Sample records for x-ray ct localization

  1. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.

    PubMed

    Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer

    2009-10-01

    Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.

  2. Lab-based x-ray nanoCT imaging

    NASA Astrophysics Data System (ADS)

    Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz

    2017-03-01

    Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.

  3. Three-dimensional monochromatic x-ray CT

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao

    1995-08-01

    In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.

  4. Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection

    NASA Technical Reports Server (NTRS)

    Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.

    2017-01-01

    During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.

  5. Proton-induced x-ray fluorescence CT imaging

    PubMed Central

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Matsuo, Yuto; Fahrig, Rebecca; Shirato, Hiroki; Umegaki, Kikuo; Xing, Lei

    2015-01-01

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm2 CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R2 > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a small animal

  6. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  7. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical

  8. Development Of A Flash X-Ray Scanner For Stereoradiography And CT

    NASA Astrophysics Data System (ADS)

    Endorf, Robert J.; DiBianca, Frank A.; Fritsch, Daniel S.; Liu, Wen-Ching; Burns, Charles B.

    1989-05-01

    We are developing a flash x-ray scanner for stereoradiography and CT which will be able to produce a stereoradiograph in 30 to 70 ns and a complete CT scan in one microsecond. This type of imaging device will be valuable in studying high speed processes, high acceleration, and traumatic events. We have built a two channel flash x-ray system capable of producing stereo radiographs with stereo angles of from 15 to 165 degrees. The dynamic and static Miff 's for the flash x-ray system were measured and compared with similar MIT's measured for a conventional medical x-ray system. We have written and tested a stereo reconstruction algorithm to determine three dimensional space points from corresponding points in the two stereo images. To demonstrate the ability of the system to image traumatic events, a radiograph was obtained of a bone undergoing a fracture. The effects of accelerations of up to 600 g were examined on radiographs taken of human kidney tissue samples in a rapidly rotating centrifuge. Feasibility studies of CT reconstruction have been performed by making simulated Cr images of various phantoms for larger flash x-ray systems of from 8 to 29 flash x-ray tubes.

  9. Fluence-field modulated x-ray CT using multiple aperture devices

    NASA Astrophysics Data System (ADS)

    Stayman, J. Webster; Mathews, Aswin; Zbijewski, Wojciech; Gang, Grace; Siewerdsen, Jeffrey; Kawamoto, Satomi; Blevis, Ira; Levinson, Reuven

    2016-03-01

    We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.

  10. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  11. Technical considerations for implementation of x-ray CT polymer gel dosimetry.

    PubMed

    Hilts, M; Jirasek, A; Duzenli, C

    2005-04-21

    Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.

  12. Medical imaging by fluorescent x-ray CT: its preliminary clinical evaluation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Zeniya, Tsutomu; Wu, Jin; Yu, Quanwen; Lwin, Thet T.; Tsuchiya, Yoshinori; Rao, Donepudi V.; Yuasa, Tetsuya; Yashiro, Toru; Dilmanian, F. Avraham; Itai, Yuji; Akatsuka, Takao

    2002-01-01

    Fluorescent x-ray CT (FXCT) with synchrotron radiation (SR) is being developed to detect the very low concentration of specific elements. The endogenous iodine of the human thyroid and the non-radioactive iodine labeled BMIPP in myocardium were imaged by FXCT. FXCT system consists of a silicon (111) double crystal monochromator, an x-ray slit, a scanning table for object positioning, a fluorescent x-ray detector, and a transmission x-ray detector. Monochromatic x-ray with 37 keV energy was collimated into a pencil beam (from 1 mm to 0.025 mm). FXCT clearly imaged endogenous iodine of thyroid and iodine labeled BMIPP in myocardium, whereas transmission x-ray CT could not demonstrate iodine. The distribution of iodine was heterogeneous within thyroid cancer, and its concentration was lower than that of normal thyroid. Distribution of BMIPP in normal rat myocardium was almost homogeneous; however, reduced uptake was slightly shown in ischemic region. FXCT is a highly sensitive imaging modality to detect very low concentration of specific element and will be applied to reveal endogenous iodine distribution in thyroid and to use tracer study with various kinds of labeled material.

  13. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  14. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    NASA Astrophysics Data System (ADS)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  15. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    PubMed Central

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel

    2017-01-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching. PMID:29333113

  16. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not

  17. Visualization of soil particulate organic matter by means of X-ray CT?

    NASA Astrophysics Data System (ADS)

    Sleutel, Steven; Van Loo, Denis; Maenhout, Peter; Van Hoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

    2014-05-01

    composition of the soil mineral matrix. Furthermore, techniques such as multiple-energy scanning and K-edge imaging, even in the future perhaps in combination with spectral resolving detectors or spectroscopic techniques can could further enhance the potential benefit from this study of X-ray CT staining agents. The high Z elements of the staining agents have unique and characteristic traits that can be detected or quantified with the abovementioned techniques and methods. We conclude that, given resolution limits and inherent presence of partial volume effects staining, X-ray CT-based localization of discrete SOM particles will be limited to a lower limit of 20-50 µm. Still, the improved 3D visualization of OM and soil pore space opens up possibilities for tailored lab experiments with measures of microbial activity, which could generate new insights in carbon cycling at small scales. In addition, we report on a lab incubation experiment in which CO2 respiration from soil cores was monitored (headspace GC analysis) and an X-ray CT approach yielded soil pore size distributions. We incubated a sandy loam soil (with application of ground grass or sawdust) in 18 small aluminium rings (Ø 1 cm, h 1 cm). Bulk density was adjusted to 1.1 or 1.3 Mg m-3 (compaction) and 6 rings were filled at a coarser Coarse Sand:Fine Sand:Silt+Clay ratio. While compaction induced a strong reduction in the cumulative C mineralization for both grass and sawdust substrates, artificial change to a coarser soil texture only reduced net C mineralization from the added sawdust. There thus appears to be a strong interaction effect between soil pore structure and substrate type on substrate decomposition. Correlation coefficients between the C mineralization rates and volumes of 7 pore size classes (from the X-ray CT data) also showed an increasing positive correlation with increasing pore size. Since any particulate organic matter initially present in the soil was removed prior to the experiment (sieving

  18. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  19. Patient size and x-ray transmission in body CT.

    PubMed

    Ogden, Kent; Huda, Walter; Scalzetti, Ernest M; Roskopf, Marsha L

    2004-04-01

    Physical characteristics were obtained for 196 patients undergoing chest and abdomen computed tomography (CT) examinations. Computed tomography sections for these patients having no evident pathology were analyzed to determine patient dimensions (AP and lateral), together with the average attenuation coefficient. Patient weights ranged from approximately 3 kg to about 120 kg. For chest CT, the mean Hounsfield unit (HU) fell from about -120 HU for newborns to about -300 HU for adults. For abdominal CT, the mean HU for children and normal-sized adults was about 20 HU, but decreased to below -50 HU for adults weighing more than 100 kg. The effective photon energy and percent energy fluence transmitted through a given patient size and composition was calculated for representative x-ray spectra at 80, 100, 120, and 140 kV tube potentials. A 70-kg adult scanned at 120 kVp transmits 2.6% of the energy fluence for chest and 0.7% for abdomen CT examinations. Reducing the patient size to 10 kg increases transmission by an order of magnitude. For 70 kg patients, effective energies in body CT range from approximately 50 keV at 80 kVp to approximately 67 keV at 140 kVp; increasing patient size from 10 to 120 kg resulted in an increase in effective photon energy of approximately 4 keV. The x-ray transmission data and effective photon energy data can be used to determine CT image noise and image contrast, respectively, and information on patient size and composition can be used to determine patient doses.

  20. In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.

    PubMed

    Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen

    2017-04-11

    The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.

  1. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-12-1-0138 TITLE: Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT PRINCIPAL INVESTIGATOR...NUMBER W81XWH-12-1-0138 Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...method for early detection of amyloid plaque in Alzheimer’s disease , with three Specific Aims: #1 Develop and optimize an x-ray PCCT to explore the

  2. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    PubMed

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  3. Combined X-ray CT and mass spectrometry for biomedical imaging applications

    NASA Astrophysics Data System (ADS)

    Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.

    2014-04-01

    Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The

  4. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  5. Imaging local electric fields produced upon synchrotron X-ray exposure

    DOE PAGES

    Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; ...

    2014-12-31

    Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the regionmore » extending ~3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. In conclusion, these results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. Additionally, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.« less

  6. Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao

    2018-07-01

    X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.

  7. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT.

    PubMed

    Kashiwagi, Toru; Yutani, Kenji; Fukuchi, Minoru; Naruse, Hitoshi; Iwasaki, Tadaaki; Yokozuka, Koichi; Inoue, Shinichi; Kondo, Shoji

    2002-06-01

    Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99mTc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the incresed activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images. The

  8. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source.

    PubMed

    Cole, Jason M; Symes, Daniel R; Lopes, Nelson C; Wood, Jonathan C; Poder, Kristjan; Alatabi, Saleh; Botchway, Stanley W; Foster, Peta S; Gratton, Sarah; Johnson, Sara; Kamperidis, Christos; Kononenko, Olena; De Lazzari, Michael; Palmer, Charlotte A J; Rusby, Dean; Sanderson, Jeremy; Sandholzer, Michael; Sarri, Gianluca; Szoke-Kovacs, Zsombor; Teboul, Lydia; Thompson, James M; Warwick, Jonathan R; Westerberg, Henrik; Hill, Mark A; Norris, Dominic P; Mangles, Stuart P D; Najmudin, Zulfikar

    2018-06-19

    In the field of X-ray microcomputed tomography (μCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray μCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>10 10 photons per pulse), small (diameter <1 μm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the μCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution μCT scans in minutes. Copyright © 2018 the Author(s). Published by PNAS.

  9. [Possibile application of X-ray and high resolution CT in pneumoconiosis management].

    PubMed

    Vlasov, V G; Laptev, V Ia; Logvinenko, I I; Smirnova, E L; Brovchenko, E P; Mironova, M V

    2011-01-01

    The article covers results of clinical and roentgenologic data analysis. The data were obtained in the study that covered 447 pneumoconiosis patients, 75 of which were subjected to high resolution CT. If compared to chest X-ray, high resolution CT helps more precise forecast of further course in pneumoconiosis.

  10. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  11. The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu

    1994-01-01

    We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.

  12. Low-dose X-ray CT reconstruction via dictionary learning.

    PubMed

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  13. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    PubMed Central

    Neculaes, V. Bogdan; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun; Pelc, Norbert J.; Lounsberry, Brian

    2016-01-01

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent

  14. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caia

    2016-08-15

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode blockmore » per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target

  15. Thin soil layer of green roof systems studied by X-Ray CT

    NASA Astrophysics Data System (ADS)

    Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal

    2016-04-01

    The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  16. Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT).

    PubMed

    Tracy, Saoirse R; Gómez, José Fernández; Sturrock, Craig J; Wilson, Zoe A; Ferguson, Alison C

    2017-01-01

    Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields. This is hindered in monocots as the flower develops internally in the pseudostem. Floral staging studies therefore typically rely on destructive analysis, such as removal from the plant, fixation, staining and sectioning. This time-consuming analysis therefore prevents follow up studies and analysis past the point of the floral staging. This study focuses on using X-ray µCT scanning to allow quick and detailed non-destructive internal 3D phenotypic information to allow accurate staging of Arabidopsis thaliana L. and Barley ( Hordeum vulgare L.) flowers. X-ray µCT has previously relied on fixation methods for above ground tissue, therefore two contrast agents (Lugol's iodine and Bismuth) were observed in Arabidopsis and Barley in planta to circumvent this step. 3D models and 2D slices were generated from the X-ray µCT images providing insightful information normally only available through destructive time-consuming processes such as sectioning and microscopy. Barley growth and development was also monitored over three weeks by X-ray µCT to observe flower development in situ. By measuring spike size in the developing tillers accurate non-destructive staging at the flower and anther stages could be performed; this staging was confirmed using traditional destructive microscopic analysis. The use of X-ray micro computed tomography (µCT) scanning of living plant tissue offers immense benefits for plant phenotyping, for successive developmental measurements and for accurate developmental timing for scientific measurements. Nevertheless, X-ray µCT remains underused in plant sciences, especially in above-ground organs, despite its unique potential in delivering

  17. Four-arm variable-resolution x-ray detector for CT target imaging

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Gulabani, Daya; Jordan, Lawrence M.; Vangala, Sravanthi; Rendon, David; Laughter, Joseph S.; Melnyk, Roman; Gaber, M. W.; Keyes, Gary S.

    2005-04-01

    The basic VRX technique boosts spatial resolution of a CT scanner in the scan plane by two or more orders of magnitude by reducing the angle of incidence of the x-ray beam with respect to the detector surface. A four-arm Variable-Resolution X-ray (VRX) detector has been developed for CT scanning. The detector allows for "target imaging" in which an area of interest is scanned at higher resolution than the remainder of the subject, yielding even higher resolution for the focal area than that obtained from the basic VRX technique. The new VRX-CT detector comprises four quasi-identical arms each containing six 24-cell modules (576 cells total). The modules are made of individual custom CdWO4 scintillators optically-coupled to custom photodiode arrays. The maximum scan field is 40 cm for a magnification of 1.4. A significant advantage of the four-arm geometry is that it can transform quickly to the two-arm, or even the single-arm geometry, for comparison studies. These simpler geometries have already been shown experimentally to yield in-plane CT detector resolution exceeding 60 cy/mm (<8μ) for small fields of view. Geometrical size and resolution limits of the target VRX field are calculated. Two-arm VRX-CT data are used to simulate and establish the feasibility of VRX CT target imaging. A prototype target VRX-CT scanner has been built and is undergoing initial testing.

  18. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study.

    PubMed

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-01

    The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  19. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    PubMed Central

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  20. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  1. Pin-photodiode array for the measurement of fan-beam energy and air kerma distributions of X-ray CT scanners.

    PubMed

    Haba, Tomonobu; Koyama, Shuji; Aoyama, Takahiko; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao; Kameyama, Hiroshi; Tsutsumi, Yoshinori

    2016-07-01

    Patient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner. Each X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem - front and rear photodiodes - and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively. The pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner. The fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation.

    PubMed

    Seibert, J Anthony; Boone, John M

    2005-03-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. In part 1, the production and characteristics of x-rays were reviewed. In this article, the principles of x-ray interactions and image formation are discussed, in preparation for a general review of CT (part 3) and a more detailed investigation of PET/CT scanners in part 4.

  3. X-ray micro-CT and neutron CT as complementary imaging tools for non-destructive 3D imaging of rare silicified fossil plants

    NASA Astrophysics Data System (ADS)

    Karch, J.; Dudák, J.; Žemlička, J.; Vavřík, D.; Kumpová, I.; Kvaček, J.; Heřmanová, Z.; Šoltés, J.; Viererbl, L.; Morgano, M.; Kaestner, A.; Trtík, P.

    2017-12-01

    Computed tomography provides 3D information of inner structures of investigated objects. The obtained information is, however, strongly dependent on the used radiation type. It is known that as X-rays interact with electron cloud and neutrons with atomic nucleus, the obtained data often provide different contrast of sample structures. In this work we present a set of comparative radiographic and CT measurements of rare fossil plant samples using X-rays and thermal neutrons. The X-ray measurements were performed using large area photon counting detectors Timepix at IEAP CTU in Prague and Perkin Elmer flat-panel detector at Center of Excellence Telč. The neutron CT measurement was carried out at Paul Scherrer Institute using BOA beam-line. Furthermore, neutron radiography of fossil samples, provided by National Museum, were performed using a large-area Timepix detector with a neutron-sensitive converting 6LiF layer at Research Centre Rez, Czech Republic. The obtained results show different capabilities of both imaging approaches. While X-ray micro-CT provides very high resolution and enables visualization of fine cracks or small cavities in the samples neutron imaging provides high contrast of morphological structures of fossil plant samples, where X-ray imaging provides insufficient contrast.

  4. Direct 3-D morphological measurements of silicone rubber impression using micro-focus X-ray CT.

    PubMed

    Kamegawa, Masayuki; Nakamura, Masayuki; Fukui, Yu; Tsutsumi, Sadami; Hojo, Masaki

    2010-01-01

    Three-dimensional computer models of dental arches play a significant role in prosthetic dentistry. The microfocus X-ray CT scanner has the advantage of capturing precise 3D shapes of deep fossa, and we propose a new method of measuring the three-dimensional morphology of a dental impression directly, which will eliminate the conversion process to dental casts. Measurement precision and accuracy were evaluated using a standard gage comprised of steel balls which simulate the dental arch. Measurement accuracy, standard deviation of distance distribution of superimposed models, was determined as +/-0.050 mm in comparison with a CAD model. Impressions and casts of an actual dental arch were scanned by microfocus X-ray CT and three-dimensional models were compared. The impression model had finer morphology, especially around the cervical margins of teeth. Within the limitations of the current study, direct three-dimensional impression modeling was successfully demonstrated using microfocus X-ray CT.

  5. Differentiation of dental restorative materials combining energy-dispersive X-ray fluorescence spectroscopy and post-mortem CT.

    PubMed

    Merriam, Tim; Kaufmann, Rolf; Ebert, Lars; Figi, Renato; Erni, Rolf; Pauer, Robin; Sieberth, Till

    2018-06-01

    Today, post-mortem computed tomography (CT) is routinely used for forensic identification. Mobile energy-dispersive X-ray fluorescence (EDXRF) spectroscopy of a dentition is a method of identification that has the potential to be easier and cheaper than CT, although it cannot be used with every dentition. In challenging cases, combining both techniques could facilitate the process of identification and prove to be advantageous over chemical analyses. Nine dental restorative material brands were analyzed using EDXRF spectroscopy. Their differentiability was assessed by comparing each material's x-ray fluorescence spectrum and then comparing the spectra to previous research investigating differentiability in CT. To verify EDXRF's precision and accuracy, select dental specimens underwent comparative electron beam excited x-ray spectroscopy (EDS) scans, while the impact of the restorative surface area was studied by scanning a row of dental specimens with varying restorative surface areas (n = 10). EDXRF was able to differentiate all 36 possible pairs of dental filling materials; however, dual-energy CT was only able to differentiate 33 out of 36. The EDS scans showed correlating x-ray fluorescence peaks on the x-ray spectra compared to our EDXRF. In addition, the surface area showed no influence on the differentiability of the dental filling materials. EDXRF has the potential to facilitate corpse identification by differentiating and comparing restorative materials, providing more information compared to post-mortem CT alone. Despite not being able to explicitly identify a brand without a control sample or database, its fast and mobile use could accelerate daily routines or mass victim identification processes. To achieve this goal, further development of EDXRF scanners for this application and further studies evaluating the method within a specific routine need to be performed.

  6. Analysis of axial spatial resolution in a variable resolution x-ray cone beam CT (VRX-CBCT) system

    NASA Astrophysics Data System (ADS)

    Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.

    2008-03-01

    The Variable Resolution X-ray (VRX) technique has been successfully used in a Cone-Beam CT (CBCT) system to increase the spatial resolution of CT images in the transverse plane. This was achieved by tilting the Flat Panel Detector (FPD) to smaller vrx y angles in a VRX Cone Beam CT (VRX-CBCT) system. In this paper, the effect on the axial spatial resolution of CT images created by the VRX-CBCT system is examined at different vrx x angles, where vrx x is the tilting angle of the FPD about its x-axis. An amorphous silicon FPD with a CsI scintillator is coupled with a micro-focus x-ray tube to form a CBCT. The FPD is installed on a rotating frame that allows rotation of up to 90° about x and y axes of the FPD. There is no rotation about the z-axis (i.e. normal to the imaging surface). Tilting the FPD about its x-axis (i.e. decreasing the vrx x angle) reduces both the width of the line-spread function and the sampling distance by a factor of sin vrx x, thereby increasing the theoretical detector pre-sampling spatial resolution proportionately. This results in thinner CT slices that in turn help increase the axial spatial resolution of the CT images. An in-house phantom is used to measure the MTF of the reconstructed CT images at different vrx x angles.

  7. High energy X-ray CT study on the central void formations and the fuel pin deformations of FBR fuel assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Matsumoto, Shin-ichiro; Sato, Seichi

    2007-02-01

    The central void formations and deformations of fuel pins were investigated in fuel assemblies irradiated to high burn-up, using a non-destructive X-ray CT (computer tomography) technique. In this X-ray CT, the effect of strong gamma ray activity could be reduced to a negligible degree by using the pulse of a high energy X-ray source and detecting the intensity of the transmitted X-rays in synchronization with the generated X-rays. Clear cross-sectional images of fuel assemblies irradiated to high burn-up in a fast breeder reactor were successively obtained, in which the wrapping wires, cladding, pellets and central voids could be distinctly seen. The diameter of a typical central void measured by X-ray CT agreed with the one obtained by ceramography within an error of 0.1 mm. Based on this result, the dependence of the central void diameter on the linear heating rate was analyzed. In addition, the deformation behavior of a fuel pin along its axial direction could be analyzed from 20 stepwise X-ray cross-sectional images obtained in a small interval, and the results obtained showed a good agreement with the predictions calculated by two computer codes.

  8. WE-AB-BRA-11: Improved Imaging of Permanent Prostate Brachytherapy Seed Implants by Combining an Endorectal X-Ray Sensor with a CT Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J; Matthews, K; Jia, G

    Purpose: To test feasibility of the use of a digital endorectal x-ray sensor for improved image resolution of permanent brachytherapy seed implants compared to conventional CT. Methods: Two phantoms simulating the male pelvic region were used to test the capabilities of a digital endorectal x-ray sensor for imaging permanent brachytherapy seed implants. Phantom 1 was constructed from acrylic plastic with cavities milled in the locations of the prostate and the rectum. The prostate cavity was filled a Styrofoam plug implanted with 10 training seeds. Phantom 2 was constructed from tissue-equivalent gelatins and contained a prostate phantom implanted with 18 strandsmore » of training seeds. For both phantoms, an intraoral digital dental x-ray sensor was placed in the rectum within 2 cm of the seed implants. Scout scans were taken of the phantoms over a limited arc angle using a CT scanner (80 kV, 120–200 mA). The dental sensor was removed from the phantoms and normal helical CT and scout (0 degree) scans using typical parameters for pelvic CT (120 kV, auto-mA) were collected. A shift-and add tomosynthesis algorithm was developed to localize seed plane location normal to detector face. Results: The endorectal sensor produced images with improved resolution compared to CT scans. Seed clusters and individual seed geometry were more discernable using the endorectal sensor. Seed 3D locations, including seeds that were not located in every projection image, were discernable using the shift and add algorithm. Conclusion: This work shows that digital endorectal x-ray sensors are a feasible method for improving imaging of permanent brachytherapy seed implants. Future work will consist of optimizing the tomosynthesis technique to produce higher resolution, lower dose images of 1) permanent brachytherapy seed implants for post-implant dosimetry and 2) fine anatomic details for imaging and managing prostatic disease compared to CT images. Funding: LSU Faculty Start-up Funding

  9. Artifact Reduction in X-Ray CT Images of Al-Steel-Perspex Specimens Mimicking a Hip Prosthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhogarhia, Manish; Munshi, P.; Lukose, Sijo

    2008-09-26

    X-ray Computed Tomography (CT) is a relatively new technique developed in the late 1970's, which enables the nondestructive visualization of the internal structure of objects. Beam hardening caused by the polychromatic spectrum is an important problem in X-ray computed tomography (X-CT). It leads to various artifacts in reconstruction images and reduces image quality. In the present work we are considering the Artifact Reduction in Total Hip Prosthesis CT Scan which is a problem of medical imaging. We are trying to reduce the cupping artifact induced by beam hardening as well as metal artifact as they exist in the CT scanmore » of a human hip after the femur is replaced by a metal implant. The correction method for beam hardening used here is based on a previous work. Simulation study for the present problem includes a phantom consisting of mild steel, aluminium and perspex mimicking the photon attenuation properties of a hum hip cross section with metal implant.« less

  10. X-ray tube voltage and image quality in adult and pediatric CT

    NASA Astrophysics Data System (ADS)

    Huda, W.; Ogden, K. M.; Scalzetti, E. M.; Lavallee, R. L.; Samei, E.

    2006-03-01

    The purpose of this study was to investigate how tissue x-ray attenuation coefficients, and their uncertainties, vary with x-ray tube voltage in different sized patients. Anthropomorphic phantoms (newborn, 10 year old, adult) were scanned a GE LightSpeed scanner at four x-ray tube voltages. Measurements were made of tissue attenuation in the head, chest and abdomen regions, as well as the corresponding noise values. Tissue signal to noise ratios (SNR) were obtained by dividing the average attenuation coefficient by the corresponding standard deviation. Soft tissue attenuation coefficients, relative to water, showed little variation with patient location or x-ray voltage (< 0.5%), but increasing the x-ray tube voltage from 80 to 140 kV reduced bone x-ray attenuation by ~14%. All tissues except adult bone showed a reduction of noise with increasing x-ray tube voltage (kV); the noise was found to be proportional to kV n and the average value of n for all tissues was -1.19 +/- 0.57. In pediatric patients at a constant x-ray tube voltage, SNR values were approximately independent of the body region, but the adult abdomen soft tissue SNR values were ~40% lower than the adult head. SNR values in the newborn were more than double the corresponding SNR soft tissue values in adults. SNR values for lung and bone were generally lower than those for soft tissues. For soft tissues, increasing the x-ray tube voltage from 80 to 140 kV increased the SNR by an average of ~90%. Data in this paper can be used to help design CT imaging protocols that take into account patient size and diagnostic imaging task.

  11. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  12. Volumetric soft tissue brain imaging on xCAT, a mobile flat-panel x-ray CT system

    NASA Astrophysics Data System (ADS)

    Zbijewski, Wojciech; Stayman, J. Webster

    2009-02-01

    We discuss the ongoing development of soft-tissue imaging capabilities on xCAT, a highly portable, flat-panel based cone-beam X-ray CT platform. By providing the ability to rapidly detect intra-cranial bleeds and other symptoms of stroke directly at the patient's bedside, our new system can potentially significantly improve the management of neurological emergency and intensive care patients. The paper reports on the design of our system, as well as on the methods used to combat artifacts due to scatter, non-linear detector response and scintillator glare. Images of cadaveric head samples are also presented and compared with conventional CT scans.

  13. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  14. Development of high-resolution x-ray CT system using parallel beam geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika; Hyodo, Kazuyuki

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  15. Development of a fluorescent x-ray source for medical imaging

    NASA Astrophysics Data System (ADS)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  16. In-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadra, Jefferson A.; Hazeli, Kavan; Ramesh, K. T.

    2016-06-17

    These are slides about in-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites. The following topics are covered: mechanical and thermal damage characterization, list of Grosvenor Mountain (GRO) meteorite samples, in-situ x-ray compression test setup, GRO-chipped reference at 0 N - existing cracks, GRO-chipped loaded at 1580 N, in-situ x-ray thermal fatigue test setup, GRO-B14 room temperature reference, GRO-B14 Cycle 47 at 200°C, GRO-B14 Cycle 47 at room temperature, conclusions from qualitative analysis, future work and next steps. Conclusions are the following: Both GRO-Chipped and GRO-B14 had existing voids and cracks within the volume. These sites withmore » existing damage were selected for CT images from mechanically and thermally loaded scans since they are prone to damage initiation. The GRO-Chipped sample was loaded to 1580 N which resulted in a 14% compressive engineering strain, calculated using LVDT. Based on the CT cross sectional images, the GRO-B14 sample at 200°C has a thermal expansion of approximately 96 μm in height (i.e. ~1.6% engineering strain).« less

  17. Automated patient identification and localization error detection using 2-dimensional to 3-dimensional registration of kilovoltage x-ray setup images.

    PubMed

    Lamb, James M; Agazaryan, Nzhde; Low, Daniel A

    2013-10-01

    To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  19. Micro X-ray CT Imaging of Sediments under Confining Pressure

    NASA Astrophysics Data System (ADS)

    Schindler, M.; Prasad, M.

    2016-12-01

    We developed a pressure and temperature control system for use inside the micro X-ray CT scanner Xradia 400. We succeeded in building a pressure vessel that can be pressurized to 34.5 MPa (5000 psi) while being transparent to X-rays. The setup can currently be cooled to -5°C and heated to 40°C. We were able to observe grain damage and porosity reduction due to applied confining pressure in clean quartz sand samples and quartz sand and bentonite samples. By comparing micro CT images at atmospheric pressure and 13.8 MPa (2000 psi) confining pressure, we observed compaction of the samples resulting in grain damage and fracturing of sediment grains (Figure 1). When the confining pressure was decreased some grains experienced further fracturing. The grain damage appears irreversible. Further fracturing of grains in pre-compacted sediment was observed upon repeated confining pressure cycling. We are currently working on feed-throughs for fluid lines and electric wiring to use ultrasonic transducers and pressure control in combination. Further we plan to include pore pressure in addition to confining pressure into the system. The pressure control system in combination with ultrasonic transducers will allow us to visually observe pore scale changes in rock samples while simultaneously identifying their influence on ultrasonic velocities. Such pore-scale changes are usually not taken into account by rock physics models and could help to identify why laboratory data diverges from theoretical models. Further, it is possible to compute compressibility from mCT images at different stress states by image correlation

  20. Incoherent-scatter computed tomography with monochromatic synchrotron x ray: feasibility of multi-CT imaging system for simultaneous measurement-of fluorescent and incoherent scatter x rays

    NASA Astrophysics Data System (ADS)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-10-01

    We describe a new system of incoherent scatter computed tomography (ISCT) using monochromatic synchrotron X rays, and we discuss its potential to be used in in vivo imaging for medical use. The system operates on the basis of computed tomography (CT) of the first generation. The reconstruction method for ISCT uses the least squares method with singular value decomposition. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. An acrylic cylindrical phantom of 20-mm diameter containing a cross-shaped channel was imaged. The channel was filled with a diluted iodine solution with a concentration of 200 /spl mu/gI/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated the incoherent X-ray line from the other notable peaks, i.e., the iK/sub /spl alpha// and K/sub /spl beta/1/ X-ray fluorescent lines and the coherent scattering peak. CT images were reconstructed from projections generated by integrating the counts In the energy window centering around the incoherent scattering peak and whose width was approximately 2 keV. The reconstruction routine employed an X-ray attenuation correction algorithm. The resulting image showed more homogeneity than one without the attenuation correction.

  1. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  2. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm.

    PubMed

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2011-02-01

    To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations (alpha, beta, gamma) were estimated with accuracies of 0.6 mm and 2 degrees, respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. This work describes a novel, accurate, fast, and completely automatic method to

  3. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.

    2011-02-15

    Purpose: To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. Methods: The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, heremore » specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. Results: In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations ({alpha},{beta},{gamma}) were estimated with accuracies of 0.6 mm and 2 deg., respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. Conclusions: This work describes a novel, accurate

  4. Development of a Method to Assess the Precision Of the z-axis X-ray Beam Collimation in a CT Scanner

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Min

    2018-05-01

    Generally X-ray equipment specifies the beam collimator for the accuracy measurement as a quality control item, but the computed tomography (CT) scanner with high dose has no collimator accuracy measurement item. If the radiation dose is to be reduced, an important step is to check if the beam precisely collimates at the body part for CT scan. However, few ways are available to assess how precisely the X-ray beam is collimated. In this regard, this paper provides a way to assess the precision of z-axis X-ray beam collimation in a CT scanner. After the image plate cassette had been exposed to the X-ray beam, the exposed width was automatically detected by using a computer program developed by the research team to calculate the difference between the exposed width and the imaged width (at isocenter). The result for the precision of z-axis X-ray beam collimation showed that the exposed width was 3.8 mm and the overexposure was high at 304% when a narrow beam of a 1.25 mm imaged width was used. In this study, the precision of the beam collimation of the CT scanner, which is frequently used for medical services, was measured in a convenient way by using the image plate (IP) cassette.

  5. Tomographic image reconstruction using x-ray phase information

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  6. Automated segmentation of middle hepatic vein in non-contrast x-ray CT images based on an atlas-driven approach

    NASA Astrophysics Data System (ADS)

    Kitagawa, Teruhiko; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki

    2008-03-01

    In order to support the diagnosis of hepatic diseases, understanding the anatomical structures of hepatic lobes and hepatic vessels is necessary. Although viewing and understanding the hepatic vessels in contrast media-enhanced CT images is easy, the observation of the hepatic vessels in non-contrast X-ray CT images that are widely used for the screening purpose is difficult. We are developing a computer-aided diagnosis (CAD) system to support the liver diagnosis based on non-contrast X-ray CT images. This paper proposes a new approach to segment the middle hepatic vein (MHV), a key structure (landmark) for separating the liver region into left and right lobes. Extraction and classification of hepatic vessels are difficult in non-contrast X-ray CT images because the contrast between hepatic vessels and other liver tissues is low. Our approach uses an atlas-driven method by the following three stages. (1) Construction of liver atlases of left and right hepatic lobes using a learning datasets. (2) Fully-automated enhancement and extraction of hepatic vessels in liver regions. (3) Extraction of MHV based on the results of (1) and (2). The proposed approach was applied to 22 normal liver cases of non-contrast X-ray CT images. The preliminary results show that the proposed approach achieves the success in 14 cases for MHV extraction.

