerized tomographic angiography (3D data representing the coronary arteries) and X-ray angiography (2D X-ray image sequences providing information about coronary arteries and their stenosis) are standard and popular assessment tools utilized for medical diagnosis of coronary artery diseases. At present, the results of both modalities are individually analyzed by specialists and it is difficult for them to mentally connect the details of these two techniques. The aim of this work is to assist medical diagnosis by providing specialists with the relationship between computerized tomographic angiography and X-ray angiography. In this study, coronary arteries from two modalities are registered in order to create a 3D reconstruction of the stenosis position. The proposed method starts with coronary artery segmentation and labeling for both modalities. Then, stenosis and relevant labeled artery in X-ray angiography image are marked by a specialist. Proper control points for the marked artery in both modalities are automatically detected and normalized. Then, a geometrical transformation function is computed using these control points. Finally, this function is utilized to register the marked artery from the X-ray angiography image on the computerized tomographic angiography and get the 3D position of the stenosis lesion. The result is a 3D informative model consisting of stenosis and coronary arteries' information from the X-ray angiography and computerized tomographic angiography modalities. The results of the proposed method for coronary artery segmentation, labeling and 3D reconstruction are evaluated and validated on the dataset containing both modalities. The advantage of this method is to aid specialists to determine a visual relationship between the correspondent coronary arteries from two modalities and also set up a connection between stenosis points from an X-ray angiography along with their 3D positions on the coronary arteries from computerized tomographic angiography. Moreover, another benefit of this work is that the medical acquisition standards remain unchanged, which means that no calibration in the acquisition devices is required. It can be applied on most computerized tomographic angiography and angiography devices.
Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.
Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao
2016-01-01
Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.
Nuclear magnetic resonance diagnosis of an anaplastic astrocytoma.
Jackson, J A; Derman, H S; Harper, R L; Willcott, M R; Ford, J J; Schneiders, N J; McCrary, J A; Kelly, A; Bryan, R N
1984-01-01
A patient presented with an 8-month history of a progressive left homonymous visual field deficit, left hemiparesis, and a left thalamocortical sensory deficit that was not detectable by repeated conventional neurodiagnostic evaluations. Proton nuclear magnetic resonance (NMR) imaging revealed a right parietal lesion characterized by a prolonged T2 (spin-spin relaxation time). At surgery, the mass proved to be an anaplastic astrocytoma. NMR appears to be more sensitive than x-ray computerized tomography scanning in some patients with malignant gliomas and offers the clinician an additional probe with which to evaluate these patients.
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Phase-contrast x-ray computed tomography for observing biological specimens and organic materials
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1995-02-01
A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.
Fluorescent scanning x-ray tomography with synchrotron radiation
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji
1995-02-01
Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.
Developments in x-ray tomography I - IX
NASA Astrophysics Data System (ADS)
Stock, S. R.
2016-10-01
Nine Developments in X-ray Tomography conferences have been held previously, and this paper summarizes data from these conference proceedings. The Developments conference provides snapshots of the x-ray tomography field which spans clinical and biological applications, engineering and industrial studies and physical sciences.
A Head and Neck Simulator for Radiology and Radiotherapy
NASA Astrophysics Data System (ADS)
Thompson, Larissa; Campos, Tarcísio P. R.
2013-06-01
Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.
Experimental validation of a linear model for data reduction in chirp-pulse microwave CT.
Miyakawa, M; Orikasa, K; Bertero, M; Boccacci, P; Conte, F; Piana, M
2002-04-01
Chirp-pulse microwave computerized tomography (CP-MCT) is an imaging modality developed at the Department of Biocybernetics, University of Niigata (Niigata, Japan), which intends to reduce the microwave-tomography problem to an X-ray-like situation. We have recently shown that data acquisition in CP-MCT can be described in terms of a linear model derived from scattering theory. In this paper, we validate this model by showing that the theoretically computed response function is in good agreement with the one obtained from a regularized multiple deconvolution of three data sets measured with the prototype of CP-MCT. Furthermore, the reliability of the model as far as image restoration in concerned, is tested in the case of space-invariant conditions by considering the reconstruction of simple on-axis cylindrical phantoms.
Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz
2016-02-02
A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.
[Imaging of temporo-mandibular disorders].
Felizardo, Rufino; Foucart, Jean-Michel; Pizelle, Christophe
2012-03-01
Dominated for years by standard films (tomographic mouth open and mouth closed X-rays, MRI) radiographs of the TMJ have progressively lost their usefulness to diagnosticians who have progressively increased their reliance on well codified clinical examinations, which suffice in a great majority of cases.The indications for and diagnostic worth of radiological studies and the impact they have on the management of TMJ disorders are today quite low especially when the high cost of procedures like MRI, computerized tomography, and CBCT is taken into account. In this article we discuss the various maladies that dentists might encounter and the situations in which radiological examinations are still indicated. © EDP Sciences, SFODF, 2012.
Interlaced X-ray diffraction computed tomography
Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.
2016-01-01
An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305
Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography.
LaManna, J M; Hussey, D S; Baltic, E; Jacobson, D L
2017-11-01
Dual mode tomography using neutrons and X-rays offers the potential of improved estimation of the composition of a sample from the complementary interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is well suited to the study of porous media systems such as fuel cells, concrete, unconventional reservoir geologies, limestones, and other geological media. We present the characteristic performance of both the neutron and X-ray modalities. We illustrate the use of the simultaneous acquisition through improved phase identification in a concrete core.
Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography
NASA Astrophysics Data System (ADS)
LaManna, J. M.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.
2017-11-01
Dual mode tomography using neutrons and X-rays offers the potential of improved estimation of the composition of a sample from the complementary interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is well suited to the study of porous media systems such as fuel cells, concrete, unconventional reservoir geologies, limestones, and other geological media. We present the characteristic performance of both the neutron and X-ray modalities. We illustrate the use of the simultaneous acquisition through improved phase identification in a concrete core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynaud, C.; Rancurel, G.; Samson, Y.
1987-01-01
Seventeen chronic cerebral infarcts were investigated by a highly sensitive, dedicated brain single photon emission computerized tomography system using /sup 123/I-isopropyl iodoamphetamine (IMP) and /sup 133/Xe. IMP uptake was measured 10 minutes, 2 hours, and 5 hours after injection, and regional cerebral blood flow was measured with 133Xe. In 4 cases a positron emission tomography system was used to measure the rCBF and the regional metabolic rate of oxygen with C15O2 and 15O2. The results obtained allowed us to identify 2 abnormal zones. One, the central area, was characterized by a severe decrease in IMP uptake and rCBF averaging 34%more » and 46% respectively and by a hypodense image on the x-ray computerized tomography scan. The second, the periinfarct or ''peripheral area'' was characterized by a moderate decrease in IMP uptake and regional cerebral blood flow averaging 13 and 19% respectively; this area extended around the central area and had a normal density on computerized tomography scan. The IMP hypofixation of the peripheral area observed at the 10th minute tended to disappear at the 5th hour. The volume of this area was often found to be quite large, covering more than 30% of a hemisphere whereas the central area did not exceed 25%. Volume appeared to be correlated with the neurological status of the patient. The nature of the peripheral area is not established with certainty. It may be caused by deafferentation of areas not directly affected by the ischemic insult and/or selective ischemic neuronal loss. The results stress the important role played by the peripheral area, which may be useful in establishing the prognosis and evaluating the efficacy of therapy in individual stroke cases.« less
Simultaneous CT and SPECT tomography using CZT detectors
Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.
2002-01-01
A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.
In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science
Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.
2012-01-01
X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies. PMID:28817018
In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.
Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W
2012-05-24
X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.
NASA Astrophysics Data System (ADS)
Cushley, A. C.
2013-12-01
The proposed launch of a satellite carrying the first space-borne ADS-B receiver by the Royal Military College of Canada (RMCC) will create a unique opportunity to study the modification of the 1090 MHz radio waves following propagation through the ionosphere from the transmitting aircraft to the passive satellite receiver(s). Experimental work successfully demonstrated that ADS-B data can be used to reconstruct two dimensional (2D) electron density maps of the ionosphere using computerized tomography (CT). The goal of this work is to evaluate the feasibility of CT reconstruction. The data is modelled using Ray-tracing techniques. This allows us to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation (FR) is determined and converted to total electron content (TEC) along the ray-paths. The resulting TEC is used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique (ART). This study concentrated on meso-scale structures 100-1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Multiple feature input electron density profile to ray-tracing program. Top: reconstructed relative electron density map of ray-trace input (Fig. 1) using TEC measurements and line-of-sight path. Bottom: reconstructed electron density map of ray-trace input using quiet background a priori estimate.
Ionospheric tomography using ADS-B signals
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Noël, J.-M.
2014-07-01
Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.
Recent observations with phase-contrast x-ray computed tomography
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi
1999-09-01
Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.
Image reconstruction of x-ray tomography by using image J platform
NASA Astrophysics Data System (ADS)
Zain, R. M.; Razali, A. M.; Salleh, K. A. M.; Yahya, R.
2017-01-01
A tomogram is a technical term for a CT image. It is also called a slice because it corresponds to what the object being scanned would look like if it were sliced open along a plane. A CT slice corresponds to a certain thickness of the object being scanned. So, while a typical digital image is composed of pixels, a CT slice image is composed of voxels (volume elements). In the case of x-ray tomography, similar to x-ray Radiography, the quantity being imaged is the distribution of the attenuation coefficient μ(x) within the object of interest. The different is only on the technique to produce the tomogram. The image of x-ray radiography can be produced straight foward after exposed to x-ray, while the image of tomography produces by combination of radiography images in every angle of projection. A number of image reconstruction methods by converting x-ray attenuation data into a tomography image have been produced by researchers. In this work, Ramp filter in "filtered back projection" has been applied. The linear data acquired at each angular orientation are convolved with a specially designed filter and then back projected across a pixel field at the same angle. This paper describe the step of using Image J software to produce image reconstruction of x-ray tomography.
Progress of projection computed tomography by upgrading of the beamline 37XU of SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terada, Yasuko, E-mail: yterada@spring8.or.jp; Suzuki, Yoshio; Uesugi, Kentaro
2016-01-28
Beamline 37XU at SPring-8 has been upgraded for nano-focusing applications. The length of the beamline has been extended to 80 m. By utilizing this length, the beamline has advantages for experiments such as X-ray focusing, X-ray microscopic imaging and X-ray computed tomography. Projection computed tomography measurements were carried out at experimental hutch 3 located 80 m from the light source. CT images of a microcapsule have been successfully obtained with a wide X-ray energy range.
Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography
Cong, Wenxiang; Shen, Haiou; Wang, Ge
2011-01-01
The nanophosphors, or other similar materials, emit near-infrared (NIR) light upon x-ray excitation. They were designed as optical probes for in vivo visualization and analysis of molecular and cellular targets, pathways, and responses. Based on the previous work on x-ray fluorescence computed tomography (XFCT) and x-ray luminescence computed tomography (XLCT), here we propose a spectrally-resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography (SXLCT or SXFCT) approach to quantify a spatial distribution of nanophosphors (other similar materials or chemical elements) within a biological object. In this paper, the x-ray scattering is taken into account in the reconstruction algorithm. The NIR scattering is described in the diffusion approximation model. Then, x-ray excitations are applied with different spectra, and NIR signals are measured in a spectrally resolving fashion. Finally, a linear relationship is established between the nanophosphor distribution and measured NIR data using the finite element method and inverted using the compressive sensing technique. The numerical simulation results demonstrate the feasibility and merits of the proposed approach. PMID:21721815
Nuclear medicine in clinical neurology: an update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldendorf, W.H.
1981-01-01
Isotope scanning using technetium 99m pertechnetate has fallen into disuse since the advent of x-ray computerized tomography. Regional brain blood flow studies have been pursued on a research basis. Increased regional blood flow during focal seizure activity has been demonstrated and is of use in localizing such foci. Cisternography as a predictive tool in normal pressure hydrocephalus is falling into disuse. Positron tomographic scanning is a potent research tool that can demonstrate both regional glycolysis and blood flow. Unfortunately, it is extremely expensive and complex to apply in a clinical setting. With support from the National Institutes of Health, sevenmore » extramural centers have been funded to develop positron tomographic capabilities, and they will greatly advance our knowledge of stroke pathophysiology, seizure disorders, brain tumors, and various degenerative diseases. Nuclear magnetic resonance imaging is a potentially valuable tool since it creates tomographic images representing the distribution of brain water. No tissue ionization is produced, and images comparable to second-generation computerized tomographic scans are already being produced in humans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal
2016-03-21
X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less
Observation of human tissue with phase-contrast x-ray computed tomography
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi
1999-05-01
Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.
Soft x-ray holographic tomography for biological specimens
NASA Astrophysics Data System (ADS)
Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan
2003-10-01
In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial frequencies to improve the depth resolution. In NSRL, we performed soft X-ray holographic tomography experiments. The specimen was the spider filaments and PM M A as recording medium. By 3D CT reconstruction of the projection data, three dimensional density distribution of the specimen was obtained. Also, we developed a new X-ray holographic tomography m ethod called pre-amplified holographic tomography. The method permits a digital real-time 3D reconstruction with high-resolution and a simple and compact experimental setup as well.
Sickle cell-induced ischemic colitis.
Stewart, Camille L; Ménard, Geraldine E
2009-07-01
Sickle cell-induced ischemic colitis is a rare yet potentially fatal complication of sickle cell anemia. Frequent pain crises with heavy analgesia may obscure and prolong this important diagnosis. Our patient was a 29-year-old female with sickle cell disease who was admitted with left lower quadrant abdominal pain. A diagnostic workup, including chemistries, complete blood count, blood cultures, chest x-ray, computerized tomography scanning, and colonoscopy, was performed to identify the etiology of her symptoms. This case highlights the importance of differentiating simple pain crisis from more serious and life-threatening ischemic bowel. A review of the literature compares this case to others reported and gives a method for diagnosing and treating this complication of sickle cell disease.
Transurethral Ultrasound Diffraction Tomography
2007-03-01
the covariance matrix was derived. The covariance reduced to that of the X- ray CT under the assumptions of linear operator and real data.[5] The...the covariance matrix in the linear x- ray computed tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was...is derived in Sec. IV, and its relation to that of the linear x- ray computed tomography appears in Sec. V. In Sec. VI, the inverse scattering
Advanced Computed-Tomography Inspection System
NASA Technical Reports Server (NTRS)
Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa
1993-01-01
Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.
Finite element Compton tomography
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Amouzou, Pauline; Menon, Naresh; Gertsenshteyn, Michael
2007-09-01
In this paper a new approach to 3D Compton imaging is presented, based on a kind of finite element (FE) analysis. A window for X-ray incoherent scattering (or Compton scattering) attenuation coefficients is identified for breast cancer diagnosis, for hard X-ray photon energy of 100-300 keV. The point-by-point power/energy budget is computed, based on a 2D array of X-ray pencil beams, scanned vertically. The acceptable medical doses are also computed. The proposed finite element tomography (FET) can be an alternative to X-ray mammography, tomography, and tomosynthesis. In experiments, 100 keV (on average) X-ray photons are applied, and a new type of pencil beam collimation, based on a Lobster-Eye Lens (LEL), is proposed.
[Diagnostic possibilities of digital volume tomography].
Lemkamp, Michael; Filippi, Andreas; Berndt, Dorothea; Lambrecht, J Thomas
2006-01-01
Cone beam computed tomography allows high quality 3D images of cranio-facial structures. Although detail resolution is increased, x-ray exposition is reduced compared to classic computer tomography. The volume is analysed in three orthogonal plains, which can be rotated independently without quality loss. Cone beam computed tomography seems to be a less expensive and less x-ray exposing alternative to classic computer tomography.
Computerized tomography with total variation and with shearlets
NASA Astrophysics Data System (ADS)
Garduño, Edgar; Herman, Gabor T.
2017-04-01
To reduce the x-ray dose in computerized tomography (CT), many constrained optimization approaches have been proposed aiming at minimizing a regularizing function that measures a lack of consistency with some prior knowledge about the object that is being imaged, subject to a (predetermined) level of consistency with the detected attenuation of x-rays. One commonly investigated regularizing function is total variation (TV), while other publications advocate the use of some type of multiscale geometric transform in the definition of the regularizing function, a particular recent choice for this is the shearlet transform. Proponents of the shearlet transform in the regularizing function claim that the reconstructions so obtained are better than those produced using TV for texture preservation (but may be worse for noise reduction). In this paper we report results related to this claim. In our reported experiments using simulated CT data collection of the head, reconstructions whose shearlet transform has a small ℓ 1-norm are not more efficacious than reconstructions that have a small TV value. Our experiments for making such comparisons use the recently-developed superiorization methodology for both regularizing functions. Superiorization is an automated procedure for turning an iterative algorithm for producing images that satisfy a primary criterion (such as consistency with the observed measurements) into its superiorized version that will produce results that, according to the primary criterion are as good as those produced by the original algorithm, but in addition are superior to them according to a secondary (regularizing) criterion. The method presented for superiorization involving the ℓ 1-norm of the shearlet transform is novel and is quite general: It can be used for any regularizing function that is defined as the ℓ 1-norm of a transform specified by the application of a matrix. Because in the previous literature the split Bregman algorithm is used for similar purposes, a section is included comparing the results of the superiorization algorithm with the split Bregman algorithm.
Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas
2009-01-01
Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local kyphosis in X-ray make these angles to a helpful tool, indicating surgical procedures. For the practical use in lateral X-ray, we emphasize the determination of the segmental kyphosis, because of the highest reproducibility of this angle. “Good” to “excellent” inter- and intraobserver reliabilities for these three angles could also be evaluated in computed tomographies. Therefore, also in computed tomography, the use of these three angles seems to be generally possible. For a direct correlation of the results in lateral X-ray and in computed tomography, further studies should be needed. PMID:19953277
Skiadas, Vasilios; Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios
2009-09-16
An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented.
Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.
Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro
2017-02-01
Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.
Joint reconstruction of x-ray fluorescence and transmission tomography
Di, Zichao Wendy; Chen, Si; Hong, Young Pyo; Jacobsen, Chris; Leyffer, Sven; Wild, Stefan M.
2017-01-01
X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combined signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption. PMID:28788848
Computerized tomography of the otic capsule and otoliths in the oyster toadfish, Opsanus tau.
Edds-Walton, Peggy L; Arruda, Julie; Fay, Richard R; Ketten, Darlene R
2015-02-01
The neurocranium of the toadfish (Opsanus tau) exhibits a distinct translucent region in the otic capsule (OC) that may have functional significance for the auditory pathway. This study used ultrahigh resolution computerized tomography (100 µm voxels) to compare the relative density of three sites along the OC (dorsolateral, midlateral, and ventromedial) and two reference sites (dorsal: supraoccipital crest; ventral: parasphenoid bone) in the neurocranium. Higher attenuation occurs where structural density is greater; thus, we compared the X-ray attenuations measured, which provided a measure of relative density. The maximum attenuation value was recorded for each of the five sites (x and y) on consecutive sections throughout the OC and for each of the three calcareous otoliths associated with the sensory maculae (lagena, saccule, and utricle) in the OC. All three otoliths had higher attenuations than any sites in the neurocranium. Both dorsal and ventral reference sites (supraoccipital crest and parasphenoid bone, respectively) had attenuation levels consistent with calcified bone and had relatively small, irregular variations along the length of the OC in all individuals. The lowest relative attenuations (lowest densities) occurred consistently at the three sites along the OC. In addition, the lowest attenuations measured along the OC occurred at the ventromedial site around the saccular otolith for all seven fish. The decrease in bone density along the OC is consistent with the hypothesis that there is a low-density channel in the skull to facilitate transmission of acoustic stimuli to the auditory endorgans of the ear. © 2014 Wiley Periodicals, Inc.
An Application of Computerized Axial Tomography (CAT) Technology to Mass Raid Tracking
1989-08-01
ESD-TR-89-305 MTR-10542 An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking By John K. Barr August 1989...NO 11. TITLE (Include Security Classification) An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking 12...by block number) Computerized Axial Tomography ( CAT ) Scanner Electronic Support Measures (ESM) Fusion (continued) 19. ABSTRACT (Continue on
Characteristic of x-ray tomography performance using CdTe timepix detector
NASA Astrophysics Data System (ADS)
Zain, R. M.; O'Shea, V.; Maneuski, D.
2017-01-01
X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.
[In vitro study with techniques of imaging of the composition of urinary calculi].
Tellez Martínez-Fornés, M; Burgos Revilla, F J; Sáez Garrido, J C; Soria Descalzo, J; Barbero González, J; Sánchez Corral, J; Minaya Minaya, A; Vallejo Herrador, J
1997-02-01
Pre-treatment knowledge of the lithiasic composition can be useful to design the most appropriate therapeutic scheme for each kind of stone. The relationship between the stone's densitometry information provided by the different imaging techniques, conventional radiology (RX), computerized axial tomography (CAT) and dual energy radiographic densitometry (DO) is analyzed, as well as the elemental composition determined by the microanalysis of fragments obtained post-lithotrity using a scanning electronic microscope (SEM) associated to X-ray dispersion energy (XDE). 60 stones, 12 for each pure composition selected (calcium oxalate mono and dihydro, phosphocarbonate, magnesium ammonium phosphate and uric acid), were studied with XR, CAT and DO and were later subjected to lithofragmentation in vitro. Fragments analysis was carried out post-lithotrity with SEM associated to XDE. The X-ray does not allow to establish the composition of some calculi. CAT quantifies the mineral contents of the oxalocalcic and infective calculi and differentiates the uric acid from the other compositions because the mean density values are under 500 Hounsfield Units. DO evaluates the lithiasic content in phosphocarbonate salts which are structurally similar to bone hydroxyapatite.
Topical Review: Polymer gel dosimetry
Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J
2010-01-01
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687
Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios
2009-01-01
An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented. PMID:19918488
Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans
2010-01-01
The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.
Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; ...
2013-02-11
We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less
Reznitsky, P A; Yartsev, P A; Shavrina, N V
To assess an effectiveness of minimally invasive and laparoscopic technologies in treatment of inflammatory complications of colic diverticular disease. The study included 150 patients who were divided into control and main groups. Survey included ultrasound, X-ray examination and abdominal computerized tomography. In the main group standardized treatment algorithm including minimally invasive and laparoscopic technologies was used. In the main group 79 patients underwent conservative treatment, minimally invasive (ultrasound-assisted percutaneous drainage of abscesses) and laparoscopic surgery that was successful in 78 (98.7%) patients. Standardized algorithm reduces time of treatment, incidence of postoperative complications, mortality and the risk of recurrent inflammatory complications of colic diverticular disease. Also postoperative quality of life was improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, Tatsuyuki; Kohmura, Yoshiki; Takeuchi, Akihisa
2007-01-19
When beryllium is used in transmission X-ray optical elements for spatially coherent beams, speckles are usually observed in the transmission images. These speckles seem to be caused by defects either inside or on the surface of beryllium foil. We measured highly polished beryllium foil using two methods, X-ray computed tomography and X-ray shearing interferometry. The results indicate that observed speckle pattern is caused by many voids inside beryllium or inner low-density regions.
Feasibility study for mega-electron-volt electron beam tomography.
Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R
2012-09-01
Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bie, B. X.; Huang, J. Y.; Fan, D.
Uniaxial tensile experiments are conducted on a T700 carbon fiber/epoxy composite along various offaxis angles. Stressestrain curves are measured along with strain fields mapped via synchrotron x-ray digital image correlation, as well as computerized tomography. Elastic modulus and tensile strength decrease with increasing off-axis angles, while fracture strain exhibits a nonmonotonic trend as a combined result of tensile strength decrease and fracture mode transition. At high off-axis angles, strain field mapping demonstrates distinct tensile and shear strain localizations and deformation bands approximately along the fiber directions, while deformation is mainly achieved via continuous growth of tensile strain at low off-axismore » angles. Roughness of fracture planes decreases exponentially as the off-axis angle increases. The stressestrain curves, strain fields, tomography and fractographs show consistent features, and reveal a fracture mode transition from mainly tension (fiber fracture) to in-plane shear (interface debonding).« less
3D Imaging with Holographic Tomography
NASA Astrophysics Data System (ADS)
Sheppard, Colin J. R.; Kou, Shan Shan
2010-04-01
There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.
Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao
1999-09-01
Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.
Joint reconstruction of x-ray fluorescence and transmission tomography
Di, Zichao; Chen, Si; Hong, Young Pyo; ...
2017-05-30
X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combinedmore » signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Furthermore, compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.« less
3D X-ray ultra-microscopy of bone tissue.
Langer, M; Peyrin, F
2016-02-01
We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.
New contrasts for x-ray imaging and synergy with optical imaging
NASA Astrophysics Data System (ADS)
Wang, Ge
2017-02-01
Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).
Phase-contrast x-ray computed tomography for biological imaging
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1997-10-01
We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.
X-Ray Radiography of Gas Turbine Ceramics.
1979-10-20
Microfocus X-ray equipment. 1a4ihe definition of equipment concepts for a computer assisted tomography ( CAT ) system; and 4ffthe development of a CAT ...were obtained from these test coupons using Microfocus X-ray and image en- hancement techniques. A Computer Assisted Tomography ( CAT ) design concept...monitor. Computer reconstruction algorithms were investigated with respect to CAT and a preferred approach was determined. An appropriate CAT algorithm
Can computerized tomography accurately stage childhood renal tumors?
Abdelhalim, Ahmed; Helmy, Tamer E; Harraz, Ahmed M; Abou-El-Ghar, Mohamed E; Dawaba, Mohamed E; Hafez, Ashraf T
2014-07-01
Staging of childhood renal tumors is crucial for treatment planning and outcome prediction. We sought to identify whether computerized tomography could accurately predict the local stage of childhood renal tumors. We retrospectively reviewed our database for patients diagnosed with childhood renal tumors and treated surgically between 1990 and 2013. Inability to retrieve preoperative computerized tomography, intraoperative tumor spillage and nonWilms childhood renal tumors were exclusion criteria. Local computerized tomography stage was assigned by a single experienced pediatric radiologist blinded to the pathological stage, using a consensus similar to the Children's Oncology Group Wilms tumor staging system. Tumors were stratified into up-front surgery and preoperative chemotherapy groups. The radiological stage of each tumor was compared to the pathological stage. A total of 189 tumors in 179 patients met inclusion criteria. Computerized tomography staging matched pathological staging in 68% of up-front surgery (70 of 103), 31.8% of pre-chemotherapy (21 of 66) and 48.8% of post-chemotherapy scans (42 of 86). Computerized tomography over staged 21.4%, 65.2% and 46.5% of tumors in the up-front surgery, pre-chemotherapy and post-chemotherapy scans, respectively, and under staged 10.7%, 3% and 4.7%. Computerized tomography staging was more accurate in tumors managed by up-front surgery (p <0.001) and those without extracapsular extension (p <0.001). The validity of computerized tomography staging of childhood renal tumors remains doubtful. This staging is more accurate for tumors treated with up-front surgery and those without extracapsular extension. Preoperative computerized tomography can help to exclude capsular breach. Treatment strategy should be based on surgical and pathological staging to avoid the hazards of inaccurate staging. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source.
Le Gros, Mark A; McDermott, Gerry; Cinquin, Bertrand P; Smith, Elizabeth A; Do, Myan; Chao, Weilun L; Naulleau, Patrick P; Larabell, Carolyn A
2014-11-01
Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X-rays (284-543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.
MMX-I: data-processing software for multimodal X-ray imaging and tomography.
Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea
2016-05-01
A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.
Pulse X-ray device for stereo imaging and few-projection tomography of explosive and fast processes
NASA Astrophysics Data System (ADS)
Palchikov, E. I.; Dolgikh, A. V.; Klypin, V. V.; Krasnikov, I. Y.; Ryabchun, A. M.
2017-10-01
This paper describes the operation principles and design features of the device for single pulse X-raying of explosive and high-speed processes, developed on the basis of a Tesla transformer with lumped secondary capacitor bank. The circuit with the lumped capacitor bank allows transferring a greater amount of energy to the discharge circuit as compared with the Marks-surge generator for more effective operation with remote X-ray tubes connected by coaxial cables. The device equipped with multiple X-ray tubes provides simultaneous X-raying of extended or spaced objects, stereo imaging, or few-projection tomography.
X-Ray Dust Tomography: Mapping the Galaxy one X-ray Transient at a Time
NASA Astrophysics Data System (ADS)
Heinz, Sebastian; Corrales, Lia
2018-01-01
Tomography using X-ray light echoes from dust scattering by interstellar clouds is an accurate tool to study the line-of-sight distribution of dust. It can be used to measure distances to molecular clouds and X-ray sources, it can map Galactic structure in dust, and it can be used for precision measurements of dust composition and grain size distribution. Necessary conditions for observing echoes include a suitable X-ray lightcurve and sufficient dust column density to the source. I will discuss a tool set for studying dust echoes and show results obtained for some of the brightest echoes detected to date.
Simultaneous Neutron and X-ray Tomography for Quantitative analysis of Geological Samples
NASA Astrophysics Data System (ADS)
LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.
