Syntheses, structures and luminescent properties of two novel Zn (II) coordination polymers
NASA Astrophysics Data System (ADS)
Huang, Ya-Ru; Gao, Ling-Ling; Wang, Xiao-Qing; Fan, Li-Ming; Hu, Tuo-Ping
2018-02-01
Two new coordination polymers, namely [Zn(TZMB)]n (1) and {[Zn(TZMB)](H2TZMB)]·(C2H5OH)0.5(H2O)2.5}n (2), (H2TZMB = 4,4‧-(1H-1,2,4-triazol-1-yl)methylene-bis(benzonic acid), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analysis, elemental analysis (EA), IR spectrum analysis (IR), powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Single X-ray diffraction analysis reveals that complex 1 is a 3D 3,6-connected net with the point symbol of (6110.84)(63)2 and complex 2 is a 2D 3-connected net with the point symbol of (63). Furthermore, luminescent properties of complexes 1 and 2 were also investigated in detail.
Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xian-Rong; Gog, Thomas; Kim, Jungho
Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h 1h 2h 3L} and {h 2h 1h 3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystalsmore » therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.« less
Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A
2010-05-01
The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Effects of Peripheral Architecture on the Properties of Aryl Polyhedral Oligomeric Silsesquioxanes
2012-07-26
POSS) molecules are described. These POSS materials were synthesized in our laboratory and characterized by single-crystal and powder X - ray diffraction ...powder X - ray diffraction (XRD), where applicable. 1H, 13C, and 29Si NMR spectra were obtained on Bruker 300 and 400 MHz spectrometers using 5 mm o.d...degree of cage ordering during precipitation. Referring back to Figure 14, strong X - ray scattering peaks in the spectra for 1 in the d- spacing range
Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu
2009-09-01
Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.
Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro
2013-11-01
Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.
Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro
2013-01-01
Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
NASA Astrophysics Data System (ADS)
Saheli, Sania; Rezvani, Alireza
2017-01-01
A new metal-organic framework (MOF) formulated as [Ni(H2btc)(OH)(H2O)2] (1) (H3btc = 1,3,5-benzenetricarboxylic acid) was synthesized using the hydrothermal technique. The complex 1 was characterized by elemental analysis, infrared spectroscopy, and powder X-ray diffraction in addition to single crystal X-ray diffraction. X-ray crystal structural analysis displayed that the compound belonged to the monoclinic space group P21/n with cell parameters a = 6.8658(14) Å, b = 18.849(4) Å, c = 8.5608(17) Å. In the title complex, ligand is linked to metal centers through two μ-oxo bridges and forming a 2D layer which is led to form an interesting geometry. The thermal stability and fluorescence property of 1 have also been investigated.
de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert
2007-05-01
A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
1996-12-01
375 T. Nagai, H.J. Hwang, M. Sando, and K. Niihara *Invited Paper ix Processing, X - ray ...observed by X - ray diffraction. The 1-D Patterson map suggests that V2 0 5 layers are made of two V20 5 sheets facing each other at a distance of 2.8A [12...OH direction giving rise to a ribbon-like structure (Fig.5). X - ray diffraction experiments show that these ribbons are formed of double chains of edge
NASA Astrophysics Data System (ADS)
Lu, J. F.; Tang, Z. H.; Shi, J.; Ge, H. G.; Jiang, M.; Song, J.; Jin, L. X.
2017-12-01
The title compound {[Co3(μ3-OH)(μ2-H2O)2(H2O)5(BTC)2] · 6H2O} n (H3BTC is a 1,3,5-benzenetricarboxylic acid) was prepared and characterized by single crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and elemental analyses. The single crystal X-ray diffraction reveals that the title compound consists of 1D infinite zigzag chains which were constructed by trinuclear cobalt cluster and BTC3- ligand. Neighbouring above-mentioned 1D infinite zigzag chains are further linked by intermolecular hydrogen bonding to form a 3D supermolecular structure. In addition, the luminescent properties of the title compound were investigated.
Three pharmaceuticals cocrystals of adefovir: Syntheses, structures and dissolution study
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Sun, Fuxing; Zhang, Tingting; Jia, Jiangtao; Su, Hongmin; Wang, Chenhui; Zhu, Guangshan
2015-11-01
We report here three novel cocrystals, which are composed of adefovir as the API (Active Pharmaceutical Ingredient) with p-aminobenzoic acid (1, 2C8H12N5O4P·C7H6NO2·3H2O), 3,5-dihydroxybenzoic acid (2, C8H12N5O4P·C7H6O4·H2O) and 2,6-pyridinedicarboxlic acid (3, C8H12N5O4P·C7H5NO4) as CCFs (cocrystal formers) respectively by crystal engineering strategy. Their structures were characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD) analysis, thermogravimetric analyses (TGA), elemental analysis (EA) and infrared spectral analysis (IR). The analysis of single crystal X-ray diffraction demonstrate that cocrystal 1 and 2 form a strong hydrogen-bonded assembly through the phosphoric acids of API with water in the lattice and carboxylic acids of CCF respectively. Cocrystal 3 is formed in which the phosphoric acid groups of API are also held by the carboxylic acid groups of CCF. The PXRD results indicate their high purity of as-synthesized samples. The TGA, EA, IR and dissolution study of API and the cocrystals were also measured and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galicka, Karolina; Slodczyk, Aneta; Ratuszna, Alicja
2004-06-08
The structural and vibrational properties of above mentioned crystals were determined using X-ray powder diffraction and Raman scattering experiments. At room temperature hydrate layered perovskites: Rb{sub 2}MnF{sub 5}{center_dot}H{sub 2}O and K{sub 2}FeF{sub 5}{center_dot}H{sub 2}O exhibit orthorhombic--Cmcm (D{sub 2h}{sup 17}) and monoclinic--C2/c (C{sub 2h}{sup 6}) symmetry. Their structure is built up of MnF{sub 6} or FeF{sub 5}{center_dot}H{sub 2}O octahedra forming trans-linked zig-zag chains or hydrogen bonded zig-zag chains along the major crystallographic direction [0 0 1], respectively. To confirm crystal structures and to describe lattice dynamics of these compounds the vibrational normal modes (in {gamma} point of first Brillouin zone) weremore » calculated on the base of the group theory analysis and compared with the spectra obtained from Raman scattering experiments. A relatively good reliability was obtained for both X-ray powder diffraction and Raman scattering.« less
Characterization of nanodimensional Ni-Zn ferrite prepared by mechanochemical and thermal methods
NASA Astrophysics Data System (ADS)
Manova, E.; Paneva, D.; Kunev, B.; Rivière, E.; Estournès, C.; Mitov, I.
2010-03-01
Nickel zinc ferrite nanoparticles, Ni1-xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0), with dimensions below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements are used for the characterization of the obtained materials. X-ray diffraction shows that after 3h of mechanical treatment ferrites containing zinc are formed, while 6h of treatment is needed to obtain NiFe2O4. The magnetic properties of the samples exhibit a strong dependence on the phase composition, particle size and preparation method.
NASA Astrophysics Data System (ADS)
Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Ammar, Salah; Gadri, Abdellatif; Ben Salah, Abdelhamid; García-Granda, Santiago
2018-03-01
The present paper undertakes the study of (C6H16N2) SnCl6·3H2O which is a new hybrid compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. The single crystal X-ray diffraction studies revealed that the compound crystallizes in monoclinic Cc space group with cell parameters a = 8.3309(9) Å, b = 22.956(2) Å, c = 9.8381(9) Å, β = 101.334(9) ° and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonding to form a three-dimensional network. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electron microscope (SEM) was carried out. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows four signals, confirming the solid state structure determined by X-ray diffraction. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 348 and 401 cm-1 and a strong fluorescence at 480 nm.
NASA Astrophysics Data System (ADS)
Ma, Yang-Min; Liu, Tong; Huang, Wen-Huan
2018-02-01
Based on La(NO3)3·6H2O and 4,4‧-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid (H3cpbda), a 3D porous MOFs, [La(cpbda)(H2O)1.5]n (1), was synthesized by hydrothermal method and further characterized by single-crystal X-ray diffraction, power X-ray diffraction, IR spectroscopy, thermal-gravimetric analysis and fluorescence spectroscopy. Owing to its good stabilities and fluorescence property, the sensing experiments on sixteen cations and eleven anions were implemented. Moreover, the further titration processes show 1 can sensitively detect the Fe(III) cation and Cr(VI)-containing anions by quenching responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frølich, S.; Leemreize, H.; Jakus, A.
A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 × 25 µm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hApmore » diffraction peak width. The results clearly show that differences between hAp powders could be measured with diffraction tomography.« less
Zhao, Junwei; Cheng, Yamin; Shang, Sensen; Zhang, Fang; Chen, Li; Chen, Lijuan
2013-12-01
Three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers [Ln(III)Cu2(I)(Hbpdc)4] · Cl · xH2O [Ln(III) = La(III), x = 8 (1); Ln(III) = Pr(III), x=9 (2); Ln(III) = Eu(III), x = 8 (3)] (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) have been prepared under hydrothermal conditions and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. X-ray diffraction indicates that the isomorphic 1-3 display the two-dimensional sheet structure constructed from [Cu(I)(Hbpdc)2](-) fragments through Ln(3+) connectors. Moreover, the solid-state photoluminescence measurements of 3 indicate that the Eu(III) ions, Hbpdc(-) ligands and Cu(I) cations make contributions to its luminescent properties simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi
2015-04-01
Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.
NASA Astrophysics Data System (ADS)
Kuz'mina, L. G.; Navasardyan, M. A.; Mikhailov, A. A.
2017-11-01
X-ray diffraction study of two crystalline modifications of C2H5O-C6H3(OH)-CH=N-C6H4-CH3 ( 1a, sp. gr. P21/ n, and 1b, sp. gr. C2/c) and C3H7O-C6H3(OH)-CH=N-C6H4-C4H9 ( 2, sp. gr. P212121) has been performed. The 1a crystal structure contains two independent molecules. The molecules are conformationally nonrigid with respect to the mutual rotation of benzene rings; the dihedral angles between their planes are 29.19° and 26.00° in the independent molecules of 1a, 18.72° in the molecule of 1b, and 50.35° in the molecule of 2. The crystal packing of the compounds is discussed.
NASA Astrophysics Data System (ADS)
Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan
2015-10-01
The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.
X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.
2017-05-01
Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.
Synthesis, characterization and dissolution of three pharmaceutical cocrystals based on deferiprone
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Tian, Yuyang; Jia, Jiangtao; Zhang, Tingting; Zhu, Guangshan
2016-03-01
In this paper we present three new cocrystals based on deferiprone which is the first oral medicine as iron chelator. Solitary deferiprone possesses some known problems due to its good solubility and frequent dosing side effects. For these three novel co crystals, deferiprone is the active pharmaceutical ingredient (API), p-hydroxybenzoic acid (1, C7H9NO2·C7H6O3), 2, 5-dihydroxybenzoic acid (2, C7H9NO2·C7H6O4) and maleic acid (3, C7H9NO2·C4H4O4) are used as cocrystal formers (CCFs), respectively. Their structures were characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD) analysis, thermogravimetric analyses (TGA), differential thermal analysis (DTA), elemental analysis (EA) and infrared spectral analysis (IR). Single crystal X-ray diffraction demonstrates that all three cocrystals (1-3) possess strong hydrogen-bondings assembled through hydroxyl of API and carboxylic acids of CCFs. The PXRD results indicate their high purity of as-synthesized samples. TGA, DTA, EA, IR and dissolution study of API and cocrystals were also measured and discussed, respectively. The results suggest that the cocrystals exhibit low dissolution rates comparing with solitary deferiprone, which is very advantageous for the oral medicine with frequent dosing side effects.
NASA Astrophysics Data System (ADS)
Yoshimura, Satoru; Sugimoto, Satoshi; Takeuchi, Takae; Murai, Kensuke; Kiuchi, Masato
2018-04-01
We mass-selected SiC3H9+ ions from various fragments produced through the decomposition of hexamethyldisilane, and finally produced low-energy SiC3H9+ ion beams. The ion beams were injected into Si(1 0 0) substrates and the dependence of deposited films on injected ion energy was then investigated. Injected ion energies were 20, 100, or 200 eV. Films obtained were investigated with X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. X-ray diffraction and X-ray photoelectron spectroscopy of the substrates obtained following the injection of 20 eV ions demonstrated the occurrence of silicon carbide film (3C-SiC) deposition. On the other hand, Raman spectroscopy showed that the films deposited by the injection of 100 or 200 eV ions included 3C-SiC plus diamond-like carbon. Ion beam deposition using hexamethyldisilane-derived 20 eV SiC3H9+ ions is an efficient technique for 3C-SiC film formation on Si substrates.
Molecularly Designed Ultrafine/Nanostructured Materials
1994-04-08
Ti. UdIOVic. R R, Cananaeh. /iXn. S. Kawi, T. Mure, and B1 C Gates STUDIIES OF- NANOSTRUCTURED M50 TYPE STEEL USING X - RAY AB3SORPTION SPFECTROSCOPY...hydrogenation of titanium or zirconium sponges and related systems and as a powerful activator for heterogeneous hydrogenation catalysts. X - ray ... X - ray diffraction). Quantitave measurements of the gas evolved during the reduction (1 mol H2 per mol Ti), protonolysis and cross experiments using K
Molecular structure studies of (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol
Zhang, Tao; Paluch, Krzysztof; Scalabrino, Gaia; Frankish, Neil; Healy, Anne-Marie; Sheridan, Helen
2015-01-01
The single enantiomer (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol (2), has recently been synthesized and isolated from its corresponding diastereoisomer (1). The molecular and crystal structures of this novel compound have been fully analyzed. The relative and absolute configurations have been determined by using a combination of analytical tools including X-ray crystallography, X-ray Powder Diffraction (XRPD) analysis and Nuclear Magnetic Resonance (NMR) spectroscopy. PMID:25750458
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Corinna; Feyand, Mark; Rothkirch, Andre
2012-04-15
The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambientmore » temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X-ray powder diffraction data.« less
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post,J.; Bish, D.; Heaney, P.
2007-01-01
Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less
NASA Astrophysics Data System (ADS)
Sugahara, Mitsuaki; Sekino-Suzuki, Naoko; Ohno-Iwashita, Yoshiko; Miki, Kunio
1996-10-01
θ-Toxin (perfringolysin O), a cholesterol-binding, pore-forming cytolysin of Clostridium perfringens type A was crystallized by the vapor diffusion procedure using polyethyleneglycol 4000 and sodium chloride as precipitants in 2-(cyclohexylamino)ethanesulfonic acid (CHES) buffer at pH 9.5. The diffraction patterns of precession photographs indicated that the crystals belong to the orthorhombic system and the space group C222 1 with unit-cell dimensions of a = 47.7 Å, b = 182.0 Å and c = 175.8 Å. Assuming that the asymmetric unit contains one or two molecules (Mw 52 700), the Vm value is calculated as 3.6 or 1.8 Å 3/dalton, respectively. The crystals diffract X-rays to at least 3 Å resolution and are suitable for high resolution X-ray crystal structure determination.
NASA Astrophysics Data System (ADS)
Yan, Li; Liu, Chun-Ling
2017-10-01
Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.
Crystal Structure of Two V-shaped Ligands with N-Heterocycles
NASA Astrophysics Data System (ADS)
Wang, Gao-Feng; Sun, Shu-Wen; Zhang, Xiao; Sun, Shu-Gang
2017-12-01
Two V-shaped ligands with N-heterocycles, bis(4-(1 H-imidazol-1-yl) phenyl)methanone ( 1), and bis(4-(1 H-benzo[d]imidazol-1-yl)phenyl)methanone ( 2) have been synthesized and characterized by elemental analyses, IR and 1 H NMR spectroscopy. Crystal structures of 1 and 2 have been determined by X-ray diffraction. The crystal of 1 is monoclinic, sp. gr. P21/ c, Z = 4. The crystal of 2 is orthorhombic, sp. gr. Fdd2, Z = 8. X-ray diffraction analyses show that the V-shaped angles of 1 and 2 are 122.72(15)° and 120.7(4)°, respectively. Intermolecular C-H···O, C-H···N, C-H···π, and π···π interactions link the components into three-dimensional networks in the crystal structures.
NASA Astrophysics Data System (ADS)
Abishek, N. S.; Naik, K. Gopalakrishna
2018-05-01
Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.
Titration of a Solid Acid Monitored by X-Ray Diffraction
ERIC Educational Resources Information Center
Dungey, Keenan E.; Epstein, Paul
2007-01-01
An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qi; Xie, Gang; Wei, Qing
2014-07-01
Fifteen lanthanide–copper heteronuclear compounds, formulated as [CuLn{sub 2}(pzdc){sub 4}(H{sub 2}O){sub 6}]·xH{sub 2}O (1–6(x=2), 8(x=3), 9–10(x=4)); [CuLn{sub 2}(pzdc){sub 4}(H{sub 2}O){sub 4}]·xH{sub 2}O (7, 12–13, 15(x=4), 14(x=5), 11(x=8)) (Ln(III)=La(1); Ce(2); Pr(3); Nd(4); Sm(5); Eu(6); Gd(7); Tb(8); Dy(9); Ho(10); Er(11); Tm(12); Yb(13); Lu(14); Y(15); H{sub 2}pzdc (C{sub 6}H{sub 4}N{sub 2}O{sub 4})=pyrazine-2,3-dicarboxylic acid) have been hydrothermally synthesized. All compounds were characterized by element analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analyses confirm that all compounds are isostructural and feature a 3D brick-like framework structure with (4.6{sup 2}){sub 2}(4{sup 2}.6{sup 2}.8{sup 2})(6{sup 3}){sup 2}(6{sup 5}.8){sub 2} topology. Using 1 mol cm{supmore » −3} HCl(aq) as calorimetric solvent, with an isoperibol solution–reaction calorimeter, the standard molar enthalpies of formation of all compounds were determined by a designed thermochemical cycle. In addition, solid state luminescence properties of compounds 5, 6, 8 and 9 were studied in the solid state. - Graphical abstract: According to Hess' rule, the standard molar enthalpies of formation of Ln–Cu heterometallic coordination compounds were determined by a designed thermochemical cycle. - Highlights: • Fifteen lanthanide–copper heteronuclear isostructural compounds. • Structurally characterization by IR, X-ray diffraction and thermal analysis. • The standard molar enthalpy of formation. • Isoperibol solution–reaction calorimetry.« less
Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki
2016-05-01
Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.
2008-08-01
Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Fei; Chen, Jing; Liang, Yongfeng
Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1)more » and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.« less
The effect of laser radiation on the diffraction of X-rays in crystals
NASA Astrophysics Data System (ADS)
Trushin, V. N.; Chuprunov, E. V.; Khokhlov, A. F.
1988-10-01
The effect of laser radiation on the intensity of the X-ray diffraction peaks of KDP, ADP, and CuSO4-5H2O crystals was studied experimentally. This intensity was found to increase as a function of the laser beam power. This result suggests that it is possible to use laser beams to control X-ray intensity in the crystals considered.
CFA-4 - a fluorinated metal-organic framework with exchangeable interchannel cations.
Fritzsche, J; Grzywa, M; Denysenko, D; Bon, V; Senkovska, I; Kaskel, S; Volkmer, D
2017-05-23
The syntheses and crystal structures of the fluorinated linker 1,4-bis(3,5-bis(trifluoromethyl)-1H-pyrazole-4-yl)benzene (H 2 -tfpb; 1) and the novel metal-organic framework family M[CFA-4] (Coordination Framework Augsburg University-4), M[Cu 5 (tfpb) 3 ] (M = Cu(i), K, Cs, Ca(0.5)), are described. The ligand 1 is fully characterized by single crystal X-ray diffraction, photoluminescence-, NMR-, IR spectroscopy, and mass spectrometry. The copper(i)-containing MOF crystallizes in the hexagonal crystal system within the chiral space group P6 3 22 (no. 182) and the unit cell parameters are as follows: a = 23.630(5) Å, c = 41.390(5) Å, V = 20 015(6) Å 3 . M[CFA-4] features a porous 3-D structure constructed from pentanuclear copper(i) secondary building units {Cu(pz) 6 } - (pz = pyrazolate). Cu(I)[CFA-4] is fully characterized by synchrotron single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence and gas sorption measurements. Moreover, thermal stability and gas sorption properties of K[CFA-4] and Cu(I)[CFA-4] are compared.
Lytwak, Lauren A; Stanley, Julie M; Mejía, Michelle L; Holliday, Bradley J
2010-09-07
A bromo tricarbonyl rhenium(I) complex with a thiophene-functionalized bis(pyrazolyl) pyridine ligand (L), ReBr(L)(CO)(3) (1), has been synthesized and characterized by variable temperature and COSY 2-D (1)H NMR spectroscopy, single-crystal X-ray diffraction, and photophysical methods. Complex 1 is highly luminescent in both solution and solid-state, consistent with phosphorescence from an emissive (3)MLCT excited state with an additional contribution from a LC (3)(pi-->pi*) transition. The single-crystal X-ray diffraction structure of the title ligand is also reported.
Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar
2015-12-01
A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X. Q.; Sun, X.; McBreen, J.
The authors have utilized synchrotron x-ray radiation to perform ''in situ'' x-ray diffraction studies on Li{sub 1-x}CoO{sub 2} and Li{sub 1-x}NiO{sub 2} cathodes. A C/10 charging rate was used for a Li/Li{sub 1-x}CoO{sub 2} cell. For the Li/Li{sub 1-x}NiO{sub 2} cells, C/13 and C/84 rates were applied. The in situ XRD data were collected during the first charge from 3.5 to 5.2 V. For the Li{sub 1-x}CoO{sub 2} cathode, in the composition range of x = 0 to x = 0.5, a new intermediate phase H2a was observed in addition to the two expected hexagonal phases H1 and H2. Inmore » the region very close to x = 0.5, some spectral signatures for the formation of a monoclinic phase M1 were also observed. Further, in the x = 0.8 to x = 1 region, the formation of a CdI{sub 2} type hexagonal phase has been confirmed. However, this new phase is transformed from a CdCl{sub 2} type hexagonal phase, rather than from a monoclinic phase M2 as previously reported in the literature. For the Li{sub 1-x}NiO{sub 2} system, by taking the advantage of the high resolution in 2{theta} angles through the synchrotron based XRD technique, they were able to identify a two-phase coexistence region of hexagonal phase H1 and H2, which has been mistakenly indexed as a single phase region for monoclinic phase M1. Interesting similarities and differences between these two systems are also discussed.« less
Editorial: Focus on X-ray Beams with High Coherence
NASA Astrophysics Data System (ADS)
Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon
2010-03-01
This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J Williams, H M Quiney, A G Peele and K A Nugent Imaging of complex density in silver nanocubes by coherent x-ray diffraction R Harder, M Liang, Y Sun, Y Xia and I K Robinson Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent x-ray diffraction N Vaxelaire, H Proudhon, S Labat, C Kirchlechner, J Keckes, V Jacques, S Ravy, S Forest and O Thomas Ptychographic coherent diffractive imaging of weakly scattering specimens Martin Dierolf, Pierre Thibault, Andreas Menzel, Cameron M Kewish, Konstantins Jefimovs, Ilme Schlichting, Konstanze von König, Oliver Bunk and Franz Pfeiffer Dose requirements for resolving a given feature in an object by coherent x-ray diffraction imaging Andreas Schropp and Christian G Schroer FLASH: new opportunities for (time-resolved) coherent imaging of nanostructures R Treusch and J Feldhaus Structure of a single particle from scattering by many particles randomly oriented about an axis: toward structure solution without crystallization? D K Saldin, V L Shneerson, M R Howells, S Marchesini, H N Chapman, M Bogan, D Shapiro, R A Kirian, U Weierstall, K E Schmidt and J C H Spence Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging V Favre-Nicolin, F Mastropietro, J Eymery, D Camacho, Y M Niquet, B M Borg, M E Messing, L-E Wernersson, R E Algra, E P A M Bakkers, T H Metzger, R Harder and I K Robinson Coherent science at the SwissFEL x-ray laser B D Patterson, R Abela, H-H Braun, U Flechsig, R Ganter, Y Kim, E Kirk, A Oppelt, M Pedrozzi, S Reiche, L Rivkin, Th Schmidt, B Schmitt, V N Strocov, S Tsujino and A F Wrulich Energy recovery linac (ERL) coherent hard x-ray sources Donald H Bilderback, Joel D Brock, Darren S Dale, Kenneth D Finkelstein, Mark A Pfeifer and Sol M Gruner Statistical and coherence properties of radiation from x-ray free-electron lasers E L Saldin, E A Schneidmiller and M V Yurkov Microscopic return point memory in Co/Pd multilayer films K A Seu, R Su, S Roy, D Parks, E Shipton, E E Fullerton and S D Kevan Holographic and diffractive x-ray imaging using waveguides as quasi-point sources K Giewekemeyer, H Neubauer, S Kalbfleisch, S P Krüger and T Salditt Mapping the conformations of biological assemblies P Schwander, R Fung, G N Phillips Jr and A Ourmazd Imaging the displacement field within epitaxial nanostructures by coherent diffraction: a feasibility study Ana Diaz, Virginie Chamard, Cristian Mocuta, Rogerio Magalhães-Paniago, Julian Stangl, Dina Carbone, Till H Metzger and Günther Bauer The potential for two-dimensional crystallography of membrane proteins at future x-ray free-electron laser sources Cameron M Kewish, Pierre Thibault, Oliver Bunk and Franz Pfeiffer Coherence properties of hard x-ray synchrotron sources and x-ray free-electron lasers I A Vartanyants and A Singer Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH A P Mancuso, Th Gorniak, F Staier, O M Yefanov, R Barth, C Christophis, B Reime, J Gulden, A Singer, M E Pettit, Th Nisius, Th Wilhein, C Gutt, G Grübel, N Guerassimova, R Treusch, J Feldhaus, S Eisebitt, E Weckert, M Grunze, A Rosenhahn and I A Vartanyants
Fascio, Mirta L; Alvarez-Larena, Angel; D'Accorso, Norma B
2002-11-29
Three isoxazoline tetracycles were obtained enantiomerically pure by intramolecular 1,3-dipolar cycloaddition. The characterization of the new compounds was performed by high-resolution 1H and 13C NMR spectroscopy. The relative configuration of the new chiral centers was determined by NOESY experiments and confirmed by single-crystal X-ray structural analysis.
NASA Astrophysics Data System (ADS)
Nycz, Jacek E.; Malecki, Grzegorz; Zawiazalec, Marcin; Pazdziorek, Tadeusz; Skop, Patrycja
2010-12-01
1-Pentyl-3-(4-methoxy-1-naphthoyl)indole (shortly named JWH-081) ( 1) and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone (shortly named JWH-250) ( 2), are examples of cannabinoids which were characterized by FTIR, UV-Vis, multinuclear NMR spectroscopy and single crystal X-ray diffraction method. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.
NASA Astrophysics Data System (ADS)
Gayen, Saikat; Saha, Debraj; Koner, Subratanath
2018-06-01
A new supramolecular metal-carboxylate framework [Co(mqc)2]n (1), and another monomeric compound [Zn (mqc)2(H2O)] (2) (mqcH = 4-methoxy 2-quinolinecarboxylic acid) have been synthesized solvothermally and characterized by single crystal X-ray diffraction, elemental analysis, IR spectra, UV-vis spectra, powdered X-ray diffraction (PXRD) and thermogravimetric analysis. Compound 1 is a 2D coordination polymer, extended to a 3D porous supramolecular network having void space in between 2D layers. Compound 1 exhibits gas uptake capacity of N2, H2, CO2 and CH4 like small gas molecules in which moderately high uptake of H2 and CO2 takes place among the 2D MOFs. While the Zn variety, compound 2 features a one-dimensional chain like structure through strong intermolecular hydrogen-bonding.
Carbonate-based zeolitic imidazolate framework for highly selective CO2 capture.
Basnayake, Sajani A; Su, Jie; Zou, Xiadong; Balkus, Kenneth J
2015-02-16
In this study, we report the formation of a new crystal structure, ZIF-CO3-1, which results from the reaction of Zn(2+), 2-methylimidazole, and carbonate. ZIF-CO3-1 can be synthesized solvothermally in N,N-dimethylformamide (DMF)/water (H2O) or by utilizing of CO2 gas at various temperatures in DMF/H2O or H2O. This reaction selectively consumes CO2 because CO2 is incorporated in the ZIF as carbonate. CO2 can be quantitatively released by acidifying the ZIF. Powder X-ray diffraction, single-crystal X-ray diffraction, FTIR spectroscopy, scanning electron microscopy, elemental analysis, and thermogravimetric analysis were used to characterize the ZIF structure. ZIF-CO3-1 (chemical formula C9H10N4O3Zn2), crystallizes in the orthorhombic crystal system with noncentrosymmetric space group Pba2.
Crystal structure and europium luminescence of NaMgH3-xFx
NASA Astrophysics Data System (ADS)
Pflug, Christian; Franz, Alexandra; Kohlmann, Holger
2018-02-01
The solid solution series NaMgH3-xFx (x = 0, 0.5, 1, 1.5, 2, 2.5, 3) was synthesized by solid-state reactions under hydrogen gas pressure from binary ionic hydrides, fluorides and magnesium. Rietveld refinement based on X-ray powder diffraction data revealed the GdFeO3-structure type for all compounds and a trend of lattice parameters according to Vegard's law. The anion distribution in NaMgD2F and NaMgD1.5F1.5 was found to be statistical by Rietveld refinement based on neutron powder diffraction data. Photoluminescence measurements on europium(II) substituted NaMgH3-xFx revealed a strong red shift of the emission wavelength (λem = 665 nm for NaMgH2F:Eu) in comparison to violet emitting NaMgF3:Eu.
NASA Astrophysics Data System (ADS)
Dholariya, Hitesh R.; Patel, Ketan S.; Patel, Jiten C.; Patel, Kanuprasad D.
2013-05-01
A series of Cu(II) complexes containing dicoumarol derivatives and 1, 10-phenanthroline have been synthesized. Structural and spectroscopic properties of ligands were studied on the basis of mass spectra, NMR (1H and 13C) spectra, FT-IR spectrophotometry and elemental analysis, while physico-chemical, spectroscopic and thermal properties of mixed ligand complexes have been studied on the basis of infrared spectra, mass spectra, electronic spectra, powder X-ray diffraction, elemental analysis and thermogravimetric analysis. X-ray diffraction study suggested the suitable octahedral geometry for hexa-coordinated state. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been calculated using Freeman-Carroll method. Ferric-reducing antioxidant power (FRAP) of all complexes were measured. All the compounds were screened for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes and Bacillus subtilis, while antifungal activity against Candida albicans and Aspergillus niger have been carried out. Also compounds against Mycobacterium tuberculosis shows clear enhancement in the anti-tubercular activity upon copper complexation.
Mai, Van Hung; Kuzmina, Lyudmila G; Churakov, Andrei V; Korobkov, Ilia; Howard, Judith A K; Nikonov, Georgii I
2016-01-07
Reaction of complex [CpRu(pyr)3][PF6] (3) with the NHC carbene IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) results in the NHC complex [Cp(IPr)Ru(pyr)2][PF6] (4), which was studied by NMR specroscopy and X-ray diffraction analysis. Reaction of [Cp(IPr)Ru(pyr)2][PF6] (4) with LiAlH4 leads to the trihydride Cp(IPr)RuH3 (5) characterised by spectroscopic methods. Heating compound 5 with hydrosilanes gives the dihydrido silyl derivatives Cp(IPr)RuH2(SiR3) (6). Systematic X-ray diffraction studies suggest that complexes 6 have stronger interligand Si∙∙∙H interactions than the isolobal phosphine complexes Cp(Pr3P)RuH2(SiR3).
NASA Astrophysics Data System (ADS)
Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee
2017-05-01
Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergienko, V. S., E-mail: sergienko@igic.ras.ru; Martsinko, E. E.; Seifullina, I. I.
2015-09-15
The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H{sub 4}Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge(Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta{sup 4–} ligand. An extended system of weak C—H···O hydrogen bonds connects complex molecules into a supramolecular 3D framework.
NASA Astrophysics Data System (ADS)
Sergienko, V. S.; Martsinko, E. E.; Seifullina, I. I.; Churakov, A. V.; Chebanenko, E. A.
2015-09-01
The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H4 Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge( Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta 4- ligand. An extended system of weak С—Н···О hydrogen bonds connects complex molecules into a supramolecular 3D framework.
NASA Astrophysics Data System (ADS)
Talhi, Oualid; Fernandes, José A.; Pinto, Diana C. G. A.; Almeida Paz, Filipe A.; Silva, Artur M. S.