  7. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  8. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  9. Unwrapping an Ancient Egyptian Mummy Using X-Rays

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2010-01-01

    This article describes a project of unwrapping an ancient Egyptian mummy using x-ray computed tomography (CT). About 600 x-ray CT images were obtained through the mummified body of a female named Tjetmutjengebtiu (or Jeni for short), who was a singer in the great temple of Karnak in Egypt during the 22nd dynasty (c 945-715 BC). The x-ray CT images…

  10. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  11. Technical Note: Confirming the prescribed angle of CT localizer radiographs and c-arm projection acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, Timothy P., E-mail: tszczykutowicz@uwhealth.org; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2016-02-15

    Purpose: Accurate CT radiograph angle is not usually important in diagnostic CT. However, there are applications in radiation oncology and interventional radiology in which the orientation of the x-ray source and detector with respect to the patient is clinically important. The authors present a method for measuring the accuracy of the tube/detector assembly with respect to the prescribed tube/detector position for CT localizer, fluoroscopic, and general radiograph imaging using diagnostic, mobile, and c-arm based CT systems. Methods: A mathematical expression relating the x-ray projection of two metal BBs is related to gantry angle. Measurement of the BBs at a prescribedmore » gantry (i.e., c-arm) angle can be obtained and using this relation the prescribed versus actual gantry angle compared. No special service mode or proprietary information is required, only access to projection images is required. Projection images are available in CT via CT localizer radiographs and in the interventional setting via fluorography. Results: The technique was demonstrated on two systems, a mobile CT scanner and a diagnostic CT scanner. The results confirmed a known issue with the mobile scanner and accurately described the CT localizer angle of the diagnostic system tested. Conclusions: This method can be used to quantify gantry angle, which is important when projection images are used for procedure guidance, such as in brachytherapy and interventional radiology applications.« less

  12. Mock X-ray Observations of Localized LMC Outflows

    NASA Astrophysics Data System (ADS)

    Tomesh, Teague; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    The Milky Way’s nearest neighbor, the Large Magellanic Cloud (LMC), is a perfect testing ground for modeling a variety of astrophysical phenomena. Specifically, the LMC provides a unique opportunity for the study of possible localized outflows driven by star formation and their x-ray signatures. We have developed FLASH simulations of theoretical outflows originating in the LMC that we have used to generate predicted observations of X-ray luminosity. This X-ray emission can be a useful probe of the hot gas in these winds which may couple to the cool gas and drive it from the disk. Future observations of the LMC may provide us with valuable checks on our model. This work is partially supported by the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  13. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging.

    PubMed

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis.

  14. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

    PubMed Central

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis. PMID:26609232

  15. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum.

    PubMed

    Benz, Mark G; Benz, Matthew W; Birnbaum, Steven B; Chason, Eric; Sheldon, Brian W; McGuire, Dale

    2014-08-01

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique.

  16. Translation of Atherosclerotic Plaque Phase-Contrast CT Imaging from Synchrotron Radiation to a Conventional Lab-Based X-Ray Source

    PubMed Central

    Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian

    2013-01-01

    Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969

  17. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble's pressure more in line with that of the adjacent material. Suggestions for future work are made.

  18. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2009-03-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble’s pressure more in line with that of the adjacent material. Suggestions for future work are made.

  19. Micro-CTvlab: A web based virtual gallery of biological specimens using X-ray microtomography (micro-CT).

    PubMed

    Keklikoglou, Kleoniki; Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos

    2016-01-01

    During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CT vlab ) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. The Micro-CT vlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CT vlab can be accessed either on a normal computer or through a dedicated version for mobile devices.

  20. SU-F-18C-13: Low-Dose X-Ray CT Reconstruction Using a Hybrid First-Order Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L; Lin, W; Jin, M

    2014-06-15

    Purpose: To develop a novel reconstruction method for X-ray CT that can lead to accurate reconstruction at significantly reduced dose levels combining low X-ray incident intensity and few views of projection data. Methods: The noise nature of the projection data at low X-ray incident intensity was modeled and accounted by the weighted least-squares (WLS) criterion. The total variation (TV) penalty was used to mitigate artifacts caused by few views of data. The first order primal-dual (FOPD) algorithm was used to minimize TV in image domain, which avoided the difficulty of the non-smooth objective function. The TV penalized WLS reconstruction wasmore » achieved by alternated FOPD TV minimization and projection onto convex sets (POCS) for data fidelity constraints. The proposed FOPD-POCS method was evaluated using the FORBILD jaw phantom and the real cadaver head CT data. Results: The quantitative measures, root mean square error (RMSE) and contrast-to-noise ratio (CNR), demonstrate the superior denoising capability of WLS over LS-based TV iterative reconstruction. The improvement of RMSE (WLS vs. LS) is 15%∼21% and that of CNR is 17%∼72% when the incident counts per ray are ranged from 1×10{sup 5} to 1×10{sup 3}. In addition, the TV regularization can accurately reconstruct images from about 50 views of the jaw phantom. The FOPD-POCS reconstruction reveals more structural details and suffers fewer artifacts in both the phantom and real head images. The FOPD-POCS method also shows fast convergence at low X-ray incident intensity. Conclusion: The new hybrid FOPD-POCS method, based on TV penalized WLS, yields excellent image quality when the incident X-ray intensity is low and the projection views are limited. The reconstruction is computationally efficient since the FOPD minimization of TV is applied only in the image domain. The characteristics of FOPD-POCS can be exploited to significantly reduce radiation dose of X-ray CT without compromising accuracy for

  1. Registration of pencil beam proton radiography data with X-ray CT.

    PubMed

    Deffet, Sylvain; Macq, Benoît; Righetto, Roberto; Vander Stappen, François; Farace, Paolo

    2017-10-01

    Proton radiography seems to be a promising tool for assessing the quality of the stopping power computation in proton therapy. However, range error maps obtained on the basis of proton radiographs are very sensitive to small misalignment between the planning CT and the proton radiography acquisitions. In order to be able to mitigate misalignment in postprocessing, the authors implemented a fast method for registration between pencil proton radiography data obtained with a multilayer ionization chamber (MLIC) and an X-ray CT acquired on a head phantom. The registration was performed by optimizing a cost function which performs a comparison between the acquired data and simulated integral depth-dose curves. Two methodologies were considered, one based on dual orthogonal projections and the other one on a single projection. For each methodology, the robustness of the registration algorithm with respect to three confounding factors (measurement noise, CT calibration errors, and spot spacing) was investigated by testing the accuracy of the method through simulations based on a CT scan of a head phantom. The present registration method showed robust convergence towards the optimal solution. For the level of measurement noise and the uncertainty in the stopping power computation expected in proton radiography using a MLIC, the accuracy appeared to be better than 0.3° for angles and 0.3 mm for translations by use of the appropriate cost function. The spot spacing analysis showed that a spacing larger than the 5 mm used by other authors for the investigation of a MLIC for proton radiography led to results with absolute accuracy better than 0.3° for angles and 1 mm for translations when orthogonal proton radiographs were fed into the algorithm. In the case of a single projection, 6 mm was the largest spot spacing presenting an acceptable registration accuracy. For registration of proton radiography data with X-ray CT, the use of a direct ray-tracing algorithm to compute

  2. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Gazi, P; Boone, J

    2015-06-15

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantifymore » image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to

  3. Multi-Mounted X-Ray Computed Tomography.

    PubMed

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.

  4. Multi-Mounted X-Ray Computed Tomography

    PubMed Central

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  5. X-Ray Bolometric Corrections for Compton-thick Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Baloković, M.; Ballantyne, D. R.; Bauer, F. E.; Boorman, P.; Buchner, J.; Brandt, W. N.; Comastri, A.; Del Moro, A.; Farrah, D.; Gandhi, P.; Harrison, F. A.; Koss, M.; Lanz, L.; Masini, A.; Ricci, C.; Stern, D.; Vasudevan, R.; Walton, D. J.

    2017-07-01

    We present X-ray bolometric correction factors, {κ }{Bol} (≡{L}{Bol}/{L}{{X}}), for Compton-thick (CT) active galactic nuclei (AGNs) with the aim of testing AGN torus models, probing orientation effects, and estimating the bolometric output of the most obscured AGNs. We adopt bolometric luminosities, {L}{Bol}, from literature infrared (IR) torus modeling and compile published intrinsic 2-10 keV X-ray luminosities, {L}{{X}}, from X-ray torus modeling of NuSTAR data. Our sample consists of 10 local CT AGNs, where both of these estimates are available. We test for systematic differences in {κ }{Bol} values produced when using two widely used IR torus models and two widely used X-ray torus models, finding consistency within the uncertainties. We find that the mean {κ }{Bol} of our sample in the range of {L}{Bol}≈ {10}42{--}{10}45 {erg} {{{s}}}-1 is log10 {κ }{Bol} = 1.44 ± 0.12 with an intrinsic scatter of ˜0.2 dex, and that our derived {κ }{Bol} values are consistent with previously established relationships between {κ }{Bol} and {L}{Bol} and {κ }{Bol} and Eddington ratio ({λ }{Edd}). We investigate if {κ }{Bol} is dependent on {N}{{H}} by comparing our results on CT AGNs to published results on less-obscured AGNs, finding no significant dependence. Since many of our sample are megamaser AGNs, known to be viewed edge-on, and furthermore under the assumptions of AGN unification whereby unobscured AGNs are viewed face-on, our result implies that the X-ray emitting corona is not strongly anisotropic. Finally, we present {κ }{Bol} values for CT AGNs identified in X-ray surveys as a function of their observed {L}{{X}}, where an estimate of their intrinsic {L}{{X}} is not available, and redshift, useful for estimating the bolometric output of the most obscured AGNs across cosmic time.

  6. The Compton-thick AGN fraction from the deepest X-ray spectroscopy in the CDF-S

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Akylas, A.; Ranalli, P.

    2017-10-01

    Highly obscured AGN, especially Compton-thick (CT) AGN, likely play a key role in the galaxy-AGN co-evolution scenario. They would comprise the early stages of AGN activity, preceding the AGN-feedback/star-formation quenching phase, during which most of both the SMBH and galaxy growth take place. However, the actual CT fraction among the AGN population is still largely unconstrained. The most reliable way of confirming the obscured nature of an AGN by X-ray spectroscopy, but very deep observations are needed to extend local analyses to larger distances. We will present the X-ray spectral analysis of the deepest X-ray data obtained to date, the almost 7Ms observation of the Chandra Deep Field South. The unprecedented depth of this survey allow us to carry out reliable spectral analyses down to a flux limit of 10^{-16} erg cm^{-2} s^{-1} in the hard 2-8 keV band. Besides the new deeper X-ray data, our approach also includes the implementation of Bayesian inference in the determination of the CT fraction. Our results favor X-ray background synthesis models which postulate a moderate fraction (25%) of CT objects among the obscured AGN population.

  7. Material separation in x-ray CT with energy resolved photon-counting detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experimentsmore » using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  8. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery.

    PubMed

    Li, Ruijiang; Fahimian, Benjamin P; Xing, Lei

    2011-07-01

    Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a "plug-and-play" fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not statistically significant. The proposed

  9. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and

  10. X-Ray Binaries in Local Analogs to the First Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew G.

    2017-02-01

    The focus of this dissertation is to investigate the effect of metallicity on high-mass X-ray binary (HMXB) formation and evolution as a means to understand the evolution of the early Universe (z > 6). Understanding the population and X-ray output of HMXBs are vital to modelling the heating and ionization morphology of the intergalactic medium during the epoch of reionization. Current X-ray instruments are unable to directly detect very high redshift HMXBs, making it impossible to constrain population sizes in this way. Instead certain local galaxies may be used as analogs to infer the properties of galaxies in the early Universe. These local analogs should have properties consistent with those expected for the first galaxies, such as low-metallicity, compact morphology, and intense recent star formation. I present an X-ray population study of 25 blue compact dwarf galaxies (BCD), using multiwavelength data and Bayesian analysis techniques. We find a significant enhancement of the HMXB population in low-metallicity environments and suggest the same may be true in the early Universe. I continue the investigation of HMXB populations in a sample of 10 moderate metallicity (Z ≥ 0.3, Z solar masses), local star-forming galaxies known as Lyman Break Analogs (LBAs). I find evidence of a LX-SFR-metallicity plane in the combined sample of BCDs, LBAs, and regular star-forming galaxies. Then I study a third type of local analog to early Universe galaxies, the Green Pea galaxies. These are a subclass of luminous compact galaxies (LCGs) which show strong [OIII]lambda5007A emission indicative of extreme, recent star-formation. This pilot study was carried out to look, for the first time in X-rays, at this recently established class of galaxies and use them to test the LX-SFR-metallicity plane. Determining the spectral properties of bright HMXBs in low-metallicity environments also has important implications for models of X-ray heating leading up to the Epoch of Reionization. I

  11. Investigation of x-ray spectra for iodinated contrast-enhanced dedicated breast CT

    PubMed Central

    Glick, Stephen J.; Makeev, Andrey

    2017-01-01

    Abstract. Screening for breast cancer with mammography has been very successful, resulting in part to a reduction of breast cancer mortality by approximately 39% since 1990. However, mammography still has limitations in performance, especially for women with dense breast tissue. Iodinated contrast-enhanced, dedicated breast CT (BCT) has been proposed to improve lesion analysis and the accuracy of diagnostic workup for patients suspected of having breast cancer. A mathematical analysis to explore the use of various x-ray filters for iodinated contrast-enhanced BCT is presented. To assess task-based performance, the ideal linear observer signal-to-noise ratio (SNR) is used as a figure-of-merit under the assumptions of a linear, shift-invariant imaging system. To estimate signal and noise propagation through the BCT detector, a parallel-cascade model was used. The lesion model was embedded into a structured background and included a realistic level of iodine uptake. SNR was computed for 84,000 different exposure settings by varying the kV setting, x-ray filter materials and thickness, breast size, and composition and radiation dose. It is shown that some x-ray filter material/thickness combinations can provide up to 75% improvement in the linear ideal observer SNR over a conventionally used x-ray filter for BCT. This improvement in SNR can be traded off for substantial reductions in mean glandular dose. PMID:28149923

  12. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  13. Volumetric analysis of tumors in rodents using the variable resolution x-ray (VRX) CT-scanner

    NASA Astrophysics Data System (ADS)

    Gaber, M. Waleed; Wilson, Christy M.; Duntsch, Christopher D.; Shukla, Hemant; Zawaski, Janice A.; Jordan, Lawrence M.; Rendon, David A.; Vangalaa, Sravanthi; Keyes, Gary S.; DiBianca, Frank A.

    2005-04-01

    The Variable Resolution X-ray (VRX) CT system, developed at the UTHSC, Memphis, has the potential for use in animal imaging. Animal models of tumor progression and pharmacological impact are becoming increasingly important in understanding the molecular and mechanistic basis of tumor development. In general, CT-imaging offers several advantages in animal research: a fast throughput of seconds to minutes reducing the physiological stress animals are exposed to, and it is an inexpensive modality affordable to many animal laboratories. We are developing the VRX CT scanner as a non-invasive imaging modality to measure tumor volume, progression, and metastasis. From the axial images taken by the VRX CT-scanner, tumor area was measured and the tumor volume was calculated. Animals were also imaged using an optical liquid nitrogen-cooled CCD camera to detect tumor fluorescence. A simple image fusion with a planner x-ray image was used to ascertain the position of the tumors, animals were then sacrificed the tumors excised, and the tumor volume calculated by physical measurements. Furthermore, using a specially designed phantom with three spheres of different volumes, we demonstrated that our system allowed us to estimate the volume with up to 10% accuracy; we expect this to increase dramatically in the next few months.

  14. Depressurization-induced fines migration in hydrate-bearing clayey sands: X-ray CT imaging and quantification

    NASA Astrophysics Data System (ADS)

    Han, G.; Kwon, T. H.; Lee, J. Y.

    2016-12-01

    As gas and water flows induced by depressurization of hydrate-bearing sediments exert seepage forces on fines in sediments, such as clay particles, depressurization is reported to accompany the transport of fine particles through sediment pores, i.e., fines migration. Because such fines migration can cause pore clogging, the fines migration is considered as one of the critical phenomena contributing to the transport of fluids among various pore-scale processes associated with depressurization. However, quantification of fines migration during depressurization still remains poorly understood. This study thus investigated fines migration caused by depressurization using X-ray computerized tomography(X-ray CT) imaging. A host sediment was prepared by mixing fine sand with kaolinite clay minerals to achieve 10% mass fraction of fines (less than 75 um). Then, methane hydrate was synthesized in the host clayey sand, and thereafter water was injected to saturate the hydrate-bearing sediment sample. Step-wise depressurization was applied while the produced gas was collected through an outlet fluid port. X-ray CT imaging was conducted on the sediment sample over the courses of the experiment to monitor the sample preparation, hydrate formation, depressurization, and fines migration. Based on the calibration tests, the amount and locations of methane hydrate formed in the sample was estimated, and the gas migration path was also identified. Finally, the spatial distribution of fines after completion of depressurization was first assessed using the obtained X-ray images and then compared with the post-mortem mine-back results.Notably, we found that the middle part of the sample was clogged possibly by fines or by re-formed hydrate, leading to a big pressure difference between the inlet and outlet fluid port of the sample by 3 MPa. Owing to this clogging and the lost in pressure communication, hydrate dissociation first occurred at the bottom half and the hydrate dissociation

  15. A spectral X-ray CT simulation study for quantitative determination of iron

    NASA Astrophysics Data System (ADS)

    Su, Ting; Kaftandjian, Valérie; Duvauchelle, Philippe; Zhu, Yuemin

    2018-06-01

    Iron is an essential element in the human body and disorders in iron such as iron deficiency or overload can cause serious diseases. This paper aims to explore the ability of spectral X-ray CT to quantitatively separate iron from calcium and potassium and to investigate the influence of different acquisition parameters on material decomposition performance. We simulated spectral X-ray CT imaging of a PMMA phantom filled with iron, calcium, and potassium solutions at various concentrations (15-200 mg/cc). Different acquisition parameters were considered, such as the number of energy bins (6, 10, 15, 20, 30, 60) and exposure factor per projection (0.025, 0.1, 1, 10, 100 mA s). Based on the simulation data, we investigated the performance of two regularized material decomposition approaches: projection domain method and image domain method. It was found that the former method discriminated iron from calcium, potassium and water in all cases and tended to benefit from lower number of energy bins for lower exposure factor acquisition. The latter method succeeded in iron determination only when the number of energy bins equals 60, and in this case, the contrast-to-noise ratios of the decomposed iron images are higher than those obtained using the projection domain method. The results demonstrate that both methods are able to discriminate and quantify iron from calcium, potassium and water under certain conditions. Their performances vary with the acquisition parameters of spectral CT. One can use one method or the other to benefit better performance according to the data available.

  16. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.

    2013-09-10

    Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} comparedmore » to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities

  17. The Very Local Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Ptak, A.

    2011-01-01

    There are many open questions in X-ray observations of the Galactic neighborhood and nearby galaxies, such as the properties of the hot ISM and accreting sources, the X-ray/star-formation rate correlation and how the X-ray luminosity function of starburst galaxies. We discuss how these would be addressed by very wide-area (> 100 sq. deg.) X-ray surveys and upcoming X-ray missions. In particular planned NuStar observations of the Galaxy and nearby galaxies will be highlighted.

  18. Local x-ray structure analysis of optically manipulated biological micro-objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  19. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-Ray Phase CT

    DTIC Science & Technology

    2013-06-01

    fibrils in the x-ray phase contrast CT imaging, as a function over the molar concentrations corresponding to normal, pathologic and Alzheimer’s...panel imagers and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001. 4. X Wu and H Liu, “Clinical...and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001 12. Tang X, Hsieh J, Nilsen RA, Hagiwara A

  20. Structural changes of green roof growing substrate layer studied by X-ray CT

    NASA Astrophysics Data System (ADS)

    Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal

    2017-04-01

    Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique  X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within

  1. Hybrid deterministic-stochastic modeling of x-ray beam bowtie filter scatter on a CT system.

    PubMed

    Liu, Xin; Hsieh, Jiang

    2015-01-01

    Knowledge of scatter generated by bowtie filter (i.e. x-ray beam compensator) is crucial for providing artifact free images on the CT scanners. Our approach is to use a hybrid deterministic-stochastic simulation to estimate the scatter level generated by a bowtie filter made of a material with low atomic number. First, major components of CT systems, such as source, flat filter, bowtie filter, body phantom, are built into a 3D model. The scattered photon fluence and the primary transmitted photon fluence are simulated by MCNP - a Monte Carlo simulation toolkit. The rejection of scattered photon by the post patient collimator (anti-scatter grid) is simulated with an analytical formula. The biased sinogram is created by superimposing scatter signal generated by the simulation onto the primary x-ray beam signal. Finally, images with artifacts are reconstructed with the biased signal. The effect of anti-scatter grid height on scatter rejection are also discussed and demonstrated.

  2. Micro-CTvlab: A web based virtual gallery of biological specimens using X-ray microtomography (micro-CT)

    PubMed Central

    Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos

    2016-01-01

    Abstract Background During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CTvlab) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. New information The Micro-CTvlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CTvlab can be accessed either on a normal computer or through a dedicated version for mobile devices. PMID:27956848

  3. WE-AB-BRA-12: Post-Implant Dosimetry in Prostate Brachytherapy by X-Ray and MRI Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Song, D; Lee, J

    Purpose: For post-implant dosimetric assessment after prostate brachytherapy, CT-MR fusion approach has been advocated due to the superior accuracy on both seeds localization and soft tissue delineation. However, CT deposits additional radiation to the patient, and seed identification in CT requires manual review and correction. In this study, we propose an accurate, low-dose, and cost-effective post-implant dosimetry approach based on X-ray and MRI. Methods: Implanted seeds are reconstructed using only three X-ray fluoroscopy images by solving a combinatorial optimization problem. The reconstructed seeds are then registered to MR images using an intensity-based points-to-volume registration. MR images are first pre-processed bymore » geometric and Gaussian filtering, yielding smooth candidate seed-only images. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine followed by local deformable registrations. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. Results: We tested our algorithm on twenty patient data sets. For quantitative evaluation, we obtained ground truth seed positions by fusing the post-implant CT-MR images. Seeds were semi-automatically extracted from CT and manually corrected and then registered to the MR images. Target registration error (TRE) was computed by measuring the Euclidean distances from the ground truth to the closest registered X-ray seeds. The overall TREs (mean±standard deviation in mm) are 1.6±1.1 (affine) and 1.3±0.8 (affine+deformable). The overall computation takes less than 1 minute. Conclusion: It has been reported that the CT-based seed localization error is ∼1.6mm and the seed localization uncertainty of 2mm results in less than 5% deviation of

  4. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  5. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied.more » The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to

  6. A fast rigid-registration method of inferior limb X-ray image and 3D CT images for TKA surgery

    NASA Astrophysics Data System (ADS)

    Ito, Fumihito; O. D. A, Prima; Uwano, Ikuko; Ito, Kenzo

    2010-03-01

    In this paper, we propose a fast rigid-registration method of inferior limb X-ray films (two-dimensional Computed Radiography (CR) images) and three-dimensional Computed Tomography (CT) images for Total Knee Arthroplasty (TKA) surgery planning. The position of the each bone, such as femur and tibia (shin bone), in X-ray film and 3D CT images is slightly different, and we must pay attention how to use the two different images, since X-ray film image is captured in the standing position, and 3D CT is captured in decubitus (face up) position, respectively. Though the conventional registration mainly uses cross-correlation function between two images,and utilizes optimization techniques, it takes enormous calculation time and it is difficult to use it in interactive operations. In order to solve these problems, we calculate the center line (bone axis) of femur and tibia (shin bone) automatically, and we use them as initial positions for the registration. We evaluate our registration method by using three patient's image data, and we compare our proposed method and a conventional registration, which uses down-hill simplex algorithm. The down-hill simplex method is an optimization algorithm that requires only function evaluations, and doesn't need the calculation of derivatives. Our registration method is more effective than the downhill simplex method in computational time and the stable convergence. We have developed the implant simulation system on a personal computer, in order to support the surgeon in a preoperative planning of TKA. Our registration method is implemented in the simulation system, and user can manipulate 2D/3D translucent templates of implant components on X-ray film and 3D CT images.

  7. Arterial wall perfusion measured with photon counting spectral x-ray CT

    NASA Astrophysics Data System (ADS)

    Jorgensen, Steven M.; Korinek, Mark J.; Vercnocke, Andrew J.; Anderson, Jill L.; Halaweish, Ahmed; Leng, Shuai; McCollough, Cynthia H.; Ritman, Erik L.

    2016-10-01

    Early atherosclerosis changes perfusion of the arterial wall due to localized proliferation of the vasa vasorum. When contrast agent passes through the artery, some enters the vasa vasorum and increases radiopacity of the arterial wall. Technical challenges to detecting changes in vasa vasorum density include the thin arterial wall, partial volume averaging at the arterial lumen/wall interface and calcification within the wall. We used a photon-counting spectral CT scanner to study carotid arteries of anesthetized pigs and micro-CT of these arteries to quantify vasa vasorum density. The left carotid artery wall was injected with autologous blood to stimulate vasa vasorum angiogenesis. The scans were performed at 25-120 keV; the tube-current-time product was 550 mAs. A 60 mL bolus of iodine contrast agent was injected into the femoral vein at 5mL/s. Two seconds post injection, an axial scan was acquired at every 3 s over 60 s (i.e., 20 time points). Each time point acquired 28 contiguous transaxial slices with reconstructed voxels 0.16 x 0.16 x 1 mm3. Regions-of-interest in the outer 2/3 of the arterial wall and in the middle 2/3 of the lumen were drawn and their enhancements plotted versus time. Lumenal CT values peaked several seconds after injection and then returned towards baseline. Arterial wall CT values peaked concurrent to the lumen. The peak arterial wall enhancement in the left carotid arterial wall correlated with increased vasa vasorum density observed in micro-CT images of the isolated arteries.

  8. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). Inmore » each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the

  9. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    PubMed

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  10. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    PubMed Central

    Fahimian, Benjamin P.; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J.; Osher, Stanley J.; McNitt-Gray, Michael F.; Miao, Jianwei

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  11. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  12. Radiation Exposure in X-Ray and CT Examinations

    MedlinePlus

    ... disease. See the X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety page for more information. top of page ... and Radiation Safety X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Videos related to Radiation Dose in X- ...

  13. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to

  14. X-ray circular dichroism signals: a unique probe of local molecular chirality

    DOE PAGES

    Zhang, Yu; Rouxel, Jeremy R.; Autschbach, Jochen; ...

    2017-06-26

    Core-resonant circular dichroism (CD) signals are induced by molecular chirality and vanish for achiral molecules and racemic mixtures. The highly localized nature of core excitations makes them ideal probes of local chirality within molecules. Simulations of the circular dichroism spectra of several molecular families illustrate how these signals vary with the electronic coupling to substitution groups, the distance between the X-ray chromophore and the chiral center, geometry, and chemical structure. As a result, clear insight into the molecular structure is obtained through analysis of the X-ray CD spectra.

  15. X-ray circular dichroism signals: a unique probe of local molecular chirality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Rouxel, Jeremy R.; Autschbach, Jochen

    Core-resonant circular dichroism (CD) signals are induced by molecular chirality and vanish for achiral molecules and racemic mixtures. The highly localized nature of core excitations makes them ideal probes of local chirality within molecules. Simulations of the circular dichroism spectra of several molecular families illustrate how these signals vary with the electronic coupling to substitution groups, the distance between the X-ray chromophore and the chiral center, geometry, and chemical structure. As a result, clear insight into the molecular structure is obtained through analysis of the X-ray CD spectra.

  16. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  17. Introduction of a deformable x-ray CT polymer gel dosimetry system

    NASA Astrophysics Data System (ADS)

    Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.

    2018-04-01

    This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the

  18. Fundamentals and recent advances in X-ray micro computed tomography (microCT) applied on thermal-fluid dynamics and multiphase flows

    NASA Astrophysics Data System (ADS)

    Santini, Maurizio

    2015-11-01

    X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.

  19. Observation of human tissue with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-05-01

    Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.

  20. X-ray fluorescence tomographic system design and image reconstruction.

    PubMed

    Cong, Wenxiang; Shen, Haiou; Cao, Guohua; Liu, Hong; Wang, Ge

    2013-01-01

    In this paper, we presented a new design of x-ray fluorescence CT imaging system. For detecting fuorescence signals of gold nanoparticles in-vivo, multiple spectroscopic detectors are arranged and rotated orthogonal to an excited region of interest so that a localized scan can be acquired with a maximized efficiency. Excitation filtration was employed to minimize the effects of low-energy x-rays and background scattering for lowering radiation dose to the object. Numerical simulations showed that the radiation dose is less than 300 mGy/second for a complete 30 views tomographic scan; and the sensitivity of 3D fluorescence signal detection is up to 0.2% contrast concentrations of nanoparticles. The x-ray fluorescence computed tomography is an important molecular imaging tool. It can be used directly in samall animal research. It has great translational potential for future clinical applications.

  1. Automated segmentation of hepatic vessel trees in non-contrast x-ray CT images

    NASA Astrophysics Data System (ADS)

    Kawajiri, Suguru; Zhou, Xiangrong; Zhang, Xuejin; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki

    2007-03-01

    Hepatic vessel trees are the key structures in the liver. Knowledge of the hepatic vessel trees is important for liver surgery planning and hepatic disease diagnosis such as portal hypertension. However, hepatic vessels cannot be easily distinguished from other liver tissues in non-contrast CT images. Automated segmentation of hepatic vessels in non-contrast CT images is a challenging issue. In this paper, an approach for automated segmentation of hepatic vessels trees in non-contrast X-ray CT images is proposed. Enhancement of hepatic vessels is performed using two techniques: (1) histogram transformation based on a Gaussian window function; (2) multi-scale line filtering based on eigenvalues of Hessian matrix. After the enhancement of hepatic vessels, candidate of hepatic vessels are extracted by thresholding. Small connected regions of size less than 100 voxels are considered as false-positives and are removed from the process. This approach is applied to 20 cases of non-contrast CT images. Hepatic vessel trees segmented from the contrast-enhanced CT images of the same patient are used as the ground truth in evaluating the performance of the proposed segmentation method. Results show that the proposed method can enhance and segment the hepatic vessel regions in non-contrast CT images correctly.

  2. X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts

    NASA Astrophysics Data System (ADS)

    Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James

    2017-11-01

    The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  3. Variance analysis of x-ray CT sinograms in the presence of electronic noise background.

    PubMed

    Ma, Jianhua; Liang, Zhengrong; Fan, Yi; Liu, Yan; Huang, Jing; Chen, Wufan; Lu, Hongbing

    2012-07-01

    Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments of low-dose CT data in the presence of electronic noise background. The authors first studied the statistical moment properties of detected signals in CT transmission domain, where the noise of detected signals is considered as quanta fluctuation upon electronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the mean-variance relationship of the detected signals in CT sinogram domain, wherein the image formation becomes a linear operation between the sinogram data and the unknown image, rather than a nonlinear operation in the CT transmission domain. To get insight into the derived new formula by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT scanner at five different mAs levels from 100 down to 17. The results demonstrated that the electronic noise background is significant when low-mAs (or low-dose) scan is performed. The influence of the electronic noise background should be considered in low-dose CT imaging.

  4. Variance analysis of x-ray CT sinograms in the presence of electronic noise background

    PubMed Central

    Ma, Jianhua; Liang, Zhengrong; Fan, Yi; Liu, Yan; Huang, Jing; Chen, Wufan; Lu, Hongbing

    2012-01-01

    Purpose: Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments of low-dose CT data in the presence of electronic noise background. Methods: The authors first studied the statistical moment properties of detected signals in CT transmission domain, where the noise of detected signals is considered as quanta fluctuation upon electronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the mean–variance relationship of the detected signals in CT sinogram domain, wherein the image formation becomes a linear operation between the sinogram data and the unknown image, rather than a nonlinear operation in the CT transmission domain. To get insight into the derived new formula by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT scanner at five different mAs levels from 100 down to 17. Results: The results demonstrated that the electronic noise background is significant when low-mAs (or low-dose) scan is performed. Conclusions: The influence of the electronic noise background should be considered in low-dose CT imaging. PMID:22830738

  5. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    PubMed Central

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146

  6. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGES

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; ...

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  7. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.