2016-12-01
Multiphase flow is a critical area of research for shale gas, oil recovery, underground CO2 sequestration, geothermal power, and aquifer management. It is critical to understand the porous structure of the geological formations in addition to the fluid/pore and fluid/fluid interactions. Difficulties for analyzing flow characteristics of rock cores are in obtaining 3D distribution information on the fluid flow and maintaining the cores in a state for other analysis methods. Two powerful non-destructive methods for obtaining 3D structural and compositional information are X-ray and neutron tomography. X-ray tomography produces information on density and structure while neutrons excel at acquiring the liquid phase and produces compositional information. These two methods can offer strong complementary information but are typically conducted at separate times and often at different facilities. This poses issues for obtaining dynamic and stochastic information as the sample will change between analysis modes. To address this, NIST has developed a system that allows for multimodal, simultaneous tomography using thermal neutrons and X-rays by placing a 90 keVp micro-focus X-ray tube 90° to the neutron beam. High pressure core holders that simulate underground conditions have been developed to facilitate simultaneous tomography. These cells allow for the control of confining pressure, axial load, temperature, and fluid flow through the core. This talk will give an overview the simultaneous neutron and x-ray tomography capabilities at NIST, the benefits of multimodal imaging, environmental equipment for geology studies, and several case studies that have been conducted at NIST.
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.
Improving material identification by combining x-ray and neutron tomography
NASA Astrophysics Data System (ADS)
LaManna, Jacob M.; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.
2017-09-01
X-rays and neutrons provide complementary non-destructive probes for the analysis of structure and chemical composition of materials. Contrast differences between the modes arise due to the differences in interaction with matter. Due to the high sensitivity to hydrogen, neutrons excel at separating liquid water or hydrogenous phases from the underlying structure while X-rays resolve the solid structure. Many samples of interest, such as fluid flow in porous materials or curing concrete, are stochastic or slowly changing with time which makes analysis of sequential imaging with X-rays and neutrons difficult as the sample may change between scans. To alleviate this issue, NIST has developed a system for simultaneous X-ray and neutron tomography by orienting a 90 keVpeak micro-focus X-ray tube orthogonally to a thermal neutron beam. This system allows for non-destructive, multimodal tomography of dynamic or stochastic samples while penetrating through sample environment equipment such as pressure and flow vessels. Current efforts are underway to develop methods for 2D histogram based segmentation of reconstructed volumes. By leveraging the contrast differences between X-rays and neutrons, greater histogram peak separation can occur in 2D vs 1D enabling improved material identification.
NASA Astrophysics Data System (ADS)
Vogelgesang, Jonas; Schorr, Christian
2016-12-01
We present a semi-discrete Landweber-Kaczmarz method for solving linear ill-posed problems and its application to Cone Beam tomography and laminography. Using a basis function-type discretization in the image domain, we derive a semi-discrete model of the underlying scanning system. Based on this model, the proposed method provides an approximate solution of the reconstruction problem, i.e. reconstructing the density function of a given object from its projections, in suitable subspaces equipped with basis function-dependent weights. This approach intuitively allows the incorporation of additional information about the inspected object leading to a more accurate model of the X-rays through the object. Also, physical conditions of the scanning geometry, like flat detectors in computerized tomography as used in non-destructive testing applications as well as non-regular scanning curves e.g. appearing in computed laminography (CL) applications, are directly taken into account during the modeling process. Finally, numerical experiments of a typical CL application in three dimensions are provided to verify the proposed method. The introduction of geometric prior information leads to a significantly increased image quality and superior reconstructions compared to standard iterative methods.
MMX-I: data-processing software for multimodal X-ray imaging and tomography
Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea
2016-01-01
A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments. PMID:27140159
3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography
Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.
2015-01-01
We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazzie, K.E.; Williams, J.J.; Phillips, N.C.
2012-08-15
Sn-rich (Pb-free) alloys serve as electrical and mechanical interconnects in electronic packaging. It is critical to quantify the microstructures of Sn-rich alloys to obtain a fundamental understanding of their properties. In this work, the intermetallic precipitates in Sn-3.5Ag and Sn-0.7Cu, and globular lamellae in Sn-37Pb solder joints were visualized and quantified using 3D X-ray synchrotron tomography and focused ion beam (FIB) tomography. 3D reconstructions were analyzed to extract statistics on particle size and spatial distribution. In the Sn-Pb alloy the interconnectivity of Sn-rich and Pb-rich constituents was quantified. It will be shown that multiscale characterization using 3D X-ray and FIBmore » tomography enabled the characterization of the complex morphology, distribution, and statistics of precipitates and contiguous phases over a range of length scales. - Highlights: Black-Right-Pointing-Pointer Multiscale characterization by X-ray synchrotron and focused ion beam tomography. Black-Right-Pointing-Pointer Characterized microstructural features in several Sn-based alloys. Black-Right-Pointing-Pointer Quantified size, fraction, and clustering of microstructural features.« less
Wang, Y H; Grenabo, L; Hedelin, H; Pettersson, S; Wikholm, G; Zachrisson, B F
1993-04-01
A total of 100 whole stones was fragmented in vitro at 3-minute intervals with piezoelectric shock waves using the EDAP LT-01 device until all fragments were less than 2 mm. Larger stones and stones with a high computerized tomography attenuation needed longer treatments for fragmentation. Smoothly bulging stones with an even structure according to plain x-ray films were also more resistant to the shock wave treatment. Calcium oxalate monohydrate stones were not more difficult to break than other types of calculi. Stone fragments from 100 patients after extracorporeal shock wave lithotripsy were also analyzed. The average size of the fragments collected was less than 1 mm. Larger stones produced larger fragments and required more treatment sessions.
Pelotti, P; Ciminari, R; Bacci, G; Avella, M; Briccoli, A
1988-01-01
The value of stratigraphy and pulmonary CT in the initial work-up of osteosarcoma of the extremities is assessed with reference to 217 patients encountered in the Bone Tumour Centre of Rizzoli Orthopaedic Institute in May 1983-May 1986. Stratigraphy revealed lung metastases not identified by standard radiography in 4 patients (1.8%), while CT revealed metastases not identified by either standard X-rays or stratigraphy in a further 6 cases (2.7%). It is concluded that the increase in the percentage of cures (about 30%) reported in the last 10 years in osteosarcoma cases given adjuvant chemotherapy cannot be explained by any difference in initial selection due to the use of these techniques that were not adopted in the historical series.
X-ray tomographic image magnification process, system and apparatus therefor
Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.
1993-09-14
A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.
X-ray tomographic image magnification process, system and apparatus therefor
Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph
1993-01-01
A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.
High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF
NASA Astrophysics Data System (ADS)
da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter
2017-09-01
The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline
Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis
2009-04-01
Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.
Radiation Hard Sensors for Surveillance.
1988-03-11
track position measurements were noted. E. Heijne (CERN) reported on the degradation of silicon detectors for doses larger than 2x10 11 muons /cm 2...Workshop on Transmission and Emission Computerized Tomography , July 1978, Seoul, Korea Nahmias C., Kenyon D.B., Garnett E.S.: Optimization of...crystal size in emission computed tomography . IEEE Trans ,.-.e Nucl Sci NS-27: 529-532, 1980. Mullani N.A., Ficke D.C., Ter-Pogossian M.M.: Cesium Fluoride
Implementation of Soft X-ray Tomography on NSTX
NASA Astrophysics Data System (ADS)
Tritz, K.; Stutman, D.; Finkenthal, M.; Granetz, R.; Menard, J.; Park, W.
2003-10-01
A set of poloidal ultrasoft X-ray arrays is operated by the Johns Hopkins group on NSTX. To enable MHD mode analysis independent of the magnetic reconstruction, the McCormick-Granetz tomography code developed at MIT is being adapted to the NSTX geometry. Tests of the code using synthetic data show that that present X-ray system is adequate for m=1 tomography. In addition, we have found that spline basis functions may be better suited than Bessel functions for the reconstruction of radially localized phenomena in NSTX. The tomography code was also used to determine the necessary array expansion and optimal array placement for the characterization of higher m modes (m=2,3) in the future. Initial reconstruction of experimental soft X-ray data has been performed for m=1 internal modes, which are often encountered in high beta NSTX discharges. The reconstruction of these modes will be compared to predictions from the M3D code and magnetic measurements.
High energy near- and far-field ptychographic tomography at the ESRF
NASA Astrophysics Data System (ADS)
da Silva, Julio C.; Haubrich, Jan; Requena, Guillermo; Hubert, Maxime; Pacureanu, Alexandra; Bloch, Leonid; Yang, Yang; Cloetens, Peter
2017-09-01
In high-resolution tomography, one needs high-resolved projections in order to reconstruct a high-quality 3D map of a sample. X-ray ptychography is a robust technique which can provide such high-resolution 2D projections taking advantage of coherent X-rays. This technique was used in the far-field regime for a fair amount of time, but it can now also be implemented in the near-field regime. In both regimes, the technique enables not only high-resolution imaging, but also high sensitivity to the electron density of the sample. The combination with tomography makes 3D imaging possible via ptychographic X-ray computed tomography (PXCT), which can provide a 3D map of the complex-valued refractive index of the sample. The extension of PXCT to X-ray energies above 15 keV is challenging, but it can allow the imaging of object opaque to lower energy. We present here the implementation and developments of high-energy near- and far-field PXCT at the ESRF.
X-ray phase contrast tomography from whole organ down to single cells
NASA Astrophysics Data System (ADS)
Krenkel, Martin; Töpperwien, Mareike; Bartels, Matthias; Lingor, Paul; Schild, Detlev; Salditt, Tim
2014-09-01
We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval.
Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao
2018-07-01
X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.
Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source
Le Gros, Mark A.; McDermott, Gerry; Cinquin, Bertrand P.; Smith, Elizabeth A.; Do, Myan; Chao, Weilun L.; Naulleau, Patrick P.; Larabell, Carolyn A.
2014-01-01
Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with ‘water window’ X-rays (284–543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies. PMID:25343808
A Case of Thoracic Endometriosis Syndrome Presenting with Recurrent Catamenial Pneumothorax.
Junejo, Shoaib Z; Singh Lubana, Sandeep; Shina, Sukhdip Singh; Tuli, Sandeep Singh
2018-05-17
BACKGROUND Catamenial pneumothorax (CP) is a spontaneous pneumothorax commonly associated with menstrual periods. Endometrial tissues most commonly involve the pelvic region. However, after the pelvis, the lungs are most frequently involved. Thoracic endometriosis should always be suspected in young women presenting with CP. CASE REPORT A 30-year-old woman with history of endometriosis presented with chief complaint of umbilical pain. A computerized tomography (CT) scan of the abdomen and pelvis was performed, which showed an incidental finding of a large right-sided pneumothorax. Chest X-ray imaging showed 50% pneumothorax. A right-sided chest tube was placed, and after the procedure, a chest X-ray image showed expansion of the right lung. The patient was readmitted for elective resection of an umbilical mass and was again incidentally found to have a recurrent pneumothorax on the right side. She underwent videothoracoscopic pleurodesis with pathology, establishing the diagnosis of catamenial pneumothorax. CONCLUSIONS Thoracic endometriosis resulting in catamenial pneumothorax should be suspected in young women of child-bearing age. Treatment options still under debate include endoscopic resection and videothoracoscopic pleurodesis followed by gonadotrophin-releasing hormone (GnRH) therapy to reduce the rate of postoperative recurrence.
X-ray phase imaging-From static observation to dynamic observation-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, A.; Yashiro, W.; Olbinado, M. P.
2012-07-31
We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase imagesmore » and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.« less
Direct integration of the inverse Radon equation for X-ray computed tomography.
Libin, E E; Chakhlov, S V; Trinca, D
2016-11-22
A new mathematical appoach using the inverse Radon equation for restoration of images in problems of linear two-dimensional x-ray tomography is formulated. In this approach, Fourier transformation is not used, and it gives the chance to create the practical computing algorithms having more reliable mathematical substantiation. Results of software implementation show that for especially for low number of projections, the described approach performs better than standard X-ray tomographic reconstruction algorithms.
High Resolution X-ray-Induced Acoustic Tomography
Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei
2016-01-01
Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
Fluorescent x-ray computed tomography to visualize specific material distribution
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji
1997-10-01
Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.
NASA Astrophysics Data System (ADS)
Huang, Rong; Limburg, Karin; Rohtla, Mehis
2017-05-01
X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.
Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.
Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti
2006-02-01
Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.
Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu
2013-01-01
We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.
Multiple-energy Techniques in Industrial Computerized Tomography
DOE R&D Accomplishments Database
Schneberk, D.; Martz, H.; Azevedo, S.
1990-08-01
Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.
Neural networks for calibration tomography
NASA Technical Reports Server (NTRS)
Decker, Arthur
1993-01-01
Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.
de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.
2014-01-01
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Cheolwoong; Kang, Huixiao; De Andrade, Vincent
2017-03-21
The electrode of Li-ion batteries is required to be chemically and mechanically stable in the electrolyte environment forin situmonitoring by transmission X-ray microscopy (TXM). Evidence has shown that continuous irradiation has an impact on the microstructure and the electrochemical performance of the electrode. To identify the root cause of the radiation damage, a wire-shaped electrode is soaked in an electrolyte in a quartz capillary and monitored using TXM under hard X-ray illumination. The results show that expansion of the carbon–binder matrix by the accumulated X-ray dose is the key factor of radiation damage. Forin situTXM tomography, intermittent X-ray exposure duringmore » image capturing can be used to avoid the morphology change caused by radiation damage on the carbon–binder matrix.« less
NASA Astrophysics Data System (ADS)
Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing
2018-02-01
The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.
Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger
2011-01-01
With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640
X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids
NASA Technical Reports Server (NTRS)
Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.
2017-01-01
X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.
Webb, S M; Ruscalleda, J; Schwarzstein, D; Calaf-Alsina, J; Rovira, A; Matos, G; Puig-Domingo, M; de Leiva, A
1992-05-01
We wished to analyse the relative value of computerized tomography and magnetic resonance in patients referred for evaluation of pituitary and parasellar lesions. We performed a separate evaluation by two independent neuroradiologists of computerized tomography and magnetic resonance images ordered numerically and anonymously, with no clinical data available. We studied 40 patients submitted for hypothalamic-pituitary study; 31 were carried out preoperatively, of which histological confirmation later became available in 14. The remaining nine patients were evaluated postoperatively. Over 40 parameters relating to the bony margins, cavernous sinuses, carotid arteries, optic chiasm, suprasellar cisterns, pituitary, pituitary stalk and extension of the lesion were evaluated. These reports were compared with the initial ones offered when the scans were ordered, and with the final diagnosis. Concordance between initial computerized tomography and magnetic resonance was observed in 27 cases (67.5%); among the discordant cases computerized tomography showed the lesion in two, magnetic resonance in 10, while in the remaining case reported to harbour a microadenoma on computerized tomography the differential diagnosis between a true TSH-secreting microadenoma and pituitary resistance to thyroid hormones is still unclear. Both neuroradiologists coincided in their reports in 32 patients (80%); when the initial report was compared with those of the neuroradiologists, concordance was observed with at least one of them in 34 instances (85%). Discordant results were observed principally in microadenomas secreting ACTH or PRL and in delayed puberty. In the eight patients with Cushing's disease (histologically confirmed in six) magnetic resonance was positive in five and computerized tomography in two; the abnormal image correctly identified the side of the lesion at surgery. In patients referred for evaluation of Cushing's syndrome or hyperprolactinaemia (due to microadenomas) or after surgery, magnetic resonance is clearly preferable to computerized tomography. In macroadenomas both scans are equally diagnostic but magnetic resonance offers more information on pituitary morphology and neighbouring structures. Nevertheless, there are cases in which the results of computerized tomography and magnetic resonance will complement each other, since different parameters are analysed with each examination and discordant results are encountered.
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro
2016-01-28
Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.
A dual-PIXE tomography setup for reconstruction of Germanium in ICF target
NASA Astrophysics Data System (ADS)
Guo, N.; Lu, H. Y.; Wang, Q.; Meng, J.; Gao, D. Z.; Zhang, Y. J.; Liang, X. X.; Zhang, W.; Li, J.; Ma, X. J.; Shen, H.
2017-08-01
Inertial Confinement Fusion (ICF) is one type of fusion energy research which could initiate nuclear fusion reactions through heating and compressing thermonuclear fuel. Compared to a pure plastic target, Germanium doping into the CH ablator layer by Glow Discharge Polymer (GDP) technique can increase the ablation velocity and the standoff distance between the ablation front and laser-deposition region. During target fabrication process, quantitative doping of Ge should be accurately controlled. Particle Induced X-ray Emission Tomography (PIXE-T) can make not only quantification of the concentration, but also reconstruction of the spatial distribution of doped element. The Si (Li) detector for PIXE tomography technique had a disadvantage of low counting rate. To make up this deficiency, another detector of Si (Li) with the same configuration positioned at the opposite side with the same detective angle 135° have been implemented. Simultaneously acquired elemental maps of Ge obtained using two detectors may be different because of the X-ray absorption along the X-ray exit route in the target. In this paper, the X-ray detection efficiency is drastically improved by this dual-PIXE tomography system.
X-ray luminescence computed tomography using a focused x-ray beam.
Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing
2017-11-01
Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laloum, D., E-mail: david.laloum@cea.fr; CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles
2015-01-15
X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.
Innovation and fusion of x-ray and optical tomography for mouse studies of breast cancer
NASA Astrophysics Data System (ADS)
Wang, Ge; Cong, Wenxiang; Yang, Qingsong; Pian, Qi; Zhu, Shouping; Liang, Jimin; Barroso, Margarida; Intes, Xavier
2016-10-01
For early detection and targeted therapy, receptor expression profiling is instrumental to classifying breast cancer into sub-groups. In particular, human epidermal growth factor receptor 2 (HER2) expression has been shown to have both prognostic and predictive values. Recently, an increasingly more complex view of HER2 in breast cancer has emerged from genome sequencing that highlights the role of inter- and intra-tumor heterogeneity in therapy resistance. Studies on such heterogeneity demand high-content, high-resolution functional and molecular imaging in vivo, which cannot be achieved using any single imaging tool. Clearly, there is a critical need to develop a multimodality approach for breast cancer imaging. Since 2006, grating-based x-ray imaging has been developed for much-improved x-ray images. In 2014, the demonstration of fluorescence molecular tomography (FMT) guided by x-ray grating-based micro-CT was reported with encouraging results and major drawbacks. In this paper, we propose to integrate grating-based x-ray tomography (GXT) and high-dimensional optical tomography (HOT) into the first-of-its-kind truly-fused GXT-HOT (pronounced as "Get Hot") system for imaging of breast tumor heterogeneity, HER2 expression and dimerization, and therapeutic response. The primary innovation lies in developing a brand-new high-content, high-throughput x-ray optical imager based on several contemporary techniques to have MRI-type soft tissue contrast, PET-like sensitivity and specificity, and micro-CT-equivalent resolution. This system consists of two orthogonal x-ray Talbot-Lau interferometric imaging chains and a hyperspectral time-resolved single-pixel optical imager. Both the system design and pilot results will be reported in this paper, along with relevant issues under further investigation.
Eigenvector decomposition of full-spectrum x-ray computed tomography.
Gonzales, Brian J; Lalush, David S
2012-03-07
Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.
NASA Astrophysics Data System (ADS)
Han, G.; Kwon, T. H.; Lee, J. Y.
2016-12-01
As gas and water flows induced by depressurization of hydrate-bearing sediments exert seepage forces on fines in sediments, such as clay particles, depressurization is reported to accompany the transport of fine particles through sediment pores, i.e., fines migration. Because such fines migration can cause pore clogging, the fines migration is considered as one of the critical phenomena contributing to the transport of fluids among various pore-scale processes associated with depressurization. However, quantification of fines migration during depressurization still remains poorly understood. This study thus investigated fines migration caused by depressurization using X-ray computerized tomography(X-ray CT) imaging. A host sediment was prepared by mixing fine sand with kaolinite clay minerals to achieve 10% mass fraction of fines (less than 75 um). Then, methane hydrate was synthesized in the host clayey sand, and thereafter water was injected to saturate the hydrate-bearing sediment sample. Step-wise depressurization was applied while the produced gas was collected through an outlet fluid port. X-ray CT imaging was conducted on the sediment sample over the courses of the experiment to monitor the sample preparation, hydrate formation, depressurization, and fines migration. Based on the calibration tests, the amount and locations of methane hydrate formed in the sample was estimated, and the gas migration path was also identified. Finally, the spatial distribution of fines after completion of depressurization was first assessed using the obtained X-ray images and then compared with the post-mortem mine-back results.Notably, we found that the middle part of the sample was clogged possibly by fines or by re-formed hydrate, leading to a big pressure difference between the inlet and outlet fluid port of the sample by 3 MPa. Owing to this clogging and the lost in pressure communication, hydrate dissociation first occurred at the bottom half and the hydrate dissociation in the top half part followed later. Our study demonstrates that X-ray CT imaging can be a useful tool to visualize and quantify the fines migration during hydrate depressurization, and our results present an experimental evidence that depressurization can cause pore clogging in sediments containing more than 10% fines fraction.
Combined X-ray CT and mass spectrometry for biomedical imaging applications
NASA Astrophysics Data System (ADS)
Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.
2014-04-01
Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The combination of two vastly different imaging approaches provides complementary information (i.e., anatomical and molecular distributions) that allows the correlation of distinct structural features with specific molecules distributions leading to unique insights in disease development.
XDesign: an open-source software package for designing X-ray imaging phantoms and experiments.
Ching, Daniel J; Gürsoy, Dogˇa
2017-03-01
The development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.
XDesign: An open-source software package for designing X-ray imaging phantoms and experiments
Ching, Daniel J.; Gursoy, Dogˇa
2017-02-21
Here, the development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.
Hafnium-Based Contrast Agents for X-ray Computed Tomography.
Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar
2017-05-15
Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.
NASA Astrophysics Data System (ADS)
Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert
2012-11-01
Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.
Sunaguchi, Naoki; Yuasa, Tetsuya; Hirano, Shin-Ichi; Gupta, Rajiv; Ando, Masami
2015-01-01
X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction alteration caused by individual voxels along the path of the X-ray beam. Dense objects such as calcifications in biological specimens violate this condition. There are extensive beam deflection artefacts in the vicinity of such structures because they result in large distortion of wave front due to the large difference of refractive index; for such large changes in beam direction, the transmittance of the silicon analyzer crystal saturates and is no longer linearly dependent on the angle of refraction. This paper describes a method by which these effects can be overcome and excellent soft-tissue contrast of phase tomography can be preserved in the vicinity of such artefact-producing structures.
NASA Astrophysics Data System (ADS)
Oda, Yasuyuki; Sato, Eiichi; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-07-01
High-speed X-ray photon counting is useful for discriminating photon energy, and the counting can be used for constructing an X-ray computed tomography (CT) system. A photon-counting X-ray CT system consists of an X-ray generator, a turntable, an oscillation linear detector, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0 mm-thick crystal (scintillator) of YAP(Ce) (cerium-doped yttrium aluminum perovskite), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of an MPPC module, the YAP(Ce), and a scan stage. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. Because the lower level of the photon energy was roughly determined by a comparator in the module, the average photon energy of the X-ray spectra increased with increase in the lower-level voltage of the comparator at a constant tube voltage. The maximum count rate was approximately 3 Mcps (mega counts per second), and photon-counting CT was carried out.
X-ray micro-Tomography at the Advanced Light Source
USDA-ARS?s Scientific Manuscript database
The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...
... and intestine using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses a ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate enema, ...
Homepage P. Fischer, LBNL, Berkeley CA | UC Santa Cruz CA
mesoscale magnetic x-ray microscopy and spectroscopy (ultra-)fast spin dynamics soft x-ray tomography of condensed matter x-ray optics publications presentations invited talks conference contributions curriculum
Engine materials characterization and damage monitoring by using x ray technologies
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1993-01-01
X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results from one-, three-, five-, and eight-ply ceramic composite specimens show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber-matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. In situ film radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction-bonded silicon nitride matrix. It is concluded that pretest, in situ, and post-test x ray imaging can provide greater understanding of ceramic matrix composite mechanical behavior.
2006-11-01
NON DESTRUCTIVE 3D X-RAY IMAGING OF NANO STRUCTURES & COMPOSITES AT SUB-30 NM RESOLUTION, WITH A NOVEL LAB BASED X- RAY MICROSCOPE S H Lau...article we describe a 3D x-ray microscope based on a laboratory x-ray source operating at 2.7, 5.4 or 8.0 keV hard x-ray energies. X-ray computed...tomography (XCT) is used to obtain detailed 3D structural information inside optically opaque materials with sub-30 nm resolution. Applications include
Axial Tomography from Digitized Real Time Radiography
DOE R&D Accomplishments Database
Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.
1985-01-18
Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Zichao; Chen, Si; Hong, Young Pyo
X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combinedmore » signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Furthermore, compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.« less
3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.
Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z
2010-10-01
Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage
NASA Astrophysics Data System (ADS)
Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing
2018-02-01
With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.
NASA Astrophysics Data System (ADS)
Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.
2010-09-01
High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.
Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation
NASA Astrophysics Data System (ADS)
Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao
1998-08-01
We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.
ERIC Educational Resources Information Center
Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew
2017-01-01
Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…
Low-dose x-ray tomography through a deep convolutional neural network
Yang, Xiaogang; De Andrade, Vincent; Scullin, William; ...
2018-02-07
Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less
Low-dose x-ray tomography through a deep convolutional neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaogang; De Andrade, Vincent; Scullin, William
Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less
Compositional Determination of Shale with Simultaneous Neutron and X-ray Tomography
NASA Astrophysics Data System (ADS)
LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.
2017-12-01
Understanding the distribution of organic material, mineral inclusions, and porosity are critical to properly model the flow of fluids through rock formations in applications ranging from hydraulic fracturing and gas extraction, CO2 sequestration, geothermal power, and aquifer management. Typically, this information is obtained on the pore scale using destructive techniques such as focused ion beam scanning electron microscopy. Neutrons and X-rays provide non-destructive, complementary probes to gain three-dimensional distributions of porosity, minerals, and organic content along with fluid interactions in fractures and pore networks on the core scale. By capturing both neutron and X-ray tomography simultaneously it is possible to capture slowly dynamic or stochastic processes with both imaging modes. To facilitate this, NIST offers a system for simultaneous neutron and X-ray tomography at the Center for Neutron Research. This instrument provides neutron and X-ray beams capable of penetrating through pressure vessels to image the specimen inside at relevant geological conditions at resolutions ranging from 15 micrometers to 100 micrometers. This talk will discuss current efforts at identifying mineral and organic content and fracture and wettability in shales relevant to gas extraction.
Developments on a SEM-based X-ray tomography system: Stabilization scheme and performance evaluation
NASA Astrophysics Data System (ADS)
Gomes Perini, L. A.; Bleuet, P.; Filevich, J.; Parker, W.; Buijsse, B.; Kwakman, L. F. Tz.
2017-06-01
Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (˜60%) and low read-out noise (˜1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.
X-ray analysis of electron Bernstein wave heating in MST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.
2016-11-15
A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. Thismore » provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.« less
High-resolution x-ray tomography using laboratory sources
NASA Astrophysics Data System (ADS)
Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing
2006-08-01
X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aigner, M., E-mail: michael.aigner@jku.at; Köpplmayr, T., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at; Lang, C., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at
2014-05-15
We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inlinemore » measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.« less
X-ray tomography using the full complex index of refraction.
Nielsen, M S; Lauridsen, T; Thomsen, M; Jensen, T H; Bech, M; Christensen, L B; Olsen, E V; Hviid, M; Feidenhans'l, R; Pfeiffer, F
2012-10-07
We report on x-ray tomography using the full complex index of refraction recorded with a grating-based x-ray phase-contrast setup. Combining simultaneous absorption and phase-contrast information, the distribution of the full complex index of refraction is determined and depicted in a bivariate graph. A simple multivariable threshold segmentation can be applied offering higher accuracy than with a single-variable threshold segmentation as well as new possibilities for the partial volume analysis and edge detection. It is particularly beneficial for low-contrast systems. In this paper, this concept is demonstrated by experimental results.