2015-08-01
The synthesis of a new series of warfarin analogues by convenient organobase catalyzed 1,4-conjugate addition of 4-hydroxycoumarin to chalcone derivatives is described. 1H NMR spectroscopy evidenced the presence of a predominant acyclic open-form together with the cyclic hemiketal tautomers of the resulting Michael adducts. The acyclic open-form has been unequivocally proved by single-crystal X-ray diffraction analysis. The use of the B ring ortho-hydroxychalcone synthons in this reaction has led to a diastereoselective synthesis of warfarin bicyclo[3.3.1]nonane ketal derivatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka
Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svendsen, Helle; Jørgensen, Mads Ry Vogel; Overgaard, Jacob
2012-10-11
Single crystal synchrotron X-ray diffraction measurements have been carried out on [Nd(DMF){sub 4}(H{sub 2}O){sub 3}({mu}-CN)Fe(CN){sub 5}] {center_dot} H{sub 2}O (DMF = dimethyl-formamide), 1; [Y(DMF){sub 4}(H{sub 2}O){sub 3}({mu}-CN)Fe(CN){sub 5}] {center_dot} H{sub 2}O, 2; [Ce(DMF){sub 4}(H{sub 2}O){sub 3}({mu}-CN)Fe(CN){sub 5}] {center_dot} H{sub 2}O, 3; [Sm(DMF){sub 4}(H{sub 2}O){sub 3}({mu}-CN)Fe(CN){sub 5}] {center_dot} H{sub 2}O, 4; [Tb(DMF){sub 4}(H{sub 2}O)3({mu}-CN)Fe(CN){sub 5}] {center_dot} H{sub 2}O, 5; [Yb(DMF){sub 4}(H{sub 2}O){sub 3}({mu}-CN)Fe(CN){sub 5}] {center_dot} H{sub 2}O, 6; and [Nd(DMF){sub 4}(H{sub 2}O){sub 3}({mu}-CN)Co(CN){sub 5}] {center_dot} H{sub 2}O, 7, at 15(2) K with and without UV illumination of the crystals. Significant changes in unit cell parameters are observed for all of themore » iron-containing complexes, while compound 7 shows no response to UV illumination. These results are consistent with previous results and are furthermore reproduced by powder synchrotron X-ray diffraction for compounds 1 and 7. Photoexcited crystal structures have been determined for 1-6 from refinements of two-conformer models, and excited state occupancies in the range 80-94% are found. Significant bond length changes are observed for the Fe-ligand bonds (up to 0.06 {angstrom}), the cyano bonds (up to 0.02 {angstrom}), and the lanthanide-ligand bonds (up to 0.1 {angstrom}). On the contrary, powder X-ray diffraction on the simple compound K{sub 3}Fe(CN)6, 8, upon UV illumination does not show any structural changes, suggesting that the photomagnetic effect requires the presence of both the transition metal and the lanthanide ion. Photomagnetic measurements show an increase in magnetization of the excited state of 1 of up to 3%, which is much diminished compared with previously published values of 45%. Furthermore, they show that the isostructural complex [La(DMF){sub 4}(H{sub 2}O){sub 3}({mu}-CN)Fe(CN){sub 5}] {center_dot} H{sub 2}O, 9, exhibits identical magnetic responses in the UV-induced excited crystal structure.« less
Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa
2016-07-01
Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.
Uranium Hydridoborates: Synthesis, Magnetism, and X-ray/Neutron Diffraction Structures.
Braunschweig, H; Gackstatter, A; Kupfer, T; Radacki, K; Franke, S; Meyer, K; Fucke, K; Lemée-Cailleau, M-H
2015-08-17
While uranium hydridoborate complexes containing the [BH4](-) moiety have been well-known in the literature for many years, species with functionalized borate centers remained considerably rare. We were now able to prepare several uranium hydridoborates (1-4) with amino-substituted borate moieties with high selectivity by smooth reaction of [Cp*2UMe2] (Cp* = C5Me5) and [Cp'2UMe2] (Cp' = 1,2,4-tBu3C5H2) with the aminoborane H2BN(SiMe3)2. A combination of nuclear magnetic resonance spectroscopy, deuteration experiments, magnetic SQUID measurements, and X-ray/neutron diffraction studies was used to verify the anticipated molecular structures and oxidation states of 1-4 and helped to establish a linear tridentate coordination mode of the borate anions.
Phase study of titanium dioxide nanoparticle prepared via sol-gel process
NASA Astrophysics Data System (ADS)
Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan
2018-03-01
In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.
NASA Astrophysics Data System (ADS)
Shibazaki, Yuki; Ohtani, Eiji; Fukui, Hiroshi; Sakai, Takeshi; Kamada, Seiji; Ishikawa, Daisuke; Tsutsui, Satoshi; Baron, Alfred Q. R.; Nishitani, Naoya; Hirao, Naohisa; Takemura, Kenichi
2012-01-01
We have determined the density evolution of the sound velocity of dhcp-FeH x ( x ≈ 1) up to 70 GPa at room temperature, by inelastic X-ray scattering and by X-ray diffraction. We find that the variation of VP with density is different for the ferromagnetic and nonmagnetic dhcp-FeH x, and that only nonmagnetic dhcp-FeH x follows Birch's law. Combining our results with Birch's law for iron and assuming an ideal two-component mixing model, we obtain an upper bound of the hydrogen content in the Earth's inner core, 0.23(6) wt.% H, corresponding to FeH 0.13(3). The iron alloy with 0.23(6) wt.% H can satisfy the density, and compressional and shear sound velocities of the PREM inner core, assuming that there are no other light elements in the inner core.
Nanocrystalline NiNd0.01Fe1.99O4 as a gas sensor
NASA Astrophysics Data System (ADS)
Shinde, Tukaram J.; Gadkari, Ashok B.; Jadhav, Sarjerao R.; Kumar, Surender; Dalawai, Sanjeev P.; Vasambekar, Pramod N.
2015-06-01
Nanocrystalline NiNd0.01Fe1.99O4 has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl2, LPG and C2H5OH. It was observed that NiNd0.01Fe1.99O4 is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.
NASA Astrophysics Data System (ADS)
Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık
2018-06-01
Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradpour, Tahereh; Abbasi, Alireza, E-mail: aabbassi@khayam.ut.ac.ir; Van Hecke, Kristof
A new 3D nanoporous metal–organic framework (MOF), [[Zn{sub 4}O(C{sub 24}H{sub 15}N{sub 6}O{sub 6}){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O·DMF]{sub n} (1) based on 4,4′,4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) ligand was solvothermally synthesized and characterized by single–crystal X-ray diffraction, Powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and Brunauer–Emmett–Teller (BET) analyses. X-ray single crystal diffraction analysis reveals that 1 exhibits a 3D network with new kvh1 topology. Semi-empirical (AM1) calculations were carried out to obtain stable conformers for TATAB ligand. In addition, the absorption of two typical aldehydes (benzaldehyde and formaldehyde) in the presence of 1 was investigated and the effect of the aldehyde concentration, exposure timemore » and temperature was studied. It was found that compound 1 has a potential for the absorption of aldehydes under mild conditions. - Graphical abstract: Absorption of two typical aldehydes (formaldehyde and benzaldehyde) by solvothermally synthesized of a 3D nano-porous MOF based on TATAB tricarboxylate ligand and Zn (NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • We present a 3D Zn(II)-MOF with TATAB linker by solvothermal method. • The framework possesses a new kvh1 topology. • The framework displays formaldehyde and benzaldehyde absorption property. • Conformational analysis was performed to determine the stable linker geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Matthew D.; Huang, Haw-Tyng; Zhu, Li
The 1:1 acetylene–benzene cocrystal, C 2H 2·C 6H 6, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Matthew D.; Huang, Haw-Tyng; Zhu, Li
The 1 : 1 acetylene–benzene cocrystal, C 2H 2·C 6H 6, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Yu, Yuanyuan
2017-06-01
A new Cd(II) compound, namely [Cd2(btc)(phen)2Cl]n·n(H2O)·n(DMA) (1, H3btc = 1, 3, 5-benzenetricarboxylic acid, phen = 1,10-phenanthroline, DMA = N,N'-dimethylacetamide) has been synthesized and structurally characterized by single-crystal X-ray diffraction analysis. This compound crystallizes in monoclinic P21/n space group with a = 13.5729(7) Å, b = 20.1049(7) Å, c = 13.9450(6) Å, β = 104.671(4)°, Z = 4. Single-crystal X-ray diffraction analysis reveals that compound 1 features a 2D → 3D interdigitated framework directed by the intermolecular hydrogen bonds. In addition, the luminescent properties of compound 1 were also investigated in the solid state at room temperature.
NASA Astrophysics Data System (ADS)
Szafran, M.; Katrusiak, A.; Dega-Szafran, Z.; Kowalczyk, I.
2013-01-01
The structure of dimethylphenyl betaine hydrochloride (1) has been studied by X-ray diffraction, DFT calculations, NMR and FTIR spectra. The crystals are monoclinic, space group P21/c. In the crystal, the Cl- anion is connected with protonated betaine through the O-H⋯Cl- hydrogen bond of 2.943(2) Å. The structures in the gas phase (2) and water solution (3) have been optimized by the B3LYP/6-311++G(d,p) approach and the geometrical results have been compared with the X-ray data of 1. The FTIR spectrum of the solid compound is consistent with the X-ray results. The probable assignments of the anharmonic experimental vibrational frequencies of the investigated chloride (1) based on the calculated harmonic frequencies in water solution (3) are proposed. The correlations between the experimental 1H and 13C NMR chemical shifts (δexp) of 1 in D2O and the magnetic isotropic shielding constants (σcalc) calculated by the GIAO/B3LYP/6-311G++(d,p) approach, using the screening solvation model (COSMO), δexp = a + b σcalc, for optimized molecule 3 in water solution are linear and correctly reproduce the experimental chemical shifts.
Hydrogen atoms can be located accurately and precisely by x-ray crystallography.
Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan
2016-05-01
Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.
Hydrogen atoms can be located accurately and precisely by x-ray crystallography
Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M.; Woźniak, Krzysztof; Jayatilaka, Dylan
2016-01-01
Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors. PMID:27386545
M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzeng, Biing-Chiau; Selvam, TamilSelvi; Tsai, Miao-Hsin
2016-11-15
A series of 1-D double-zigzag (([M(papx){sub 2}(H{sub 2}O){sub 2}](ClO{sub 4}){sub 2}){sub n}; M=Mn, x=s (1), x=o (3); M=Co, x=s (4), x=o (5); M=Ni, x=s (6), x=o (7)) and 2-D polyrotaxane ([Mn(paps){sub 2}(ClO{sub 4}){sub 2}]{sub n} (2)) frameworks were synthesized by reactions of M(ClO{sub 4}){sub 2} (M=Mn, Co, and Ni) with papx (paps, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenylthioether; papo, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenyl ether), which have been isolated and structurally characterized by X-ray diffraction. Based on powder X-ray diffraction (PXRD) experiments, heating the double-zigzag frameworks underwent structural transformation to give the respective polyrotaxane ones. Moreover, grinding the solid samples of the respective polyrotaxanes in the presence of moisturemore » also resulted in the total conversion to the original double-zigzag frameworks. In this study, we have successfully extended studies to Mn{sup II}, Co{sup II}, and Ni{sup II} frameworks from the previous Zn{sup II}, Cd{sup II}, and Cu{sup II} ones, and interestingly such structural transformation is able to be proven experimentally by powder and single-crystal X-ray diffraction studies as well. - Graphical abstract: 1-D double-zigzag and 2-D polyrotaxane frameworks of M(II)-papx (x=s, o; M=Mn, Co, Ni) frameworks can be interconverted by heating and grinding in the presence of moiture, and such structural transformation has be proven experimentally by powder and single-crystal X-ray diffraction studies.« less
Projection x-ray topography system at 1-BM x-ray optics test beamline at the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Liu, Zunping; Trakhtenberg, Emil
2016-07-27
Projection X-ray topography of single crystals is a classic technique for the evaluation of intrinsic crystal quality of large crystals. In this technique a crystal sample and an area detector (e.g., X-ray film) collecting intensity of a chosen crystallographic reflection are translated simultaneously across an X-ray beam collimated in the diffraction scattering plane (e.g., [1, 2]). A bending magnet beamline of a third-generation synchrotron source delivering x-ray beam with a large horizontal divergence, and therefore, a large horizontal beam size at a crystal sample position offers an opportunity to obtain X-ray topographs of large crystalline samples (e.g., 6-inch wafers) inmore » just a few exposures. Here we report projection X-ray topography system implemented recently at 1-BM beamline of the Advanced Photon Source. A selected X-ray topograph of a 6-inch wafer of 4H-SiC illustrates capabilities and limitations of the technique.« less
X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure
Mao, Ho-kwang [Washington, DC; Mao, Wendy L [Washington, DC
2011-11-29
A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.
Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.
2016-08-15
Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less
Hanifehpour, Younes; Morsali, Ali; Mirtamizdoust, Babak; Joo, Sang Woo; Soltani, Behzad
2017-07-01
Nano-structures of a new supramolecular coordination compound of divalent nickel with the pyrazol (pzH) containing the terminal azide anions, [Ni(pzH) 2 (N 3 ) 2 ] (1), with discrete molecular architecture (DMA) in solid state was synthesized via sonochemical method. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, IR, and elemental analysis. Compound 1 was structurally characterized by single crystal X-ray diffraction and the single-crystal X-ray data shows that the coordination number of Ni (II) ions is six, (NiN 6 ), with four N-donor atoms from neutral "pzH" ligands and two N-donors from two terminal azide anions. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are consistent with the crystal structure. The NiO nanoparticles were obtained by thermolysis of 1 at 180°C with oleic acid as a surfactant. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xing-Po; Han, Lu-Lu; Wang, Zhi; Guo, Ling-Yu; Sun, Di
2016-03-01
A novel Cd(II) metal-organic framework (MOF) based on a rigid biphenyltetracarboxylic acid, [Cd4(bptc)2(DMA)4(H2O)2·4DMA] (1) was successfully synthesized under the solvothermal condition and characterized by single-crystal X-ray diffraction and further consolidated by elemental analyses, powder X-ray diffraction (PXRD), infrared spectra (IR) and luminescent measurements. Single crystal X-ray diffraction analysis reveals that compound 1 is 4-connected PtS (Point symbol: {42·84}) network based on [Cd2(COO)4] secondary building units (SBUs). Its inherent porous and emissive characteristics make them to be a suitable fluorescent probe to sense small solvents and nitroaromatic explosives. Compound 1 shows obviously solvent-dependent emissive behaviors, especially for acetone with very high fluorescence quenching effect. Moreover, compound 1 displays excellent sensing of nitroaromatic explosives at sub-ppm level, giving a detection limit of 0.43 ppm and 0.37 ppm for nitrobenzene (NB) and p-nitrotoluene (PNT), respectively. This shows this Cd(II) MOF can be used as fluorescence probe for the detection of nitroaromatic explosives.
NASA Astrophysics Data System (ADS)
Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter
2007-03-01
We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.
NASA Astrophysics Data System (ADS)
Carvalho, Paulo S.; de Melo, Cristiane C.; Ayala, Alejandro P.; Ellena, Javier
2016-08-01
A comprehensive solid state study of Paroxetine nitrate hydrate, (PRX+·NO3-)H2O, is reported. This salt was characterized by a combination of methods, including Single crystal X-ray diffraction, Thermal analysis, Fourier transform infrared spectroscopy (FTIR) and Solubility measurements. (PRX+·NO3-)H2O crystallizes in the monoclinic C2 space group (Z‧ = 1) and its packing was analyzed in details, showing that the main supramolecular motif consists in a C22(4) chain formed by charge-assisted N+-H⋯O- hydrogen bonds. The salt formation and conformation features were also accuracy established via FTIR spectra. In comparison with the pharmaceutical approved (PRX+ṡCl-)ṡ0.5H2O, (PRX+ṡNO3-)ṡH2O showed a decrease of 24 °C in the drug melting peak and a slight reduction in its water solubility value.
NASA Astrophysics Data System (ADS)
Yang, Yu; Guo, Jianqiu; Goue, Ouloide Yannick; Kim, Jun Gyu; Raghothamachar, Balaji; Dudley, Michael; Chung, Gill; Sanchez, Edward; Manning, Ian
2018-02-01
Synchrotron x-ray topography in grazing-incidence geometry is useful for discerning defects at different depths below the crystal surface, particularly for 4H-SiC epitaxial wafers. However, the penetration depths measured from x-ray topographs are much larger than theoretical values. To interpret this discrepancy, we have simulated the topographic contrast of dislocations based on two of the most basic contrast formation mechanisms, viz. orientation and kinematical contrast. Orientation contrast considers merely displacement fields associated with dislocations, while kinematical contrast considers also diffraction volume, defined as the effective misorientation around dislocations and the rocking curve width for given diffraction vector. Ray-tracing simulation was carried out to visualize dislocation contrast for both models, taking into account photoelectric absorption of the x-ray beam inside the crystal. The results show that orientation contrast plays the key role in determining both the contrast and x-ray penetration depth for different types of dislocation.
NASA Astrophysics Data System (ADS)
Wang, Xin-Fang; Zhou, Sheng-Bin; Du, Ceng-Ceng; Wang, Duo-Zhi; Jia, Dianzeng
2017-08-01
Using a new simi-rigid multitopic ligand 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L), seven new coordination polymers [Zn3(L)2(μ2-OH)2]n (1), {[Zn2(HL)2(H2O)2]·SiF6}n (2), [Zn(HL)(SCN)]n (3), {[Zn2(HL)2(SO4)]·(4,4‧-bpy)}n (4) [4,4‧-bpy =4,4‧-bipyridine], {[Zn(HL)2]·2H2O}n (5), {[Cd(HL)2]·2H2O}n (6) and [Cd2(HL)2(H2O)2(SO4)]n (7) have been successfully obtained from H2L ligand under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR spectroscopy. In addition, UV-vis diffuse-reflectance spectra demonstrate wide band gaps. Complex 1 features a 3D topological net of {412·63} with the stoichiometry (6-c), contains 1D channels with the accessible solvent volume of 42.1%. 3, 4, 5 and 6 have a 1D chain structure, 5 and 6 further assemble to form 2D sheet and 3D supramolecular frameworks by hydrogen-bonding interactions, respectively. Complexes 2 and 7 possess a 2D layered structure, and the 2D supramolecular network of 2 can be rationalized to be four-connected {44·62} topological sql network with the dinuclear units, while 7 shows a 3-nodal 2D net with a point symbol of {63}. Moreover, the fluorescent emission, fluorescence lifetimes of 1-7 have been investigated and discussed. Interesting enough, complex 1 showed high efficiency for catalyzing the Knoevenagel condensation reaction between 4-substituted aromatic aldehydes and malononitrile as selective heterogeneous catalyst. The CPs combining catalytic and fluorescent properties could further meet the requirement as a multifunctional material. Seven new Zn(II)/Cd(II) coordination polymers with simi-rigid multitopic ligand, [(2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid) (H2L)] have been successfully obtained and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR spectroscopy. All the complexes are air stable at room. In addition, the fluorescent emission, fluorescence lifetime and UV-vis diffuse-reflectance spectra of 1-7 and H2L have been investigated and discussed. Furthermore, we studied the Knoevenagel condensation reaction between 4-substituted aromatic aldehydes and malononitrile by activated 1a as selective heterogeneous catalyst.
NASA Astrophysics Data System (ADS)
Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin
2016-08-01
Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.
NASA Astrophysics Data System (ADS)
Ośmiałowski, Borys; Kolehmainen, Erkki; Ikonen, Satu; Ahonen, Kari; Löfman, Miika
2011-12-01
2-Acylamino-6-[1 H]-pyridones [acyl = RCO, where R = methyl ( 1), ethyl ( 2), iso-propyl ( 3), tert-butyl ( 4), and 1-adamantyl ( 5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a "bridge" between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C dbnd O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreement with each other.
Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V
2015-07-01
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.
Wang, Rongming; Zhang, Jian; Li, Lijuan
2009-01-01
A novel metal-organic framework, [Zn2(OH)(Hcht)(4,4′-bpy)]n·4nH2O (1) (H4cht = cyclohexane-1,2,4,5-tetracarboxylic acid and 4,4′-bpy = 4,4′-bipyridine), was synthesized by the hydrothermal reaction of Zn(NO3)2.6H2O, 4,4′-bipyridine, and cyclohexane-1,2,4,5-tetracarboxylic acid in the presence of sodium carbonate. The complex was obtained by controlling the ratio of the starting materials and a reaction temperature at 120°C and was characterized by IR, X-ray powder diffraction, thermogravimetric analysis, fluorescent spectrum, and single crystal X-ray diffraction. Single-crystal X-ray investigation reveals that the structure features a two-dimensional framework with novel coordination mode of Hcht ligand and all Hcht ligands exclusively convert to a sole conformation in the complex. IR spectrum reveals the characteristic absorption peaks of asymmetric stretching vibrations that result from the protonated and deprotonated carboxyl groups,. Thermogravimetric analysis shows four clear courses of weight loss, which corresponds to the decomposition of different ligands. Fluorescent spectrum displays that complex 1 is a potential blue-luminescent material. PMID:20383315
NASA Astrophysics Data System (ADS)
Zhai, Dandan; Sun, Wujuan; Fan, Fei; Liao, Xuzhao; Chen, Sanping; Yang, Xuwu
2017-04-01
Three new coordination polymers, namely, {[Co2(TPA)(μ3-O)3]·0.5DMA}n (1), {[Co(H2TPA)(bibp)(H2O)3]·H2O}n (2) and {[Cd3(TPA)2(phen)4]·4H2O}n (3), (H3TPA = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid, bibp = 4,4'-bis(imidazolyl)biphenyl, phen = 1,10-phenanthroline and DMA = N,N-dimethylacetamide), have been synthesized under solvothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction analysis. Polymer 1 exhibits a three-dimensional (3D) structure constructed from 5-connected secondary building units (SBUs) [Co3(μ3-O)] and 3-connected H3TPA ligands. Polymer 2 has a 1D zigzag polymer chain connected by H3TPA and bibp ligands. Polymer 3 features an unusual 3D framework with a (3,4,2)-connected {4; 6;8}{4; 62;83} topology. Moreover, the thermal stabilities of 1-3 and photoluminescence properties of 3 have been investigated. Magnetic susceptibility measurements indicate that polymers 1-2 display antiferromagnetic exchange properties.
NASA Astrophysics Data System (ADS)
Lopes, Cátia S. D.; Bernardes, Carlos E. S.; Piedade, M. Fátima M.; Diogo, Hermínio P.; da Piedade, Manuel E. Minas
2017-04-01
A new polymorph of 1-(4-hydroxyphenyl)pentan-1-one (4'-hydroxyvalerophenone, HVP) was identified by using differential scanning calorimetry, hot stage microscopy, and X-ray powder diffraction. This novel crystal form (form II) was obtained by crystallization from melt. It has a fusion temperature of T fus = 324.3 ± 0.2 K and an enthalpy of fusion Δfus H m o = 18.14±0.18 kJ·mol-1. These values are significantly lower than those observed for the previously known phase (form I, monoclinic, space group P21/ c, T fus = 335.6 ± 0.7 K; Δfus H m o = 26.67±0.04 kJ·mol-1), which can be prepared by crystallization from ethanol. The results here obtained, therefore, suggest that form I is thermodynamically more stable than the newly identified form II and, furthermore, that the two polymorphs are monotropically related.
Synthesis and anti-lung cancer activity of a novel arsenomolybdate compound
NASA Astrophysics Data System (ADS)
Zhu, Tian-Tian; Wang, Juan; Chen, Song-Hu
2017-12-01
The new compound based on Wells-Dawson-type arsenomolybdate: [{Cu10(pz)11Cl4}{As2IIIAs2VMo6VMo12VIO62}]·H2O (1) has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis, X-ray powder diffraction (XRPD), XPS spectroscopy and thermogravimetric analysis (TG). Compound 1 is consisted of two As caps Wells-dawson-type arsenomolybdate and {Cu10(py)11} complexes by chloride bridge. In addition, the antitumor effects of the title compound 1 were studied on three human lung cancer cells (A549, SK-LU-1 and SW1573). The results showed that compared with the positive reference drug carboplatin, compound 1 displayed efficient antitumor activity.
NASA Astrophysics Data System (ADS)
Zhou, Zhi-Hang; Han, Min-Le; Wu, Ya-Pan; Dong, Wen-Wen; Li, Dong-Sheng; Lu, Jack Y.
2016-10-01
Two new Co(II) coordination polymers(CPs), namely [Co2(bpe)2(Hbppc)]n (1) and [Co3(μ3-OH)(bppc)(bpm)(H2O)]·3H2O (2) (H5bppc=biphenyl-2,4,6,3‧,5‧-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (44·610·8)(44·62) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co3(μ3-OH)]5+ units with unusual (3.46.52.6)(32.46.57.65.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system.
NASA Astrophysics Data System (ADS)
Xing, Yubo; Liu, Yuqi; Xue, Xiaofei; Wang, Xinying; Li, Wei
2018-02-01
Three new metal-organic coordination polymers, {[Mn2(1,4-NDC)2 (C2H5OH) (DMF) (H2O)]·CH3OH}n(1), {[Mn(III)(1,4-NDC)(C2H5O)][Mn(II)(1,4-NDC)(DMF)(H2O)]}n(2) and {[Cu2(C13H9O4)4(H2O)2]}n(3) based on1,4-H2NDC and its derivative were hydrothermally synthesized (1,4-H2NDC = 1,4-naphthalene-dicarboxylic acid, C13H10O4 = 4-methyl formate-1-naphthalenecarboxylic acid), and characterized by techniques of single crystal X-ray diffraction, infrared spectra (IR), elemental analysis, powder X-ray diffraction(PXRD) and variable-temperature magnetic susceptibility measurements. X-ray crystal structure analyses reveal that complexes 1 and 2 show a same 3,5-connected fsc 3D topology network with the Schlȁfli symbol of {4·6·8}{4·66·83}. But, the valence of some Mn atom in complex 2 take place transition from the +II oxidation state to the +III oxidation state, which may be the effect of the different solvent ratio. In complex 3, the Cu⋯Cu distance of 2.620(13) Å is significantly shorter than the sum of the van der Waals radii of Cu (1.40 Å), resulting in a strong ferromagnetic interaction between the Cu(II) centers. Furthermore, the temperature-dependent magnetic susceptibility measurements exhibit overall antiferromagnetic interactions between manganese ions for complexes 1 and 2, and a strong ferromagnetic interaction between the Cu(II) centers for complex 3.
NASA Astrophysics Data System (ADS)
Huo, Liangqin; Zhang, Jie; Gao, Lingling; Wang, Xiaoqing; Fan, Liming; Fang, Kegong; Hu, Tuoping
2017-12-01
Two novel coordination polymers, formulated as {[Zn(HTPO)(bib)]·4H2O}n (1), {[Cu3(TPO)2 (bib)3]·2DMF·0.5EtOH·0.5H2O}n (2) (H3TPO = tris(4-carboxylphenyl)phosphine oxide; bib = 1,4-bis(1H-imidazol-4-yl) benzene), have been synthesized under solvothermal method and characterized by single-crystal X-ray diffraction, elemental analysis (EA), IR spectra, thermogravimetric (TG) analysis, powder X-ray diffraction (PXRD). Structural analysis reveals that complex 1 is a 2D 4-connected sheet with an intriguing 2D + 2D→2D network. Complex 2 displays a 3D 3,4-connected net with the point symbol of {103}2{106}3. Furthermore, the photoluminescence properties of 1 and 2 were investigated in the solid state and various solvent emulsions, the results show that 1 and 2 have better fluorescent recognition for organic molecules, Fe3+ and Hg2+ ions.
Crystallization and preliminary X-ray analysis of human MTH1 with a homogeneous N-terminus.
Koga, Yukari; Inazato, Miyuki; Nakamura, Teruya; Hashikawa, Chie; Chirifu, Mami; Michi, Asuka; Yamashita, Taku; Toma, Sachiko; Kuniyasu, Akihiko; Ikemizu, Shinji; Nakabeppu, Yusaku; Yamagata, Yuriko
2013-01-01
Human MTH1 (hMTH1) is an enzyme that hydrolyses several oxidized purine nucleoside triphosphates to their corresponding nucleoside monophosphates. Crystallographic studies have shown that the accurate mode of interaction between 8-oxoguanine and hMTH1 cannot be understood without determining the positions of the H atoms, as can be observed in neutron and/or ultrahigh-resolution X-ray diffraction studies. The hMTH1 protein prepared in the original expression system from Escherichia coli did not appear to be suitable for obtaining high-quality crystals because the hMTH1 protein had heterogeneous N-termini of Met1 and Gly2 that resulted from N-terminal Met excision by methionine aminopeptidase from the E. coli host. To obtain homogeneous hMTH1, the Gly at the second position was replaced by Lys. As a result, mutant hMTH1 protein [hMTH1(G2K)] with a homogeneous N-terminus could be prepared and high-quality crystals which diffracted to near 1.1 Å resolution using synchrotron radiation were produced. The new crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 46.36, b = 47.58, c = 123.89 Å.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandrino, Djordje, E-mail: djordje.mandrino@imt.si; Paulin, Irena; Skapin, Sreco D.
2012-10-15
The decomposition of commercially available TiH{sub 2} was investigated while performing different thermal treatments. TiH{sub 2} powder, which is widely used as a foaming agent, was heat treated at 450 Degree-Sign C for various times, from 15 min to 120 min. Scanning electron microscopy (SEM) images of the surfaces at different magnifications were obtained and interpreted. A Bragg-Brentano X-ray diffractometer was used to measure the X-ray diffraction (XRD) spectra on all five samples. A close examination of the diffraction spectra showed that for an as-received sample and samples undergoing the longest thermal treatment (1 and 2 h) these spectra canmore » be explained as deriving from cubic TiH{sub 1.924}, while for the other two samples they can be explained as deriving from tetragonal TiH{sub 1.924}. A constant-unit-cell-volume phase transition between the cubic and tetragonal phases in TiH{sub 2-y}-type compounds had been described in the literature. The unit-cell parameters obtained from measured spectra confirm that within the measurement uncertainty the unit-cell volume is indeed constant in all five samples. Thermo-gravimetry (TG) and differential thermal analysis (DTA) measurements were performed on all the samples, showing that the intensity of the dehydrogenation depends on the previous treatment of the TiH{sub 2}. After the thermal analysis XRD of the samples was performed again and the material was found to exhibit a Ti-like unit cell, but slightly enlarged due to the unreleased hydrogen. - Highlights: Black-Right-Pointing-Pointer TiH{sub 2} samples were cubic or tetragonal TiH{sub 1.924} Black-Right-Pointing-Pointer Onset of the hydrogen release temperature increases with the pre-treatment time. Black-Right-Pointing-Pointer Thermal dehydrogenation for the as-prepared TiH{sub 2} is a three-step process. Black-Right-Pointing-Pointer After thermal analysis 2 residual hydrogen TiH{sub x} phases, close to {alpha}Ti, appeared.« less
One-Micron Beams for Macromolecular Crystallography at GM/CA-CAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoder, D. W.; Sanishvili, R.; Xu, S.
2010-06-23
GM/CA-CAT has developed a 1-{mu}m beam for challenging micro-diffraction experiments with macromolecular crystals (e.g. small crystals) and for radiation damage studies. Reflective (Kirkpatrick-Baez mirrors) and diffractive (Fresnel zone plates) optics have been used to focus the beam. Both cases are constrained by the need to maintain a small beam convergence. Using two different zone plates, 1.0x1.0 and 0.8x0.9 {mu}m{sup 2} (VxH,FWHM) beams were created at 15.2 keV and 18.5 keV, respectively. Additionally, by introducing a vertical focusing mirror upstream of the zone plate, a line focus at 15.2 keV was created (28x1.4 {mu}m{sup 2} VxH,FWHM) with the line oriented perpendicularmore » to the X-ray polarization and the crystal rotation axis. Crystal-mounting stages with nanometer resolution have been assembled to profile these beams and to perform diffraction experiments.« less
Grangeon, Sylvain; Claret, Francis; Roosz, Cédric; Sato, Tsutomu; Gaboreau, Stéphane; Linard, Yannick
2016-06-01
The structure of nanocrystalline calcium silicate hydrates (C-S-H) having Ca/Si ratios ranging between 0.57 ± 0.05 and 1.47 ± 0.04 was studied using an electron probe micro-analyser, powder X-ray diffraction, 29 Si magic angle spinning NMR, and Fourier-transform infrared and synchrotron X-ray absorption spectroscopies. All samples can be described as nanocrystalline and defective tobermorite. At low Ca/Si ratio, the Si chains are defect free and the Si Q 3 and Q 2 environments account, respectively, for up to 40.2 ± 1.5% and 55.6 ± 3.0% of the total Si, with part of the Q 3 Si being attributable to remnants of the synthesis reactant. As the Ca/Si ratio increases up to 0.87 ± 0.02, the Si Q 3 environment decreases down to 0 and is preferentially replaced by the Q 2 environment, which reaches 87.9 ± 2.0%. At higher ratios, Q 2 decreases down to 32.0 ± 7.6% for Ca/Si = 1.38 ± 0.03 and is replaced by the Q 1 environment, which peaks at 68.1 ± 3.8%. The combination of X-ray diffraction and NMR allowed capturing the depolymerization of Si chains as well as a two-step variation in the layer-to-layer distance. This latter first increases from ∼11.3 Å (for samples having a Ca/Si ratio <∼0.6) up to 12.25 Å at Ca/Si = 0.87 ± 0.02, probably as a result of a weaker layer-to-layer connectivity, and then decreases down to 11 Å when the Ca/Si ratio reaches 1.38 ± 0.03. The decrease in layer-to-layer distance results from the incorporation of interlayer Ca that may form a Ca(OH) 2 -like structure, nanocrystalline and intermixed with C-S-H layers, at high Ca/Si ratios.