    PubMed

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker

    2016-03-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  8. X-Ray Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  9. Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: a review

    PubMed Central

    Zhang, Hao; Zeng, Dong; Zhang, Hua; Wang, Jing; Liang, Zhengrong

    2017-01-01

    Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the clinic because of growing concerns over excessive radiation exposure. However, the CT images reconstructed by the conventional filtered back-projection (FBP) method from low-dose acquisitions may be severely degraded with noise and streak artifacts due to excessive X-ray quantum noise, or with view-aliasing artifacts due to insufficient angular sampling. In 2005, the nonlocal means (NLM) algorithm was introduced as a non-iterative edge-preserving filter to denoise natural images corrupted by additive Gaussian noise, and showed superior performance. It has since been adapted and applied to many other image types and various inverse problems. This paper specifically reviews the applications of the NLM algorithm in LDCT image processing and reconstruction, and explicitly demonstrates its improving effects on the reconstructed CT image quality from low-dose acquisitions. The effectiveness of these applications on LDCT and their relative performance are described in detail. PMID:28303644

  10. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  11. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  12. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    PubMed

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).

  13. Localization algorithms for micro-channel x-ray telescope on board SVOM space mission

    NASA Astrophysics Data System (ADS)

    Gosset, L.; Götz, D.; Osborne, J.; Willingale, R.

    2016-07-01

    SVOM is a French-Chinese space mission to be launched in 2021, whose goal is the study of Gamma-Ray Bursts, the most powerful stellar explosions in the Universe. The Micro-channel X-ray Telescope (MXT) is an X-ray focusing telescope, on board SVOM, with a field of view of 1 degree (working in the 0.2-10 keV energy band), dedicated to the rapid follow-up of the Gamma-Ray Bursts counterparts and to their precise localization (smaller than 2 arc minutes). In order to reduce the optics mass and to have an angular resolution of few arc minutes, a "lobster-Eye" configuration has been chosen. Using a numerical model of the MXT Point Spread Function (PSF) we simulated MXT observations of point sources in order to develop and test different localization algorithms to be implemented on board MXT. We included preliminary estimations of the instrumental and sky background. The algorithms on board have to be a combination of speed and precision (the brightest sources are expected to be localized at a precision better than 10 arc seconds in the MXT reference frame). We present the comparison between different methods such as barycentre, PSF fitting in one or two dimensions. The temporal performance of the algorithms is being tested using the X-ray afterglow data base of the XRT telescope on board the NASA Swift satellite.

  14. Noninvasive microwave ablation zone radii estimation using x-ray CT image analysis.

    PubMed

    Weiss, Noam; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Azhari, Haim

    2016-08-01

    The aims of this study were to noninvasively and automatically estimate both the radius of the ablated liver tissue and the radius encircling the treated zone, which also defines where the tissue is definitely untreated during a microwave (MW) thermal ablation procedure. Fourteen ex vivo bovine fresh liver specimens were ablated at 40 W using a 14 G microwave antenna, for durations of 3, 6, 8, and 10 min. The tissues were scanned every 5 s during the ablation using an x-ray CT scanner. In order to estimate the radius of the ablation zone, the acquired images were transformed into a polar presentation by displaying the Hounsfield units (HU) as a function of angle and radius. From this polar presentation, the average HU radial profile was analyzed at each time point and the ablation zone radius was estimated. In addition, textural analysis was applied to the original CT images. The proposed algorithm identified high entropy regions and estimated the treated zone radius per time. The estimated ablated zone radii as a function of treatment durations were compared, by means of correlation coefficient and root mean square error (RMSE) to gross pathology measurements taken immediately post-treatment from similarly ablated tissue. Both the estimated ablation radii and the treated zone radii demonstrated strong correlation with the measured gross pathology values (R(2) ≥ 0.89 and R(2) ≥ 0.86, respectively). The automated ablation radii estimation had an average discrepancy of less than 1 mm (RMSE = 0.65 mm) from the gross pathology measured values, while the treated zone radii showed a slight overestimation of approximately 1.5 mm (RMSE = 1.6 mm). Noninvasive monitoring of MW ablation using x-ray CT and image analysis is feasible. Automatic estimations of the ablation zone radius and the radius encompassing the treated zone that highly correlate with actual ablation measured values can be obtained. This technique can therefore potentially be used to obtain real time

  15. Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects.

    PubMed

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C; Wang, Xiaolan; Iwanczyk, Jan S; Nygard, Einar; Hartsough, Neal E; Tsui, Benjamin M W; Barber, William C

    2011-02-01

    Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a "pulse pileup event" and results in both a loss of counts (called "deadtime losses") and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. An energy calibration was performed using 99mTc (140 keV), 57Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 microA for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime tau, a coefficient k that relates the x-ray tube current I to an incident count rate a by a = k x I, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to estimate the distorted recorded

  16. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  17. X-ray micro-CT measurement of large parts at very low temperature

    NASA Astrophysics Data System (ADS)

    Koutecký, T.; Zikmund, T.; Glittová, D.; Paloušek, D.; Živčák, J.; Kaiser, J.

    2017-03-01

    At present, the automotive industry, along with other industries, has increasing demands on accuracy of produced parts and assemblies. Besides the regular dimensional and geometrical inspection, in some cases, also a verification at very low temperatures is required. X-ray computed tomography (CT), as a tool for non-destructive testing, is able to examine samples and then determine dimensions for strictly stable temperature conditions necessary for the stability of the CT system. Until now, no system that allows scanning of samples larger than a few millimeters at temperatures much below 0 °C has been presented. This paper presents a cooling system for CT imaging of parts with length up to 300 mm at the extreme temperature conditions of -40 °C, which are based on automotive industry requests. It describes the equipment and conditions under which it is possible to achieve a temperature stability of samples at low temperatures, while keeping an independent temperature regulation of the CT system. The presented system uses a standard industrial CT device and a newly designed cooling stage with passive cooling based on phase-change material. The system is demonstrated on the measurement of plastic part (car door handle) at temperatures of -40 °C and 20 °C. The paper also presents the method of how to interpret the thermal changes using tools of the commercial software VGStudio MAX (Volume Graphics GmbH, Germany).

  18. Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.

    PubMed

    Atak, Haluk; Shikhaliev, Polad M

    2016-03-01

    In photon counting (PC) x-ray imaging and computed tomography (CT), the broad x-ray spectrum can be split into two parts using an x-ray filter with appropriate K-edge energy, which can improve material decomposition. Recent experimental study has demonstrated substantial improvement in material decomposition with PC CT when K-edge filtered x-rays were used. The purpose of the current work was to conduct further investigations of the K-edge filtration method using comprehensive simulation studies. The study was performed in the following aspects: (1) optimization of the K-edge filter for a particular imaging configuration, (2) effects of the K-edge filter parameters on material decomposition, (3) trade-off between the energy bin separation, tube load, and beam quality with K-edge filter, (4) image quality of general (unsubtracted) images when a K-edge filter is used to improve dual energy (DE) subtracted images, and (5) improvements with K-edge filtered x-rays when PC detector has limited energy resolution. The PC x-ray images of soft tissue phantoms with 15 and 30 cm thicknesses including iodine, CaCO3, and soft tissue contrast materials, were simulated. The signal to noise ratio (SNR) of the contrast elements was determined in general and material-decomposed images using K-edge filters with different atomic numbers and thicknesses. The effect of the filter atomic number and filter thickness on energy separation factor and SNR was determined. The boundary conditions for the tube load and halfvalue layer were determined when the K-edge filters are used. The material-decomposed images were also simulated using PC detector with limited energy resolution, and improvements with K-edge filtered x-rays were quantified. The K-edge filters with atomic numbers from 56 to 71 and K-edge energies 37.4-63.4 keV, respectively, can be used for tube voltages from 60 to 150 kVp, respectively. For a particular tube voltage of 120 kVp, the Gd and Ho were the optimal filter materials

  19. Performance and applications of GaAs:Cr-based Medipix detector in X-ray CT

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, D.; Chelkov, G.; Demichev, M.; Gridin, A.; Smolyanskiy, P.; Zhemchugov, A.

    2017-01-01

    In the recent years, the method of single photon counting X-ray μ-CT is being actively developed and applied in various fields. Results of our studies carried out using the MARS μ-CT scanner equipped with GaAs Medipix-based camera are presented. The procedure of mechanical alignment of the scanner is described, including direct and indirect measurements of the spatial resolution. The software chain for data processing and reconstruction has been developed and reported. We demonstrate the possibility to apply the scanner for research in geology and medicine and provide demo images of geological samples (chrome spinellids, titanium magnetite ore) and medical samples (atherosclerotic plaque, abdominal aortic aneurysm). The first results of multi-energy scans using GaAs:Cr-based camera are shown.

  20. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan; Ramirez-Giraldo, Juan Carlos

    2014-06-15

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: Themore » proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to

  1. Reduction of metal artifacts in x-ray CT images using a convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbo; Chu, Ying; Yu, Hengyong

    2017-09-01

    Patients usually contain various metallic implants (e.g. dental fillings, prostheses), causing severe artifacts in the x-ray CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past four decades, MAR is still one of the major problems in clinical x-ray CT. In this work, we develop a convolutional neural network (CNN) based MAR framework, which combines the information from the original and corrected images to suppress artifacts. Before the MAR, we generate a group of data and train a CNN. First, we numerically simulate various metal artifacts cases and build a dataset, which includes metal-free images (used as references), metal-inserted images and various MAR methods corrected images. Then, ten thousands patches are extracted from the databased to train the metal artifact reduction CNN. In the MAR stage, the original image and two corrected images are stacked as a three-channel input image for CNN, and a CNN image is generated with less artifacts. The water equivalent regions in the CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal affected projections, followed by the FBP reconstruction. Experimental results demonstrate the superior metal artifact reduction capability of the proposed method to its competitors.

  2. SU-E-I-27: Estimating KERMA Area Product for CT Localizer Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogden, K; Greene-Donnelly, K; Bennett, R

    2015-06-15

    Purpose: To estimate the free-in-air KERMA-Area Product (KAP) incident on patients due to CT localizer scans for common CT exams. Methods: In-plane beam intensity profiles were measured in localizer acquisition mode using OSLs for a 64 slice MDCT scanner (Lightspeed VCT, GE Medical Systems, Waukesha WI). The z-axis beam width was measured as a function of distance from isocenter. The beam profile and width were used to calculate a weighted average air KERMA per unit mAs as a function of intercepted x-axis beam width for objects symmetric about the localizer centerline.Patient areas were measured using manually drawn regions and dividedmore » by localizer length to determine average width. Data were collected for 50 head exams (lateral localizer only), 15 head/neck exams, 50 chest exams, and 50 abdomen/pelvis exams. Mean patient widths and acquisition techniques were used to calculate the weighted average free-in-air KERMA, which was multiplied by the patient area to estimate KAP. Results: Scan technique was 120 kV tube voltage, 10 mA current, and table speed of 10 cm/s. The mean ± standard deviation values of KAP were 120 ± 11.6, 469 ± 62.6, 518 ± 45, and 763 ± 93 mGycm{sup 2} for head, head/neck, chest, and abdomen/pelvis exams, respectively. For studies with AP and lateral localizers, the AP/lateral area ratio was 1.20, 1.33, and 1.24 for the head/neck, chest, and abdomen/pelvis exams, respectively. However, the AP/lateral KAP ratios were 1.12, 1.08, and 1.07, respectively. Conclusion: Calculation of KAP in CT localizers is complicated by the non-uniform intensity profile and z-axis beam width. KAP values are similar to those for simple radiographic exams such as a chest radiograph and represent a small fraction of the x-ray exposure at CT. However, as CT doses are reduced the localizer contribution will be a more significant fraction of the total exposure.« less

  3. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  4. Energy-discrimination x-ray computed tomography system utilizing a scanning cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abduraxit, Ablajan; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-04-01

    An energy-discrimination K-edge x-ray computed tomography (CT) system is useful for controlling the image contrast of a target region by selecting both the photon energy and the energy width. The CT system has an oscillation-type linear cadmium telluride (CdTe) detectror. CT is performed by repeated linear scans and rotations of an object. Penetrating x-ray photons from the object are detected by a CdTe detector, and event signals of x-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, the tube voltage and tube current were 80 kV and 20 μA, respectively, and the x-ray intensity was 1.92 μGy/s at a distance of 1.0 m from the source and a tube voltage of 80 kV. The energy-discrimination CT was carried out by selecting x-ray photon energies.

  5. Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Song, Danny Y.; Lee, Junghoon

    2016-03-01

    Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.

  6. Analysis of Patients' X-ray Exposure in 146 Percutaneous Radiologic Gastrostomies.

    PubMed

    Petersen, Tim-Ole; Reinhardt, Martin; Fuchs, Jochen; Gosch, Dieter; Surov, Alexey; Stumpp, Patrick; Kahn, Thomas; Moche, Michael

    2017-09-01

    Purpose  Analysis of patient´s X-ray exposure during percutaneous radiologic gastrostomies (PRG) in a larger population. Materials and Methods  Data of primary successful PRG-procedures, performed between 2004 and 2015 in 146 patients, were analyzed regarding the exposition to X-ray. Dose-area-product (DAP), dose-length-product (DLP) respectively, and fluoroscopy time (FT) were correlated with the used x-ray systems (Flatpanel Detector (FD) vs. Image Itensifier (BV)) and the necessity for periprocedural placement of a nasogastric tube. Additionally, the effective X-ray dose for PRG placement using fluoroscopy (DL), computed tomography (CT), and cone beam CT (CBCT) was estimated using a conversion factor. Results  The median DFP of PRG-placements under fluoroscopy was 163 cGy*cm 2 (flat panel detector systems: 155 cGy*cm 2 ; X-ray image intensifier: 175 cGy*cm 2 ). The median DLZ was 2.2 min. Intraprocedural placement of a naso- or orogastric probe (n = 68) resulted in a significant prolongation of the median DLZ to 2.5 min versus 2 min in patients with an already existing probe. In addition, dose values were analyzed in smaller samples of patients in which the PRG was placed under CBCT (n = 7, median DFP = 2635 cGy*cm 2 ), or using CT (n = 4, median DLP = 657 mGy*cm). Estimates of the median DFP and DLP showed effective doses of 0.3 mSv for DL-assisted placements (flat panel detector 0.3 mSv, X-ray image converter 0.4 mSv), 7.9 mSv using a CBCT - flat detector, and 9.9 mSv using CT. This corresponds to a factor 26 of DL versus CBCT, or a factor 33 of DL versus CT. Conclusion  In order to minimize X-ray exposure during PRG-procedures for patients and staff, fluoroscopically-guided interventions should employ flat detector systems with short transmittance sequences in low dose mode and with slow image frequency. Series recordings can be dispensed with. The intraprocedural placement of a naso- or orogastric probe

  7. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    NASA Astrophysics Data System (ADS)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the

  8. Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects

    PubMed Central

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C.; Wang, Xiaolan; Iwanczyk, Jan S.; Nygard, Einar; Hartsough, Neal E.; Tsui, Benjamin M. W.; Barber, William C.

    2011-01-01

    Purpose: Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a “pulse pileup event” and results in both a loss of counts (called “deadtime losses”) and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. Methods: An energy calibration was performed using 99mTc (140 keV), 57Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 μA for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime τ, a coefficient k that relates the x-ray tube current I to an incident count rate a by a=k×I, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to estimate the

  9. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  10. Quantifying fracture geometry with X-ray tomography: Technique of Iterative Local Thresholding (TILT) for 3D image segmentation

    DOE PAGES

    Deng, Hang; Fitts, Jeffrey P.; Peters, Catherine A.

    2016-02-01

    This paper presents a new method—the Technique of Iterative Local Thresholding (TILT)—for processing 3D X-ray computed tomography (xCT) images for visualization and quantification of rock fractures. The TILT method includes the following advancements. First, custom masks are generated by a fracture-dilation procedure, which significantly amplifies the fracture signal on the intensity histogram used for local thresholding. Second, TILT is particularly well suited for fracture characterization in granular rocks because the multi-scale Hessian fracture (MHF) filter has been incorporated to distinguish fractures from pores in the rock matrix. Third, TILT wraps the thresholding and fracture isolation steps in an optimized iterativemore » routine for binary segmentation, minimizing human intervention and enabling automated processing of large 3D datasets. As an illustrative example, we applied TILT to 3D xCT images of reacted and unreacted fractured limestone cores. Other segmentation methods were also applied to provide insights regarding variability in image processing. The results show that TILT significantly enhanced separability of grayscale intensities, outperformed the other methods in automation, and was successful in isolating fractures from the porous rock matrix. Because the other methods are more likely to misclassify fracture edges as void and/or have limited capacity in distinguishing fractures from pores, those methods estimated larger fracture volumes (up to 80 %), surface areas (up to 60 %), and roughness (up to a factor of 2). In conclusion, these differences in fracture geometry would lead to significant disparities in hydraulic permeability predictions, as determined by 2D flow simulations.« less

  11. Automatic Insall-Salvati ratio measurement on lateral knee x-ray images using model-guided landmark localization

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Lin, Chii-Jeng; Wu, Chia-Hsing; Wang, Chien-Kuo; Sun, Yung-Nien

    2010-11-01

    The Insall-Salvati ratio (ISR) is important for detecting two common clinical signs of knee disease: patella alta and patella baja. Furthermore, large inter-operator differences in ISR measurement make an objective measurement system necessary for better clinical evaluation. In this paper, we define three specific bony landmarks for determining the ISR and then propose an x-ray image analysis system to localize these landmarks and measure the ISR. Due to inherent artifacts in x-ray images, such as unevenly distributed intensities, which make landmark localization difficult, we hence propose a registration-assisted active-shape model (RAASM) to localize these landmarks. We first construct a statistical model from a set of training images based on x-ray image intensity and patella shape. Since a knee x-ray image contains specific anatomical structures, we then design an algorithm, based on edge tracing, for patella feature extraction in order to automatically align the model to the patella image. We can estimate the landmark locations as well as the ISR after registration-assisted model fitting. Our proposed method successfully overcomes drawbacks caused by x-ray image artifacts. Experimental results show great agreement between the ISRs measured by the proposed method and by orthopedic clinicians.

  12. Eigenvector decomposition of full-spectrum x-ray computed tomography.

    PubMed

    Gonzales, Brian J; Lalush, David S

    2012-03-07

    Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.

  13. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    NASA Astrophysics Data System (ADS)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  14. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning.

    PubMed

    Earles, J Mason; Knipfer, Thorsten; Tixier, Aude; Orozco, Jessica; Reyes, Clarissa; Zwieniecki, Maciej A; Brodersen, Craig R; McElrone, Andrew J

    2018-03-08

    Starch is the primary energy storage molecule used by most terrestrial plants to fuel respiration and growth during periods of limited to no photosynthesis, and its depletion can drive plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but these techniques face methodological challenges that can lead to uncertainty about the lability of tissue-specific starch pools and their role in plant survival. Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and nondestructively over time in grapevine stems (Vitis spp.). Starch content estimated for xylem axial and ray parenchyma cells from microCT images was correlated strongly with enzymatically measured bulk-tissue starch concentration on the same stems. After validating our machine learning algorithm, we then characterized the spatial distribution of starch concentration in living stems at micrometer resolution, and identified starch depletion in live plants under experimental conditions designed to halt photosynthesis and starch production, initiating the drawdown of stored starch pools. Using X-ray microCT technology for in vivo starch monitoring should enable novel research directed at resolving the spatial and temporal patterns of starch accumulation and depletion in woody plant species. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  15. Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography

    PubMed Central

    Gray Roncal, William; Prasad, Judy A.; Fernandes, Hugo L.; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.

    2017-01-01

    Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts. PMID:29085899

  16. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  17. Measurements of void fraction distribution in cavitating pipe flow using x-ray CT

    NASA Astrophysics Data System (ADS)

    Bauer, D.; Chaves, H.; Arcoumanis, C.

    2012-05-01

    Measuring the void fraction distribution is still one of the greatest challenges in cavitation research. In this paper, a measurement technique for the quantitative void fraction characterization in a cavitating pipe flow is presented. While it is almost impossible to visualize the inside of the cavitation region with visible light, it is shown that with x-ray computed tomography (CT) it is possible to capture the time-averaged void fraction distribution in a quasi-steady pipe flow. Different types of cavitation have been investigated including cloud-like cavitation, bubble cavitation and film cavitation at very high flow rates. A specially designed nozzle was employed to induce very stable quasi-steady cavitation. The obtained results demonstrate the advantages of the measurement technique compared to other ones; for example, structures were observed inside the cavitation region that could not be visualized by photographic images. Furthermore, photographic images and pressure measurements were used to allow comparisons to be made and to prove the superiority of the CT measurement technique.

  18. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  19. X-ray CT analysis of pore structure in sand

    NASA Astrophysics Data System (ADS)

    Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika

    2016-06-01

    The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.

  20. Ultrasound detection of pneumothorax compared with chest X-ray and computed tomography scan.

    PubMed

    Nagarsheth, Khanjan; Kurek, Stanley

    2011-04-01

    Pneumothorax after trauma can be a life threatening injury and its care requires expeditious and accurate diagnosis and possible intervention. We performed a prospective, single blinded study with convenience sampling at a Level I trauma center comparing thoracic ultrasound with chest X-ray and CT scan in the detection of traumatic pneumothorax. Trauma patients that received a thoracic ultrasound, chest X-ray, and chest CT scan were included in the study. The chest X-rays were read by a radiologist who was blinded to the thoracic ultrasound results. Then both were compared with CT scan results. One hundred and twenty-five patients had a thoracic ultrasound performed in the 24-month period. Forty-six patients were excluded from the study due to lack of either a chest X-ray or chest CT scan. Of the remaining 79 patients there were 22 positive pneumothorax found by CT and of those 18 (82%) were found on ultrasound and 7 (32%) were found on chest X-ray. The sensitivity of thoracic ultrasound was found to be 81.8 per cent and the specificity was found to be 100 per cent. The sensitivity of chest X-ray was found to be 31.8 per cent and again the specificity was found to be 100 per cent. The negative predictive value of thoracic ultrasound for pneumothorax was 0.934 and the negative predictive value for chest X-ray for pneumothorax was found to be 0.792. We advocate the use of chest ultrasound for detection of pneumothorax in trauma patients.

  1. Scatter correction method for x-ray CT using primary modulation: Phantom studies

    PubMed Central

    Gao, Hewei; Fahrig, Rebecca; Bennett, N. Robert; Sun, Mingshan; Star-Lack, Josh; Zhu, Lei

    2010-01-01

    Purpose: Scatter correction is a major challenge in x-ray imaging using large area detectors. Recently, the authors proposed a promising scatter correction method for x-ray computed tomography (CT) using primary modulation. Proof of concept was previously illustrated by Monte Carlo simulations and physical experiments on a small phantom with a simple geometry. In this work, the authors provide a quantitative evaluation of the primary modulation technique and demonstrate its performance in applications where scatter correction is more challenging. Methods: The authors first analyze the potential errors of the estimated scatter in the primary modulation method. On two tabletop CT systems, the method is investigated using three phantoms: A Catphan©600 phantom, an anthropomorphic chest phantom, and the Catphan©600 phantom with two annuli. Two different primary modulators are also designed to show the impact of the modulator parameters on the scatter correction efficiency. The first is an aluminum modulator with a weak modulation and a low modulation frequency, and the second is a copper modulator with a strong modulation and a high modulation frequency. Results: On the Catphan©600 phantom in the first study, the method reduces the error of the CT number in the selected regions of interest (ROIs) from 371.4 to 21.9 Hounsfield units (HU); the contrast to noise ratio also increases from 10.9 to 19.2. On the anthropomorphic chest phantom in the second study, which represents a more difficult case due to the high scatter signals and object heterogeneity, the method reduces the error of the CT number from 327 to 19 HU in the selected ROIs and from 31.4% to 5.7% on the overall average. The third study is to investigate the impact of object size on the efficiency of our method. The scatter-to-primary ratio estimation error on the Catphan©600 phantom without any annulus (20 cm in diameter) is at the level of 0.04, it rises to 0.07 and 0.1 on the phantom with an elliptical

  2. Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications

    PubMed Central

    Rivera, Eladio J.; Tran, Lesa A.; Hernández-Rivera, Mayra; Yoon, Diana; Mikos, Antonios G.; Rusakova, Irene A.; Cheong, Benjamin Y.; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.

    2013-01-01

    The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking. PMID:24288589

  3. Extracting tissue and cell outlines of Arabidopsis seeds using refraction contrast X-ray CT at the SPring-8 facility

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Tamaoki, Daisuke; Hayami, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Karahara, Ichirou; Mineyuki, Yoshinobu

    2012-07-01

    How biological form is determined is one of the important questions in developmental biology. Physical forces are thought to be the primary determinants of the biological forms, and several theories for this were proposed nearly a century ago. To evaluate how physical forces can influence biological forms, precise determination of cell and tissue shapes and their geometries is necessary. Computed tomography (CT) is useful for visualizing three-dimensional structures without destroying a sample. Because recent progress in micro-CT has enabled visualizing cells and tissues at the sub-micron level, we investigated if we could extract cell and tissue outlines of seeds using refraction contrast X-ray CT available at the SPring-8 synchrotron radiation facility. We used Arabidopsis seeds because Arabidopsis is a well-known model plant and its seed size is small enough to obtain whole images using the X-ray CT experimental system. We could trace the outlines of tissues in dry seeds using beamline BL20B2 (10 keV, 2.4µm.pixel-1). Although we could also detect the outlines of some cell types, the image resolution was not adequate to extract whole cell edges. To detect the edges of cells in the epidermis and cortex, we obtained CT images using beamline BL20XU (8 keV, 0.5 µm.pixel-1). With these CT images, we could extract the facets and edges of each cell and determine cell vertices. This method enabled us to compare the numbers of cell facets among various cell types. We could also describe cell geometry as a set of points that showed these cell vertices.

  4. Technology enablers for improved aerospace x-ray NDE

    NASA Astrophysics Data System (ADS)

    Strabel, George; Ross, Joseph; Graham, Larry; Smith, Kevin

    1996-11-01

    In the current climate of reduced Military spending and lower commercial demand for aerospace products, it is of critical importance to allocate scarce technology development resources to meet projected needs. During the past decade, dramatic advances in x-ray nondestructive evaluation (NDE) technology have results in commercially viable digital radiography (DR) and computed tomography (CT) systems. X-ray CT has become an important NDE technique that not only provides data about material integrity, but also valuable volumetric data which is finding applications in reverse engineering, rapid prototyping, process control and 3D metrology. Industrial DR and CT systems have been available for almost 10 years, but are very costly, generally designed for specific applications and have well known limitations for both process development and final inspection. They have inadequate energy/flux to penetrate many large components and structures. In order to support the US Aerospace Industry in its drive towards global competitiveness, it is imperative that key enabling tools such as DR and CT be improved, made affordable, and implemented to meet the anticipated needs of the next decade of aerospace applications. This paper describes a strategy for a consortium of suppliers and users of x-ray NDE systems, academia and national laboratories to work together to attain this goal.

  5. Image reconstruction of x-ray tomography by using image J platform

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Razali, A. M.; Salleh, K. A. M.; Yahya, R.

    2017-01-01

    A tomogram is a technical term for a CT image. It is also called a slice because it corresponds to what the object being scanned would look like if it were sliced open along a plane. A CT slice corresponds to a certain thickness of the object being scanned. So, while a typical digital image is composed of pixels, a CT slice image is composed of voxels (volume elements). In the case of x-ray tomography, similar to x-ray Radiography, the quantity being imaged is the distribution of the attenuation coefficient μ(x) within the object of interest. The different is only on the technique to produce the tomogram. The image of x-ray radiography can be produced straight foward after exposed to x-ray, while the image of tomography produces by combination of radiography images in every angle of projection. A number of image reconstruction methods by converting x-ray attenuation data into a tomography image have been produced by researchers. In this work, Ramp filter in "filtered back projection" has been applied. The linear data acquired at each angular orientation are convolved with a specially designed filter and then back projected across a pixel field at the same angle. This paper describe the step of using Image J software to produce image reconstruction of x-ray tomography.

  6. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  7. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, L; Tang, S; Ahmad, M

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less

  8. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  9. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  10. Visualization of x-ray computer tomography using computer-generated holography

    NASA Astrophysics Data System (ADS)

    Daibo, Masahiro; Tayama, Norio

    1998-09-01

    The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.

  11. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun

    2010-07-01

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  12. Imaging of pore networks and related interfaces in soil systems by using high resolution X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias

    2016-04-01

    Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the

  13. The Complete Local-Volume Groups Sample (CLoGS): Early results from X-ray and radio observations

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Kolokythas, Konstantinos

    2017-08-01

    Although the group environment is the dominant locus of galaxy evolution (in contrast to rich clusters, which contain only a few percent of galaxies), there has been a lack of reliable, representative group samples in the local Universe. In particular, X-ray selected samples are strongly biased in favor of the X-ray bright, centrally-concentrated cool-core systems. In response, we have designed the Complete Local-Volume Groups Sample (CLoGS), an optically-selected statistically-complete sample of 53 groups within 80 Mpc which is intended to overcome the limitations of X-ray selected samples and serve as a representative survey of groups in the local Universe. We have supplemented X-ray data from Chandra and XMM (70% complete to date, using both archival and new observations, with a 26-group high richness subsample 100% complete) with GMRT radio continuum observations (at 235 and 610 MHz, complete for the entire sample). CLoGS includes groups with a wide variety of properties in terms of galaxy population, hot gas content, and AGN power. We here describe early results from the survey, including the range of AGN activity observed in the dominant galaxies, the relative fraction of cool-core and non-cool-core groups in our sample, and the degree of disturbance observed in the IGM.

  14. Hafnium-Based Contrast Agents for X-ray Computed Tomography.

    PubMed

    Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar

    2017-05-15

    Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.

  15. Is the evaluation of the anterior inferior iliac spine (AIIS) in the AP pelvis possible? Analysis of conventional X-rays and 3D-CT reconstructions.

    PubMed

    Krueger, David R; Windler, Markus; Geßlein, Markus; Schuetz, Michael; Perka, Carsten; Schroeder, Joerg H

    2017-07-01

    A hypertrophic AIIS has been identified as a cause for extraarticular hip impingement and is classified according to Hetsroni using 3D-CT reconstructions. The role of the conventional AP pelvis X-ray, which is the first standard imaging step for the evaluation of hip pain, has not been investigated yet. AP pelvis X-rays and 3D-CT reconstructions of patients were evaluated regarding their morphology of the AIIS. The conventional X-rays were categorized into three groups according to the projection of the AIIS: above (A) or below (B) the acetabular sourcil or even exceeding the anterior acetabular rim (C). They were compared to the morphologic types in the 3D-CT reconstruction (Hetsroni type I-III). Ninety patients with an equal distribution of type A, B or C projection in the AP pelvis were evaluated and compared to the morphology in the 3D-CT reconstruction. The projection of the AIIS below the acetabular sourcil (B + C) showed only moderate sensitivity (0.76) and specificity (0.64) for a hypertrophic AIIS (Hetsroni type II + III), but if the AIIS exceeds the anterior rim, all cases showed a hypertrophic AIIS in the 3D-CT reconstructions (Hetsroni type II + III). Distinct differentiation of the AIIS morphology in the AP pelvis is not possible, but the projection of the AIIS below the anterior acetabular rim represented a hypertrophic AIIS in all cases and should, therefore, be critically investigated for a relevant AIIS impingement.

  16. WAZA-ARI: computational dosimetry system for X-ray CT examinations II: development of web-based system.

    PubMed

    Ban, Nobuhiko; Takahashi, Fumiaki; Ono, Koji; Hasegawa, Takayuki; Yoshitake, Takayasu; Katsunuma, Yasushi; Sato, Kaoru; Endo, Akira; Kai, Michiaki

    2011-07-01

    A web-based dose computation system, WAZA-ARI, is being developed for patients undergoing X-ray CT examinations. The system is implemented in Java on a Linux server running Apache Tomcat. Users choose scanning options and input parameters via a web browser over the Internet. Dose coefficients, which were calculated in a Japanese adult male phantom (JM phantom) are called upon user request and are summed over the scan range specified by the user to estimate a normalised dose. Tissue doses are finally computed based on the radiographic exposure (mA s) and the pitch factor. While dose coefficients are currently available only for limited CT scanner models, the system has achieved a high degree of flexibility and scalability without the use of commercial software.

  17. A hyperspectral X-ray computed tomography system for enhanced material identification

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomei; Wang, Qian; Ma, Jinlei; Zhang, Wei; Li, Po; Fang, Zheng

    2017-08-01

    X-ray computed tomography (CT) can distinguish different materials according to their absorption characteristics. The hyperspectral X-ray CT (HXCT) system proposed in the present work reconstructs each voxel according to its X-ray absorption spectral characteristics. In contrast to a dual-energy or multi-energy CT system, HXCT employs cadmium telluride (CdTe) as the x-ray detector, which provides higher spectral resolution and separate spectral lines according to the material's photon-counter working principle. In this paper, a specimen containing ten different polymer materials randomly arranged was adopted for material identification by HXCT. The filtered back-projection algorithm was applied for image and spectral reconstruction. The first step was to sort the individual material components of the specimen according to their cross-sectional image intensity. The second step was to classify materials with similar intensities according to their reconstructed spectral characteristics. The results demonstrated the feasibility of the proposed material identification process and indicated that the proposed HXCT system has good prospects for a wide range of biomedical and industrial nondestructive testing applications.