Older, R A; Synder, B; Krupski, T L; Glembocki, D J; Gillenwater, J Y
2001-05-01
In several of the initial patients undergoing brachytherapy at our institution radioactive implants were visible in the thorax on chest radiography. The clinical ramifications of this unanticipated finding were unclear. Thus, we investigated the incidence of brachytherapy seed migration to the chest and whether these seeds were associated with any clinical significance. We retrospectively reviewed the records of all patients who underwent ultrasound or computerized tomography guided brachytherapy of 103palladium seeds from March 1997 to March 1999. This list of patients on brachytherapy was then matched against the radiology computer system to determine those who had undergone chest X-ray after brachytherapy. When the radiology report was unclear regarding brachytherapy seeds, chest x-rays were reviewed by one of us (R. O.) to determine the presence and position of the seeds. Post-brachytherapy chest x-rays were available in 110 of the 183 patients. In 78 cases no brachytherapy seeds were identified. Radioactive implants were identified on chest radiography in 32 patients (29%), including 1 to 5 seeds in 20, 8, 1, 2 and 1, respectively. No patients complained of any change in pulmonary symptoms after brachytherapy. Radioactive implants migrated after brachytherapy for localized prostate cancer in 29% of the patients who underwent post-procedure radiography. There did not appear to be a pattern to the seed distribution. However, while the incidence was not negligible, no patient appeared to have any acute pulmonary symptoms. Therefore, while the migration of radioactive implants to the chest is a real phenomenon, it appears to have no adverse clinical consequences in the early post-procedure period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, B.R.; Griffin, T.W.; Tong, D.Y.K.
Eighteen patients with pineal region tumors seen from November 1960 to November 1978 were reviewed. Thirteen patients treated with radiation therapy received tumor doses in the 4000 to 5500 rad range. The five year survival and five year disease-free survival were 73 and 63% respectively. Spinal cord metastasis occurred in 2 of 13 (15%) patients. Attempts at salvage radiotherapy for these patients were unsuccessful. Computerized tomography (CT) scan provides an excellent method of evaluating the response of pineal region tumors to radiation. Rapid regression of the tumor mass on CT scan reflects the highly radioresponsive nature of germinomas, the tumormore » type most likely to disseminate throughout the neuraxis. This principle can be exploited to select unbiopsied patients with a high risk of spinal cord metastasis for prophylactic spinal radiation at an early stage of treatment.« less
Fang, You-Hong; Zhang, Bing-Ling; Wu, Jia-Guo; Chen, Chun-Xiao
2007-01-01
Intestinal lymphangiectasia (IL) is a rare disease characterized by dilated lymphatic vessles in the intestinal wall and small bowel mesentery which induce loss of protein and lymphocytes into bowel lumen. Because it most often occurs in the intestine and cannot be detected by upper gastroendoscopy or colonoscopy, and the value of common image examinations such as X-ray and computerized tomography (CT) are limited, the diagnosis of IL is difficult, usually needing the help of surgery. Capsule endoscopy is useful in diagnosing intestinal diseases, such as IL. We here report a case of IL in a female patient who was admitted for the complaint of recurrent edema accompanied with diarrhea and abdominal pain over the last twenty years, and aggravated ten days ago. She was diagnosed by M2A capsule endoscopy as a primary IL and confirmed by surgical and pathological examination. PMID:17465517
Fang, You-Hong; Zhang, Bing-Ling; Wu, Jia-Guo; Chen, Chun-Xiao
2007-04-21
Intestinal lymphangiectasia (IL) is a rare disease characterized by dilated lymphatic vessles in the intestinal wall and small bowel mesentery which induce loss of protein and lymphocytes into bowel lumen. Because it most often occurs in the intestine and cannot be detected by upper gastroendoscopy or colonoscopy, and the value of common image examinations such as X-ray and computerized tomography (CT) are limited, the diagnosis of IL is difficult, usually needing the help of surgery. Capsule endoscopy is useful in diagnosing intestinal diseases, such as IL. We here report a case of IL in a female patient who was admitted for the complaint of recurrent edema accompanied with diarrhea and abdominal pain over the last twenty years, and aggravated ten days ago. She was diagnosed by M2A capsule endoscopy as a primary IL and confirmed by surgical and pathological examination.
Image analysis for dental bone quality assessment using CBCT imaging
NASA Astrophysics Data System (ADS)
Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.
2016-03-01
Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.
Strain Measurements of Chondrules and Refraction Inclusion in Allende
NASA Technical Reports Server (NTRS)
Tait, Alastair W.; Fisher, Kent R.; Simon, Justin I.
2013-01-01
This study uses traditional strain measurement techniques, combined with X-ray computerized tomography (CT), to evaluate petrographic evidence in the Allende CV3 chondrite for preferred orientation and to measure strain in three dimensions. The existence of petrofabrics and lineations was first observed in carbonaceous meteorites in the 1960's. Yet, fifty years later only a few studies have reported that meteorites record such features. Impacts are often cited as the mechanism for this feature, although plastic deformation from overburden and nebular imbrication have also been proposed. Previous work conducted on the Leoville CV3 and the Parnallee LL3 chondrites, exhibited a minimum uniaxial shortening of 33% and 21%, respectively. Petrofabrics in Allende CV3 have been looked at before; previous workers using Electron Back Scatter Diffraction (EBSD) found a major-axis alignment of olivine inside dark inclusions and an "augen"-like preferred orientation of olivine grains around more competent chondrules
Unwrapping an Ancient Egyptian Mummy Using X-Rays
ERIC Educational Resources Information Center
Hughes, Stephen W.
2010-01-01
This article describes a project of unwrapping an ancient Egyptian mummy using x-ray computed tomography (CT). About 600 x-ray CT images were obtained through the mummified body of a female named Tjetmutjengebtiu (or Jeni for short), who was a singer in the great temple of Karnak in Egypt during the 22nd dynasty (c 945-715 BC). The x-ray CT images…
NASA Astrophysics Data System (ADS)
Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.
1997-10-01
We describe a new system of incoherent scatter computed tomography (ISCT) using monochromatic synchrotron X rays, and we discuss its potential to be used in in vivo imaging for medical use. The system operates on the basis of computed tomography (CT) of the first generation. The reconstruction method for ISCT uses the least squares method with singular value decomposition. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. An acrylic cylindrical phantom of 20-mm diameter containing a cross-shaped channel was imaged. The channel was filled with a diluted iodine solution with a concentration of 200 /spl mu/gI/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated the incoherent X-ray line from the other notable peaks, i.e., the iK/sub /spl alpha// and K/sub /spl beta/1/ X-ray fluorescent lines and the coherent scattering peak. CT images were reconstructed from projections generated by integrating the counts In the energy window centering around the incoherent scattering peak and whose width was approximately 2 keV. The reconstruction routine employed an X-ray attenuation correction algorithm. The resulting image showed more homogeneity than one without the attenuation correction.
Imaging osteoarthritis in the knee joints using x-ray guided diffuse optical tomography
NASA Astrophysics Data System (ADS)
Zhang, Qizhi; Yuan, Zhen; Sobel, Eric S.; Jiang, Huabei
2010-02-01
In our previous studies, near-infrared (NIR) diffuse optical tomography (DOT) had been successfully applied to imaging osteoarthritis (OA) in the finger joints where significant difference in optical properties of the joint tissues was evident between healthy and OA finger joints. Here we report for the first time that large joints such as the knee can also be optically imaged especially when DOT is combined with x-ray tomosynthesis where the 3D image of the bones from x-ray is incorporated into the DOT reconstruction as spatial a priori structural information. This study demonstrates that NIR light can image large joints such as the knee in addition to finger joints, which will drastically broaden the clinical utility of our x-ray guided DOT technique for OA diagnosis.
Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.
2017-07-01
The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.
Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi
2011-10-01
To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.
Obst, Martin; Schmid, Gregor
2014-01-01
The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.
Murrie, Rhiannon P; Morgan, Kaye S; Maksimenko, Anton; Fouras, Andreas; Paganin, David M; Hall, Chris; Siu, Karen K W; Parsons, David W; Donnelley, Martin
2015-07-01
The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.
Comparison of lens- and fiber-coupled CCD detectors for X-ray computed tomography
Uesugi, K.; Hoshino, M.; Yagi, N.
2011-01-01
X-ray imaging detectors with an identical phosphor and a CCD chip but employing lens- and fiber-coupling between them have been compared. These are designed for X-ray imaging experiments, especially computed tomography, at the medium-length beamline at the SPring-8 synchrotron radiation facility. It was found that the transmittance of light to the CCD is about four times higher in the fiber-coupled detector. The uniformity of response in the lens-coupled detector has a global shading of up to 40%, while pixel-to-pixel variation owing to a chicken-wire pattern was dominant in the fiber-coupled detector. Apart from the higher transmittance, the fiber-coupled detector has a few characteristics that require attention when it is used for computed tomography, which are browning of the fiber, discontinuity in the image, image distortion, and dark spots in the chicken-wire pattern. Thus, it is most suitable for high-speed tomography of samples that tend to deform, for example biological and soft materials. PMID:21335908
X-ray phase contrast tomography by tracking near field speckle
Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal
2015-01-01
X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237
X-ray microlaminography with polycapillary optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dabrowski, K. M.; Dul, D. T.; Wrobel, A.
2013-06-03
We demonstrate layer-by-layer x-ray microimaging using polycapillary optics. The depth resolution is achieved without sample or source rotation and in a way similar to classical tomography or laminography. The method takes advantage from large angular apertures of polycapillary optics and from their specific microstructure, which is treated as a coded aperture. The imaging geometry is compatible with polychromatic x-ray sources and with scanning and confocal x-ray fluorescence setups.
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.
Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing
2018-02-01
With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Wright, Laura E.; Frye, Jennifer B.; Timmermann, Barbara N.; Funk, Janet L.
2010-01-01
Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy x-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by micro-computerized tomography (μCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor. PMID:20695490
Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan
2018-04-25
This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License
Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Zichao; Leyffer, Sven; Wild, Stefan M.
2016-01-01
Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Abduraxit, Ablajan; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-04-01
An energy-discrimination K-edge x-ray computed tomography (CT) system is useful for controlling the image contrast of a target region by selecting both the photon energy and the energy width. The CT system has an oscillation-type linear cadmium telluride (CdTe) detectror. CT is performed by repeated linear scans and rotations of an object. Penetrating x-ray photons from the object are detected by a CdTe detector, and event signals of x-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, the tube voltage and tube current were 80 kV and 20 μA, respectively, and the x-ray intensity was 1.92 μGy/s at a distance of 1.0 m from the source and a tube voltage of 80 kV. The energy-discrimination CT was carried out by selecting x-ray photon energies.
Imaging cellular and subcellular structure of human brain tissue using micro computed tomography
NASA Astrophysics Data System (ADS)
Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert
2017-09-01
Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.
Synchrotron-based X-ray computed tomography during compression loading of cellular materials
Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; ...
2015-04-29
Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.
OMNY PIN—A versatile sample holder for tomographic measurements at room and cryogenic temperatures
NASA Astrophysics Data System (ADS)
Holler, M.; Raabe, J.; Wepf, R.; Shahmoradian, S. H.; Diaz, A.; Sarafimov, B.; Lachat, T.; Walther, H.; Vitins, M.
2017-11-01
Nowadays ptychographic tomography in the hard x-ray regime, i.e., at energies above about 2 keV, is a well-established measurement technique. At the Paul Scherrer Institut, currently two instruments are available: one is measuring at room temperature and atmospheric pressure, and the other, the so-called OMNY (tOMography Nano crYo) instrument, is operating at ultra-high vacuum and offering cryogenic sample temperatures down to 10 K. In this manuscript, we present the sample mounts that were developed for these instruments. Aside from excellent mechanical stability and thermal conductivity, they also offer highly reproducible mounting. Various types were developed for different kinds of samples and are presented in detail, including examples of how specimens can be mounted on these holders. We also show the first hard x-ray ptychographic tomography measurements of high-pressure frozen biological samples, in the present case Chlamydomonas cells, the related sample pins and preparation steps. For completeness, we present accessories such as transportation containers for both room temperature and cryogenic samples and a gripper mechanism for automatic sample changing. The sample mounts are not limited to x-ray tomography or hard x-ray energies, and we believe that they can be very useful for other instrumentation projects.
Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-01-01
15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.
Grating-based X-ray Dark-field Computed Tomography of Living Mice.
Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F
2015-10-01
Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.
Grating-based X-ray Dark-field Computed Tomography of Living Mice
Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.
2015-01-01
Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545
TOPICAL REVIEW: Digital x-ray tomosynthesis: current state of the art and clinical potential
NASA Astrophysics Data System (ADS)
Dobbins, James T., III; Godfrey, Devon J.
2003-10-01
Digital x-ray tomosynthesis is a technique for producing slice images using conventional x-ray systems. It is a refinement of conventional geometric tomography, which has been known since the 1930s. In conventional geometric tomography, the x-ray tube and image receptor move in synchrony on opposite sides of the patient to produce a plane of structures in sharp focus at the plane containing the fulcrum of the motion; all other structures above and below the fulcrum plane are blurred and thus less visible in the resulting image. Tomosynthesis improves upon conventional geometric tomography in that it allows an arbitrary number of in-focus planes to be generated retrospectively from a sequence of projection radiographs that are acquired during a single motion of the x-ray tube. By shifting and adding these projection radiographs, specific planes may be reconstructed. This topical review describes the various reconstruction algorithms used to produce tomosynthesis images, as well as approaches used to minimize the residual blur from out-of-plane structures. Historical background and mathematical details are given for the various approaches described. Approaches for optimizing the tomosynthesis image are given. Applications of tomosynthesis to various clinical tasks, including angiography, chest imaging, mammography, dental imaging and orthopaedic imaging, are also described.
High-speed photon-counting x-ray computed tomography system utilizing a multipixel photon counter
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akiro; Onagawa, Jun
2009-07-01
High-speed photon counting is useful for discriminating photon energy and for decreasing absorbed dose for patients in medical radiography, and the counting is usable for constructing an x-ray computed tomography (CT) system. A photon-counting x-ray CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation stage, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0-mm-thick LSO crystal (scintillator), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of a MPPC module and the LSO. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The lower level of the photon energy is roughly determined by a comparator circuit in the module, and the unit of the level is the photon equivalent (pe). Thus, the average photon energy of the x-ray spectra increases with increasing the lower-level voltage of the comparator. The maximum count rate was approximately 20 Mcps, and energy-discriminated CT was roughly carried out.
Three dimensional fracture aperture and porosity distribution using computerized tomography
NASA Astrophysics Data System (ADS)
Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.
2017-12-01
A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the presence of strong heterogeneities in fracture aperture at the mm-scale. These results exemplify the use of non-destructive imaging to determine fracture aperture maps, which can be used to address flow channelization and heat transfer that cannot be obtained from core-flooding experiments alone.
NASA Astrophysics Data System (ADS)
Arhatari, Benedicta D.; Abbey, Brian
2018-01-01
Ross filter pairs have recently been demonstrated as a highly effective means of producing quasi-monoenergetic beams from polychromatic X-ray sources. They have found applications in both X-ray spectroscopy and for elemental separation in X-ray computed tomography (XCT). Here we explore whether they could be applied to the problem of metal artefact reduction (MAR) for applications in medical imaging. Metal artefacts are a common problem in X-ray imaging of metal implants embedded in bone and soft tissue. A number of data post-processing approaches to MAR have been proposed in the literature, however these can be time-consuming and sometimes have limited efficacy. Here we describe and demonstrate an alternative approach based on beam conditioning using Ross filter pairs. This approach obviates the need for any complex post-processing of the data and enables MAR and segmentation from the surrounding tissue by exploiting the absorption edge contrast of the implant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Zichao; Leyffer, Sven; Wild, Stefan M.
Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
X-ray micro-beam techniques and phase contrast tomography applied to biomaterials
NASA Astrophysics Data System (ADS)
Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia
2015-12-01
A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.
X-ray-induced acoustic computed tomography of concrete infrastructure
NASA Astrophysics Data System (ADS)
Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong
2018-02-01
X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.
High-sensitive computed tomography system using a silicon-PIN x-ray diode
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-10-01
A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of 1.91 mA was developed using a silicon-PIN X-ray diode (Si-PIN-XD). The Si-PIN-XD is a selected high-sensitive Si-PIN photodiode (PD) for detecting X-ray photons. X-ray photons are detected directly using the Si-PIN-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to differentiator with a time constant of 1 μs to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 1.91 mA and 100 kV, respectively, and gadolinium K-edge CT was carried out using filtered X-ray spectra with a peak energy of 52 keV.
Shift focal spot X-ray tube to the imposition anode under long exposure
NASA Astrophysics Data System (ADS)
Obodovskiy, A. V.; Bessonov, V. B.; Larionov, I. A.
2018-02-01
X-ray non-destructive testing is an integral part of any modern industrial production. Microfocus X-ray sources make it possible to obtain projected images with an increased spatial resolution by using a direct geometric magnification during the survey. On the basis of the St. Petersburg State Electrotechnical University staff of the department of electronic devices and equipment has been designed model of microfocus X-ray computed tomography.
TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, L; Tang, S; Ahmad, M
Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less
NASA Astrophysics Data System (ADS)
Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon
2017-02-01
We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).
Foda, Khaled; Abdeldaeim, Hussein; Youssif, Mohamed; Assem, Akram
2013-11-01
To define the parameters that accompanied a successful extracorporeal shock wave lithotripsy (ESWL), namely the number of shock waves (SWs), expulsion time (ET), mean stone density (MSD), and the skin-to-stone distance (SSD). A total of 368 patients diagnosed with renal calculi using noncontrast computerized tomography had their MSD, diameter, and SSD recorded. All patients were treated using a Siemens lithotripter. ESWL success meant a stone-free status or presence of residual fragments <3 mm, ET was the time in days for the successful clearance of stone fragments. Correlation was performed between the stone characteristics, number of SWs, and ET. Two multiple regression analysis models defined the number of SWs and ET. Two receiver operating characteristic curves plotted the best MSD cutoff value and optimum SSD for a successful ESWL. Three hundred one patients were ESWL successes. A significant positive correlation was elicited between number of SWs and stone diameter, density and SSD; between ET and stone diameter and density. Multiple regressions concluded 2 equations: Number of SWs = 265.108 + 5.103 x1 + 22.39 x2 + 10.931 x3 ET (days) = -10.85 + 0.031 x1 + 2.11 x2 x1 = stone density (Hounsfield unit [HUs]), x2 = stone diameter (mm), and x3 = SSD (mm). Receiver operating characteristic curves demonstrated a cutoff value of ≤ 934 HUs with 94.4% sensitivity and 66.7% specificity and P = .0211. The SSD curve showed that a distance ≤ 99 mm was 85.7% sensitive, 87.5% specific, P <.0001. Stone disintegration is not recommended if MSD is >934 HUs and SSD >99 mm. The required number of SWs and the expected ET can be anticipated. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaochao; Kim, Joshua; Laganis, Philip
2011-10-15
Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. Inmore » this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO{sub 4} scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 x 2 mm{sup 2} using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.« less
2009-04-01
An Extensive X-ray Computed Tomography Evaluation of a Fully Penetrated Encapsulated SiC MMC Ballistic Panel by William H. Green and Robert H...Panel William H. Green and Robert H. Carter Weapons and Materials Research Directorate, ARL...PROGRAM ELEMENT NUMBER 2182040 6. AUTHOR(S) William H. Green and Robert H. Carter 5d. PROJECT NUMBER AH80 5e. TASK NUMBER 5f. WORK UNIT
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Nanoscale Fresnel coherent diffraction imaging tomography using ptychography.
Peterson, I; Abbey, B; Putkunz, C T; Vine, D J; van Riessen, G A; Cadenazzi, G A; Balaur, E; Ryan, R; Quiney, H M; McNulty, I; Peele, A G; Nugent, K A
2012-10-22
We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.
A novel PFIB sample preparation protocol for correlative 3D X-ray CNT and FIB-TOF-SIMS tomography.
Priebe, Agnieszka; Audoit, Guillaume; Barnes, Jean-Paul
2017-02-01
We present a novel sample preparation method that allows correlative 3D X-ray Computed Nano-Tomography (CNT) and Focused Ion Beam Time-Of-Flight Secondary Ion Mass Spectrometry (FIB-TOF-SIMS) tomography to be performed on the same sample. In addition, our invention ensures that samples stay unmodified structurally and chemically between the subsequent experiments. The main principle is based on modifying the topography of the X-ray CNT experimental setup before FIB-TOF-SIMS measurements by incorporating a square washer around the sample. This affects the distribution of extraction field lines and therefore influences the trajectories of secondary ions that are now guided more efficiently towards the detector. As the result, secondary ion detection is significantly improved and higher, i.e. statistically better, signals are obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-10-01
A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.
X-ray Micro-Tomography of Ablative Heat Shield Materials
NASA Technical Reports Server (NTRS)
Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.
2016-01-01
X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation
NASA Astrophysics Data System (ADS)
Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.
2013-05-01
The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.
NASA Astrophysics Data System (ADS)
Matsushita, Ryo; Sato, Eiichi; Yanbe, Yutaka; Chiba, Hiraku; Maeda, Tomoko; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2013-03-01
A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of sub-mA was developed using a silicon X-ray diode (Si-XD). The Si-XD is a high-sensitivity Si photodiode (PD) selected for detecting X-ray photons, and the X-ray sensitivity of the Si-XD was twice as high as that of Si-PD cerium-doped yttrium aluminum perovskite [YAP(Ce)]. X-ray photons are directly detected using the Si-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with a maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to the differentiator with a time constant of 500 ns to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 0.55 mA and 60 kV, respectively, and iodine K-edge CT was carried out using filtered bremsstrahlung X-ray spectra with a peak energy of 38 keV.
NASA Astrophysics Data System (ADS)
Pfeiffer, Franz
2018-01-01
X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
Transmission X-ray microscopy for full-field nano-imaging of biomaterials
ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO
2010-01-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414
Sub-10-ms X-ray tomography using a grating interferometer
NASA Astrophysics Data System (ADS)
Yashiro, Wataru; Noda, Daiji; Kajiwara, Kentaro
2017-05-01
An X-ray phase tomogram was successfully obtained with an exposure time of less than 10 ms by X-ray grating interferometry, an X-ray phase imaging technique that enables high-sensitivity X-ray imaging even of materials consisting of light elements. This high-speed X-ray imaging experiment was performed at BL28B2, SPring-8, where a white X-ray beam is available, and the tomogram was reconstructed from projection images recorded at a frame rate of 100,000 fps. The setup of the experiment will make it possible to realize three-dimensional observation of unrepeatable high-speed phenomena with a time resolution of less than 10 ms.
Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun
2010-07-01
An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.
Khademi, Sara; Sarkar, Saeed; Kharrazi, Sharmin; Amini, Seyed Mohammad; Shakeri-Zadeh, Ali; Ay, Mohammad Reza; Ghadiri, Hossein
2018-01-01
Increasing attention has been focused on the use of nanostructures as contrast enhancement agents in medical imaging, especially in computed tomography (CT). To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agents for CT imaging. This study was designed to evaluate any effect on X-ray attenuation that might result from employing GNPs with a variety of shapes, sizes, surface chemistries, and concentrations. Gold nanorods (GNRs) and spherical GNPs were synthesized for this application. X-ray attenuation was quantified by Hounsfield unit (HU) in CT. Our findings indicated that smaller spherical GNPs (13 nm) had higher X-ray attenuation than larger ones (60 nm) and GNRs with larger aspect ratio exhibited great effect on X-ray attenuation. Moreover, poly ethylene glycol (PEG) coating on GNRs declined X-ray attenuation as a result of limiting the aggregation of GNRs. We observed X-ray attenuation increased when mass concentration of GNPs was elevated. Overall, smaller spherical GNPs can be suggested as a better alternative to Omnipaque, a good contrast agent for CT imaging. This data can be also considered for the application of gold nanostructures in radiation dose enhancement where nanoparticles with high X-ray attenuation are applied. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Chen, Dongmei; Zhu, Shouping; Cao, Xu; Zhao, Fengjun; Liang, Jimin
2015-01-01
X-ray luminescence computed tomography (XLCT) has become a promising imaging technology for biological application based on phosphor nanoparticles. There are mainly three kinds of XLCT imaging systems: pencil beam XLCT, narrow beam XLCT and cone beam XLCT. Narrow beam XLCT can be regarded as a balance between the pencil beam mode and the cone-beam mode in terms of imaging efficiency and image quality. The collimated X-ray beams are assumed to be parallel ones in the traditional narrow beam XLCT. However, we observe that the cone beam X-rays are collimated into X-ray beams with fan-shaped broadening instead of parallel ones in our prototype narrow beam XLCT. Hence we incorporate the distribution of the X-ray beams in the physical model and collected the optical data from only two perpendicular directions to further speed up the scanning time. Meanwhile we propose a depth related adaptive regularized split Bregman (DARSB) method in reconstruction. The simulation experiments show that the proposed physical model and method can achieve better results in the location error, dice coefficient, mean square error and the intensity error than the traditional split Bregman method and validate the feasibility of method. The phantom experiment can obtain the location error less than 1.1 mm and validate that the incorporation of fan-shaped X-ray beams in our model can achieve better results than the parallel X-rays. PMID:26203388
Bekas, Marcin; Gajewski, Antoni K; Pachocki, Krzysztof
2013-01-01
Within the medical facilities provided by state healthcare services, a universally applied technique for patient diagnosis and treatment relies on ionising radiation; for example in radiotherapy and X-ray (ie. examination). Human exposure to such radiation is not however entirely free of associated health risks. To determine and estimate the numbers and types of X-ray based medical procedures that are performed in general and dental radiography, mammography and computer tomography on patients from the Mazovian province in Poland, which included children, women and men subjects. The numbers of patient subjects undergoing X-rays was estimated by surveying the patient intake in X-ray testing rooms within the healthcare facilities of the Mazovian province. Questionnaires were either dispatched by mail to such healthcare centres or were completed by the X-ray operating staff during the testing of quality control. Results so obtained from the latter, were compared to entries from the X-ray rooms' register During 2009, the number of X-rays performed were 7612046 equivalent to 1460 examinations per 1000 inhabitants. The majority were done on women ie. 3847961 (50.55%), followed by 3193781 (41.96%) on men and 570 304 (7.49%) for children. Results indicated that the predominating medical procedure used of this type, was for making general diagnoses; especially through using chest radiography. Others included, in descending order; dental X-ray (mainly intra-oral examination), computer tomography (mainly CT head examinations) and mammography procedures. It was also found that the annual numbers of having X-rays has increased compared to previous years.
Meirer, Florian; Morris, Darius T.; Kalirai, Sam; ...
2015-01-02
Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle.more » Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.« less
Multi-Mounted X-Ray Computed Tomography.
Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng
2016-01-01
Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.
Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA
NASA Astrophysics Data System (ADS)
Beasley, D. G.; Marques, A. C.; Alves, L. C.; da Silva, R. C.
2013-07-01
A new 3D Proton Induced X-Ray Emission Tomography (PIXE-T) and Scanning Transmission Ion Microscopy Tomography (STIM-T) simulation software has been developed in Java and uses NVIDIA™ Common Unified Device Architecture (CUDA) to calculate the X-ray attenuation for large detector areas. A challenge with PIXE-T is to get sufficient counts while retaining a small beam spot size. Therefore a high geometric efficiency is required. However, as the detector solid angle increases the calculations required for accurate reconstruction of the data increase substantially. To overcome this limitation, the CUDA parallel computing platform was used which enables general purpose programming of NVIDIA graphics processing units (GPUs) to perform computations traditionally handled by the central processing unit (CPU). For simulation performance evaluation, the results of a CPU- and a CUDA-based simulation of a phantom are presented. Furthermore, a comparison with the simulation code in the PIXE-Tomography reconstruction software DISRA (A. Sakellariou, D.N. Jamieson, G.J.F. Legge, 2001) is also shown. Compared to a CPU implementation, the CUDA based simulation is approximately 30× faster.
Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis
2010-05-01
The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.
Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1
Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup
2014-01-01
Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402
Apparatus for obtaining an X-ray image
Watanabe, Eiji
1979-01-01
A computed tomography apparatus in which a fan-shaped X-ray beam is caused to pass through a section of an object, enabling absorption detection on the opposite side of the object by a detector comprising a plurality of discrete detector elements. An electron beam generating the X-ray beam by impacting upon a target is caused to rotate over the target.
Phase-contrast X-ray computed tomography of non-formalin fixed biological objects
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Momose, Atsushi; Wu, Jin; Zeniya, Tsutomu; Yu, Quanwen; Thet-Thet-Lwin; Itai, Yuji
2001-07-01
Using a monolithic X-ray interferometer having the view size of 25 mm×25 mm, phase-contrast X-ray CT (PCCT) was performed for non-formalin fixed livers of two normal rats and a rabbit transplanted with VX-2 cancer. PCCT images of liver and cancer lesions resembled well those obtained by formalin fixed samples.
Hybrid setup for micro- and nano-computed tomography in the hard X-ray range
NASA Astrophysics Data System (ADS)
Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon
2017-12-01
With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, D. A., E-mail: zolotovden@crys.ras.ru; Buzmakov, A. V.; Elfimov, D. A.
2017-01-15
The spatial arrangement of single linear defects in a Si single crystal (input surface (111)) has been investigated by X-ray topo-tomography using laboratory X-ray sources. The experimental technique and the procedure of reconstructing a 3D image of dislocation half-loops near the Si crystal surface are described. The sizes of observed linear defects with a spatial resolution of about 10 μm are estimated.
Terahertz Computed Tomography of NASA Thermal Protection System Materials
NASA Technical Reports Server (NTRS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2011-01-01
A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.