Determination of the solubility of tin indium oxide using in situ and ex x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, G. B.; Mason, T. O.; Okasinski, J. S.
A novel approach to determine the thermodynamic solubility of tin in indium oxide via the exsolution from tin overdoped nano-ITO powders is presented. High-energy, in situ and ex situ synchrotron X-ray diffraction was utilized to study the solubility limit at temperatures ranging from 900 C to 1375 C. The tin exsolution from overdoped nanopowders and the formation of In{sub 4}Sn{sub 3}O{sub 12} were observed in situ during the first 4-48 h of high-temperature treatment. Samples annealed between 900 C and 1175 C were also studied ex situ with heat treatments for up to 2060 h. Structural results obtained from Rietveldmore » analysis include compositional phase analysis, atomic positions, and lattice parameters. The tin solubility in In{sub 2}O{sub 3} was determined using the phase analysis compositions from X-ray diffraction and the elemental compositions obtained from X-ray fluorescence. Experimental complications that can lead to incorrect tin solubility values in the literature are discussed.« less
NASA Astrophysics Data System (ADS)
Sica, F.; Adinolfi, S.; Berisio, R.; De Lorenzo, C.; Mazzarella, L.; Piccoli, R.; Vitagliano, L.; Zagari, A.
1999-01-01
Bovine seminal ribonuclease (BS-RNase) is an intriguing homodimeric enzyme which exists as two conformational isomers, characterized by distinct catalytic and biological properties, referred to as M×M and M=M. Reduction of inter-chain disulfide bridges produces a stable monomeric derivative (M) which is still active. This paper reports the screening and optimization of crystallization conditions for growing single diffraction-quality crystals for the various BS-RNase forms. The crystallization trials were performed using both the vapor diffusion and microbatch methods. The M×M dimer was crystallized in the free form from polyethylene glycol (PEG) 4000 at pH 8.5 and as a complex with the substrate analog uridylyl(2'- 5')guanosine (UpG) from an unbuffered ammonium sulfate (AS) solution. These two crystal types diffract X-rays to 2.5 and 1.9 Å resolution, respectively. Two different crystal types were obtained both for the M=M dimer and for the monomeric derivative. (M=M)a crystals, grown from PEG 4000 (8% w/v) at pH 5.6, diffract X-rays to 4.0 Å. At higher PEG concentration (15% w/v) a different crystal type was obtained, (M=M)b, which showed a better diffraction limit (2.5 Å). For the monomer, type (M)a and (M)b crystals, diffracting X-rays to 2.5 Å resolution, were obtained from AS at pH 6.5 and from PEG 4000 at pH 8.5, respectively. A comparison with previously crystallized forms of the dimer M×M and its complexes with uridylyl(2'-5')adenosine and 2'-deoxycytidylyl(3'-5')-2'-deoxyadenosine is also presented. The three-dimensional structure analysis of (M×M)·UpG and (M=M)b is in progress.
Crystallization and preliminary X-ray analysis of human MTH1 with a homogeneous N-terminus
Koga, Yukari; Inazato, Miyuki; Nakamura, Teruya; Hashikawa, Chie; Chirifu, Mami; Michi, Asuka; Yamashita, Taku; Toma, Sachiko; Kuniyasu, Akihiko; Ikemizu, Shinji; Nakabeppu, Yusaku; Yamagata, Yuriko
2013-01-01
Human MTH1 (hMTH1) is an enzyme that hydrolyses several oxidized purine nucleoside triphosphates to their corresponding nucleoside monophosphates. Crystallographic studies have shown that the accurate mode of interaction between 8-oxoguanine and hMTH1 cannot be understood without determining the positions of the H atoms, as can be observed in neutron and/or ultrahigh-resolution X-ray diffraction studies. The hMTH1 protein prepared in the original expression system from Escherichia coli did not appear to be suitable for obtaining high-quality crystals because the hMTH1 protein had heterogeneous N-termini of Met1 and Gly2 that resulted from N-terminal Met excision by methionine aminopeptidase from the E. coli host. To obtain homogeneous hMTH1, the Gly at the second position was replaced by Lys. As a result, mutant hMTH1 protein [hMTH1(G2K)] with a homogeneous N-terminus could be prepared and high-quality crystals which diffracted to near 1.1 Å resolution using synchrotron radiation were produced. The new crystals belonged to space group P212121, with unit-cell parameters a = 46.36, b = 47.58, c = 123.89 Å. PMID:23295485
NASA Astrophysics Data System (ADS)
Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.
2012-03-01
X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thabet, Safa, E-mail: safathabet@hotmail.fr; Ayed, Brahim, E-mail: brahimayed@yahoo.fr; Haddad, Amor
Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, withmore » a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.« less
High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation
NASA Astrophysics Data System (ADS)
Nakano, S.; Nakayama, A.; Kikegawa, T.
2008-07-01
Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.
Conformational dimorphism of isochroman-1-ones in the solid state
NASA Astrophysics Data System (ADS)
Babjaková, Eva; Hanulíková, Barbora; Dastychová, Lenka; Kuřitka, Ivo; Nečas, Marek; Vícha, Robert
2014-12-01
Isochroman-1-one derivatives, which are relatives of coumarins, display a broad spectrum of biological activity; therefore, these derivatives attract the attention of chemists. A series of new isochroman-1-ones were prepared by the reaction of benzyl-derived Grignard reagents with acyl chlorides. All of the prepared compounds were characterized using single-crystal X-ray diffraction as well as FT-IR, NMR and MS techniques. Single crystal X-ray diffraction analysis revealed that the isochromanones can adopt two distinct conformations in the solid state. For one of the compounds, two polymorphs with unique forms crystallized separately under different temperatures. The packing of all of the examined crystals is stabilized via weak intramolecular C-H⋯π and/or C-H⋯O interactions. Although the closed conformer was predominantly found in the actual crystals, the open conformer is thermochemically more stable for all of the examined compounds according to DFT calculations.
NASA Astrophysics Data System (ADS)
Ay, Burak; Karaca, Serkan; Yildiz, Emel; Lopez, Valerie; Nanao, Max H.; Zubieta, Jon
2016-01-01
Four novel metal-organic frameworks,[Cu2Cl2(pyrz)]n (1) and (H2pip)n[Ln2(pydc)4(H2O)2]n (Ln=Ce (2), Pr (3) and Eu (4), H2pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H2pydc=2,6-pyridinedicarboxylic acid, H2pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln-O-Ln chains. All the complexes show high thermal stability. The complexes 1-3 exhibit luminescence emission bands at 584, 598 and 614 nm at room temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybakov, V. B., E-mail: Rybakov20021@yandex.ru; Babaev, E. V.; Paronikyan, E. G., E-mail: Ervand.paronikyan@mail.ru
Seven new, previously unknown, bicyclic and tricyclic heterocycles based on derivatives of 3-cyanopyrid-2-ones are obtained: 2-oxo-2,5,6,7,8,9-hexahydro-1H-cyclohepta[b]pyridine-3-carbonitrile, C{sub 11}H{sub 12}N{sub 2}O (1a); 2-[2-(4-chlorophenyl)-2-oxoethoxy]-6,7,8,9-tetrahydro-5H-cyclohepta[b] pyridine-3-carbonitrile, C{sub 19}H{sub 17}ClN{sub 2}O{sub 2} (2a); (3-amino-6,7,8,9-tetrahydro-5H-cyclohepta[b]furo[3,2-e]pyridin-2-yl)(4- chlorophenyl)methanone, C{sub 19}H{sub 17}ClN{sub 2}O{sub 2} (3); 2-oxo-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carboxamide, C{sub 12}H{sub 16}N{sub 2}O{sub 2} (4); 2-[2-(4-chorophenyl)-2-oxoethoxy]-5,6,7,8,9,10 -hexahydrocycloocta[b]pyridine-3-carboxamide, C{sub 20}H{sub 21}ClN{sub 2}O{sub 3} (5a); 1-[2-(4-chlorophenyl)-2-oxoethyl]-2-oxo-1,2,5,6,7,8,9,10 -octahydrocycloocta[b]pyridine-3-carboxamide, C{sub 20}H{sub 21}ClN{sub 2}O{sub 3} (5b); and 2-[2-(4-chlorophenyl)-2-oxoethoxy]-5,6,7,8,9,10-hexahydrocycloocta[b] pyridine-3-carbonitrile, C{sub 20}H{sub 19}ClN{sub 2}O{sub 2}, (6). All compounds are characterized by {sup 1}H NMR spectroscopy, and their crystal structures are determined by X-ray diffraction.
NASA Astrophysics Data System (ADS)
Nishi, Masayuki; Tsuchiya, Jun; Arimoto, Takeshi; Kakizawa, Sho; Kunimoto, Takehiro; Tange, Yoshinori; Higo, Yuji; Irifune, Tetsuo
2018-06-01
Phase H (MgSiO4H2) is the high-pressure form of dense hydrous silicate that could deliver surface water into the lower mantle. In this study, we determined the thermal equations of the state of phase H using in situ X-ray diffraction measurements, under conditions ranging from 34 to 62 GPa and 300 and 1300 K, using a multianvil apparatus. Analysis of the data, based on the Mie-Grüneisen-Debye model using third-order Burch-Murnaghan equations at a reference pressure of 35 GPa, yielded the following results V ref = 49.61 ± 0.01 Å3, K ref = 344.6±4.1 GPa, K_{{{ref}}}^' } = 3.05 ± 0.32, θ ref = 974 ± 146 K, γ ref = 1.8 ± 0.1, and q = 1.79 ± 0.55. The compressibility of phase H observed in this study agrees well with that derived from theoretical calculations in pressure regions where hydrogen bond symmetrization is predicted. It was also found that the volume and compressibility of phase H and δ-AlOOH were similar.
Synthesis, crystal structure, and spectral studies of 10-(2-Benzothiazolylazo)-9-phenanthrol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, V. V.; Sokol, V. I.; Polyanskaya, N. A.
2012-03-15
10-(2-Benzothiazolylazo)-9-phenanthrol (L) is prepared by a reaction of 2-hydrazinobenzothiazol with 9,10-phenanthrenequinone. The crystal and molecular structure of the L{center_dot}CHCl{sub 3} solvate is determined by X-ray diffraction. The data of the X-ray diffraction study, as well as IR, {sup 1}H NMR, and electronic absorption spectra, indicate that in the crystal state and solutions the L molecule exists in the form of a quinohydrazone tautomer (b) (s-trans, cis) stabilized by the intramolecular N{sub 2}-HN{sub 2} Horizontal-Ellipsis O1 hydrogen bond. The 'mobile' H atom is located at the N2 atom of the azo group. The benzothiazolyl and phenanthrenequinone fragments are nearly coplanar. Spectroscopicmore » criteria for the state of L in various media are determined based on the data of IR, {sup 1}H NMR, and electronic absorption spectroscopy and the results of the Pariser-Parr-Pople quantum-chemical calculations.« less
The first 3-D LaIII-SrII heterometallic complex: Synthesis, structure and luminescent properties
NASA Astrophysics Data System (ADS)
Hong, Zhiwei; Ran, Jingwen; Li, Tao; Chen, Yanmei
2016-10-01
The first 3-D LaIII-SrII heterometallic complex, namely [La2Sr(pda)4(H2O)4]n·6nH2O (1, H2pda = pyridine-2,6-dicarboxylic acid), has been successfully synthesized under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that complex 1 features a 3-D porous framework and displays a new topology. The crystal structure can be simplified to a 4,6-connected 3-D network with Schläfli symbol of {34·42·88·9}2{34·42}. The crystals also have been characterized by X-ray powder diffraction, elemental analysis, thermal analysis, and IR spectroscopy. The infrared spectral analysis indicates that complex 1 is a carboxylate coordinated compound, several water molecules exist in the compound. The thermal study shows that there are ten water molecules in the crystal structure. The luminescent property has also been investigated. It shows a blue-purple fluorescence emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp
2016-07-27
Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa
The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.
NASA Astrophysics Data System (ADS)
Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan
2018-04-01
The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.
NASA Astrophysics Data System (ADS)
Meller, Nicola; Kyritsis, Konstantinos; Hall, Christopher
2009-10-01
We apply in-situ synchrotron X-ray diffraction to study the transformation of calcium monosulfoaluminate 14-hydrate Ca 4Al 2O 6(SO 4)·14H 2O [monosulfate-14] to hydrogarnet Ca 3Al 2(OH) 12 on the saturated water vapor pressure curve up to 250 °C. We use an aqueous slurry of synthetic ettringite Ca 6Al 2(SO 4) 3(OH) 12·26H 2O as the starting material; on heating, this decomposes at about 115 °C to form monosulfate-14 and bassanite CaSO 4·0.5H 2O. Above 170 °C monosulfate-14 diffraction peaks slowly diminish in intensity, perhaps as a result of loss of crystallinity and the formation of an X-ray amorphous meta-monosulfate. Hydrogarnet nucleates only at temperatures above 210 °C. Bassanite transforms to β-anhydrite (insoluble anhydrite) at about 230 °C and this transformation is accompanied by a second burst of hydrogarnet growth. The transformation pathway is more complex than previously thought. The mapping of the transformation pathway shows the value of rapid in-situ time-resolved synchrotron diffraction.
Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio
2016-09-01
The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].
1985-05-30
Order (FECO) ......... 23 3. X -Ray Diffraction ............................... 26 4. Transmission Electron Microscopy (TEM) ............... 26 5...remained amorphous after bombardment, as evidenced by X - ray diffraction, and showed no other changes. 0 (2) For Sb203, the crystallite size was reduced...main effect on MgF2 was the reduction in crystallite size. The films were too thir. for meaningful x - ray diffraction analysis. Durability and
Structural analysis of bioceramic materials for denture application
NASA Astrophysics Data System (ADS)
Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad
2016-03-01
Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.
Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} as a gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, Tukaram J., E-mail: pshindetj@yahoo.co.in; Gadkari, Ashok B.; Jadhav, Sarjerao R.
2015-06-24
Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl{sub 2}, LPG and C{sub 2}H{sub 5}OH. It was observed that NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jordan M.; Walton, Ian M.; Bateman, Gage
2017-07-25
Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamicin situX-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal–organic framework [Co(AIP)(bpy) 0.5(H 2O)]·2H 2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lun, Huijie; Yang, Jinghe; Jin, Linyu
2015-05-15
By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagneticmore » behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.« less
NASA Astrophysics Data System (ADS)
Sun, Di; Liu, Fu-Jing; Hao, Hong-Jun; Huang, Rong-Bin; Zheng, Lan-Sun
2011-10-01
Two mixed-ligand Ag(I) coordination polymers (CPs), [Ag 2(bipy) 2(sub)·5H 2O] n ( 1), [Ag 2(bipy) 2(aze)·3H 2O] n ( 2), (bipy = 4,4'-bipyridine, H 2sub = suberic acid, H 2aze = azelaic acid) have been synthesized and structurally characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric (TG) analysis, and single crystal X-ray diffraction. Both 1 and 2 are two-dimensional (2D) sheets based on infinite [Ag(bipy)] n double chain incorporating Ag⋯Ag interactions. Interestingly, two different water clusters are encapsulated in the voids between the sheets of 1 and 2. For 1, one water decamer (H 2O) 10 based on a cyclic water tetramer was hydrogen-bonded with the host 2D sheet. While, one water hexamer (H 2O) 6 also based on a cyclic water tetramer was observed in 2. Comparing the experimental results, it is comprehensible that the dicarboxylates play a crucial role in the formation of the different water clusters. Moreover, the thermal stabilities of them were also discussed.
NASA Astrophysics Data System (ADS)
Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer
2015-12-01
Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.
Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet
2012-01-01
polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that
X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.
2016-02-15
X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less
Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy
NASA Astrophysics Data System (ADS)
Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro
2009-06-01
Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rammohan, Alagappa; Kaduk, James A.
2017-01-27
The crystal structure of pentasodium hydrogen dicitrate, Na 5H(C 6H 5O 7) 2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H...O hydrogen bonds, with O...O distances of 2.419 and 2.409 Å. Four octahedrally coordinated Na +ions share edges to form open layers parallel to theabplane. A fifth Na +ion in trigonal–bipyramidal coordination shares faces with NaO 6octahedra on both sides of these layers.
Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics
Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore
2016-08-09
A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.
Solvent and temperature effects on crambin, a hydrophobic protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llinas, M.; Lecomte, J.T.J.; De Marco, A.
1980-10-01
Crambin, a 5000-mol. wt. water-insoluble protein found in crambe abyssinica seeds is presently being studied by x-ray diffraction to 0.9 A resolution and /sup 1/H-nuclear magnetic resonance (NMR) spectroscopy. Preliminary /sup 1/H-NMR data at 250 and 600 MHz have suggested that this hydrophobic protein retains a similar globular conformation in both glacial acetic acid (AA), a Bronsted acid, and dimethylformamide (DMF), a Lewis base. These observations suggest that the globular conformation observed in these organic solvents is most likely the native structure present in the crystalline state. As suggested by the high intrinsic resolution of the crystallographic x-ray diffraction pattern,more » and demonstrated by the NMR data, crambin is a very rigid protein. Work is in progress to assign the /sup 1/H-resonances and to correlate H and /sup 13/C NMR dynamic data with the crystallographic model. It is hoped that unravelling conformational features of this hydrophobic protein will provide clues to help us understand other membrane-bound functional proteins.« less
NASA Astrophysics Data System (ADS)
Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.
2012-07-01
We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.
NASA Astrophysics Data System (ADS)
Dey, Tanusri; Ghosh, Soumen; Ghosh, Somnath; Mukherjee, Alok Kumar
2015-07-01
Four 5-arylidene derivatives of Meldrum's acid, 5-(4-chlorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (2), 5-(3-hydroxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (3), 5-(3,4-dimethoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (4) and 5-(2,4-dimethoxy benzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (5) have been synthesized and their crystal structures have been determined using single crystal X-ray diffractometry for 2, 4 and 5 and X-ray powder diffraction for 3. The nature of intermolecular interactions in 2-5 has been analyzed through Hirshfeld surfaces and 2D fingerprint plots. The DFT optimized molecular geometries in 2-5 agree closely with those obtained from the crystallographic studies. The crystal packing in 2-5 exhibits an interplay of Osbnd H⋯O, Csbnd H⋯O, Csbnd H⋯Cl and Csbnd H⋯π (arene) hydrogen bonds and π⋯π interactions, which assemble molecules into three-dimensional architecture in 2, 3 and 5 and two-dimensional framework in 4. The Hirshfeld surface analyses of 2-5, Meldrum's acid (1) and a few related 5-arylidene derivatives of Meldrum's acid retrieved from the Cambridge Structural Database (CSD) indicate that about 85% of the Hirshfeld surface area (72% in 2 where H⋯Cl contribution is about 13%) in this class of compounds are due to H⋯H, O⋯H and C⋯H contacts. The HOMO-LUMO energy gap (>2.2 eV) in 2-5 indicates a significant degree of internal charge transfer within the molecule.
Investigation of magnetic and structural properties of Ni-Zr co-doped M-type Sr-La hexaferrites
NASA Astrophysics Data System (ADS)
Yang, Yujie; Wang, Fanhou; Shao, Juxiang; Huang, Duohui; Tang, Jin; Rehman, Khalid Mehmood Ur
2018-02-01
In this research, Ni2+ and Zr4+ co-doped Sr-La hexaferrites Sr0.7La0.3Fe12.0-2 x (NiZr) x O19 (0.0 ≤ x ≤ 0.5) were synthesized by the standard ceramic method. The phase identification of the hexaferrites was confirmed by X-ray diffraction analysis. X-ray diffraction analysis showed that all the samples were in single phase M-type hexagonal structure and no impurity phase was observed. Lattice parameters ( c and a) increased with increasing NiZr content ( x) from 0.0 to 0.5. The morphology of the hexaferrites was analyzed by a field emission scanning electron microscopy (FE-SEM). FE-SEM micrographs showed that the grains exhibited hexagonal shape in a plate-like structure with clear grain boundaries. Magnetization properties of the hexaferrites were carried out at room temperature using a physical property measurement system-vibrating sample magnetometer. The values of saturation magnetization ( M s), remanent magnetization ( M r) and coercivity ( H c) were calculated from magnetic hysteresis ( M- H) loops. M s and H c decreased with increasing NiZr content ( x) from 0.0 to 0.5. M r and M r/ M s ratio first increased with increasing NiZr content ( x) from 0.0 to 0.1, and then decreased when NiZr content ( x) ≥ 0.1.
CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma
NASA Astrophysics Data System (ADS)
Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai
2015-11-01
Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.
NASA Astrophysics Data System (ADS)
Dong, Jun-Liang; He, Kun-Huan; Wang, Duo-Zhi; Zhang, Ying-Hui; Wang, Dan-Hong
2018-07-01
Three new Co(II) coordination polymers with formulas of {[Co2(L1)(1,4-NDC)2]·3H2O}n (1), [Co3(L2)2(HCOO)2(1,4-NDC)2]n (2) and [Co2(L2)(μ3-OH)(1,4-NDC)1.5]n (3) (1,4-H2NDC = Naphthalene-1,4-dicarboxylic acid, L1 = di(1H-imidazol-1-yl)methane, L2 = 1,4-di(1H-imidazol-1-yl)benzene) were solvothermal synthesized from 1,4-H2NDC with the aid of three different length-controllable auxiliary ligands and fully characterized. Their structures are determined by single-crystal X-ray diffraction, IR spectra, elemental analysis, powder X-ray diffraction and thermogravimetric analysis. Complexes 1 and 3 display 3D framework structures, corresponding to a 6-connected (412·63) net, a 8-connected (424·5·63) net, respectively. However, it is noteworthy that the complex 1 displays a 2-fold interpenetrating framework structure, complex 3 possesses a self-interpenetrating framework structure. Complex 2 displays 2D 4-connected undulating plane net structure. Moreover, magnetic studies indicate antiferromagnetic interactions between the Co(II) ions in the four complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie
Two novel compounds, 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C 23H 16F 2N 4S) (1) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C 23H 16ClFN 4S) (2), have been designed and synthesized as cytotoxic agents. The compounds were characterized by infrared, proton nuclear magnetic resonance, mass spectral data, elemental analysis and X-ray powder diffraction. The present study comprises spectral data and crystal structures of these novel compounds determined from synchrotron X-ray powder diffraction data. The structure solutions were obtained by simulated annealing. The final structures were achieved by Rietveld refinement using soft restraints for all bond lengths, bond angles, and planar groups. Both compounds crystallize in space groupmore » $$P\\bar 1$$,Z= 2, with the unit-cell parametersa= 6.37433(9),b= 11.3641(2),c= 14.09115(19) Å,α= 80.1740(8)°,β= 85.1164(8)°,γ= 80.9831(10)°,V= 991.55(3) Å 3of compound (1) anda= 6.53736(6),b= 11.55725(15),c= 14.01373(13) Å,α= 80.3323(7)°,β= 84.8939(6)°,γ= 79.3954(8)°,V= 1024.08(2) Å 3of compound (2). Structural analyses reveal that the title compounds are isostructural.« less
NASA Astrophysics Data System (ADS)
Ranjbar, Zohreh Rashidi; Morsali, Ali
2009-11-01
Nano-scale of a new Pb(II) coordination polymer, {[Pb(bpacb)(OAc)]·DMF} n ( 1); bpacbH = 3,5-bis[(4-pyridylamino)carbonyl]benzoic acid], were synthesized by a sonochemical method. The nano-material was characterized by scanning electron microscopy, X-ray powder diffraction (XRD), 1H, 13C NMR, IR spectroscopy and elemental analyses. Crystal structure of compound 1 was determined by X-ray crystallography. Calcination of the nano-sized compound 1 at 700 °C under air atmospheres yields PbO nanoparticles. Thermal stability of nano-sized and single crystalline samples of compound 1 were studied and compared with each other.
Ammonium–cobalt–nickel phosphates, NH{sub 4}[Co{sub 1−x}Ni{sub x}PO{sub 4}]·H{sub 2}O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torre-Fernández, Laura; Trobajo, Camino; Pedro, Imanol de
The ammonium–cobalt–nickel phosphates, NH{sub 4}[Co{sub 1−x}Ni{sub x}PO{sub 4}]·H{sub 2}O (x=0.00, 0.34, 0.59, 0.70, 1.00), and the deuterated forms, ND{sub 4}[Co{sub 1−x}Ni{sub x}PO{sub 4}]·D{sub 2}O (x=0.00, 0.38, 0.48, 0.69, 0.85), have been synthesized under mild hydrothermal conditions and characterised using X-ray and neutron diffraction, chemical and thermal analysis, and magnetic measurements. Their crystal structures, including hydrogen positions, were determined by Rietveld refinement using single-crystal X-ray and neutron powder diffraction data. The space group of these orthorhombic crystals modifies as a function of their composition. The magnetic susceptibility and magnetization measurements of these ammonium–cobalt–nickel phosphates show antiferromagnetic behaviour, and the Neel temperaturemore » evolves from 5.5 K (x=0.00) up to 13.2 K (x=1.00). - Graphical abstract: We obtained single crystals for all the members of the family. In this series, although all crystals are orthorhombic, the space group changes as a function of the composition, showing how the single-crystal diffraction data is capable to manifest structural subtleties that had not been described before for this group of materials. All the investigated materials behave antiferromagnetically with ordering temperatures from 5.5 K up to 13.2 K. Display Omitted - Highlights: • The ammonium–cobalt–nickel phosphates, NH{sub 4}[Co{sub 1−x}Ni{sub x}PO{sub 4}]·H{sub 2}O (x=0.00, 0.34, 0.59, 0.70, 1.00) and the deuterated forms ND4[Co1-xNixPO4]·D{sub 2}O (x=0.00, 0.38, 0.49, 0.68, 0.85) have synthesized by hydrothermal synthesis. • The structural studies of these compounds are introduced as a function of the composition. • The magnetic studies show an antiferromagnetically behavior with ordering temperatures from 5.5 K to 13.2 K.« less
Hao, Xiu-Li; Ma, Yuan-Yuan; Zang, Hong-Ying; Wang, Yong-Hui; Li, Yang-Guang; Wang, En-Bo
2015-02-23
A new cationic triazole-based metal-organic framework encapsulating Keggin-type polyoxometalates, with the molecular formula [Co(BBPTZ)3][HPMo12O40]⋅24 H2O [compound 1; BBPTZ = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl] is hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. The structure of compound 1 contains a non-interpenetrated 3D CdSO4 (cds)-type framework with two types of channels that are interconnected with each other; straight channels that are occupied by the Keggin-type POM anions, and wavelike channels that contain lattice water molecules. The catalytic activity of compound 1 in the oxidative desulfurization reaction indicates that it is not only an effective and size-selective heterogeneous catalyst, but it also exhibits distinct structural stability in the catalytic reaction system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Symposium LL: Nanowires--Synthesis Properties Assembly and Application
2010-09-10
dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.A.; Scott, E.E.; Limburg, J.
2009-05-26
Collagen prolyl-4-hydroxylase (C-P4H) catalyzes the hydroxylation of specific proline residues in procollagen, which is an essential step in collagen biosynthesis. A new form of P4H from Bacillus anthracis (anthrax-P4H) that shares many characteristics with the type I C-P4H from human has recently been characterized. The structure of anthrax-P4H could provide important insight into the chemistry of C-P4Hs and into the function of this unique homodimeric P4H. X-ray diffraction data of selenomethionine-labeled anthrax-P4H recombinantly expressed in Escherichia coli have been collected to 1.4 {angstrom} resolution.
A novel 3D framework indium phosphite-oxalate based on a pcu-type topology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Mengmeng; Zhou, Mingdong; Hu, Dianwen
2016-05-15
A new inorganic–organic hybrid indium phosphite-oxalate, formulated as H[In{sub 5}(HPO{sub 3}){sub 6}(H{sub 2}PO{sub 3}){sub 2}(C{sub 2}O{sub 4}){sub 2}]·(C{sub 4}N{sub 2}H{sub 11}){sub 2}·H{sub 2}O 1 has been hydrothermally synthesized in the presence of piperazine acting as a structure directing agent (SDA). The single crystal X-ray diffraction reveals that compound 1 shows three-dimensional open-framework with intersecting 12-ring channels along the [010] and [001] directions, which is constructed from strictly alternating double 6-ring units (D6Rs), [C{sub 2}O{sub 4}]{sup 2−} groups and [H{sub 2}PO{sub 3}]{sup −} pseudo-pyramids. It is noted that the classical D6R SBU is firstly reported in main metal phosphite/phosphite-oxalate. By regardingmore » D6R as the 6-connected nodes, the inorganic–organic hybrid framework is based on a pcu-type topology. The as-synthesized product was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis (TGA), ICP-AES and elemental analyses. - Graphical abstract: A 3D open-framework indium phosphite-oxalate has been synthesized under hydrothermal conditions. A classical SBU, D6R, is present in the structure. By regarding D6R as the 6-connected nodes, the inorganic–organic hybrid framework is based on a pcu-type topology. - Highlights: • A new indium phosphite-oxalate based on a pcu-type topology has been synthesized. • A classical SBU, D6R, is present in the structure. • The classical SBU is firstly reported in main metal phosphite/phosphite-oxalate.« less
Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi
2014-11-01
Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.
Neutron powder diffraction study on the structures of LaNi 5- xAl xD y compounds
NASA Astrophysics Data System (ADS)
Du, Honglin; Zhang, Wenyong; Wang, Changsheng; Han, Jingzhi; Yang, Yingchang; Chen, Bo; Xie, Chaomei; Sun, Kai; Zhang, Baisheng
2003-10-01
The structures of LaNi 5- xAl xD y ( x=0.75, 0.25, y=1.01, 1.10, 1.91 and 3.1) were systematically investigated by neutron and X-ray diffraction. D atoms are found to enter the 6m site of the α-phase but not the reported 12n site, while the 6m and 12n sites of the β-phase. In the case of LaNi 4.75Al 0.25D y with lower Al content and symmetry, D atoms do not enter the α-phase but occupy the 4h site besides the 6m and 12n sites of the β-phase. The relationship between structures and properties is also discussed.
Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)
2012-05-14
on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m
Oda, T; Makino, K; Yamashita, I; Namba, K; Maéda, Y
2001-02-01
Lowering pH or raising salt concentration stabilizes the F-actin structure by increasing the free energy change associated with its polymerization. To understand the F-actin stabilization mechanism, we studied the effect of pH, salt concentration, and cation species on the F-actin structure. X-ray fiber diffraction patterns recorded from highly ordered F-actin sols at high density enabled us to detect minute changes of diffraction intensities and to precisely determine the helical parameters. F-actin in a solution containing 30 mM NaCl at pH 8 was taken as the control. F-actin at pH 8, 30 to 90 mM NaCl or 30 mM KCl showed a helical symmetry of 2.161 subunits per turn of the 1-start helix (12.968 subunits/6 turns). Lowering pH from 8 to 6 or replacing NaCl by LiCl altered the helical symmetry to 2.159 subunits per turn (12.952/6). The diffraction intensity associated with the 27-A meridional layer-line increased as the pH decreased but decreased as the NaCl concentration increased. None of the solvent conditions tested gave rise to significant changes in the pitch of the left-handed 1-start helix (approximately 59.8 A). The present results indicate that the two factors that stabilize F-actin, relatively low pH and high salt concentration, have distinct effects on the F-actin structure. Possible mechanisms will be discussed to understand how F-actin is stabilized under these conditions.
Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings
NASA Technical Reports Server (NTRS)
Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.
1984-01-01
ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.
NASA Astrophysics Data System (ADS)
Essid, Idris; Lahbib, Karima; Kaminsky, Werner; Ben Nasr, Cherif; Touil, Soufiane
2017-08-01
Herein we report a simple and efficient one-pot three-component synthesis of 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones, through the zinc triflate-catalyzed Biginelli-type reaction of β-ketophosphonates, aldehydes and urea. The compounds obtained were characterized by various spectroscopic tools including IR, NMR (1H, 31P, 13C) spectroscopy, mass spectrometry and single crystal X-ray diffraction. All the synthesized compounds were screened, for the first time, for anti-inflammatory activity by carrageenan-induced hind paw edema method, using female Wister rats and they showed significant anti-inflammatory activity in some cases higher than the standard indomethacin.
Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution
NASA Astrophysics Data System (ADS)
Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.
2018-02-01
A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.
NASA Astrophysics Data System (ADS)
Sarveswari, S.; Srikanth, A.; Arul Murugan, N.; Vijayakumar, V.; Jasinski, Jerry P.; Beauchesne, Hanna C.; Jarvis, Ethan E.