  18. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  19. Application of micron X-ray CT based on micro-PIXE to investigate the distribution of Cs in silt particles for environmental remediation in Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Ishii, Keizo; Hatakeyama, Taisuke; Itoh, Shin; Sata, Daichi; Ohnuma, Tohru; Yamaguchi, Toshiro; Arai, Hiromu; Arai, Hirotsugu; Matsuyama, Shigeo; Terakawa, Atsuki; Kim, Seong-Yun

    2016-03-01

    We used X-ray computed tomography (CT) using characteristic X-rays produced in micro-particle-induced X-ray emission (PIXE) to investigate the internal structure of silt particles and develop new methods to decontaminate soil containing radioactive cesium. We obtained 3D attenuation coefficient images of silt particles with a diameter of approximately 100 μm for V K and Cr K X-rays. Owing to the absorption edges of the Cs L-shell, the differences between the V K and Cr K X-ray images revealed the spatial distribution of Cs atoms in the silt particles. Cs atoms were distributed over the surfaces of the silt particles to a thickness of approximately 10 μm. This information is useful for the decontamination of silt contaminated by radiation from the Fukushima Daiichi nuclear disaster.

  20. Clinical application and validation of an iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray projections.

    PubMed

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2010-09-01

    To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four 103Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selected from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. For the phantom study, seed localization error is (0.58 +/- 0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/ iteration on a 1 GHz processor. The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate approximately 1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.

  1. Clinical application and validation of an iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.

    2010-09-15

    Purpose: To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. Methods: The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four {sup 103}Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selectedmore » from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. Results: For the phantom study, seed localization error is (0.58{+-}0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/iteration on a 1 GHz processor. Conclusions: The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate {approx}1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.« less

  2. Low-Dose CT of the Paranasal Sinuses: Minimizing X-Ray Exposure with Spectral Shaping.

    PubMed

    Wuest, Wolfgang; May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael

    2016-11-01

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192x0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 × 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI vol 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. • Spectral optimization (tin filtration) is beneficial to low-dose parasinus CT • Tin filtration at 100 kV yields sufficient image quality for pre-operative planning • Diagnostic parasinus CT can be performed with an effective dose <0.05 mSv.

  3. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    PubMed

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-03-01

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  4. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  5. Diffuse X-rays from the Local Galaxy (DXL-3)

    NASA Astrophysics Data System (ADS)

    Galeazzi, Massimiliano

    DXL (Diffuse X-rays from the Local galaxy) is a sounding rocket mission for the study of the Local Hot Bubble (LHB) and Solar Wind Charge eXchange (SWCX). DXL has been successfully launched twice from White Sands Missile Range, measuring the compound cross section of SWCX with neutral He and quantifying the relative contribution of LHB and SWCX to the ROSAT R1-R7 Bands and Wisconsin C, B, and Be bands. Preparation for a third launch from Poker Flat, AK is well underway, with an expected launch date of January/February 2018. The primary focus of the launch is to measure the compound cross section with neutral H, by studying the spatial signature of the SWCX from Earth’s Cusps, in order to complete the DXL characterization of LHB and SWCX at ROSAT’s energy resolution. Due to damage to the payload during reentry of flight #2 in 2016, launch #3 had to be postponed by 1 year. In in agreement with NASA HQs, available funds were used to refurbish the damaged payload, and the DXL mission is currently funded to support payload refurbishing, calibration, and TM handshake, but not integration, launch, and post flight calibration and analysis. In this proposal, we request support for the DXL integration, launch, and post-flight calibration and analysis. During the first two DXL campaigns, a new class of instruments using microporous optics was also integrated and successfully tested in flight using a micro-channel plate. Preparation for the DXL successor which will integrate longer focal length microporous optics with a CCD camera to study galactic diffuse emission at CCD resolution have already begun. In this proposal we also request seed funds to begin work on the DXL heir (DXG – Diffuse X-rays from the Galaxy) combining microporous optics with CCD detectors, with focus on the characterization of the optics. In addition to the technological development of the microporous optics for astrophysics applications, the scientific goal of DXG is to study the properties of the

  6. Accuracy evaluation of an X-ray microtomography system.

    PubMed

    Fernandes, Jaquiel S; Appoloni, Carlos R; Fernandes, Celso P

    2016-06-01

    Microstructural parameter evaluation of reservoir rocks is of great importance to petroleum production companies. In this connection, X-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of rocks, as it provides important microstructural parameters, such as porosity, permeability, pore size distribution and porous phase of the sample. X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields 2-D cross-sectional images of the sample as well as volume rendering. This technique offers an additional advantage, as it does not require sample preparation, of reducing the measurement time, which is approximately one to three hours, depending on the spatial resolution used. Although this technique is extensively used, accuracy verification of measurements is hard to obtain because the existing calibrated samples (phantoms) have large volumes and are assessed in medical CT scanners with millimeter spatial resolution. Accordingly, this study aims to determine the accuracy of an X-ray computed microtomography system using a Skyscan 1172 X-ray microtomograph. To accomplish this investigation, it was used a nylon thread set with known appropriate diameter inserted into a glass tube. The results for porosity size and phase distribution by X-ray microtomography were very close to the geometrically calculated values. The geometrically calculated porosity and the porosity determined by the methodology using the μ-CT was 33.4±3.4% and 31.0±0.3%, respectively. The outcome of this investigation was excellent. It was also observed a small variability in the results along all 401 sections of the analyzed image. Minimum and maximum porosity values between the cross sections were 30.9% and 31.1%, respectively. A 3-D image representing the actual structure of the sample was also rendered from the 2-D images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. X-ray Constrained Extremely Localized Molecular Orbitals: Theory and Critical Assessment of the New Technique.

    PubMed

    Genoni, Alessandro

    2013-07-09

    Following the X-ray constrained wave function approach proposed by Jayatilaka, we have devised a new technique that allows to extract molecular orbitals strictly localized on small molecular fragments from sets of experimental X-ray structure factors amplitudes. Since the novel strategy enables to obtain electron distributions that have quantum mechanical features and that can be easily interpreted in terms of traditional chemical concepts, the method can be also considered as a new useful tool for the determination and the analysis of charge densities from high-resolution X-ray experiments. In this paper, we describe in detail the theory of the new technique, which, in comparison to our preliminary work, has been improved both treating the effects of isotropic secondary extinctions and introducing a new protocol to halt the fitting procedure against the experimental X-ray scattering data. The performances of the novel strategy have been studied both in function of the basis-sets flexibility and in function of the quality of the considered crystallographic data. The tests performed on four different systems (α-glycine, l-cysteine, (aminomethyl)phosphonic acid and N-(trifluoromethyl)formamide) have shown that the achievement of good statistical agreements with the experimental measures mainly depends on the quality of the crystal structures (i.e., geometry positions and thermal parameters) used in the X-ray constrained calculations. Finally, given the reliable transferability of the obtained Extremely Localized Molecular Orbitals (ELMOs), we envisage to exploit the novel approach to construct new ELMOs databases suited to the development of linear-scaling methods for the refinement of macromolecular crystal structures.

  8. Image-based metal artifact reduction in x-ray computed tomography utilizing local anatomical similarity

    NASA Astrophysics Data System (ADS)

    Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees

    2017-03-01

    X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.

  9. A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology.

    PubMed

    Lifton, Joseph J; Malcolm, Andrew A; McBride, John W

    2015-01-01

    X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.

  10. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  11. Pre-treatment patient-specific stopping power by combining list-mode proton radiography and x-ray CT

    NASA Astrophysics Data System (ADS)

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Hansen, David C.; Beaulieu, Luc; Seco, Joao

    2017-09-01

    The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work was to develop a systematic method that yields accurate and patient-specific RSPs by combining (1) pre-treatment x-ray CT and (2) daily proton radiography of the patient. The method was formulated as a penalized least squares optimization problem (argmin(\\Vert {A}{x}-{b}\\Vert _22 )). The parameter A represents the cumulative path-length crossed by the proton in each material, separated by thresholding on the HU. The material RSPs (water equivalent thickness/physical thickness) are denoted by x. The parameter b is the list-mode proton radiography produced using Geant4 simulations. The problem was solved using a non-negative linear-solver with {x}≥slant0 . A was computed by superposing proton trajectories calculated with a cubic or linear spline approach to the CT. The material’s RSP assigned in Geant4 were used for reference while the clinical HU-RSP calibration curve was used for comparison. The Gammex RMI-467 phantom was first investigated. The standard deviation between the estimated material RSP and the calculated RSP is 0.45%. The robustness of the techniques was then assessed as a function of the number of projections and initial proton energy. Optimization with two initial projections yields precise RSP (⩽1.0%) for 330 MeV protons. 250 MeV protons have shown higher uncertainty (⩽2.0%) due to the loss of precision in the path estimate. Anthropomorphic phantoms of the head, pelvis, and lung were subsequently evaluated. Accurate RSP has been obtained for the head (μ =0.21+/-1.63% ), the lung (μ=0.06+/-0.99% ) and the pelvis (μ=0.90+/-3.87% ). The range precision has been optimized using the calibration curves obtained with the algorithm, yielding a mean R80 difference to the reference of 0.11  ±0.09%, 0.28  ±  0.34% and 0.05 +/- 0.06% in the same order. The solution’s accuracy is limited by the

  12. TU-F-CAMPUS-I-02: Validation of a CT X-Ray Source Characterization Technique for Dose Computation Using An Anthropomorphic Thorax Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommerville, M; Tambasco, M; Poirier, Y

    2015-06-15

    Purpose: To experimentally validate a rotational kV x-ray source characterization technique by computing CT dose in an anthropomorphic thorax phantom using an in-house dose computation algorithm (kVDoseCalc). Methods: The lateral variation in incident energy spectra of a GE Optima big bore CT scanner was found by measuring the HVL along the internal, full bow-tie filter axis. The HVL and kVp were used to generate the x-ray spectra using Spektr software, while beam fluence was derived by dividing the integral product of the spectra and in-air mass-energy absorption coefficients by in-air dose measurements along the bow-tie filter axis. Beams produced bymore » the GE Optima scanner were modeled at 80 and 140 kVp tube settings. kVDoseCalc calculates dose by solving the linear Boltzmann transport equation using a combination of deterministic and stochastic methods. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima scanner were measured using a (0.015 cc) PTW Freiburg ionization chamber, and compared to computations from kVDoseCalc. Results: The agreement in relative dose between dose computation and measurement for points of interest (POIs) within the primary path of the beam was within experimental uncertainty for both energies, however points outside the primary beam were not. The average absolute percent difference for POIs within the primary path of the beam was 1.37% and 5.16% for 80 and 140 kVp, respectively. The minimum and maximum absolute percent difference for both energies and all POIs within the primary path of the beam was 0.151% and 6.41%, respectively. Conclusion: The CT x-ray source characterization technique based on HVL measurements and kVp can be used to accurately compute CT dose in an anthropomorphic thorax phantom.« less

  13. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to

  14. Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Braunagel, Margarita; Birnbacher, Lorenz; Willner, Marian; Marschner, Mathias; De Marco, Fabio; Viermetz, Manuel; Notohamiprodjo, Susan; Hellbach, Katharina; Auweter, Sigrid; Link, Vera; Woischke, Christine; Reiser, Maximilian F.; Pfeiffer, Franz; Notohamiprodjo, Mike; Herzen, Julia

    2017-03-01

    Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.

  15. Experimental validation of a multi-energy x-ray adapted scatter separation method

    NASA Astrophysics Data System (ADS)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-12-01

    Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.

  16. Mcps-range photon-counting x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Enomoto, Toshiyuki; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    10 Mcps photon counting was carried out using a detector consisting of a 2.0 mm-thick ZnO (zinc oxide) single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 10 Mcps (mega counts per second) at a tube voltage of 70 kV and a tube current of 2.0 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the ZnO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using iodine-based contrast media.

  17. Practical alignment method for X-ray spectral measurement in micro-CT system based on 3D printing technology.

    PubMed

    Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong

    2016-06-01

    This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a "sweet spot" with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of K α1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78ke

  18. Practical alignment method for X-ray spectral measurement in micro-CT system based on 3D printing technology

    PubMed Central

    Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong

    2016-01-01

    This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a “sweet spot” with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of Kα1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78ke

  19. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    PubMed Central

    Glick, Stephen J.; Didier, Clay

    2013-01-01

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing

  20. Solar Wind Charge Exchange and Local Hot Bubble X-Ray Emission with the DXL Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Galeazzi, M.; Collier, M. R.; Cravens, T.; Koutroumpa, D.; Kuntz, K. D.; Lepri, S.; McCammon, D.; Porter, F. S.; Prasai, K.; Robertson, I.; hide

    2012-01-01

    The Diffuse X-ray emission from the Local Galaxy (DXL) sounding rocket is a NASA approved mission with a scheduled first launch in December 2012. Its goal is to identify and separate the X-ray emission of the SWCX from that of the Local Hot Bubble (LHB) to improve our understanding of both. To separate the SWCX contribution from the LHB. DXL will use the SWCX signature due to the helium focusing cone at 1=185 deg, b=-18 deg, DXL uses large area propostionai counters, with an area of 1.000 sq cm and grasp of about 10 sq cm sr both in the 1/4 and 3/4 keY bands. Thanks to the large grasp, DXL will achieve in a 5 minule flight what cannot be achieved by current and future X-ray satellites.

  1. High speed imaging of dynamic processes with a switched source x-ray CT system

    NASA Astrophysics Data System (ADS)

    Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.

    2015-05-01

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.

  2. X-ray observations of dust obscured galaxies in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.

    2016-08-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra deep field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields, the Chandra deep field north (CDF-N), and the Chandra deep field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT

  3. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.

    PubMed

    De Kock, Tim; Boone, Marijn A; De Schryver, Thomas; Van Stappen, Jeroen; Derluyn, Hannelore; Masschaele, Bert; De Schutter, Geert; Cnudde, Veerle

    2015-03-03

    Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.

  4. Scatter correction for x-ray conebeam CT using one-dimensional primary modulation

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Gao, Hewei; Bennett, N. Robert; Xing, Lei; Fahrig, Rebecca

    2009-02-01

    Recently, we developed an efficient scatter correction method for x-ray imaging using primary modulation. A two-dimensional (2D) primary modulator with spatially variant attenuating materials is inserted between the x-ray source and the object to separate primary and scatter signals in the Fourier domain. Due to the high modulation frequency in both directions, the 2D primary modulator has a strong scatter correction capability for objects with arbitrary geometries. However, signal processing on the modulated projection data requires knowledge of the modulator position and attenuation. In practical systems, mainly due to system gantry vibration, beam hardening effects and the ramp-filtering in the reconstruction, the insertion of the 2D primary modulator results in artifacts such as rings in the CT images, if no post-processing is applied. In this work, we eliminate the source of artifacts in the primary modulation method by using a one-dimensional (1D) modulator. The modulator is aligned parallel to the ramp-filtering direction to avoid error magnification, while sufficient primary modulation is still achieved for scatter correction on a quasicylindrical object, such as a human body. The scatter correction algorithm is also greatly simplified for the convenience and stability in practical implementations. The method is evaluated on a clinical CBCT system using the Catphan© 600 phantom. The result shows effective scatter suppression without introducing additional artifacts. In the selected regions of interest, the reconstruction error is reduced from 187.2HU to 10.0HU if the proposed method is used.

  5. Enhancing catalytic activity by narrowing local energy gaps--X-ray studies of a manganese water oxidation catalyst.

    PubMed

    Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F

    2015-03-01

    Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DXL: A Sounding Rocket Mission for the Study of Solar Wind Charge Exchange and Local Hot Bubble X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Galeazzi, M.; Prasai, K.; Uprety, Y.; Chiao, M.; Collier, M. R.; Koutroumpa, D.; Porter, F. S.; Snowden, S.; Cravens, T.; Robertson, I.; hide

    2011-01-01

    The Diffuse X-rays from the Local galaxy (DXL) mission is an approved sounding rocket project with a first launch scheduled around December 2012. Its goal is to identify and separate the X-ray emission generated by solar wind charge exchange from that of the local hot bubble to improve our understanding of both. With 1,000 square centimeters proportional counters and grasp of about 10 square centimeters sr both in the 1/4 and 3/4 keV bands, DXL will achieve in a 5-minute flight what cannot be achieved by current and future X-ray satellites.

  7. Definitive X-Ray Detection of the Class 0 Protostar HOPS 383

    NASA Astrophysics Data System (ADS)

    Grosso, Nicolas

    2016-09-01

    We have identified in the Chandra archive a possible pre-outburst X-ray counterpart to the protostar HOPS 383, the first and only Class 0 protostar thus far observed to undergo an accretion outburst. We propose ACIS-I and contemporaneous CT-4m near-IR observations to confirm and to identify the source of this X-ray emission and to measure the presumed increase in X-ray flux during the accretion outburst.

  8. Correction for human head motion in helical x-ray CT

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Sun, T.; Alcheikh, A. R.; Kuncic, Z.; Nuyts, J.; Fulton, R.

    2016-02-01

    Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion (‘no’, slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy’s condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can

  9. New contrasts for x-ray imaging and synergy with optical imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  10. Pre-treatment patient-specific stopping power by combining list-mode proton radiography and x-ray CT.

    PubMed

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Hansen, David C; Beaulieu, Luc; Seco, Joao

    2017-08-03

    The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work was to develop a systematic method that yields accurate and patient-specific RSPs by combining (1) pre-treatment x-ray CT and (2) daily proton radiography of the patient. The method was formulated as a penalized least squares optimization problem (argmin([Formula: see text])). The parameter A represents the cumulative path-length crossed by the proton in each material, separated by thresholding on the HU. The material RSPs (water equivalent thickness/physical thickness) are denoted by x. The parameter b is the list-mode proton radiography produced using Geant4 simulations. The problem was solved using a non-negative linear-solver with [Formula: see text]. A was computed by superposing proton trajectories calculated with a cubic or linear spline approach to the CT. The material's RSP assigned in Geant4 were used for reference while the clinical HU-RSP calibration curve was used for comparison. The Gammex RMI-467 phantom was first investigated. The standard deviation between the estimated material RSP and the calculated RSP is 0.45%. The robustness of the techniques was then assessed as a function of the number of projections and initial proton energy. Optimization with two initial projections yields precise RSP (⩽1.0%) for 330 MeV protons. 250 MeV protons have shown higher uncertainty (⩽2.0%) due to the loss of precision in the path estimate. Anthropomorphic phantoms of the head, pelvis, and lung were subsequently evaluated. Accurate RSP has been obtained for the head ([Formula: see text]), the lung ([Formula: see text]) and the pelvis ([Formula: see text]). The range precision has been optimized using the calibration curves obtained with the algorithm, yielding a mean [Formula: see text] difference to the reference of 0.11  ±0.09%, 0.28  ±  0.34% and [Formula: see text] in the same order. The solution

  11. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT.

    PubMed

    Messerli, Michael; Ottilinger, Thorsten; Warschkow, René; Leschka, Sebastian; Alkadhi, Hatem; Wildermuth, Simon; Bauer, Ralf W

    2017-06-01

    To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and

  12. Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, P.C.

    The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.

  13. Comparison between infrared optical and stereoscopic X-ray technologies for patient setup in image guided stereotactic radiotherapy.

    PubMed

    Tagaste, Barbara; Riboldi, Marco; Spadea, Maria F; Bellante, Simone; Baroni, Guido; Cambria, Raffaella; Garibaldi, Cristina; Ciocca, Mario; Catalano, Gianpiero; Alterio, Daniela; Orecchia, Roberto

    2012-04-01

    To compare infrared (IR) optical vs. stereoscopic X-ray technologies for patient setup in image-guided stereotactic radiotherapy. Retrospective data analysis of 233 fractions in 127 patients treated with hypofractionated stereotactic radiotherapy was performed. Patient setup at the linear accelerator was carried out by means of combined IR optical localization and stereoscopic X-ray image fusion in 6 degrees of freedom (6D). Data were analyzed to evaluate the geometric and dosimetric discrepancy between the two patient setup strategies. Differences between IR optical localization and 6D X-ray image fusion parameters were on average within the expected localization accuracy, as limited by CT image resolution (3 mm). A disagreement between the two systems below 1 mm in all directions was measured in patients treated for cranial tumors. In extracranial sites, larger discrepancies and higher variability were observed as a function of the initial patient alignment. The compensation of IR-detected rotational errors resulted in a significantly improved agreement with 6D X-ray image fusion. On the basis of the bony anatomy registrations, the measured differences were found not to be sensitive to patient breathing. The related dosimetric analysis showed that IR-based patient setup caused limited variations in three cases, with 7% maximum dose reduction in the clinical target volume and no dose increase in organs at risk. In conclusion, patient setup driven by IR external surrogates localization in 6D featured comparable accuracy with respect to procedures based on stereoscopic X-ray imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Assessment of fluid distribution and flow properties in two phase fluid flow using X-ray CT technology

    NASA Astrophysics Data System (ADS)

    Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi

    2018-04-01

    To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_ sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.

  15. Pore-Scale X-ray Micro-CT Imaging and Analysis of Oil Shales

    NASA Astrophysics Data System (ADS)

    Saif, T.

    2015-12-01

    The pore structure and the connectivity of the pore space during the pyrolysis of oil shales are important characteristics which determine hydrocarbon flow behaviour and ultimate recovery. We study the effect of temperature on the evolution of pore space and subsequent permeability on five oil shale samples: (1) Vernal Utah United States, (2) El Lajjun Al Karak Jordan, (3) Gladstone Queensland Australia (4) Fushun China and (5) Kimmerdige United Kingdom. Oil Shale cores of 5mm in diameter were pyrolized at 300, 400 and 500 °C. 3D imaging of 5mm diameter core samples was performed at 1μm voxel resolution using X-ray micro computed tomography (CT) and the evolution of the pore structures were characterized. The experimental results indicate that the thermal decomposition of kerogen at high temperatures is a major factor causing micro-scale changes in the internal structure of oil shales. At the early stage of pyrolysis, micron-scale heterogeneous pores were formed and with a further increase in temperature, the pores expanded and became interconnected by fractures. Permeability for each oil shale sample at each temperature was computed by simulation directly on the image voxels and by pore network extraction and simulation. Future work will investigate different samples and pursue insitu micro-CT imaging of oil shale pyrolysis to characterize the time evolution of the pore space.

  16. Evaluation of accelerated iterative x-ray CT image reconstruction using floating point graphics hardware.

    PubMed

    Kole, J S; Beekman, F J

    2006-02-21

    Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.

  17. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    PubMed

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. X-ray Photon Counting Using 100 MHz Ready-Made Silicon P-Intrinsic-N X-ray Diode and Its Application to Energy-Dispersive Computed Tomography

    NASA Astrophysics Data System (ADS)

    Kodama, Hajime; Watanabe, Manabu; Sato, Eiichi; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-07-01

    X-ray photons are directly detected using a 100 MHz ready-made silicon P-intrinsic-N X-ray diode (Si-PIN-XD). The Si-PIN-XD is shielded using an aluminum case with a 25-µm-thick aluminum window and a BNC connector. The photocurrent from the Si-PIN-XD is amplified by charge sensitive and shaping amplifiers, and the event pulses are sent to a multichannel analyzer (MCA) to measure X-ray spectra. At a tube voltage of 90 kV, we observe K-series characteristic X-rays of tungsten. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by linear scanning at a tube current of 2.0 mA. The exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. At a tube voltage of 90 kV, the maximum count rate is 150 kcps. We carry out PC-CT using gadolinium media and confirm the energy-dispersive effect with changes in the lower level voltage of the event pulse using a comparator.

  19. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  20. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  1. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  2. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the

  3. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  4. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Sinogram-based adaptive iterative reconstruction for sparse view x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Trinca, D.; Zhong, Y.; Wang, Y.-Z.; Mamyrbayev, T.; Libin, E.

    2016-10-01

    With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this paper, we propose an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. The proposed algorithm is thus provided for free to the scientific community, for regular use, and for possible further optimization.

  6. Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner.

    PubMed

    Melnyk, Roman; DiBianca, Frank A

    2007-03-01

    The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.

  7. Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner

    PubMed Central

    Melnyk, Roman; DiBianca, Frank A.

    2007-01-01

    The detector presampling MTF of a 576-channel variable resolution x-ray (VRX) CT scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner’s field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner’s pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 cy/mm to 43.38 cy/mm as the FOV of the VRX CT scanner decreases from 32 cm to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1–8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner. PMID:17369872

  8. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  9. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules

    NASA Astrophysics Data System (ADS)

    Qie, Fengxiang; Astolfo, Alberto; Wickramaratna, Malsha; Behe, Martin; Evans, Margaret D. M.; Hughes, Timothy C.; Hao, Xiaojuan; Tan, Tianwei

    2015-01-01

    Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified Au

  10. Morphological and performance measures of polyurethane foams using X-ray CT and mechanical testing.

    PubMed

    Patterson, Brian M; Henderson, Kevin; Gilbertson, Robert D; Tornga, Stephanie; Cordes, Nikolaus L; Chavez, Manuel E; Smith, Zachary

    2014-08-01

    Meso-scale structure in polymeric foams determines the mechanical properties of the material. Density variations, even more than variations in the anisotropic void structure, can greatly vary the compressive and tensile response of the material. With their diverse use as both a structural material and space filler, polyurethane (PU) foams are widely studied. In this manuscript, quantitative measures of the density and anisotropic structure are provided by using micro X-ray computed tomography (microCT) to better understand the results of mechanical testing. MicroCT illustrates the variation in the density, cell morphology, size, shape, and orientation in different regions in blown foam due to the velocity profile near the casting surface. "Interrupted" in situ imaging of the material during compression of these sub-regions indicates the pathways of the structural response to the mechanical load and the changes in cell morphology as a result. It is found that molded PU foam has a 6 mm thick "skin" of higher density and highly eccentric morphological structure that leads to wide variations in mechanical performance depending upon sampling location. This comparison is necessary to understand the mechanical performance of the anisotropic structure.

  11. A neural network-based method for spectral distortion correction in photon counting x-ray CT

    NASA Astrophysics Data System (ADS)

    Touch, Mengheng; Clark, Darin P.; Barber, William; Badea, Cristian T.

    2016-08-01

    Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables both 4 energy bins acquisition, as well as full-spectrum mode in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical effects in the detector and can be very noisy due to photon starvation in narrow energy bins. To address spectral distortions, we propose and demonstrate a novel artificial neural network (ANN)-based spectral distortion correction mechanism, which learns to undo the distortion in spectral CT, resulting in improved material decomposition accuracy. To address noise, post-reconstruction denoising based on bilateral filtration, which jointly enforces intensity gradient sparsity between spectral samples, is used to further improve the robustness of ANN training and material decomposition accuracy. Our ANN-based distortion correction method is calibrated using 3D-printed phantoms and a model of our spectral CT system. To enable realistic simulations and validation of our method, we first modeled the spectral distortions using experimental data acquired from 109Cd and 133Ba radioactive sources measured with our PCXD. Next, we trained an ANN to learn the relationship between the distorted spectral CT projections and the ideal, distortion-free projections in a calibration step. This required knowledge of the ground truth, distortion-free spectral CT projections, which were obtained by simulating a spectral CT scan of the digital version of a 3D-printed phantom. Once the training was completed, the trained ANN was used to perform

  12. High-sensitive computed tomography system using a silicon-PIN x-ray diode

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of 1.91 mA was developed using a silicon-PIN X-ray diode (Si-PIN-XD). The Si-PIN-XD is a selected high-sensitive Si-PIN photodiode (PD) for detecting X-ray photons. X-ray photons are detected directly using the Si-PIN-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to differentiator with a time constant of 1 μs to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 1.91 mA and 100 kV, respectively, and gadolinium K-edge CT was carried out using filtered X-ray spectra with a peak energy of 52 keV.

  13. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.

    PubMed

    Zhang, Lingli; Zeng, Li; Guo, Yumeng

    2018-01-01

    Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes

  14. Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography.

    PubMed

    Khademi, Sara; Sarkar, Saeed; Kharrazi, Sharmin; Amini, Seyed Mohammad; Shakeri-Zadeh, Ali; Ay, Mohammad Reza; Ghadiri, Hossein

    2018-01-01

    Increasing attention has been focused on the use of nanostructures as contrast enhancement agents in medical imaging, especially in computed tomography (CT). To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agents for CT imaging. This study was designed to evaluate any effect on X-ray attenuation that might result from employing GNPs with a variety of shapes, sizes, surface chemistries, and concentrations. Gold nanorods (GNRs) and spherical GNPs were synthesized for this application. X-ray attenuation was quantified by Hounsfield unit (HU) in CT. Our findings indicated that smaller spherical GNPs (13 nm) had higher X-ray attenuation than larger ones (60 nm) and GNRs with larger aspect ratio exhibited great effect on X-ray attenuation. Moreover, poly ethylene glycol (PEG) coating on GNRs declined X-ray attenuation as a result of limiting the aggregation of GNRs. We observed X-ray attenuation increased when mass concentration of GNPs was elevated. Overall, smaller spherical GNPs can be suggested as a better alternative to Omnipaque, a good contrast agent for CT imaging. This data can be also considered for the application of gold nanostructures in radiation dose enhancement where nanoparticles with high X-ray attenuation are applied. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  16. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  17. Multi-mounted X-ray cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng

    2018-04-01

    As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.

  18. A local recent supernova - Evidence from X-rays, Al-26 radioactivity and cosmic rays

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.; Cox, Donald P.; Michel, Curtis F.

    1986-01-01

    Possible ways in which cosmic rays could have been contaminated by a local recent supernova are discussed, and ways in which this contamination may be affecting interpretation of Al-26 gamma radiation and locally observed cosmic rays as samples of the average Galactic distribution are considered. Mass spectra of cosmic rays are examined to see whether there is enrichment by a population arising from supernova preacceleration. The reinterpretation of the anomalous component in terms of a local supernova model is addressed.

  19. 3D printing of preclinical X-ray computed tomographic data sets.

    PubMed

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-03-22

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.

  20. The application of micro-vacuo-certo-contacting ophthalmophanto in X-ray radiosurgery for tumors in an eyeball.

    PubMed

    Li, Shuying; Wang, Yunyan; Hu, Likuan; Liang, Yingchun; Cai, Jing

    2014-11-01

    The large errors of routine localization for eyeball tumors restricted X-ray radiosurgery application, just for the eyeball to turn around. To localize the accuracy site, the micro-vacuo-certo-contacting ophthalmophanto (MVCCOP) method was used. Also, the outcome of patients with tumors in the eyeball was evaluated. In this study, computed tomography (CT) localization accuracy was measured by repeating CT scan using MVCCOP to fix the eyeball in radiosurgery. This study evaluated the outcome of the tumors and the survival of the patients by follow-up. The results indicated that the accuracy of CT localization of Brown-Roberts-Wells (BRW) head ring was 0.65 mm and maximum error was 1.09 mm. The accuracy of target localization of tumors in the eyeball using MVCCOP was 0.87 mm averagely, and the maximum error was 1.19 mm. The errors of fixation of the eyeball were 0.84 mm averagely and 1.17 mm maximally. The total accuracy was 1.34 mm, and 95% confidence accuracy was 2.09 mm. The clinical application of this method in 14 tumor patients showed satisfactory results, and all of the tumors showed the clear rims. The site of ten retinoblastomas was decreased significantly. The local control interval of tumors were 6 ∼ 24 months, median of 10.5 months. The survival of ten patients was 7 ∼ 30 months, median of 16.5 months. Also, the tumors were kept stable or shrank in the other four patients with angioma and melanoma. In conclusion, the MVCCOP is suitable and dependable for X-ray radiosurgery for eyeball tumors. The tumor control and survival of patients are satisfactory, and this method can effectively postpone or avoid extirpation of eyeball.