Grunwaldt, Jan-Dierk; Schroer, Christian G
2010-12-01
X-ray microscopic techniques are excellent and presently emerging techniques for chemical imaging of heterogeneous catalysts. Spatially resolved studies in heterogeneous catalysis require the understanding of both the macro and the microstructure, since both have decisive influence on the final performance of the industrially applied catalysts. A particularly important aspect is the study of the catalysts during their preparation, activation and under operating conditions, where X-rays have an inherent advantage due to their good penetration length especially in the hard X-ray regime. Whereas reaction cell design for hard X-rays is straightforward, recently smart in situ cells have also been reported for the soft X-ray regime. In the first part of the tutorial review, the constraints from a catalysis view are outlined, then the scanning and full-field X-ray microscopy as well as coherent X-ray diffraction imaging techniques are described together with the challenging design of suitable environmental cells. Selected examples demonstrate the application of X-ray microscopy and tomography to monitor structural gradients in catalytic reactors and catalyst preparation with micrometre resolution but also the possibility to follow structural changes in the sub-100 nm regime. Moreover, the potential of the new synchrotron radiation sources with higher brilliance, recent milestones in focusing of hard X-rays as well as spatiotemporal studies are highlighted. The tutorial review concludes with a view on future developments in the field of X-ray microscopy that will have strong impact on the understanding of catalysts in the future and should be combined with in situ electron microscopic studies on the nanoscale and other spectroscopic studies like microRaman, microIR and microUV-vis on the macroscale.
Scatter Reduction In Conventional Radiographic Tomography Using Rotating Apertures
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Bednarek, Daniel R.
1981-08-01
Since images in conventional radiographic tomography are in-herently low in subject contrast, it is essential that scattered radiation be prevented from reaching the image receptor. Scanning beam or slit radiographic techniques are known to be the most efficient scatter elimination methods, yet have been inapplicable to this area of radiography. In this work it is shown that the scanning beam method using rotating aperture wheel (RAW) devices can be used in conventional tomography. One coder wheel between the x-ray tube and patient and two scatter discriminator wheels between the patient and image recep-tor form sections of the RAW "projection cone" with the lines of radia-tion from the x-ray source forming the "flux pyramid." As long as the projection cone follows the motion of the x-ray flux pyramid (with the ratios of the distances between the x-ray source, RAWs, patient, and image receptor kept constant throughout the motion) any RAW pattern may be used. Simple relations are given which describe the geometric constraints for various tomographic motions. As in any application of scanning slit techniques, it is possible to use the excellent scatter elimination capabilities of a RAW device either to improve image contrast or to reduce patient dose.
NASA Astrophysics Data System (ADS)
Longo, E.; Bravin, A.; Brun, F.; Bukreeva, I.; Cedola, A.; Fratini, M.; Le Guevel, X.; Massimi, L.; Sancey, L.; Tillement, O.; Zeitoun, P.; de La Rochefoucauld, O.
2018-01-01
The word "theranostic" derives from the fusion of two terms: therapeutic and diagnostic. It is a promising research field that aims to develop innovative therapies with high target specificity by exploiting the therapeutic and diagnostic properties, in particular for metal-based nanoparticles (NPs) developed to erase cancer. In the framework of a combined research program on low dose X-ray imaging and theranostic nanoparticles (NPs), high resolution Phase-Contrast Tomography images of mice organs injected with gadolinium and gold-NPs were acquired at the European Synchrotron Radiation Facility (ESRF). Both compounds are good X-ray contrast agents due to their high attenuation coefficient with respect to biological tissues, especially immediately above K-edge energy. X-ray tomography is a powerful non-invasive technique to image the 3D vasculature network in order to detect abnormalities. Phase contrast methods provide more detailed anatomical information with higher discrimination among soft tissues. We present the images of mice liver and brain injected with gold and gadolinium NPs, respectively. We discuss different image processing methods used aiming at enhancing the accuracy on localizing nanoparticles.
Three-dimensional reconstruction with x-ray shape-from-silhouette
NASA Astrophysics Data System (ADS)
Simioni, E.; Ratti, F.; Calliari, I.; Poletto, L.
2010-09-01
In the field of restoration of ancient handworks, X-ray tomography is a powerful method to reconstruct the internal structure of the object in non-invasive way. In some cases, such as small objects fully realized with hard metals and completely hidden by clay or products of oxidation, the tomography, although necessary to obtain the 3D appearance of the object, does not give any additional information on its internal monolithic structure. We present here the application of the shape-from-silhouette technique on X-ray images to reconstruct the 3D profile of handworks. The acquisition technique is similar to tomography, since several X-ray images are taken while the object is rotated. Some reference points are placed on a structure co-rotating with the object and are acquired on the images for calibration and registration. The shape-from-silhouette algorithm gives finally the 3D appearance of the handwork. We present the analysis of a tin pendant of VI-VIII century b.C. (Venetian area) completely hidden by solid ground. The 3D reconstruction shows surprisingly that the pendant is a very elaborated piece, with two embraced figures that were completely invisible before restoration.
Mcps-range photon-counting x-ray computed tomography system
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Enomoto, Toshiyuki; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-10-01
10 Mcps photon counting was carried out using a detector consisting of a 2.0 mm-thick ZnO (zinc oxide) single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 10 Mcps (mega counts per second) at a tube voltage of 70 kV and a tube current of 2.0 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the ZnO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using iodine-based contrast media.
Tomography using monochromatic thermal neutrons with attenuation and phase contrast
NASA Astrophysics Data System (ADS)
Dubus, Francois; Bonse, Ulrich; Biermann, Theodor; Baron, Matthias; Beckmann, Felix; Zawisky, Michael
2002-01-01
Attenuation-contrast tomography with monochromatic thermal neutrons was developed and operated at guide station S18 of the institute Laue-Langevin in Grenoble. From the S18 spectrum the neutron wavelength (lambda) equals 0.18 nm was selected by employing a fore crystal with the silicon 220 reflection at a Bragg angle (Theta) equals 30 degrees. Projections were registered by a position sensitive detector (PSD) consisting of a neutron-to-visible-light converter coupled to a CCD detector. Neutron tomography and its comparison with X-ray tomography is studied. This is of special interest since the cross section for neutron attenuation ((sigma) atom) and the cross section for neutron phase shift (bc) are isotope specific and, in addition, by no means mostly monotonous functions of atomic number Z as are attenuation coefficient ((mu) x) and atomic scattering amplitude (f) in the case of X-rays. Results obtained with n-attenuation tomography will be presented. Possibilities and the setup of an instrument for neutron phase-contrast tomography based on single-crystal neutron interferometry will be described.
NASA Astrophysics Data System (ADS)
Tudisco, E.; Hall, S. A.; Charalampidou, E. M.; Kardjilov, N.; Hilger, A.; Sone, H.
Recent studies have demonstrated that the combination of x-ray tomography during triaxial tests (;in-situ; tests) and 3D- volumetric Digital Image Correlation (3D-DIC) can provide important insight into the mechanical behaviour and deformation processes of granular materials such as sand. The application of these tools to investigate the mechanisms of failure in rocks is also of obvious interest. However, the relevant applied confining pressures for triaxial testing on rocks are higher than those on sands and therefore stronger pressure containment vessels, i.e., made of thick metal walls, are required. This makes in-situ x-ray imaging of rock deformation during triaxial tests a challenge. One possible solution to overcome this problem is to use neutrons, which should better penetrate the metal-walls of the pressure vessels. In this perspective, this work assesses the capability of neutron tomography with 3D-DIC to measure deformation fields in rock samples. Results from pre- and post-deformation neutron tomography of a Bentheim sandstone sample deformed ex-situ at 40 MPa show that clear images of the internal structure can be achieved and utilised for 3D-DIC analysis to reveal the details of the 3D strain field. From these results the character of the localised deformation in the study sample can thus be described. Furthermore, comparison with analyses based on equivalent x-ray tomography imaging of the same sample confirms the effectiveness of the method in relation to the more established x-ray based approach.
ERIC Educational Resources Information Center
Balottin, Umberto; And Others
1989-01-01
The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)
[The clinical economic analysis of the methods of ischemic heart disease diagnostics].
Kalashnikov, V Iu; Mitriagina, S N; Syrkin, A L; Poltavskaia, M G; Sorokina, E G
2007-01-01
The clinical economical analysis was applied to assess the application of different techniques of ischemic heart disease diagnostics - the electro-cardiographic monitoring, the treadmill-testing, the stress-echo cardiographic with dobutamine, the single-photon computerized axial tomography with load, the multi-spiral computerized axial tomography with coronary arteries staining in patients with different initial probability of disease occurrence. In all groups, the best value of "cost-effectiveness" had the treadmill-test. The patients with low risk needed 17.4 rubles to precise the probability of ischemic heart disease occurrence at 1%. In the group with medium and high risk this indicator was 9.4 and 24.7 rubles correspondingly. It is concluded that to precise the probability of ischemic heart disease occurrence after tredmil-test in the patients with high probability it is appropriate to use the single-photon computerized axial tomography with load and in the case of patients with low probability the multi-spiral computerized axial tomography with coronary arteries staining.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxian; Crawford, John W.; Flavel, Richard J.; Young, Iain M.
2016-10-01
The Lattice Boltzmann (LB) model and X-ray computed tomography (CT) have been increasingly used in combination over the past decade to simulate water flow and chemical transport at pore scale in porous materials. Because of its limitation in resolution and the hierarchical structure of most natural soils, the X-ray CT tomography can only identify pores that are greater than its resolution and treats other pores as solid. As a result, the so-called solid phase in X-ray images may in reality be a grey phase, containing substantial connected pores capable of conducing fluids and solute. Although modified LB models have been developed to simulate fluid flow in such media, models for solute transport are relatively limited. In this paper, we propose a LB model for simulating solute transport in binary soil images containing permeable solid phase. The model is based on the single-relaxation time approach and uses a modified partial bounce-back method to describe the resistance caused by the permeable solid phase to chemical transport. We derive the relationship between the diffusion coefficient and the parameter introduced in the partial bounce-back method, and test the model against analytical solution for movement of a pulse of tracer. We also validate it against classical finite volume method for solute diffusion in a simple 2D image, and then apply the model to a soil image acquired using X-ray tomography at resolution of 30 μm in attempts to analyse how the ability of the solid phase to diffuse solute at micron-scale affects the behaviour of the solute at macro-scale after a volumetric average. Based on the simulated results, we discuss briefly the danger in interpreting experimental results using the continuum model without fully understanding the pore-scale processes, as well as the potential of using pore-scale modelling and tomography to help improve the continuum models.
Karch, Jakub; Bartl, Benjamin; Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek
2016-12-01
Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
Transmission X-ray microscopy for full-field nano imaging of biomaterials.
Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero
2011-07-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.
Anthropometric and computerized tomographic measurements of lower extremity lean body mass.
Buckley, D C; Kudsk, K A; Rose, B S; Fatzinger, P; Koetting, C A; Schlatter, M
1987-02-01
The loss of lean muscle mass is one of the hallmarks of protein-calorie malnutrition. Anthropometry is a standardized technique used to assess the response of muscle mass to nutrition therapy by quantifying the muscle and fat compartments. That technique does not accurately reflect actual limb composition, whereas computerized tomography does. Twenty lower extremities on randomly chosen men and women patients were evaluated by anthropometry and computerized tomography. Total area, muscle plus bone area, total volume, and muscle plus bone volume were correlated, using Heymsfield's equation and computerized tomography-generated areas. Anthropometrics overestimated total and muscle plus bone cross-sectional areas at almost every level. Anthropometry overestimated total area and total volume by 5% to 10% but overestimated muscle plus bone area and muscle plus bone volume by as much as 40%. Anthropometry, while easily performed and useful in large population groups for epidemiological studies, offers a poor assessment of lower extremity composition. On the other hand, computerized tomography is also easily performed and, while impractical for large population groups, does offer an accurate assessment of the lower extremity tissue compartments and is an instrument that might be used in research on lean muscle mass.
Characteristics of a ceramic-substrate x-ray diode and its application to computed tomography
NASA Astrophysics Data System (ADS)
Watanabe, Manabu; Sato, Eiichi; Kodama, Hajime; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira
2013-09-01
X-ray photon counting was performed using a silicon X-ray diode (Si-XD) at a tube current of 2.0 mA and tube voltages ranging from 50 to 70 kV. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-ray photons, and Xray photons are directly detected using the Si-XD without a scintillator. Photocurrent from the diode is amplified using charge-sensitive and shaping amplifiers. To investigate the X-ray-electric conversion, we performed the event-pulseheight (EPH) analysis using a multichannel analyzer. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 10 min at a scan step of 0.5 mm and a rotation step of 1.0°. In PC-CT at a tube voltage of 70 kV, the image contrast of iodine media fell with increasing lower-level voltage of the event pulse using a comparator.
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka
2010-10-01
In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.
A hyperspectral X-ray computed tomography system for enhanced material identification
NASA Astrophysics Data System (ADS)
Wu, Xiaomei; Wang, Qian; Ma, Jinlei; Zhang, Wei; Li, Po; Fang, Zheng
2017-08-01
X-ray computed tomography (CT) can distinguish different materials according to their absorption characteristics. The hyperspectral X-ray CT (HXCT) system proposed in the present work reconstructs each voxel according to its X-ray absorption spectral characteristics. In contrast to a dual-energy or multi-energy CT system, HXCT employs cadmium telluride (CdTe) as the x-ray detector, which provides higher spectral resolution and separate spectral lines according to the material's photon-counter working principle. In this paper, a specimen containing ten different polymer materials randomly arranged was adopted for material identification by HXCT. The filtered back-projection algorithm was applied for image and spectral reconstruction. The first step was to sort the individual material components of the specimen according to their cross-sectional image intensity. The second step was to classify materials with similar intensities according to their reconstructed spectral characteristics. The results demonstrated the feasibility of the proposed material identification process and indicated that the proposed HXCT system has good prospects for a wide range of biomedical and industrial nondestructive testing applications.
Inside marginal adaptation of crowns by X-ray micro-computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dos Santos, T. M.; Lima, I.; Lopes, R. T.
The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)
Cone-beam reconstruction for the two-circles-plus-one-line trajectory
NASA Astrophysics Data System (ADS)
Lu, Yanbin; Yang, Jiansheng; Emerson, John W.; Mao, Heng; Zhou, Tie; Si, Yuanzheng; Jiang, Ming
2012-05-01
The Kodak Image Station In-Vivo FX has an x-ray module with cone-beam configuration for radiographic imaging but lacks the functionality of tomography. To introduce x-ray tomography into the system, we choose the two-circles-plus-one-line trajectory by mounting one translation motor and one rotation motor. We establish a reconstruction algorithm by applying the M-line reconstruction method. Numerical studies and preliminary physical phantom experiment demonstrate the feasibility of the proposed design and reconstruction algorithm.
DiBianca, F A; Gupta, V; Zeman, H D
2000-08-01
A computed tomography imaging technique called variable resolution x-ray (VRX) detection provides detector resolution ranging from that of clinical body scanning to that of microscopy (1 cy/mm to 100 cy/mm). The VRX detection technique is based on a new principle denoted as "projective compression" that allows the detector resolution element to scale proportionally to the image field size. Two classes of VRX detector geometry are considered. Theoretical aspects related to x-ray physics and data sampling are presented. Measured resolution parameters (line-spread function and modulation-transfer function) are presented and discussed. A VRX image that resolves a pair of 50 micron tungsten hairs spaced 30 microns apart is shown.
The Astromaterials X-Ray Computed Tomography Laboratory at Johnson Space Center
NASA Astrophysics Data System (ADS)
Zeigler, R. A.; Blumenfeld, E. H.; Srinivasan, P.; McCubbin, F. M.; Evans, C. A.
2018-04-01
The Astromaterials Curation Office has recently begun incorporating X-ray CT data into the curation processes for lunar and meteorite samples, and long-term curation of that data and serving it to the public represent significant technical challenges.
Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf
2012-02-01
X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.
Physically corrected forward operators for induced emission tomography: a simulation study
NASA Astrophysics Data System (ADS)
Viganò, Nicola Roberto; Solé, Vicente Armando
2018-03-01
X-ray emission tomography techniques over non-radioactive materials allow one to investigate different and important aspects of the matter that are usually not addressable with the standard x-ray transmission tomography, such as density, chemical composition and crystallographic information. However, the quantitative reconstruction of these investigated properties is hindered by additional problems, including the self-attenuation of the emitted radiation. Work has been done in the past, especially concerning x-ray fluorescence tomography, but this has always focused on solving very specific problems. The novelty of this work resides in addressing the problem of induced emission tomography from a much wider perspective, introducing a unified discrete representation that can be used to modify existing algorithms to reconstruct the data of the different types of experiments. The direct outcome is a clear and easy mathematical description of the implementation details of such algorithms, despite small differences in geometry and other practical aspects, but also the possibility to express the reconstruction as a minimization problem, allowing the use of variational methods, and a more flexible modeling of the noise involved in the detection process. In addition, we look at the results of a few selected simulated data reconstructions that describe the effect of physical corrections like the self-attenuation, and the response to noise of the adapted reconstruction algorithms.
[Contribution of X-ray computed tomography in the evaluation of kidney performance].
Lemoine, Sandrine; Rognant, Nicolas; Collet-Benzaquen, Diane; Juillard, Laurent
2012-07-01
X-ray computer assisted tomography scanner is an imaging method based on the use of X-ray attenuation in tissue. This attenuation is proportional to the density of the tissue (without or after contrast media injection) in each pixel image of the image. Spiral scanner, the electron beam computed tomography (EBCT) scanner and multidetector computed tomography scanner allow renal anatomical measurements, such as cortical and medullary volume, but also the measurement of renal functional parameters, such as regional renal perfusion, renal blood flow and glomerular filtration rate. These functional parameters are extracted from the modeling of the kinetics of the contrast media concentration in the vascular space and the renal tissue, using two main mathematical models (the gamma variate model and the Patlak model). Renal functional imaging allows measuring quantitative parameters on each kidney separately, in a non-invasive manner, providing significant opportunities in nephrology, both for experimental and clinical studies. However, this method uses contrast media that may alter renal function, thus limiting its use in patients with chronic renal failure. Moreover, the increase irradiation delivered to the patient with multi detector computed tomography (MDCT) should be considered. Copyright © 2011 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Zhang, Xiaojun; Zhou, Jing; Chai, Xuee; Chen, Guiling; Guo, Bin; Ni, Lei; Wu, Peng
2018-04-01
The studies focusing on x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) in pediatric Langerhans cell histiocytosis (LCH) patients were still rare. Therefore, we aimed to evaluate the application of x-ray, CT, and MRI in pediatric LCH patients with long bone involvement.Total 22 pediatric LCH patients were included in this study. The diagnosis of LCH was confirmed by pathological examination. All patients were followed up for 3 years. X-ray, CT, or MRI was performed and the results were recorded for further analyses.Among 22 pediatric patients, x-ray (n = 20), CT (n = 18), or MRI (n = 12) were used to scan the lesion on long bones affected by LCH. Femurs (n = 13, 38.24%), tibia (n = 11, 32.35%), humerus (n = 5, 14.71%), and radius (n = 4, 11.76%) were the most frequently affected anatomic sites. Ovoid or round radiolucent lesions, aggressive periosteal reaction, and swelling of surrounding soft tissues were characteristic image of long bones on x-ray, CT, and MRI in pediatric LCH.Femurs, tibia, humerus, and radius were the most commonly affected long bones of pediatric LCH. The application of x-ray, CT, and MRI on long bones could help with the diagnosis of pediatric LCH.
Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)
NASA Technical Reports Server (NTRS)
Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond
2000-01-01
The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.
Li, Jun; Shi, Wenyin; Andrews, David; Werner-Wasik, Maria; Lu, Bo; Yu, Yan; Dicker, Adam; Liu, Haisong
2017-06-01
The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient's treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences were <0.4 mm in the translational directions and <0.5° in the rotational directions. ExacTrac X-ray image registration is comparable to TrueBeam cone-beam computed tomography image registration in intracranial treatments.
Initial clinical experience with computerized tomography of the body.
Stephens, D H; Sheedy, P F; Hattery, R R; Hartman, G W
1976-04-01
Computerized tomography of the body, now possible with an instrument that can complete a scan rapidly enough to permit patients to suspend respiration, adds an important new dimension to radiologic diagnosis. Cross-sectional antomy is uniquely reconstructed to provide accurate diagnostic information for various disorders throughout the body.
Development of x-ray laminography under an x-ray microscopic condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa
2011-07-15
An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less
The selection criteria elements of X-ray optics system
NASA Astrophysics Data System (ADS)
Plotnikova, I. V.; Chicherina, N. V.; Bays, S. S.; Bildanov, R. G.; Stary, O.
2018-01-01
At the design of new modifications of x-ray tomography there are difficulties in the right choice of elements of X-ray optical system. Now this problem is solved by practical consideration, selection of values of the corresponding parameters - tension on an x-ray tube taking into account the thickness and type of the studied material. For reduction of time and labor input of design it is necessary to create the criteria of the choice, to determine key parameters and characteristics of elements. In the article two main elements of X-ray optical system - an x-ray tube and the detector of x-ray radiation - are considered. Criteria of the choice of elements, their key characteristics, the main dependences of parameters, quality indicators and also recommendations according to the choice of elements of x-ray systems are received.
Mohajerani, Pouyan; Ntziachristos, Vasilis
2013-07-01
The 360° rotation geometry of the hybrid fluorescence molecular tomography/x-ray computed tomography modality allows for acquisition of very large datasets, which pose numerical limitations on the reconstruction. We propose a compression method that takes advantage of the correlation of the Born-normalized signal among sources in spatially formed clusters to reduce the size of system model. The proposed method has been validated using an ex vivo study and an in vivo study of a nude mouse with a subcutaneous 4T1 tumor, with and without inclusion of a priori anatomical information. Compression rates of up to two orders of magnitude with minimum distortion of reconstruction have been demonstrated, resulting in large reduction in weight matrix size and reconstruction time.
Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning.
Cha, Kenny H; Hadjiiski, Lubomir; Chan, Heang-Ping; Weizer, Alon Z; Alva, Ajjai; Cohan, Richard H; Caoili, Elaine M; Paramagul, Chintana; Samala, Ravi K
2017-08-18
Cross-sectional X-ray imaging has become the standard for staging most solid organ malignancies. However, for some malignancies such as urinary bladder cancer, the ability to accurately assess local extent of the disease and understand response to systemic chemotherapy is limited with current imaging approaches. In this study, we explored the feasibility that radiomics-based predictive models using pre- and post-treatment computed tomography (CT) images might be able to distinguish between bladder cancers with and without complete chemotherapy responses. We assessed three unique radiomics-based predictive models, each of which employed different fundamental design principles ranging from a pattern recognition method via deep-learning convolution neural network (DL-CNN), to a more deterministic radiomics feature-based approach and then a bridging method between the two, utilizing a system which extracts radiomics features from the image patterns. Our study indicates that the computerized assessment using radiomics information from the pre- and post-treatment CT of bladder cancer patients has the potential to assist in assessment of treatment response.
Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei
2015-05-01
In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).
Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography
Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.
2013-01-01
X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640
Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.
2017-04-01
A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.
Fabricating High-Resolution X-Ray Collimators
NASA Technical Reports Server (NTRS)
Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill
2008-01-01
A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.
Optimization and evaluation of metal injection molding by using X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shidi; Zhang, Ruijie; Qu, Xuanhui, E-mail: quxh@ustb.edu.cn
2015-06-15
6061 aluminum alloy and 316L stainless steel green bodies were obtained by using different injection parameters (injection pressure, speed and temperature). After injection process, the green bodies were scanned by X-ray tomography. The projection and reconstruction images show the different kinds of defects obtained by the improper injection parameters. Then, 3D rendering of the Al alloy green bodies was used to demonstrate the spatial morphology characteristics of the serious defects. Based on the scanned and calculated results, it is convenient to obtain the proper injection parameters for the Al alloy. Then, reasons of the defect formation were discussed. During moldmore » filling, the serious defects mainly formed in the case of low injection temperature and high injection speed. According to the gray value distribution of projection image, a threshold gray value was obtained to evaluate whether the quality of green body can meet the desired standard. The proper injection parameters of 316L stainless steel can be obtained efficiently by using the method of analyzing the Al alloy injection. - Highlights: • Different types of defects in green bodies were scanned by using X-ray tomography. • Reasons of the defect formation were discussed. • Optimization of the injection parameters can be simplified greatly by the way of X-ray tomography. • Evaluation standard of the injection process can be obtained by using the gray value distribution of projection image.« less
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, L. L.; Li, R.; Li, L.
2015-12-01
Liquid gallium exhibits unusual and unique physical properties. A rich polymorphism and metastable modifications of solid Ga have been discovered and a number of studies of liquid gallium under high pressure conditions were reported. However, some fundamental properties, such as the equation of state (EoS) of Ga melt under extreme conditions remain unclear. To compare to the previous reports, we performed the pair distribution function (PDF) study using diamond anvil cell, in which synchrotron high-energy x-ray total scattering data, combined with reverse Monte Carlo simulation, was used to study the microstructure and EoS of liquid gallium under high pressure at room temperature conditions. The EoS of Ga melt, which was measured from synchrotron x-ray tomography method at room temperature, was used to avoid the potential relatively big errors for the density estimation from the reverse Monte Carlo simulation with the mathematical fit to the measured structure factor data. The volume change of liquid gallium have been studied as a function of pressure and temperature up to 5 GPa at 370 K using synchrotron x-ray microtomography combined with energy dispersive x-ray diffraction (EDXRD) techniques using Drickamer press. The directly measured P-V-T curves were obtained from 3D tomography reconstruction data. The existence of possible liquid-liquid phase transition regions is proposed based on the abnormal compressibility and local structure change in Ga melts.
2006-03-01
work in image processing for CWD and other security-related imaging with visual, x - ray , infrared and millimeter wave imagery was seen as a jumping-off...advantage of the fact that, unlike x - rays which offer only magnitude information, THz offers phase information. as well. While the magnitude contains...perspective are analyzed, specially compared with X - ray process tomography system. 5. Gregory, I.S.; Tribe, W.R.; Cole, B.E.; Baker, C.; Evans, M.J
NASA Astrophysics Data System (ADS)
Kodama, Hajime; Watanabe, Manabu; Sato, Eiichi; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira
2013-07-01
X-ray photons are directly detected using a 100 MHz ready-made silicon P-intrinsic-N X-ray diode (Si-PIN-XD). The Si-PIN-XD is shielded using an aluminum case with a 25-µm-thick aluminum window and a BNC connector. The photocurrent from the Si-PIN-XD is amplified by charge sensitive and shaping amplifiers, and the event pulses are sent to a multichannel analyzer (MCA) to measure X-ray spectra. At a tube voltage of 90 kV, we observe K-series characteristic X-rays of tungsten. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by linear scanning at a tube current of 2.0 mA. The exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. At a tube voltage of 90 kV, the maximum count rate is 150 kcps. We carry out PC-CT using gadolinium media and confirm the energy-dispersive effect with changes in the lower level voltage of the event pulse using a comparator.
Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi
2016-01-04
X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.
Manohar, Nivedh; Reynoso, Francisco J.; Diagaradjane, Parmeswaran; Krishnan, Sunil; Cho, Sang Hyun
2016-01-01
X-ray fluorescence computed tomography (XFCT) is a technique that can identify, quantify, and locate elements within objects by detecting x-ray fluorescence (characteristic x-rays) stimulated by an excitation source, typically derived from a synchrotron. However, the use of a synchrotron limits practicality and accessibility of XFCT for routine biomedical imaging applications. Therefore, we have developed the ability to perform XFCT on a benchtop setting with ordinary polychromatic x-ray sources. Here, we report our postmortem study that demonstrates the use of benchtop XFCT to accurately image the distribution of gold nanoparticles (GNPs) injected into a tumor-bearing mouse. The distribution of GNPs as determined by benchtop XFCT was validated using inductively coupled plasma mass spectrometry. This investigation shows drastically enhanced sensitivity and specificity of GNP detection and quantification with benchtop XFCT, up to two orders of magnitude better than conventional x-ray CT. The results also reaffirm the unique capabilities of benchtop XFCT for simultaneous determination of the spatial distribution and concentration of nonradioactive metallic probes, such as GNPs, within the context of small animal imaging. Overall, this investigation identifies a clear path toward in vivo molecular imaging using benchtop XFCT techniques in conjunction with GNPs and other metallic probes. PMID:26912068
NASA Astrophysics Data System (ADS)
Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-06-01
An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.
Computed tomography of a medium size Roman bronze statue of Cupid
NASA Astrophysics Data System (ADS)
Bettuzzi, M.; Casali, F.; Morigi, M. P.; Brancaccio, R.; Carson, D.; Chiari, G.; Maish, J.