2015-02-01
3E-1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-arylprop-2-en-1-ones were synthesized and characterized by FTIR, 1H NMR, 13C NMR, HSQC, DEPT-135. In addition the compound 3E-1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one was subjected to the single crystal X-ray diffraction studies. Density functional theory calculations were carried out for this chalcone and its derivatives to investigate into their electronic structure, chemical reactivity, linear and non-linear optical properties. The structure predicted from DFT for chalcone is in good agreement with the structure from XRD measurement.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin
2017-01-01
Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Franz, H. B.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, B.; Sutter, B.; Archer, P. D.; Ming , D. W.; Morris, R. V.;
2014-01-01
While in Yellowknife Bay, the Mars Science Laboratory Curiosity rover collected two drilled samples, John Klein (hereafter "JK") and Cumberland ("CB"), from the Sheepbed mudstone, as well as a scooped sample from the Rocknest aeolian bedform ("RN"). These samples were sieved by Curiosity's sample processing system and then several subsamples of these materials were delivered to the Sample Analysis at Mars (SAM) instrument suite and the CheMin X-ray diffraction/X-ray fluorescence instrument. CheMin provided the first in situ X-ray diffraction-based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., Fe-saponite) and comprise 20 wt% of the mudstone samples [1]. SAM's evolved gas analysis (EGA) mass spectrometry analyses of JK and CB subsamples, as well as RN subsamples, detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases evolved during pyrolysis. The identity of evolved gases and temperature( s) of evolution can augment mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or those phases difficult to characterize with XRD (e.g., X-ray amorphous phases). Here we will focus on the SAM H2O data, in the context of CheMin analyses, and comparisons to laboratory SAM-like analyses of several phyllosilicate minerals including smectites.
Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn
2015-01-15
Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less
NASA Astrophysics Data System (ADS)
Chauhan, Samta; Singh, Amit Kumar; Srivastava, Saurabh Kumar; Chandra, Ramesh
2016-09-01
We have studied the magnetic behavior of YMn1-xFexO3 (x=0 and 0.2) nanoparticles synthesized by conventional solid state reaction method. The as-synthesized nanoparticles were found to have hexagonal phase with P63cm space group confirmed by X-Ray diffraction. The particle size was found to be ~70 nm as confirmed by both X-Ray diffraction and Transmission Electron Microscopy. DC magnetization and memory effect measurements imply that the h-YMnO3 nanoparticles bear a resemblance to super spin-glass state following de Almeida-Thouless like behavior which is being suppressed by Fe-doping. The Fe-doping in YMnO3 enhances the antiferromagnetic (AFM) transition temperature TN to ~79 K and induces a new magnetic state due to the surface spins which is realized as diluted antiferromagnet in a field (DAFF) as explored by the thermoremanent and isothermoremanent magnetization measured with different applied magnetic field.
Structure and stability of solid Xe(H 2) n
Somayazulu, Maddury; Dera, Przemyslaw; Smith, Jesse; ...
2015-03-10
Mixtures of xenon and molecular hydrogen form a series of hexagonal, van der Waals compounds at high pressures and at 300 K. Synchrotron, x-ray, single crystal diffraction studies reveal that below 7.5 GPa, Xe(H 2) 8 crystallizes in a P3¯m1 structure that displays pressure-induced occupancy changes of two pairs of xenon atoms located on the 2c and 2d sites (while the third pair on yet another 2c site remains fully occupied). The occupancy becomes 1 at the P3¯m1 to R3 transition and all the xenon atoms occupy the 3d sites in the high-pressure structure. These pressure-induced changes in occupancy coincidemore » with volume changes that maintain the average Xe:H 2 stoichiometry fixed at 1:8. Furthermore, the synchrotron x-ray diffraction and Raman measurements show that this unique hydrogen-bearing compound that can be synthesized at 4.2 GPa and 300 K, quenched at low temperatures to atmospheric pressure, and retained up to 90 K on subsequent warming.« less
2016-07-11
composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3
Magnetic and magnetocaloric properties of spin-glass material DyNi 0.67Si 1.34
Chen, X.; Mudryk, Y.; Pathak, A. K.; ...
2017-04-18
Structural, magnetic, and magnetocaloric properties of DyNi 0.67Si 1.34 were investigated using X-ray powder diffraction, magnetic susceptibility, and magnetization measurements. X-ray powder diffraction pattern shows that DyNi 0.67Si 1.34 crystallizes in the AlB 2-type hexagonal structure (space group: P6/ mmm, No. 191, a = b = 3.9873(9) Å, and c = 3.9733(1) Å). The compound is a spin-glass with the freezing temperature TG = 6.2 K. The ac magnetic susceptibility measurements confirm magnetic frustration in DyNi 0.67Si 1.34. Furthermore, the maximum value of the magnetic entropy change determined from M(H) data is –16.1 J/kg K at 10.5 K for amore » field change of 70 kOe.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei
2015-09-01
Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.
NASA Astrophysics Data System (ADS)
Zhao, Yan-Ming; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng
2018-03-01
Three new chiral metal coordination complexes, namely, [Cu(FZ)2(CH3COO)2(H2O)]·2H2O (1), [Cu(FZ)2(NO3)2] (2), and [Cu2(FZ)2 (H2O)8](SO4)2·4H2O (3) [FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) (Voriconazole)] have been obtained by the reaction of Cu(II) salts and the free ligand FZ at room temperature. Complexes 1-3 were structurally characterized by X-ray single-crystal diffraction, IR, UV-vis, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Complex 1 crystallizes in the chiral space group C2, which exhibits a mono-nuclear structure. Both complexes 2 and 3 display a one-dimensional (1D) tape structure, which crystallize in chiral space group P21212 and P212121, respectively. Among these complexes, there exist a variety of hydrogen bonds and stacking interactions, through which a three-dimensional supramolecular architecture will be generated. Compared with the standard (Voriconazole), these Cu-based complexes show the more potent inhibiting efficiency against the species of Candida and Aspergillus. Moreover, among these complexes, complex 1 shows the most excellent efficiency.
NASA Astrophysics Data System (ADS)
Elmacı, Gökhan; Duyar, Halil; Aydıner, Burcu; Seferoğlu, Nurgül; Naziri, Mir Abolfazl; Şahin, Ertan; Seferoğlu, Zeynel
2018-06-01
Benzil monohydrazone based Schiff bases were synthesized and characterized by 1H NMR, 13C NMR, HRMS as well as by single crystal X-ray diffraction. The geometries of the compounds was optimized by the DFT method and the results were compared with the X-ray diffraction data. The HOMO and LUMO energy gap and also related parameters (electronic chemical potential (μ) and global hardness (η), global electrophilicity index (ω) and softness (s)) were obtained from ground state calculations. In addition, the thermal properties of the compounds were investigated by DTA-TGA. The results showed that the compounds have good thermal properties for practical applications as optic dye.
NASA Astrophysics Data System (ADS)
Ta, Thi Kieu Hanh; Tran, Thi Nhu Hoa; Tran, Quang Minh Nhat; Pham, Duy Phong; Pham, Kim Ngoc; Cao, Thi Thanh; Kim, Yong Soo; Tran, Dai Lam; Ju, Heongkyu; Phan, Bach Thang
2017-06-01
We report effects of oxygen plasma treatment on the surface functionalization of WO3 thin films with (3-aminopropyl)triethoxysilane (APTES) and succinic anhydride (SA). X-ray diffraction and x-ray photoelectron spectroscopy results indicate the existence of the WO3 phase. Fourier transform infrared spectroscopy measurement shows clear bands at 1040 cm-1 (Si-O-Si), 1556 cm-1 (N-H), 1655 cm-1 (C=O), 2937 cm-1 (C-H) and 3298 cm-1 (N-H), confirming the surface functionalization efficiency enhanced by prior treatment of oxygen plasma. It thus follows that the prior oxygen plasma treatment activates hydroxylation with more -OH groups on the WO3 surface, which can pave a highly efficient way to the surface functionalization by APTES and SA.
Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori
2014-01-01
Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Nicol, Malcolm; Johnson, Mary; Boone, Steven; Cynn, Hyunchee
1987-01-01
Several studies relative to high pressure cosmochemistry of major planetary interiors are summarized. The behavior of gas-ice mixtures at very high pressures, studies of the phase diagram of (NH3) sub x (H2O) sub 1-x at pressures to 5GPa and temperatures from 240 to 370 K, single crystal growth of ammonia dihydrate at room temperature in order to determine their structures by x-ray diffraction, spectroscopy of chemical reactions during shock compression in order to evaluate how the reactions affect the interpretation of equation of state data obtained by shock methods, and temperature and x-ray diffraction measurements made on resistively heated wire in diamond anvil cells in order to obtain phase and structural data relevant to the interiors of terrestrial planets are among the studies discussed.
Publications - GMC 361 | Alaska Division of Geological & Geophysical
DGGS GMC 361 Publication Details Title: X-ray Diffraction Analysis of: Drew Point #1, East Simpson Test , 2009, X-ray Diffraction Analysis of: Drew Point #1, East Simpson Test Well #1, East Simpson #2
Gunn, Natalie J; Gorman, Michael A; Dobson, Renwick C J; Parker, Michael W; Mulhern, Terrence D
2011-03-01
The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a=25.8, b=34.6, c=63.2 Å, β=99.4°.
Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound
NASA Astrophysics Data System (ADS)
Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.
2014-02-01
In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.
Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol.
Fili, S; Valmas, A; Norrman, M; Schluckebier, G; Beckers, D; Degen, T; Wright, J; Fitch, A; Gozzo, F; Giannopoulou, A E; Karavassili, F; Margiolaki, I
2015-09-01
This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50-8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.
Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol
Fili, S.; Valmas, A.; Norrman, M.; Schluckebier, G.; Beckers, D.; Degen, T.; Wright, J.; Fitch, A.; Gozzo, F.; Giannopoulou, A. E.; Karavassili, F.; Margiolaki, I.
2015-01-01
This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50–8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs. PMID:26306195
NASA Astrophysics Data System (ADS)
Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita
2018-03-01
The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sicupira, Felipe Lucas; Sandim, Maria José R.; Sandim, Hugo R.Z.
The good performance of supermartensitic stainless steels is strongly dependent on the volume fraction of retained austenite at room temperature. The present work investigates the effect of secondary tempering temperatures on this phase transformation and quantifies the amount of retained austenite by X-ray diffraction and saturation magnetization. The steel samples were tempered for 1 h within a temperature range of 600–800 °C. The microstructure was characterized using scanning electron microscopy and electron backscatter diffraction. Results show that the amount of retained austenite decreased with increasing secondary tempering temperature in both quantification methods. - Highlights: • The phase transformation during secondarymore » tempering temperatures was observed. • Phases were quantified by X-ray diffraction and DC-saturation magnetization. • More retained austenite forms with increasing secondary tempering temperature. • The retained austenite is mainly located at the grain and lath boundaries.« less
Grangeon, Sylvain; Claret, Francis; Roosz, Cédric; Sato, Tsutomu; Gaboreau, Stéphane; Linard, Yannick
2016-01-01
The structure of nanocrystalline calcium silicate hydrates (C–S–H) having Ca/Si ratios ranging between 0.57 ± 0.05 and 1.47 ± 0.04 was studied using an electron probe micro-analyser, powder X-ray diffraction, 29Si magic angle spinning NMR, and Fourier-transform infrared and synchrotron X-ray absorption spectroscopies. All samples can be described as nanocrystalline and defective tobermorite. At low Ca/Si ratio, the Si chains are defect free and the Si Q 3 and Q 2 environments account, respectively, for up to 40.2 ± 1.5% and 55.6 ± 3.0% of the total Si, with part of the Q 3 Si being attributable to remnants of the synthesis reactant. As the Ca/Si ratio increases up to 0.87 ± 0.02, the Si Q 3 environment decreases down to 0 and is preferentially replaced by the Q 2 environment, which reaches 87.9 ± 2.0%. At higher ratios, Q 2 decreases down to 32.0 ± 7.6% for Ca/Si = 1.38 ± 0.03 and is replaced by the Q 1 environment, which peaks at 68.1 ± 3.8%. The combination of X-ray diffraction and NMR allowed capturing the depolymerization of Si chains as well as a two-step variation in the layer-to-layer distance. This latter first increases from ∼11.3 Å (for samples having a Ca/Si ratio <∼0.6) up to 12.25 Å at Ca/Si = 0.87 ± 0.02, probably as a result of a weaker layer-to-layer connectivity, and then decreases down to 11 Å when the Ca/Si ratio reaches 1.38 ± 0.03. The decrease in layer-to-layer distance results from the incorporation of interlayer Ca that may form a Ca(OH)2-like structure, nanocrystalline and intermixed with C–S–H layers, at high Ca/Si ratios. PMID:27275135
Investigating the Effects of Low Temperature Annealing of Amorphous Corrosion Resistant Alloys.
1980-11-01
Ray Diffraction.................................................... 6 Differential Scanning Calorimetry....................................... 9...17 LIST OF FIGURES Figure 1. X- Ray Diffraction Results From Fe32Ni 36Cr 4P 2 B Annealed for One Hour at...Various Temperatures (Cr Ka Radiation) ................................. 7 Figure 2. X- Ray Diffraction Results From FeU2NiaeCr14SieB Annealed for One
Logan, Jonathan; Harder, Ross; Li, Luxi; ...
2016-01-01
Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd 5Si 2Ge 2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. Thesemore » tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd 5Si 2Ge 2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.« less
Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.
Sethi, Ruchi; Kumar, Lokendra; Pandey, A C
2009-09-01
Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.
A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Photoluminescent lead(II) coordination polymers stabilised by bifunctional organoarsonate ligands
NASA Astrophysics Data System (ADS)
Lin, Jian-Di; Onet, Camelia I.; Schmitt, Wolfgang
2015-04-01
Four lead(II) coordination polymers were isolated under hydro(solvo)thermal conditions. The applied synthetic methodology takes advantage of the coordination behaviour of a new bifunctional organoarsonate ligand, 4-(1, 2, 4-triazol-4-yl)phenylarsonic acid (H2TPAA) and involves the variation of lead(II) reactants, metal/ligand mole ratios, and solvents. The constitutional composition of the four lead(II) coordination polymers can be formulated as [Pb2(TPAA)(HTPAA)(NO3)]·6H2O (1), [Pb2(TPAA)(HTPAA)2]·DMF·0.5H2O (DMF = N, N-Dimethylformamide) (2), [Pb2Cl2(TPAA)H2O] (3), and [Pb3Cl(TPAA)(HTPAA)2H2O]Cl (4). The compounds were characterized by single-crystal and powder x-ray diffraction techniques, thermogravimetric analyses, infra-red spectroscopy, and elemental analyses. Single-crystal x-ray diffraction reveals that 1 and 2 represent two-dimensional (2D) layered structures whilst 3 and 4 form three-dimensional (3D) frameworks. The structures of 1, 2, and 4 contain one-dimensional (1D) {PbII/AsO3} substructures, while 3 is composed of 2D {PbII/AsO3} arrays. Besides their interesting topologies, 1-4 all exhibit photoluminescence properties in the solid state at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauf, Nurlaela, E-mail: n-rauf@fmipa.unhas.ac.id; Tahir, Dahlang; Arbiansyah, Muhammad
Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO{sub 2} (a=b=4.9134 Å and c=5.4051more » Å) and CaH{sub 2}O{sub 2} (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer’s equation showed the crystallite size of the highest peak (SiO{sub 2}) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm{sup 2}) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.« less
Zapata-Torres, Gerald; Cassels, Bruce K; Parra-Mouchet, Julia; Mascarenhas, Yvonne P; Ellena, Javier; De Araujo, A S
2008-06-01
Time-averaged conformations of (+/-)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane hydrochloride (MDMA, "ecstasy") in D(2)O, and of its free base and trifluoroacetate in CDCl(3), were deduced from their (1)H NMR spectra and used to calculate their conformer distribution. Their rotational potential energy surface (PES) was calculated at the RHF/6-31G(d,p), B3LYP/6-31G(d,p), B3LYP/cc-pVDZ and AM1 levels. Solvent effects were evaluated using the polarizable continuum model. The NMR and theoretical studies showed that, in the free base, the N-methyl group and the ring are preferentially trans. This preference is stronger in the salts and corresponds to the X-ray structure of the hydrochloride. However, the energy barriers separating these forms are very low. The X-ray diffraction crystal structures of the anhydrous salt and its monohydrate differed mainly in the trans or cis relationship of the N-methyl group to the alpha-methyl, although these two forms interconvert freely in solution.
Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir; Gharib, Maniya; Najafi, Mahnaz
2016-03-15
A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at leastmore » three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.« less
Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach
NASA Astrophysics Data System (ADS)
Huang, Huajie; Wang, Xin
2011-08-01
Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j
NASA Astrophysics Data System (ADS)
Senobari, Samaneh; Nezamzadeh-Ejhieh, Alireza
2018-05-01
Coupled CdS-CuO nanoparticles (NPs) subjected in the photocatalytic degradation of Methylene blue (MB) aqueous solution. The calcination temperature and the crystallite phase of CuO had a significant role on the photocatalytic activity of the coupled system and CuO200/2h-CdS catalyst (containing CuO calcined at 200 °C for 2 h) showed the best photocatalytic activity. The coupled system showed increased activity with respect to the monocomponent semiconductors. The prepared catalysts characterized by x-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive X-ray (EDX) analyzer, x-ray mapping, Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance spectroscopy (DRS) and electrochemical impedance spectroscopy (EIS) techniques. The best degradation extent of MB was obtained at: CMB: 1 mg L-1, pH 5, 80 min irradiation time and 0.8 g L-1 of the CuO200/2h-CdS catalyst. The chemical oxygen demand (COD) confirmed about 83% of MB molecules can be mineralized at the optimum conditions.
SORPTION OF LEAD ON A RUTHENIUM COMPOUND: A MACROSCOPIC AND MICROSCOPIC STUDY
The objective of this study was to elucidate the sorption mechanism of Pb on the high-affinity ruthenium compound with time at pH 6 employing batch methods and X-ray absorption fine structure (XAFS) and X-ray diffraction (XRD) spectroscopies. For the spectroscopic studies, Pb so...
Kim, Seulgi; Ngo, Tri Duc; Kim, Kyeong Kyu; Kim, T Doohun
2012-11-01
The structures and reaction mechanisms of enantioselective hydrolases, which can be used in industrial applications such as biotransformations, are largely unknown. Here, the X-ray crystallographic study of a novel (S)-specific esterase (pfEstA) from Pseudomonas fluorescens KCTC 1767, which can be used in the production of (S)-ketoprofen, is described. Multiple sequence alignments with other hydrolases revealed that pfEstA contains a conserved Ser67 within the S-X-X-K motif as well as a highly conserved Tyr156. Recombinant protein containing an N-terminal His tag was expressed in Escherichia coli, purified to homogeneity and characterized using SDS-PAGE, MALDI-TOF MS and enantioselective analysis. pfEstA was crystallized using a solution consisting of 1 M sodium citrate, 0.1 M CHES pH 9.5, and X-ray diffraction data were collected to a resolution of 1.9 Å with an Rmerge of 7.9%. The crystals of pfEstA belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=65.31, b=82.13, c=100.41 Å, α=β=γ=90°.
Micro X-ray diffraction analysis of thin films using grazing-exit conditions.
Noma, T; Iida, A
1998-05-01
An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.
Naqvi, Kubra F.; Staker, Bart L.; Dobson, Renwick C. J.; ...
2016-01-01
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacteriumBartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mMsodium citrate tribasic pH 5.5 and were shown to diffract to ~2.10 Å resolution. They belonged to space groupP2 12 12 1, with unit-cell parametersa= 79.96,b= 106.33,c= 136.25more » Å. The finalRvalues wereR r.i.m.= 0.098,R work= 0.183,R free= 0.233.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangavelu, Sonia G.; Cahill, Christopher L.
Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangavelu, Sonia G.; Cahill, Christopher L.
2016-01-06
Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less
Bifunctional 3D porous Cu(I) metal-organic framework with gas sorption and luminescent properties
NASA Astrophysics Data System (ADS)
Xing, Guang'en; Zhang, Yan; Cao, Xiulian
2017-10-01
A new Cu(I) metal-organic framework, namely [Cu(L)]2n·n(H2O) (1 HL = 5-(4-Pyridyl)-1H-tetrazole), has been successfully synthesized via the solvothermal reactions of CuI and 5-(4-Pyridyl)-1H-tetrazole ligand, and further characterized by elemental analysis, powder X-ray diffraction analysis, thermal analysis and single crystal X-ray structural analysis. The L- ligand displays a μ4-N2, N3, N4, N5 coordination mode bridging Cu(I) ions into a 3D porous framework with the opened 1D channels filled by the lattice water molecules. Gas sorption investigations indicated that compound 1 can selectively adsorb CO2 over N2 at 298 K, and luminescent properties investigations revealed that compound 1 features luminescent sensing function for nitrobenzene.
NASA Astrophysics Data System (ADS)
Marchenkov, N. V.; Chukhovskii, F. N.; Blagov, A. E.
2015-03-01
The rocking curves (RCs) for Mo K α1 h Mo K α2 characteristic X-ray lines have been experimentally and theoretically studied in the nondispersive scheme of an X-ray double-crystal TPC-K diffractometer. The results of measurements and theoretical calculations of double-crystal RCs for characteristic X-rays from tubes with a molybdenum anode and different widths of slits show that a decrease in the slit width leads to an increase in the relative contribution of the Mo K α2-line RC in comparison with the intensity of the tails of the Mo K α1-line RC. It is shown that the second peak of the Mo K α2 line becomes increasingly pronounced in the tail of the Mo K α1-line RC with a decrease in the slit width. Two plane-parallel Si plates (input faces {110}, diffraction vector h <220>) were used as a monochromator crystal and a sample. The results of measuring double-crystal RCs are in good agreement with theoretical calculations.
NASA Astrophysics Data System (ADS)
Amani, Vahid; Alizadeh, Robabeh; Alavije, Hanieh Soleimani; Heydari, Samira Fadaei; Abafat, Marzieh
2017-08-01
A series of mercury(II) complexes, [Hg(Nsbnd N)(SCN)2] (Nsbnd N is 4,4‧-dimethyl-2,2‧-bipyridine in 1, 5,5‧-dimethyl-2,2‧-bipyridine in 2, 6,6‧-dimethyl-2,2‧-bipyridine in 3 and 6-methyl-2,2‧-bipyridine in 4), were prepared from the reactions of Hg(SCN)2 with mentioned ligands in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurement by methanol diffusion into a DMSO solution. The four complexes were thoroughly characterized by spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), elemental analysis (CHNS) and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the mercury(II) cation is four-coordinated in a distorted tetrahedral configuration by two S atoms from two thiocyanate anions and two N atoms from one chelating 2,2‧-bipyridine derivative ligand. Also, in these complexes intermolecular interactions, for example Csbnd H⋯N hydrogen bonds (in 1-4), Csbnd H⋯S hydrogen bonds (in 1, 2 and 4), π … π interactions (in 2-4), Hg⋯N interactions (in 2) and S⋯S interactions (in 4), are effective in the stabilization of the crystal structures and the formation of the 3D supramolecular complexes. Furthermore, the luminescence spectra of the title complexes show that the intensity of their emission bands are stronger than the emission bands for the free bipyridine derivative ligands.
NASA Astrophysics Data System (ADS)
Lu, Wen; Wang, Yong; Wang, Luna; Zhao, Fengyi; Yang, Shilong; Xi, Chengjie; Yang, Yu; Xu, Li; Chi, Xingwei
2018-03-01
A water soluble camptothecin protonated salt has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR and 1H NMR. The CPT was protonated as (CPT+H+) cations, the cationic protonation occurred on the N position at pyridine group, which fromed a cation-anion compound with perchlorate ion that determined by X-Ray diffraction. Its activities against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver) and HUVEC (umbilical vein, normal cell) were investigated. The toxicity of the protonated salt was slightly lower than camptothecin. IC50 values of 7.01 μM against HepG-2 cell, 8.61 μM against A549 cell, 17.82 μM against McF-7 cell, all of them are lower than the IC50 values of CPT against these cells except Hela cell.
Redetermination of the borax structure from laboratory X-ray data at 145 K
Gainsford, Graeme J.; Kemmitt, Tim; Higham, Caleb
2008-01-01
The title compound, sodium tetraborate decahydrate (mineral name: borax), Na2[B4O5(OH)4]·8H2O, has been studied previously using X-ray [Morimoto (1956). Miner. J. 2, 1–18] and neutron [Levy & Lisensky (1978). Acta Cryst. B34, 3502–3510] diffraction data. The structure contains tetraborate anions [B4O5(OH)4]2− with twofold rotation symmetry, which form hydrogen-bonded chains, and [Na(H2O)6] octahedra that form zigzag chains [Na(H2O)4/2(H2O)2/1]. The O—H bond distances obtained from the present redetermination at 145 K are shorter than those in the neutron study by an average of 0.127 (19) Å. PMID:21202161
Enhancing resolution in coherent x-ray diffraction imaging.
Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong
2016-12-14
Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.
Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals
NASA Astrophysics Data System (ADS)
Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha
2016-08-01
Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.
NASA Astrophysics Data System (ADS)
Renman, Viktor; Ojwang, Dickson O.; Valvo, Mario; Gómez, Cesar Pay; Gustafsson, Torbjörn; Svensson, Gunnar
2017-11-01
The storage process of Zn2+ in the Prussian blue analogue (PBA) copper hexacyanoferrate (Cu[Fe(CN)6]2/3·nH2O - CuHCF) framework structure in a context of rechargeable aqueous batteries is examined by means of in operando synchrotron X-ray diffraction. Via sequential unit-cell parameter refinements of time-resolved diffraction data, it is revealed that the step-profile of the cell output voltage curves during repeated electrochemical insertion and removal of Zn2+ in the CuHCF host structure is associated with a non-linear contraction and expansion of the unit-cell in the range 0.36 < x < 1.32 for Znx/3Cu[Fe(CN)6]2/3·nH2O. For a high insertion cation content there is no apparent change in the unit-cell contraction. Furthermore, a structural analysis with respect to the occupancies of possible Zn2+ sites suggests that the Fe(CN)6 vacancies within the CuHCF framework play an important role in the structural-electrochemical behavior of this particular system. More specifically, it is observed that Zn2+ swaps position during electrochemical cycling, hopping between cavity sites to vacant ferricyanide sites.
NASA Astrophysics Data System (ADS)
Singh, Mahesh Kumar; Sutradhar, Sanjit; Paul, Bijaya; Adhikari, Suman; Laskar, Folguni; Butcher, Raymond J.; Acharya, Sandeep; Das, Arijit
2017-07-01
A new polymeric complex of Cd(II) with 1,1-dicyanoethylene- 2,2-dithiolate [ i-MNT2- = {S2C:C(CN)2}2- ] as a bridging ligand has been synthesized and characterized on the basis of spectroscopy and single-crystal X-ray diffraction analysis. Single crystal X-ray diffraction analysis reveals that the Cadmium (II) complex is six coordinated 1D polymeric in nature. Biological screening effects in vitro of the synthesized polymeric complex has been tested against five fungi Synchitrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans(ATCC10231), Trichophyton mentagrophytes by the disc diffusion method. In vitro antifungal screening indicates that the complex exhibits fungistatic and fungicidal antifungal activity whereas K2i-MNT.H2O became silent on Synchitrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231), Trichophyton mentagrophytes.
Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron
Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April
Crystal structures of the new ternary stannides La3Mg4-xSn2+x and LaMg3-xSn2
NASA Astrophysics Data System (ADS)
Solokha, P.; De Negri, S.; Minetti, R.; Proserpio, D. M.; Saccone, A.
2016-01-01
Synthesis and structural characterization of the two new lanthanum-magnesium-stannides La3Mg4-xSn2+x (0.12≤x≤0.40) and LaMg3-xSn2 (0.33≤x≤0.78) are reported. The crystal structures of these intermetallics were determined by single crystal X-ray diffraction analysis and confirmed by Rietveld refinement of powder X-ray diffraction patterns of the corresponding samples. The La3Mg4-xSn2+x phase crystallizes in the hexagonal Zr3Cu4Si2 structure type (P6bar2m, hP9, Z=3, x=0.12(1), a=7.7974(7), c=4.8384(4) Å), which represents an ordered derivative of the hP9-ZrNiAl prototype, ubiquitous among equiatomic intermetallics. The LaMg3-xSn2 phase is the second representative of the trigonal LaMg3-xGe2 type, which is a superstructure of the LaLi3Sb2 structure type (P3bar1c, hP34-0.12, Z=6, x=0.35(1), a=8.3222(9), c=14.9546(16) Å). The scheme describing the symmetry reduction/coloring with respect to the parent type is reported here with the purpose to discuss the LaMg3-xSn2 off-stoichiometry from the geometrical point of view. Structural relationships between the La-Mg-Sn ternary phases, including the already known equiatomic LaMgSn compound (oP12-TiNiSi), are presented in the framework of the AlB2-related compounds family and discussed with the aid of group-subgroup relations in the Bärnighausen formalism.
X-ray diffraction patterns and diffracted intensity of Kα spectral lines of He-like ions
NASA Astrophysics Data System (ADS)
Goyal, Arun; Khatri, Indu; Singh, A. K.; Sharma, Rinku; Mohan, Man
2017-09-01
In the present paper, we have calculated fine-structure energy levels related to the configurations 1s2s, 1s2p, 1s3s and 1s3p by employing GRASP2K code. We have also computed radiative data for transitions from 1s2p 1 P1o, 1s2p 3 P2o, 1s2p 3 P1o and 1s2s 3S1 to the ground state 1s2. We have made comparisons of our presented energy levels and transition wavelengths with available results compiled by NIST and good agreement is achieved. We have also provided X-ray diffraction (XRD) patterns of Kα spectral lines, namely w, x, y and z of Cu XXVIII, Kr XXXV and Mo with diffraction angle and maximum diffracted intensity which is not published elsewhere in the literature. We believe that our presented results may be beneficial in determination of the order parameter, X-ray crystallography, solid-state drug analysis, forensic science, geological and medical applications.
NASA Astrophysics Data System (ADS)
Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed
2014-04-01
We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.
NASA Astrophysics Data System (ADS)
Tong, Ruizhan; Ren, Xiaoyu; Li, Zuoxi; Liu, Bin; Hu, Huaiming; Xue, Ganglin; Fu, Feng; Wang, Jiwu
2010-09-01
A novel inorganic-organic hybrid compound based on mixed-valence Wells-Dawson arsenotungstate and mixed-ligand Cu(I) units, Cu 8I(imi) 4(bpy) 6(H 2O)[As 2VW 2VW 16VlO 62]·2H 2O ( 1) (bpy=4,4'-bipydine; imi=imidazole), has been hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, luminescent spectrum and single crystal X-ray diffraction. Single-crystal X-ray diffraction revealed that four terminal and three bridging oxygen atoms of the Wells-Dawson cluster are coordinated to Cu(I) ions and form an unprecedented hepta-supporting polyoxometalate. The functionalized arsenotungstates are further connected by two kinds of tridentate linkers, Imi-Cu-(bpy)-Cu-(bpy)-Cu-(bpy)-Cu-Imi and Imi-Cu-(bpy)-Cu-(bpy)-Cu-H 2O, to construct a 3D framework with 4 6·6 4 topology. The hybrid material has an intense emission at about 397 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.
2017-01-31
The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.