  1. TU-FG-BRB-04: A New Optimization Method for Pre-Treatment Patient-Specific Stopping-Power by Combining Proton Radiography and X-Ray CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins-Fekete, C; Centre Hospitalier University de Quebec, Quebec, QC; Mass General Hospital

    Purpose: The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work is to develop a robust and systematic method that yields accurate patient specific RSPs by combining pre-treatment X-ray CT and daily proton radiography. Methods: The method is formulated as a penalized least squares optimization (PLSO) problem min(|Ax-B|). The matrix A represents the cumulative path-length crossed in each material computed by calculating proton trajectories through the X-ray CT. The material RSPs are denoted by x and B is the pRad, expressed as water equivalent thickness. The equation ismore » solved using a convex-conic optimizer. Geant4 simulations were made to assess the feasibility of the method. RSP extracted from the Geant4 materials were used as a reference and the clinical HU-RSP curve as a comparison. The PLSO was first tested on a Gammex RMI-467 phantom. Then, anthropomorphic phantoms of the head, pelvis and lung were studied and resulting RSPs were evaluated. A pencil beam was generated in each phantom to evaluate the proton range accuracy achievable by using the optimized RSPs. Finally, experimental data of a pediatric head phantom (CIRS) were acquired using a recently completed experimental pCT scanner. Results: Numerical simulations showed precise RSP (<0.75%) for Gammex materials except low-density lung (LN-300) (1.2%). Accurate RSP have been obtained for the head (µ=−0.10%, 1.5σ=1.12%), lung (µ=−0.33, 1.5σ=1.02%) and pelvis anthropomorphic phantoms (µ=0.12, 1.5σ=0,99%). The range precision has been improved with an average R80 difference to the reference (µ±1.5σ) of −0.20±0.35%, −0.47±0.92% and −0.06±0.17% in the head, lung and pelvis phantoms respectively, compared to the 3.5% clinical margin. Experimental HU-RSP curve have been produced on the CIRS pediatric head. Conclusion: The proposed PLSO with prior knowledge X-ray CT shows promising potential (R80 σ<1

  2. Metal artifact removal (MAR) analysis for the security inspections using the X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Cho, Hyo Sung; Woo, Tae Ho; Park, Chul Kyu

    2016-10-01

    Using the metal artifact property, it is analyzed for the X-ray computed tomography (CT) in the aspect of the security on the examined places like airport and surveillance areas. Since the importance of terror prevention strategy has been increased, the security application of X-ray CT has the significant remark. One shot X-ray image has the limitation to find out the exact shape to property in the closed box, which could be solved by the CT scanning without the tearing off the box in this work. Cleaner images can be obtained by the advanced technology if the CT scanning is utilized in the security purposes on the secured areas. A metal sample is treated by the metal artifact removal (MAR) method for the enhanced image. The mimicked explosive is experimented for the imaging processing application where the cleaner one is obtained. The procedure is explained and the further study is discussed.

  3. Development of X-ray computed tomography inspection facility for the H-II solid rocket boosters

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Fujita, T.; Fukushima, Y.; Shimizu, M.; Itoh, S.; Satoh, A.; Miyamoto, H.

    The National Space Development Agency of Japan (NASDA) initiated the development of an X-ray computed tomography (CT) equipment for the H-II solid rocket boosters (SRBs) in 1987 for the purpose of minimizing inspection time and achieving high cost-effectiveness. The CT facility has been completed in Jan. 1991 in Tanegashima Space Center for the inspection of the SRBs transported from the manufacturer's factory to the launch site. It was first applied to the qualification model SRB from Feb. to Apr. in 1991. Through the CT inspection of the SRB, it has been confirmed that inspection time decreased significantly compared with the X-ray radiography method and that even an unskilled inspector could find various defects. As a result, the establishment of a new reliable inspection method for the SRB has been verified. In this paper, the following are discussed: (1) the defect detectability of the CT equipment using a dummy SRB with various artificial defects, (2) the performance comparison between the CT method and the X-ray radiography method, (3) the reliability of the CT equipment, and (4) the radiation shield design of the nondestructive test building.

  4. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  5. High-Mass X-ray Binaries in hard X- rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.

  6. ImaSim, a software tool for basic education of medical x-ray imaging in radiotherapy and radiology

    NASA Astrophysics Data System (ADS)

    Landry, Guillaume; deBlois, François; Verhaegen, Frank

    2013-11-01

    Introduction: X-ray imaging is an important part of medicine and plays a crucial role in radiotherapy. Education in this field is mostly limited to textbook teaching due to equipment restrictions. A novel simulation tool, ImaSim, for teaching the fundamentals of the x-ray imaging process based on ray-tracing is presented in this work. ImaSim is used interactively via a graphical user interface (GUI). Materials and methods: The software package covers the main x-ray based medical modalities: planar kilo voltage (kV), planar (portal) mega voltage (MV), fan beam computed tomography (CT) and cone beam CT (CBCT) imaging. The user can modify the photon source, object to be imaged and imaging setup with three-dimensional editors. Objects are currently obtained by combining blocks with variable shapes. The imaging of three-dimensional voxelized geometries is currently not implemented, but can be added in a later release. The program follows a ray-tracing approach, ignoring photon scatter in its current implementation. Simulations of a phantom CT scan were generated in ImaSim and were compared to measured data in terms of CT number accuracy. Spatial variations in the photon fluence and mean energy from an x-ray tube caused by the heel effect were estimated from ImaSim and Monte Carlo simulations and compared. Results: In this paper we describe ImaSim and provide two examples of its capabilities. CT numbers were found to agree within 36 Hounsfield Units (HU) for bone, which corresponds to a 2% attenuation coefficient difference. ImaSim reproduced the heel effect reasonably well when compared to Monte Carlo simulations. Discussion: An x-ray imaging simulation tool is made available for teaching and research purposes. ImaSim provides a means to facilitate the teaching of medical x-ray imaging.

  7. [Is ultrasound equal to X-ray in pediatric fracture diagnosis?].

    PubMed

    Moritz, J D; Hoffmann, B; Meuser, S H; Sehr, D H; Caliebe, A; Heller, M

    2010-08-01

    Ultrasound is currently not established for the diagnosis of fractures. The aim of this study was to compare ultrasound and X-ray beyond their use solely for the identification of fractures, i. e., for the detection of fracture type and dislocation for pediatric fracture diagnosis. Limb bones of dead young pigs served as a model for pediatric bones. The fractured bones were examined with ultrasound, X-ray, and CT, which served as the gold standard. 162 of 248 bones were fractured. 130 fractures were identified using ultrasound, and 148 using X-ray. There were some advantages of X-ray over ultrasound in the detection of fracture type (80 correct results using X-ray, 66 correct results using ultrasound). Ultrasound, however, was superior to X-ray for dislocation identification (41 correct results using X-ray, 51 correct results using ultrasound). Both findings were not statistically significant after adjustment for multiple testing. Ultrasound not only has comparable sensitivity to that of X-ray for the identification of limb fractures but is also equally effective for the diagnosis of fracture type and dislocation. Thus, ultrasound can be used as an adequate alternative method to X-ray for pediatric fracture diagnosis. Georg Thieme Verlag KG Stuttgart, New York.

  8. Local variations in bone mineral density: a comparison of OCT versus x-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Stevens-Smith, Jenna; Scutt, Andrew; Matcher, Stephen J.

    2008-02-01

    We describe variations in the degree of mineralisation within the subchondral bone plate of the equine metacarpophalangeal joint. A comparison of Optical Coherence Tomography, Micro CT, and SEM techniques was performed. These data are compared between sites on a healthy sample and at points on an osteoarthritically degenerated sample. No significant correlation was found between the optical scattering coefficient and the micro-CT derived BMD for comparisons between different sites on the bone surface. Also OCT demonstrated a larger regional variation in scattering coefficient than did micro CT for bone mineral density. This suggests that the optical scattering coefficient of bone is not related solely to the volume-density of calcium-phosphate. Patches of lower optical scattering coefficient were found in the bone structure that was related to the osteoarthritic lesion area on the overlying cartilage. Areas of microcracking, as revealed by both SEM and micro CT produced distinctive granularity in the OCT images. In further experiments, OCT was compared with micro CT and mechanical strength testing (3-point bending) in a small animal model of cardiovascular disease (cholesterol overload in mice). In the cardiovascular diseased mice, micro-CT of the trabecular bone did not demonstrate a significant change in trabecular bone mineral density before and after administration of the high cholesterol diet. However mechanical testing demonstrated a decrease in mechanical strength and OCT demonstrated a corresponding statistically significant decrease in optical scattering of the bone.

  9. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    NASA Astrophysics Data System (ADS)

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-05-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.

  10. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    PubMed Central

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-01-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons. PMID:25975937

  11. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine

  12. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  13. Iodine X-ray fluorescence computed tomography system utilizing a cadmium telluride detector in conjunction with a cerium-target tube

    NASA Astrophysics Data System (ADS)

    Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-06-01

    An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  14. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  15. The Complete Local Volume Groups Sample - I. Sample selection and X-ray properties of the high-richness subsample

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Ewan; Ponman, Trevor J.; Kolokythas, Konstantinos; Raychaudhury, Somak; Babul, Arif; Vrtilek, Jan M.; David, Laurence P.; Giacintucci, Simona; Gitti, Myriam; Haines, Chris P.

    2017-12-01

    We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least four optically bright (log LB ≥ 10.2 LB⊙) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65 kpc and with luminosity >1041 erg s-1, while a further three groups host smaller galaxy-scale gas haloes. The X-ray bright groups have masses in the range M500 ≃ 0.5-5 × 1013 M⊙, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200 × 1041 erg s-1. We find that ∼53-65 per cent of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30 per cent of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ∼35 per cent of their dominant early-type galaxies host active galactic nuclei with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (LX, R500 < 1042 erg s-1) with no concentrated cool core, or highly disturbed. This leads us to suggest that ∼20 per cent of X-ray bright groups in the local universe may still be unidentified.

  16. Real-time fusion of coronary CT angiography with x-ray fluoroscopy during chronic total occlusion PCI.

    PubMed

    Ghoshhajra, Brian B; Takx, Richard A P; Stone, Luke L; Girard, Erin E; Brilakis, Emmanouil S; Lombardi, William L; Yeh, Robert W; Jaffer, Farouc A

    2017-06-01

    The purpose of this study was to demonstrate the feasibility of real-time fusion of coronary computed tomography angiography (CTA) centreline and arterial wall calcification with x-ray fluoroscopy during chronic total occlusion (CTO) percutaneous coronary intervention (PCI). Patients undergoing CTO PCI were prospectively enrolled. Pre-procedural CT scans were integrated with conventional coronary fluoroscopy using prototype software. We enrolled 24 patients who underwent CTO PCI using the prototype CT fusion software, and 24 consecutive CTO PCI patients without CT guidance served as a control group. Mean age was 66 ± 11 years, and 43/48 patients were men. Real-time CTA fusion during CTO PCI provided additional information regarding coronary arterial calcification and tortuosity that generated new insights into antegrade wiring, antegrade dissection/reentry, and retrograde wiring during CTO PCI. Overall CTO success rates and procedural outcomes remained similar between the two groups, despite a trend toward higher complexity in the fusion CTA group. This study demonstrates that real-time automated co-registration of coronary CTA centreline and calcification onto live fluoroscopic images is feasible and provides new insights into CTO PCI, and in particular, antegrade dissection reentry-based CTO PCI. • Real-time semi-automated fusion of CTA/fluoroscopy is feasible during CTO PCI. • CTA fusion data can be toggled on/off as desired during CTO PCI • Real-time CT calcium and centreline overlay could benefit antegrade dissection/reentry-based CTO PCI.

  17. Phase-contrast X-ray computed tomography of non-formalin fixed biological objects

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Momose, Atsushi; Wu, Jin; Zeniya, Tsutomu; Yu, Quanwen; Thet-Thet-Lwin; Itai, Yuji

    2001-07-01

    Using a monolithic X-ray interferometer having the view size of 25 mm×25 mm, phase-contrast X-ray CT (PCCT) was performed for non-formalin fixed livers of two normal rats and a rabbit transplanted with VX-2 cancer. PCCT images of liver and cancer lesions resembled well those obtained by formalin fixed samples.

  18. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  19. A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning

    PubMed Central

    Zhang, Cheng; Zhang, Tao; Li, Ming; Lu, Yanfei; You, Jiali; Guan, Yihui

    2015-01-01

    In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time. PMID:26550024

  20. A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning.

    PubMed

    Zhang, Cheng; Zhang, Tao; Zheng, Jian; Li, Ming; Lu, Yanfei; You, Jiali; Guan, Yihui

    2015-01-01

    In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time.

  1. Ultrafast X-Ray Spectroscopy of Conical Intersections

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  2. X-ray fractography on fatigue fractured surface of austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yajima, Zenjiro; Tokuyama, Hideki; Kibayashi, Yasuo

    1995-12-31

    X-ray diffraction observation of the material internal structure beneath fracture surfaces provide fracture analysis with useful information to investigate the conditions and mechanisms of fracture. X-ray fractography is a generic name given to this technique. In the present study, X-ray fractography was applied to fatigue fracture surfaces of austenitic stainless steel (AISI 304) which consisted of solution treatment. The fatigue tests were carried out on compact tension (CT) specimens. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The line broadening of X-ray diffraction profiles was measured on and beneath fatiguemore » fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from the line broadening. The results are discussed on the basis of fracture mechanics.« less

  3. A mirror for lab-based quasi-monochromatic parallel x-rays

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  4. Development of X-ray micro-focus computed tomography to image and quantify biofilms in central venous catheter models in vitro.

    PubMed

    Niehaus, Wilmari L; Howlin, Robert P; Johnston, David A; Bull, Daniel J; Jones, Gareth L; Calton, Elizabeth; Mavrogordato, Mark N; Clarke, Stuart C; Thurner, Philipp J; Faust, Saul N; Stoodley, Paul

    2016-09-01

    Bacterial infections of central venous catheters (CVCs) cause much morbidity and mortality, and are usually diagnosed by concordant culture of blood and catheter tip. However, studies suggest that culture often fails to detect biofilm bacteria. This study optimizes X-ray micro-focus computed tomography (X-ray µCT) for the quantification and determination of distribution and heterogeneity of biofilms in in vitro CVC model systems.Bacterial culture and scanning electron microscopy (SEM) were used to detect Staphylococcus epidermidis ATCC 35984 biofilms grown on catheters in vitro in both flow and static biofilm models. Alongside this, X-ray µCT techniques were developed in order to detect biofilms inside CVCs. Various contrast agent stains were evaluated using energy-dispersive X-ray spectroscopy (EDS) to further optimize these methods. Catheter material and biofilm were segmented using a semi-automated matlab script and quantified using the Avizo Fire software package. X-ray µCT was capable of distinguishing between the degree of biofilm formation across different segments of a CVC flow model. EDS screening of single- and dual-compound contrast stains identified 10 nm gold and silver nitrate as the optimum contrast agent for X-ray µCT. This optimized method was then demonstrated to be capable of quantifying biofilms in an in vitro static biofilm formation model, with a strong correlation between biofilm detection via SEM and culture. X-ray µCT has good potential as a direct, non-invasive, non-destructive technology to image biofilms in CVCs, as well as other in vivo medical components in which biofilms accumulate in concealed areas.

  5. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation.

    PubMed

    Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru

    2013-03-10

    Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Data fusion in X-ray computed tomography using a superiorization approach.

    PubMed

    Schrapp, Michael J; Herman, Gabor T

    2014-05-01

    X-ray computed tomography (CT) is an important and widespread inspection technique in industrial non-destructive testing. However, large-sized and heavily absorbing objects cause artifacts due to either the lack of penetration of the specimen in specific directions or by having data from only a limited angular range of views. In such cases, valuable information about the specimen is not revealed by the CT measurements alone. Further imaging modalities, such as optical scanning and ultrasonic testing, are able to provide data (such as an edge map) that are complementary to the CT acquisition. In this paper, a superiorization approach (a newly developed method for constrained optimization) is used to incorporate the complementary data into the CT reconstruction; this allows precise localization of edges that are not resolvable from the CT data by itself. Superiorization, as presented in this paper, exploits the fact that the simultaneous algebraic reconstruction technique (SART), often used for CT reconstruction, is resilient to perturbations; i.e., it can be modified to produce an output that is as consistent with the CT measurements as the output of unmodified SART, but is more consistent with the complementary data. The application of this superiorized SART method to measured data of a turbine blade demonstrates a clear improvement in the quality of the reconstructed image.

  7. X-Ray Psoralen Activated Cancer Therapy (X-PACT)

    PubMed Central

    Oldham, Mark; Yoon, Paul; Fathi, Zak; Beyer, Wayne F.; Adamson, Justus; Liu, Leihua; Alcorta, David; Xia, Wenle; Osada, Takuya; Liu, Congxiao; Yang, Xiao Y.; Dodd, Rebecca D.; Herndon, James E.; Meng, Boyu; Kirsch, David G.; Lyerly, H. Kim; Dewhirst, Mark W.; Fecci, Peter; Walder, Harold; Spector, Neil L.

    2016-01-01

    This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of solid cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with current application to proliferative disease and extracorporeal photopheresis (ECP) of cutaneous T Cell Lymphoma. An immunogenic role for light-activated psoralen has been reported, contributing to long-term clinical responses. Psoralen therapies have to-date been limited to superficial or extracorporeal scenarios due to the requirement for psoralen activation by UVA light, which has limited penetration in tissue. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and re-radiate (phosphoresce) at UV wavelengths. The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed to X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry in combination with complimentary assays, and the in-vivo mouse study. In an in-vitro study, we show that X-PACT induces significant tumor cell apoptosis and cytotoxicity, unlike psoralen or phosphor alone (p<0.0001). We also show that apoptosis increases as doses of phosphor, psoralen, or radiation increase. Finally, in an in-vivo pilot study of BALBc mice with syngeneic 4T1 tumors, we show that the rate of tumor growth is slower with X-PACT than with saline or AMT + X-ray (p<0.0001). Overall these studies demonstrate a potential therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. In summary, X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation are delivered to a specific tumor site to generate UVA light which

  8. Investigating the local structure of B-site cations in (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Grosvenor, Andrew P.

    2018-05-01

    The structural properties of (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x = 0.2 before impurity phases begin to form at x = 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4+. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4+ with Sc3+ results in an increase in the off-centre displacement of Ti4+ cations. Surprisingly, BiScO3 substitution has no effect on the displacement of the Ti4+ cation in the (1-x)PbTiO3-xBiScO3 solid solution.

  9. Lab-X-ray multidimensional imaging of processes inside porous media

    NASA Astrophysics Data System (ADS)

    Godinho, Jose

    2017-04-01

    Time-lapse and other multidimensional X-ray imaging techniques have mostly been applied using synchrotron radiation, which limits accessibility and complicates data analysis. Here, we present new time-lapse imaging approaches using laboratory X-ray computed microtomography (CT) to study transformations inside porous media. Specifically, three methods will be presented: 1) Quantitative time-lapse radiography to study sub-second processes. For example to study the penetration of particles into fractures and pores, which is essential to understand how proppants keep fractures opened during hydraulic fracturing and how filter cakes form during borehole drilling. 2) Combination of time-lapse CT with diffraction tomography to study the transformation between bio-inspired polymorphs in 6D, e.g. mineral phase transformation between ACC, Vaterite and Calcite - CaCO3, and between ACS, Anhydrite and Gypsum - CaSO4. Crystals can be resolved in nanopores down to 7 nm (over 100 times smaller than the resolution of CT), which allows studying the effect of confinement on phase stability and growth rates. 3) Fast iterative helical micro-CT scanning to study samples of high ratio height to width (e.g. long cores) with optimal resolution. Here we show how this can be useful to study the distribution of the products from fluid-mediated mineral reactions throughout longer reaction paths and more representative volumes. Using state of the art reconstruction algorithms allows reducing the scanning times from over ten hours to below two hours enabling time-lapse studies. It is expected that these new techniques will open new possibilities for time-lapse imaging of a wider range of geological processes using laboratory X-ray CT, thereby increasing the accessibility of multidimensional imaging to a larger number of users and applications in geology.

  10. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  11. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  12. Limits on soft X-ray flux from distant emission regions

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Mccammon, D.; Sanders, W. T.; Kraushaar, W. L.

    1984-01-01

    The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales.

  13. Automatic Localization of Vertebral Levels in X-Ray Fluoroscopy Using 3D-2D Registration: A Tool to Reduce Wrong-Site Surgery

    PubMed Central

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-01-01

    Surgical targeting of the incorrect vertebral level (“wrong-level” surgery) is among the more common wrong-site surgical errors, attributed primarily to a lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. Conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error, and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (viz., CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved 10 patient CT datasets from which 50,000 simulated fluoroscopic images were generated from C-arm poses selected to approximate C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (viz., mPD < 5mm). Simulation studies showed a success rate of 99.998% (1 failure in 50,000 trials) and computation time of 4.7 sec on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific

  14. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meng, E-mail: mengwu@stanford.edu; Fahrig, Rebecca

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images thatmore » are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the

  15. Classification and Visualization of Physical and Chemical Properties of Falsified Medicines with Handheld Raman Spectroscopy and X-Ray Computed Tomography.

    PubMed

    Kakio, Tomoko; Yoshida, Naoko; Macha, Susan; Moriguchi, Kazunobu; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko

    2017-09-01

    Analytical methods for the detection of substandard and falsified medical products (SFs) are important for public health and patient safety. Research to understand how the physical and chemical properties of SFs can be most effectively applied to distinguish the SFs from authentic products has not yet been investigated enough. Here, we investigated the usefulness of two analytical methods, handheld Raman spectroscopy (handheld Raman) and X-ray computed tomography (X-ray CT), for detecting SFs among oral solid antihypertensive pharmaceutical products containing candesartan cilexetil as an active pharmaceutical ingredient (API). X-ray CT visualized at least two different types of falsified tablets, one containing many cracks and voids and the other containing aggregates with high electron density, such as from the presence of the heavy elements. Generic products that purported to contain equivalent amounts of API to the authentic products were discriminated from the authentic products by the handheld Raman and the different physical structure on X-ray CT. Approach to investigate both the chemical and physical properties with handheld Raman and X-ray CT, respectively, promise the accurate discrimination of the SFs, even if their visual appearance is similar with authentic products. We present a decision tree for investigating the authenticity of samples purporting to be authentic commercial tablets. Our results indicate that the combination approach of visual observation, handheld Raman and X-ray CT is a powerful strategy for nondestructive discrimination of suspect samples.

  16. Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1985-01-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.

  17. High-speed photon-counting x-ray computed tomography system utilizing a multipixel photon counter

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akiro; Onagawa, Jun

    2009-07-01

    High-speed photon counting is useful for discriminating photon energy and for decreasing absorbed dose for patients in medical radiography, and the counting is usable for constructing an x-ray computed tomography (CT) system. A photon-counting x-ray CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation stage, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0-mm-thick LSO crystal (scintillator), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of a MPPC module and the LSO. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The lower level of the photon energy is roughly determined by a comparator circuit in the module, and the unit of the level is the photon equivalent (pe). Thus, the average photon energy of the x-ray spectra increases with increasing the lower-level voltage of the comparator. The maximum count rate was approximately 20 Mcps, and energy-discriminated CT was roughly carried out.

  18. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method

    DOE PAGES

    Lu, Ping; Moya, Jaime M.; Yuan, Renliang; ...

    2018-03-01

    The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less

  19. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ping; Moya, Jaime M.; Yuan, Renliang

    The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less

  20. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method.

    PubMed

    Lu, Ping; Moya, Jaime M; Yuan, Renliang; Zuo, Jian Min

    2018-03-01

    The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping. Published by Elsevier B.V.

  1. Microstructural characterization of multiphase chocolate using X-ray microtomography.

    PubMed

    Frisullo, Pierangelo; Licciardello, Fabio; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-09-01

    In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of

  2. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE PAGES

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun; ...

    2017-04-27

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  3. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  4. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, D.E.

    1981-03-03

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings aremore » inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.« less

  5. Hybrid setup for micro- and nano-computed tomography in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon

    2017-12-01

    With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.

  6. X-ray cone-beam computed tomography: principles, applications, challenges and solutions

    NASA Astrophysics Data System (ADS)

    Noo, Frederic

    2010-03-01

    In the nineties, x-ray computed tomography, commonly referred to as CT, seemed to be on the track to become old technology, bound to be replaced by more sophisticated techniques such as magnetic resonance imaging, due in particular to the harmful effects of x-ray radiation exposure. Yet, the new century brought with it new technology that allowed a complete change in trends and re-affirmed CT as an essential tool in radiology. For instance, the popularity of CT in 2007 was such that approximately 68.7 million CT examinations were performed in the United States, which was nearly 2.5 times the number of magnetic resonance (MRI) examinations. More than that, CT has expanded beyond its conventional diagnostic role; CT is now used routinely in interventional radiology and also in radiation therapy treatment. The technology advances that allowed the revival of CT are those that made fast, accurate cone-beam data acquisition possible. Nowadays, cone-beam data acquisition allows scanning large volumes with isotropic sub-millimeter spatial resolution in a very fast time, which can be as short as 500ms for cardiac imaging. The principles of cone-beam imaging will be first reviewed. Then a discussion of its applications will be given. Old and new challenges will be presented along the way with current solutions.

  7. Characteristic of x-ray tomography performance using CdTe timepix detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; O'Shea, V.; Maneuski, D.

    2017-01-01

    X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.

  8. An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction.

    PubMed

    Li, Jiaojiao; Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Feng, Qianjin; Yu, Gaohang; Liang, Zhengrong; Chen, Wufan; Ma, Jianhua

    2015-01-01

    Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as "ALM-ANAD". The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics.

  9. X-ray computed tomography using curvelet sparse regularization.

    PubMed

    Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias

    2015-04-01

    Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  10. Grating-based X-ray Dark-field Computed Tomography of Living Mice.

    PubMed

    Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F

    2015-10-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.

  11. Grating-based X-ray Dark-field Computed Tomography of Living Mice

    PubMed Central

    Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.

    2015-01-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545

  12. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.

    PubMed

    Li, Ruijiang; Lewis, John H; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-05-01

    To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s. Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D

  13. [Effect of X-ray micro-computed tomography on the metabolic activity and diversity of soil microbial communities in two Chinese soils].

    PubMed

    Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi

    2016-01-04

    X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.

  14. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  15. Statistical and operational considerations for designs for x-ray tomographic spectrophotometry to detect, localize, and classify foreign objects in various systems

    NASA Astrophysics Data System (ADS)

    Fennelly, Alphonsus J.; Fry, Edward L.; Zukic, Muamer; Wilson, Michele M.; Janik, Tadeusz J.; Torr, Douglas G.

    1994-11-01

    In six companion papers we discuss a capability for x-ray tomographic spectrophotometry at three energy ranges to observe foreign objects in various systems using a novel x-ray optical and photometric approach. We describe new types of thin-film x-ray reflecting filters to provide energy-specific optical trains, inserted into existing x-ray interrogation systems. That is complemented by performing topographic imaging at a few, to several, energies in each case. That provides a full topographic and spectrophotometric analysis. Foreign objects can then be detected, localized, discriminated, and classified, so that they may be dealt with by excision, and replacement with benign system elements. We analyze statistical and operational concerns leading to the design of three systems: The first operates at x-ray energies of 1 - 10 keV; it deals with defects in microelectronic integrated circuits. The second operates at x-ray energies of 10 - 30 keV; it deals with the defects in human tissue. The chemical specificity and image resolution of the system will allow identification, localization, and mensuration of tumors without the need of biopsy. The system which we concentrate this discussion on, the third, operates at x- ray energies of 30 - 70 keV; it deals with the presence in transportation systems of explosive devices, and contraband materials and objects in luggage and cargo. We present the analysis of the statistical features of the detection problem in these types of systems, discussing the operational constraints which limits system performance. After considering the multivariate, multisignature, approach to the problem, we discuss the tomographic and spectrophotometric approach to the problem which yields a better solution to the detection problem within the operational constraints.

  16. The application of x-ray, computed tomography, and magnetic resonance imaging on 22 pediatric Langerhans cell histiocytosis patients with long bone involvement: A retrospective analysis.

    PubMed

    Zhang, Xiaojun; Zhou, Jing; Chai, Xuee; Chen, Guiling; Guo, Bin; Ni, Lei; Wu, Peng

    2018-04-01

    The studies focusing on x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) in pediatric Langerhans cell histiocytosis (LCH) patients were still rare. Therefore, we aimed to evaluate the application of x-ray, CT, and MRI in pediatric LCH patients with long bone involvement.Total 22 pediatric LCH patients were included in this study. The diagnosis of LCH was confirmed by pathological examination. All patients were followed up for 3 years. X-ray, CT, or MRI was performed and the results were recorded for further analyses.Among 22 pediatric patients, x-ray (n = 20), CT (n = 18), or MRI (n = 12) were used to scan the lesion on long bones affected by LCH. Femurs (n = 13, 38.24%), tibia (n = 11, 32.35%), humerus (n = 5, 14.71%), and radius (n = 4, 11.76%) were the most frequently affected anatomic sites. Ovoid or round radiolucent lesions, aggressive periosteal reaction, and swelling of surrounding soft tissues were characteristic image of long bones on x-ray, CT, and MRI in pediatric LCH.Femurs, tibia, humerus, and radius were the most commonly affected long bones of pediatric LCH. The application of x-ray, CT, and MRI on long bones could help with the diagnosis of pediatric LCH.

  17. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    DOE PAGES

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; ...

    2012-11-05

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ 1,3 XES spectra of Mn II and Mn 2 III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less

  18. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    PubMed Central

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2012-01-01

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631

  19. A soft X-ray spectroscopic perspective of electron localization and transport in tungsten doped bismuth vanadate single crystals.

    PubMed

    Jovic, Vedran; Rettie, Alexander J E; Singh, Vijay R; Zhou, Jianshi; Lamoureux, Bethany; Buddie Mullins, C; Bluhm, Hendrik; Laverock, Jude; Smith, Kevin E

    2016-11-23

    Doped BiVO 4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO 4 . Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W 6+ for V 5+ in BiVO 4 . This is shown to result in the presence of inter-band gap states related to electrons at V 4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO 4 .

  20. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  1. Microcapsules with Intrinsic Barium Radiopacity for Immunoprotection and X-ray/CT imaging of Pancreatic Islet Cells

    PubMed Central

    Arifin, D.R.; Manek, S.; Call, E.; Arepally, A.; Bulte, J.W.M.

    2012-01-01

    Microencapsulation is a commonly used technique for immunoprotection of engrafted therapeutic cells. We investigated a library of capsule formulations to determine the most optimal formulation for pancreatic beta islet cell transplantation, using barium as the gelating ion and clinical-grade protamine sulfate (PS) as a new cationic capsule cross-linker. Barium-gelated alginate/PS/alginate microcapsules (APSA, diameter = 444±21 μm) proved to be mechanically stronger and supported a higher cell viability as compared to conventional alginate/poly-L-lysine/alginate (APLLA) capsules. Human pancreatic islets encapsulated inside APSA capsules, gelated with 20 mM barium as optimal concentration, exhibited a sustained morphological integrity, viability, and functionality for at least 3–4 weeks in vitro, with secreted human C-peptide levels of 0.2–160 pg/ml/islet. Unlike APLLA capsules that are gelled with calcium, barium-APSA capsules are intrinsically radiopaque and, when engrafted into mice, could be readily imaged in vivo with micro-computed tomography (CT). Without the need of adding contrast agents, these capsules offer a clinically applicable alternative for simultaneous immunoprotection and real-time, non-invasive X-ray/CT monitoring of engrafted cells during and after in vivo administration. PMID:22444642

  2. Micro X-ray CT imaging of pore-scale changes in unconsolidated sediment under confining pressure

    NASA Astrophysics Data System (ADS)

    Schindler, M.; Prasad, M.

    2017-12-01

    Micro X-ray computed tomography was used to image confining-pressure induced changes in a dry, unconsolidated quartz sand pack while simultaneously recording ultrasonic P-wave velocities. The experiments were performed under in-situ pressure of up to 4000 psi. The majority of digital rock physics studies rely on micro CT images obtained under ambient pressure and temperature conditions although effective rock properties strongly depend on in situ conditions. Goal of this work is to be able to obtain micro CT images of rock samples while pore and confining pressure is applied. Simultaneously we recorded ultrasonic P-wave velocities. The combination of imaging and velocity measurements provides insight in pore-scale changes in the rock and their influence on elastic properties. We visually observed a reduction in porosity by more than a third of the initial value as well as extensive grain damage, changes in pore and grain size distribution and an increase in contact number and contact radius with increasing confining pressure. An increase in measured ultrasonic P-wave velocities with increasing pressure was observed. We used porosity, contact number and contact radius obtained from micro CT images to model P-wave velocity with the contact-radius model by Bachrach et al. (1998). Our observations showed that the frame of unconsolidated sediments is significantly altered starting at pressures of only 1000 psi. This finding indicates that common assumptions in rock physics models (the solid frame remains unchanged) are violated for unconsolidated sediments. The effects on the solid frame should be taken into account when modeling the pressure dependence of elastic rock properties.

  3. Mcps-range photon-counting X-ray computed tomography system utilizing an oscillating linear-YAP(Ce) photon detector

    NASA Astrophysics Data System (ADS)

    Oda, Yasuyuki; Sato, Eiichi; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-07-01

    High-speed X-ray photon counting is useful for discriminating photon energy, and the counting can be used for constructing an X-ray computed tomography (CT) system. A photon-counting X-ray CT system consists of an X-ray generator, a turntable, an oscillation linear detector, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0 mm-thick crystal (scintillator) of YAP(Ce) (cerium-doped yttrium aluminum perovskite), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of an MPPC module, the YAP(Ce), and a scan stage. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. Because the lower level of the photon energy was roughly determined by a comparator in the module, the average photon energy of the X-ray spectra increased with increase in the lower-level voltage of the comparator at a constant tube voltage. The maximum count rate was approximately 3 Mcps (mega counts per second), and photon-counting CT was carried out.

  4. First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz

    2017-03-01

    Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.

  5. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

    PubMed Central

    Jørgensen, J. S.; Sidky, E. Y.