2015-03-01
Diagnostics based on X-ray computed tomography (CT) are becoming increasingly important, not only in the medical field but in industry and cultural heritage. CT devices typical for medical applications, however, can seldom be used on art objects because both they are not easily transportable and they often present high X-ray absorption. It is therefore necessary to make use of portable instrumentation and/or to develop tomographic systems optimized to the characteristics of the objects under examination. This work describes the computed tomography of a first century A.D. Roman bronze statue of Cupid (96.AB.53) in the collection of the J. Paul Getty Museum, within the collaborative framework between the Getty Conservation Institute and the Department of Physics and Astronomy (DIFA) of the University of Bologna (Italy). The tomography performed at the Getty facilities employed a 450 kV X-ray tube and a detection system developed at DIFA. The study highlighted the casting and construction techniques used by Roman foundry workers and provided information on the status of conservation of the statue. A 3D virtual reconstruction allowed the user to define different cross-sections enabling the study of the internal features.
Probing the structure of heterogeneous diluted materials by diffraction tomography.
Bleuet, Pierre; Welcomme, Eléonore; Dooryhée, Eric; Susini, Jean; Hodeau, Jean-Louis; Walter, Philippe
2008-06-01
The advent of nanosciences calls for the development of local structural probes, in particular to characterize ill-ordered or heterogeneous materials. Furthermore, because materials properties are often related to their heterogeneity and the hierarchical arrangement of their structure, different structural probes covering a wide range of scales are required. X-ray diffraction is one of the prime structural methods but suffers from a relatively poor detection limit, whereas transmission electron analysis involves destructive sample preparation. Here we show the potential of coupling pencil-beam tomography with X-ray diffraction to examine unidentified phases in nanomaterials and polycrystalline materials. The demonstration is carried out on a high-pressure pellet containing several carbon phases and on a heterogeneous powder containing chalcedony and iron pigments. The present method enables a non-invasive structural refinement with a weight sensitivity of one part per thousand. It enables the extraction of the scattering patterns of amorphous and crystalline compounds with similar atomic densities and compositions. Furthermore, such a diffraction-tomography experiment can be carried out simultaneously with X-ray fluorescence, Compton and absorption tomographies, enabling a multimodal analysis of prime importance in materials science, chemistry, geology, environmental science, medical science, palaeontology and cultural heritage.
Compton imaging tomography technique for NDE of large nonuniform structures
NASA Astrophysics Data System (ADS)
Grubsky, Victor; Romanov, Volodymyr; Patton, Ned; Jannson, Tomasz
2011-09-01
In this paper we describe a new nondestructive evaluation (NDE) technique called Compton Imaging Tomography (CIT) for reconstructing the complete three-dimensional internal structure of an object, based on the registration of multiple two-dimensional Compton-scattered x-ray images of the object. CIT provides high resolution and sensitivity with virtually any material, including lightweight structures and organics, which normally pose problems in conventional x-ray computed tomography because of low contrast. The CIT technique requires only one-sided access to the object, has no limitation on the object's size, and can be applied to high-resolution real-time in situ NDE of large aircraft/spacecraft structures and components. Theoretical and experimental results will be presented.
Robinson, Alan M; Stock, Stuart R; Soriano, Carmen; Xiao, Xianghui; Richter, Claus-Peter
2016-11-01
The aim of this study was to determine if X-ray micro-computed tomography could be used to locate and characterize tissue damage caused by laser irradiation and to describe its advantages over classical histology for this application. A surgical CO 2 laser, operated in single pulse mode (100 milliseconds) at different power settings, was used to ablate different types of cadaveric animal tissues. Tissue samples were then harvested and imaged with synchrotron X-ray phase-contrast and micro-computed tomography to generate stacks of virtual sections of the tissues. Subsequently, Fiji (ImageJ) software was used to locate tissue damage, then to quantify volumes of laser ablation cones and thermal coagulation damage from 3D renderings of tissue image stacks. Visual comparisons of tissue structures in X-ray images with those visible by classic light microscopy histology were made. We demonstrated that micro-computed tomography could be used to rapidly identify areas of surgical laser ablation, vacuolization, carbonization, and thermally coagulated tissue. Quantification and comparison of the ablation crater, which represents the volume of ablated tissue, and the thermal coagulation zone volumes were performed faster than we could by classical histology. We demonstrated that these procedures can be performed on fresh hydrated and non-sectioned plastic embedded tissue. We demonstrated that the application of non-destructive micro-computed tomography to the visualization and analysis of laser induced tissue damage without tissue sectioning is possible. This will improve evaluation of new surgical lasers and their corresponding effect on tissues. Lasers Surg. Med. 48:866-877, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Liu, Xin
2014-01-01
This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.
Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.
Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T
2013-06-01
This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).
X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects
Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui
2015-07-29
Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less
X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui
Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less
Liu, Yijin; Meirer, Florian; Williams, Phillip A.; Wang, Junyue; Andrews, Joy C.; Pianetta, Piero
2012-01-01
Transmission X-ray microscopy (TXM) has been well recognized as a powerful tool for non-destructive investigation of the three-dimensional inner structure of a sample with spatial resolution down to a few tens of nanometers, especially when combined with synchrotron radiation sources. Recent developments of this technique have presented a need for new tools for both system control and data analysis. Here a software package developed in MATLAB for script command generation and analysis of TXM data is presented. The first toolkit, the script generator, allows automating complex experimental tasks which involve up to several thousand motor movements. The second package was designed to accomplish computationally intense tasks such as data processing of mosaic and mosaic tomography datasets; dual-energy contrast imaging, where data are recorded above and below a specific X-ray absorption edge; and TXM X-ray absorption near-edge structure imaging datasets. Furthermore, analytical and iterative tomography reconstruction algorithms were implemented. The compiled software package is freely available. PMID:22338691
NASA Astrophysics Data System (ADS)
Cho, Hyo Sung; Woo, Tae Ho; Park, Chul Kyu
2016-10-01
Using the metal artifact property, it is analyzed for the X-ray computed tomography (CT) in the aspect of the security on the examined places like airport and surveillance areas. Since the importance of terror prevention strategy has been increased, the security application of X-ray CT has the significant remark. One shot X-ray image has the limitation to find out the exact shape to property in the closed box, which could be solved by the CT scanning without the tearing off the box in this work. Cleaner images can be obtained by the advanced technology if the CT scanning is utilized in the security purposes on the secured areas. A metal sample is treated by the metal artifact removal (MAR) method for the enhanced image. The mimicked explosive is experimented for the imaging processing application where the cleaner one is obtained. The procedure is explained and the further study is discussed.
NASA Astrophysics Data System (ADS)
Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi
This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.
Multi-Mounted X-Ray Computed Tomography
Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng
2016-01-01
Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911
X-ray micro-modulated luminescence tomography (XMLT)
Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge
2014-01-01
Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898
High-resolution x-ray computed tomography to understand ruminant phylogeny
NASA Astrophysics Data System (ADS)
Costeur, Loic; Schulz, Georg; Müller, Bert
2014-09-01
High-resolution X-ray computed tomography has become a vital technique to study fossils down to the true micrometer level. Paleontological research requires the non-destructive analysis of internal structures of fossil specimens. We show how X-ray computed tomography enables us to visualize the inner ear of extinct and extant ruminants without skull destruction. The inner ear, a sensory organ for hearing and balance has a rather complex three-dimensional morphology and thus provides relevant phylogenetical information what has been to date essentially shown in primates. We made visible the inner ears of a set of living and fossil ruminants using the phoenix x-ray nanotom®m (GE Sensing and Inspection Technologies GmbH). Because of the high absorbing objects a tungsten target was used and the experiments were performed with maximum accelerating voltage of 180 kV and a beam current of 30 μA. Possible stem ruminants of the living families are known in the fossil record but extreme morphological convergences in external structures such as teeth is a strong limitation to our understanding of the evolutionary history of this economically important group of animals. We thus investigate the inner ear to assess its phylogenetical potential for ruminants and our first results show strong family-level morphological differences.
NASA Astrophysics Data System (ADS)
Yokhana, Viona S. K.; Arhatari, Benedicta D.; Gureyev, Timur E.; Abbey, Brian
2018-01-01
X-ray computed tomography (XCT) is an important clinical diagnostic tool which is also used in a range of biological imaging applications in research. The increasing prevalence of metallic implants in medical and dental radiography and tomography has driven the demand for new approaches to solving the issue of metal artefacts in XCT. Metal artefacts occur when a highly absorbing material is imaged which is in boundary contact with one or more weakly absorbing components, such as soft-tissue. The resulting `streaking' in the reconstructed images creates significant challenges for X-ray analysis due to the non-linear dependence on the absorption properties of the sample. In this paper we introduce a new approach to removing metal artefacts which exploits the capabilities of the recently available, photon-counting PiXirad detector. Our approach works for standard lab-based polychromatic X-ray tubes and does not rely on any postprocessing of the data. The method is demonstrated using both simulated data from a test phantom and experimental data collected from a cochlear implant. The results show that by combining the individual images, which are simultaneously generated for each different energy threshold, artefact -free segmentation of the implant from the surrounding biological tissue is achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants
X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less
Jiang, Shanghai
2017-01-01
X-ray fluorescence computed tomography (XFCT) based on sheet beam can save a huge amount of time to obtain a whole set of projections using synchrotron. However, it is clearly unpractical for most biomedical research laboratories. In this paper, polychromatic X-ray fluorescence computed tomography with sheet-beam geometry is tested by Monte Carlo simulation. First, two phantoms (A and B) filled with PMMA are used to simulate imaging process through GEANT 4. Phantom A contains several GNP-loaded regions with the same size (10 mm) in height and diameter but different Au weight concentration ranging from 0.3% to 1.8%. Phantom B contains twelve GNP-loaded regions with the same Au weight concentration (1.6%) but different diameter ranging from 1 mm to 9 mm. Second, discretized presentation of imaging model is established to reconstruct more accurate XFCT images. Third, XFCT images of phantoms A and B are reconstructed by filter back-projection (FBP) and maximum likelihood expectation maximization (MLEM) with and without correction, respectively. Contrast-to-noise ratio (CNR) is calculated to evaluate all the reconstructed images. Our results show that it is feasible for sheet-beam XFCT system based on polychromatic X-ray source and the discretized imaging model can be used to reconstruct more accurate images. PMID:28567054
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-12-01
6 Mcps photon counting was carried out using a detector consisting of a 1.0 mm-thick LSO [Lu 2(SiO 4)O] single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 6 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 0.91 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the LSO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using gadolinium-based contrast media.
Contribution of computed tomography to the investigation of La Tene culture iron artefacts
NASA Astrophysics Data System (ADS)
Vopálenský, M.; Sankot, P.; Fořt, M.; Kumpová, I.; Vavřík, D.
2017-07-01
The X-ray tomographic study was realized in addition to the standard X-ray radiography for the purpose of the new conservation work upon the La Tene culture iron artifacts from the collections of the National Museum in Prague. These artifacts are heavily damaged by the corrosion, avoiding thus an effective visual exploration. The work shows that even details, which are shallow compared to the artifact thickness and therefore not detectable in standard radiographic images, can be made visible in 3D models obtained tomografically. The tomographic data acquisition was performed utilizing the unique TORATOM device, equipped with a large area X-ray detector with Gadox scintillator. The tomographic reconstruction revealed insufficiencies in the earlier conservation processes of the La Tene culture swords, as well as so-far unknown details, such as the exact sword shapes and their decoration. These new findings allowed better classifying of the artifacts. Tomography also helped in visualizing details of iron clips that are completely hidden under the rust, making thus the technology of the clip formation clearly observable. With this work, it has been proven that tomography can bear valuable new information compared to the standard X-ray radiography commonly used in the investigation of iron archeological artifacts.
Applications of compressed sensing image reconstruction to sparse view phase tomography
NASA Astrophysics Data System (ADS)
Ueda, Ryosuke; Kudo, Hiroyuki; Dong, Jian
2017-10-01
X-ray phase CT has a potential to give the higher contrast in soft tissue observations. To shorten the measure- ment time, sparse-view CT data acquisition has been attracting the attention. This paper applies two major compressed sensing (CS) approaches to image reconstruction in the x-ray sparse-view phase tomography. The first CS approach is the standard Total Variation (TV) regularization. The major drawbacks of TV regularization are a patchy artifact and loss in smooth intensity changes due to the piecewise constant nature of image model. The second CS method is a relatively new approach of CS which uses a nonlinear smoothing filter to design the regularization term. The nonlinear filter based CS is expected to reduce the major artifact in the TV regular- ization. The both cost functions can be minimized by the very fast iterative reconstruction method. However, in the past research activities, it is not clearly demonstrated how much image quality difference occurs between the TV regularization and the nonlinear filter based CS in x-ray phase CT applications. We clarify the issue by applying the two CS applications to the case of x-ray phase tomography. We provide results with numerically simulated data, which demonstrates that the nonlinear filter based CS outperforms the TV regularization in terms of textures and smooth intensity changes.
Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi
2015-01-01
Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600
[The clinical and X-ray classification of osteonecrosis of the low jaw].
Medvedev, Iu A; Basin, E M; Sokolina, I A
2013-01-01
To elaborate a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction. Ninety-two patients with drug addiction who had undergone orthopantomography, direct frontal X-ray of the skull, and multislice computed tomography, followed by multiplanar and three-dimensional imaging reconstruction were examined. One hundred thirty four X-ray films and 74 computed tomographic images were analyzed. The authors proposed a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction and elaborated recommendations for surgical interventions on the basis of the developed classification. The developed clinical and X-ray classification and recommendations for surgical interventions may be used to treat osteonecroses of various etiology.
NASA Astrophysics Data System (ADS)
Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi
2016-04-01
3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification. Electronic supplementary information (ESI) available: SEM micrographs of porous PE with and without maleated PE, X-ray micro-computed tomogram of porous extruded PE, FTIR spectra of GO, XPS wide spectra of untreated and GO immobilized PE and Raman spectra of PE and GO. See DOI: 10.1039/c6nr01356b
Phase contrast tomography of the mouse cochlea at microfocus x-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartels, Matthias; Krenkel, Martin; Hernandez, Victor H.
2013-08-19
We present phase contrast x-ray tomography of functional soft tissue within the bony cochlear capsule of mice, carried out at laboratory microfocus sources with well-matched source, detector, geometry, and reconstruction algorithms at spatial resolutions down to 2 μm. Contrast, data quality and resolution enable the visualization of thin membranes and nerve fibers as well as automated segmentation of surrounding bone. By complementing synchrotron radiation imaging techniques, a broad range of biomedical applications becomes possible as demonstrated for optogenetic cochlear implant research.
NASA Astrophysics Data System (ADS)
Trojanova, E.; Schyns, L. E. J. R.; Dubois, L.; Jakubek, J.; Le Pape, A.; Sefc, L.; Sykora, V.; Turecek, D.; Uher, J.; Verhaegen, F.
2017-01-01
The tissue type resolving X-ray radiography and tomography can be performed even without contrast agents. The differences between soft tissue types such as kidney, muscles, fat, liver, brain and spleen were measured based on their spectral response. The Timepix based X-ray imaging detector WidePIX2×5 with 300 μm thick silicon sensors was used for most of the measurements presented in this work. These promising results are used for further optimizations of the detector technology and radiographic methods.
Larue, A E; Swider, P; Duru, P; Daviaud, D; Quintard, M; Davit, Y
2018-06-21
Optical imaging techniques for biofilm observation, like laser scanning microscopy, are not applicable when investigating biofilm formation in opaque porous media. X-ray micro-tomography (X-ray CMT) might be an alternative but it finds limitations in similarity of X-ray absorption coefficients for the biofilm and aqueous phases. To overcome this difficulty, barium sulphate was used in Davit et al. (2011) to enable high-resolution 3D imaging of biofilm via X-ray CMT. However, this approach lacks comparison with well-established imaging methods, which are known to capture the fine structures of biofilms, as well as uncertainty quantification. Here, we compare two-photon laser scanning microscopy (TPLSM) images of Pseudomonas Aeruginosa biofilm grown in glass capillaries against X-ray CMT using an improved protocol where barium sulphate is combined with low-gelling temperature agarose to avoid sedimentation. Calibrated phantoms consisting of mono-dispersed fluorescent and X-ray absorbent beads were used to evaluate the uncertainty associated with our protocol along with three different segmentation techniques, namely hysteresis, watershed and region growing, to determine the bias relative to image binarization. Metrics such as volume, 3D surface area and thickness were measured and comparison of both imaging modalities shows that X-ray CMT of biofilm using our protocol yields an accuracy that is comparable and even better in certain respects than TPLSM, even in a nonporous system that is largely favourable to TPLSM. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Kuusk, Teele; De Bruijn, Roderick; Brouwer, Oscar R; De Jong, Jeroen; Donswijk, Maarten; Grivas, Nikolaos; Hendricksen, Kees; Horenblas, Simon; Prevoo, Warner; Valdés Olmos, Renato A; Van Der Poel, Henk G; Van Rhijn, Bas W G; Wit, Esther M; Bex, Axel
2018-06-01
Lymphatic drainage from renal tumors is unpredictable. In vivo drainage studies of primary lymphatic landing sites may reveal the variability and dynamics of lymphatic connections. The purpose of this study was to investigate the lymphatic drainage pattern of renal tumors in vivo with single photon emission/computerized tomography after intratumor radiotracer injection. We performed a phase II, prospective, single arm study to investigate the distribution of sentinel nodes from renal tumors on single photon emission/computerized tomography. Patients with cT1-3 (less than 10 cm) cN0M0 renal tumors of any subtype were enrolled in analysis. After intratumor ultrasound guided injection of 0.4 ml 99m Tc-nanocolloid we performed preoperative imaging of sentinel nodes with lymphoscintigraphy and single photon emission/computerized tomography. Sentinel and locoregional nonsentinel nodes were resected with a γ probe combined with a mobile γ camera. The primary study end point was the location of sentinel nodes outside the locoregional retroperitoneal templates on single photon emission/computerized tomography. Using a Simon minimax 2-stage design to detect a 25% extralocoregional retroperitoneal template location of sentinel nodes on imaging at α = 0.05 and 80% power at least 40 patients with sentinel node imaging on single photon emission/computerized tomography were needed. Of the 68 patients 40 underwent preoperative single photon emission/computerized tomography of sentinel nodes and were included in primary end point analysis. Lymphatic drainage outside the locoregional retroperitoneal templates was observed in 14 patients (35%). Eight patients (20%) had supradiaphragmatic sentinel nodes. Sentinel nodes from renal tumors were mainly located in the respective locoregional retroperitoneal templates. Simultaneous sentinel nodes were located outside the suggested lymph node dissection templates, including supradiaphragmatic sentinel nodes in more than a third of the patients. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Accretion disk dynamics in X-ray binaries
NASA Astrophysics Data System (ADS)
Peris, Charith Srian
Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.
Method for beam hardening correction in quantitative computed X-ray tomography
NASA Technical Reports Server (NTRS)
Yan, Chye Hwang (Inventor); Whalen, Robert T. (Inventor); Napel, Sandy (Inventor)
2001-01-01
Each voxel is assumed to contain exactly two distinct materials, with the volume fraction of each material being iteratively calculated. According to the method, the spectrum of the X-ray beam must be known, and the attenuation spectra of the materials in the object must be known, and be monotonically decreasing with increasing X-ray photon energy. Then, a volume fraction is estimated for the voxel, and the spectrum is iteratively calculated.
NASA Astrophysics Data System (ADS)
Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.
2014-04-01
A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.
High-spatial-resolution nanoparticle x-ray fluorescence tomography
NASA Astrophysics Data System (ADS)
Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.
2016-03-01
X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.
Liquid metal anode x-ray tubes: interesting, but are they useful?
NASA Astrophysics Data System (ADS)
Harding, Geoffrey
2004-10-01
An analysis is presented of factors affecting the specific loadability (W mm-2 K-1) of electron impact liquid metal anode x-ray sources (LIMAX). It is shown that in general, the limit to loadability is set by energy deposited in the electron window by inelastic electron scattering. Removal of this energy through convection cooling by the liquid metal stream represents the least efficient thermal transport process in LIMAX. As the electron window energy loss is approximately inversely proportional to the electron beam energy, the power loadability of a LIMAX source operated under otherwise constant conditions scales roughly with the square of the tube voltage. A comparison of the loadability of the liquid metal anode x-ray concept to conventional stationary anode x-ray tubes demonstrates the superiority of the former. The utility of LIMAX-based computed tomography in the field of air cargo container inspection is briefly discussed. In particular its characteristics relative to linac-based air cargo container inspection are highlighted: these include a higher contrast-to-noise ratio (CNR); compact radiation shielding and collimation; reduced detector cross-talk; improved image contrast; and the possibility of combining container CT with material-specific alarm resolution capability based on x-ray diffraction tomography.
NASA Astrophysics Data System (ADS)
Matsukiyo, Hiroshi; Sato, Eiichi; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-03-01
A linear cadmium telluride (CdTe) detector is useful for carrying out energy-discrimination X-ray imaging, including computed tomography (CT). To perform enhanced gadolinium K-edge CT, we used an oscillation-type linear CdTe detector with an energy resolution of 1.2 keV. CT is performed by repeating the linear scan and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, tube voltage and current were 80 kV and 20 μA, respectively, and X-ray intensity was 1.55 μGy/s at 1.0 m from the source at a tube voltage of 80 kV. Demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond gadolinium K-edge energy of 50.3 keV.
High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography
NASA Astrophysics Data System (ADS)
Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.
2016-12-01
X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.
Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing
2013-04-01
Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.
Kakio, Tomoko; Yoshida, Naoko; Macha, Susan; Moriguchi, Kazunobu; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko
2017-09-01
Analytical methods for the detection of substandard and falsified medical products (SFs) are important for public health and patient safety. Research to understand how the physical and chemical properties of SFs can be most effectively applied to distinguish the SFs from authentic products has not yet been investigated enough. Here, we investigated the usefulness of two analytical methods, handheld Raman spectroscopy (handheld Raman) and X-ray computed tomography (X-ray CT), for detecting SFs among oral solid antihypertensive pharmaceutical products containing candesartan cilexetil as an active pharmaceutical ingredient (API). X-ray CT visualized at least two different types of falsified tablets, one containing many cracks and voids and the other containing aggregates with high electron density, such as from the presence of the heavy elements. Generic products that purported to contain equivalent amounts of API to the authentic products were discriminated from the authentic products by the handheld Raman and the different physical structure on X-ray CT. Approach to investigate both the chemical and physical properties with handheld Raman and X-ray CT, respectively, promise the accurate discrimination of the SFs, even if their visual appearance is similar with authentic products. We present a decision tree for investigating the authenticity of samples purporting to be authentic commercial tablets. Our results indicate that the combination approach of visual observation, handheld Raman and X-ray CT is a powerful strategy for nondestructive discrimination of suspect samples.
Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L
2017-01-01
X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.
Neurosurgical applications of ion beams
NASA Astrophysics Data System (ADS)
Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.
1989-04-01
The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema, arterial occlusion, venous thrombosis and radiation necrosis). Clinical results in both children and adults will be illustrated and health outcome will be related to the advantages of charged-particle treatment planning, the radiosurgical procedure, dose distribution and dose localization.
Voltage-based device tracking in a 1.5 Tesla MRI during imaging: initial validation in swine models.
Schmidt, Ehud J; Tse, Zion T H; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L
2014-03-01
Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists navigation, mapping, and radiofrequency ablation. Multimodality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound electrophysiological suite, increasing the likelihood of patient-motion and image misregistration. An MRI-compatible VDT system may increase efficiency, as there is currently no single method to track devices both inside and outside the MRI scanner. An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radiofrequency unblanking pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT electro-anatomic mapping interventions were performed, navigating inside and thereafter outside the MRI. Three-catheter VDT interventions were performed at >12 frames per second both inside and outside the MRI scanner with <3 mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition time >32 ms sequences with <0.5 mm errors, and <5% MRI signal-to-noise ratio (SNR) loss. At shorter repetition times, only intracardiac electrocardiogram was reliable. Radiofrequency heating was <1.5°C. An MRI-compatible VDT system is feasible. Copyright © 2013 Wiley Periodicals, Inc.
Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women.
Chen, Zhao; Wang, ZiMian; Lohman, Timothy; Heymsfield, Steven B; Outwater, Eric; Nicholas, Jennifer S; Bassford, Tamsen; LaCroix, Andrea; Sherrill, Duane; Punyanitya, Mark; Wu, Guanglin; Going, Scott
2007-12-01
Assessing skeletal muscle mass (SMM) is critical in studying and detecting sarcopenia. Direct measurements by MRI or computerized tomography are expensive or high in radiation exposure. Dual-energy X-ray absorptiometry (DXA) is promising for body composition assessments, but the validity of DXA for predicting SMM in the elderly is still under investigation. The objective of this study was to assess the relationship between DXA-derived measurements of lean soft tissue mass (LSTM) and SMM in older women. Study participants were postmenopausal women (n = 101) recruited in southern Arizona. Total and regional body composition was measured using MRI and DXA (QDR4500w). The participants' mean age was 70.7 +/- 6.4 y and their mean BMI was 27.4 +/- 5.1 kg/m2. DXA-derived LSTM was highly correlated with MRI-derived SMM for the whole body (r = 0.94; P < 0.001) and leg region (r = 0.91; P < 0.001). In multivariate models, adjusting for age and DXA-derived percent fat slightly increased the amount of variance in SMM that can be explained by the DXA-derived LSTM assessments for the leg region but not for the total body. In conclusion, although the relationships between DXA measures and MRI-derived SMM vary by region of interest, the overall prediction of SMM by DXA is excellent. We conclude that DXA is a reliable method for cross-sectional assessments of SMM in older women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shear, Trevor A.
This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.
Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.
Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai
2014-01-01
A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.
Imaging Cellular Architecture with X-rays
Larabell, Carolyn A.; Nugent, Keith A.
2012-01-01
X-ray imaging of biological samples is progressing rapidly. In this paper we review the progress to date in high resolution imaging of cellular architecture. In particular we survey the progress in soft X-ray tomography and argue that the field is coming of age and that important biological insights are starting to emerge. We then review the new ideas based on coherent diffraction. These methods are at a much earlier stage of development but, as they eliminate the need for X-ray optics, have the capacity to provide substantially better spatial resolution than zone plate based methods. PMID:20869868
Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography
NASA Astrophysics Data System (ADS)
Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea
2013-09-01
Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.
Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study
Bazalova-Carter, Magdalena; Ahmad, Moiz; Xing, Lei; Fahrig, Rebecca
2015-01-01
Abstract. Thanks to the current advances in nanoscience, molecular biochemistry, and x-ray detector technology, x-ray fluorescence computed tomography (XFCT) has been considered for molecular imaging of probes containing high atomic number elements, such as gold nanoparticles. The commonly used XFCT imaging performed with K-shell x rays appears to have insufficient imaging sensitivity to detect the low gold concentrations observed in small animal studies. Low energy fluorescence L-shell x rays have exhibited higher signal-to-background ratio and appeared as a promising XFCT mode with greatly enhanced sensitivity. The aim of this work was to experimentally demonstrate the feasibility of L-shell XFCT imaging and to assess its achievable sensitivity. We built an experimental L-shell XFCT imaging system consisting of a miniature x-ray tube and two spectrometers, a silicon drift detector (SDD), and a CdTe detector placed at ±120 deg with respect to the excitation beam. We imaged a 28-mm-diameter water phantom with 4-mm-diameter Eppendorf tubes containing gold solutions with concentrations of 0.06 to 0.1% Au. While all Au vials were detectable in the SDD L-shell XFCT image, none of the vials were visible in the CdTe L-shell XFCT image. The detectability limit of the presented L-shell XFCT SDD imaging setup was 0.007% Au, a concentration observed in small animal studies. PMID:26839910
X-ray tomography system to investigate granular materials during mechanical loading
NASA Astrophysics Data System (ADS)
Athanassiadis, Athanasios G.; La Rivière, Patrick J.; Sidky, Emil; Pelizzari, Charles; Pan, Xiaochuan; Jaeger, Heinrich M.
2014-08-01
We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)3 field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.
Characterization and analysis of Porous, Brittle solid structures by X-ray micro computed tomography
NASA Astrophysics Data System (ADS)
Lin, C. L.; Videla, A. R.; Yu, Q.; Miller, J. D.
2010-12-01
The internal structure of porous, brittle solid structures, such as porous rock, foam metal and wallboard, is extremely complex. For example, in the case of wallboard, the air bubble size and the thickness/composition of the wall structure are spatial parameters that vary significantly and influence mechanical, thermal, and acoustical properties. In this regard, the complex geometry and the internal texture of material, such as wallboard, is characterized and analyzed in 3-D using cone beam x-ray micro computed tomography. Geometrical features of the porous brittle structure are quantitatively analyzed based on calibration of the x-ray linear attenuation coefficient, use of a 3-D watershed algorithm, and use of a 3-D skeletonization procedure. Several examples of the 3-D analysis for porous, wallboard structures are presented and the results discussed.
Gueninchault, N; Proudhon, H; Ludwig, W
2016-11-01
Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al-Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment.
Gueninchault, N.; Proudhon, H.; Ludwig, W.