Miller, C E; Majewski, J; Watkins, E B; Weygand, M; Kuhl, T L
2008-07-01
The structure of cholera toxin (CTAB(5)) bound to its putative ganglioside receptor, galactosyl-N-acetylgalactosaminyl (N-acetyl-neuraminyl) galactosylglucosylceramide (GM(1)), in a lipid monolayer at the air-water interface has been studied utilizing grazing incidence x-ray diffraction. Cholera toxin is one of very few proteins to be crystallized in two dimensions and characterized in a fully hydrated state. The observed grazing incidence x-ray diffraction Bragg peaks indicated cholera toxin was ordered in a hexagonal lattice and the order extended 600-800 A. The pentameric binding portion of cholera toxin (CTB(5)) improved in-plane ordering over the full toxin (CTAB(5)) especially at low pH. Disulfide bond reduction (activation of the full toxin) also increased the protein layer ordering. These findings are consistent with A-subunit flexibility and motion, which cause packing inefficiencies and greater disorder of the protein layer. Corroborative out-of-plane diffraction (Bragg rod) analysis indicated that the scattering units in the cholera layer with CTAB(5) shortened after disulfide bond reduction of the A subunit. These studies, together with Part I results, revealed key changes in the structure of the cholera toxin-lipid system under different pH conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Ashutosh; Dwivedi, Saurabh; Pandey, Rishikesh
2016-05-23
We present here the comprehensive x-ray diffraction and polarization-electric field hysteresis studies on (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics with x = 0.52, 0.56 and 0.60. The powder x-ray diffraction data reveals the presence of tetragonal phase for all the compositions. The saturation of hysteresis loop is observed for x ≤ 0.56.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil
2016-07-27
We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less
Thomas, Michael; Anglim Lagones, Thomas; Judd, Martyna; Morshedi, Mahbod; O'Mara, Megan L; White, Nicholas G
2017-07-04
A combination of molecular dynamics (MD), NMR spectroscopy, and single crystal X-ray diffraction (SCXRD) techniques was used to probe the self-assembly of para- and meta-bis(amidinium) compounds with para-, meta-, and ortho-dicarboxylates. Good concordance was observed between the MD and experimental results. In DMSO solution, the systems form several rapidly exchanging assemblies, in part because a range of hydrogen bonding interactions is possible between the amidinium and carboxylate moieties. Upon crystallization, the majority of the systems form 1D supramolecular polymers, which are held together by short N-H⋅⋅⋅O hydrogen bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Süleymanoğlu, Nevin; Ustabaş, Reşat; Alpaslan, Yelda Bingöl; Eyduran, Fatih; Ozyürek, Cengiz; Iskeleli, Nazan Ocak
2011-12-01
In this work, 3,4-bis(isoproylamino)cyclobut-3-ene-1,2-dione C(10)H(16)N(2)O(2) (I), was synthesized and characterized by (13)C NMR, (1)H NMR, FT-IR, UV-vis spectroscopy and single-crystal X-ray diffraction. DFT method with 6-31G(d,p) basis set has been used to calculate the optimized geometrical parameters, atomic charges, vibrational frequencies and chemical shift values. The calculated vibrational frequencies and chemical shift values are compared with experimental FT-IR and NMR spectra. The results of the calculation shows good agreement between experimental and calculated values of the compound I. The existence of N-H⋯O type intermolecular ve C-H⋯O type intramolecular hydrogen bonds can be deduced from differences between experimental and calculated results of FT-IR and NMR. In addition, the molecular electrostatic potential map and frontier molecular orbitals and electronic absorption spectra were performed at B3LYP/6-31G(d,p) level of theory. HOMO-LUMO electronic transition of 4.90 eV are derived from the contribution of the bands π→π* and n→π* The spectral results obtained from FT-IR, NMR and X-ray of I revealed that the compound I is in predominantly enamine tautomeric form, which was supported by DFT calculations. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Na; Huang, Rudan, E-mail: huangrd@bit.edu.cn
Six new inorganic–organic hybrids based on rigid triangular N-containing ligands, NaCu{sup I}{sub 2}(tib){sub 4}(H{sub 2}O){sub 4}[H{sub 2}PW{sup V}W{sup VI}{sub 11}O{sub 40}][H{sub 2}PW{sup VI}{sub 12}O{sub 40}]·6H{sub 2}O (1), Cu{sup II}{sub 3}(tib){sub 4}Cl{sub 4}[H{sub 2}PW{sup VI}{sub 12}O{sub 40}]{sub 2}·4H{sub 2}O (2), Co(tib){sub 2}[PW{sup V}{sub 3}W{sup VI}{sub 9}O{sub 38}]·5H{sub 2}O (3), Cu{sup II}{sub 3}(tib){sub 2}[P{sub 2}Mo{sup VI}{sub 5}O{sub 22}(O{sub 2})]·4H{sub 2}O (4), Mn(pytpy){sub 2}Mo{sup VI}{sub 4}O{sub 13} (5) and Co(pytpy){sub 2}Mo{sup VI}{sub 4}O{sub 13} (6) (tib=1,3,5-tris(1-imidazolyl)benzene, pytpy=4’-(4”-pyridyl)2,4’:6’,4”-terpyridine), have been hydrothermally synthesized. Single crystal X-ray diffraction studies revealed that compounds 1–4 display two-dimensional (2D) layered structures, and in compounds 1–3, the adjacent Keggin anionsmore » link with each other by W–O–W covalent interactions to form 1D inorganic chains. Compounds 5–6 are 3D “pillar-layer” frameworks based on bimetal–oxide layers pillared by the pytpy ligands. The compounds have been characterized by elemental analysis, powder X−ray diffraction, X-ray photoelectron spectroscopy and thermo gravimetric analyses. Moreover, the electrochemical and catalytic properties of compound 1 have been investigated as well. - Graphical abstract: Six new inorganic–organic hybrids based on rigid triangular N-containing ligands have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–4 display two-dimensional (2D) layers structure, and in compounds 1–3, the adjacent Keggin anions link with each other by W–O–W covalent interactions to form 1D inorganic Keggin anions chains. Compounds 5–6 are 3D “pillar-layer” frameworks based on bimetal–oxide layers pillared by the pytpy ligands. - Highlights: • MOFs based on POMs have been prepared. • Six new compounds based on rigid triangular N-containing ligands. • The adjacent POMs only share the oxygen atom to form a 1D inorganic Keggin chains.« less
NASA Astrophysics Data System (ADS)
Wang, Chunguang; Xing, Yongheng; Li, Zhangpeng; Li, Jing; Zeng, Xiaoqing; Ge, Maofa; Niu, Shuyun
2009-08-01
A series of new lanthanide coordination polymers, with the formula [Ln(bipy)(glut)(NO 3)] (Ln = Eu ( 1), Tb ( 2), Sm ( 3), Pr ( 4); bipy = 2,2'-bipyridine; H 2glut = glutaric acid), have been synthesized under the hydrothermal condition and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Structural analyses reveal that all four complexes are isostructural and crystallized in monoclinic system, P2 1/ c space group. For these complexes, the Ln 3+ are all linked through glutaric acid ligands to form 1D chain-like polymeric structures, and bipy and NO3- are coordinated on two sides of the chains. The thermogravimetric analysis of 1 and photoluminescent properties of 1 and 2 are discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298–220 K). We interpret this change in terms of the dynamic transition previously discussed using othermore » probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.« less
NASA Astrophysics Data System (ADS)
Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio
2016-04-01
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Yoshida, Koji; Baron, Alfred Q R; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio
2016-04-07
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Miller, C E; Majewski, J; Watkins, E B; Kuhl, T L
2008-07-01
Cholera toxin is a highly efficient biotoxin, which is frequently used as a tool to investigate protein-membrane interactions and as a reporter for membrane rafts. Cholera toxin binds selectively to gangliosides with highest affinity to GM(1). However, the mechanism by which cholera toxin crosses the membrane remains unresolved. Using x-ray reflectivity and grazing incidence diffraction, we have been able to monitor the binding and penetration of cholera toxin into a model lipid monolayer containing the receptor GM(1) at the air-water interface. Very high toxin coverage was obtained allowing precise measurements of how toxin binding alters lipid packing. Grazing incidence x-ray diffraction revealed the coexistence of two monolayer phases after toxin binding. The first was identical to the monolayer before toxin binding. In regions where toxin was bound, a second membrane phase exhibited a decrease in order as evidenced by a larger area per molecule and tilt angle with concomitant thinning of the monolayer. These results demonstrate that cholera toxin binding induces the formation of structurally distinct, less ordered domains in gel phases. Furthermore, the largest decrease in lateral order to the monolayer occurred at low pH, supporting a low endosomal pH in the infection pathway. Surprisingly, at pH = 8 toxin penetration by the binding portion of the toxin, the B(5) pentamer, was also observed.
2013-01-01
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493
Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M
2013-06-13
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.
Martín-Caballero, Jagoba; San José Wéry, Ana; Reinoso, Santiago; Artetxe, Beñat; San Felices, Leire; El Bakkali, Bouchra; Trautwein, Guido; Alcañiz-Monge, Juan; Vilas, José Luis; Gutiérrez-Zorrilla, Juan M
2016-05-16
The first decavanadate-based microporous hybrid, namely, [Cu(cyclam)][{Cu(cyclam)}2(V10O28)]·10H2O (1, cyclam = 1,4,8,11-tetraazacyclotetradecane) was prepared by reaction of (VO3)(-) anions and {Cu(cyclam)}(2+) complexes in NaCl (aq) at pH 4.6-4.7 and characterized by elemental analyses, thermogravimetry, and X-ray diffraction (powder, single-crystal) techniques. Compound 1 exhibits a POMOF-like supramolecular open-framework built of covalent decavanadate/metalorganic layers with square-like voids, the stacking of which is aided by interlamellar cementing complexes and generates water-filled channels with approximate cross sections of 10.4 × 8.8 Å(2). The framework is robust enough to remain virtually unaltered upon thermal evacuation of all water molecules of hydration, as demonstrated through single-crystal X-ray diffraction studies on the anhydrous phase 1a. This permanent microporosity renders interesting functionality to 1, such as selective adsorption of CO2 over N2 and remarkable activity as heterogeneous catalyst toward the H2O2-based oxidation of the highly-stable, tricyclic alkane adamantane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishitani, Yuichi; Maruyama, Daisuke; Nonaka, Tsuyoshi
2006-04-01
Preliminary X-ray diffraction studies on N-acetylglucosamine-phosphate mutase from C. albicans are reported. N-acetylglucosamine-phosphate mutase (AGM1) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc) in eukaryotes and belongs to the α-d-phosphohexomutase superfamily. AGM1 from Candida albicans (CaAGM1) was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals obtained belong to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 60.2, b = 130.2, c = 78.0 Å, β = 106.7°. The crystals diffract X-rays to beyond 1.8 Å resolution using synchrotron radiation.
Physicochemical behavior of several kinds of paper under gamma irradiation
NASA Astrophysics Data System (ADS)
Jiménez-Reyes, Melania; Tenorio, Dolores; Rojas-Robles, Mariela; García-Rosales, Genoveva
2018-07-01
Several kinds of paper (Bond, Amate, Rice, Press, and Whatman#1) were studied in their original condition and were then exposed to gamma radiation between 3 and 15 kGy (0.9 kGy/h) with intervals of 3 kGy. The length and width of fibers (SEM) as well as pH were measured, and the chemical composition was determined by EDS. Pyrolysis characteristics (TGA and DTC), transmittance spectra by IR and X-ray diffraction patterns were studied as well. Whatman#1 contains only cellulose; whereas Bond, Press and Rice papers also contain calcite and Amate whewellite. All X-ray diffraction patterns showed Type I semicrystalline cellulose, but a slight presence of Type II was noted in the artisan papers (Amate and Rice). These results were confirmed by IR spectra and thermogravimetric analyses. Due to gamma irradiation no acidification nor change of fiber sizes or alteration of other studied parameters were observed. Therefore, these conditions may be recommended for the treatment of some deteriorated documents.
NASA Astrophysics Data System (ADS)
Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen
2012-04-01
Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.
Li, Ji-Kun; Dong, Jing; Wei, Chuan-Ping; Yang, Song; Chi, Ying-Nan; Xu, Yan-Qing; Hu, Chang-Wen
2017-05-15
Six alkoxohexavanadate-based Cu- or Co-POVs [Cu(dpa)(acac)(H 2 O)] 2 [V 6 O 13 (OMe) 6 ] (1), [Cu(phen)(acac)(MeOH)] 2 [V 6 O 13 (OMe) 6 ] (2), [Co(dpa)(acac) 2 ] 2 [V 6 O 13 (OMe) 6 ]·2MeOH (3), [Co(phen)(acac) 2 ] 2 [V 6 O 13 (OMe) 6 ] (4), [Cu(dpa)(acac)] 2 [V IV 2 V V 4 O 12 (OMe) 7 ] (5), and [Cu(dpa)(acac)(MeOH)] 2 [V IV 2 V V 4 O 11 (OMe) 8 ] (6) (POV = polyoxovanadate; dpa = 2,2'-dipyridine amine; phen = 1,10-phenanthroline; acac = acetylacetone anion) have been synthesized by controlling the reaction conditions and characterized by single-crystal X-ray diffraction and powder X-ray diffraction analyses, FT-IR spectroscopy, element analyses, and X-ray photoelectron spectroscopy. In compounds 1-4 and 6, Cu or Co complexes and alkoxohexavanadate anions are assembled through electrostatic interactions. Differently, in compound 5, seven-methoxo-substituted Lindqvist-type [V 6 O 12 (OMe) 7 ] 2- are bridged to Cu complex via terminal O atoms by coordination bonds. All compounds 1-6 exhibit excellent heterogeneous catalytic performance in oxidative desulfurization and CEES ((2-chloroethyl) ethyl sulfide, a sulfur mustard simulant) abatement with H 2 O 2 as oxidant. Among them, the catalytic activity of 6 [conv. of DBT (dibenzothiophene) up to 100% in 6 h; conv. of CEES reached 100% and selectivity of CEESO ((2-chloroethyl) ethyl sulfoxide) up to 85% after 4 h] outperforms others and can be reused without losing its activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.
2008-04-15
Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grainmore » boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.« less
Blakeley, Matthew P.; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N.; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto
2008-01-01
We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Å, 100K; 0.80 Å, 15K; 1.75 Å, 293K), neutron Laue data (2.2 Å, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes. PMID:18250329
Blakeley, Matthew P; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto
2008-02-12
We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 A, 100K; 0.80 A, 15K; 1.75 A, 293K), neutron Laue data (2.2 A, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blakeley, M. P.; Ruiz, Fredrico; Cachau, Raul
2008-01-01
We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Angstroms, 100K; 0.80 Angstroms, 15K; 1.75 Angstroms, 293K), neutron Laue data (2.2 Angstroms, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.
X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.
Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D
2002-07-01
Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.
NASA Astrophysics Data System (ADS)
Nowakowski, Pawel; Dallas, Jean-Pierre; Villain, Sylvie; Kopia, Agnieszka; Gavarri, Jean-Raymond
2008-05-01
Nanostructured powders of ruthenium dioxide RuO 2 were synthesized via a sol gel route involving acidic solutions with pH varying between 0.4 and 4.5. The RuO 2 nanopowders were characterized by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM). Rietveld refinement of mean crystal structure was performed on RuO 2 nanopowders and crystallized standard RuO 2 sample. Crystallite sizes measured from X-ray diffraction profiles and TEM analysis varied in the range of 4-10 nm, with a minimum of crystallite dimension for pH=1.5. A good agreement between crystallite sizes calculated from Williamson Hall approach of X-ray data and from direct TEM observations was obtained. The tetragonal crystal cell parameter (a) and cell volumes of nanostructured samples were characterized by values greater than the values of standard RuO 2 sample. In addition, the [Ru-O 6] oxygen octahedrons of rutile structure also depended on crystal size. Catalytic conversion of methane by these RuO 2 nanostructured catalysts was studied as a function of pH, catalytic interaction time, air methane composition, and catalysis temperature, by the way of Fourier transform infrared (FTIR) spectroscopy coupled to homemade catalytic cell. The catalytic efficiency defined as FTIR absorption band intensities I(CO 2) was maximum for sample prepared at pH=1.5, and mainly correlated to crystallite dimensions. No significant catalytic effect was observed from sintered RuO 2 samples.
Publications - GMC 42 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 42 Publication Details Title: X-ray diffraction clay mineralogy analysis of the J.W. Dalton #1 for more information. Bibliographic Reference Unknown, 1984, X-ray diffraction clay mineralogy
X-ray diffraction from shock-loaded polycrystals.
Swift, Damian C
2008-01-01
X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...
2015-08-11
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.
2015-01-01
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423
Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.
Weiss, Manfred S
2017-01-01
For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.
Dynamic X-ray diffraction sampling for protein crystal positioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558
Dynamic X-ray diffraction sampling for protein crystal positioning.
Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
NASA Astrophysics Data System (ADS)
Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah
2017-08-01
Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.
NASA Astrophysics Data System (ADS)
Inomata, Yoshie; Gochou, Yoshihiro; Nogami, Masanobu; Howell, F. Scott; Takeuchi, Toshio
2004-09-01
Eleven bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis-Tris:hihm): [M(hihm)(H 2O)]SO 4· nH 2O (M: Co, Ni, Cu, Zn), [MCl(hihm)]Cl· nH 2O (M: Co, Ni, Cu), and [M(HCOO)(hihm)](HCOO) (M: Co, Ni, Cu, Zn) have been prepared and characterized by using their infrared absorption and powder diffuse reflection spectra, magnetic susceptibility, thermal analysis and powder X-ray diffraction analysis. The crystal structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [Cu(hihm)(H 2O)]SO 4 ( 3), [NiCl(hihm)]Cl·H 2O ( 6), [CuCl(hihm)]Cl ( 7) and [Co(HCOO)(hihm)](HCOO) ( 8) have been determined by single crystal X-ray diffraction analysis. The crystals of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2) and [Cu(hihm)(H 2O)]SO 4 ( 3) are each orthorhombic with the space group P2 12 12 1 and Pna2 1. For both complexes, the metal atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a water molecule. [NiCl(hihm)]Cl·H 2O ( 6) is monoclinic with the space group P2 1/ n. For complex ( 6), the nickel atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a chloride ion. [CuCl(hihm)]Cl ( 7) is orthorhombic with the space group P2 12 12 1. Although in this copper(II) complex the copper atom is ligated by six atoms, it is more reasonable to think that the copper atom is in a trigonal bipyramidal geometry coordinated with five atoms: three hydroxyl oxygen atoms, a nitrogen atom and a chloride ion if the bond distances and angles surrounding the copper atom are taken into consideration. [Co(HCOO)(hihm)](HCOO) ( 8) is monoclinic with the space group P2 1. In cobalt(II) complex ( 8), the cobalt atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and an oxygen atom of a formate ion. The structure of complex ( 8) is the same as the structure of [NiCl(hihm)]Cl·H 2O ( 6) except for the formate ion coordinating instead of the chloride ion. [M(hihm)(H 2O)]SO 4·H 2O (M: Co, Zn) ( 1, 4), [CoCl(hihm)]Cl·H 2O ( 5) and [M(HCOO)(hihm)](HCOO) (M: Ni, Cu, Zn) ( 9- 11) seem to have the same structures as the structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [NiCl(hihm)]Cl·H 2O ( 6) and [Co(HCOO)(hihm)](HCOO) ( 8), respectively, judging by the results of IR and powder diffuse reflection spectra and powder X-ray diffraction analysis. Bis-Tris has coordinated to the metal atoms as a pentadentate ligand in all complexes of which the structures have been determined by single crystal X-ray diffraction analysis in this work.
NASA Astrophysics Data System (ADS)
Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.
2018-04-01
Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie
The 3-[1-(6-methoxy-2-naphtyl)ethyl]-6-(2,4-dichlorophenyl)-7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine, C 23H 18Cl 2N 4OS compound was synthesized, as a member of the family of novel potential anticancer agents. The structure of the title compound was characterized by IR, 1H-NMR, mass spectroscopy, and elemental analysis, previously. In this study, the crystal structure of this compound has been determined from synchrotron X-ray powder diffraction data. The crystal structure was solved by simulated annealing and the final structure was achieved by Rietveld refinement method using soft restrains on all interatomic bond lengths and angles. This compound crystallizes in space groupP21,Z= 2, with the unit-cell parametersa= 15.55645(11) Å,b= 8.61693(6) Å,c= 8.56702(6)more » Å,β= 104.3270(4)°, andV= 1112.68(1) Å 3. In the crystal structure, strong C-H∙∙∙πand weak intermolecular hydrogen-bonding interactions link the molecules into a three-dimensional network. The molecules are in a head-to-head arrangement in the unit cell.« less
NASA Astrophysics Data System (ADS)
Zhong, Jian-gang; Han, Jia-pei; Li, Xiao-feng; Xu, Yi; Zhong, Yan; Wu, Bin
2018-02-01
Two cinnamide derivatives, namely, (E)-1-(4-(bis(4-methylphenyl)- methyl)piperazin-1-yl)-3-(3,4-diethoxyphenyl)prop-2-en-1-one (5) and (E)-1-(4-(bis- (4-fluorophenyl)methyl)piperazin-1-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (6), have been synthesized and characterized by IR spectra, High resolution mass spectra, 1H NMR spectra, 13C NMR spectra. The compound 5 is a novel compound and has never been reported in the literature. Their crystal structures were studied by single-crystal X-ray diffraction. They all crystallize in the monoclinic system. The single-crystal X-ray revealed that compound 5 has infinite X-shaped 1-D polymeric chains structure and compound 6 has a layered 3-D structure by intermolecular interactions. Hirshfeld surface analysis demonstrated the presence of H⋯H, O⋯H, C⋯H, F⋯H, Csbnd H⋯π and π⋯π intermolecular interactions. In addition, the MTT assay results indicated that the compounds 5 and 6 display effective activities against neurotoxicity which is induced by glutamine in PC12 cells. The in vivo experiment indicated that the compound 6 has a good protective effect on cerebral infarction.
Yin, Jiefu; Pelliccione, Christopher J.; Lee, Shu Han; ...
2016-07-12
Magnesium intercalated vanadium oxide xerogels, Mg 0.1V 2O 5 · 2.35H 2O and Mg 0.2V 2O 5 · 2.46H 2O were synthesized using an ion removal sol gel strategy. X-ray diffraction indicated lamellar ordering with turbostratic character. X-ray absorption spectroscopy indicated greater distortion of the vanadium-oxygen coordination environment in Mg 0.2V 2O 5 · 2.46H 2O. Elemental analysis after cycling in Li + or Mg 2+ based electrolytes revealed that the magnesium content was unchanged, indicating structural Mg 2+ are retained. Furthermore, the Mg 0.1V 2O 5 · 2.35H 2O material displayed high voltage, energy density, and discharge/charge efficiency, indicatingmore » promise as a cathode material for future magnesium based batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, M.J.; Bailey, P.M.; Bentz, P.O.
1984-09-19
Reaction of (C/sub 5/ qentamethyl Rh)/sub 2/Cl/sub 4/) (1) with triethylsilane leads to the novel rhodium(V) complex (eta/sup 5/-C/sub 5/Me/sub 5/Rh(H)/sub 2/(SiE-triethyl/sub 3/)/sub 2/) (2) characterized by NMR spectra (/sup 1/H, /sup 13/C, /sup 29/Si, and /sup 103/Rh), X-ray diffraction, and neutron diffraction at 20 K. The complex shows a four-legged piano stool geometry with the pentamethylcyclopentadienyl eta/sub 5/-bonded to the rhodium (average Rh-C, 2.283 (9) A) on top and the two triethylsilyl ligands trans in the basal plane (Rh-Si, 2.379 (2) A). The neutron diffraction analysis located the two hydrides, which are trans to each other and cis tomore » the triethylsilyls in the basal plane. The mean Rh-H distance is 1.581 (3) A, and the H-Rh-H angle is 94.8 (2)/sup 0/. Complex 2 is rather stable, but it reacts under forcing conditions with neutral ligands (triphenylphosphine, CO, or maleic anhydride) to give (C/sub 5/Me/sub 5/Rh(PPh/sub 3/)H(SiEt/sub 3/)), (C/sub 5/Me/sub 5/Rh(CO)/sub 2/), or (C/sub 5/M3/5Rh(maleic anhydride)/sup 2/). It reacts more easily with electrophiles such as HBF/sub 4/ to give (C/sub 5/Me/sub 5/Rh)/sub 4/H/sub 4/)/sup 2 +/, with HCl to give 1, with AgBF/sub 4/ in MeCN to give (C/sub 5/Me/sub 5/Rh(MeCN)/sub 3/)/sup 2 +/, and with I/sub 2/ to give ((C/sub 5/Me/sub 5/Rh)/sub 2/I/sub 4/). The predominant mode of reaction involves reductive elimination of Et/sub 3/Si-H, which can be strongly promoted by an electrophile. 43 references, 3 figures, 3 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ay, Burak; Karaca, Serkan; Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr
2016-01-15
Four novel metal-organic frameworks,[Cu{sub 2}Cl{sub 2}(pyrz)]{sub n} (1) and (H{sub 2}pip){sub n}[Ln{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (Ln=Ce (2), Pr (3) and Eu (4), H{sub 2}pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln–O-Ln chains. All the complexes show high thermal stability. The complexes 1–3 exhibit luminescence emission bands at 584, 598 and 614 nm at roommore » temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four novel metal-organic frameworks have been synthesized under hydrothermal conditions. Thermal and luminescent properties of the compounds have been investigated.« less
Warad, Ismail; Al-Hussain, Hanan; Al-Far, Rawhi; Mahfouz, Refaat; Hammouti, Belkheir; Hadda, Taibi Ben
2012-09-01
The preparation of new three trans-[RuCl(2)(dppb)(N-N)] with mixed diamine (N-N) and 1,4-bis-(diphenylphosphino)butane (dppb) ligands, starting from RuCl(2)(PPh(3))(3) as precursor is presented. The complexes are characterized on the basis of elemental analysis, IR, (1)H, (13)C and (31)P{(1)H}NMR, FAB-MS, TG/DTA and single crystal X-ray diffraction studies. Complex (2L(1)) crystallizes in the monoclinic unit cells with the space group P2(1). The catalysts are evaluated for their Cinnamic aldehyde hydrogenation. The catalysts show excellent activity and selectivity for the unsaturated carbonyl compound under mild conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, U. Venkateswara; Bowers, Geoffrey M.; Loganathan, Narasimhan
2016-04-06
Variable-temperature X-ray diffraction and 2H NMR spectroscopy of the smectite mineral, hectorite, containing interlayer Na +, K +, Cs +, Mg 2+, Ca 2+, Sr 2+, and Pb 2+ equilibrated at 43% relative humidity (RH) and mixed with 2H 2O to form a paste provide a comprehensive picture of the structural environments and dynamics of interlayer 2H 2O and the relationships of these properties to interlayer hydration state, the hydration energy and polarizability of the cation, temperature, and the formation of ice-1h in the interparticle pores. The variation in basal spacing shown by the XRD data correlates well with themore » 2H NMR behavior, and the XRD data show for the first time in hectorites that crystallization of interparticle ice-1h causes a decrease in the interlayer spacing, likely due to removal of interlayer 2H 2O. The variation of the 2H NMR behavior of all the samples with decreasing temperature reflects decreasing frequencies of motion for the rotation of the 2H 2O molecules around their dipoles, reorientation of the 2H 2O molecules, and exchange of the 2H 2O molecules between interlayer sites coordinated to and not coordinated to the cations.« less
NASA Astrophysics Data System (ADS)
Wang, Yong-Tao; Lü, Lin-Rui; Tang, Gui-Mei
2018-03-01
Two new benzimidazole salts, namely, [H2IBI]2+ 2X (X = NO3- (1), ClO4- (2) [IBI = 2-((1H-imidazol-1-yl)methyl)-1H-benzimidazole], were grown through reacting IBI and two different inorganic acids by slow evaporation method, respectively. Compounds 1 and 2 have been characterized by single-crystal X-ray diffraction, IR, UV-Vis, and thermogravimetric analyses (TGA). In both compounds, a set of hydrogen bonds (C/Nsbnd H⋯O) can be clearly observed, through which a three-dimensional framework will be generated. The luminescent spectra show the emission peaks in compounds 1 and 2 are found at 375 and 371 nm, respectively. By comparison with the free IBI, the emission maxima of compounds 1 and 2 are obviously red-shifted about 67 and 63 nm, respectively.
NASA Astrophysics Data System (ADS)
Qiao, Yu; Ren, Shan-Shan; Liu, Li-Hui; Guan, Wei-Sheng; Li, Zhi-Min; Che, Guang-Bo; Liu, Chun-Bo; Wang, Yan-Yan; Wang, Qing-Wei; Li, Xiu-Ying; Zhu, En-Wei
2018-06-01
A new coordination polymeric zinc(II) complex, namely, [Zn2(L)(H2O)3]n·nNO3(1), (H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid) has been synthesized under solvothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction analysis and powder X-ray diffraction. Complex 1 exhibits a three-dimensional structure with a Schläfli symbol of 44•69•82 topologies, constructed from two crystallographically independent five and six coordinated mode with metal center and connected H3L ligands. The complex has good thermal stability and excellent photoluminescent property. Furthermore, by comparing the photoluminescent and photocatalytic mutation results induced by interconversion of metal ions, we confirm that the properties mutation induced by metal ions is much controllable and obvious. In addition, the complex exhibits significantly enhanced photocatalytic activity for methylene blue (MB) under UV light irradiation (λ < 400 nm), and the degradation rate could reach 75% in 80 min. Meanwhile trapping experiments indicated that the •O2- and h+ are the main activated species.
NASA Technical Reports Server (NTRS)
Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)
1996-01-01
An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.
Mayenite Synthesized Using the Citrate Sol-Gel Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ude, Sabina N; Rawn, Claudia J; Meisner, Roberta A
2014-01-01
A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show themore » presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.« less
Xu, Xiao; Spasojević-de Biré, Anne; Ghermani, Nour Eddine; Wei, Yongge; Novaković, Sladjana; Bošnjaković-Pavlović, Nada; Wu, Pingfan
2017-07-19
A high resolution X-ray diffraction study has been carried out on [(C 4 H 9 ) 4 N] 2 [V 6 O 13 {(OCH 2 ) 3 CCH 2 OCCH 2 CH 3 } 2 ] (V6-C3) at 100 K. The V6 core possesses a negative charge, leading to a strong polarization of the anion. A nucleophilic region localized near the organic moiety and an electrophilic region in the vicinity of the V6 core provide an overall description of charge-transfer behavior.
Miller, C. E.; Busath, D. D.; Strongin, B.; Majewski, J.
2008-01-01
Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structures of mixed-ganglioside GT1b-phospholipid monolayers were investigated at the air-liquid interface and compared with monolayers of the pure components. The receptor GT1b is involved in the binding of lectins and toxins, including botulinum neurotoxin, to cell membranes. Monolayers composed of 20 mol % ganglioside GT1b, the phospholipid dipalmitoyl phosphatidylethanolamine (DPPE), and the phospholipid dipalmitoyl phosphatidylcholine (DPPC) were studied in the gel phase at 23°C and at surface pressures of 20 and 40 mN/m, and at pH 7.4 and 5. Under these conditions, the two components did not phase-separate, and no evidence of domain formation was observed. The x-ray scattering measurements revealed that GT1b was intercalated within the host DPPE/DPPC monolayers, and slightly expanded DPPE but condensed the DPPC matrix. The oligosaccharide headgroups extended normally from the monolayer surfaces into the subphase. This study demonstrated that these monolayers can serve as platforms for investigating toxin membrane binding and penetration. PMID:18599631
Koch, Jeffrey A [Livermore, CA
2003-07-08
An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.
MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe
2013-01-01
This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.
Real-time X-ray Diffraction: Applications to Materials Characterization
NASA Technical Reports Server (NTRS)
Rosemeier, R. G.
1984-01-01
With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Pan, Cheng-Ling; Xiao, Li-Na
Three new supramolecular compounds based on triethylenediamine and different polyoxometalates [W{sup VI}{sub 3}V{sup V}{sub 3}O{sub 19}H]{l_brace}[Cu(HDABCO)]{sub 2}(H{sub 2}O){r_brace} (1), [P{sub 2}Mo{sup VI}{sub 18}O{sub 62}][HDABCO]{sub 2}[H{sub 2}DABCO]{sub 2}.12 H{sub 2}O (2) and [Mo{sup VI}{sub 7.5}W{sup VI}{sub 0.5}O{sub 27}][Cu(HDABCO)]{sub 2}.2 H{sub 3}O.2 H{sub 2}O (3) (DABCO=triethylenediamine) have been synthesized hydrothermally and characterized by IR, TG, XPS and X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 exhibits a face-centered cubic packing motif, compound 2 displays a supramolecular structure constructed form the 'chains' arranged hexagonally, compound 3 contains [Mo{sub 7.5}W{sub 0.5}O{sub 27}]{sub {infinity}} chain decorated by [Cu(HDABCO)]{sup 2+} cations, which was thenmore » packed into a layer structure. These results show that the same organonitrogen combining with the different POMs will yield different supramolecular networks. -- Graphical abstract: Three new supramolecular compounds based on triethylenediamine and different polyoxometalates have been hydrothermally synthesized and characterized by IR, XPS, TG, elemental analysis and X-ray diffraction analysis.« less
Publications - GMC 45 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 45 Publication Details Title: X-ray diffraction mineral percentages of chips from Exxon Pt , 1983, X-ray diffraction mineral percentages of chips from Exxon Pt. Thomson Unit #1 and #3 wells
NASA Astrophysics Data System (ADS)
Oliveira, M. P.; Mercena, S. G.; Meneses, C. T.; Jesus, C. B. R.; Pagliuso, P. G.; Duque, J. G. S.
2018-04-01
In this work, we report on X-ray diffraction and magnetization measurements carried out in the low-dimensional hexagonal cobaltites BaxA1-xCoO3-δ (A = Mg or Ca, 0 ⩽ x ⩽ 0.20 and δ = 0 or 0.4). Polycrystalline samples have been synthesized by solid-state reaction. The Rietveld refinements of the X-ray diffraction patterns show clearly a phase coexistence of both BaCoO2.6 and BaCoO3 hexagonal polytype structures (space group: P63/mmc), which is dependent on both the dopant ion and doping level. At low temperatures (T < 50K), the ZFC-FC data recorded at H = 1 kOe for Ca-doped (x < 0.15) and Ba0.80Mg0.20CoO3-δ samples present a broad peak and strong thermal hysteresis. Besides, a second anomaly around room temperature is also observed in susceptibility curves for all samples. Further increasing in the Ca-doping produces a continuous decreasing of magnetization and for the samples with x > 0.10 the low temperature hysteresis is not observed anymore. The field-dependence of ZFC-FC curves taken for the sample grown with x = 0 show a displacement of the peak position into low temperature region. Except for the sample grown with x = 0.20, the MvsH loops taken at T = 2 K show multiple steps in the field region ranging - 15 ⩽ H ⩽ 15 kOe . Finally, the saturation magnetization values are consistent with a low-spin state for the Co2+ or Co4+ ions.