    2015-01-01

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization. PMID:25939620

  6. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography.

    PubMed

    Jørgensen, J S; Sidky, E Y

    2015-06-13

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.

  7. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth

    2010-07-23

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requiresmore » a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.« less

  8. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Menk, Ralf-Hendrik; Astolfo, Alberto; Juurlink, Bernhard H. J.

    2010-07-01

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  9. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  10. Characteristics of a ceramic-substrate x-ray diode and its application to computed tomography

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Sato, Eiichi; Kodama, Hajime; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray photon counting was performed using a silicon X-ray diode (Si-XD) at a tube current of 2.0 mA and tube voltages ranging from 50 to 70 kV. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-ray photons, and Xray photons are directly detected using the Si-XD without a scintillator. Photocurrent from the diode is amplified using charge-sensitive and shaping amplifiers. To investigate the X-ray-electric conversion, we performed the event-pulseheight (EPH) analysis using a multichannel analyzer. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 10 min at a scan step of 0.5 mm and a rotation step of 1.0°. In PC-CT at a tube voltage of 70 kV, the image contrast of iodine media fell with increasing lower-level voltage of the event pulse using a comparator.

  11. 3D investigation of inclusions in diamonds using X-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Parisatto, M.; Nestola, F.; Artioli, G.; Nimis, P.; Harris, J. W.; Kopylova, M.; Pearson, G. D.

    2012-04-01

    The study of mineral inclusions in diamonds is providing invaluable insights into the geochemistry, geodynamics and geophysics of the Earth's mantle. Over the last two decades, the identification of different inclusion assemblages allowed to recognize diamonds deriving from the deep upper mantle, the transition zone and even the lower mantle. In such research field the in-situ investigation of inclusions using non-destructive techniques is often essential but still remains a challenging task. In particular, conventional 2D imaging techniques (e.g. SEM) are limited to the investigation of surfaces and the lack of access to the third dimension represents a major limitation when trying to extract quantitative information. Another critical aspect is related to sample preparation (cutting, polishing) which is typically very invasive. Nowadays, X-ray computed micro-tomography (X-μCT) allows to overcome such limitations, enabling the internal microstructure of totally undisturbed samples to be visualized in a three-dimensional (3D) manner at the sub-micrometric scale. The final output of a micro-tomography experiment is a greyvalue 3D map of the variations of the X-ray attenuation coefficient (µ) within the studied object. The high X-ray absorption contrast between diamond (almost transparent to X-rays) and the typical inclusion-forming minerals (olivines, garnets, pyroxenes, oxides and sulphides) makes X-μCT a straightforward method for the 3D visualization of inclusions and for the study of their spatial relationships with the diamond host. In this work we applied microfocus X-μCT to investigate silicate inclusions still trapped in diamonds, in order to obtain in-situ information on their exact position, crystal size, shape and X-ray absorption coefficient (which is related to their composition). We selected diamond samples from different deposits containing mainly olivine and garnet inclusions. The investigated samples derived from the Udachnaya pipe (Siberia

  12. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  13. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  14. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    NASA Astrophysics Data System (ADS)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  15. Modeling Hierarchical Non-Precious Metal Catalyst Cathodes for PEFCs Using Multi-Scale X-ray CT Imaging

    DOE PAGES

    Komini Babu, S.; Chung, H. T.; Wu, G.; ...

    2014-08-18

    This paper reports the development of a model for simulating polymer electrolyte fuel cells (PEFCs) with non-precious metal catalyst (NPMC) cathodes. NPMCs present an opportunity to dramatically reduce the cost of PEFC electrodes by removing the costly Pt catalyst. To address the significant transport losses in thick NPMC cathodes (ca. >60 µm), we developed a hierarchical electrode model that resolves the unique structure of the NPMCs we studied. A unique feature of the approach is the integration of the model with morphology data extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of the electrodes. A notable finding is themore » impact of the liquid water accumulation in the electrode and the significant performance improvement possible if electrode flooding is mitigated.« less

  16. REDSoX: Monte-Carlo ray-tracing for a soft x-ray spectroscopy polarimeter

    NASA Astrophysics Data System (ADS)

    Günther, Hans M.; Egan, Mark; Heilmann, Ralf K.; Heine, Sarah N. T.; Hellickson, Tim; Frost, Jason; Marshall, Herman L.; Schulz, Norbert S.; Theriault-Shay, Adam

    2017-08-01

    X-ray polarimetry offers a new window into the high-energy universe, yet there has been no instrument so far that could measure the polarization of soft X-rays (about 17-80 Å) from astrophysical sources. The Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX Polarimeter) is a proposed sounding rocket experiment that uses a focusing optic and splits the beam into three channels. Each channel has a set of criticalangle transmission (CAT) gratings that disperse the x-rays onto a laterally graded multilayer (LGML) mirror, which preferentially reflects photons with a specific polarization angle. The three channels are oriented at 120 deg to each other and thus measure the three Stokes parameters: I, Q, and U. The period of the LGML changes with position. The main design challenge is to arrange the gratings so that they disperse the spectrum in such a way that all rays are dispersed onto the position on the multi-layer mirror where they satisfy the local Bragg condition despite arriving on the mirror at different angles due to the converging beam from the focusing optics. We present a polarimeteric Monte-Carlo ray-trace of this design to assess non-ideal effects from e.g. mirror scattering or the finite size of the grating facets. With mirror properties both simulated and measured in the lab for LGML mirrors of 80-200 layers we show that the reflectivity and the width of the Bragg-peak are sufficient to make this design work when non-ideal effects are included in the simulation. Our simulations give us an effective area curve, the modulation factor and the figure of merit for the REDSoX polarimeter. As an example, we simulate an observation of Mk 421 and show that we could easily detect a 20% linear polarization.

  17. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  18. Spectra of clinical CT scanners using a portable Compton spectrometer.

    PubMed

    Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S

    2015-04-01

    Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  19. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  20. Planetary X-ray studies: past, present and future

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  1. X-ray Computed Tomography Observation of Methane Hydrate Dissociation

    USGS Publications Warehouse

    Tomutsa, L.; Freifeld, B.; Kneafsey, T.J.; Stern, L.A.

    2002-01-01

    Deposits of naturally occurring methane hydrate have been identified in permafrost and deep oceanic environments with global reserves estimated to be twice the total amount of energy stored in fossil fuels. The fundamental behavior of methane hydrate in natural formations, while poorly understood, is of critical importance if the economic recovery of methane from hydrates is to be accomplished. In this study, computed X-ray tomography (CT) scanning is used to image an advancing dissociation front in a heterogeneous gas hydrate/sand sample at 0.1 MPa. The cylindrical methane hydrate and sand aggregate, 2.54 cm in diameter and 6.3 cm long, was contained in a PVC sample holder that was insulated on all but one end. At the uninsulated end, the dissociated gas was captured and the volume of gas monitored. The sample was initially imaged axially using X-ray CT scanning within the methane hydrate stability zone by keeping the sample temperature at 77??K. Subsequently, as the sample warmed through the methane hydrate dissociation point at 194??K and room pressure, gas was produced and the temperature at the bottom of the sample plug was monitored while CT images were acquired. The experiment showed that CT imaging can resolve the reduction in density (as seen by a reduction in beam attenuation) of the hydrate/sand aggregate due to the dissociation of methane hydrate. In addition, a comparison of CT images with gas flow and temperature measurements reveals that the CT scanner is able to resolve accurately and spatially the advancing dissociation front. Future experiments designed to better understand the thermodynamics of hydrate dissociation are planned to take advantage of the temporal and spatial resolution that the CT scanner provides.

  2. UT-CT: A National Resource for Applications of High-Resolution X-ray Computed Tomography in the Geological Sciences

    NASA Astrophysics Data System (ADS)

    Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.

    2002-12-01

    An NSF-sponsored (EAR-IF) shared multi-user facility dedicated to research applications of high-resolution X-ray computed tomography (CT) in the geological sciences has been in operation since 1997 at the University of Texas at Austin. The centerpiece of the facility is an industrial CT scanner custom-designed for geological applications. Because the instrument can optimize trade-offs among penetrating ability, spatial resolution, density discrimination, imaging modes, and scan times, it can image a very broad range of geological specimens and materials, and thus offers significant advantages over medical scanners and desktop microtomographs. Two tungsten-target X-ray sources (200-kV microfocal and 420-kV) and three X-ray detectors (image-intensifier, high-sensitivity cadmium tungstate linear array, and high-resolution gadolinium-oxysulfide radiographic line scanner) can be used in various combinations to meet specific imaging goals. Further flexibility is provided by multiple imaging modes: second-generation (translate-rotate), third-generation (rotate-only; centered and variably offset), and cone-beam (volume CT). The instrument can accommodate specimens as small as about 1 mm on a side, and as large as 0.5 m in diameter and 1.5 m tall. Applications in petrology and structural geology include measuring crystal sizes and locations to identify mechanisms governing the kinetics of metamorphic reactions; visualizing relationships between alteration zones and abundant macrodiamonds in Siberian eclogites to elucidate metasomatic processes in the mantle; characterizing morphologies of spiral inclusion trails in garnet to test hypotheses of porphyroblast rotation during growth; measuring vesicle size distributions in basaltic flows for determination of elevation at the time of eruption to constrain timing and rates of continental uplift; analysis of the geometry, connectivity, and tortuosity of migmatite leucosomes to define the topology of melt flow paths, for numerical

  3. Local structure and X-ray magnetic circular dichroism of Au in Au-Co nanoalloys

    NASA Astrophysics Data System (ADS)

    Maurizio, C.; Michieli, N.; Kalinic, B.; Mattarello, V.; Bello, V.; Wilhelm, F.; Ollefs, K.; Mattei, G.

    2018-03-01

    Coupling a plasmonic metal with a magnetic one in thin films and nanostructures is very interesting for the emerging field of magnetoplasmonics. In particular, coupling through alloying is a promising strategy to induce a magnetic moment on the plasmonic metal atoms, in a way that is intimately related to the local structure of the (metastable) alloy material. In this framework, Au:Co bimetallic films have been produced via magnetron co-sputtering deposition. X-ray absorption spectroscopy (XAS) at both Au- and Co-edges clearly indicates the formation of a full-metallic layer composed for the major part of a binary AuxCo1-x alloy, with x = 0.7-0.8. XAS and transmission electron microscopy analyses suggest the presence of a minor fraction of segregated metals. X-ray magnetic circular dichroism (XMCD) analysis at Au L2,3 edges detected a net magnetic moment of Au atoms (μ = 0.06 μB), significantly larger (≈3.5 times) that the one for Au-capped Co nanoclusters and comparable to the one for a Co-rich Au/Co multilayer, despite the 4 times larger concentration of Co with respect to the present case. This Au-Co magnetic coupling is favored by a high degree of mixing of the two metals in the alloy.

  4. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy.

    PubMed

    Laurencin, Danielle; Wong, Alan; Chrzanowski, Wojciech; Knowles, Jonathan C; Qiu, Dong; Pickup, David M; Newport, Robert J; Gan, Zhehong; Duer, Melinda J; Smith, Mark E

    2010-02-07

    Despite the numerous studies of bone mineral, there are still many questions regarding the exact structure and composition of the mineral phase, and how the mineral crystals become organised with respect to each other and the collagen matrix. Bone mineral is commonly formulated as hydroxyapatite, albeit with numerous substitutions, and has previously been studied by (31)P and (1)H NMR, which has given considerable insight into the complexity of the mineral structure. However, to date, there has been no report of an NMR investigation of the other major component of bone mineral, calcium, nor of common minority cations like sodium. Here, direct analysis of the local environment of calcium in two biological apatites, equine bone (HB) and bovine tooth (CT), was carried out using both (43)Ca solid state NMR and Ca K-edge X-ray absorption spectroscopy, revealing important structural information about the calcium coordination shell. The (43)Ca delta(iso) in HB and CT is found to correlate with the average Ca-O bond distance measured by Ca K-edge EXAFS, and the (43)Ca NMR linewidths show that there is a greater distribution in chemical bonding around calcium in HB and CT, compared to synthetic apatites. In the case of sodium, (23)Na MAS NMR, high resolution 3Q-MAS NMR, as well as (23)Na{(31)P} REDOR and (1)H{(23)Na} R(3)-HMQC correlation experiments give the first direct evidence that some sodium is located inside the apatite phase in HB and CT, but with a greater distribution of environments compared to a synthetic sodium substituted apatite (Na-HA).

  5. Arterial Wall Perfusion Measured with Photon Counting Spectral X-ray CT.

    PubMed

    Jorgensen, Steven M; Korinek, Mark J; Vercnocke, Andrew J; Anderson, Jill L; Halaweish, Ahmed; Leng, Shuai; McCollough, Cynthia H; Ritman, Erik L

    2016-08-28

    Early atherosclerosis changes perfusion of the arterial wall due to localized proliferation of the vasa vasorum. When contrast agent passes through the artery, some enters the vasa vasorum and increases radiopacity of the arterial wall. Technical challenges to detecting changes in vasa vasorum density include the thin arterial wall, partial volume averaging at the arterial lumen/wall interface and calcification within the wall. We used a photon-counting spectral CT scanner to study carotid arteries of anesthetized pigs and micro-CT of these arteries to quantify vasa vasorum density. The left carotid artery wall was injected with autologous blood to stimulate vasa vasorum angiogenesis. The scans were performed at 25-120 keV; the tube-current-time product was 550 mAs. A 60 mL bolus of iodine contrast agent was injected into the femoral vein at 5mL/s. Two seconds post injection, an axial scan was acquired at every 3 s over 60 s (i.e., 20 time points). Each time point acquired 28 contiguous transaxial slices with reconstructed voxels 0.16 × 0.16 × 1 mm 3 . Regions-of-interest in the outer 2/3 of the arterial wall and in the middle 2/3 of the lumen were drawn and their enhancements plotted versus time. Lumenal CT values peaked several seconds after injection and then returned towards baseline. Arterial wall CT values peaked concurrent to the lumen. The peak arterial wall enhancement in the left carotid arterial wall correlated with increased vasa vasorum density observed in micro-CT images of the isolated arteries.

  6. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  7. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    NASA Astrophysics Data System (ADS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (˜0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ˜ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1.

  8. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  9. Effect of Tube-Based X-Ray Microtomography Imaging on the Amino Acid and Amine Content of the Murchison CM2 Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Friedrich, J. M.; Aponte, J. C.; Dworkin, J. P.; Ebel, D. S.; Elsila, J. E.; Hill, M.; McLain, H. L.; Towbin, W. H.

    2017-01-01

    X-ray and synchrotron X-ray micro-computed tomography (micro-CT) are increasingly being used for three dimensional reconnaissance imaging of chondrites and returned extraterrestrial material prior to detailed chemical and mineralogical analyses. Although micro-CT imaging is generally considered to be a non-destructive technique since silicate and metallic minerals in chondrites are not affected by X-ray exposures at the intensities and wavelengths typically used, there are concerns that the use of micro-CT could be detrimental to the organics in carbonaceous chondrites. We recently conducted a synchrotron micro-CT experiment on a powdered sample of the Murchison CM2 carbonaceous chondrite exposed to a monochromatic high energy (approximately 48 kiloelectronvolts) total X-ray radiation dose of approximately 1 kilogray (kGy) using the Advanced Photon Source beamline 13-BMD (13-Bending Magnet-D Beamline) at Argonne National Laboratory and found that there were no detectable changes in the amino acid abundances or enantiomeric compositions in the chondrite after exposure relative to a Murchison control sample that was not exposed. However, lower energy bremsstrahlung X-rays could interact more with amino acids and other lower molecular weight amines in meteorites. To test for this possibility, three separate micro-CT imaging experiments of the Murchison meteorite using the GE Phoenix v/tome/x s 240 kilovolt microfocus high resolution tungsten target X-ray tube instrument at the American Museum of Natural History (AMNH) were conducted and the amino acid abundances and enantiomeric compositions were determined. We also investigated the abundances of the C1-C5 amines in Murchison which were not analyzed in the first study.

  10. Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography.

    PubMed

    Müller, Mark; de Sena Oliveira, Ivo; Allner, Sebastian; Ferstl, Simone; Bidola, Pidassa; Mechlem, Korbinian; Fehringer, Andreas; Hehn, Lorenz; Dierolf, Martin; Achterhold, Klaus; Gleich, Bernhard; Hammel, Jörg U; Jahn, Henry; Mayer, Georg; Pfeiffer, Franz

    2017-11-21

    X-ray computed tomography (CT) is a powerful noninvasive technique for investigating the inner structure of objects and organisms. However, the resolution of laboratory CT systems is typically limited to the micrometer range. In this paper, we present a table-top nanoCT system in conjunction with standard processing tools that is able to routinely reach resolutions down to 100 nm without using X-ray optics. We demonstrate its potential for biological investigations by imaging a walking appendage of Euperipatoides rowelli , a representative of Onychophora-an invertebrate group pivotal for understanding animal evolution. Comparative analyses proved that the nanoCT can depict the external morphology of the limb with an image quality similar to scanning electron microscopy, while simultaneously visualizing internal muscular structures at higher resolutions than confocal laser scanning microscopy. The obtained nanoCT data revealed hitherto unknown aspects of the onychophoran limb musculature, enabling the 3D reconstruction of individual muscle fibers, which was previously impossible using any laboratory-based imaging technique.

  11. Optimisation of a propagation-based x-ray phase-contrast micro-CT system

    NASA Astrophysics Data System (ADS)

    Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.

    2018-03-01

    Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.

  12. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammin, Jochen, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Xu, Jennifer

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra andmore » count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102

  13. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    PubMed Central

    Cammin, Jochen; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.; Taguchi, Katsuyuki

    2014-01-01

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi , “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The

  14. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  15. Laser x-ray Conversion and Electron Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yu; Chang, Tie-qiang

    2001-02-01

    The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3ωo laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Härm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.

  16. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.

    PubMed

    Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo

    2012-04-15

    Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  19. Coherent x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Pitney, John Allen

    Conventional x-ray diffraction has historically been done under conditions such that the measured signal consists of an incoherent addition of scattering which is coherent only on a length scale determined by the properties of the beam. The result of the incoherent summation is a statistical averaging over the whole illuminated volume of the sample, which yields certain kinds of information with a high degree of precision and has been key to the success of x-ray diffraction in a variety of applications. Coherent x-ray scattering techniques, such as coherent x-ray diffraction (CXD) and x-ray intensity fluctuation spectroscopy (XIFS), attempt to reduce or eliminate any incoherent averaging so that specific, local structures couple to the measurement without being averaged out. In the case of XIFS, the result is analogous to dynamical light scattering, but with sensitivity to length scales less than 200 nm and time scales from 10-3 s to 103 s. When combined with phase retrieval, CXD represents an imaging technique with the penetration, in situ capabilities, and contrast mechanisms associated with x-rays and with a spatial resolution ultimately limited by the x-ray wavelength. In practice, however, the spatial resolution of CXD imaging is limited by exposure to about 100 A. This thesis describes CXD measurements of the binary alloy Cu3Au and the adaptation of phase retrieval methods for the reconstruction of real-space images of Cu3Au antiphase domains. The theoretical foundations of CXD are described in Chapter 1 as derived from the kinematical formulation for x-ray diffraction and from the temporal and spatial coherence of radiation. The antiphase domain structure of Cu 3Au is described, along with the associated reciprocal-space structure which is measured by CXD. CXD measurements place relatively stringent requirements on the coherence properties of the beam and on the detection mechanism of the experiment; these requirements and the means by which they have been

  20. Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation.

    PubMed

    Idris A, Elbakri; Fessler, Jeffrey A

    2003-08-07

    This paper describes a statistical image reconstruction method for x-ray CT that is based on a physical model that accounts for the polyenergetic x-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. Unlike our earlier work, the proposed algorithm does not require pre-segmentation of the object into the various tissue classes (e.g., bone and soft tissue) and allows mixed pixels. The attenuation coefficient of each voxel is modelled as the product of its unknown density and a weighted sum of energy-dependent mass attenuation coefficients. We formulate a penalized-likelihood function for this polyenergetic model and develop an iterative algorithm for estimating the unknown density of each voxel. Applying this method to simulated x-ray CT measurements of objects containing both bone and soft tissue yields images with significantly reduced beam hardening artefacts relative to conventional beam hardening correction methods. We also apply the method to real data acquired from a phantom containing various concentrations of potassium phosphate solution. The algorithm reconstructs an image with accurate density values for the different concentrations, demonstrating its potential for quantitative CT applications.

  1. Cross-correlation of the X-ray background with nearby galaxies

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith; Mushotzky, Richard F.; Boldt, Elihu; Lahav, Ofer

    1991-01-01

    The detection of a signal in the cross-correlation of the diffuse 2-10 keV HEAO 1 A-2 X-ray surface brightness with the galaxy surface density derived from diameter-limited samples from the Uppsala General Catalogue is reported. An ad hoc relationship between the X-ray flux and the galaxy counts is used to estimate the local X-ray volume emissivity at 2.8 + or - 1.0 x 10 to the 38th ergs/s/cu Mpc. This result implies that unevolved populations of X-ray sources correlated with present-epoch galaxies can contribute only 13 + or - 5 percent of the cosmic X-ray background.

  2. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Scott, A. E.

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars,more » i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.« less

  3. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  4. The Astromaterials X-Ray Computed Tomography Laboratory at Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Zeigler, R. A.; Blumenfeld, E. H.; Srinivasan, P.; McCubbin, F. M.; Evans, C. A.

    2018-04-01

    The Astromaterials Curation Office has recently begun incorporating X-ray CT data into the curation processes for lunar and meteorite samples, and long-term curation of that data and serving it to the public represent significant technical challenges.

  5. Investigations of different kilovoltage x-ray energy for three-dimensional converging stereotactic radiotherapy system: Monte Carlo simulations with CT data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deloar, Hossain M.; Kunieda, Etsuo; Kawase, Takatsugu

    2006-12-15

    We are investigating three-dimensional converging stereotactic radiotherapy (3DCSRT) with suitable medium-energy x rays as treatment for small lung tumors with better dose homogeneity at the target. A computed tomography (CT) system dedicated for non-coplanar converging radiotherapy was simulated with BEAMnrc (EGS4) Monte-Carlo code for x-ray energy of 147.5, 200, 300, and 500 kilovoltage (kVp). The system was validated by comparing calculated and measured percentage of depth dose in a water phantom for the energy of 120 and 147.5 kVp. A thorax phantom and CT data from lung tumors (<20 cm{sup 3}) were used to compare dose homogeneities of kVp energiesmore » with MV energies of 4, 6, and 10 MV. Three non-coplanar arcs (0 deg. and {+-}25 deg. ) around the center of the target were employed. The Monte Carlo dose data format was converted to the XiO RTP format to compare dose homogeneity, differential, and integral dose volume histograms of kVp and MV energies. In terms of dose homogeneity and DVHs, dose distributions at the target of all kVp energies with the thorax phantom were better than MV energies, with mean dose absorption at the ribs (human data) of 100%, 85%, 50%, 30% for 147.5, 200, 300, and 500 kVp, respectively. Considering dose distributions and reduction of the enhanced dose absorption at the ribs, a minimum of 500 kVp is suitable for the lung kVp 3DCSRT system.« less

  6. Chest X-ray and chest CT findings in patients diagnosed with pulmonary tuberculosis following solid organ transplantation: a systematic review.

    PubMed

    Giacomelli, Irai Luis; Schuhmacher Neto, Roberto; Marchiori, Edson; Pereira, Marisa; Hochhegger, Bruno

    2018-04-01

    The objective of this systematic review was to select articles including chest X-ray or chest CT findings in patients who developed pulmonary tuberculosis following solid organ transplantation (lung, kidney, or liver). The following search terms were used: "tuberculosis"; "transplants"; "transplantation"; "mycobacterium"; and "lung". The databases used in this review were PubMed and the Brazilian Biblioteca Virtual em Saúde (Virtual Health Library). We selected articles in English, Portuguese, or Spanish, regardless of the year of publication, that met the selection criteria in their title, abstract, or body of text. Articles with no data on chest CT or chest X-ray findings were excluded, as were those not related to solid organ transplantation or pulmonary tuberculosis. We selected 29 articles involving a collective total of 219 patients. The largest samples were in studies conducted in Brazil and South Korea (78 and 35 patients, respectively). The imaging findings were subdivided into five common patterns. The imaging findings varied depending on the transplanted organ in these patients. In liver and lung transplant recipients, the most common pattern was the classic one for pulmonary tuberculosis (cavitation and "tree-in-bud" nodules), which is similar to the findings for pulmonary tuberculosis in the general population. The proportion of cases showing a miliary pattern and lymph node enlargement, which is most similar to the pattern seen in patients coinfected with tuberculosis and HIV, was highest among the kidney transplant recipients. Further studies evaluating clinical data, such as immunosuppression regimens, are needed in order to improve understanding of the distribution of these imaging patterns in this population.

  7. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  8. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  9. Microcapsules with intrinsic barium radiopacity for immunoprotection and X-ray/CT imaging of pancreatic islet cells.

    PubMed

    Arifin, Dian R; Manek, Sameer; Call, Emma; Arepally, Aravind; Bulte, Jeff W M

    2012-06-01

    Microencapsulation is a commonly used technique for immunoprotection of engrafted therapeutic cells. We investigated a library of capsule formulations to determine the most optimal formulation for pancreatic beta islet cell transplantation, using barium as the gelating ion and clinical-grade protamine sulfate (PS) as a new cationic capsule cross-linker. Barium-gelated alginate/PS/alginate microcapsules (APSA, diameter = 444 ± 21 μm) proved to be mechanically stronger and supported a higher cell viability as compared to conventional alginate/poly-l-lysine/alginate (APLLA) capsules. Human pancreatic islets encapsulated inside APSA capsules, gelated with 20 mm barium as optimal concentration, exhibited a sustained morphological integrity, viability, and functionality for at least 3-4 weeks in vitro, with secreted human C-peptide levels of 0.2-160 pg/ml/islet. Unlike APLLA capsules that are gelled with calcium, barium-APSA capsules are intrinsically radiopaque and, when engrafted into mice, could be readily imaged in vivo with micro-computed tomography (CT). Without the need of adding contrast agents, these capsules offer a clinically applicable alternative for simultaneous immunoprotection and real-time, non-invasive X-ray/CT monitoring of engrafted cells during and after in vivo administration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Quantifying intermediate-frequency heterogeneities of SOFC electrodes using X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epting, William K.; Mansley, Zachary; Menasche, David B.

    2017-03-03

    The electrodes in solid oxide fuel cells (SOFCs) consist of three phases interconnected in three dimensions. The volume needed to describe quantitatively such microstructures depends on several lengths scales, which are functions of materials properties and fabrication methods. This work focuses on quantifying the volume needed to represent “intermediate frequency” heterogeneities in electrodes of a commercial SOFC using X-ray computed tomography (CT) over two different length scales. Electrode volumes of 150 x 150 x 9 μm 3 were extracted from a synchrotron-based micro-CT data set, with 13 μm 3 voxels. 13.6 x 19.8 x 19.4 μm 3 of the cathodemore » and 26.3 x 24.8 x 15.7 μm 3 of the anode were extracted from laboratory nano-CT data sets, both with 65 3 nm 3 voxels. After comparing the variation across sub-regions for the greyscale values from the micro-CT, and for the phase fractions and triple phase boundary densities from the nano-CT, it was found that the sub-region length scales needed to yield statistically similar average values were an order of magnitude larger than those expected to capture the “high frequency” heterogeneity related to the discrete nature of the three phases in electrodes. In conclusion, the challenge of quantifying such electrodes using available experimental methods is discussed.« less

  11. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  12. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  13. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  14. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  15. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  16. Inter- and intraobserver reliability of the vertebral, local and segmental kyphosis in 120 traumatic lumbar and thoracic burst fractures: evaluation in lateral X-rays and sagittal computed tomographies

    PubMed Central

    Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas

    2009-01-01

    Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local

  17. Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector.

    PubMed

    Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  18. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  19. 3-D microstructure of olivine in complex geological materials reconstructed by correlative X-ray μ-CT and EBSD analyses.

    PubMed

    Kahl, W-A; Dilissen, N; Hidas, K; Garrido, C J; López-Sánchez-Vizcaíno, V; Román-Alpiste, M J

    2017-11-01

    We reconstruct the 3-D microstructure of centimetre-sized olivine crystals in rocks from the Almirez ultramafic massif (SE Spain) using combined X-ray micro computed tomography (μ-CT) and electron backscatter diffraction (EBSD). The semidestructive sample treatment involves geographically oriented drill pressing of rocks and preparation of oriented thin sections for EBSD from the μ-CT scanned cores. The μ-CT results show that the mean intercept length (MIL) analyses provide reliable information on the shape preferred orientation (SPO) of texturally different olivine groups. We show that statistical interpretation of crystal preferred orientation (CPO) and SPO of olivine becomes feasible because the highest densities of the distribution of main olivine crystal axes from EBSD are aligned with the three axes of the 3-D ellipsoid calculated from the MIL analyses from μ-CT. From EBSD data we distinguish multiple CPO groups and by locating the thin sections within the μ-CT volume, we assign SPO to the corresponding olivine crystal aggregates, which confirm the results of statistical comparison. We demonstrate that the limitations of both methods (i.e. no crystal orientation data in μ-CT and no spatial information in EBSD) can be overcome, and the 3-D orientation of the crystallographic axes of olivines from different orientation groups can be successfully correlated with the crystal shapes of representative olivine grains. Through this approach one can establish the link among geological structures, macrostructure, fabric and 3-D SPO-CPO relationship at the hand specimen scale even in complex, coarse-grained geomaterials. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  1. GPU-accelerated depth map generation for X-ray simulations of complex CAD geometries

    NASA Astrophysics Data System (ADS)

    Grandin, Robert J.; Young, Gavin; Holland, Stephen D.; Krishnamurthy, Adarsh

    2018-04-01

    Interactive x-ray simulations of complex computer-aided design (CAD) models can provide valuable insights for better interpretation of the defect signatures such as porosity from x-ray CT images. Generating the depth map along a particular direction for the given CAD geometry is the most compute-intensive step in x-ray simulations. We have developed a GPU-accelerated method for real-time generation of depth maps of complex CAD geometries. We preprocess complex components designed using commercial CAD systems using a custom CAD module and convert them into a fine user-defined surface tessellation. Our CAD module can be used by different simulators as well as handle complex geometries, including those that arise from complex castings and composite structures. We then make use of a parallel algorithm that runs on a graphics processing unit (GPU) to convert the finely-tessellated CAD model to a voxelized representation. The voxelized representation can enable heterogeneous modeling of the volume enclosed by the CAD model by assigning heterogeneous material properties in specific regions. The depth maps are generated from this voxelized representation with the help of a GPU-accelerated ray-casting algorithm. The GPU-accelerated ray-casting method enables interactive (> 60 frames-per-second) generation of the depth maps of complex CAD geometries. This enables arbitrarily rotation and slicing of the CAD model, leading to better interpretation of the x-ray images by the user. In addition, the depth maps can be used to aid directly in CT reconstruction algorithms.

  2. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  3. X-ray Properties of an Unbiased Hard X-ray Detected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard F.; Tueller, Jack; Markwardt, Craig

    2007-01-01

    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) < 3 x 10(exp 25)/sq cm), local (< z >= 0.03), AGN sample. We find 9/22 low absorption (n(sub H) < 10(exp 23)/sq cm), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of Reynolds (1997) and George et al. (1998), who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (13122) have more complex spectra, well-fit by an absorbed power law at E > 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.

  4. Synchrotron x-ray modification of nanoparticle superlattice formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenguang; Akey, Austin J.; Herman, Irving P.

    2012-09-01

    The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.

  5. Optimizing contrast agents with respect to reducing beam hardening in nonmedical X-ray computed tomography experiments.

    PubMed

    Nakashima, Yoshito; Nakano, Tsukasa

    2014-01-01

    Iodine is commonly used as a contrast agent in nonmedical science and engineering, for example, to visualize Darcy flow in porous geological media using X-ray computed tomography (CT). Undesirable beam hardening artifacts occur when a polychromatic X-ray source is used, which makes the quantitative analysis of CT images difficult. To optimize the chemistry of a contrast agent in terms of the beam hardening reduction, we performed computer simulations and generated synthetic CT images of a homogeneous cylindrical sand-pack (diameter, 28 or 56 mm; porosity, 39 vol.% saturated with aqueous suspensions of heavy elements assuming the use of a polychromatic medical CT scanner. The degree of cupping derived from the beam hardening was assessed using the reconstructed CT images to find the chemistry of the suspension that induced the least cupping. The results showed that (i) the degree of cupping depended on the position of the K absorption edge of the heavy element relative to peak of the polychromatic incident X-ray spectrum, (ii) (53)I was not an ideal contrast agent because it causes marked cupping, and (iii) a single element much heavier than (53)I ((64)Gd to (79)Au) reduced the cupping artifact significantly, and a four-heavy-element mixture of elements from (64)Gd to (79)Au reduced the artifact most significantly.