2016-01-01
Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al–Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment. PMID:27787253
Multiple pinhole collimator based X-ray luminescence computed tomography
Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing
2016-01-01
X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686
Zhou, Tunhe; Wang, Hongchang; Connolley, Thomas; Scott, Steward; Baker, Nick; Sawhney, Kawal
2018-05-01
The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples. open access.
Zhou, Tunhe; Wang, Hongchang; Scott, Steward
2018-01-01
The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples. PMID:29714191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Clémence; Maire, Eric, E-mail: eric.maire@insa-lyon.fr; Meille, Sylvain
The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive bucklingmore » of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.« less
High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre
X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less
Tomographic techniques for the study of exceptionally preserved fossils
Sutton, Mark D
2008-01-01
Three-dimensional fossils, especially those preserving soft-part anatomy, are a rich source of palaeontological information; they can, however, be difficult to work with. Imaging of serial planes through an object (tomography) allows study of both the inside and outside of three-dimensional fossils. Tomography may be performed using physical grinding or sawing coupled with photography, through optical techniques of serial focusing, or using a variety of scanning technologies such as neutron tomography, magnetic resonance imaging and most usefully X-ray computed tomography. This latter technique is applicable at a variety of scales, and when combined with a synchrotron X-ray source can produce very high-quality data that may be augmented by phase-contrast information to enhance contrast. Tomographic data can be visualized in several ways, the most effective of which is the production of isosurface-based ‘virtual fossils’ that can be manipulated and dissected interactively. PMID:18426749
High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography
Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; ...
2016-12-13
X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less
Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis
2012-12-01
We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.
Ale, Angelique; Ermolayev, Vladimir; Herzog, Eva; Cohrs, Christian; de Angelis, Martin Hrabé; Ntziachristos, Vasilis
2012-06-01
The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360° imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.
NASA Astrophysics Data System (ADS)
Santini, Maurizio
2015-11-01
X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.
Niehaus, Wilmari L; Howlin, Robert P; Johnston, David A; Bull, Daniel J; Jones, Gareth L; Calton, Elizabeth; Mavrogordato, Mark N; Clarke, Stuart C; Thurner, Philipp J; Faust, Saul N; Stoodley, Paul
2016-09-01
Bacterial infections of central venous catheters (CVCs) cause much morbidity and mortality, and are usually diagnosed by concordant culture of blood and catheter tip. However, studies suggest that culture often fails to detect biofilm bacteria. This study optimizes X-ray micro-focus computed tomography (X-ray µCT) for the quantification and determination of distribution and heterogeneity of biofilms in in vitro CVC model systems.Bacterial culture and scanning electron microscopy (SEM) were used to detect Staphylococcus epidermidis ATCC 35984 biofilms grown on catheters in vitro in both flow and static biofilm models. Alongside this, X-ray µCT techniques were developed in order to detect biofilms inside CVCs. Various contrast agent stains were evaluated using energy-dispersive X-ray spectroscopy (EDS) to further optimize these methods. Catheter material and biofilm were segmented using a semi-automated matlab script and quantified using the Avizo Fire software package. X-ray µCT was capable of distinguishing between the degree of biofilm formation across different segments of a CVC flow model. EDS screening of single- and dual-compound contrast stains identified 10 nm gold and silver nitrate as the optimum contrast agent for X-ray µCT. This optimized method was then demonstrated to be capable of quantifying biofilms in an in vitro static biofilm formation model, with a strong correlation between biofilm detection via SEM and culture. X-ray µCT has good potential as a direct, non-invasive, non-destructive technology to image biofilms in CVCs, as well as other in vivo medical components in which biofilms accumulate in concealed areas.
Cone beam x-ray luminescence computed tomography: a feasibility study.
Chen, Dongmei; Zhu, Shouping; Yi, Huangjian; Zhang, Xianghan; Chen, Duofang; Liang, Jimin; Tian, Jie
2013-03-01
The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then evaluated from different view numbers, different regularization parameters, different measurement noise levels, and optical parameters mismatch. The reconstruction results showed that the settings had a small effect on the reconstruction. The nonhomogeneous phantom simulation was also carried out to simulate a more complex experimental situation and evaluated their proposed method. Second, the physical cylinder phantom experiments further showed similar results in their prototype XLCT system. With the discussion of the above experiments, it was shown that the proposed method is feasible to the general case and actual experiments. Utilizing numerical simulation and physical experiments, the authors demonstrated the validity of the new cone beam XLCT method. Furthermore, compared with the previous narrow beam XLCT, the cone beam XLCT could more fully utilize the x-ray dose and the scanning time would be shortened greatly. The study of both simulation experiments and physical phantom experiments indicated that the proposed method was feasible to the general case and actual experiments.
Singh, S. S.; Williams, J. J.; Lin, M. F.; ...
2014-05-14
In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.
Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging.
Yin, Qian; Yap, Felix Y; Yin, Lichen; Ma, Liang; Zhou, Qin; Dobrucki, Lawrence W; Fan, Timothy M; Gaba, Ron C; Cheng, Jianjun
2013-09-18
Biocompatible poly(iohexol) nanoparticles, prepared through cross-linking of iohexol and hexamethylene diisocyanate followed by coprecipitation of the resulting cross-linked polymer with mPEG-polylactide, were utilized as contrast agents for in vivo X-ray computed tomography (CT) imaging. Compared to conventional small-molecule contrast agents, poly(iohexol) nanoparticles exhibited substantially protracted retention within the tumor bed and a 36-fold increase in CT contrast 4 h post injection, which makes it possible to acquire CT images with improved diagnosis accuracy over a broad time frame without multiple administrations.
21 CFR 1020.31 - Radiographic equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fluoroscopic imaging or for recording images from the fluoroscopic image receptor, or computed tomography x-ray... and time, a preset number of pulses, or a preset radiation exposure to the image receptor. (i) Except... provided to indicate when the axis of the x-ray beam is perpendicular to the plane of the image receptor...
21 CFR 1020.31 - Radiographic equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... fluoroscopic imaging or for recording images from the fluoroscopic image receptor, or computed tomography x-ray... and time, a preset number of pulses, or a preset radiation exposure to the image receptor. (i) Except... provided to indicate when the axis of the x-ray beam is perpendicular to the plane of the image receptor...
21 CFR 1020.31 - Radiographic equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... fluoroscopic imaging or for recording images from the fluoroscopic image receptor, or computed tomography x-ray... and time, a preset number of pulses, or a preset radiation exposure to the image receptor. (i) Except... provided to indicate when the axis of the x-ray beam is perpendicular to the plane of the image receptor...
Iodine imaging in thyroid by fluorescent X-ray CT with 0.05 mm spatial resolution
NASA Astrophysics Data System (ADS)
Takeda, T.; Yu, Q.; Yashiro, T.; Zeniya, T.; Wu, J.; Hasegawa, Y.; Thet-Thet-Lwin; Hyodo, K.; Yuasa, T.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.
2001-07-01
Fluorescent X-ray computed tomography (FXCT) at a 0.05 mm in-plane spatial resolution and 0.05 mm slice thickness depicted the cross sectional distribution of endogenous iodine within thyroid. The distribution obtained from the FXCT image correlated closely to that obtained from the pathological pictures.
Grohmann, J; Taetzner, S; Theuss, T; Kuehnel, F; Buchwald, U; Einspanier, A
2012-04-01
Although common marmosets seem to be appropriate animal models to examine bone diseases, no data about the conclusiveness of less-invasive techniques are available. Therefore, the aim was to combine different techniques to analyse changes in bone metabolism of common marmosets with bone diseases. Five monkeys were examined by X-ray, computer tomography (CT), histology and immunohistochemistry (IHC). Monkeys with lowest bone mineral density (BMD) showed increased bone marrow, decreased cancellous bone and decreased contrast in X-ray. Highest alkaline phosphatase (AP)-levels were detected in bones with low elastic modulus. Expression of osteopontin (OPN), osteocalcin (OC) and runt-related transcriptions factor 2 (RUNX 2) was detected in bones with high modulus. No expression was present in bones with lower modulus. Collagen type I and V were found in every bone. In conclusion, CT, X-ray and AP are useful techniques to detect bone diseases in common marmosets. These observations could be confirmed by IHC. © 2012 John Wiley & Sons A/S.
Visualization of x-ray computer tomography using computer-generated holography
NASA Astrophysics Data System (ADS)
Daibo, Masahiro; Tayama, Norio
1998-09-01
The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.
Koddenberg, Tim; Militz, Holger
2018-05-05
The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.
A New Quantitative 3D Imaging Method for Characterizing Spray in the Near-field of Nozzle Exits
2015-01-13
measurements were performed on a flat-panel tabletop cone - beam CT system in the Radiology Department at Stanford University. The X-ray generator (CPI...quantitative measurement technique to examine the dense near-field region of sprays using X-ray computed tomography (CT). An optimized “spray CT system” was...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 X-ray CT, Spray, Hollow Cone Spray, Near Field REPORT DOCUMENTATION PAGE 11. SPONSOR
Tomographic image reconstruction using x-ray phase information
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi
1996-04-01
We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.
Ren, Xiaochen; Riley, James R.; Koleske, Daniel; ...
2015-07-14
In this study, atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of In xGa 1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate.more » Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.« less
Motionless phase stepping in X-ray phase contrast imaging with a compact source
Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han
2013-01-01
X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599
Design and implemention of a multi-functional x-ray computed tomography system
NASA Astrophysics Data System (ADS)
Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin; Zhang, Xiang; Deng, Lin; Chen, Siyu; Jin, Zhao; Li, Zengguang
2015-10-01
A powerful volume X-ray tomography system has been designed and constructed to provide an universal tool for the three-dimensional nondestructive testing and investigation of industrial components, automotive, electronics, aerospace components, new materials, etc. The combined system is equipped with two commercial X-ray sources, sharing one flat panel detector of 400mm×400mm. The standard focus 450kV high-energy x-ray source is optimized for complex and high density components such as castings, engine blocks and turbine blades. And the microfocus 225kV x-ray source is to meet the demands of micro-resolution characterization applications. Thus the system's penetration capability allows to scan large objects up to 200mm thick dense materials, and the resolution capability can meet the demands of 20μm microstructure inspection. A high precision 6-axis manipulator system is fitted, capable of offset scanning mode in large field of view requirements. All the components are housed in a room with barium sulphate cement. On the other hand, the presented system expands the scope of applications such as dual energy research and testing. In this paper, the design and implemention of the flexible system is described, as well as the preliminary tomographic imaging results of an automobile engine block.
NASA Astrophysics Data System (ADS)
Chiba, Hiraku; Sato, Yuichi; Sato, Eiichi; Maeda, Tomoko; Matsushita, Ryo; Yanbe, Yutaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-10-01
An energy-dispersive (ED) X-ray computed tomography (CT) system is useful for carrying out monochromatic imaging by selecting optimal energy photons. CT is performed by repeated linear scans and rotations of an object. X-ray photons from the object are detected by the cadmium telluride (CdTe) detector, and event pulses of X-ray photons are produced using charge-sensitive and shaping amplifiers. The lower photon energy is determined by a comparator, and the maximum photon energy of 70 keV corresponds to the tube voltage. Logical pulses from the comparator are counted by a counter card through a differentiator to reduce pulse width and rise time. In the ED-CT system, tube voltage and current were 70 kV and 0.30 mA, respectively, and X-ray intensity was 18.2 µGy/s at 1.0 m from the source at a tube voltage of 70 kV. Demonstration of gadolinium K-edge CT for cancer diagnosis was carried out by selecting photons with energies ranging from 50.4 to 70 keV, and photon-count energy subtraction imaging from 30 to 50.3 keV was also performed.
NASA Astrophysics Data System (ADS)
Dooraghi, Alex A.; Tringe, Joseph W.
2018-04-01
To evaluate conventional munition, we simulated an x-ray computed tomography (CT) system for generating radiographs from nominal x-ray energies of 6 or 9 megaelectron volts (MeV). CT simulations, informed by measured data, allow for optimization of both system design and acquisition techniques necessary to enhance image quality. MCNP6 radiographic simulation tools were used to model ideal detector responses (DR) that assume either (1) a detector response proportional to photon flux (N) or (2) a detector response proportional to energy flux (E). As scatter may become significant with MeV x-ray systems, simulations were performed with and without the inclusion of object scatter. Simulations were compared against measurements of a cylindrical munition component principally composed of HMX, tungsten and aluminum encased in carbon fiber. Simulations and measurements used a 6 MeV peak energy x-ray spectrum filtered with 3.175 mm of tantalum. A detector response proportional to energy which includes object scatter agrees to within 0.6 % of the measured line integral of the linear attenuation coefficient. Exclusion of scatter increases the difference between measurement and simulation to 5 %. A detector response proportional to photon flux agrees to within 20 % when object scatter is included in the simulation and 27 % when object scatter is excluded.
Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.
Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo
2012-04-15
Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.
Ruhlandt, A; Töpperwien, M; Krenkel, M; Mokso, R; Salditt, T
2017-07-26
We present an approach towards four dimensional (4d) movies of materials, showing dynamic processes within the entire 3d structure. The method is based on tomographic reconstruction on dynamically curved paths using a motion model estimated by optical flow techniques, considerably reducing the typical motion artefacts of dynamic tomography. At the same time we exploit x-ray phase contrast based on free propagation to enhance the signal from micron scale structure recorded with illumination times down to a millisecond (ms). The concept is demonstrated by observing the burning process of a match stick in 4d, using high speed synchrotron phase contrast x-ray tomography recordings. The resulting movies reveal the structural changes of the wood cells during the combustion.
Compton imaging tomography for nondestructive evaluation of spacecraft thermal protection systems
NASA Astrophysics Data System (ADS)
Romanov, Volodymyr; Burke, Eric; Grubsky, Victor
2017-02-01
Here we present new results of in situ nondestructive evaluation (NDE) of spacecraft thermal protection system materials obtained with POC-developed NDE tool based on a novel Compton Imaging Tomography (CIT) technique recently pioneered and patented by Physical Optics Corporation (POC). In general, CIT provides high-resolution three-dimensional Compton scattered X-ray imaging of the internal structure of evaluated objects, using a set of acquired two-dimensional Compton scattered X-ray images of consecutive cross sections of these objects. Unlike conventional computed tomography, CIT requires only one-sided access to objects, has no limitation on the dimensions and geometry of the objects, and can be applied to large multilayer non-uniform objects with complicated geometries. Also, CIT does not require any contact with the objects being imaged during its application.
Terahertz computed tomography of NASA thermal protection system materials
NASA Astrophysics Data System (ADS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2012-05-01
A terahertz (THz) axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 m3 (1 ft3) with no safety concerns as for x-ray computed tomography. In this study, the THz-CT system was evaluated for its ability to detect and characterize 1) an embedded void in Space Shuttle external fuel tank thermal protection system (TPS) foam material and 2) impact damage in a TPS configuration under consideration for use in NASA's multi-purpose Orion crew module (CM). Micro-focus X-ray CT is utilized to characterize the flaws and provide a baseline for which to compare the THz CT results.
Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Di Michiel, Marco; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R
2016-11-16
Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO 2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO 2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure.
Pan, Xiaochuan; Siewerdsen, Jeffrey; La Riviere, Patrick J; Kalender, Willi A
2008-08-01
The AAPM, through its members, meetings, and its flagship journal Medical Physics, has played an important role in the development and growth of x-ray tomography in the last 50 years. From a spate of early articles in the 1970s characterizing the first commercial computed tomography (CT) scanners through the "slice wars" of the 1990s and 2000s, the history of CT and related techniques such as tomosynthesis can readily be traced through the pages of Medical Physics and the annals of the AAPM and RSNA/AAPM Annual Meetings. In this article, the authors intend to give a brief review of the role of Medical Physics and the AAPM in CT and tomosynthesis imaging over the last few decades.
Recent Advances in X-ray Cone-beam Computed Laminography.
O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas
2016-10-06
X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlynar, J.; Weinzettl, V.; Imrisek, M.
2012-10-15
The contribution focuses on plasma tomography via the minimum Fisher regularisation (MFR) algorithm applied on data from the recently commissioned tomographic diagnostics on the COMPASS tokamak. The MFR expertise is based on previous applications at Joint European Torus (JET), as exemplified in a new case study of the plasma position analyses based on JET soft x-ray (SXR) tomographic reconstruction. Subsequent application of the MFR algorithm on COMPASS data from cameras with absolute extreme ultraviolet (AXUV) photodiodes disclosed a peaked radiating region near the limiter. Moreover, its time evolution indicates transient plasma edge cooling following a radial plasma shift. In themore » SXR data, MFR demonstrated that a high resolution plasma positioning independent of the magnetic diagnostics would be possible provided that a proper calibration of the cameras on an x-ray source is undertaken.« less
Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine
2016-12-01
The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.
X-ray tomography system to investigate granular materials during mechanical loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athanassiadis, Athanasios G.; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; La Rivière, Patrick J.
2014-08-15
We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing featuresmore » with 0.52 mm resolution in a (60 mm){sup 3} field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.« less
NASA Astrophysics Data System (ADS)
Pankhurst, M. J.; Fowler, R.; Courtois, L.; Nonni, S.; Zuddas, F.; Atwood, R. C.; Davis, G. R.; Lee, P. D.
2018-01-01
We present new software allowing significantly improved quantitative mapping of the three-dimensional density distribution of objects using laboratory source polychromatic X-rays via a beam characterisation approach (c.f. filtering or comparison to phantoms). One key advantage is that a precise representation of the specimen material is not required. The method exploits well-established, widely available, non-destructive and increasingly accessible laboratory-source X-ray tomography. Beam characterisation is performed in two stages: (1) projection data are collected through a range of known materials utilising a novel hardware design integrated into the rotation stage; and (2) a Python code optimises a spectral response model of the system. We provide hardware designs for use with a rotation stage able to be tilted, yet the concept is easily adaptable to virtually any laboratory system and sample, and implicitly corrects the image artefact known as beam hardening.
Artifact Reduction in X-Ray CT Images of Al-Steel-Perspex Specimens Mimicking a Hip Prosthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhogarhia, Manish; Munshi, P.; Lukose, Sijo
2008-09-26
X-ray Computed Tomography (CT) is a relatively new technique developed in the late 1970's, which enables the nondestructive visualization of the internal structure of objects. Beam hardening caused by the polychromatic spectrum is an important problem in X-ray computed tomography (X-CT). It leads to various artifacts in reconstruction images and reduces image quality. In the present work we are considering the Artifact Reduction in Total Hip Prosthesis CT Scan which is a problem of medical imaging. We are trying to reduce the cupping artifact induced by beam hardening as well as metal artifact as they exist in the CT scanmore » of a human hip after the femur is replaced by a metal implant. The correction method for beam hardening used here is based on a previous work. Simulation study for the present problem includes a phantom consisting of mild steel, aluminium and perspex mimicking the photon attenuation properties of a hum hip cross section with metal implant.« less
NASA Astrophysics Data System (ADS)
Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.
2016-01-01
A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm3. The mass attenuation coefficient of the phantom was measured using 60Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ2 value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Zmax.
Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger
2015-01-01
Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216
4D x-ray phase contrast tomography for repeatable motion of biological samples
NASA Astrophysics Data System (ADS)
Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto
2016-09-01
X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.
4D x-ray phase contrast tomography for repeatable motion of biological samples.
Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto
2016-09-01
X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm 3 . A maximum volume size of 13 × 13 × 6 mm 3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.
Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G
2016-03-10
Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.
Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole
2014-10-01
Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.
2012-12-01
X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.
Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-07-01
An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.
Viewing Welds By Computer Tomography
NASA Technical Reports Server (NTRS)
Pascua, Antonio G.; Roy, Jagatjit
1990-01-01
Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.
MCNP estimate of ZLS lens sensitivity in an x-ray field
NASA Astrophysics Data System (ADS)
Mitchell, Stephen E.; Baker, Stuart A.; Howe, Russell A.; Malone, Robert M.
2016-09-01
The telecentric zoom lens system (ZLS) has proven to be invaluable in flash x-ray field operations and recent successful experiments pertaining to stockpile stewardship. The ZLS contains 11 custom-manufactured lenses, a turning mirror (pellicle), and an x-ray-to-visible-light converting scintillator. Images are recorded on a fully characterized CCD. All hardware is supported by computerized, programmable, electro-mechanical mounts and alignment apparatus. Seven different glass material types varying in chemical stoichiometry comprise the 11 ZLS lenses. All lenses within the ZLS are out of the path of direct x-ray radiation during normal operation. However, any unshielded scattered x-ray radiation can result in energy deposition into the lenses, which may generate some scintillating light that can couple into the CCD. This extra light may contribute to a decrease in signal-to-noise ratio (SNR) and lower the overall fidelity of the radiograph images. An estimate of the scintillation generation and sensitivities for each of the seven types of glass used as lenses in the ZLS is presented. This report also includes estimates of the total observed background decoupling that each of the lens material types contribute.
The Physics of Physical Examinations.
ERIC Educational Resources Information Center
Patterson, James D.
1989-01-01
Discussed are several topics on medical imaging including x-rays and Computer Assisted Tomography (CAT) scans, magnetic resonance imaging, fiber optics endoscopy, nuclear medicine and bone scans, positron-emission tomography, and ultrasound. The concepts of radiation dosage, electrocardiograms, and laser therapy are included. (YP)
Ganesan, Vishnu; De, Shubha; Shkumat, Nicholas; Marchini, Giovanni; Monga, Manoj
2018-02-01
Preoperative determination of uric acid stones from computerized tomography imaging would be of tremendous clinical use. We sought to design a software algorithm that could apply data from noncontrast computerized tomography to predict the presence of uric acid stones. Patients with pure uric acid and calcium oxalate stones were identified from our stone registry. Only stones greater than 4 mm which were clearly traceable from initial computerized tomography to final composition were included in analysis. A semiautomated computer algorithm was used to process image data. Average and maximum HU, eccentricity (deviation from a circle) and kurtosis (peakedness vs flatness) were automatically generated. These parameters were examined in several mathematical models to predict the presence of uric acid stones. A total of 100 patients, of whom 52 had calcium oxalate and 48 had uric acid stones, were included in the final analysis. Uric acid stones were significantly larger (12.2 vs 9.0 mm, p = 0.03) but calcium oxalate stones had higher mean attenuation (457 vs 315 HU, p = 0.001) and maximum attenuation (918 vs 553 HU, p <0.001). Kurtosis was significantly higher in each axis for calcium oxalate stones (each p <0.001). A composite algorithm using attenuation distribution pattern, average attenuation and stone size had overall 89% sensitivity, 91% specificity, 91% positive predictive value and 89% negative predictive value to predict uric acid stones. A combination of stone size, attenuation intensity and attenuation pattern from conventional computerized tomography can distinguish uric acid stones from calcium oxalate stones with high sensitivity and specificity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Grating-based X-ray tomography of 3D food structures
NASA Astrophysics Data System (ADS)
Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur; Lametsch, René
2016-10-01
A novel grating based X-ray phase-contrast tomographic method has been used to study how partly substitution of meat proteins with two different types of soy proteins affect the structure of the formed protein gel in meat emulsions. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric set-up.
Sun, Zhipeng; Fu, Kaiyuan; Zhang, Zuyan; Zhao, Yanping; Ma, Xuchen
2012-05-01
The aim of this study was to primarily investigate the usefulness of computerized tomographic (CT) fistulography in the diagnosis and management of branchial cleft fistulae and sinuses. Fifteen patients with confirmed branchial fistulae or sinuses who had undergone CT fistulography were included. The diagnoses were confirmed by clinical, radiologic, or histopathologic examinations. The internal openings, distribution, and neighboring relationship of the lesions presented by CT fistulography were analyzed to evaluate the usefulness in comparison with x-ray fistulography. Nine patients were diagnosed with first branchial fistulae or sinuses, 2 with second branchial fistulae, and 4 with third or fourth branchial fistulae. The presence and location of the lesions could be seen on x-ray fistulography. The distribution of the lesions, internal openings, and neighboring relationship with parotid gland, carotid sheath, and submandibular gland could be clearly demonstrated on CT cross-sectional or volume-rendering images. CT fistulography could provide valuable information and benefit surgical planning by demonstrating the courses of branchial anomalies in detail. Copyright © 2012 Elsevier Inc. All rights reserved.
1992-03-15
Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography
NASA Astrophysics Data System (ADS)
Ishii, Keizo; Hatakeyama, Taisuke; Itoh, Shin; Sata, Daichi; Ohnuma, Tohru; Yamaguchi, Toshiro; Arai, Hiromu; Arai, Hirotsugu; Matsuyama, Shigeo; Terakawa, Atsuki; Kim, Seong-Yun
2016-03-01
We used X-ray computed tomography (CT) using characteristic X-rays produced in micro-particle-induced X-ray emission (PIXE) to investigate the internal structure of silt particles and develop new methods to decontaminate soil containing radioactive cesium. We obtained 3D attenuation coefficient images of silt particles with a diameter of approximately 100 μm for V K and Cr K X-rays. Owing to the absorption edges of the Cs L-shell, the differences between the V K and Cr K X-ray images revealed the spatial distribution of Cs atoms in the silt particles. Cs atoms were distributed over the surfaces of the silt particles to a thickness of approximately 10 μm. This information is useful for the decontamination of silt contaminated by radiation from the Fukushima Daiichi nuclear disaster.
Low Energy Accelerators for Cargo Inspection
NASA Astrophysics Data System (ADS)
Tang, Chuanxiang
Cargo inspection by X-rays has become essential for seaports and airports. With the emphasis on homeland security issues, the identification of dangerous things, such as explosive items and nuclear materials, is the key feature of a cargo inspection system. And new technologies based on dual energy X-rays, neutrons and monoenergetic X-rays have been studied to achieve sufficiently good material identification. An interpretation of the principle of X-ray cargo inspection technology and the features of X-ray sources are presented in this article. As most of the X-ray sources are based on RF electron linear accelerators (linacs), we give a relatively detailed description of the principle and characteristics of linacs. Cargo inspection technologies based on neutron imaging, neutron analysis, nuclear resonance fluorescence and computer tomography are also mentioned here. The main vendors and their products are summarized at the end of the article.
CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS
NASA Astrophysics Data System (ADS)
Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.
2017-06-01
The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.
Application of nonlinear phenomena induced by focused ultrasound to bone imaging.
Callé, Samuel; Remenieras, Jean-Pierre; Bou Matar, Olivier; Defontaine, Marielle; Patat, Frederic
2003-03-01
A tissue deformability image is obtained with the vibroacoustography imaging method using mechanical low-frequency (LF) excitation. This ultrasonic excitation is created locally by means of a focused annular array emitting two primary beams at two close frequencies, f(1) and f(2) (f(2) = f(1) + f(LF)). The LF acoustic emission resulting from the vibration of the medium is detected by a sensitive hydrophone and then used to form the image. This noninvasive imaging method was demonstrated in this study to be suitable for bone imaging, with x and y transverse resolutions less than 300 micro m. Two bone sites susceptible to demineralization were tested: the calcaneus and the neck of the femur. The vibroacoustic method provides valuable ultrasonic images regarding the structure and the elastic properties of bone tissue. Correlation was made between vibroacoustic bone images, performed in vitro, and images acquired by other imaging methods (i.e., bone ultrasound attenuation and x-ray computerized tomography (CT)). Moreover, the amplitudes of vibroacoustic signals radiating from phosphocalcic ceramic samples (bone substitute) of different porosity were evaluated. The good correlation between these results and the description of our images and the quality of vibroacoustic images indicate that bone decalcification could be detected using vibroacoustography.
[The preoperative thoracic X-ray for tactical decisions for the thoracic injuries treatment].
Voskresenskiĭ, O V; Beresneva, É A; Sharifullin, F A; Popova, I E; Abakumov, M M
2011-01-01
Data of 379 patients with penetrating thoracic wounds were analyzed. The pathologic changes on X-ray of the thoracic cavity were registered 239 (63,1%) patients: the hemothorax was diagnosed in 44,3%, pneumothorax - in 26,8% and hemopneumothorax - in 28,9%. 154 patients had videothoracoscopic surgery and 225 patients were operated on using traditional open methods. Operative findings were compared with X-ray data. The sensitivity of plain chest radiography in diagnostics of hemothorax was 52,1%, the specificity - 92,1%. Mistakes of interpreting X-ray data in diagnosing of low-volume hemo- or pneumothorax were defined. The computed tomography of the thorax proved to be the most precise means of intrapleural injuries diagnostics. The optimal algorithm of preoperative thoracic X-ray was suggested.
Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation
NASA Astrophysics Data System (ADS)
Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.
2001-07-01
We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.
Computerized tomography as a diagnostic aid in acute hemorrhagic leukoencephalitis.
Rothstein, T L; Shaw, C M
1983-03-01
Computerized tomography (CT) in a pathologically proven case of acute hemorrhagic leukoencephalitis (AHL) showed a mass effect and increased absorption coefficient in the right hemisphere within 18 hours of the onset of neurological symptoms. The changes corresponded to the site of white matter edema, necrosis, and petechial hemorrhages demonstrated postmortem. The early changes of CT reflect the hyperacute nature of AHL and differ from those of herpes simplex encephalitis.