Radiation damage free ghost diffraction with atomic resolution
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...
2017-12-21
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
Radiation damage free ghost diffraction with atomic resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.
Iwamoto, Hiroyuki
2018-06-13
X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.
NASA Astrophysics Data System (ADS)
Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.
2013-03-01
Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.
The crystalline phases present in carbon cathodes of discharged Li/SOCl/sub 2/-LiAlCl/sub 4/ cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Surampudi, S.; Bankston, C.P.
1989-05-01
The authors describe the x-ray diffraction patterns of 100% discharged Schawinigan black cathodes from Li/SOCl/sub 2-/LiAlCl/sub 4/ cells obtained using a high resolution Guinier camera. The previous assignments of the diffraction lines to Li/sub 2/O/sub 2/ and rhombohedral sulfur are all found to be incorrect; all sharp Bragg diffraction lines not assignable to anhydrous LiCl can be assigned to LiCl1 . H/sub 2/O.
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James
2016-01-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; ...
2016-08-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less
NASA Astrophysics Data System (ADS)
Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.
2017-04-01
Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James
2016-08-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
2014-01-01
resolution X - ray diffraction (XRD) were collected for all samples, and reciprocal space maps (RSMs) were collected from selected samples. The complete data...exposure. The lines represent the model fit. 19 13 Figure 1. Triple axis x - ray diffraction from the bi-layered InAsSb structures grown on GaSb at...Applied Physics, Structural properties of bismuth‐bearing semiconductor alloys, 63 (1988) 107. 18 12 Figure Captions Figure 1. Triple axis x - ray
Organic Photonics: Toward a New Generation of Thin Film Photovoltaics and Lasers
2011-03-07
plane. 39 Both electron and x - ray diffraction confirm the existence of crystalline domains of CuPc and C60. Crystalline domain sizes range from 5...nanocrystalline domains indicated by white curves that locate the domain boundaries. Scale bar=5 nm. b, X - ray diffraction pattern of an OVPD grown A... ray diffraction (XRD) and atomic force microscopy (AFM), as shown in Fig. 8. A cross-sectional TEM image of [CuPc(6.1nm)/C60(6.1nm)]10 is shown in
Pöppler, Ann Christin; Corlett, Emily K; Pearce, Harriet; Seymour, Mark P; Reid, Matthew; Montgomery, Mark G; Brown, Steven P
2017-03-01
A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile-4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C 14 H 4 N 2 O 2 S 2 ·C 12 H 13 N 2 ]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental 1 H and 13 C chemical shifts are determined from two-dimensional 1 H- 13 C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C-H connectivities and longer-range C...H proximities, whereas H...H proximities are identified in a 1 H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the 1 H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N-H...O and C-H...O hydrogen bonding, while changes of -2.7 and -1.5 ppm are due to ring current effects associated with C-H...π interactions. Even though there is a close intermolecular S...O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.
Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging
NASA Astrophysics Data System (ADS)
Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1
Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei
2017-01-01
X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Ji Yong; Lee, Hyung Ho; Yoon, Hye Jin
2006-11-01
Phosphopantetheine adenylyltransferase from En. faecalis was crystallized and X-ray diffraction data were collected to 2.70 Å resolution. Phosphopantetheine adenylyltransferase, an essential enzyme in the coenzyme A biosynthetic pathway, catalyzes the reversible transfer of an adenylyl group from ATP to 4′-phosphopantetheine, yielding 3′-dephospho-CoA and pyrophosphate. Enterococcus faecalis PPAT has been overexpressed in Escherichia coli as a fusion with a C-terminal purification tag and crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium HEPES pH 7.5, 0.8 M sodium dihydrogen phosphate and 0.8 M potassium dihydrogen phosphate. X-ray diffraction data were collected to 2.70 Å at 100 K.more » The crystals belong to the primitive tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 160.81, c = 225.68 Å. Four copies of the hexameric molecule are likely to be present in the asymmetric unit, giving a crystal volume per protein weight (V{sub M}) of 3.08 Å{sup 3} Da{sup −1} and a solvent content of 60.1%.« less
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.
2017-05-01
We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.
Klink, Björn U.; Goody, Roger S.; Scheidig, Axel J.
2006-01-01
We present a new design for a fluorescence microspectrophotometer for use in kinetic crystallography in combination with x-ray diffraction experiments. The FLUMIX device (Fluorescence spectroscopy to monitor intermediates in x-ray crystallography) is built for 0° fluorescence detection, which has several advantages in comparison to a conventional fluorometer with 90° design. Due to the reduced spatial requirements and the need for only one objective, the system is highly versatile, easy to handle, and can be used for many different applications. In combination with a conventional stereomicroscope, fluorescence measurements or reaction initiation can be performed directly in a hanging drop crystallization setup. The FLUMIX device can be combined with most x-ray sources, normally without the need of a specialized mechanical support. As a biological model system, we have used H-Ras p21 with an artificially introduced photo-labile GTP precursor (caged GTP) and a covalently attached fluorophore (IANBD amide). Using the FLUMIX system, detailed information about the state of photolyzed crystals of the modified H-Ras p21 (p21(mod)) could be obtained. Measurements in combination with a synchrotron beamline showed significant fluorescence changes in p21(mod) crystals even within a few seconds of x-ray exposure at 100 K. PMID:16698776
Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B
2015-03-21
How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique
NASA Astrophysics Data System (ADS)
Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.
2018-04-01
The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.
Maeda, Kazuhiko; Ishimaki, Koki; Okazaki, Megumi; Kanazawa, Tomoki; Lu, Daling; Nozawa, Shunsuke; Kato, Hideki; Kakihana, Masato
2017-02-22
The structure of cobalt oxide (CoO x ) nanoparticles dispersed on rutile TiO 2 (R-TiO 2 ) was characterized by X-ray diffraction, UV-vis-NIR diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray absorption fine-structure spectroscopy, and X-ray photoelectron spectroscopy. The CoO x nanoparticles were loaded onto R-TiO 2 by an impregnation method from an aqueous solution containing Co(NO 3 ) 2 ·6H 2 O followed by heating in air. Modification of the R-TiO 2 with 2.0 wt % Co followed by heating at 423 K for 1 h resulted in the highest photocatalytic activity with good reproducibility. Structural analyses revealed that the activity of this photocatalyst depended strongly on the generation of Co 3 O 4 nanoclusters with an optimal distribution. These nanoclusters are thought to interact with the R-TiO 2 surface, resulting in visible light absorption and active sites for water oxidation.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi
2014-05-01
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi
2014-01-01
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651
NASA Astrophysics Data System (ADS)
Adhikary, Jaydeep; Das, Balaram; Chatterjee, Sourav; Dash, Sandeep Kumar; Chattopadhyay, Sourav; Roy, Somenath; Chen, Jeng-Wei; Chattopadhyay, Tanmay
2016-06-01
One copper and two silver containing one hetero tri-nuclear precursor compound [Cu(Imdz)4(Ag(CN)2)2] (1) (Imdz = Imidazole) has been synthesized and characterized by single crystal X-ray diffraction. Simple pyrolysis of the complex at 550 °C for 4 h afforded Ag/CuO nanoparticles (NPs). The synthesized nanoparticles were characterized by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray powder diffraction (XRPD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photo electron spectroscopy (XPS). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been employed as model microbial species to study the anti-microbial activity of the synthesized NPs. The NPs showed potent anti-microbial activity evidenced from the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values. Very high level of cell uptake and then generation of reactive oxygen species (ROS) are the origin of such strong antimicrobial activity for the NPs. However, the cytotoxicity level of the NPs towards normal human cell is very low.
X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes
NASA Astrophysics Data System (ADS)
Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika
2015-06-01
Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.
Tilka, J. A.; Park, J.; Ahn, Y.; ...
2016-07-06
Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; Sangeetha, N. S.; Sapkota, A.; Kothapalli, K.; Anand, V. K.; Tian, W.; Vaknin, D.; Johnston, D. C.; McQueeney, R. J.; Goldman, A. I.; Ueland, B. G.
2017-02-01
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca (Co1-xFex) yAs2 , 0 ≤x ≤1 , 1.86 ≤y ≤2 , are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲0.12 (1 ) . The antiferromagnetic order is smoothly suppressed with increasing x , with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤0.25 , nor does ferromagnetic order for x up to at least x =0.104 , and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo1.86As2 to the tetragonal (T) phase of CaFe2As2 occurs. These results suggest that hole doping CaCo1.86As2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.
2017-06-01
Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.
Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...
2016-10-06
A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less
The ice VII-ice X phase transition with implications for planetary interiors
NASA Astrophysics Data System (ADS)
Aarestad, B.; Frank, M. R.; Scott, H.; Bricker, M.; Prakapenka, V.
2008-12-01
A significant amount of research on the high pressure polymorphs of H2O have detailed the lattice structure and density of these phases, namely ice VI, ice VII, and ice X. These high pressure ices are noteworthy as they may comprise a considerable part of the interior of large icy planets and satellites. However, there is a dearth of data on how the incorporation of an impurity, charged or non-charged, affects the ice VII-ice X transition. This study examined the ice VII-ice X transition that occurs at approximately 62 GPa with a pure system and two select impure systems. Solutions of pure H2O, 1.6 mole percent NaCl in H2O, and 1.60 mole percent CH3OH in H2O were compressed in a diamond anvil cell (DAC). The experiments were performed at the GSECARS 13-BM-D beam line at the Advanced Photon Source at Argonne National Laboratory. Powder diffraction data of the ice samples were collected using monochromatic X-ray radiation, 0.2755 Å, and a MAR 345 online imaging system at intervals of approximately 2 GPa up to ~71.5, ~74.5, and ~68 GPa, respectively. Analyses of the data provided volume-pressure relations (at 298 K) which were used to detail the ice VII-ice X phase transition. The pressure of the phase transition, based upon an interpretation of the X-ray diffraction data, was found to vary as a function of the impurity type. Thus, the depth of the ice VII-ice X phase transition within an ice-rich planetary body can be influenced by trace-level impurities.
NASA Astrophysics Data System (ADS)
Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.
2018-03-01
The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.H.; Hanson, J.; Szanyi, J.
2009-04-30
Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al{sub 2}O{sub 3} with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H{sub 2} temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H{sub 2}S desorbed during the desulfation in the H{sub 2} TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates weremore » transformed to a BaS phase and remained in the catalyst rather than being removed as H{sub 2}S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H{sub 2}S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H{sub 2}O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H{sub 2}S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al{sub 2}O{sub 3} lean NO{sub x} trap catalysts is markedly dependent on the sulfation levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarles, William G.
1970-05-01
The crystal structures of 5-methoxytryptamine, melatonin, and the p-bromobenzoate of 1,1'-bishomocubane have been solved by x-ray diffraction methods. A computer program for the trial and error solution of crystal structures is also described here.
Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction
NASA Astrophysics Data System (ADS)
Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.
2018-06-01
Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.
Speciation of platinum(IV) in nitric acid solutions.
Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Korenev, Sergey
2013-09-16
The speciation of platinum(IV) ions in nitric acid (6-15.8 M) solutions of H2[Pt(OH)6] has been studied by (195)Pt NMR and Raman spectroscopy. Series of aqua-hydroxo-nitrato complexes [Pt(L)(x)(NO3)(6-x)] (L = H2O or OH(-); x = 0, ..., 6) were found to exist in such solutions. The pair additivity model of chemical shifts and statistical theory were used to assign signals in NMR spectra to particular [Pt(L)(x)(NO3)(6-x)] species. Mononuclear hexanitratoplatinates(IV) have been isolated in solid state in substantial yield as pyridinium salt (PyH)2[Pt(NO3)6] and characterized by single-crystal X-ray diffraction. Aging of the platinum nitric acid solutions for more than 5-6 h results in oligomerization of [Pt(L)(x)(NO3)(6-x)] species and the formation of oligonuclear aqua-hydroxo-nitrato complexes with OH(-) and NO3(-) bridging ligands. Oligomeric platinum(IV) complexes with two and four nuclei were unambiguously detected by NMR on (195)Pt -enriched samples. Oligomers with even higher nuclearity were also detected. Dimeric anions [Pt2(μ-OH)2(NO3)8](2-) have been isolated as single crystals of tetramethylammonium salt and characterized by X-ray diffraction.
Tomography with energy dispersive diffraction
NASA Astrophysics Data System (ADS)
Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.
2017-09-01
X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.
Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J
2013-06-14
Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.
Coherent x-ray diffraction imaging with nanofocused illumination.
Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C
2008-08-29
Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.
Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed
2012-11-01
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.
2012-10-15
We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Sungchul; Meral, Cagla; Department of Civil Engineering, Middle East Technical University, 06800 Ankara
2014-05-01
The present study focuses on identification and micro-structural characterization of the hydration products formed in high-volume fly ash (HVFA)/portland cement (PC) systems using monochromatic scanning x-ray micro-diffraction (μ-SXRD) and SEM-EDS. Pastes with up to 80% fly ash replacement were studied. Phase maps for HVFA samples using μ-SXRD patterns prove that μ-SXRD is an effective method to identify and visualize the distribution of phases in the matrix. μ-SXRD and SEM-EDS analysis shows that the C-S-H formed in HVFA system containing 50% or more of fly ash has a similar structure as C-S-H(I) with comparatively lower Ca/Si ratio than the one producedmore » in PC system. Moreover, coexistence of C-S-H(I) and strätlingite is observed in the system containing 80% of fly ash, confirming that the amount of alumina and silicate phases provided by the fly ash is a major factor for the formation of C-S-H(I) and strätlingite in HVFA system. - Highlights: • High-volume fly ash (HVFA) paste was studied by scanning x-ray micro-diffraction. • Coexistence of C-S-H(I) and strätlingite in the HVFA system is clearly shown. • The distribution of minor phases in the HVFA system is shown. • Differences between inner and outer products of fly ash are observed by SEM-EDS.« less
Pentadienyl chemistry of the heavy alkaline-earth metals revisited.
Reiners, Matthias; Fecker, Ann Christin; Freytag, Matthias; Jones, Peter G; Walter, Marc D
2014-05-14
Open-metallocenes of the heavy alkaline-earth metals [(η(5)-Pdl')2M(thf)n] (M = Ca (1), Sr (2), n = 1; M = Ba (3), n = 2; Pdl' = 2,4-tBu2C5H5) are readily prepared by salt-metathesis between MI2 and KPdl' and characterized by NMR spectroscopy and X-ray diffraction studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduk, James; Gindhart, Amy; Blanton, Thomas
The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.
NASA Astrophysics Data System (ADS)
Pei, Ru-Bo; Cao, Ming-Yang; Li, Lin-Ke; Dong, Xi-Yan; Zang, Shuang-Quan
2017-09-01
Based on a bipyridinium carboxylate ligand 1-(3,5-dicarboxy)-benzyl-1,2-di(pyridine-4-yl)ethylene chloride (H2L+Cl-), eight transition metal coordination polymers, namely, {[Zn(L)Cl]ṡ4H2O}n (1), {[Zn(L)H2O]ṡNO3ṡ2H2O}n (2), {[Zn(L) (H2O)]ṡ(NO3)0.5ṡ(Cl)0.5ṡ2H2O}n (3), {[Cd(L)(H2O)(NO3)]ṡ2H2O}n (4), {[Cd1.5(L) (Cl)2]ṡ2H2O}n (5), {[Cu(L)(H2O)]ṡNO3ṡH2O}n (6), {[Cu(HL)2(H2O)2]·Cl2·6H2O}n (7) and {[Ni(L)(H2O)Cl]ṡ4H2O}n (8) have been synthesized and characterized by single-crystal X-ray diffraction analyses. Complexes 1 and 8 display 2D wave-like layer structures with a 3-connected 63 topology. Complexes 2 and 6 demonstrate 3D 2-fold interpenetrating frameworks with uninodal, 3-connected (10,3)-d utp-topology. Another pair of 3D 2-fold interpenetrating frameworks 3 and 4 possess 3-connected, uninodal 103ThSi2 (ths)-topology. Complex 5 shows a 2D layer structure based on the extending of trinuclear Cd(II) subunits. Complex 7 presents 1D double-chain structure, in which the central Cu(II) ions are connected by the partially deprotonated ligand HL. Additionally, powder X-ray diffractions (PXRD) and thermogravimetric analyses of complexes 1-8, as well as the solid-state luminescent properties of d10 metal complexes 1-4 at room temperature have also been discussed.
Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.
Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young
2014-11-17
We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.
Mine, Shouhei; Nakamura, Tsutomu; Hirata, Kunio; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Uegaki, Koichi
2006-01-01
The crystallization and preliminary X-ray diffraction analysis of a catalytic domain of chitinase (PF1233 gene) from the hyperthermophilic archaeon Pyrococcus furiosus is reported. The recombinant protein, prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at the undulator beamline BL44XU at SPring-8 to a resolution of 1.50 Å. The crystals belong to space group P212121, with unit-cell parameters a = 90.0, b = 92.8, c = 107.2 Å. PMID:16880559
Harding, G; Fleckenstein, H; Kosciesza, D; Olesinski, S; Strecker, H; Theedt, T; Zienert, G
2012-07-01
The steadily increasing number of explosive threat classes, including home-made explosives (HMEs), liquids, amorphous and gels (LAGs), is forcing up the false-alarm rates of security screening equipment. This development can best be countered by increasing the number of features available for classification. X-ray diffraction intrinsically offers multiple features for both solid and LAGs explosive detection, and is thus becoming increasingly important for false-alarm and cost reduction in both carry-on and checked baggage security screening. Following a brief introduction to X-ray diffraction imaging (XDI), which synthesizes in a single modality the image-forming and material-analysis capabilities of X-rays, the Multiple Inverse Fan Beam (MIFB) XDI topology is described. Physical relationships obtaining in such MIFB XDI components as the radiation source, collimators and room-temperature detectors are presented with experimental performances that have been achieved. Representative X-ray diffraction profiles of threat substances measured with a laboratory MIFB XDI system are displayed. The performance of Next-Generation (MIFB) XDI relative to that of the 2nd Generation XRD 3500TM screener (Morpho Detection Germany GmbH) is assessed. The potential of MIFB XDI, both for reducing the exorbitant cost of false alarms in hold baggage screening (HBS), as well as for combining "in situ" liquid and solid explosive detection in carry-on luggage screening is outlined. Copyright © 2011 Elsevier Ltd. All rights reserved.
1945-11-01
appliod, and then hacked off "by 15 por.cent "before EJaking tho X—ray exposures. To find what tho stroös distribution... J5 2.868 H s 3 a) 8.860 • ••4 4» 3 S.8S8 87 1.23 1.84 1.86 1.88 Ratio D 1.30 1.38 1.34 1.36 VD’« fro« f11a Figur« 37a.- Ohart for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Zhou, Qian; Dong, Yuan
We investigated the critical thickness (h{sub c}) for plastic relaxation of Ge{sub 1−x}Sn{sub x} grown by molecular beam epitaxy. Ge{sub 1−x}Sn{sub x} films with various Sn mole fraction x (x ≤ 0.17) and different thicknesses were grown on Ge(001). The strain relaxation of Ge{sub 1−x}Sn{sub x} films and the h{sub c} were investigated by high-resolution x-ray diffraction and reciprocal space mapping. It demonstrates that the measured h{sub c} values of Ge{sub 1−x}Sn{sub x} layers are as much as an order of magnitude larger than that predicted by the Matthews and Blakeslee (M-B) model. The People and Bean (P-B) model was also usedmore » to predict the h{sub c} values in Ge{sub 1−x}Sn{sub x}/Ge system. The measured h{sub c} values for various Sn content follow the trend, but slightly larger than that predicted by the P-B model.« less
NASA Astrophysics Data System (ADS)
Zhang, Hong-Song; Zhang, Kong-Yan; Chen, Li-Chuan; Li, Yao-Xin; Chai, Lan-Qin
2017-10-01
N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea was synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR, UV-Vis and emission spectroscopy, as well as by single-crystal X-ray diffraction. X-ray crystallographic analyses have indicated that the crystal structure consists of two dimethyl sulfoxide (DMSO) solvent molecules and the structural geometry of DMSO is a trigonal pyramid in shape. In the crystal structure, a self-assembling two-dimensional (2-D) layer supramolecular architecture is formed through intermolecular hydrogen bonds, Cdbnd O···π (thiadiazole ring) and π···π stacking interactions. The geometry of the compound has been optimized by the DFT method and the results are compared with the X-ray diffraction data. The electronic transitions and spectral features of the compound were carried out by using DFT/B3LYP method. In addition, the antimicrobial activity was also studied, and the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and HOMO-LUMO gap were also calculated.
Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian
2018-03-15
The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan-Ying; Zhao, Jun-Wei, E-mail: zhaojunwei@henu.edu.cn; Wei, Qi
A novel Cu–azido complex modified hexa-Cu{sup II} substituted sandwich-type phosphotungstate [Cu(en){sub 2}]([Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}])·6H{sub 2}O (1) (en=ethylene-diamine) has been prepared under hydrothermal conditions and structurally characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. 1 displays a beautiful 1-D chain architecture constructed from sandwich-type [Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}]{sup 2−} units and [Cu(en){sub 2}]{sup 2+} linkers. To our knowledge, 1 represents the first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes. - Graphical abstract: Themore » first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes has been prepared and characterized. Display Omitted - Highlights: • Hexa-copper-substituted phosphotungstate. • Cu–azido complexes modified hexa-Cu{sup II} substituted sandwich-type polyoxometalate. • 1-D chain architecture built by hexa-copper-substituted polyoxotungstate units.« less
Raman and and x-ray diffraction study of iron and iron-nickel alloys at varying P-T conditions
NASA Astrophysics Data System (ADS)
Goncharov, A.; Struzhkin, V.; Gregoryanz, E.; Maddury, S.; Huang, E.; Hemley, R. J.; Mao, H.
2002-05-01
High-pressure properties of iron and iron-rich alloys are crucial for understanding of the Earth interior, because iron is the major constitute element of the Earth core. Using recently developed [1,2] Raman spectroscopy technique for shear elastic modulus determination, we studied iron-rich alloys of Ni (0 to 20 % Ni) up to 150 GPa, and also at varying temperatures (78-400 K). We find substantial decrease of the Raman hcp-phonon frequency compared to the pure iron, and also considerable anharmonic temperature effects. In contrast, low-temperature x-ray diffraction measurements indicate a usual temperature variation of the lattice constants. Possible implications to the Earth core composition and properties are discussed. [1] A. P. Jephcoat, H. Olijnyk, K. Refson, Eos 80, F929 (1999). [2] S. Merkel et al., Science 288, 1626 (2000).
Vargas-Díaz, M Elena; Joseph-Nathan, Pedro; Tamariz, Joaquín; Zepeda, L Gerardo
2007-01-04
[reaction: see text] The new macrocycle 9 (>70% yield from hydroxythiol 10) was treated with several nucleophilic reagents (RMgX, RLi, and LiAlH4) affording carbinols 12a-j (80-96% yield, >99:1 dr). Oxidative hydrolysis of 12a,c,e, followed by LiAlH4 reduction of the resulting mixture, gave 16a,c,e in >95% ee,16c being a key precursor for the preparation of fungicide 17. The absolute configuration of 9 and 12j (Nu = H) was established by single-crystal X-ray diffraction analyses and chemical correlation.
Gil, Diego M; Carbonio, Raúl E; Gómez, María Inés
2015-04-15
The metallo-organic complex Pb[Mn(C3H2O4)2(H2O)2] was synthesized and characterized by IR and Raman spectroscopy and powder X-ray diffraction methods. The cell parameters for the complex were determined from powder X-ray diffraction using the autoindexing program TREOR, and refined by the Le Bail method with the Fullprof program. A hexagonal unit cell was determined with a=b=13.8366(7)Å, c=9.1454(1)Å, γ=120°. The DFT calculated geometry of the complex anion [Mn(C3H2O4)2(H2O)2](2-) is very close to the experimental data reported for similar systems. The IR and Raman spectra and the thermal analysis of the complex indicate that only one type of water molecules is present in the structure. The thermal decomposition of Pb[Mn(C3H2O4)2(H2O)2] at 700 °C in air produces PbO and Pb2MnO4 as final products. The crystal structure of the mixed oxide is very similar to that reported for Pb3O4. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Chen; Ma, Kui-Rong; Zhang, Yu; Kan, Yu-He; Li, Rong-Qing; Hu, Hua-You
2016-01-01
Two examples of Co(II)-N-heterocyclic coordination polymers based on 1-hydroxyethylidenediphosphonic acid (H5L = CH3C(OH)(PO3H2)2), namely 0.5(H3NCH2CH2NH3)·[Co6(Cl2)(H3L)2(H2L)(HL)(2,2‧-bipy)6] 1 and 2(NH4)·[Co3(HL)2(H2O)2(phen)2]·2(H2O) 2, have been solvothermally obtained by introducing the second ligands 2,2‧-bipyridine/1,10-phenanthroline (2,2‧-bipy/phen) and characterized by powder X-ray diffraction (PXRD), elemental analysis, IR, TG-DSC. The single-crystal X-ray diffractions show that compound 1 possesses a 0-D structure with hexa-nuclear cluster [Co6(O-P-O)8] built through single/double O-P-O bridges and compound 2 displays a 1-D ladder-like chain structure with magnetic topology building blocks [Co4(O-P-O)4]n. Then H-bonding and π-π stacking interactions further expand the two low-dimensional structures into three-dimensional supramolecular frameworks. Fluorescent measurements reveal that both the maximum emission peaks of 1-2 are centered at 423 nm, mainly deriving from intraligand π*-π transition state of N-heterocyclic ligand 2,2‧-bipy/phen, respectively. Magnetism data indicate that 1 exhibits antiferromagnetic behavior within hexa-nuclear Co(II) clusters, while 2 shows weak ferromagnetic interactions in 1-D topology Co(II)-chain, showing promising potential as magnetic materials.
NASA Astrophysics Data System (ADS)
Li, Yanzhou; Luo, Jie; Zhang, Yanting; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang
2013-09-01
An inorganic-organic hybrid hexa-copper-substituted germanotungstate Na2[Cu(dap)2]2[Cu(dap)2] {[Cu6(H2O)2(dap)2][B-α-GeW9O34]2}·4H2O (1) (dap=1,2-diaminopropane) has been hydrothermally prepared and characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. 1 displays the six-connected 3D network with the long topological (O'Keefe) vertex symbol is 4·4·64·4·4·4·4·64·4·4·4·64·4·4·4 and the short vertex (Schläfli) symbol of 41263. Magnetic measurements indicate that there are the overall ferromagnetic exchange interactions in the belt-like hexa-CuII cluster in 1. Furthermore, the electrochemical behavior and electrocatalysis of 1 modified carbon paste electrode (1-CPE) have been studied. The reductions of nitrite, bromate and hydrogen peroxide are principally mediated by the WVI-based wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, S.-W., E-mail: sunsw0819@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Wang, G.-F.
A series of 2-arylidenebenzocycloalkanones containing heterocyclic rings 1–8 were prepared and characterized by IR, {sup 1}H NMR and elemental analyses. X-ray diffraction study of 6 reveals that the cyclohexyl ring of the 3,4-dihydronaphthalen-1(2H)-one adopts a chair conformation with a maximum deviation of 0.547(3) Å and makes dihedral angles of 52.24(17)° and 11.23(16)°, respectively, with the benzene plane and the mean plane of the benzimidazole ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit
2016-10-06
A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less
Preparation of Al-Ti Master Alloys by Aluminothermic Reduction of TiO2 in Cryolite Melts at 960°C
NASA Astrophysics Data System (ADS)
Liu, Aimin; Xie, Kaiyu; Li, Liangxing; Shi, Zhongning; Hu, Xianwei; Xu, Junli; Gao, Bingliang; Wang, Zhaowen
Al-Ti master alloys were prepared by aluminothermic reduction between the dissolved titanium dioxide and aluminum in cryolite melts at 960°C. The kinetic analysis by differential scanning calorimetry indicated that the apparent activation energy of the reaction of reducing titanium dioxide by aluminium is 22.3 kJ/mol, and the reaction order is 0.5. The products were analyzed by means of X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectrometer. Results from X-ray diffraction showed that the phase compositions of produced alloys are Al and Al3Ti. In addition, Al-Ti master alloys containing 2-6 mass% Ti were formed at different reduction time of 2-5h in aluminothermic reduction experiment.
Local terahertz field enhancement for time-resolved x-ray diffraction
Kozina, M.; Pancaldi, M.; Bernhard, C.; ...
2017-02-20
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
Local terahertz field enhancement for time-resolved x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; Pancaldi, M.; Bernhard, C.
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
NASA Astrophysics Data System (ADS)
Liu, Kang; Sun, Yayong; Deng, Liming; Cao, Fan; Han, Jishu; Wang, Lei
2018-02-01
Six new copper(II) coordination polymers combining 2,3,5,6-tetrafluoroterephthalatic acid (H2tfBDC) and diverse imidazole-containing ligands, {[Cu(tfBDC)(1,2-bix)2]·2(H2O)}n (1), {Cu(tfBDC)(Im)2}n (2), {[Cu(1,4-bmimb)2(H2O)]·(tfBDC)·2(H2O)}n (3), {Cu(1,4-bimb)2(H2O)2·(tfBDC)}n (4), {[Cu(1,3-bix)2(H2O)2]·(tfBDC)·6(H2O)}n (5) and {[Cu(1,4-bix)2(H2O)2]·(tfBDC)·(1,4-bix)·4(H2O)}n (6) (1,2-bix = 1,2-bis(imidazole-1-ylmethyl)-benzene, Im = imidazole, 1,4-bmimb = 1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,4-bimb = 1,4-bis(imidazol-1-yl)-butane, 1,3-bix = 1,3-bis(imidazole-1-ylmethyl)-benzene, 1,4-bix = 1,4-bis(imidazole-1-ylmethyl)-benzene), have been obtained and structurally verified by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD), elemental analyses and infrared spectroscopy (IR). Single crystal X-ray diffraction analysis revealed that 1 is 2D 4-connected sql topology (point symbol: {44·62}) based on a single metal ion node. Compound 2 is characterized as an infinite 1D chain structure, which is further extended into a 2D layer through N-H···O hydrogen bonds and then a 3D supramolecular architecture via π···π stacking interactions. Note that 2 was prepared through an in situ ligand reaction in which N,N'-carbonyldiimidazole (cdi) broke up into imidazole ligand. Compound 3 possesses a 3D 4-fold interpenetrated architecture with 4-connected dia topology (Schläfli symbol: {66}) in which tfBDC2- is stabilized in the channel by hydrogen bonds. Compounds 4-6 are all linear 1D coordination polymers. In 4, the free tfBDC2- ligand acts as a μ4-bridge to link four coordinated water molecules from the chain to construct a 2D structure via hydrogen bonds. While in 5 and 6, the uncoordinated tfBDC2- ligands and multimeric water clusters is responsible for the conversion of these 1D coordination polymers into 3D supramolecular assemblies through O-H⋯O hydrogen bonding interactions. Moreover, the UV-vis spectra and thermal stability of 1-6 are discussed in detail.
Crystal growth of magnetic dihydride GdxY1-xH2 for generation of spin current
NASA Astrophysics Data System (ADS)
Sakuraba, T.; Hirama, H.; Sakai, M.; Honda, Z.; Hayakawa, M.; Okoshi, T.; Kitajima, A.; Oshima, A.; Higuchi, K.; Hasegawa, S.
2013-09-01
Crystal growth of pure phases of GdxY1-xH2 (0≤x≤1) was successfully carried out by depositing GdxY1-x films and their hydrogenation, the growth results of which were investigated by X-ray diffraction measurements as well as temperature (T) dependence of magnetic susceptibility (χ). The fcc lattice constant in GdxY1-xH2 is found to be linearly increased with increasing x. Behavior characteristic to the para-to-antiferromagnetic transition are clearly observed in the χ-T curve for x=0.39, 0.47, 0.76, and 1.0 cases. The Néel temperature (TN) is found to be linearly decreased with decreasing x from x=1.0 (GdH2), and is predicted to show TN=0 K at x˜0.1 by extrapolating TN from large x region, implying the antiferromagnetic order disappears at x˜0.1. The quasi-zero Hall effect was observed for x=0, 0.19, 0.37, 0.39, and 0.47 cases, whereas a moderate Hall effect is observed for x=0.76 and 1.0 cases. The type of Hall effect is also discussed.
Mössbauer study of Cu1-xZnxFe2O4 catalytic materials
NASA Astrophysics Data System (ADS)
Koleva, K.; Velinov, N.; Tsoncheva, T.; Mitov, I.
2014-04-01
Copper zinc ferrites (Cu1-xZnxFe2O4) with different composition (x = 1; 0.2; 0.5; 0.8) were prepared by conventional thermal method. Formation of well crystallized ferrite phase with cubic structure and crystallites size of about 19.08-24.39 nm was observed by Powder X-ray diffraction and Mössbauer spectroscopy. The ferrite materials were tested as catalysts in methanol decomposition to CO and H2. A strong dependence of the catalytic behaviour of Cu1-xZnxFe2O4 ferrites of their composition and the phase transformations which occurred under the reaction medium was established.