  6. RADIO-QUIET AND RADIO-LOUD PULSARS: SIMILAR IN GAMMA-RAYS BUT DIFFERENT IN X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marelli, M.; Mignani, R. P.; Luca, A. De

    2015-04-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet (RQ) γ-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from γ-ray pulsar timing. For PSR J2030+4415 we found evidence for a ∼10″-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. and confirm that, on average, the γ-ray-to-X-ray flux ratios (F{sub γ}/F{sub X}) of RQ pulsars are higher than for the radio-loud (RL) ones. Furthermore, while the F{sub γ}/F{sub X} distribution featuresmore » a single peak for the RQ pulsars, the distribution is more dispersed for the RL ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.« less

  7. Improving image quality in laboratory x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.

    2017-03-01

    Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.

  8. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerra, F.; Heaton, H.T.

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescentmore » dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.« less

  9. Preoperative 4D CT Localization of Nonlocalizing Parathyroid Adenomas by Ultrasound and SPECT-CT.

    PubMed

    Hinson, Andrew M; Lee, David R; Hobbs, Bradley A; Fitzgerald, Ryan T; Bodenner, Donald L; Stack, Brendan C

    2015-11-01

    To evaluate 4-dimensional (4D) computed tomography (CT) for the localization of parathyroid adenomas previously considered nonlocalizing on ultrasound and single-photon emission CT with CT scanning (SPECT-CT). To measure radiation exposure associated with 4D-CT and compared it with SPECT-CT. Case series with chart review. University tertiary hospital. Nineteen adults with primary hyperparathyroidism who underwent preoperative 4D CT from November 2013 through July 2014 after nonlocalizing preoperative ultrasound and technetium-99m SPECT-CT scans. Sensitivity, specificity, predictive values, and accuracy of 4D CT were evaluated. Nineteen patients (16 women and 3 men) were included with a mean age of 66 years (range, 39-80 years). Mean preoperative parathyroid hormone level was 108.5 pg/mL (range, 59.3-220.9 pg/mL), and mean weight of the excised gland was 350 mg (range, 83-797 mg). 4D CT sensitivity and specificity for localization to the patient's correct side of the neck were 84.2% and 81.8%, respectively; accuracy was 82.9%. The sensitivity for localizing adenomas to the correct quadrant was 76.5% and 91.5%, respectively; accuracy was 88.2%. 4D CT radiation exposure was significantly less than the radiation associated with SPECT-CT (13.8 vs 18.4 mSv, P = 0.04). 4D CT localizes parathyroid adenomas with relatively high sensitivity and specificity and allows for the localization of some adenomas not observed on other sestamibi-based scans. 4D CT was also associated with less radiation exposure when compared with SPECT-CT based on our study protocol. 4D CT may be considered as first- or second-line imaging for localizing parathyroid adenomas in the setting of primary hyperparathyroidism. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  10. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  11. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  12. First experiences with in-vivo x-ray dark-field imaging of lung cancer in mice

    NASA Astrophysics Data System (ADS)

    Gromann, Lukas B.; Scherer, Kai; Yaroshenko, Andre; Bölükbas, Deniz A.; Hellbach, Katharina; Meinel, Felix G.; Braunagel, Margarita; Eickelberg, Oliver; Reiser, Maximilian F.; Pfeiffer, Franz; Meiners, Silke; Herzen, Julia

    2017-03-01

    Purpose: The purpose of the present study was to evaluate if x-ray dark-field imaging can help to visualize lung cancer in mice. Materials and Methods: The experiments were performed using mutant mice with high-grade adenocarcinomas. Eight animals with pulmonary carcinoma and eight control animals were imaged in radiography mode using a prototype small-animal x-ray dark-field scanner and three of the cancerous ones additionally in CT mode. After imaging, the lungs were harvested for histological analysis. To determine their diagnostic value, x-ray dark-field and conventional attenuation images were analyzed by three experienced readers in a blind assessment. Results radiographic imaging: The lung nodules were much clearer visualized on the dark-field radiographs compared to conventional radiographs. The loss of air-tissue interfaces in the tumor leads to a significant loss of x-ray scattering, reflected in a strong dark-field signal change. The difference between tumor and healthy tissue in terms of x-ray attenuation is significantly less pronounced. Furthermore, the signal from the overlaying structures on conventional radiographs complicates the detection of pulmonary carcinoma. Results CT imaging: The very first in-vivo CT-imaging results are quite promising as smaller tumors are often better visible in the dark-field images. However the imaging quality is still quite low, especially in the attenuation images due to un-optimized scanning parameters. Conclusion: We found a superior diagnostic performance of dark-field imaging compared to conventional attenuation based imaging, especially when it comes to the detection of small lung nodules. These results support the motivation to further develop this technique and translate it towards a clinical environment.

  13. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  14. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  15. Graph cuts and neural networks for segmentation and porosity quantification in Synchrotron Radiation X-ray μCT of an igneous rock sample.

    PubMed

    Meneses, Anderson Alvarenga de Moura; Palheta, Dayara Bastos; Pinheiro, Christiano Jorge Gomes; Barroso, Regina Cely Rodrigues

    2018-03-01

    X-ray Synchrotron Radiation Micro-Computed Tomography (SR-µCT) allows a better visualization in three dimensions with a higher spatial resolution, contributing for the discovery of aspects that could not be observable through conventional radiography. The automatic segmentation of SR-µCT scans is highly valuable due to its innumerous applications in geological sciences, especially for morphology, typology, and characterization of rocks. For a great number of µCT scan slices, a manual process of segmentation would be impractical, either for the time expended and for the accuracy of results. Aiming the automatic segmentation of SR-µCT geological sample images, we applied and compared Energy Minimization via Graph Cuts (GC) algorithms and Artificial Neural Networks (ANNs), as well as the well-known K-means and Fuzzy C-Means algorithms. The Dice Similarity Coefficient (DSC), Sensitivity and Precision were the metrics used for comparison. Kruskal-Wallis and Dunn's tests were applied and the best methods were the GC algorithms and ANNs (with Levenberg-Marquardt and Bayesian Regularization). For those algorithms, an approximate Dice Similarity Coefficient of 95% was achieved. Our results confirm the possibility of usage of those algorithms for segmentation and posterior quantification of porosity of an igneous rock sample SR-µCT scan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  17. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  18. Development of a universal medical X-ray imaging phantom prototype.

    PubMed

    Groenewald, Annemari; Groenewald, Willem A

    2016-11-08

    Diagnostic X-ray imaging depends on the maintenance of image quality that allows for proper diagnosis of medical conditions. Maintenance of image quality requires quality assurance programs on the various X-ray modalities, which consist of pro-jection radiography (including mobile X-ray units), fluoroscopy, mammography, and computed tomography (CT) scanning. Currently a variety of modality-specific phantoms are used to perform quality assurance (QA) tests. These phantoms are not only expensive, but suitably trained personnel are needed to successfully use them and interpret the results. The question arose as to whether a single universal phantom could be designed and applied to all of the X-ray imaging modalities. A universal phantom would reduce initial procurement cost, possibly reduce the time spent on QA procedures and simplify training of staff on the single device. The aim of the study was to design and manufacture a prototype of a universal phantom, suitable for image quality assurance in general X-rays, fluoroscopy, mammography, and CT scanning. The universal phantom should be easy to use and would enable automatic data analysis, pass/fail reporting, and corrective action recommendation. In addition, a universal phantom would especially be of value in low-income countries where finances and human resources are limited. The design process included a thorough investigation of commercially available phantoms. Image quality parameters necessary for image quality assurance in the different X-ray imaging modalities were determined. Based on information obtained from the above-mentioned investigations, a prototype of a universal phantom was developed, keeping ease of use and reduced cost in mind. A variety of possible phantom housing and insert materials were investigated, considering physical properties, machinability, and cost. A three-dimensional computer model of the first phantom prototype was used to manufacture the prototype housing and inserts. Some of the

  19. Model-based sphere localization (MBSL) in x-ray projections

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc

    2017-08-01

    The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.

  20. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  1. Analysis of cracks induced by elevated temperature in rock using micro-focus X-ray CT

    NASA Astrophysics Data System (ADS)

    Cheon, D. S.; Park, E. S.

    2016-12-01

    Thermal energy storage facilities and deep borehole nuclear waste disposal in the underground are repeatedly applied by heat. The thermal stress induced by heat can generate micro-cracks and extend the existing micro-cracks of rocks. For long-term stabilities of the above facilities, the features of thermal induced cracks should be investigated. In this paper, we investigated occurred the features of thermal cracks using micro-focus X-ray CT before and after thermal experiments. Two different kinds of rock core specimens (limestone, granite) were heated within the furnace with the elevated temperatures of 250 °C, 400 °C and 550 °C. In thermal experiments, we heated rocks with the speed of 1.5 ºC /min to avoid thermal shock. Total 16 cases were subjected to X-ray imaging and post-processing to observe thermally induced fractures. Micro-cracks induced by thermal loading may not be extractable by a thresholding method such that the manual tracking within the ROI (Region of Interest) was implemented by using the VG Studio Software. Identified fractures were grouped by each object whose orientation was fitted by 3D plane. And then, its normal vector was computed and visualized. Nominal fractures (less than 10 voxel size) were excluded. Each fracture was projected on the 3D sphere and its volume was represented by color map. Thermal induced cracks in the limestone observed on CT images were very small. On the other hand, they could be more clearly observed in the granite. In case of limestone, the number of cracks is only 4 after heating up 550 °C and most of them occurred within the mineral. In case of granite, 157 cracks are detected both at the boundaries of minerals and within the mineral. In both rocks, the development of thermal cracks within a certain mineral was superior to them that occurred along the interface between minerals. After heating up to 550 °C the occurred cracks significantly increased. Crack volume was also similar pattern to the number of

  2. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  3. Enhanced X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-04-01

    X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.

  4. A practical material decomposition method for x-ray dual spectral computed tomography.

    PubMed

    Hu, Jingjing; Zhao, Xing

    2016-03-17

    X-ray dual spectral CT (DSCT) scans the measured object with two different x-ray spectra, and the acquired rawdata can be used to perform the material decomposition of the object. Direct calibration methods allow a faster material decomposition for DSCT and can be separated in two groups: image-based and rawdata-based. The image-based method is an approximative method, and beam hardening artifacts remain in the resulting material-selective images. The rawdata-based method generally obtains better image quality than the image-based method, but this method requires geometrically consistent rawdata. However, today's clinical dual energy CT scanners usually measure different rays for different energy spectra and acquire geometrically inconsistent rawdata sets, and thus cannot meet the requirement. This paper proposes a practical material decomposition method to perform rawdata-based material decomposition in the case of inconsistent measurement. This method first yields the desired consistent rawdata sets from the measured inconsistent rawdata sets, and then employs rawdata-based technique to perform material decomposition and reconstruct material-selective images. The proposed method was evaluated by use of simulated FORBILD thorax phantom rawdata and dental CT rawdata, and simulation results indicate that this method can produce highly quantitative DSCT images in the case of inconsistent DSCT measurements.

  5. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  6. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  7. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  8. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimwegen, Frederika A. van; Cutter, David J.; Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–controlmore » study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  9. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    PubMed

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a

  10. X-Ray Computed Tomography Inspection of the Stardust Heat Shield

    NASA Technical Reports Server (NTRS)

    McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio; hide

    2010-01-01

    The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses

  11. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  12. X-ray computed tomography datasets for forensic analysis of vertebrate fossils.

    PubMed

    Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A; Maisano, Jessica A; Colbert, Matthew W

    2016-06-07

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils.

  13. X-ray computed tomography datasets for forensic analysis of vertebrate fossils

    PubMed Central

    Rowe, Timothy B.; Luo, Zhe-Xi; Ketcham, Richard A.; Maisano, Jessica A.; Colbert, Matthew W.

    2016-01-01

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251

  14. CT artifact recognition for the nuclear technologist.

    PubMed

    Popilock, Robert; Sandrasagaren, Kumar; Harris, Lowell; Kaser, Keith A

    2008-06-01

    The goal of this article is to make the PET/CT and SPECT/CT operator aware of common artifacts found in CT. In diagnostic imaging, the ability to render an accurate diagnosis requires the technologist to take steps to optimize image quality and recognize when image quality has been compromised-that is, when there is an image artifact. One way these artifacts occur is through the inability of the CT linear attenuation image to precisely represent the linear attenuation map of a 2-dimensional section through the body. The reasons for this inability are multifold. First, CT is subject to the laws of x-ray quantum physics resulting in noise in all CT images. Moreover, all current CT x-ray systems generate a spectrum of energies. Also, CT scanners use detectors of finite dimension, as are the x-ray focal spots; reconstruct images from a finite number of samples distributed over a finite number of views; and acquire the data for each reconstruction over a finite period.

  15. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.

    PubMed

    Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood

    2016-01-01

    Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.

  16. Small-animal CT: Its difference from, and impact on, clinical CT

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.

    2007-10-01

    For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage

  17. Medipix-based Spectral Micro-CT.

    PubMed

    Yu, Hengyong; Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2012-12-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT.

  18. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study.

    PubMed

    Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Di Michiel, Marco; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R

    2016-11-16

    Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO 2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO 2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure.

  19. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  20. Automatic vertebral bodies detection of x-ray images using invariant multiscale template matching

    NASA Astrophysics Data System (ADS)

    Sharifi Sarabi, Mona; Villaroman, Diane; Beckett, Joel; Attiah, Mark; Marcus, Logan; Ahn, Christine; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain and pathologies related to it are one of the most common results for a referral to a neurosurgical clinic in the developed and the developing world. Quantitative evaluation of these pathologies is a challenge. Image based measurements of angles/vertebral heights and disks could provide a potential quantitative biomarker for tracking and measuring these pathologies. Detection of vertebral bodies is a key element and is the focus of the current work. From the variety of medical imaging techniques, MRI and CT scans have been typically used for developing image segmentation methods. However, CT scans are known to give a large dose of x-rays, increasing cancer risk [8]. MRI can be substituted for CTs when the risk is high [8] but are difficult to obtain in smaller facilities due to cost and lack of expertise in the field [2]. X-rays provide another option with its ability to control the x-ray dosage, especially for young people, and its accessibility for smaller facilities. Hence, the ability to create quantitative biomarkers from x-ray data is especially valuable. Here, we develop a multiscale template matching, inspired by [9], to detect centers of vertebral bodies from x-ray data. The immediate application of such detection lies in developing quantitative biomarkers and in querying similar images in a database. Previously, shape similarity classification methods have been used to address this problem, but these are challenging to use in the presence of variation due to gross pathology and even subtle effects [1].

  1. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  3. European X-Ray Free Electron Laser (EXFEL): local implications

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  4. What is the clinical significance of chest CT when the chest x-ray result is normal in patients with blunt trauma?

    PubMed

    Kea, Bory; Gamarallage, Ruwan; Vairamuthu, Hemamalini; Fortman, Jonathan; Lunney, Kevin; Hendey, Gregory W; Rodriguez, Robert M

    2013-08-01

    Computed tomography (CT) has been shown to detect more injuries than plain radiography in patients with blunt trauma, but it is unclear whether these injuries are clinically significant. This study aimed to determine the proportion of patients with normal chest x-ray (CXR) result and injury seen on CT and abnormal initial CXR result and no injury on CT and to characterize the clinical significance of injuries seen on CT as determined by a trauma expert panel. Patients with blunt trauma older than 14 years who received emergency department chest imaging as part of their evaluation at 2 urban level I trauma centers were enrolled. An expert trauma panel a priori classified thoracic injuries and subsequent interventions as major, minor, or no clinical significance. Of 3639 participants, 2848 (78.3%) had CXR alone and 791 (21.7%) had CXR and chest CT. Of 589 patients who had chest CT after a normal CXR result, 483 (82.0% [95% confidence interval [CI], 78.7-84.9%]) had normal CT results, and 106 (18.0% [95% CI, 15.1%-21.3%]) had CTs diagnosing injuries-primarily rib fractures, pulmonary contusion, and incidental pneumothorax. Twelve patients had injuries classified as clinically major (2.0% [95% CI, 1.2%-3.5%]), 78 were clinically minor (13.2% [95% CI, 10.7%-16.2%]), and 16 were clinically insignificant (2.7% (95% CI, 1.7%-4.4%]). Of 202 patients with CXRs suggesting injury, 177 (87.6% [95% CI, 82.4%-91.5%]) had chest CTs confirming injury and 25 (12.4% [95% CI, 8.5%-17.6%]) had no injury on CT. Chest CT after a normal CXR result in patients with blunt trauma detects injuries, but most do not lead to changes in patient management. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Extended X-ray absorption fine structure investigation of Sn local environment in strained and relaxed epitaxial Ge{sub 1−x}Sn{sub x} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be; Heyns, M.; Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Leuven

    2015-03-07

    We present an extended X-ray absorption fine structure investigation of the local environment of Sn atoms in strained and relaxed Ge{sub 1−x}Sn{sub x} layers with different compositions. We show that the preferred configuration for the incorporation of Sn atoms in these Ge{sub 1−x}Sn{sub x} layers is that of a α-Sn defect, with each Sn atom covalently bonded to four Ge atoms in a classic tetrahedral configuration. Sn interstitials, Sn-split vacancy complexes, or Sn dimers, if present at all, are not expected to involve more than 2.5% of the total Sn atoms. This finding, along with a relative increase of Snmore » atoms in the second atomic shell around a central Sn atom in Ge{sub 1−x}Sn{sub x} layers with increasing Sn concentrations, suggests that the investigated materials are homogeneous random substitutional alloys. Within the accuracy of the measurements, the degree of strain relaxation of the Ge{sub 1−x}Sn{sub x} layers does not have a significant impact on the local atomic surrounding of the Sn atoms. Finally, the calculated topological rigidity parameter a** = 0.69 ± 0.29 indicates that the strain due to alloying in Ge{sub 1−x}Sn{sub x} is accommodated via bond stretching and bond bending, with a slight predominance of the latter, in agreement with ab initio calculations reported in literature.« less

  6. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  7. Computational Methods for Nanoscale X-ray Computed Tomography Image Analysis of Fuel Cell and Battery Materials

    NASA Astrophysics Data System (ADS)

    Kumar, Arjun S.

    Over the last fifteen years, there has been a rapid growth in the use of high resolution X-ray computed tomography (HRXCT) imaging in material science applications. We use it at nanoscale resolutions up to 50 nm (nano-CT) for key research problems in large scale operation of polymer electrolyte membrane fuel cells (PEMFC) and lithium-ion (Li-ion) batteries in automotive applications. PEMFC are clean energy sources that electrochemically react with hydrogen gas to produce water and electricity. To reduce their costs, capturing their electrode nanostructure has become significant in modeling and optimizing their performance. For Li-ion batteries, a key challenge in increasing their scope for the automotive industry is Li metal dendrite growth. Li dendrites are structures of lithium with 100 nm features of interest that can grow chaotically within a battery and eventually lead to a short-circuit. HRXCT imaging is an effective diagnostics tool for such applications as it is a non-destructive method of capturing the 3D internal X-ray absorption coefficient of materials from a large series of 2D X-ray projections. Despite a recent push to use HRXCT for quantitative information on material samples, there is a relative dearth of computational tools in nano-CT image processing and analysis. Hence, we focus on developing computational methods for nano-CT image analysis of fuel cell and battery materials as required by the limitations in material samples and the imaging environment. The first problem we address is the segmentation of nano-CT Zernike phase contrast images. Nano-CT instruments are equipped with Zernike phase contrast optics to distinguish materials with a low difference in X-ray absorption coefficient by phase shifting the X-ray wave that is not diffracted by the sample. However, it creates image artifacts that hinder the use of traditional image segmentation techniques. To restore such images, we setup an inverse problem by modeling the X-ray phase contrast

  8. Refractive optics to compensate x-ray mirror shape-errors

    NASA Astrophysics Data System (ADS)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  9. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03local X-ray-studied samples of normal galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  10. Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.

    PubMed

    Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti

    2006-02-01

    Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.

  11. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  12. Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT.

    PubMed

    Aschenbrenner, Katharina P; Guthier, Christian V; Lyatskaya, Yulia; Boda-Heggemann, Judit; Wenz, Frederik; Hesser, Jürgen W

    2017-09-01

    In stereotactic body radiation therapy of lung tumors, reliable position estimation of the tumor is necessary in order to minimize normal tissue complication rate. While kV X-ray imaging is frequently used, continuous application during radiotherapy sessions is often not possible due to concerns about the additional dose. Thus, ultra low-dose (ULD) kV X-ray imaging based on a single photon counting detector is suggested. This paper addresses the lower limit of photons to locate the tumor reliably with an accuracy in the range of state-of-the-art methods, i.e. a few millimeters. 18 patient cases with four dimensional CT (4D-CT), which serves as a-priori information, are included in the study. ULD cone beam projections are simulated from the 4D-CTs including Poisson noise. The projections from the breathing phases which correspond to different tumor positions are compared to the ULD projection by means of Poisson log-likelihood (PML) and correlation coefficient (CC), and template matching under these metrics. The results indicate that in full thorax imaging five photons per pixel suffice for a standard deviation in tumor positions of less than half a breathing phase. Around 50 photons per pixel are needed to achieve this accuracy with the field of view restricted to the tumor region. Compared to CC, PML tends to perform better for low photon counts and shifts in patient setup. Template matching only improves the position estimation in high photon counts. The quality of the reconstruction is independent of the projection angle. The accuracy of the proposed ULD single photon counting system is in the range of a few millimeters and therefore comparable to state-of-the-art tumor tracking methods. At the same time, a reduction in photons per pixel by three to four orders of magnitude relative to commercial systems with flatpanel detectors can be achieved. This enables continuous kV image-based position estimation during all fractions since the additional dose to the

  13. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    frequencies to improve the depth resolution. In NSRL, we performed soft X-ray holographic tomography experiments. The specimen was the spider filaments and PM M A as recording medium. By 3D CT reconstruction of the projection data, three dimensional density distribution of the specimen was obtained. Also, we developed a new X-ray holographic tomography m ethod called pre-amplified holographic tomography. The method permits a digital real-time 3D reconstruction with high-resolution and a simple and compact experimental setup as well.

  14. A detailed study of gold-nanoparticle loaded cells using X-ray based techniques for cell-tracking applications with single-cell sensitivity

    NASA Astrophysics Data System (ADS)

    Astolfo, Alberto; Arfelli, Fulvia; Schültke, Elisabeth; James, Simon; Mancini, Lucia; Menk, Ralf-Hendrik

    2013-03-01

    In the present study complementary high-resolution imaging techniques on different length scales are applied to elucidate a cellular loading protocol of gold nanoparticles and subsequently its impact on long term and high-resolution cell-tracking utilizing X-ray technology. Although demonstrated for malignant cell lines the results can be applied to non-malignant cell lines as well. In particular the accumulation of the gold marker per cell has been assessed quantitatively by virtue of electron microscopy, two-dimensional X-ray fluorescence imaging techniques and X-ray CT with micrometric and sub-micrometric resolution. Moreover, utilizing these techniques the three dimensional distribution of the incorporated nanoparticles, which are sequestered in lysosomes as a permanent marker, could be determined. The latter allowed elucidation of the gold partition during mitosis and the cell size, which subsequently enabled us to define the optimal instrument settings of a compact microCT system to visualize gold loaded cells. The results obtained demonstrate the feasibility of cell-tracking using X-ray CT with compact sources.

  15. A novel high-pressure vessel for simultaneous observations of seismic velocity and in situ CO2 distribution in a porous rock using a medical X-ray CT scanner

    NASA Astrophysics Data System (ADS)

    Jiang, Lanlan; Nishizawa, Osamu; Zhang, Yi; Park, Hyuck; Xue, Ziqiu

    2016-12-01

    Understanding the relationship between seismic wave velocity or attenuation and CO2 saturation is essential for CO2 storage in deep saline formations. In the present study, we describe a novel upright high-pressure vessel that is designed to keep a rock sample under reservoir conditions and simultaneously image the entire sample using a medical X-ray CT scanner. The pressure vessel is composed of low X-ray absorption materials: a carbon-fibre-enhanced polyetheretherketone (PEEK) cylinder and PEEK vessel closures supported by carbon-fibre-reinforced plastic (CFRP) joists. The temperature was controlled by a carbon-coated film heater and an aramid fibre thermal insulator. The assembled sample cell allows us to obtain high-resolution images of rock samples during CO2 drainage and brine imbibition under reservoir conditions. The rock sample was oriented vertical to the rotation axis of the CT scanner, and seismic wave paths were aligned parallel to the rotation axis to avoid shadows from the acoustic transducers. The reconstructed CO2 distribution images allow us to calculate the CO2 saturation in the first Fresnel zone along the ray path between transducers. A robust relationship between the seismic wave velocity or attenuation and the CO2 saturation in porous rock was obtained from experiments using this pressure vessel.

  16. Simultaneous CT and SPECT tomography using CZT detectors

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  17. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector

    PubMed Central

    Dudak, Jan; Zemlicka, Jan; Karch, Jakub; Patzelt, Matej; Mrzilkova, Jana; Zach, Petr; Hermanova, Zuzana; Kvacek, Jiri; Krejci, Frantisek

    2016-01-01

    Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation. PMID:27461900

  18. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  19. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  20. Impact of large x-ray beam collimation on image quality

    NASA Astrophysics Data System (ADS)

    Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.

    2016-03-01

    Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.

  1. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  2. Histology-validated x-ray tomography for imaging human coronary arteries

    NASA Astrophysics Data System (ADS)

    Buscema, Marzia; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Matviykiv, Sofiya; Holme, Margaret N.; Hipp, Alexander; Beckmann, Felix; Saxer, Till; Michaud, Katarzyna; Müller, Bert

    2016-10-01

    Heart disease is the number one cause of death worldwide. To improve therapy and patient outcome, the knowledge of anatomical changes in terms of lumen morphology and tissue composition of constricted arteries is crucial for designing a localized drug delivery to treat atherosclerosis disease. Traditional tissue characterization by histology is a pivotal tool, although it brings disadvantages such as vessel morphology modification during decalcification and slicing. X-ray tomography in absorption and phase contrast modes yields a deep understanding in blood vessel anatomy in healthy and diseased stages: measurements in absorption mode make visible highly absorbing tissue components including cholesterol plaques, whereas phase contrast tomography gains better contrast of the soft tissue components such as vessel walls. Established synchrotron radiation-based micro-CT techniques ensure high performance in terms of 3D visualization of highly absorbing and soft tissues.

  3. Material Identification and Quantification in Spectral X-ray Micro-CT

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas Wesley

    The identification and quantification of all the voxels within a reconstructed microCT image was possible through making comparisons of the attenuation profile from an unknown voxel with precalculated signatures of known materials. This was accomplished through simulations with the MCNP6 general-purpose radiation-transport package that modeled a CdTe detector array consisting of 200 elements which were able to differentiate between 100 separate energy bins over the entire range of the emitted 110 kVp tungsten x-ray spectra. The information from each of the separate energy bins was then used to create a single reconstructed image that was then grouped back together to produce a final image where each voxel had a corresponding attenuation pro le. A library of known attenuation profiles was created for each of the materials expected to be within an object with otherwise unknown parameters. A least squares analysis was performed, and comparisons were then made for each voxel's attenuation profile in the unknown object and combinations of each possible library combination of attenuation profiles. Based on predetermined thresholds that the results must meet, some of the combinations were then removed. Of the remaining combinations, a voting system based on statistical evaluations of the fits was designed to select the most appropriate material combination to the input unknown voxel. This was performed over all of the voxels in the reconstructed image and a final resulting material map was produced. These material locations were then quantified by creating an equation of the response from several different densities of the same material and recording the response of the base library. This entire process was called the All Combinations Library Least Squares (ACLLS)analysis and was used to test several Different models. These models investigated a range of densities for the x-ray contrast agents of gold and gadolinium that can be used in many medical applications, as well

  4. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  5. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  6. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  7. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  8. Automated extraction method for the center line of spinal canal and its application to the spinal curvature quantification in torso X-ray CT images

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Zhou, Xiangrong; Chen, Huayue; Hara, Takeshi; Miyamoto, Kei; Kobayashi, Tatsunori; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2010-03-01

    X-ray CT images have been widely used in clinical routine in recent years. CT images scanned by a modern CT scanner can show the details of various organs and tissues. This means various organs and tissues can be simultaneously interpreted on CT images. However, CT image interpretation requires a lot of time and energy. Therefore, support for interpreting CT images based on image-processing techniques is expected. The interpretation of the spinal curvature is important for clinicians because spinal curvature is associated with various spinal disorders. We propose a quantification scheme of the spinal curvature based on the center line of spinal canal on CT images. The proposed scheme consists of four steps: (1) Automated extraction of the skeletal region based on CT number thresholding. (2) Automated extraction of the center line of spinal canal. (3) Generation of the median plane image of spine, which is reformatted based on the spinal canal. (4) Quantification of the spinal curvature. The proposed scheme was applied to 10 cases, and compared with the Cobb angle that is commonly used by clinicians. We found that a high-correlation (for the 95% confidence interval, lumbar lordosis: 0.81-0.99) between values obtained by the proposed (vector) method and Cobb angle. Also, the proposed method can provide the reproducible result (inter- and intra-observer variability: within 2°). These experimental results suggested a possibility that the proposed method was efficient for quantifying the spinal curvature on CT images.

  9. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  10. [The application of X-ray imaging in forensic medicine].

    PubMed

    Kučerová, Stěpánka; Safr, Miroslav; Ublová, Michaela; Urbanová, Petra; Hejna, Petr

    2014-07-01

    X-ray is the most common, basic and essential imaging method used in forensic medicine. It serves to display and localize the foreign objects in the body and helps to detect various traumatic and pathological changes. X-ray imaging is valuable in anthropological assessment of an individual. X-ray allows non-invasive evaluation of important findings before the autopsy and thus selection of the optimal strategy for dissection. Basic indications for postmortem X-ray imaging in forensic medicine include gunshot and explosive fatalities (identification and localization of projectiles or other components of ammunition, visualization of secondary missiles), sharp force injuries (air embolism, identification of the weapon) and motor vehicle related deaths. The method is also helpful for complex injury evaluation in abused victims or in persons where abuse is suspected. Finally, X-ray imaging still remains the gold standard method for identification of unknown deceased. With time modern imaging methods, especially computed tomography and magnetic resonance imaging, are more and more applied in forensic medicine. Their application extends possibilities of the visualization the bony structures toward a more detailed imaging of soft tissues and internal organs. The application of modern imaging methods in postmortem body investigation is known as digital or virtual autopsy. At present digital postmortem imaging is considered as a bloodless alternative to the conventional autopsy.

  11. Application of x-ray absorption fine structure (XAFS) to local-order analysis in Fe-Cr maghemite-like materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Fuentes-Cobas, L. E.; Macías-Ríos, E.

    2015-07-23

    The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-rangemore » structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})« less

  12. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    PubMed Central

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  13. Patient size and x-ray technique factors in head computed tomography examinations. II. Image quality.

    PubMed

    Huda, Walter; Lieberman, Kristin A; Chang, Jack; Roskopf, Marsha L

    2004-03-01

    We investigated how patient head characteristics, as well as the choice of x-ray technique factors, affect lesion contrast and noise values in computed tomography (CT) images. Head sizes and mean Hounsfield unit (HU) values were obtained from head CT images for five classes of patients ranging from the newborn to adults. X-ray spectra with tube voltages ranging from 80 to 140 kV were used to compute the average photon energy, and energy fluence, transmitted through the heads of patients of varying size. Image contrast, and the corresponding contrast to noise ratios (CNRs), were determined for lesions of fat, muscle, and iodine relative to a uniform water background. Maintaining a constant image CNR for each lesion, the patient energy imparted was also computed to identify the x-ray tube voltage that minimized the radiation dose. For adults, increasing the tube voltage from 80 to 140 kV changed the iodine HU from 2.62 x 10(5) to 1.27 x 10(5), the fat HU from -138 to -108, and the muscle HU from 37.1 to 33.0. Increasing the x-ray tube voltage from 80 to 140 kV increased the percentage energy fluence transmission by up to a factor of 2. For a fixed x-ray tube voltage, the percentage transmitted energy fluence in adults was more than a factor of 4 lower than for newborns. For adults, increasing the x-ray tube voltage from 80 to 140 kV improved the CNR for muscle lesions by 130%, for fat lesions by a factor of 2, and for iodine lesions by 25%. As the size of the patient increased from newborn to adults, lesion CNR was reduced by about a factor of 2. The mAs value can be reduced by 80% when scanning newborns while maintaining the same lesion CNR as for adults. Maintaining the CNR of an iodine lesion at a constant level, use of 140 kV increases the energy imparted to an adult patient by nearly a factor of 3.5 in comparison to 80 kV. For fat and muscle lesions, raising the x-ray tube voltage from 80 to 140 kV at a constant CNR increased the patient dose by 37% and 7

  14. Synchrotron radiation microbeam X-ray diffraction for nondestructive assessments of local structural properties of faceted InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Sakaki, Atsushi; Funato, Mitsuru; Kawamura, Tomoaki; Araki, Jun; Kawakami, Yoichi

    2018-03-01

    Synchrotron radiation (SR) X-ray diffraction with a sub-µm spatial resolution is used to nondestructively evaluate the local thickness and alloy composition of three-dimensionally faceted InGaN/GaN quantum wells (QWs). The (0001) facet QW on a trapezoidal structure composed of (0001), \\{ 11\\bar{2}2\\} , and \\{ 11\\bar{2}0\\} facets is nonuniform, most likely owing to the migration of adatoms between facets. The thickness and composition markedly vary within a short distance for the \\{ 11\\bar{2}2\\} facet QW of another pyramidal structure. The QW parameters acquired by SR microbeam X-ray diffraction reproduce the local emission property assessed by cathodoluminescence, thereby indicating the high reliability of this method.