Using Image Processing to Determine Emphysema Severity
NASA Astrophysics Data System (ADS)
McKenzie, Alexander; Sadun, Alberto
2010-10-01
Currently X-rays and computerized tomography (CT) scans are used to detect emphysema, but other tests are required to accurately quantify the amount of lung that has been affected by the disease. These images clearly show if a patient has emphysema, but are unable by visual scan alone, to quantify the degree of the disease, as it presents as subtle, dark spots on the lung. Our goal is to use these CT scans to accurately diagnose and determine emphysema severity levels in patients. This will be accomplished by performing several different analyses of CT scan images of several patients representing a wide range of severity of the disease. In addition to analyzing the original CT data, this process will convert the data to one and two bit images and will then examine the deviation from a normal distribution curve to determine skewness. Our preliminary results show that this method of assessment appears to be more accurate and robust than the currently utilized methods, which involve looking at percentages of radiodensities in the air passages of the lung.
Image Processing Diagnostics: Emphysema
NASA Astrophysics Data System (ADS)
McKenzie, Alex
2009-10-01
Currently the computerized tomography (CT) scan can detect emphysema sooner than traditional x-rays, but other tests are required to measure more accurately the amount of affected lung. CT scan images show clearly if a patient has emphysema, but is unable by visual scan alone, to quantify the degree of the disease, as it appears merely as subtle, barely distinct, dark spots on the lung. Our goal is to create a software plug-in to interface with existing open source medical imaging software, to automate the process of accurately diagnosing and determining emphysema severity levels in patients. This will be accomplished by performing a number of statistical calculations using data taken from CT scan images of several patients representing a wide range of severity of the disease. These analyses include an examination of the deviation from a normal distribution curve to determine skewness, a commonly used statistical parameter. Our preliminary results show that this method of assessment appears to be more accurate and robust than currently utilized methods which involve looking at percentages of radiodensities in air passages of the lung.
Excitation-resolved cone-beam x-ray luminescence tomography.
Liu, Xin; Liao, Qimei; Wang, Hongkai; Yan, Zhuangzhi
2015-07-01
Cone-beam x-ray luminescence computed tomography (CB-XLCT), as an emerging imaging technique, plays an important role in in vivo small animal imaging studies. However, CB-XLCT suffers from low-spatial resolution due to the ill-posed nature of reconstruction. We improve the imaging performance of CB-XLCT by using a multiband excitation-resolved imaging scheme combined with principal component analysis. To evaluate the performance of the proposed method, the physical phantom experiment is performed with a custom-made XLCT/XCT imaging system. The experimental results validate the feasibility of the method, where two adjacent nanophosphors (with an edge-to-edge distance of 2.4 mm) can be located.
Comparison of Spall Pullback Signals and X-ray Tomography Analysis in Copper
NASA Astrophysics Data System (ADS)
Gard, Marcie; Russell, Rod; Hanna, Romy; Bless, Stephan; InstituteAdvanced Technology Collaboration; Department of Geological Sciences-UT Austin Collaboration
2011-06-01
Spall experiments were conducted on electrolytic tough pitch C110 copper plates. Flyer plates half the target-plate thickness were launched with a single-stage compressed-gas gun. Pullback signals were measured with a photonic Doppler velocimeter (PDV). Spall stresses were determined and found to be about 1 GPa. In addition, damage on the spall plane for samples that failed to separate a spall plate was characterized by x-ray tomography. The paper will include a description of threshold damage. The threshold for appearance of a pullback signal corresponded to the initiation of tensile damage, not formation of a spall separation plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Mathew; Marshall, Matthew J.; Miller, Erin A.
2014-08-26
Understanding the interactions of structured communities known as “biofilms” and other complex matrixes is possible through the X-ray micro tomography imaging of the biofilms. Feature detection and image processing for this type of data focuses on efficiently identifying and segmenting biofilms and bacteria in the datasets. The datasets are very large and often require manual interventions due to low contrast between objects and high noise levels. Thus new software is required for the effectual interpretation and analysis of the data. This work specifies the evolution and application of the ability to analyze and visualize high resolution X-ray micro tomography datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, E.D.; Stears, J.G.; Gray, J.E.
The posteroanterior projection was studied to determine if it could be a substitute for the commonly used anteroposterior projection as a method of reducing x-ray exposure to specific radiosensitive organs during intracranial tomography and scoliosis radiography. The use of the posteroanterior projection resulted in a reduction of 95% in exposure to the lens of the eye during intracranial tomography and of more than 90% to the thyroid, sternum, and breasts during scoliosis radiography. In addition to the major reduction in radiation exposure, the diagnostic capability of the examination was not reduced and comfort in most patients was not affected.
X-Ray Computed Tomography of Tranquility Base Moon Rock
NASA Technical Reports Server (NTRS)
Jones, Justin S.; Garvin, Jim; Viens, Mike; Kent, Ryan; Munoz, Bruno
2016-01-01
X-ray Computed Tomography (CT) was used for the first time on the Apollo 11 Lunar Sample number 10057.30, which had been previously maintained by the White House, then transferred back to NASA under the care of Goddard Space Flight Center. Results from this analysis show detailed images of the internal structure of the moon rock, including vesicles (pores), crystal needles, and crystal bundles. These crystals, possibly the common mineral ilmenite, are found in abundance and with random orientation. Future work, in particular a greater understanding of these crystals and their formation, may lead to a more in-depth understanding of the lunar surface evolution and mineral content.
NASA Astrophysics Data System (ADS)
Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.
2016-03-01
The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howells, M.
This session includes a collection of outlines of pertinent information, diagrams, graphs, electron micrographs, and color photographs pertaining to historical aspects and recent advances in the development of X-ray Gabor Holography. Many of the photographs feature or pertain to instrumentation used in holography, tomography, and cryo-holography.
APPLICATION OF COMPUTER AIDED TOMOGRAPHY (CAT) TO THE STUDY OF MARINE BENTIC COMMUNITIES
Sediment cores were imaged using a Computer-Aided Tomography (CT) scanner at Massachusetts General Hospital, Boston, Massachusetts, United States. Procedures were developed, using the attenuation of X-rays, to differentiate between sediment and the water contained in macrobenthic...
NASA Astrophysics Data System (ADS)
Waktola, Selam; Bieberle, Andre; Barthel, Frank; Bieberle, Martina; Hampel, Uwe; Grudzień, Krzysztof; Babout, Laurent
2018-04-01
In most industrial products, granular materials are often required to flow under gravity in various kinds of silo shapes and usually through an outlet in the bottom. There are several interrelated parameters which affect the flow, such as internal friction, bulk and packing density, hopper geometry, and material type. Due to the low-spatial resolution of electrical capacitance tomography or scanning speed limitation of standard X-ray CT systems, it is extremely challenging to measure the flow velocity and possible centrifugal effects of granular materials flow effectively. However, ROFEX (ROssendorf Fast Electron beam X-ray tomography) opens new avenues of granular flow investigation due to its very high temporal resolution. This paper aims to track particle movements and evaluate the local grain velocity during silo discharging process in the case of mass flow. The study has considered the use of the Seramis material, which can also serve as a type of tracer particles after impregnation, due to its porous nature. The presented novel image processing and analysis approach allows satisfyingly measuring individual particle velocities but also tracking their lateral movement and three-dimensional rotations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ducman, V., E-mail: vilma.ducman@zag.si; Korat, L.; Legat, A.
2013-12-15
In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of poresmore » decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (μcT)« less
NASA Astrophysics Data System (ADS)
Sinha, Vaibhav; Srivastava, Anjali; Koo Lee, Hyoung
2014-06-01
A novel method for non-destructive analysis has been developed using a neutron/X-ray combined computed tomography (NXCT) system at the Missouri University of Science and Technology Reactor (MSTR). This imaging system takes advantage of the fact that neutrons and X-rays have characteristically different interactions with same materials. NXCT fuses the imaging capabilities of both systems at one location and allows instant evaluation for nondestructive testing (NDT) applications. This technique promises viable advances in the field of NDT. In this paper, the complete design criteria and procedures are provided. The described design criteria and procedures can effectively be utilized to design and develop advanced combined computed tomography system. The successful operation of the high resolution X-ray and neutron computed tomography has been demonstrated in this paper. The utility and importance of the NXCT system has been shown by nondestructive evaluation of various phantoms constituting different materials, geometrical, structural and compositional information. The concept of NXCT can be useful for concealed material detection, material characterization, investigation of complex geometries involving different atomic number materials and real time imaging for in-situ studies.
Visualization of subcutaneous insulin injections by x-ray computed tomography
NASA Astrophysics Data System (ADS)
Thomsen, M.; Poulsen, M.; Bech, M.; Velroyen, A.; Herzen, J.; Beckmann, F.; Feidenhans'l, R.; Pfeiffer, F.
2012-11-01
We report how the three-dimensional structure of subcutaneous injections of soluble insulin can be visualized by x-ray computed tomography using an iodine based contrast agent. The injections investigated are performed ex vivo in porcine adipose tissue. Full tomography scans carried out at a laboratory x-ray source with a total acquisition time of about 1 min yield CT-images with an effective pixel size of 109 × 109 μm2. The depots are segmented using a modified Chan-Vese algorithm and we are able to observe differences in the shape of the injection depot and the position of the depot in the skin among equally performed injections. To overcome the beam hardening artefacts, which affect the quantitative prediction of the volume injected, we additionally present results concerning the visualization of two injections using synchrotron radiation. The spatial concentration distribution of iodine is calculated to show the dilution of the insulin drug inside the depot. Characterisation of the shape of the depot and the spatial concentration profile of the injected fluid is important knowledge when improving the clinical formulation of an insulin drug, the performance of injection devices and when predicting the effect of the drug through biomedical simulations.
Characterization by X-ray tomography of granulated alumina powder during in situ die compaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrino, Sandrine; Jorand, Yves, E-mail: yves.jorand@insa-lyon.fr; Maire, Eric
2013-07-15
Compaction process, the aim of which being to obtain green bodies with low porosity and small size, is often used before sintering treatment. Prior to die filling, the ceramic powder is generally granulated to improve flowability. However during compaction, density heterogeneity and critical size defects may appear due to intergranule and granule-die wall frictions. In this work, the influence of granule formulation on the compact morphology has been studied. To do so, a compaction setup was installed inside an X-ray tomography equipment so that the evolution of the compact morphology could be analysed during the whole compaction process. We havemore » demonstrated that high humidity rate and the addition of binder in the granule formulation increase density heterogeneity and generate larger defects. - Highlights: • An original compaction set up was installed inside an X-Ray tomography equipment. • The compaction process of granulated ceramic powder is imaged. • The compact green microstructure is quantified and related to the compaction stages. • The most detrimental defects of dry-pressed parts are caused by hollow granules. • Formulations without binder allow a reduction of the number of large defects.« less
X-ray tomography as a powerful method for zinc-air battery research
NASA Astrophysics Data System (ADS)
Franke-Lang, Robert; Arlt, Tobias; Manke, Ingo; Kowal, Julia
2017-12-01
X-ray tomography is used to investigate material redistribution and effects of electrochemical reactions in a zinc-air battery in-situ. For this, a special battery set-up is developed which meets tomographic and electrochemical requirements. The prepared batteries are discharged and some of them have partially been charged. To analyse the three-dimensional structure of the zinc and air electrode a tomographic measurement is made in charge and discharge condition without disassembling the battery. X-ray tomography gives the opportunity to detect and analyse three different effects within the cell operation: tracking the morphology and transformation of zinc and air electrode, monitoring electrolyte decomposition and movement, finding electrical misbehaviour by parasitic reactions. Therefore, it is possible to identify the loss of capacity and major problems of cyclability. The electrolyte strongly reacts with the pure zinc that leads to gassing and a loss of electrolyte. The loss prevents a charge carrier exchange between the anode and the cathode and reduces the theoretical capacity. One of the chemical reaction produces hydroxylated zinc, namely zincate. The most crucial problems with cyclability are affected by zincate movement into the catalyst layer. This assumption is confirmed by finding pure zinc areas within the catalyst layer.
X-ray computed tomography using curvelet sparse regularization.
Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias
2015-04-01
Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.
Advantages of phase retrieval for fast x-ray tomographic microscopy
NASA Astrophysics Data System (ADS)
Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.
2013-12-01
In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.
X-ray computed tomography applied to investigate ancient manuscripts
NASA Astrophysics Data System (ADS)
Bettuzzi, Matteo; Albertin, Fauzia; Brancaccio, Rosa; Casali, Franco; Pia Morigi, Maria; Peccenini, Eva
2017-03-01
I will describe in this paper the first results of a series of X-ray tomography applications, with different system setups, running on some ancient manuscripts containing iron-gall ink. The purpose is to verify the optimum measurement conditions with a laboratory instrumentation -that is also in fact portable- in order to recognize the text from the inside of the documents, without opening them. This becomes possible by exploiting the X-rays absorption contrast of iron-based ink and the three-dimensional reconstruction potential provided by computed tomography that overcomes problems that appear in simple radiograph practice. This work is part of a larger project of EPFL (Ecole Polytechnique Fédérale de Lausanne, Switzerland), the "Venice Time Machine" project (EPEL, Digital Heritage Venice, http://dhvenice.eu/, 2015) aimed at digitizing, transcribing and sharing in an open database all the information of the State Archives of Venice, exploiting traditional digitization technologies and innovative methods of acquisition. In this first measurement campaign I investigated a manuscript of the seventeenth century made of a folded sheet; a couple of unopened ancient wills kept in the State Archives in Venice and a handwritten book of several hundred pages of notes of Physics of the nineteenth century.
Fluorescent x-ray computed tomography with synchrotron radiation using fan collimator
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Akiba, Masahiro; Yuasa, Tetsuya; Kazama, Masahiro; Hoshino, Atsunori; Watanabe, Yuuki; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji
1996-04-01
We describe a new system of fluorescent x-ray computed tomography applied to image nonradioactive contrast materials in vivo. The system operates on the basis of computed tomography (CT) of the first generation. The experiment was also simulated using the Monte Carlo method. The research was carried out at the BLNE-5A bending-magnet beam line of the Tristan Accumulation Ring in Kek, Japan. An acrylic cylindrical phantom containing five paraxial channels of 5 and 4 mm diameters was imaged. The channels were filled with a diluted iodine-based contrast material, with iodine concentrations of 2 mg/ml and 500 (mu) g/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated clearly the K(alpha ) and K(beta 1) x-ray fluorescent lines, and the Compton scattering. CT images were reconstructed from projections generated by integrating the counts in these spectral lines. The method had adequate sensitivity and detection power, as shown by the experiment and predicted by the simulations, to show the iodine content of the phantom channels, which corresponded to 1 and 4 (mu) g iodine content per pixel in the reconstructed images.
Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2015-01-01
A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography ([Formula: see text]) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In [Formula: see text], the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer-Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to [Formula: see text] in SS-OCT. A correlation between [Formula: see text] and SS-OCT was found regarding lesion depth ([Formula: see text], [Formula: see text]) and also surface layer thickness ([Formula: see text], [Formula: see text]). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution [Formula: see text] without the use of x-ray.
Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2015-01-01
Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606 μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079
Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis
2013-05-01
The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.
Hernigou, P; Germany, W
1998-09-01
Within an anatomical and a clinical study, the authors employed computerized tomographic scans to evaluate the risks of anterior surrounding tissues injuries during screw insertion. CT scans of 20 patients suffering from cardiac disease were reviewed retrospectively. Scans through the thoracic and lumbar spine were obtained using 6 mm slice thickness. These examinations were performed with intravenous contrast medium. Measurements of vessel diameters and distance of the soft tissues situated directly anterior to the spine were done. A retrospective study of 61 pedicle screws implanted for spine fractures evaluated the penetration of the anterior vertebral cordex with X rays and CT scans. Computerized tomographic scans of the thoracic and lumbar spine of the 20 patients in the control group confirmed proximity of the posterior mediastinal structures to the anterior vertebral cortex. Many structures of the posterior mediastinum were within five millimeters of the anterior vertebral cortex and thus were at risk: aorta, azygos vein, vena cava, parietal pleura and lungs. The theoretical risk of unrecognized screw penetrations evaluated on geometric shape of the anterior vertebral body is as high as 21 per cent when screw position is only seen with an antero posterior and a lateral X Ray. In the other group, computerized tomographic scans showed that 30 per cent of the implanted screws were outside the boundaries of the anterior thoracic spine. Two orthogonal incidences do not enable determination of whether the extremity of the screw is slightly outside the anterior cortex of the vertebral body. However the geometric shape of the anterior vertebral body enables peroperative definition of a safety zone on two orthogonal incidences. Even if a breach of a few millimeters of the anterior cortical boundaries of the vertebral body may not initially damage the adjacent soft-tissue structures, chronic irritation may result in late damages of these structures. The use of metallic markers and the respect of a safe vertebral zone on X Rays could guide the choice of the appropriate screw length.
Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging
NASA Astrophysics Data System (ADS)
Baran, P.; Pacile, S.; Nesterets, Y. I.; Mayo, S. C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; Taba, S. T.; Brun, F.; Pinamonti, M.; Nickson, C.; Hall, C.; Dimmock, M.; Zanconati, F.; Cholewa, M.; Quiney, H.; Brennan, P. C.; Tromba, G.; Gureyev, T. E.
2017-03-01
The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang
2017-12-01
The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.
Sinogram-based adaptive iterative reconstruction for sparse view x-ray computed tomography
NASA Astrophysics Data System (ADS)
Trinca, D.; Zhong, Y.; Wang, Y.-Z.; Mamyrbayev, T.; Libin, E.
2016-10-01
With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this paper, we propose an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. The proposed algorithm is thus provided for free to the scientific community, for regular use, and for possible further optimization.
The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie
2012-07-01
An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.
Histology-validated x-ray tomography for imaging human coronary arteries
NASA Astrophysics Data System (ADS)
Buscema, Marzia; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Matviykiv, Sofiya; Holme, Margaret N.; Hipp, Alexander; Beckmann, Felix; Saxer, Till; Michaud, Katarzyna; Müller, Bert
2016-10-01
Heart disease is the number one cause of death worldwide. To improve therapy and patient outcome, the knowledge of anatomical changes in terms of lumen morphology and tissue composition of constricted arteries is crucial for designing a localized drug delivery to treat atherosclerosis disease. Traditional tissue characterization by histology is a pivotal tool, although it brings disadvantages such as vessel morphology modification during decalcification and slicing. X-ray tomography in absorption and phase contrast modes yields a deep understanding in blood vessel anatomy in healthy and diseased stages: measurements in absorption mode make visible highly absorbing tissue components including cholesterol plaques, whereas phase contrast tomography gains better contrast of the soft tissue components such as vessel walls. Established synchrotron radiation-based micro-CT techniques ensure high performance in terms of 3D visualization of highly absorbing and soft tissues.
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.
2001-09-01
In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.
Pan, Xiaochuan; Siewerdsen, Jeffrey; La Riviere, Patrick J.; Kalender, Willi A.
2008-01-01
The AAPM, through its members, meetings, and its flagship journal Medical Physics, has played an important role in the development and growth of x-ray tomography in the last 50 years. From a spate of early articles in the 1970s characterizing the first commercial computed tomography (CT) scanners through the “slice wars” of the 1990s and 2000s, the history of CT and related techniques such as tomosynthesis can readily be traced through the pages of Medical Physics and the annals of the AAPM and RSNA/AAPM Annual Meetings. In this article, the authors intend to give a brief review of the role of Medical Physics and the AAPM in CT and tomosynthesis imaging over the last few decades. PMID:18777932
A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.
De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc
2010-09-01
In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.
NASA Astrophysics Data System (ADS)
Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.
The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.
NASA Astrophysics Data System (ADS)
Cushley, Alex Clay
The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).
Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L
2017-04-03
Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (-0.45%±0.15%), separation (-0.40%±0.15%), and network heterogeneity (-0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P <0.05). Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. Copyright © 2017 by the American Society of Nephrology.
Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K.; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X.; McMahon, Donald J.; Shane, Elizabeth
2017-01-01
Background and objectives Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Design, settings, participants, & measurements Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid–withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. Results At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (−0.45%±0.15%), separation (−0.40%±0.15%), and network heterogeneity (−0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P<0.05). Conclusions Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. PMID:28348031
Limited angle breast ultrasound tomography with a priori information and artifact removal
NASA Astrophysics Data System (ADS)
Jintamethasawat, Rungroj; Zhu, Yunhao; Kripfgans, Oliver D.; Yuan, Jie; Goodsitt, Mitchell M.; Carson, Paul L.
2017-03-01
In B-mode images from dual-sided ultrasound, it has been shown that by delineating structures suspected of being relatively homogeneous, one can enhance limited angle tomography to produce speed of sound images in the same view as X-ray Digital Breast Tomography (DBT). This could allow better breast cancer detection and discrimination, as well as improved registration of the ultrasound and X-ray images, because of the similarity of SOS and X-ray contrast in the breast. However, this speed of sound reconstruction method relies strongly on B-mode or other reflection mode segmentation. If that information is limited or incorrect, artifacts will appear in the reconstructed images. Therefore, the iterative speed of sound reconstruction algorithm has been modified in a manner of simultaneously utilizing the image segmentations and removing most artifacts. The first step of incorporating a priori information is solved by any nonlinearnonconvex optimization method while artifact removal is accomplished by employing the fast split Bregman method to perform total-variation (TV) regularization for image denoising. The proposed method was demonstrated in simplified simulations of our dual-sided ultrasound scanner. To speed these computations two opposed 40-element ultrasound linear arrays with 0.5 MHz center frequency were simulated for imaging objects in a uniform background. The proposed speed of sound reconstruction method worked well with both bent-ray and full-wave inversion methods. This is also the first demonstration of successful full-wave medical ultrasound tomography in the limited angle geometry. Presented results lend credibility to a possible translation of this method to clinical breast imaging.
Development of X-ray CCD camera based X-ray micro-CT system
NASA Astrophysics Data System (ADS)
Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.
2017-02-01
Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.
Comparison of joint designs for laser welding of cast metal plates and wrought wires.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2013-01-01
The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding.
ERIC Educational Resources Information Center
Michael, Greg
2001-01-01
Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)
Gaussian process tomography for soft x-ray spectroscopy at WEST without equilibrium information
NASA Astrophysics Data System (ADS)
Wang, T.; Mazon, D.; Svensson, J.; Li, D.; Jardin, A.; Verdoolaege, G.
2018-06-01
Gaussian process tomography (GPT) is a recently developed tomography method based on the Bayesian probability theory [J. Svensson, JET Internal Report EFDA-JET-PR(11)24, 2011 and Li et al., Rev. Sci. Instrum. 84, 083506 (2013)]. By modeling the soft X-ray (SXR) emissivity field in a poloidal cross section as a Gaussian process, the Bayesian SXR tomography can be carried out in a robust and extremely fast way. Owing to the short execution time of the algorithm, GPT is an important candidate for providing real-time reconstructions with a view to impurity transport and fast magnetohydrodynamic control. In addition, the Bayesian formalism allows quantifying uncertainty on the inferred parameters. In this paper, the GPT technique is validated using a synthetic data set expected from the WEST tokamak, and the results are shown of its application to the reconstruction of SXR emissivity profiles measured on Tore Supra. The method is compared with the standard algorithm based on minimization of the Fisher information.
NASA Astrophysics Data System (ADS)
Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin
2016-10-01
X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.
Inexpensive computed tomography for remote areas via teleradiology
NASA Astrophysics Data System (ADS)
Gordon, Richard
1990-06-01
While x-ray computed tomography (CT) is falling in price it is still beyond the means of most primary and secondary health care centres in the world. I would like to show how if a teleradiology system is installed there is a good prospect for also being able to install a simple but diagnostically effective CT system. This can be based on film used either as a one or two dimensional detector. 1. CT SYSTEMS The major components of a CT system are: 1) health care worker(s) who can decide which part of a patient needs to be imaged 2) an x-ray transparent bed on which a patient can be made comfortable positioned and restrained as necessary 3) an x-ray source mounted on a gantry 4) an x-ray detector mounted on the gantry 5) a digitizer for the x-ray signal 6) a computer to receive the signal 7) an algorithm that calculates the reconstructed CT image 8) a halftone or color display monitor 9) a radiologist who can interpret the images 10) communication from the radiologist to the health care worker(s). 2. BENEFITS OF CT VIA TELERADIOLOGY I would like to proceed on the premise that a teleradiology system could be placed between steps 6 and 7. This has the following benefits: a) Radiologists who are relatively scarce and generally located in urban tertiary care centres could serve people in remote areas
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.
Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei
2017-01-01
X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method
Liu, Fei; Luo, Jianwen; Xie, Yaoqin; Bai, Jing
2017-01-01
X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods. PMID:27576245
NASA Astrophysics Data System (ADS)
Nakashima, Yoshito; Komatsubara, Junko
Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.
MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera
NASA Astrophysics Data System (ADS)
Wang, Hongkai; Stout, David B.; Taschereau, Richard; Gu, Zheng; Vu, Nam T.; Prout, David L.; Chatziioannou, Arion F.
2012-10-01
This paper introduces a mouse atlas registration system (MARS), composed of a stationary top-view x-ray projector and a side-view optical camera, coupled to a mouse atlas registration algorithm. This system uses the x-ray and optical images to guide a fully automatic co-registration of a mouse atlas with each subject, in order to provide anatomical reference for small animal molecular imaging systems such as positron emission tomography (PET). To facilitate the registration, a statistical atlas that accounts for inter-subject anatomical variations was constructed based on 83 organ-labeled mouse micro-computed tomography (CT) images. The statistical shape model and conditional Gaussian model techniques were used to register the atlas with the x-ray image and optical photo. The accuracy of the atlas registration was evaluated by comparing the registered atlas with the organ-labeled micro-CT images of the test subjects. The results showed excellent registration accuracy of the whole-body region, and good accuracy for the brain, liver, heart, lungs and kidneys. In its implementation, the MARS was integrated with a preclinical PET scanner to deliver combined PET/MARS imaging, and to facilitate atlas-assisted analysis of the preclinical PET images.
MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera.
Wang, Hongkai; Stout, David B; Taschereau, Richard; Gu, Zheng; Vu, Nam T; Prout, David L; Chatziioannou, Arion F
2012-10-07
This paper introduces a mouse atlas registration system (MARS), composed of a stationary top-view x-ray projector and a side-view optical camera, coupled to a mouse atlas registration algorithm. This system uses the x-ray and optical images to guide a fully automatic co-registration of a mouse atlas with each subject, in order to provide anatomical reference for small animal molecular imaging systems such as positron emission tomography (PET). To facilitate the registration, a statistical atlas that accounts for inter-subject anatomical variations was constructed based on 83 organ-labeled mouse micro-computed tomography (CT) images. The statistical shape model and conditional Gaussian model techniques were used to register the atlas with the x-ray image and optical photo. The accuracy of the atlas registration was evaluated by comparing the registered atlas with the organ-labeled micro-CT images of the test subjects. The results showed excellent registration accuracy of the whole-body region, and good accuracy for the brain, liver, heart, lungs and kidneys. In its implementation, the MARS was integrated with a preclinical PET scanner to deliver combined PET/MARS imaging, and to facilitate atlas-assisted analysis of the preclinical PET images.
Development of X-ray computed tomography inspection facility for the H-II solid rocket boosters
NASA Astrophysics Data System (ADS)
Sasaki, M.; Fujita, T.; Fukushima, Y.; Shimizu, M.; Itoh, S.; Satoh, A.; Miyamoto, H.
The National Space Development Agency of Japan (NASDA) initiated the development of an X-ray computed tomography (CT) equipment for the H-II solid rocket boosters (SRBs) in 1987 for the purpose of minimizing inspection time and achieving high cost-effectiveness. The CT facility has been completed in Jan. 1991 in Tanegashima Space Center for the inspection of the SRBs transported from the manufacturer's factory to the launch site. It was first applied to the qualification model SRB from Feb. to Apr. in 1991. Through the CT inspection of the SRB, it has been confirmed that inspection time decreased significantly compared with the X-ray radiography method and that even an unskilled inspector could find various defects. As a result, the establishment of a new reliable inspection method for the SRB has been verified. In this paper, the following are discussed: (1) the defect detectability of the CT equipment using a dummy SRB with various artificial defects, (2) the performance comparison between the CT method and the X-ray radiography method, (3) the reliability of the CT equipment, and (4) the radiation shield design of the nondestructive test building.
How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography
Jørgensen, J. S.; Sidky, E. Y.
2015-01-01
We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization. PMID:25939620
How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography.
Jørgensen, J S; Sidky, E Y
2015-06-13
We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.
Computed tomographic images using tube source of x rays: interior properties of the material
NASA Astrophysics Data System (ADS)
Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.