Publications - GMC 40 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 40 Publication Details Title: X-ray diffraction analysis of the Pan Am Hoodoo Lake #2; Pan Am , X-ray diffraction analysis of the Pan Am Hoodoo Lake #2; Pan Am David River #1-A; and the AMOCO
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; ...
2017-02-23
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1–xFe x) yAs 2, 0 ≤ x ≤ 1, 1.86 ≤ y ≤ 2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1–xFe x) yAs 2, 0 ≤ x ≤ 1, 1.86 ≤ y ≤ 2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less
NASA Astrophysics Data System (ADS)
Xia, Zhiguo; Li, Qiang
2007-05-01
Piezoelectric ceramics with compositions of (0.90- x)Pb(Mg 1/3Nb 2/3)O 3- xPbTiO 3-0.10PbZrO 3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO 3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO 3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO 1) mode and rhombohedral phase R h mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.
Thermal x-ray diffraction and near-field phase contrast imaging
NASA Astrophysics Data System (ADS)
Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua
2017-10-01
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
Thermal x-ray diffraction and near-field phase contrast imaging
Li, Zheng; Classen, Anton; Peng, Tao; ...
2017-12-27
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
Reactivity of clay minerals with acids and alkalies
Carroll, Dorothy; Starkey, Harry C.
1971-01-01
One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6⋅45 N, 1:1), acetic acid (4⋅5 N, 1:3), sodium hydroxide (2⋅8 N), sodium chloride solution (pH 6⋅10; Na = 35‰; Cl = 21⋅5‰), and natural sea water (pH 7⋅85; Na = 35⋅5‰; Cl = 21⋅ 5‰) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective.
NASA Astrophysics Data System (ADS)
Yamaji, T.; Yamazaki, T.; Tamasaku, K.; Namba, T.
2017-12-01
Single crystals have high atomic electric fields as much as 1 011 V /m , which correspond to magnetic fields of ˜103 T . These fields can be utilized to convert x-rays into axionlike particles (ALPs) coherently similar to x-ray diffraction. In this paper, we perform the first theoretical calculation of the Laue-case conversion in crystals based on the Darwin dynamical theory of x-ray diffraction. The calculation shows that the Laue-case conversion has longer interaction length than the Bragg case, and that ALPs in the keV range can be resonantly converted by tuning an incident angle of x-rays. ALPs with mass up to O (10 keV ) can be searched by light-shining-through-a-wall (LSW) experiments at synchrotron x-ray facilities.
Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F
2003-05-01
In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.
An image focusing means by using an opaque object to diffract x-rays
Sommargren, Gary E.; Weaver, H. Joseph
1991-01-01
The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggert, J H; Wark, J
2012-02-15
The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics andmore » techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.
2013-12-01
The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.
Syntheses, crystal structures and photoluminescence properties of five Cd/Zn-organic frameworks
NASA Astrophysics Data System (ADS)
Li, Qing; Xue, Dong-Xu; Zhang, Yu-Feng; Zhang, Zong-Hui; Gao, Ziwei
2018-07-01
Luminescent metal-organic frameworks (MOFs) have displayed extensively potential applications for photocatalysis, photoluminescence, electroluminescence, chemical sensors et al. Herein, five new Cd/Zn-organic frameworks of [Cd(HL)C2H5OH] (1), [Cd(HL)(2,2‧-Bpy)H2O] (2), [Cd2(HL)2(Phen)2] (3), [Zn(HL)BIMB] (4), [Cd3(HL)3(4,4‧-Bpy)DMF]·(H2O) (5) have been deliberately constructed via solvothermal reactions of d10 transition metal salts, i.e. Cd(NO3)2•4H2O or Zn(NO3)2·6H2O, and a V-shaped semi-rigid organic linker of 4,4'-(hydroxymethanediyl) dibenzoic acid (H3L) along with the auxiliary poly-nitrogen ligands of 2,2‧-Bpy(2,2‧-bipyridine), Phen(phenanthroline), BIMB(1,1‧-benzene-1,4-diyldimethanediyl-bis-1H-imidazole) and 4,4‧-Bpy(4,4‧-bipyridine). The crystal structures of compounds 1-5 were precisely determined by single-crystal X-ray diffraction (SC-XRD), Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetic analysis (TGA). As revealed by SC-XRD, the isolated 1 presents a 2-periodic framework encompassing side-by-side channel-typed helical tubes. Compounds 2-4 display Z-shaped 1-periodic single chains, concomitant with twin chains and tubular structure, respectively. Interestingly, compound 5 demonstrates a two-fold interpenetrated 3-periodic skeleton in the presence of a rigid pillar of 4,4‧-Bpy. Additionally, photoluminescence properties of 1-5 were lastly investigated.
Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell
Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...
2009-11-01
We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.
Nanofiber-Based Bulk-Heterojunction Organic Solar Cells Using Coaxial Electrospinning
2012-01-01
chains are likely oriented with the [010] direction, perpendicular to the substrate, in the fi lm device. Glancing incidence X - ray diffraction (GIXD...Electron and X - ray diffraction measurements were per- formed in order to study the structural order in annealed fi bers and devices. For reference... angle X - ray scattering (SAXS/WAXS) beamline 7.3.3 of the Advanced Light Source at Lawrence Berkeley National Laboratory at 10 keV (1.24 Å) from a bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, B., E-mail: blu@ipp.ac.cn; Hefei Science Center, Chinese Academy of Sciences, Hefei 230031; Chen, J.
2016-11-15
A two-crystal assembly was deployed on the tangential X-ray crystal spectrometer to measure both helium-like and hydrogen-like spectra on EAST. High-quality helium-like and hydrogen-like spectra were observed simultaneously for the first time on one detector for a wide range of plasma parameters. Profiles of line-integrated core ion temperatures inferred from two spectra were consistent. Since tungsten was adopted as the upper divertor material, one tungsten line (W XLIV at 4.017 Å) on the short-wavelength side of the Lyman-α line (Lα1) was identified for typical USN discharges, which was diffracted by a He-like crystal (2d = 4.913 Å). Another possible Femore » XXV line (1.85 Å) was observed to be located on the long-wavelength side of resonance line (w), which was diffracted from a H-like crystal (2d = 4.5622 Å) on the second order. Be-like argon lines were also observable that fill the detector space between the He-like and H-like spectra.« less
Lyu, B; Chen, J; Hu, R J; Wang, F D; Li, Y Y; Fu, J; Shen, Y C; Bitter, M; Hill, K W; Delgado-Aparicio, L F; Pablant, N; Lee, S G; Ye, M Y; Shi, Y J; Wan, B N
2016-11-01
A two-crystal assembly was deployed on the tangential X-ray crystal spectrometer to measure both helium-like and hydrogen-like spectra on EAST. High-quality helium-like and hydrogen-like spectra were observed simultaneously for the first time on one detector for a wide range of plasma parameters. Profiles of line-integrated core ion temperatures inferred from two spectra were consistent. Since tungsten was adopted as the upper divertor material, one tungsten line (W XLIV at 4.017 Å) on the short-wavelength side of the Lyman-α line (Lα1) was identified for typical USN discharges, which was diffracted by a He-like crystal (2d = 4.913 Å). Another possible Fe XXV line (1.85 Å) was observed to be located on the long-wavelength side of resonance line (w), which was diffracted from a H-like crystal (2d = 4.5622 Å) on the second order. Be-like argon lines were also observable that fill the detector space between the He-like and H-like spectra.
Yoshida, Yusuke; Inoue, Katsuya; Kurmoo, Mohamedally
2009-01-05
We report the synthesis, crystal structure, and thermal and magnetic properties of the two-dimensional achiral soft ferrimagnet [Mn(II)(enH)(H(2)O)][Cr(III)(CN)(6)].H(2)O (1), en = 1,2-diaminoethane, as well as the recyclability of the dehydration and rehydration and their influence on the crystal structure and its magnetic properties. Unlike [Mn(S-pnH)(H(2)O)][Cr(CN)(6)].H(2)O (2S, pn = 1,2-diaminopropane), which is a chiral (P2(1)2(1)2(1)) enantiopure ferrimagnet (T(C) = 38 K), 1 crystallizes in the achiral orthorhombic Pcmn space group, having a similar two-dimensional square network of Mn-Cr with bridging cyanide, and 1 behaves also as a soft ferrimagnet (T(C) = 42 K). X-ray diffraction experiments on a single crystal of 1 indicate a transformation from a single crystal to an amorphous phase upon dehydrataion and partial recovery of its crystallinity upon rehydration. The dehydrated phase 1-DP exhibits long-range ordering at 75 K to a ferrimagnetic state and coercive field at 2 K of 100 Oe, which are a higher critical temperature and coercive field than for the virgin sample (H(C) = 60 Oe). Thermogravimetric analyses indicate that the crystallinity deteriorates upon hydration-dehydration cycling, with persistence toward the amorphous phase, as also seen by magnetization measurements. This effect is associated with an increase of statistical disorder inherent in the dehydration-rehydration process. X-ray powder diffraction suggests that 1-DP may retain order within the layers but loses coherence in the stacking of the layers.
NASA Astrophysics Data System (ADS)
Blanchard, Peter E. R.; Grosvenor, Andrew P.
2018-05-01
The structural properties of (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x = 0.2 before impurity phases begin to form at x = 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4+. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4+ with Sc3+ results in an increase in the off-centre displacement of Ti4+ cations. Surprisingly, BiScO3 substitution has no effect on the displacement of the Ti4+ cation in the (1-x)PbTiO3-xBiScO3 solid solution.
Growth, morphological and optical characteristics of ZnSSe nanorods
NASA Astrophysics Data System (ADS)
Chen, Lin-Jer; Dai, Jia-Heng
2017-02-01
Zinc seledide sulfide (ZnSxSe1-x) nanorods with wurtzite structure were synthesized by a low temperature solvothermal pathway. In a typical condition of solvothermal at 180 °C for 8 h, the ZnSxSe1-x was composed of nanorods 10-15 nm in diameter and 50-75 nm length. These results indicate that the nanoscale of ZnSSe nanocrystals may contribute to the solvothermal process and exhibit a tunable photoluminescence (PL) and band gap that depends on the variation of reaction conditions. The work suggests a promising route to single-mode "mirror-less" amplified spontaneous emission (ASE) from inorganic nanomaterials with the Cholesteric liquid crystals (CLC) providing additional potential functionality. The obtained products are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). This approach for solvothermal growth can also be used with primary ZnSSe nanorods to achieve tunable optical properties and can likely be extended to nanomaterials of different shapes and other optical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroudi, Kristen; Gaulin, Bruce D.; Lapidus, Saul H.
2015-07-01
The Ho2Ti2O7, Er2Ti2O7 and Yb2Ti2O7 pyrochlores were studied by synchrotron X-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group Fd-3m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from Fd-3m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and non-stoichiometric powders and a crushed floating zone crystal of Ho2Ti2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30,000 of the strongest X-ray diffraction peak. This indicates to high sensitivity that the structural space group ofmore » these rare earth titanate pyrochlores is Fd-3m, and that thus the (002) peak observed in the neutron scattering experiments has a non-structural origin. The cell parameters and internal strain for lightly stuffed Ho2+xTi2-xO7 are also presented.« less
NASA Astrophysics Data System (ADS)
Doriguetto, A. C.; Boschi, T. M.; Pizani, P. S.; Mascarenhas, Y. P.; Ellena, J.
2004-08-01
Raman scattering and x-ray diffration were used to characterize the structural and vibrational properties of the Cs2NaGaxSc1-xF6 solid solutions, for x ranging from 0.0 to 1.0. The Raman spectra, taken at room and low temperature, allow us to follow the phase evolution in detail and indicate the breaking of the local symmetry since low Ga concentration levels. Five compositions were studied by x-ray diffraction: x=0.0, 0.2, 0.5, 0.8, and 1.0. A cubic space group, Fm3¯m, was found to x=0.0 and x=0.2 and a trigonal one was found to x=0.5, 0.8, and 1.0. Details of both phases are presented and the correlation between x-ray diffraction and Raman scattering is discussed.
2014-10-01
and d) Γb0. The scatter of the data points is due to the variation in the other parameters at 1 h. The line represents a best fit linear regression...parameters: a) Hseg, b) QL, c) γ0, and d) Γb0. The scatter of the data points is due to the variation in the other parameters at 1 h. The line represents...concentration x0 for the nanocrystalline Fe–Zr system. The white square data point shows the location of the experimental data used for fitting the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun
2009-04-03
Desulfation by hydrogen of pre-sulfated Pt(2wt%) BaO(20wt%)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31 and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), x-ray photoelectron spectroscopy (XPS), in-situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved x-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in-situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst, rathermore » than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Wanzhen; Xu Zhude; Liu Run
Hierarchical flower-like MoS{sub 2} spheres with high purity were synthesized by hydrothermal method using WO{sub 3} nanorods or H{sub 2}WO{sub 4} as an additive. The flower-like spheres were about 1 {mu}m in diameter and built up with MoS{sub 2} thin flakes with thickness of several nanometers. Energy disperse X-ray spectrum showed that the spheres were only composed of Mo and S with atomic ratio of 2:1. Powder X-ray diffraction result further indicated that the products were MoS{sub 2}. The reaction mechanism is discussed and suggested that tungstenic acid played an important role on the formation of flower-like MoS{sub 2} spheres.
NASA Astrophysics Data System (ADS)
Tanaka, M.; Katsuya, Y.; Matsushita, Y.
2013-03-01
The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.
Małuszyńska, Hanna; Czarnecki, Piotr; Czarnecka, Anna; Pająk, Zdzisław
2012-04-01
Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).
NASA Astrophysics Data System (ADS)
Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut
2018-04-01
A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.
Bartual-Murgui, Carlos; Codina, Carlota; Roubeau, Olivier; Aromí, Guillem
2016-08-26
Two polymorphs of the spin crossover (SCO) compound [Fe(1,3-bpp)2 ](ClO4 )2 (1 and 2; 1,3-bpp=2-(pyrazol-1-yl)-6-(pyrazol-3-yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid-state procedure, by sequentially removing lattice H2 O molecules from the solvatomorph [Fe(1,3-bpp)2 ](ClO4 )2 ⋅2 H2 O (2⋅2 H2 O), using single-crystal-to-single-crystal (SCSC) transformations. Hydrate 2⋅2 H2 O is obtained through the same reaction as 1, now with 2.5 % of water added. Compounds 2 and 2⋅2 H2 O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3-bpp)2 ](ClO4 )2 ⋅H2 O (2⋅H2 O), also following SCSC processes. The four derivatives have been characterised by single-crystal X-ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X-ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑ =279/316 K and T1/2↓ =276/314 K (near 40 K of shift) and different cooperativity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods
NASA Astrophysics Data System (ADS)
Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula
2014-07-01
The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.
Neutron Nucleic Acid Crystallography.
Chatake, Toshiyuki
2016-01-01
The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.
Development of variable-magnification X-ray Bragg optics.
Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi
2015-07-01
A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.
Dominique, Marie; Mitrofanov, A V; Hochedez, J-F; Apel, P Yu; Schühle, U; Pudonin, F A; Orelovich, O L; Zuev, S Yu; Bolsée, D; Hermans, C; BenMoussa, A
2009-02-10
We describe the fabrication and performance of diffractive filters designed for space-based x-ray and EUV solar observations. Unlike traditional thin film filters, diffractive filters can be made to have a high resistance against the destructive mechanical and acoustic loads of a satellite launch. The filters studied are made of plastic track-etched membranes that are metal-coated on one side only. They have all-through open cylindrical pores with diameters as small as 500 nm, limiting their transmittance to very short wavelengths. The spectral transmittance of various diffractive filters with different pore parameters was measured from the soft x-ray to the near IR range (namely, from 1-1100 nm).
Synthesis and structural study of Ti-rich Mg-Ti hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Kohta; Kim, Hyunjeong; Sakaki, Kouji
2014-02-26
Mg xTi 1-x (x = 0.15, 0.25, 0.35) alloys were synthesized by means of ball milling. Under a hydrogen pressure of 8 MPa at 423 K these Mg–Ti alloys formed a hydride phase with a face centered cubic (FCC) structure. The hydride for x = 0.25 consisted of single Mg 0.25Ti 0.75H 1.62 FCC phase but TiH 2 and MgH 2 phases were also formed in the hydrides for x = 0.15 and 0.35, respectively. X-ray diffraction patterns and the atomic pair distribution function indicated that numbers of stacking faults were introduced. There was no sign of segregation between Mgmore » and Ti in Mg 0.25Ti 0.75H 1.62. Electronic structure of Mg 0.25Ti 0.75H 1.62 was different from those of MgH 2 and TiH 2, which was demonstrated by 1H nuclear magnetic resonance. This strongly suggested that stable Mg–Ti hydride phase was formed in the metal composition of Mg 0.25Ti 0.75 without disproportion into MgH 2 and TiH 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassetta, Alberto, E-mail: alberto.cassetta@ic.cnr.it; Büdefeld, Tomaž; Lanišnik Rižner, Tea
2005-12-01
The expression, purification and crystallization of 17β-hydroxysteroid dehydrogenase from the filamentous fungus C. lunatus and its Y167F mutant, both in the apo form, are described. X-ray diffraction analysis and phasing by Patterson-search techniques are reported. 17β-Hydroxysteroid dehydrogenase from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is an NADP(H)-dependent enzyme that preferentially catalyses the oxidoreduction of oestrogens and androgens. The enzyme belongs to the short-chain dehydrogenase/reductase superfamily and is the only fungal hydroxysteroid dehydrogenase known to date. 17β-HSDcl has recently been characterized and cloned and has been the subject of several functional studies. Although several hypotheses on the physiological role of 17β-HSDclmore » in fungal metabolism have been formulated, its function is still unclear. An X-ray crystallographic study has been undertaken and the optimal conditions for crystallization of 17β-HSDcl (apo form) were established, resulting in well shaped crystals that diffracted to 1.7 Å resolution. The space group was identified as I4{sub 1}22, with unit-cell parameters a = b = 67.14, c = 266.77 Å. Phasing was successfully performed by Patterson search techniques. A catalytic inactive mutant Tyr167Phe was also engineered, expressed, purified and crystallized for functional and structural studies.« less
Stavou, Elissaios; Manaa, M. Riad; Zaug, Joseph M.; ...
2015-10-14
Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C 4H 4N 6O 5 Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication ofmore » a pressure induced phase transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. As a result, we find very good agreement between the experimental and theoretically derived EOS.« less
A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4
NASA Astrophysics Data System (ADS)
Zhu, Chunlan
2017-05-01
Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).
Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.
We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less
Millange, Franck; Serre, Christian; Férey, Gérard
2002-04-21
The first three-dimensional chromium(III) dicarboxylate compounds have been isolated and their structures solved from powder X-ray diffraction data; the flexible framework of these materials delimits large pores.
Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity
NASA Astrophysics Data System (ADS)
Sharma, Anamika; Ghabbour, Hazem; Khan, Shams Tabrez; de la Torre, Beatriz G.; Albericio, Fernando; El-Faham, Ayman
2017-10-01
A new series of pyrazole-containing s-triazine derivatives were synthesized by reaction of the corresponding s-triazinyl hydrazine derivatives with acetylacetone in the presence of HClO4 or DMF/TEA. The former method allowed the preparation of the target products with higher yields. All compounds were fully characterized. X-ray single crystal diffraction for two representative compounds (4-(4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)morpholine and N-benzyl-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)-1,3,5-triazin-2-amine) was studied and the molecular structures were optimized using the DFT/B3LYP method. The structures were found to be in agreement with X-ray structures. The antimicrobial and antifungal activity of the prepared compounds were tested against the growth of several microorganisms.
Crystallization and preliminary X-ray analysis of gene product 44 from bacteriophage Mu
Kondou, Youhei; Kitazawa, Daisuke; Takeda, Shigeki; Yamashita, Eiki; Mizuguchi, Mineyuki; Kawano, Keiichi; Tsukihara, Tomitake
2005-01-01
Bacteriophage Mu baseplate protein gene product 44 (gp44) is an essential protein required for the assembly of viable phages. To investigate the roles of gp44 in baseplate assembly and infection, gp44 was crystallized at pH 6.0 in the presence of 20% 2-methyl-2,4-pentanediol. The crystals belong to space group R3, with unit-cell parameters a = b = 127.47, c = 63.97 Å. The crystals diffract X-rays to at least 2.1 Å resolution and are stable in the X-ray beam and are therefore appropriate for structure determination. Native data have been collected to 2.1 Å resolution using a DIP6040 image-plate system at beamline BL44XU at the SPring-8 facility in Japan. PMID:16508104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Hui; Li, Yan; Lou, Xiao-hua
2007-02-01
A novel cardiotoxin-like basic protein from Naja naja atra was crystallized and diffraction data were collected to 2.35 Å resolution. A novel cardiotoxin-like basic protein was isolated from the venom of the Chinese cobra (Naja naja atra) from the south of Anhui in China. The protein inhibits the expression of vascular endothelial growth factor and basic fibroblast growth factor in human lung cancer cell line H1299 and induces the haemolysis of rabbit erythrocytes under low-lecithin conditions. After a two-step chromatographic purification, the resultant 7 kDa protein was crystallized by the hanging-drop vapour-diffusion method at room temperature. A complete data setmore » was collected to 2.35 Å resolution using an in-house X-ray diffraction system. The crystal belongs to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 43.2, c = 147.9 Å. There are two molecules in the crystallographic asymmetric unit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciezak-Jenkins, Jennifer A.; Jenkins, Timothy A.
5,5'-Hydrazinebistetrazole (HBTA) has been studied by in-situ x-ray diffraction and vibrational spectroscopy to pressures near 25 GPa at room temperature. Analysis of the x-ray diffraction pattern of HBTA collected at ambient pressure and temperature revealed a monoclinic structure consistent with that previously reported. Under compression, the x-ray diffraction reveals little evidence of a phase transition over the pressure range studied. Slight anisotropy in response to compression was noted and the β angle decreased moderately, suggesting geometry modifications occur in the hydrogen bonding lattice and between neighboring HBTA molecules as a result of compression along the c axis. Blue shifts inmore » the Infrared active N-H stretching modes were observed, implying a weakening of the hydrogen bond with compression. The weakening of the hydrogen bonding lattice with pressure may lead to an increase in the bending angle of the C-N=N-C bridge between the tetrazole rings and an increased overlap between the π-bonding orbitals. The Raman spectra showed a number of modes associated with H-N=N-H motions of the bridge become more prominent in the spectra under compression. Additionally, the possibility that the increased bend in the angle of the C-N=N-C bridge results from a shearing deformation is discussed.« less
NASA Astrophysics Data System (ADS)
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.
Calta, Nicholas P; Wang, Jenny; Kiss, Andrew M; Martin, Aiden A; Depond, Philip J; Guss, Gabriel M; Thampy, Vivek; Fong, Anthony Y; Weker, Johanna Nelson; Stone, Kevin H; Tassone, Christopher J; Kramer, Matthew J; Toney, Michael F; Van Buuren, Anthony; Matthews, Manyalibo J
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less
Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; ...
2018-05-01
In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less
NASA Astrophysics Data System (ADS)
Ma, Chunlin; Sun, Junshan; Zhang, Rufen
2007-05-01
Two new trinuclear mono-organooxotin(IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and sodium perchlorate of the types: [(SnR) 3(OH)(2,3,4,5-F 4C 6HCO 2) 4 · ClO 4] · [O 2CC 6HF 4](R = PhCH 2, 1; o- F-PhCH 2 for 2), have been solvothermally synthesized and structurally characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. Complex 2 is also characterized by X-ray crystallography diffraction analyses. In complex 2, four carboxyl groups and a perchlorate bridged three tin atoms in a cyclohexane chair arrangement and form the basic framework. A hydroxyl group comprises the oxygen components of the stannoxane ring system. In these complexes, weak but significant intramolecular hydrogen bonding and π-π stacking interaction are also shown. These contacts lead to aggregation and supramolecular assembly of complexes 1 and 2 into 1D or 2D framework.
Orive, Joseba; Fernández de Luis, Roberto; Fernández, Jesús Rodríguez; Lezama, Luis; Arriortua, María I
2016-07-26
Ax(H3O)2-xMn5(HPO3)6 (A = Li, x = 0.55 (1-Li); A = Na, x = 0.72 (2-Na); A = K, x = 0.30 (3-K); A = NH4, x = 0.59 (4-NH4)) phases were synthesized by employing mild hydrothermal conditions. 1-Li was studied by single crystal X-ray diffraction, while sodium, potassium and ammonium containing analogues were obtained as polycrystalline samples and characterized by powder X-ray diffraction. The four compounds were characterized by ICP-Q-MS, thermal analysis and XPS, IR, UV/Vis and EPR spectroscopy. Single crystal data indicate that 1-Li crystallizes in the P3[combining macron]c1 space group with lattice parameters a = 10.3764(1) Å and c = 9.4017(1) Å with Z = 2. The crystal structure of these phases is constituted by a three-dimensional [Mn(ii)5(HPO3)6](2-) anionic skeleton templated by alkali metal and ammonium cations together with protonated water molecules. Such an inorganic framework is formed by layers of edge-sharing MnO6 octahedra placed in the ab plane and joined along the c direction through phosphite pseudotetrahedra. The sheets display 12-membered ring channels parallel to the c-axis, ca. 5 Å in diameter, where the extraframework species display a strong disorder. EPR measurements point to the existence of short range ferromagnetic interactions around 12 K. Magnetic susceptibility and heat capacity measurements show that all the compounds exhibit long range antiferromagnetic order below circa 4 K, with a significant magnetocaloric effect around the Neel temperature.
Atiş, Murat; Karipcin, Fatma; Sarıboğa, Bahtiyar; Taş, Murat; Çelik, Hasan
2012-12-01
A new thiourea derivative, 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea (bcht) has been synthesized from the reaction of 2-amino-4-chlorophenol with benzoyl isothiocyanate. The title compound has been characterized by elemental analyses, FT-IR, (13)C, (1)H NMR spectroscopy and the single crystal X-ray diffraction analysis. The structure of bcht derived from X-ray diffraction of a single crystal has been presented. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method using 6-311++G(d,p) basis set. The complete assignments of all vibrational modes were performed on the basis of the total energy distributions (TED). Isotropic chemical shifts ((13)C NMR and (1)H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. Theoretical calculations of bond parameters, harmonic vibration frequencies and nuclear magnetic resonance are in good agreement with experimental results. The UV absorption spectra of the compound that dissolved in ACN and MeOH were recorded. Bcht was also screened for antimicrobial activity against pathogenic bacteria and fungi. Copyright © 2012 Elsevier B.V. All rights reserved.
Hirshfeld atom refinement for modelling strong hydrogen bonds.
Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon
2014-09-01
High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.
NASA Technical Reports Server (NTRS)
Cantrell, J.; Bowman, R.
1999-01-01
X-ray diffraction (XRD) studies were performed on hydride phases formed by vanadium and its carbon substituted alloys. It was previously found that thermal cycling of VHx across the B-y mixed phase region changed the reversible hydrogen storage capacity and other properties.
High-pressure studies of cycloheptane up to 30 GPa
NASA Astrophysics Data System (ADS)
Ma, Chunli; Cui, Qiliang; Liu, Zhenxian
2013-06-01
High-pressure synchrotron angle dispersive x-ray diffraction, Raman scattering and infrared absorption studies have been performed on cycloheptane (C7H14) up to 30 GPa at room temperature by using diamond anvil cell techniques. The synchrotron x-ray diffraction results indicate that the liquid cyclopentane undergoes two phase transitions at around 0.5 and 1.0 GPa, respectively. Then, it gradually turns into glass state starting from 3.0 GPa. The features of the Raman scattering and infrared absorption show no significant changes with increasing pressure below 3 GPa. This implies that the two phases observed by the x-ray diffraction can be attributed to plastic phases in which the cycloheptane molecules are held in an ordered structure while the molecular orientation is disordered. Up on further compression, all Raman and infrared bands begin broadening around 3.0 GPa that provide further evidence on the transition to glass state. Our results also suggest different paths on phase transitions under isothermal compression at room temperature compare to that previously reported under isobaric cooling at ambient pressure. This work was supported by the NSF of China (91014004, 11004074,11074089), the specialized Research Fund for the Doctoral Program of Higher Education (20110061110011, 20100061120093), and the National Basic Research Program of China (2011CB808200).
Preparation and Structural Properties of InIII–H Complexes
Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.
2013-01-01
The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019
Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A
2016-03-01
Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.
Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
NASA Astrophysics Data System (ADS)
Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.
2017-08-01
We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
NASA Astrophysics Data System (ADS)
Usmani, B.; Vijay, V.; Chhibber, R.; Dixit, A.
2016-11-01
The thin-film structures of DC/FR magnetron-sputtered ZrO x /ZrC-ZrN/Zr tandem solar-selective coatings are investigated using X-ray diffraction and room-temperature Raman spectroscopic measurements. These studies suggest that the major contribution is coming from h-ZrN0.28, c-ZrC, h-Zr3C2 crystallographic phases in ZrN-ZrC absorber layer, in conjunction with mixed ZrO x crystallographic phases. The change in structure for thermally annealed samples has been examined and observed that cubic and hexagonal ZrO x phase converted partially into tetragonal and monoclinic ZrO x phases, whereas hexagonal and cubic ZrN phases, from absorber layer, have not been observed for these thermally treated samples in air. These studies suggest that thermal treatment may lead to the loss of ZrN phase in absorber, degrading the thermal response for the desired wavelength range in open ambient conditions in contrast to vacuum conditions.
Nano-Crystalline Thermally Evaporated Bi2Se3 Thin Films Synthesized from Mechanically Milled Powder
NASA Astrophysics Data System (ADS)
Amara, A.; Abdennouri, N.; Drici, A.; Abdelkader, D.; Bououdina, M.; Chaffar Akkari, F.; Khemiri, N.; Kanzari, M.; Bernède, J. C.
2017-08-01
Bi2Se3 powder has been successfully synthesized via mechanical ball milling of bismuth and selenium as starting materials. X-ray diffraction characterization revealed the formation of the rhombohedral and orthorhombic phases of Bi2Se3 material belonging to systems with space groups R\\bar{3}m and Pbnm, respectively. The advantageous last finding is confirmed by the Rietveld refinement of the x-ray diffraction data. Furthermore, the analysis of the x-ray data of thermally deposited thin films revealed that both orthorhombic and rhombohedral phases are coexisting in the layer. The morphology of the ball milled powder was studied by scanning electron microscopy. The phase formation of the material is confirmed by Raman spectroscopy. M-H (Magnetization versus Magnetic field) curve indicates that Bi2Se3 powder has a ferromagnetic behavior. Additionally, absorbance and transmittance measurements were carried out on the obtained thermally evaporated thin films and yielded a band gap of 1.33 eV supporting the potential application of the heterogeneous rhombohedral/orthorhombic Bi2Se3 material in photovoltaics.
Preparation and X-Ray diffraction studies of curium hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, J.K.; Maire, R.G.
Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a/sub 0/ = 0.3769(8) nm and c/sub 0/ = 0.6732(12) nm. These products are considere to be CmH/sub 3//sup -//sub 8/ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a/sub 0/ = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH /SUB 2-x/more » (B.M. Bansal and D. Damien. Inorg. Nucl. Chem. Lett. 6 603, 1970). The present results established a continuation of typical heavy trivalent lanthanidelike behavior of the transuranium actinide-hydrogen systems through curium.« less
Preparation and X-ray diffraction studies of curium hydrides
NASA Astrophysics Data System (ADS)
Gibson, J. K.; Haire, R. G.
1985-10-01
Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a0 = 0.3769(8) nm and c0 = 0.6732(12) nm. These products are considered to be CmH 3-δ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a0 = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH 2+ x (B. M. Bansal and D. Damien, Inorg. Nucl. Chem. Lett., 6, 603, 1970). The present results established a continuation of typical heavy trivalent lanthanide-like behavior of the transuranium actinide-hydrogen systems through curium.
Leaching of manganese from electrolytic manganese residue by electro-reduction.
Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan
2017-08-01
In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.
Yes, one can obtain better quality structures from routine X-ray data collection.
Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof
2016-01-01
Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation-libration-screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°.
NASA Astrophysics Data System (ADS)
Koca, İrfan; Sert, Yusuf; Gümüş, Mehmet; Kani, İbrahim; Çırak, Çağrı
2014-01-01
We have synthesized ethyl (2E)-3-amino-2-({[(4-benzoyl-1,5-diphenyl-1H-pyrazol-3-yl)carbonyl]amino}carbonothioyl)but-2-enoate (2) by the reaction of 4-benzoyl-1,5-diphenyl-1H-pyrazole-3-carbonyl chloride (1), ammonium thiocyanate and ethyl 3-aminobut-2-enoate and then characterized by elemental analyses, IR, Raman, 1H NMR, 13C NMR and X-ray diffraction methods. The experimental and theoretical vibrational spectra of 2 were investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths, bond angles) were calculated using Ab Initio Hartree Fock (HF), Density Functional Theory (B3LYP) methods with 6-311++G(d,p) basis set by Gaussian 09W program. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental X-ray diffraction data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies were calculated.