  15. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  16. Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.

  17. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. X-ray digital intra-oral tomosynthesis for quasi-three-dimensional imaging: system, reconstruction algorithm, and experiments

    NASA Astrophysics Data System (ADS)

    Li, Liang; Chen, Zhiqiang; Zhao, Ziran; Wu, Dufan

    2013-01-01

    At present, there are mainly three x-ray imaging modalities for dental clinical diagnosis: radiography, panorama and computed tomography (CT). We develop a new x-ray digital intra-oral tomosynthesis (IDT) system for quasi-three-dimensional dental imaging which can be seen as an intermediate modality between traditional radiography and CT. In addition to normal x-ray tube and digital sensor used in intra-oral radiography, IDT has a specially designed mechanical device to complete the tomosynthesis data acquisition. During the scanning, the measurement geometry is such that the sensor is stationary inside the patient's mouth and the x-ray tube moves along an arc trajectory with respect to the intra-oral sensor. Therefore, the projection geometry can be obtained without any other reference objects, which makes it be easily accepted in clinical applications. We also present a compressed sensing-based iterative reconstruction algorithm for this kind of intra-oral tomosynthesis. Finally, simulation and experiment were both carried out to evaluate this intra-oral imaging modality and algorithm. The results show that IDT has its potentiality to become a new tool for dental clinical diagnosis.

  19. X-ray phase-contrast imaging of the breast—advances towards clinical implementation

    PubMed Central

    Herzen, J; Willner, M; Grandl, S; Scherer, K; Bamberg, F; Reiser, M F; Pfeiffer, F; Hellerhoff, K

    2014-01-01

    Breast cancer constitutes about one-quarter of all cancers and is the leading cause of cancer death in women. To reduce breast cancer mortality, mammographic screening programmes have been implemented in many Western countries. However, these programmes remain controversial because of the associated radiation exposure and the need for improvement in terms of diagnostic accuracy. Phase-contrast imaging is a new X-ray-based technology that has been shown to provide enhanced soft-tissue contrast and improved visualization of cancerous structures. Furthermore, there is some indication that these improvements of image quality can be maintained at reduced radiation doses. Thus, X-ray phase-contrast mammography may significantly contribute to advancements in early breast cancer diagnosis. Feasibility studies of X-ray phase-contrast breast CT have provided images that allow resolution of the fine structure of tissue that can otherwise only be obtained by histology. This implies that X-ray phase-contrast imaging may also lead to the development of entirely new (micro-) radiological applications. This review provides a brief overview of the physical characteristics of this new technology and describes recent developments towards clinical implementation of X-ray phase-contrast imaging of the breast. PMID:24452106

  20. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  1. What Can Be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2008-01-01

    Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.

  2. Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography.

    PubMed

    Koddenberg, Tim; Militz, Holger

    2018-05-05

    The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.

  3. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  4. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  5. An X-ray image of the violent interstellar medium in 30 Doradus

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Helfand, D. J.

    1991-01-01

    A detailed analysis of the X-ray emission from the largest H II region complex in the Local Group, 30 Dor, is presented. Applying a new maximum entropy deconvolution algorithm to the Einstein Observatory data, reveals striking correlations among the X-ray, radio, and optical morphologies of the region, with X-ray-emitting bubbles filling cavities surrounded by H-alpha shells and coextensive diffuse X-ray and radio continuum emission from throughout the region. The total X-ray luminosity in the 0.16-3.5 keV band from an area within 160 pc of the central cluster R136 is about 2 x 10 to the 37th ergs/sec.

  6. CT scan (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  7. Head CT (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  8. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  9. X-Ray Background from Early Binaries

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    observed X-ray energy (and the total X-ray background is given by the sum of the curves). The two panels show results from two different calculation methods. [Xu et al. 2016]Xu and collaborators have now attempted to model to the impact of this X-ray production from Pop III binaries on the intergalactic medium and determine how much it could have contributed to reionization and the diffuse X-ray background we observe today.Generating a BackgroundThe authorsestimated the X-ray luminosities from Pop III binaries using the results of a series of galaxy-formation simulations, beginning at a redshift of z 25 and evolving up to z = 7.6. They then used these luminosities to calculate the resulting X-ray background.Xu and collaborators find that Pop III binaries can produce significant X-ray radiation throughout the period of reionization, and this radiation builds up gradually into an X-ray background. The team shows that X-rays from Pop III binaries might actually dominate more commonly assumed sources of the X-ray background at high redshifts (such as active galactic nuclei), and this radiation isstrong enough to heat the intergalactic medium to 1000K and ionize a few percent of the neutral hydrogen.If Pop III binaries are indeed this large of a contributor to the X-ray background and to the local and global heating of the intergalactic medium, then its important that we follow up with more detailed modeling to understand what this means for our interpretation of cosmological observations.CitationHao Xu et al 2016 ApJL 832 L5. doi:10.3847/2041-8205/832/1/L5

  10. Properties of X-Ray Flashes from HETE Observations

    NASA Astrophysics Data System (ADS)

    Ricker, G. R.; HETE Science Team

    2005-05-01

    Now in its fifth year of operations, HETE continues to provide the observer community with prompt localizations and accurate spectral measurements of GRB sources over a broad energy range, extending from 2-500 keV. As a result of HETE's excellent low energy response, it is uniquely suited to the discovery of X-ray flashes (XRFs). Approximately 1/3 of the ˜20-25 GRBs per year which HETE localizes are XRFs. HETE's localization sample now includes >25 X-ray flashes (XRFs), with redshifts having been established for two: XRF020903 (z=0.25) and XRF030429 (z=2.66). Following on from the original discovery of XRFs by BeppoSAX, HETE has shown that the discovery space for such rapid, soft cosmological transients is quite large: as a class, XRFs (and X-ray rich GRBs) are more numerous than are classical GRBs. Although XRFs may well be related to GRBs, there are indications that XRFs have spectral peaks (in ν Fν ) that can extend down to, or even below, 1 keV. Although the BAT instrument on Swift cannot directly explore this low energy range, the slewing of Swift to HETE-discovered XRFs will enable Swift's XRT to conduct target-of-opportunity followup observations. These Swift XRT followup observations are a powerful means of establishing ˜3-5 arcsecond localizations from the X-ray afterglows, thus enabling sensitive optical and IR searches for counterparts and subsequent redshift measurements. Properties of the sample of HETE-discovered XRFs will be reviewed, and the implications of the HETE sample for the planning of future missions will be discussed. The HETE scientific team includes participants from France, Japan, Brazil, India, Italy, and the USA. This research was supported in the USA by NASA contracts NASW-4690 and NAS8-39073.

  11. Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.

    2017-07-01

    The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.

  12. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information frommore » a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.« less

  13. Micro-CT images reconstruction and 3D visualization for small animal studying

    NASA Astrophysics Data System (ADS)

    Gong, Hui; Liu, Qian; Zhong, Aijun; Ju, Shan; Fang, Quan; Fang, Zheng

    2005-01-01

    A small-animal x-ray micro computed tomography (micro-CT) system has been constructed to screen laboratory small animals and organs. The micro-CT system consists of dual fiber-optic taper-coupled CCD detectors with a field-of-view of 25x50 mm2, a microfocus x-ray source, a rotational subject holder. For accurate localization of rotation center, coincidence between the axis of rotation and centre of image was studied by calibration with a polymethylmethacrylate cylinder. Feldkamp"s filtered back-projection cone-beam algorithm is adopted for three-dimensional reconstruction on account of the effective corn-beam angle is 5.67° of the micro-CT system. 200x1024x1024 matrix data of micro-CT is obtained with the magnification of 1.77 and pixel size of 31x31μm2. In our reconstruction software, output image size of micro-CT slices data, magnification factor and rotation sample degree can be modified in the condition of different computational efficiency and reconstruction region. The reconstructed image matrix data is processed and visualization by Visualization Toolkit (VTK). Data parallelism of VTK is performed in surface rendering of reconstructed data in order to improve computing speed. Computing time of processing a 512x512x512 matrix datasets is about 1/20 compared with serial program when 30 CPU is used. The voxel size is 54x54x108 μm3. The reconstruction and 3-D visualization images of laboratory rat ear are presented.

  14. THE X-RAY DETECTABILITY OF ELECTRON BEAMS ESCAPING FROM THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Hilaire, Pascal; Krucker, Saem; Christe, Steven

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams ({approx}>10{sup 35} electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number ofmore » escaping electrons (above 10 keV) to {approx}>3 x 10{sup 36} for RHESSI, {approx}>3 x 10{sup 35} for Hinode/XRT, and {approx}>10{sup 33} electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.« less

  15. Hard X-ray Emission From A Flare-related Jet

    NASA Astrophysics Data System (ADS)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    Solar X-ray jets were first observed by Yohkoh (Shibata 1992, Strong 1992). During these events, collimated flows of plasma are accelerated in the corona. Previous observations have detected jet-related electrons directly in space as well as via radio signatures (type III bursts). However the major diagnostic of fast electrons is bremsstrahlung X-ray emission, but until now we have never seen any evidence of hard X-ray emission directly from the jet in the corona. This could be because it is rare to find a coronal jet dense enough to provide a bremsstrahlung target for the electrons, or hot enough to generate high energy thermal emission. We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. The event occurred on the 22nd of August 2002 and its evolution was observed by a number of instruments. In particular we study the pre-impulsive and impulsive phase of the flare using data from RHESSI, TRACE and the Nobeyama Radioheliograph. During this period RHESSI observed significant hard X-ray emission to energies as high as 50 keV in the jet. Radio observations from the Nobeyama Radioheliograph show a positive spectral index for the ejected material, which may be explained by optically-thick gyrosynchrotron emission from non-thermal electrons in the jet. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  16. Application of X-Ray Computer Tomography for Observing the Central Void Formations and the Fuel Pin Deformations of Irradiated FBR Fuel Assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka

    2010-10-01

    In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.

  17. The X-ray Emitting Components towards l = 111 deg: The Local Hot Bubble and Beyond

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2006-01-01

    We have obtained an XMM-Newton spectrum of the diffuse X-ray emission towards (l, b) = (111.14,1.11), a line of sight with a relatively simple distribution of absorbing clouds; > 9 x 10(exp 19)/sq cm at R>170 pc, a 6 x 10(exp 21)/sq cm molecular cloud at 2.5-3.3 kpc, and a total column of 1.2 x 10(exp 22)/sq cm. We find that the analysis of the XMM-Newton spectrum in conjunction with the RASS spectral energy distribution for the same direction requires three thermal components to be well fit: a "standard" Local Hot Bubble component with kT = 0.089, a component beyond the molecular cloud with kT = 0.59, and a component before the molecular cloud with kT = 0.21. The strength of the O VII 0.56 keV line from the Local Hot Bubble, 2.1+/-0.7 photons/sq cm/s/sr, is consistent with other recent measures. The 0.21 keV component has an emission measure of 0.0022+/-0.0006 pc and is not localized save as diffuse emission within the Galactic plane; it is the best candidate for a pervasive hot medium. The spatial separation of the approx. 0.2 keV component from the approx. 0.6 keV component suggests that the spectral decompositions of the emission from late-type spiral disks found in the literature do represent real temperature components rather than reflecting more complex temperature distributions.

  18. X-ray CT for quantitative food microstructure engineering: The apple case

    NASA Astrophysics Data System (ADS)

    Herremans, Els; Verboven, Pieter; Defraeye, Thijs; Rogge, Seppe; Ho, Quang Tri; Hertog, Maarten L. A. T. M.; Verlinden, Bert E.; Bongaers, Evi; Wevers, Martine; Nicolai, Bart M.

    2014-04-01

    Apple fruit is a major crop that can be supplied year-round due to low temperature storage in a controlled atmosphere with a reduced oxygen concentration and an increased carbon dioxide concentration. The low temperature and dedicated gas concentration levels are designed to provide optimal conditions that prevent ripening while maintaining the fundamental respiratory metabolism necessary for energy supply in the cells that ensures cell and tissue integrity during storage of the fruit. If the concentration of oxygen is too low or that of carbon dioxide too high, a fermentation metabolism is induced that causes the production of off-flavours, results in insufficient energy supply, leading to cell collapse and consequent tissue browning and cavity formation. The microstructural arrangement of cells and intercellular spaces in the apple create specific pathways for transport of the respiratory gasses oxygen and carbon dioxide. We used X-ray CT to characterise the changes in the microstructure of ‘Braeburn’ apple during the development of internal storage disorders. Multiscale modeling was applied to understand the changes in oxygen and carbon dioxide concentrations and respiration and fermentation rates in the apple during the disorder development in controlled atmosphere storage of ‘Braeburn’ apple fruit. The 3D microstructure geometries of healthy, brown tissue and tissue with cavities were created to solve the micro-scale gas-exchange model for O2 and CO2 using the finite volume method. The apparent gas diffusivities of the tissue were calculated and implemented in the macroscale geometry of healthy and disordered apples to study in detail the changes in the respiratory metabolism of the fruit.

  19. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  20. Innovation and fusion of x-ray and optical tomography for mouse studies of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Cong, Wenxiang; Yang, Qingsong; Pian, Qi; Zhu, Shouping; Liang, Jimin; Barroso, Margarida; Intes, Xavier

    2016-10-01

    For early detection and targeted therapy, receptor expression profiling is instrumental to classifying breast cancer into sub-groups. In particular, human epidermal growth factor receptor 2 (HER2) expression has been shown to have both prognostic and predictive values. Recently, an increasingly more complex view of HER2 in breast cancer has emerged from genome sequencing that highlights the role of inter- and intra-tumor heterogeneity in therapy resistance. Studies on such heterogeneity demand high-content, high-resolution functional and molecular imaging in vivo, which cannot be achieved using any single imaging tool. Clearly, there is a critical need to develop a multimodality approach for breast cancer imaging. Since 2006, grating-based x-ray imaging has been developed for much-improved x-ray images. In 2014, the demonstration of fluorescence molecular tomography (FMT) guided by x-ray grating-based micro-CT was reported with encouraging results and major drawbacks. In this paper, we propose to integrate grating-based x-ray tomography (GXT) and high-dimensional optical tomography (HOT) into the first-of-its-kind truly-fused GXT-HOT (pronounced as "Get Hot") system for imaging of breast tumor heterogeneity, HER2 expression and dimerization, and therapeutic response. The primary innovation lies in developing a brand-new high-content, high-throughput x-ray optical imager based on several contemporary techniques to have MRI-type soft tissue contrast, PET-like sensitivity and specificity, and micro-CT-equivalent resolution. This system consists of two orthogonal x-ray Talbot-Lau interferometric imaging chains and a hyperspectral time-resolved single-pixel optical imager. Both the system design and pilot results will be reported in this paper, along with relevant issues under further investigation.

  1. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.

    2016-01-01

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm3. The mass attenuation coefficient of the phantom was measured using 60Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ2 value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Zmax.

  2. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  3. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  4. Role of defects in BiFeO₃ multiferroic films and their local electronic structure by x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravalia, Ashish; Vagadia, Megha; Solanki, P. S.

    2014-10-21

    Present study reports the role of defects in the electrical transport in BiFeO₃ (BFO) multiferroic films and its local electronic structure investigated by near-edge X-ray absorption fine structure. Defects created by high energy 200 MeV Ag⁺¹⁵ ion irradiation with a fluence of ∼5 × 10¹¹ ions/cm² results in the increase in structural strain and reduction in the mobility of charge carriers and enhancement in resistive (I-V) and polarization (P-E) switching behaviour. At higher fluence of ∼5 × 10¹² ions/cm², there is a release in the structural strain due to local annealing effect, resulting in an increase in the mobility of charge carriers, which are releasedmore » from oxygen vacancies and hence suppression in resistive and polarization switching. Near-edge X-ray absorption fine structure studies at Fe L₃,₂- and O K-edges show a significant change in the spectral features suggesting the modifications in the local electronic structure responsible for changes in the intrinsic magnetic moment and electrical transport properties of BFO.« less

  5. Contact binary stars. I - An X-ray survey

    NASA Technical Reports Server (NTRS)

    Cruddace, R. G.; Dupree, A. K.

    1984-01-01

    X-ray emission from a contact binary star was first detected by the HEAO 1 satellite in 1977. Spectroscopic observations of 44i Boo and VW Cep by IUE established the presence of high-temperature chromospheric and transition region emission lines in the spectra of these stars. The HEAO 1 and IUE results implied that the processes causing X-ray emission from VW Cep might be similar to those energizing the solar corona, and that X-ray emission might be a common occurrence among contact binary stars. A series of observations of these stars was, therefore, conducted with the aid of the HEAO 2 (Einstein) Observatory. The present investigation is concerned with the results of these observations, giving attention to their implications with respect to the nature of contact binary stars. The results are compared with similar HEAO 2 studies of coronal X-ray sources in the local region of the Galaxy, in the Hyades, and other rapidly rotating systems.

  6. Calibration standard of body tissue with magnetic nanocomposites for MRI and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Woodward, Robert; House, Michael; Engineer, Diana; Feindel, Kirk; Dutz, Silvio; Odenbach, Stefan; StPierre, Tim

    2016-05-01

    We present a first study of a long-term phantom for Magnetic Resonance Imaging (MRI) and X-ray imaging of biological tissues with magnetic nanocomposites (MNC) suitable for 3-dimensional and quantitative imaging of tissues after, e.g. magnetically assisted cancer treatments. We performed a cross-calibration of X-ray microcomputed tomography (XμCT) and MRI with a joint calibration standard for both imaging techniques. For this, we have designed a phantom for MRI and X-ray computed tomography which represents biological tissue enriched with MNC. The developed phantoms consist of an elastomer with different concentrations of multi-core MNC. The matrix material is a synthetic thermoplastic gel, PermaGel (PG). The developed phantoms have been analyzed with Nuclear Magnetic Resonance (NMR) Relaxometry (Bruker minispec mq 60) at 1.4 T to obtain R2 transverse relaxation rates, with SQUID (Superconducting QUantum Interference Device) magnetometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to verify the magnetite concentration, and with XμCT and 9.4 T MRI to visualize the phantoms 3-dimensionally and also to obtain T2 relaxation times. A specification of a sensitivity range is determined for standard imaging techniques X-ray computed tomography (XCT) and MRI as well as with NMR. These novel phantoms show a long-term stability over several months up to years. It was possible to suspend a particular MNC within the PG reaching a concentration range from 0 mg/ml to 6.914 mg/ml. The R2 relaxation rates from 1.4 T NMR-relaxometry show a clear connection (R2=0.994) with MNC concentrations between 0 mg/ml and 4.5 mg/ml. The MRI experiments have shown a linear correlation of R2 relaxation and MNC concentrations as well but in a range between MNC concentrations of 0 mg/ml and 1.435 mg/ml. It could be shown that XμCT displays best moderate and high MNC concentrations. The sensitivity range for this particular XμCT apparatus yields from 0.569 mg/ml to 6.914 mg/ml. The

  7. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  8. Polarization-Dependent Ti 2p-Resonant X-ray Raman Scattering from Ti2O3

    NASA Astrophysics Data System (ADS)

    Tezuka, Yasuhisa; Nakajima, Nobuo; Adachi, Jun-ichi; Morimoto, Osamu; Sato, Hitoshi; Uozumi, Takayuki

    2017-12-01

    Detailed resonant X-ray emission spectra (XES) and these polarization dependences of Ti2O3 were obtained by excitation at the Ti 2p absorption edge. About 100 XES spectra were observed in different polarization configurations. X-ray Raman scattering spectra showed two types of crystal field (dd) excitations as well as charge-transfer (CT) excitations. Bulk states of the powder sample were obtained by the XES measurement, which is the photon-in/photon-out method. Partial photon yields (PPYs) of some elementary excitations were extracted from the XES spectra. The CT excitations were hidden in total electron yield spectra, but these were revealed by PPY measurements. Symmetry information of these excitations was acquired on the basis of polarization dependences.

  9. Analysis of monochromatic and quasi-monochromatic X-ray sources in imaging and therapy

    NASA Astrophysics Data System (ADS)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Orban, Christopher; Pradhan, Anil

    2017-04-01

    We studied biomedical imaging and therapeutic applications of recently developed quasi-monochromatic and monochromatic X-ray sources. Using the Monte Carlo code GEANT4, we found that the quasi-monochromatic 65 keV Gaussian X-ray spectrum created by inverse Compton scattering with relatavistic electron beams were capable of producing better image contrast with less radiation compared to conventional 120 kV broadband CT scans. We also explored possible experimental detection of theoretically predicted K α resonance fluorescence in high-Z elements using the European Synchrotron Research Facility with a tungsten (Z = 74) target. In addition, we studied a newly developed quasi-monochromatic source generated by converting broadband X-rays to monochromatic K α and β X-rays with a zirconium target (Z = 40). We will further study how these K α and K β dominated spectra can be implemented in conjunction with nanoparticles for targeted therapy. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  10. X-ray Computed Tomography Imaging of the Microstructure of Sand Particles Subjected to High Pressure One-Dimensional Compression.

    PubMed

    Al Mahbub, Asheque; Haque, Asadul

    2016-11-03

    This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles.

  11. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy.

    PubMed

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (-50 to -6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies.

  12. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy

    PubMed Central

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (−50 to −6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  13. Studying Dust Scattering Halos with Galactic X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  14. Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem.

    PubMed

    Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis

    2009-04-01

    Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

  15. X-Ray Emission from Ultraviolet Luminous Galaxies and Lyman Break Galaxies

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann; Ptak, A. F.; Salim, S.; Heckman, T. P.; Overzier, R.; Mallery, R.; Rich, M.; Strickland, D.; Grimes, J.

    2009-01-01

    We present results from an XMM mini-survey of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) that appear to include an interesting subset that are analogs to the distant (3X-ray emission of LBGs appear to be broadly similar to that of galaxies in the local Universe, possibly indicating similarity in the production of accreting binaries over large evolutionary timescales in the Universe. We have detected luminous X-ray emission from one UVLG that permits basic X-ray spectroscopic analysis, and have direct X-ray constraints on a total of 6 UVLGs. We find evidence for likely large scatter in the assumed X-ray/star-formation rate relation for LBGs.

  16. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  17. X-Ray Binary Populations in a Cosmological Context, Including NuSTAR Predictions

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2011-01-01

    The new ultradeep 4 Ms Chandra Deep Field South has afforded the deepest view ever of X-ray binary populations. We report on the latest results on both LMXB and HMXB evolution out to redshifts of approximately four, including comparison with the latest theoretical models, using this deepest-ever view of the X-ray universe with Chandra. The upcoming NuSTAR mission will open up X-ray binary populations in the hard X-ray band, similar to the pioneering work of Fabbiano et al. in the Einstein era. We report on plans to study both Local Group and starburst galaxies as well as the implications those observations may have for X-ray binary populations in galaxies contributing to the Cosmic X-ray Background.

  18. Approximation of a foreign object using x-rays, reference photographs and 3D reconstruction techniques.

    PubMed

    Briggs, Matt; Shanmugam, Mohan

    2013-12-01

    This case study describes how a 3D animation was created to approximate the depth and angle of a foreign object (metal bar) that had become embedded into a patient's head. A pre-operative CT scan was not available as the patient could not fit though the CT scanner, therefore a post surgical CT scan, x-ray and photographic images were used. A surface render was made of the skull and imported into Blender (a 3D animation application). The metal bar was not available, however images of a similar object that was retrieved from the scene by the ambulance crew were used to recreate a 3D model. The x-ray images were then imported into Blender and used as background images in order to align the skull reconstruction and metal bar at the correct depth/angle. A 3D animation was then created to fully illustrate the angle and depth of the iron bar in the skull.

  19. X1908+075: An X-Ray Binary with a 4.4 Day Period

    NASA Astrophysics Data System (ADS)

    Wen, Linqing; Remillard, Ronald A.; Bradt, Hale V.

    2000-04-01

    X1908+075 is an optically unidentified and highly absorbed X-ray source that appeared in early surveys such as Uhuru, OSO 7, Ariel 5, HEAO-1, and the EXOSAT Galactic Plane Survey. These surveys measured a source intensity in the range 2-12 mcrab at 2-10 keV, and the position was localized to ~0.5d. We use the Rossi X-Ray Timing Explorer (RXTE) All-Sky Monitor (ASM) to confirm our expectation that a particular Einstein/IPC detection (1E 1908.4+0730) provides the correct position for X1908+075. The analysis of the coded mask shadows from the ASM for the position of 1E 1908.4+0730 yields a persistent intensity ~8 mcrab (1.5-12 keV) over a 3 yr interval beginning in 1996 February. Furthermore, we detect a period of 4.400+/-0.001 days with a false-alarm probability less than 10-7. The folded light curve is roughly sinusoidal, with an amplitude that is 26% of the mean flux. The X-ray period may be attributed to the scattering and absorption of X-rays through a stellar wind combined with the orbital motion in a binary system. We suggest that X1908+075 is an X-ray binary with a high-mass companion star.

  20. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  1. First-order convex feasibility algorithms for x-ray CT

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob S.; Pan, Xiaochuan

    2013-01-01

    Purpose: Iterative image reconstruction (IIR) algorithms in computed tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times, however, it is impractical to achieve accurate solution to the optimization of interest, which complicates design of IIR algorithms. This issue is particularly acute for CT with a limited angular-range scan, which leads to poorly conditioned system matrices and difficult to solve optimization problems. In this paper, we develop IIR algorithms which solve a certain type of optimization called convex feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization approaches and at the same time allow for rapidly convergent algorithms for their solution—thereby facilitating the IIR algorithm design process. Methods: An accelerated version of the Chambolle−Pock (CP) algorithm is adapted to various convex feasibility problems of potential interest to IIR in CT. One of the proposed problems is seen to be equivalent to least-squares minimization, and two other problems provide alternatives to penalized, least-squares minimization. Results: The accelerated CP algorithms are demonstrated on a simulation of circular fan-beam CT with a limited scanning arc of 144°. The CP algorithms are seen in the empirical results to converge to the solution of their respective convex feasibility problems. Conclusions: Formulation of convex feasibility problems can provide a useful alternative to unconstrained optimization when designing IIR algorithms for CT. The approach is amenable to recent methods for accelerating first-order algorithms which may be particularly useful for CT with limited angular-range scanning. The present paper demonstrates the methodology, and future work will illustrate its utility in actual CT application. PMID:23464295

  2. The X-ray Detectability of Electron Beams Escaping from the Sun

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Krucker, Säm; Christe, Steven; Lin, Robert P.

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (gsim1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to gsim3 × 1036 for RHESSI, gsim3 × 1035 for Hinode/XRT, and gsim1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.

  3. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  4. Do X-ray dark or underluminous galaxy clusters exist?

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Moretti, A.

    2011-12-01

    We study the X-ray properties of a color-selected sample of clusters at 0.1 < z < 0.3, to quantify the real aboundance of the population of X-ray dark or underluminous clusters and at the same time the spurious detection contamination level of color-selected cluster catalogs. Starting from a local sample of color-selected clusters, we restrict our attention to those with sufficiently deep X-ray observations to probe their X-ray luminosity down to very faint values and without introducing any X-ray bias. This allowed us to have an X-ray- unbiased sample of 33 clusters to measure the LX-richness relation. Swift 1.4 Ms X-ray observations show that at least 89% of the color-detected clusters are real objects with a potential well deep enough to heat and retain an intracluster medium. The percentage rises to 94% when one includes the single spectroscopically confirmed color-selected cluster whose X-ray emission is not secured. Looking at our results from the opposite perspective, the percentage of X-ray dark clusters among color-selected clusters is very low: at most about 11 per cent (at 90% confidence). Supplementing our data with those from literature, we conclude that X-ray- and color- cluster surveys sample the same population and consequently that in this regard we can safely use clusters selected with any of the two methods for cosmological purposes. This is an essential and promising piece of information for upcoming surveys in both the optical/IR (DES, EUCLID) and X-ray (eRosita). Richness correlates with X-ray luminosity with a large scatter, 0.51 ± 0.08 (0.44 ± 0.07) dex in lgLX at a given richness, when Lx is measured in a 500 (1070) kpc aperture. We release data and software to estimate the X-ray flux, or its upper limit, of a source with over-Poisson background fluctuations (found in this work to be ~20% on cluster angular scales) and to fit X-ray luminosity vs richness if there is an intrinsic scatter. These Bayesian applications rigorously account for

  5. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.

    2014-11-01

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  6. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  7. X-ray Computed Tomography Assessment of Air Void Distribution in Concrete

    NASA Astrophysics Data System (ADS)

    Lu, Haizhu

    Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.

  8. Flash x-ray radiography of argon jets in ambient air

    NASA Astrophysics Data System (ADS)

    Geiswiller, J.; Robert, E.; Huré, L.; Cachoncinlle, C.; Viladrosa, R.; Pouvesle, J. M.

    1998-09-01

    This paper describes the development and application of a soft x-ray flash radiography technique. A very compact soft x-ray flash source has been specially designed for these studies. The table-top x-ray source developed in this work emits strong doses, up to one roentgen at the output window, of x-ray photons, with most of them in the characteristic lines of the anode material (photon energy in the energy range 5-10 keV), in pulse of 20 ns FWHM with an x-ray emission zone smaller than 0957-0233/9/9/024/img1. All these characteristics make this source attractive for the x-ray radiography of high-speed phenomena, down to ten nanoseconds duration and/or for the media presenting weak absorption for the harder x-ray photons emitted by more conventional flash x-ray systems. Argon streams in ambient air were chosen as a typical case to enlighten the potentialities of this method. Single-shot radiographs of such an argon jet through rectangular nozzles were obtained. No attempt of quantitative measurement of local density in the argon stream has yet been performed, only the qualitative structure of the jet has been investigated. Nevertheless, these preliminary results enable us to state that the diagnostics of gaseous or plasma media, even at rather low pressures, can proceed using soft x-ray flash radiography.

  9. Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Tsuchiya, Y.; Kuroe, T.; Zeniya, T.; Wu, J.; Lwin, Thet-Thet; Yashiro, T.; Yuasa, T.; Hyodo, K.; Matsumura, K.; Dilmanian, F. A.; Itai, Y.; Akatsuka, T.

    2004-05-01

    A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100μm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications.

  10. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    PubMed Central

    Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834

  11. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner.

    PubMed

    Arabi, Hossein; Kamali Asl, Ali Reza; Ay, Mohammad Reza; Zaidi, Habib

    2015-07-01

    The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. A Pulsating X-Ray Hot Spot on Jupiter

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Waite, J. H.; Grodent, D. C.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Majeed, T.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; hide

    2001-01-01

    Previous observations of jovian auroral x-ray emissions provided limited spectral information and extensive but low spatial resolution images. These emissions have been thought to result from charge exchange and excitation of energetic sulfur and oxygen ions precipitating from the outer edge of the Io Plasma Torus; bremsstrahlung emission from precipitating energetic electrons is too inefficient to produce the x-ray emissions. However, new high spatial resolution observations demonstrate that most of Jupiter's northern auroral x-rays come from a hot spot located much further north than the footprint of the Io Plasma Torus and which is even poleward of the main ultraviolet auroral oval. The hot spot appears fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. Interestingly, the hot spot x-rays pulsate with an approximately 40-minute period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian x-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the region of the Io Plasma Torus. Instead, the x-rays appear to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.

  13. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment.

    PubMed

    Mom, Rik V; Onderwaater, Willem G; Rost, Marcel J; Jankowski, Maciej; Wenzel, Sabine; Jacobse, Leon; Alkemade, Paul F A; Vandalon, Vincent; van Spronsen, Matthijs A; van Weeren, Matthijs; Crama, Bert; van der Tuijn, Peter; Felici, Roberto; Kessels, Wilhelmus M M; Carlà, Francesco; Frenken, Joost W M; Groot, Irene M N

    2017-11-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core. When tunneling, the X-ray-induced current is separated from the regular, 'topographic' tunneling current using a novel high-speed separation scheme. We demonstrate the capabilities of the instrument by measuring the local X-ray-induced current on Au(1 1 1) in 800 mbar Ar. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  15. A novel scatter separation method for multi-energy x-ray imaging

    NASA Astrophysics Data System (ADS)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-06-01

    X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor  >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.

  16. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  17. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  18. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  19. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  20. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less