2002-01-01
An image intensifier based computed tomography scanner and a tube source of x-rays are used to obtain the images of small objects, plastics, wood and soft materials in order to know the interior properties of the material. A new method is developed to estimate the degree of monochromacy, total solid angle, efficiency and geometrical effects of the measuring system and the way to produce monoenergetic radiation. The flux emitted by the x-ray tube is filtered using the appropriate filters at the chosen optimum energy and reasonable monochromacy is achieved and the images are acceptably distinct. Much attention has been focused on the imaging of small objects of weakly attenuating materials at optimum value. At optimum value it is possible to calculate the three-dimensional representation of inner and outer surfaces of the object. The image contrast between soft materials could be significantly enhanced by optimal selection of the energy of the x-rays by Monte Carlo methods. The imaging system is compact, reasonably economic, has a good contrast resolution, simple operation and routine availability and explores the use of optimizing tomography for various applications.
Radiographic evidence of disuse osteoporosis in the monkey /M. nemestrina/
NASA Technical Reports Server (NTRS)
Young, D. R.; Schneider, V. S.
1981-01-01
Radiological techniques were utilized for monitoring progressive changes in compact bone in the tibia of monkeys during experimentally induced osteopenia. Bone mass loss in the tibia during restraint was evaluated from radiographs, from bone mineral analysis, and from images reconstructed from gamma ray computerized tomography. The losses during 6 months of restraint tended to occur predominantly in the proximal tibia and were characterized by subperiosteal bone loss, intracortical striations, and scalloped endosteal surfaces. Bone mineral content in the cross section of the tibia declined 17-21%. In 6 months of recovery, the mineral content of the proximal tibia remained depressed.
Analysis of rocket beacon transmissions for computerized reconstruction of ionospheric densities
NASA Technical Reports Server (NTRS)
Bernhardt, P. A.; Huba, J. D.; Chaturvedi, P. K.; Fulford, J. A.; Forsyth, P. A.; Anderson, D. N.; Zalesak, S. T.
1993-01-01
Three methods are described to obtain ionospheric electron densities from transionospheric, rocket-beacon TEC data. First, when the line-of-sight from a ground receiver to the rocket beacon is tangent to the flight trajectory, the electron concentration can be obtained by differentiating the TEC with respect to the distance to the rocket. A similar method may be used to obtain the electron-density profile if the layer is horizontally stratified. Second, TEC data obtained during chemical release experiments may be interpreted with the aid of physical models of the disturbed ionosphere to yield spatial maps of the modified regions. Third, computerized tomography (CT) can be used to analyze TEC data obtained along a chain of ground-based receivers aligned along the plane of the rocket trajectory. CT analysis of TEC data is used to reconstruct a 2D image of a simulated equatorial plume. TEC data is computed for a linear chain of nine receivers with adjacent spacings of either 100 or 200 km. The simulation data are analyzed to provide an F region reconstruction on a grid with 15 x 15 km pixels. Ionospheric rocket tomography may also be applied to rocket-assisted measurements of amplitude and phase scintillations and airglow intensities.
NASA Astrophysics Data System (ADS)
Castellano, Isabel; Geleijns, Jacob
After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.
Description of a prototype emission-transmission computed tomography imaging system
NASA Technical Reports Server (NTRS)
Lang, T. F.; Hasegawa, B. H.; Liew, S. C.; Brown, J. K.; Blankespoor, S. C.; Reilly, S. M.; Gingold, E. L.; Cann, C. E.
1992-01-01
We have developed a prototype imaging system that can perform simultaneous x-ray transmission CT and SPECT phantom studies. This system employs a 23-element high-purity-germanium detector array. The detector array is coupled to a collimator with septa angled toward the focal spot of an x-ray tube. During image acquisition, the x-ray fan beam and the detector array move synchronously along an arc pivoted at the x-ray source. Multiple projections are obtained by rotating the object, which is mounted at the center of rotation of the system. The detector array and electronics can count up to 10(6) cps/element with sufficient energy-resolution to discriminate between x-rays at 100-120 kVp and gamma rays from 99mTc. We have used this device to acquire x-ray CT and SPECT images of a three-dimensional Hoffman brain phantom. The emission and transmission images may be superimposed in order to localize the emission image on the transmission map.
Smith, Peter D [Santa Fe, NM; Claytor, Thomas N [White Rock, NM; Berry, Phillip C [Albuquerque, NM; Hills, Charles R [Los Alamos, NM
2010-10-12
An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.
Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics
USDA-ARS?s Scientific Manuscript database
An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...
GPU Accelerated Ultrasonic Tomography Using Propagation and Back Propagation Method
2015-09-28
the medical imaging field using GPUs has been done for many years. In [1], Copeland et al. used 2D images , obtained by X - ray projections, to...Index Terms— Medical Imaging , Ultrasonic Tomography, GPU, CUDA, Parallel Computing I. INTRODUCTION GRAPHIC Processing Units (GPUs) are computation... Imaging Algorithm The process of reconstructing images from ultrasonic infor- mation starts with the following acoustical wave equation: ∂2 ∂t2 u ( x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, M. F. Mohd, E-mail: mfahmi@usm.my; School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan; Abdullah, R.
A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} valuemore » of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.« less
Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.
Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei
2018-05-25
X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses x-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized x rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized x-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent x rays are emitted isotropically, while scattered x rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example, but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic x-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an x-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image reconstruction showed that for a scatter magnitude decrease by a factor of 2.4, the molecular sensitivity could almost be doubled. Scatter reduction lowers the amount of noise in the projection datasets and reconstructed images which enhance molecular sensitivity at equal dose. The results support the use of linear polarized x rays to reduce scatter in XFCT imaging. © 2018 American Association of Physicists in Medicine.
X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging
NASA Astrophysics Data System (ADS)
Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.
2015-11-01
Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.
Polycapillary based μXRF station for 3D colour tomography
NASA Astrophysics Data System (ADS)
Hampai, D.; Cherepennikov, Yu. M.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Azzutti, C.; Gladkikh, Yu. P.; Marcelli, A.; Dabagov, S. B.
2018-04-01
The "Rainbow X-Ray" (RXR) experimental station at XLab Frascati of the Frascati's National Laboratories (LNF) INFN is a dedicated station for X-ray fluorescence studies based on the use of polycapillary lenses in a confocal geometry. The flexible RXR layout allows investigating specimens of the dimensions ranging from several millimeters up to half meter and weighting up to several tens of kilograms. Compared to similar existing XRF stations, apart of the possibility for investigating large samples, the main advantage of this equipment is the detection system with two spectrometers optimized to work separately at high and at low X-ray energies. The confocal geometry combined with a 3-axes fine motion system makes possible 3D μXRF elemental tomographic acquisitions (colour tomography). At present this station in operation at high XRF energies is used for cultural heritage and geological applications. We present and discuss here the analytical performances of this experimental station pointing out the advantages in different application areas.
Quantification of eggshell microstructure using X-ray micro computed tomography
Riley, A.; Sturrock, C. J.; Mooney, S. J.
2014-01-01
1. X-ray microcomputed tomography can be used to produce rapid, fully analysable, three-dimensional images of biological and other materials without the need for complex or tedious sample preparation and sectioning. We describe the use of this technique to visualise and analyse the microstructure of fragments of shell taken from three regions of chicken eggs (sharp pole, blunt pole and equatorial region). 2. Two- and three-dimensional images and data were obtained at a resolution of 1.5 microns. The images were analysed to provide measurements of shell thickness, the spacial density of mammillary bodies, the frequency, shape, volume and effective diameter of individual pore spaces, and the intrinsic sponginess (proportion of non-X-ray dense material formed by vesicles) of the shell matrix. Measurements of these parameters were comparable with those derived by traditional methods and reported in the literature. 3. The advantages of using this technology for the quantification of eggshell microstructural parameters and its potential application for commercial, research and other purposes are discussed. PMID:24875292
Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography.
Müller, Mark; de Sena Oliveira, Ivo; Allner, Sebastian; Ferstl, Simone; Bidola, Pidassa; Mechlem, Korbinian; Fehringer, Andreas; Hehn, Lorenz; Dierolf, Martin; Achterhold, Klaus; Gleich, Bernhard; Hammel, Jörg U; Jahn, Henry; Mayer, Georg; Pfeiffer, Franz
2017-11-21
X-ray computed tomography (CT) is a powerful noninvasive technique for investigating the inner structure of objects and organisms. However, the resolution of laboratory CT systems is typically limited to the micrometer range. In this paper, we present a table-top nanoCT system in conjunction with standard processing tools that is able to routinely reach resolutions down to 100 nm without using X-ray optics. We demonstrate its potential for biological investigations by imaging a walking appendage of Euperipatoides rowelli , a representative of Onychophora-an invertebrate group pivotal for understanding animal evolution. Comparative analyses proved that the nanoCT can depict the external morphology of the limb with an image quality similar to scanning electron microscopy, while simultaneously visualizing internal muscular structures at higher resolutions than confocal laser scanning microscopy. The obtained nanoCT data revealed hitherto unknown aspects of the onychophoran limb musculature, enabling the 3D reconstruction of individual muscle fibers, which was previously impossible using any laboratory-based imaging technique.
Six dimensional X-ray Tensor Tomography with a compact laboratory setup
NASA Astrophysics Data System (ADS)
Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.
2016-09-01
Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.
Lifton, Joseph J; Malcolm, Andrew A; McBride, John W
2015-01-01
X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.
2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.
Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J
2010-03-29
A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.
Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL
NASA Astrophysics Data System (ADS)
Andrews, Joy C.; Pianetta, Piero; Meirer, Florian; Chen, Jie; Almeida, Eduardo; van der Meulen, Marjolein C. H.; Alwood, Joshua S.; Lee, Cathy; Zhu, Jia; Cui, Yi
2010-06-01
A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.
Quantitative 3D imaging of yeast by hard X-ray tomography.
Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao
2012-05-01
Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.
Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL.
Andrews, Joy C; Pianetta, Piero; Meirer, Florian; Chen, Jie; Almeida, Eduardo; van der Meulen, Marjolein C H; Alwood, Joshua S; Lee, Cathy; Zhu, Jia; Cui, Yi
2010-06-23
A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.
Hard X-ray index of refraction tomography of a whole rabbit knee joint: A feasibility study.
Gasilov, S; Mittone, A; Horng, A; Geith, T; Bravin, A; Baumbach, T; Coan, P
2016-12-01
We report results of the computed tomography reconstruction of the index of refraction in a whole rabbit knee joint examined at the photon energy of 51keV. Refraction based images make it possible to delineate the bone, cartilage, and soft tissues without adjusting the contrast window width and level. Density variations, which are related to tissue composition and are not visible in absorption X-ray images, are detected in the obtained refraction based images. We discuss why refraction-based images provide better detectability of low contrast features than absorption images. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Bayesian X-ray computed tomography using a three-level hierarchical prior model
NASA Astrophysics Data System (ADS)
Wang, Li; Mohammad-Djafari, Ali; Gac, Nicolas
2017-06-01
In recent decades X-ray Computed Tomography (CT) image reconstruction has been largely developed in both medical and industrial domain. In this paper, we propose using the Bayesian inference approach with a new hierarchical prior model. In the proposed model, a generalised Student-t distribution is used to enforce the Haar transformation of images to be sparse. Comparisons with some state of the art methods are presented. It is shown that by using the proposed model, the sparsity of sparse representation of images is enforced, so that edges of images are preserved. Simulation results are also provided to demonstrate the effectiveness of the new hierarchical model for reconstruction with fewer projections.
NASA Astrophysics Data System (ADS)
Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Mandal, P.; Czabaj, M.; Gao, Y.; Maillet, E.; Blank, B.; Larson, N. M.; Ritchie, R. O.; Gludovatz, B.; Acevedo, C.; Liu, D.
2017-06-01
At the Advanced Light Source (ALS), Beamline 8.3.2 performs hard X-ray micro-tomography under conditions of high temperature, pressure, mechanical loading, and other realistic conditions using environmental test cells. With scan times of 10s-100s of seconds, the microstructural evolution of materials can be directly observed over multiple time steps spanning prescribed changes in the sample environment. This capability enables in-situ quasi-static mechanical testing of materials. We present an overview of our in-situ mechanical testing capabilities and recent hardware developments that enable flexural testing at high temperature and in combination with acoustic emission analysis.
Otolaryngology and ophthalmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanafee, W.N.
A literature review with 227 references of the diagnostic use of computerized tomography for head and neck problems is presented. The anatomy, congenital malformations, infectious diseases, and nioplasms of the auditory organs, paranasal sinuses, pharynx, larynx and salivary glands are examined in detail. A major impetus to the use of computerized tomography has been the realization by the health care industry that CT scanning offers details of tumors in the head and neck area that are not available by other modalities. (KRM)
Neuroanatomy of cranial computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kretschmann, H.J.; Weinrich, W.
1985-01-01
Based on the fundamental structures visualized by means of computed tomography, the authors present the functional systems which are relevant in neurology by means of axial cross-sections. All drawings were prepared from original preparations by means of a new technique which is similar to the grey values of X-ray CT and nuclear magnetic resonance tomography. A detailed description is given of the topics of neurofunctional lesions.
A general method for motion compensation in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr
2017-08-01
Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.
Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta; Gürsoy, Dogˇa
2017-03-01
This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential for reducing or removing other artifacts caused by instrument instability, detector non-linearity, etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.
A general method for motion compensation in x-ray computed tomography.
Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr
2017-07-24
Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.
A gantry-based tri-modality system for bioluminescence tomography
Yan, Han; Lin, Yuting; Barber, William C.; Unlu, Mehmet Burcin; Gulsen, Gultekin
2012-01-01
A gantry-based tri-modality system that combines bioluminescence (BLT), diffuse optical (DOT), and x-ray computed tomography (XCT) into the same setting is presented here. The purpose of this system is to perform bioluminescence tomography using a multi-modality imaging approach. As parts of this hybrid system, XCT and DOT provide anatomical information and background optical property maps. This structural and functional a priori information is used to guide and restrain bioluminescence reconstruction algorithm and ultimately improve the BLT results. The performance of the combined system is evaluated using multi-modality phantoms. In particular, a cylindrical heterogeneous multi-modality phantom that contains regions with higher optical absorption and x-ray attenuation is constructed. We showed that a 1.5 mm diameter bioluminescence inclusion can be localized accurately with the functional a priori information while its source strength can be recovered more accurately using both structural and the functional a priori information. PMID:22559540
Three dimensional rock microstructures: insights from FIB-SEM tomography
NASA Astrophysics Data System (ADS)
Drury, Martyn; Pennock, Gill; de Winter, Matthijs
2016-04-01
Most studies of rock microstructures investigate two-dimensional sections or thin slices of three dimensional grain structures. With advances of X-ray and electron tomography methods the 3-D microstructure can be(relatively) routinely investigated on scales from a few microns to cm. 3D studies are needed to investigate the connectivity of microstructures and to test the assumptions we use to calculate 3D properties from 2D sections. We have used FIB-SEM tomography to study the topology of melts in synthetic olivine rocks, 3D crystal growth microstructures, pore networks and subgrain structures. The technique uses a focused ion beam to make serial sections with a spacing of tens to hundreds of nanometers. Each section is then imaged or mapped using the electron beam. The 3D geometry of grains and subgrains can be investigated using orientation contrast or EBSD mapping. FIB-SEM tomography of rocks and minerals can be limited by charging of the uncoated surfaces exposed by the ion beam. The newest generation of FIB-SEMs have much improved low voltage imaging capability allowing high resolution charge free imaging. Low kV FIB-SEM tomography is now widely used to study the connectivity of pore networks. In-situ fluids can also be studied using cryo-FIB-SEM on frozen samples, although special freezing techniques are needed to avoid artifacts produced by ice crystallization. FIB-SEM tomography is complementary, in terms of spatial resolution and sampled volume, to TEM tomography and X-ray tomography, and the combination of these methods can cover a wide range of scales. Our studies on melt topology in synthetic olivine rocks with a high melt content show that many grain boundaries are wetted by nanometre scale melt layers that are too thin to resolve by X-ray tomography. A variety of melt layer geometries occur consistent with several mechanisms of melt layer formation. The nature of melt geometries along triple line junctions and quadruple points can be resolved. Quadruple point junctions between four grains cannot be investigated in 2D studies. 3D microstructural studies suggest that triple lines and quadruple points are important sites for the initiation of recrystallization, reaction and fracture.
The National Lung Screening Trial (NLST) | Division of Cancer Prevention
The National Lung Screening Trial (NLST) compared two ways of detecting lung cancer: low-dose helical computed tomography (CT) and standard chest X-ray. Both chest X-rays and low-dose helical CT scans have been used to find lung cancer early, but the effects of these screening techniques on lung cancer mortality rates had not been determined. NLST enrolled 53,454 current or
3-D Cellular Ultrastructure Can Be Resolved by X-ray Microscopy | Center for Cancer Research
X-ray microscopy (XRM) is more rapid than cryoelectron tomography or super-resolution fluorescence microscopy and could fill an important gap in current technologies used to investigate in situ three-dimensional structure of cells. New XRM methods developed by first author Gerd Schneider, Ph.D., working with James McNally. Ph.D., and a team of colleagues, is capable of
NASA Astrophysics Data System (ADS)
Li, Hechao
An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive. In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial correlation functions from limited x-ray tomography data. The key component of the procedure is the computation of a "probability map", which provides the probability of an arbitrary point in the material system belonging to specific phase. The correlation functions of interest are then readily computed from the probability map. Using effective medium theory, accurate predictions of physical properties (e.g., elastic moduli) can be obtained. Secondly, a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of x-ray tomographic projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal data fusion is proposed, where both X-ray projections and correlation functions computed from limited 2D optical images are fused to accurately reconstruct complex heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be able to integrate the complementary data to perform an excellent optimization procedure, which indicates its high efficiency in using limited structural information. Finally, the accuracy of the stochastic reconstruction procedure using limited X-ray projection data is ascertained by analyzing the microstructural degeneracy and the roughness of energy landscape associated with different number of projections. Ground-state degeneracy of a microstructure is found to decrease with increasing number of projections, which indicates a higher probability that the reconstructed configurations match the actual microstructure. The roughness of energy landscape can also provide information about the complexity and convergence behavior of the reconstruction for given microstructures and projection number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yunyun; Li Zhenhua; Song Yang
2009-05-01
An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.
Summary Statistics for Homemade ?Play Dough? -- Data Acquired at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallman, J S; Morales, K E; Whipple, R E
Using x-ray computerized tomography (CT), we have characterized the x-ray linear attenuation coefficients (LAC) of a homemade Play Dough{trademark}-like material, designated as PDA. Table 1 gives the first-order statistics for each of four CT measurements, estimated with a Gaussian kernel density estimator (KDE) analysis. The mean values of the LAC range from a high of about 2700 LMHU{sub D} 100kVp to a low of about 1200 LMHUD at 300kVp. The standard deviation of each measurement is around 10% to 15% of the mean. The entropy covers the range from 6.0 to 7.4. Ordinarily, we would model the LAC of themore » material and compare the modeled values to the measured values. In this case, however, we did not have the detailed chemical composition of the material and therefore did not model the LAC. Using a method recently proposed by Lawrence Livermore National Laboratory (LLNL), we estimate the value of the effective atomic number, Z{sub eff}, to be near 10. LLNL prepared about 50mL of the homemade 'Play Dough' in a polypropylene vial and firmly compressed it immediately prior to the x-ray measurements. We used the computer program IMGREC to reconstruct the CT images. The values of the key parameters used in the data capture and image reconstruction are given in this report. Additional details may be found in the experimental SOP and a separate document. To characterize the statistical distribution of LAC values in each CT image, we first isolated an 80% central-core segment of volume elements ('voxels') lying completely within the specimen, away from the walls of the polypropylene vial. All of the voxels within this central core, including those comprised of voids and inclusions, are included in the statistics. We then calculated the mean value, standard deviation and entropy for (a) the four image segments and for (b) their digital gradient images. (A digital gradient image of a given image was obtained by taking the absolute value of the difference between the initial image and that same image offset by one voxel horizontally, parallel to the rows of the x-ray detector array.) The statistics of the initial image of LAC values are called 'first order statistics;' those of the gradient image, 'second order statistics.'« less
Material characterization using ultrasound tomography
NASA Astrophysics Data System (ADS)
Falardeau, Timothe; Belanger, Pierre
2018-04-01
Characterization of material properties can be performed using a wide array of methods e.g. X-ray diffraction or tensile testing. Each method leads to a limited set of material properties. This paper is interested in using ultrasound tomography to map speed of sound inside a material sample. The velocity inside the sample is directly related to its elastic properties. Recent develop-ments in ultrasound diffraction tomography have enabled velocity mapping of high velocity contrast objects using a combination of bent-ray time-of-flight tomography and diffraction tomography. In this study, ultrasound diffraction tomography was investigated using simulations in human bone phantoms. A finite element model was developed to assess the influence of the frequency, the number of transduction positions and the distance from the sample as well as to adapt the imaging algorithm. The average velocity in both regions of the bone phantoms were within 5% of the true value.
NMR Metabolomics in Ionizing Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Z.; Xiao, Xiongjie; Hu, Mary Y.
Ionizing radiation is an invisible threat that cannot be seen, touched or smelled and exist either as particles or waves. Particle radiation can take the form of alpha, beta or neutrons, as well as high energy space particle radiation such as high energy iron, carbon and proton radiation, etc. (1) Non-particle radiation includes gamma- and x-rays. Publically, there is a growing concern about the adverse health effects due to ionizing radiation mainly because of the following facts. (a) The X-ray diagnostic images are taken routinely on patients. Even though the overall dosage from a single X-ray image such as amore » chest X-ray scan or a CT scan, also called X-ray computed tomography (X-ray CT), is low, repeated usage can cause serious health consequences, in particular with the possibility of developing cancer (2, 3). (b) Human space exploration has gone beyond moon and is planning to send human to the orbit of Mars by the mid-2030s. And a landing on Mars will follow.« less
NASA Astrophysics Data System (ADS)
Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu
2017-06-01
Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.
X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study
NASA Astrophysics Data System (ADS)
Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo
2015-11-01
A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.
X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study
Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo
2015-01-01
A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420
Computerized tomography using video recorded fluoroscopic images
NASA Technical Reports Server (NTRS)
Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.
1975-01-01
A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.
Technology in the Assessment of Learning Disability.
ERIC Educational Resources Information Center
Bigler, Erin D.; Lajiness-O'Neill, Renee; Howes, Nancy-Louise
1998-01-01
Reviews recent neuroradiologic and brain imaging techniques in the assessment of learning disability. Technologies reviewed include computerized tomography; magnetic resonance imaging; electrophysiological and metabolic imaging; computerized electroencepholographic studies of evoked potentials, event-related potentials, spectral analysis, and…
Towards adaptive, streaming analysis of x-ray tomography data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.
2015-03-04
Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing amore » framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Xiaoxia
Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors basedmore » on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.« less
NASA Astrophysics Data System (ADS)
Wu, Juan; Melo, Lis G. A.; Zhu, Xiaohui; West, Marcia M.; Berejnov, Viatcheslav; Susac, Darija; Stumper, Juergen; Hitchcock, Adam P.
2018-03-01
4D imaging - the three-dimensional distributions of chemical species determined using multi-energy X-ray tomography - of cathode catalyst layers of polymer electrolyte membrane fuel cells (PEM-FC) has been measured by scanning transmission x-ray microscopy (STXM) spectro-tomography at the C 1s and F 1s edges. In order to monitor the effects of radiation damage on the composition and 3D structure of the perfluorosulfonic acid (PFSA) ionomer, the same volume was measured 3 times sequentially, with spectral characterization of that same volume at several time points during the measurements. The changes in the average F 1s spectrum of the ionomer in the cathode as the measurements progressed gave insights into the degree of chemical modification, fluorine mass loss, and changes in the 3D distributions of ionomer that accompanied the spectro-tomographic measurement. The PFSA ionomer-in-cathode is modified both chemically and physically by radiation damage. The 3D volume decreases anisotropically. By reducing the incident flux, partial defocusing (50 nm spot size), limiting the number of tilt angles to 14, and using compressed sensing reconstruction, we show it is possible to reproducibly measure the 3D structure of ionomer in PEM-FC cathodes at ambient temperature while causing minimal radiation damage.
Experimental Investigation of Material Flows Within FSWs Using 3D Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles R. Tolle; Timothy A. White; Karen S. Miller
2008-06-01
There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components ofmore » the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.« less
Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography
NASA Astrophysics Data System (ADS)
Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.
2016-11-01
We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.
Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.
2015-01-01
During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069
Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo
2016-02-08
The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.
High-speed X-ray microscopy by use of high-resolution zone plates and synchrotron radiation.
Hou, Qiyue; Wang, Zhili; Gao, Kun; Pan, Zhiyun; Wang, Dajiang; Ge, Xin; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu
2012-09-01
X-ray microscopy based on synchrotron radiation has become a fundamental tool in biology and life sciences to visualize the morphology of a specimen. These studies have particular requirements in terms of radiation damage and the image exposure time, which directly determines the total acquisition speed. To monitor and improve these key parameters, we present a novel X-ray microscopy method using a high-resolution zone plate as the objective and the matching condenser. Numerical simulations based on the scalar wave field theory validate the feasibility of the method and also indicate the performance of X-ray microscopy is optimized most with sub-10-nm-resolution zone plates. The proposed method is compatible with conventional X-ray microscopy techniques, such as computed tomography, and will find wide applications in time-resolved and/or dose-sensitive studies such as living cell imaging.
Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno
2014-01-01
A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066
Development of high energy micro-tomography system at SPring-8
NASA Astrophysics Data System (ADS)
Uesugi, Kentaro; Hoshino, Masato
2017-09-01
A high energy X-ray micro-tomography system has been developed at BL20B2 in SPring-8. The available range of the energy is between 20keV and 113keV with a Si (511) double crystal monochromator. The system enables us to image large or heavy materials such as fossils and metals. The X-ray image detector consists of visible light conversion system and sCMOS camera. The effective pixel size is variable by changing a tandem lens between 6.5 μm/pixel and 25.5 μm/pixel discretely. The format of the camera is 2048 pixels x 2048 pixels. As a demonstration of the system, alkaline battery and a nodule from Bolivia were imaged. A detail of the structure of the battery and a female mold Trilobite were successfully imaged without breaking those fossils.
NASA Astrophysics Data System (ADS)
Agafonov, M. I.; Karitskaya, E. A.; Sharova, O. I.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar', A. V.; Sidorov, M. Yu.
2018-02-01
The results of a 3D Doppler tomography analysis for the X-ray binary system Cyg X-1 in the HeII λ 4686 Å line are presented. Information about the motions of gaseous flows outside the orbital plane has been obtained for the first time. Line profiles obtained in June 2007 on the 2-m telescope of the Terskol Branch of the Institute of Astronomy (Russia) and on the 2.1-m telescope of the National Astronomical Observatory of Mexico were used. A detailed analysis of these spectral data is presented: the distribution of the data in time, distribution of orbital phases for the projections, comparison of the line profile shapes for the data from two observatories. The geometry of the total transfer function obtained in the reconstruction is considered. The possibility of applying the profiles obtained to realize 3D tomography is justified. The resolution of the constructed 3D tomogram in velocity space is 60 × 60 × 40 km/s for V x , V y , V z . Fifteen cross sections for 15 different V z values perpendicular to the orbital plane are presented. The intensity distributions corresponding to the velocities of gaseous structures in the binary system are obtained. The reconstruction was realized using the radio-astronomical approach, developed for solving problems in tomography with a limited number of projections.
Progress in Cell Marking for Synchrotron X-ray Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Christopher; Sturm, Erica; Schultke, Elisabeth
2010-07-23
Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requiresmore » a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.« less
NASA Astrophysics Data System (ADS)
Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus
2014-02-01
The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.
Progress in Cell Marking for Synchrotron X-ray Computed Tomography
NASA Astrophysics Data System (ADS)
Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Menk, Ralf-Hendrik; Astolfo, Alberto; Juurlink, Bernhard H. J.
2010-07-01
Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.
Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures
LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.; ...
2017-06-05
The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.
Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.
The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
NASA Astrophysics Data System (ADS)
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-01
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-19
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Imaging properties and its improvements of scanning/imaging x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, Akihisa, E-mail: take@spring8.or.jp; Uesugi, Kentaro; Suzuki, Yoshio
A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with themore » linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination.« less
Thin soil layer of green roof systems studied by X-Ray CT
NASA Astrophysics Data System (ADS)
Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal
2016-04-01
The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.
Quadruple Axis Neutron Computed Tomography
NASA Astrophysics Data System (ADS)
Schillinger, Burkhard; Bausenwein, Dominik
Neutron computed tomography takes more time for a full tomography than X-rays or Synchrotron radiation, because the source intensity is limited. Most neutron imaging detectors have a square field of view, so if tomography of elongated, narrow samples, e.g. fuel rods, sword blades is recorded, much of the detector area is wasted. Using multiple rotation axes, several samples can be placed inside the field of view, and multiple tomographies can be recorded at the same time by later splitting the recorded images into separate tomography data sets. We describe a new multiple-axis setup using four independent miniaturized rotation tables.
NASA Astrophysics Data System (ADS)
Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.
2016-10-01
With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.