NASA Astrophysics Data System (ADS)
Marinova, Delyana; Wildner, Manfred; Bancheva, Tsvetelina; Stoyanova, Radostina; Georgiev, Mitko; Stoilova, Donka G.
2018-03-01
Based on different experimental methods—crystallization processes in aqueous solutions, infrared spectroscopy, single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) and TG-DTA-DSC measurements—it has been established that copper ions are included in sodium cobalt sulfate up to about 18 mol%, thus forming limited solid solutions Na2Co1-x Cu x (SO4)2·4H2O (0 < x ≤ 0.18) with a blödite-type structure. In contrast, cobalt ions are not able to accept the coordination environment of the copper ions in the strongly distorted Cu(H2O)2O4 octahedra, thus resulting in the crystallization of Co-free kröhnkite. The solid solutions were characterized by vibrational and EPR spectroscopy. DSC measurements reveal that the copper concentration increase leads to increasing values of the enthalpy of dehydration (ΔH deh) and decreasing values of the enthalpy of formation (ΔH f). The crystal structures of synthetic kröhnkite, Na2Cu(SO4)2·2H2O, as well as of three Cu2+-bearing mixed crystals of Co-blödite, Na2Co1-x Cu x (SO4)2·4H2O with x (Cu) ranging from 0.03 to 0.15, have been investigated from single-crystal X-ray diffraction data. The new data for the structure of synthetic kröhnkite facilitated to clarify structural discrepancies found in the literature for natural kröhnkite samples, traced back to a mix-up of lattice parameters. The crystal structures of Co-dominant Na2Co1-x Cu x (SO4)2·4H2O solid solutions reveal a comparatively weak influence of the Jahn-Teller-affected Cu2+ guest cations up to the maximum content of x (Cu) = 0.15. The response of the MO2(H2O)4 octahedral shape by increased bond-length distortion with Cu content is clear cut (but limited), mainly concerning the M-OH2 bond lengths, whereas other structural units are hardly affected. However, the specific type of imposed distortion seems to play an important role impeding higher Cu/Co replacement ratios.
Yamanaka; Ino
2000-05-08
In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.
NASA Technical Reports Server (NTRS)
Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)
2010-01-01
An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.
Han, Min-Le; Duan, Ya-Ping; Li, Dong-Sheng; Wang, Hai-Bin; Zhao, Jun; Wang, Yao-Yu
2014-11-07
Two new Co(II) based metal-organic frameworks, namely {[Co5(μ3-OH)2(m-pda)3(bix)4]·2ClO4}n (1) and {[Co2(p-pda)2(bix)2(H2O)]·H2O}n (2), were prepared by hydrothermal reactions of Co(II) salt with two isomeric dicarboxyl tectons 1,3-phenylenediacetic acid (m-pda) and 1,4-phenylenediacetic acid (p-pda), along with 1,3-bis(imidazol-L-ylmethyl)benzene (bix). Both complexes 1 and 2 have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). 1 shows a 6-connected 3-D pcu cationic framework with pentanuclear [Co5(μ3-OH)2(COO)6(bix)2](2+) units, while 2 exhibits a 6-connected 3-D msw net based on [Co2(μ2-H2O)(COO)2](2+) clusters. The results indicate that the different dispositions of the carboxylic groups of dicarboxylates have an important effect on the overall coordination frameworks. Perchlorate anions in 1 can be partly exchanged by thiocyanate and azide anions, however they are unavailable to nitrate anions. Magnetic susceptibility measurements indicate that both 1 and 2 show weak antiferromagnetic interactions between the adjacent Co(II) ions.
NASA Astrophysics Data System (ADS)
Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.
2018-04-01
Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bottomley, F.; Keizer, P.N.; White, P.S.
Hydrolysis of Cp{prime}NbCl{sub 4} (Cp{prime} = {eta}{sup 5}-C{sub 5}H{sub 5} (Cp), {eta}-C{sub 5}H{sub 4}Me (Cp{sup 1})) in tetrahydrofuran (THF) gave a mixture of products of general formula (Cp{prime}NbL{sub 4}){sub 2}({mu}-O), where L{sub 4} is a combination of H{sub 2}O and terminal or bridging Cl that gives eight-coordinate, pentavalent, niobium. For Cp{prime} = Cp, a major constituent of the mixture is (CpNb(H{sub 2}O)Cl{sub 3}){sub 2}({mu}-O) {times} 2THF {times} 0.05Et{sub 2}O (1), the structure of which was determined by X-ray diffraction. Reduction of (Cp{prime}NbL{sub 4}){sub 2}({mu}-O) with aluminum powder gave the cluster (Cp{prime}NbCl({mu}-Cl)){sub 3}({mu}{sub 3}-OH)({mu}{sub 3}-O) (2). The structure of 2 (Cp{prime}more » = Cp) as the THF adduct was determined by X-ray diffraction. Crystal data: monoclinic; P2{sub 1}/c; a = 9.966 (1) {angstrom}, b = 12.471 (2) {angstrom}, c = 20.321 (2) {angstrom}, {beta} = 93.86 (1){degree}.« less
Artyushin, Oleg I; Matveeva, Ekaterina V; Vologzhanina, Anna V; Voloshin, Yan Z
2016-03-28
Phosphorylation reactions of an iron(II) dichloroclathrochelate FeBd2(Cl2Gm)(BF)2 (where Bd(2-) and Cl2Gm(2-) are α-benzildioxime and dichloroglyoxime dianions, respectively) with diphenylphosphine oxide and diethyl thiophosphite were performed under phase-transfer conditions. In the case of diethyl thiophosphite as a P-nucleophile, the best yields were obtained in the dichloromethane-50% NaOH aqueous solution-5 mol% triethylbenzylammonium chloride (TEBAC) system. The use of different molar ratios of a macrobicycle precursor and this thiophosphorylating agent allowed us to obtain both the mono- and the diphosphorylated cage complexes. Nucleophilic substitution with diphenylphosphine oxide was performed in the K2CO3-acetonitrile-5 mol% TEBAC system, giving only the corresponding monophosphorylated iron(II) complex in high yield even in the presence of an excess of this P-nucleophile. The phosphorus(v)-containing clathrochelate product was reduced with an excess of silicoform to give an iron(II) macrobicycle with an inherent diphenylphosphine group in an almost quantitative yield, which was then characterized by (31)P{(1)H} NMR and single-crystal X-ray diffraction; it easily undergoes re-oxidation to the initial clathrochelate. The synthesized phosphorus(v)-containing cage complexes were characterized using elemental analysis, MALDI-TOF mass, IR, UV-Vis, (1)H, (11)B, (13)C{(1)H}, (19)F{(1)H} and (31)P{(1)H} NMR spectra, and by single-crystal X-ray diffraction.
a-Si:H TFT-silicon hybrid low-energy x-ray detector
Shin, Kyung -Wook; Karim, Karim S.
2017-03-15
Direct conversion crystalline silicon X-ray imagers are used for low-energy X-ray photon (4-20 keV) detection in scientific research applications such as protein crystallography. In this paper, we demonstrate a novel pixel architecture that integrates a crystalline silicon X-ray detector with a thin-film transistor amorphous silicon pixel readout circuit. We describe a simplified two-mask process to fabricate a complete imaging array and present preliminary results that show the fabricated pixel to be sensitive to 5.89-keV photons from a low activity Fe-55 gamma source. Furthermore, this paper presented can expedite the development of high spatial resolution, low cost, direct conversion imagers formore » X-ray diffraction and crystallography applications.« less
Intermediate valence to Kondo behaviour in Ce(Pt1-xIrx)2Si2 (0≤x≤1)
NASA Astrophysics Data System (ADS)
Tchoula Tchokonté, M. B.; du Plessis, P. de V.; Kaczorowski, D.
2009-10-01
Measurements of X-ray diffraction (XRD), resistivity ( ρ(T)), magnetic susceptibility ( χ(T)) and magnetization ( σ(μ0H)) are reported for the polycrystalline Ce(Pt1-xIrx)2Si2 alloy system. The unit cell volume derived from the XRD results deviates from Vegard's rule around x=0.2-0.3. χ(T) measurements show a Curie-Weiss behaviour at high temperatures for the x= 0, 0.1 and 0.2 alloys whereas the alloys with x≥0.4 exhibit broad maxima in χ(T) at intermediate temperature (e.g. at 170 K for x=0.4). The latter behaviour due to valence fluctuations as described by Sales and Wohlleben. ρ(T) data indicate Kondo lattice behaviour for x≤0.2 and fluctuating valency for x≥0.3. σ(μ0H) data indicate metamagnetic behaviour for the x=0.4 alloy.
NASA Astrophysics Data System (ADS)
Brant, William R.; Li, Dan; Gu, Qinfen; Schmid, Siegbert
2016-01-01
A comparative study of ex-situ and operando X-ray diffraction techniques using the fast lithium ion conductor Li0.18Sr0.66Ti0.5Nb0.5O3 is presented. Ex-situ analysis of synchrotron X-ray diffraction data suggests that a single phase material exists for all discharges to as low as 0.422 V. For samples discharged to 1 V or lower, i.e. with higher lithium content, it is possible to determine the lithium position from the X-ray data. However, operando X-ray diffraction from a coin cell reveals that a kinetically driven two phase region occurs during battery cycling below 1 V. Through monitoring the change in unit cell dimension during electrochemical cycling the dynamics of lithium insertion are explored. A reduction in the rate of unit cell expansion of 22(2)% part way through the first discharge and 13(1)% during the second discharge is observed. This reduction may be caused by a drop in lithium diffusion into the bulk material for higher lithium contents. A more significant change is a jump in the unit cell expansion by 60(2)% once the lithium content exceeds one lithium ion per vacant site. It is suggested that this jump is caused by damping of octahedral rotations, thus establishing a link between lithium content and octahedral rotations.
High-pressure Irreversible Amorphization of La1/3NbO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
I Halevy; A Hen; A Broide
2011-12-31
The crystallographic structure of La{sub 1/3}NbO{sub 3} perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angle dispersive (ADS) x-ray diffraction revealed an irreversible amorphization at {approx}10 GPa. A large change in the bulk modulus accompanied the high-pressure amorphization.
atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence
NASA Astrophysics Data System (ADS)
Tittal, Ram Kumar
2018-03-01
CuCl/TMEDA-promoted halogen atom transfer radical cyclization (HATRC) of dichloroacetic acid 1-(3-methyl-but-2-enyl)-naphthalen-2-yl ester in refluxing DCE gave chlorine containing 7-member lactone 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one via 7-exo trig radical cyclization reaction. The structure of the Lactone was confirmed by X-ray diffraction data.
Tang, M X; Zhang, Y Y; E, J C; Luo, S N
2018-05-01
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M. X.; Zhang, Y. Y.; E, J. C.
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Jing; Li, Ming; Chen, Jiashu
Crystals of a non-haemorrhagic fibrin(ogen)olytic metalloproteinase from the venom of A. acutus have been obtained and characterized by X-ray diffraction. A non-haemorrhagic fibrin(ogen)olytic metalloproteinase from the venom of Agkistrodon acutus has been crystallized by the hanging-drop method. The crystals belong to space group P3{sub 1}21, with unit-cell parameters a = b = 80.57, c = 66.77 Å and one molecule in the asymmetric unit. X-ray diffraction data were collected to 1.86 Å resolution.
Coherent X-ray diffraction imaging of nanoengineered polymeric capsules
NASA Astrophysics Data System (ADS)
Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.
2017-10-01
For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.
NASA Astrophysics Data System (ADS)
Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.
2001-07-01
A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.
NASA Astrophysics Data System (ADS)
Christiansen, Marie Bitsch; Sørensen, Mikkel Agerbæk; Sanyova, Jana; Bendix, Jesper; Simonsen, Kim Pilkjær
2017-03-01
In an investigation of the artists' materials used by P. S. Krøyer the contents of the tube colours found in Krøyer's painting cabinet were examined. In most cases, the results of the pigment analyses were as expected based on our knowledge of artists' colours used in the late 1800s and early 1900s. However, in one of the tube colours labelled "Jaune de Cadmium Citron" (cadmium lemon yellow) an extremely rare cadmium chromate pigment was found. The pigment was analysed and characterised by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), powder X-ray diffraction (PXRD), single-crystal X-ray crystallography, and electron paramagnetic resonance (EPR) spectroscopy. Cadmium chromate was synthesised by precipitation from an aqueous solution of cadmium nitrate and potassium chromate, and the resulting yellow crystals proved identical to the pigment found in the tube colour "Jaune de Cadmium Citron". The structure determined by single-crystal X-ray diffraction identified the pigment as 2CdCrO4·KOH·H2O or more accurately as KCd2(CrO4)2(H3O2) illustrating the μ-H3O2- species. The yellow colour of the paint sample taken from the tube had a greenish hue, which became even more prominent upon storage and drying. EPR analysis of the sample showed the presence of paramagnetic degradation products containing Cr(III) and Cr(V).
Christiansen, Marie Bitsch; Sørensen, Mikkel Agerbæk; Sanyova, Jana; Bendix, Jesper; Simonsen, Kim Pilkjær
2017-03-15
In an investigation of the artists' materials used by P. S. Krøyer the contents of the tube colours found in Krøyer's painting cabinet were examined. In most cases, the results of the pigment analyses were as expected based on our knowledge of artists' colours used in the late 1800s and early 1900s. However, in one of the tube colours labelled "Jaune de Cadmium Citron" (cadmium lemon yellow) an extremely rare cadmium chromate pigment was found. The pigment was analysed and characterised by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), powder X-ray diffraction (PXRD), single-crystal X-ray crystallography, and electron paramagnetic resonance (EPR) spectroscopy. Cadmium chromate was synthesised by precipitation from an aqueous solution of cadmium nitrate and potassium chromate, and the resulting yellow crystals proved identical to the pigment found in the tube colour "Jaune de Cadmium Citron". The structure determined by single-crystal X-ray diffraction identified the pigment as 2CdCrO 4 ·KOH·H 2 O or more accurately as KCd 2 (CrO 4 ) 2 (H 3 O 2 ) illustrating the μ-H 3 O 2 - species. The yellow colour of the paint sample taken from the tube had a greenish hue, which became even more prominent upon storage and drying. EPR analysis of the sample showed the presence of paramagnetic degradation products containing Cr(III) and Cr(V). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young
2017-10-01
Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.
NASA Astrophysics Data System (ADS)
Ono, Tatsuyoshi; Hirata, Satoshi; Amemiya, Yoshiteru; Tabei, Tetsuo; Yokoyama, Shin
2018-04-01
The effects of Ce content and annealing temperature on the electromotive force produced by spin Seebeck devices fabricated using Ce x Y3- x Fe5O12 deposited by metal-organic decomposition was investigated. The Ce content was first varied (x = 0,1,2,3) for a fixed annealing condition of 3 h at 900 °C. It was found that increasing the Ce content led to a decrease in electromotive force, which meant that x = 0 was the optimum Ce content. Next, the effect of annealing temperature was investigated for a Ce1Y2Fe5O12 film for an annealing time of 14 h. The highest electromotive force of 24.0 µV/50 °C was obtained for a sample annealed for 14 h at 800 °C, although the X-ray diffraction peaks were weaker than those for a sample annealed for 14 h at 950 °C.
NASA Astrophysics Data System (ADS)
Motavallian, Pourya; Abasht, Behzad; Abdollah-Pour, Hassan
2018-04-01
Nanocrystalline CoZrxFe2-xO4 (0 ≤ x ≤ 0.3 in a step of 0.05) powders were synthesized by Pechini sol-gel method. The dry gel was grinded and calcined at 700 °C in a static air atmosphere for 1 h. Some tests such as thermo gravimetric analysis (TGA) combined with differential analysis (DTA), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the thermal behaviour, structural bonds identification, crystallographic properties, morphology and magnetic properties of the obtained powders. X-ray diffraction revealed a single-phase cubic spinel structure for all samples, where the crystallite size decreases; the lattice parameter simultaneously increases with substitution of Zr. The results of FE-SEM showed that the particle size is in the 20-70 nm range. The magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were measured from the hysteresis loops. The greatest amount of saturation magnetization for CoZr0.05Fe1.95O4 sample was 67.9 emu·g-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Yajnavalka; Kumar, Sundramurthy; Jobichen, Chacko
2007-08-01
Crystals of hemextin A, a three-finger toxin isolated and purified from African Ringhals cobra (H. haemachatus), are orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 49.27, b = 49.51, c = 57.87 Å, and diffract to 1.5 Å resolution. Hemextin A was isolated and purified from African Ringhals cobra (Hemachatus haemachatus). It is a three-finger toxin that specifically inhibits blood coagulation factor VIIa and clot formation and that also interacts with hemextin B to form a unique anticoagulant complex. Hemextin A was crystallized by the hanging-drop vapour-diffusion method by equilibration against 0.2 M ammonium acetate, 0.1more » M sodium acetate trihydrate pH 4.6 and 30% PEG 4000 as the precipitating agent. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 49.27, b = 49.51, c = 57.87 Å and two molecules in the asymmetric unit. They diffracted to 1.5 Å resolution at beamline X25 at BNL.« less
Crystallization and preliminary X-ray analysis of a low density lipoprotein from human plasma.
Prassl, R; Chapman, J M; Nigon, F; Sara, M; Eschenburg, S; Betzel, C; Saxena, A; Laggner, P
1996-11-15
Single crystals of human plasma low density lipoprotein (LDL), the major transport vehicle for cholesterol in blood, have been produced with a view to analysis of the three-dimensional structure by x-ray crystallography. Crystals with dimensions of approximately 200 x 100 x 50 microm have been reproducibly obtained from highly homogeneous LDL particle subspecies, isolated in the density ranges d = 1.0271-1. 0297 g/ml and d = 1.0297-1.0327 g/ml. Electron microscopic imaging of ultrathin-sectioned preparations of the crystals confirmed the existence of a regular, quasihexagonal arrangement of spherical particles of approximately 18 nm in diameter, thereby resembling the dimensions characteristic of LDL after dehydration and fixation. X-ray diffraction with synchrotron radiation under cryogenic conditions revealed the presence of well resolved diffraction spots, to a resolution of about 29 A. The diffraction patterns are indexed in terms of a triclinic lattice with unit cell dimensions of a = 16. 1 nm, b = 39.0 nm, c = 43.9 nm; alpha = 96.2 degrees, beta = 92.1 degrees, gamma = 102 degrees, and with space group P1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenenko, K.N.; Klyamkin, S.N.
1993-11-01
Novel hydride phases with H/M > 1 based on Zr{sub 2}Pd, Hf{sub 2}Pd, and Hf{sub 2}Cu (structures of the MoSi{sub 2} type) have been synthesized at high H{sub 2} pressures. The X-ray diffraction investigations of the resulting hydrides have been carried out. Some factors determining the maximum hydrogen content in the hydrides of intermetallic compounds are discussed. A model structure of the hydrides obtained is proposed, which assumes the possibility of direct H-H interactions when the interatomic distances are less than 1 {angstrom}.
Crystallization of recombinant Haemophilus influenzaee (P4) acid phosphatase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Zhonghui; Felts, Richard L.; Reilly, Thomas J.
2006-05-01
Lipoprotein e (P4) is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. Haemophilus influenzae infects the upper respiratory tract of humans and can cause infections of the middle ear, sinuses and bronchi. The virulence of the pathogen is thought to involve a group of surface-localized macromolecular components that mediate interactions at the host–pathogen interface. One of these components is lipoprotein e (P4), which is a class C acid phosphatase and amore » potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. The space group is P4{sub 2}2{sub 1}2, with unit-cell parameters a = 65.6, c = 101.4 Å, one protein molecule per asymmetric unit and 37% solvent content. This is the first report of the crystallization of a class C acid phosphatase.« less
Anti-contamination device for cryogenic soft X-ray diffraction microscopy
Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...
2011-05-01
Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.
Phase transformation of dental zirconia following artificial aging.
Lucas, Thomas J; Lawson, Nathaniel C; Janowski, Gregg M; Burgess, John O
2015-10-01
Low-temperature degradation (LTD) of yttria-stabilized zirconia can produce increased surface roughness with a concomitant decrease in strength. This study determined the effectiveness of artificial aging (prolonged boiling/autoclaving) to induce LTD of Y-TZP (yttria-tetragonal zirconia-polycrystals) and used artificial aging for transformation depth progression analyses. The null hypothesis is aging techniques tested produce the same amount of transformation, transformation is not time/temperature dependent and LTD causes a constant transformation throughout the Y-TZP samples. Dental-grade Y-TZP samples were randomly divided into nine subgroups (n = 5): as received, 3.5 and 7 day boiling, 1 bar autoclave (1, 3, 5 h), and 2 bar autoclave (1, 3, 5 h). A 4-h boil treatment (n = 2) was performed post-experiment for completion of data. Transformation was measured using traditional X-ray diffraction and low-angle X-ray diffraction. The fraction of t → m transformation increased with aging time. The 3.5 day boil and 2 bar 5 h autoclave produced similar transformation results, while the 7 day boiling treatment revealed the greatest transformation. The surface layer of the aged specimen underwent the most transformation while all samples displayed decreasing transformation with depth. Surface transformation was evident, which can lead to rougher surfaces and increased wear of opposing dentition/materials. Therefore, wear studies addressing LTD of Y-TZP are needed utilizing accelerated aging. © 2014 Wiley Periodicals, Inc.
Distributions of methyl group rotational barriers in polycrystalline organic solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckmann, Peter A., E-mail: pbeckman@brynmawr.edu, E-mail: wangxianlong@uestc.edu.cn; Conn, Kathleen G.; Division of Education and Human Services, Neumann University, One Neumann Drive, Aston, Pennsylvania 19014-1298
We bring together solid state {sup 1}H spin-lattice relaxation rate measurements, scanning electron microscopy, single crystal X-ray diffraction, and electronic structure calculations for two methyl substituted organic compounds to investigate methyl group (CH{sub 3}) rotational dynamics in the solid state. Methyl group rotational barrier heights are computed using electronic structure calculations, both in isolated molecules and in molecular clusters mimicking a perfect single crystal environment. The calculations are performed on suitable clusters built from the X-ray diffraction studies. These calculations allow for an estimate of the intramolecular and the intermolecular contributions to the barrier heights. The {sup 1}H relaxation measurements,more » on the other hand, are performed with polycrystalline samples which have been investigated with scanning electron microscopy. The {sup 1}H relaxation measurements are best fitted with a distribution of activation energies for methyl group rotation and we propose, based on the scanning electron microscopy images, that this distribution arises from molecules near crystallite surfaces or near other crystal imperfections (vacancies, dislocations, etc.). An activation energy characterizing this distribution is compared with a barrier height determined from the electronic structure calculations and a consistent model for methyl group rotation is developed. The compounds are 1,6-dimethylphenanthrene and 1,8-dimethylphenanthrene and the methyl group barriers being discussed and compared are in the 2–12 kJ mol{sup −1} range.« less
Single Crystal X-ray Study of 6-Phenyl-4-( p-tolyl)pyridin-2(1 H)-one
NASA Astrophysics Data System (ADS)
Khajuria, Rajni; Sharma, Suresh; Kapoor, Kamal K.; Gupta, Vivek K.
2017-12-01
The title compound 6-phenyl-4-( p-tolyl)pyridin-2(1 H)-one was synthesized via one-pot, three component reaction of ( E)-1-phenyl-3-( p-tolyl)-2-propen-1-one, ethyl 2-nitroacetate and ammonium acetate in refluxing ethanol, as a shiny green crystalline solid in 83% yield. Its structure was characterized by spectral studies and unambiguously corroborated by X-ray diffraction crystallography. The crystals of title compound are monoclinic, sp. gr. P21/ n, a = 11.8346(7) Å, b = 13.4413(9) Å, c = 17.7626(10) Å, β = 99.479(5)°, and Z = 8. All the rings in molecule of the title compound are planar. Hydrogen interactions play significant role in stabilizing the crystal structure and the supramolecular aggregate of molecules is facilitated by strong N-H···O and C-H···O type of hydrogen interactions.
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.;
2013-01-01
X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in the Rocknest samples.
Time-resolved study of SrTiO3 homoepitaxial pulsed-laser deposition using surface x-ray diffraction
NASA Astrophysics Data System (ADS)
Eres, G.; Tischler, J. Z.; Yoon, M.; Larson, B. C.; Rouleau, C. M.; Lowndes, D. H.; Zschack, P.
2002-05-01
Homoepitaxy of SrTiO3 by pulsed-laser deposition has been studied using in situ time-resolved surface x-ray diffraction in the temperature range of 310 °C to 780 °C. Using a two-detector configuration, surface x-ray diffraction intensities were monitored simultaneously at the (0 0 1/2) specular and the (0 1 1/2) off-specular truncation rod positions. Abrupt intensity changes in both the specular and off-specular rods after laser pulses indicated prompt crystallization into SrTiO3 layers followed by slower intra- and interlayer surface rearrangements on time scales of seconds. Specular rod intensity oscillations indicated layer-by-layer growth, while off-specular rod intensity measurements suggested the presence of transient in-plane lattice distortions for depositions above 600 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jin-Hua; Zhang, E.; Tang, Gui-Mei, E-mail: meiguit@163.com
2016-09-15
Three new metal coordination complexes, namely, [Co(BPO){sub 2}(H{sub 2}O){sub 4}](BS){sub 2}(H{sub 2}O){sub 2} (1), [Co(BPO){sub 2}(H{sub 2}O){sub 4}](ABS){sub 2}(H{sub 2}O){sub 2} (2), [Co(BPO){sub 2}(H{sub 2}O){sub 4}](MBS){sub 2}(H{sub 2}O){sub 2} (3) [BPO=2,5-di(pyridin-4-yl)-1,3,4-oxadiazole, BS=benzenesulphonate, ABS=4-aminobenzenesulphonate, MBS=4-methylbenzenesulphonate] were obtained under hydrothermal conditions. Complexes 1–3 were structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR and thermogravimetric analyses (TGA). All of them display a zero-dimensional motif, in which strong intermolecular hydrogen bonding interactions (O–H···O/N) and packing interactions (C–H···π and π···π) make them achieve a three-dimensional supramolecular architecture. The primary catalytic results of these three complexes show that high efficiency for the green synthesismore » of a variety of 3,4-dihydropyrimidin-2(1H)-ones was observed under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time. - Graphical abstract: Three new metal coordination complexes with bipyridinyl-oxadiazole were obtained under hydrothermal conditions, which display a zero-dimensional motif, and show high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time. Display Omitted.« less
NASA Astrophysics Data System (ADS)
Abu Ali, Hijazi; Abu Shamma, Amani; Kamel, Shayma
2017-08-01
New cobalt valproate complexes with different nitrogen based ligands were synthesized and characterized using various techniques such as IR, UV-Vis, single crystal X-ray diffraction as well as other physical properties. The general formula of the prepared complexes is [Con(valp)m(L)z], (n = 1, 2 …; m = 1, 2, …; Z = 1, 2 …). The complexes [Co2(valp)4] (1), [Co(valp)2(2-ampy)2] (2) and [Co2(valp)4(quin)2] (3) showed different carboxylate coordination modes. The crystal structures of the complexes 2 and 3 were determined using single crystal X-ray diffraction. Kinetic studies of hydrolysis reactions of BNPP [bis-(p-nitrophenyl)phosphate] with complexes 2 and 3 were performed. The hydrolysis rate of BNPP was studied at different temperatures, pH and concentrations by UV-Vis spectrophotometric method. The results showed that the hydrolysis rate of BNPP was 7.70 × 102 L mol-1 s-1 for (3) and 2.60 × 10-1 L mol-1 s-1 for (2).
Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M
2014-04-01
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.
X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy
NASA Technical Reports Server (NTRS)
Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.
2010-01-01
A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.
NASA Astrophysics Data System (ADS)
Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.
2012-07-01
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.
NASA Astrophysics Data System (ADS)
Singh, Deepshikha; Kushwaha, Anita; Banerjee, A.; Prasad, R. L.
2015-07-01
New series of multifunctional homometallic and heterobimetallic coordination polymers of the type [CuxNi1-x(dedb)·2H2O]n {where dedb = dianion of 2,5-dichloro-3,6-bis(ethylamino)-1,4-benzoquinone (1); x = 1, (2); 0 (3); 0.5 (4); 0.25 (5); 0.125 (6); 0.0625 (7) and n = degree of polymerization} have been synthesized and characterized by Powder X-ray diffraction, IR, UV-visible and ESR spectroscopic techniques. Variable temperature susceptibility measurement indicates presence of strong ferromagnetic interaction. The effects of copper doping on thermal, magnetic and conducting properties of these polymers have been investigated in this communication. A rare co-existence of ferromagnetism as well as electrical conductivity has been observed in these polymers.
Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications
NASA Astrophysics Data System (ADS)
Kelgenbaeva, Zhazgul; Abdullaeva, Zhypargul; Murzubraimov, Bektemir
2018-04-01
We present Au@Fe3O4 nanoparticles obtained from Fe nanoparticles and HAuCl4 using a simple solvothermal method. Trisodium citrate (C6H5Na3O7*2H2O) served as a reducing agent for Au. X-ray diffraction analysis, electronic microscopes and energy-dispersive X-ray spectroscopy revealed cubic structure, elemental composition (Au, Fe and O) and spherical shape of nanoparticles. Antibacterial activity of the sample was tested against E. coli bacteria and obtained results were discussed.
A simple method to synthesize polyhedral hexagonal boron nitride nanofibers
NASA Astrophysics Data System (ADS)
Lin, Liang-xu; Zheng, Ying; Li, Zhao-hui; shen, Xiao-nv; Wei, Ke-mei
2007-12-01
Hexagonal boron nitride (h-BN) fibers with polyhedral morphology were synthesized with a simple-operational, large-scale and low-cost method. The sample obtained was studied by X-ray photoelectron spectrometer (XPS), electron energy lose spectroscopy (EELS), X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), etc., which matched with h-BN. Environment scanning electron microscopy (ESEM) and transmission electron microscope (TEM) indicated that the BN fibers possess polyhedral morphology. The diameter of the BN fibers is mainly in the range of 100-500 nm.
Three new metabolites from Botrytis cinerea.
Wang, Tian-Shan; Zhou, Jin-Yan; Tan, Hong
2008-01-01
Three new metabolites, gamma-abscisolactone (1), botrytisic acids A (3) and B (4) were isolated from the fermentation broth of Botrytis cinerea TB-3-H8. Their structures were elucidated on the basis of MS, IR, UV, and NMR spectroscopic data. Compound 2 was isolated from natural resource for the first time. The structure of 1 was further confirmed by single-crystal X-ray diffraction (CCDC-265897).
Low Energy X-Ray and γ-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer
NASA Astrophysics Data System (ADS)
Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. Russell
2013-08-01
Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and γ-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current ( nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels ( 0.25 eV) in the epi bulk with a density 7×1013 cm-3 related to Al and B impurities and deeper levels located near the metal-semiconductor interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qin, E-mail: yang@crystal.harvard.edu; Brüschweiler, Sven; Chou, James J., E-mail: yang@crystal.harvard.edu
2013-12-24
The N-terminal calmodulin-like domain of the human mitochondrial ATP-Mg/P{sub i} carrier SCaMC1 was crystallized in the presence of Ca{sup 2+}. X-ray diffraction data were collected to 2.9 Å resolution from crystals which belonged to space group P6{sub 2}22.
Microstructure, Porosity and Mechanical Property Relationships of Calcium-Silicate-Hydrate
1991-02-15
feasibility of producing S ,,zeolite-cement composites . calcium silicate hydrate (C-S-H) structure, NAS NMR, C3S, pH, zeolites, aluminosilicate hydrate...3 S pH- Composition Plots......................................... 6 X-ray Diffraction...6 The System CaO-A1203-SiO 2 -H2 0................................. 8 pH- Composition Plots......................................... 8 MASNMR
NASA Astrophysics Data System (ADS)
Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.
2016-03-01
Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.
X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.
Girardin, E; Millet, P; Lodini, A
2000-02-01
To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.
X-ray Diffraction Gratings for Astrophysics
NASA Astrophysics Data System (ADS)
Paerels, Frits
2010-12-01
Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.
Synchrotron X-ray diffraction study of the Ba{sub 1−x}SrSnO{sub 3} solid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodjosantoso, Anti K., E-mail: Prodjosantoso@yahoo.com; Zhou, Qingdi; Kennedy, Brendan J.
At room temperature the sequence of phases with increasing amounts of strontium in the stannate perovskite system Ba{sub 1−x}SrSnO{sub 3} has been established from high resolution synchrotron X-ray powder diffraction. The observed sequence orthorhombic (Pbnm), orthorhombic (Ibmm), tetragonal (I4/mcm), and cubic (Pm3-bar m) is a consequence of the sequential introduction of cooperative tilting of the corner sharing SnO{sub 6} octahedra. The cell volume changes smoothly across the series with no obvious discontinuities associated with the phase transitions. - Graphical abstract: Portions of the synchrotron X-ray diffraction profiles (λ=0.82453 Å) from selected Ba{sub 1−x}Sr{sub x}SnO{sub 3} samples together with the resultsmore » of fitting by the Rietveld method. Highlights: ► Structures of the stannate perovskites Ba{sub 1−x}SrSnO{sub 3} refined from synchrotron XRD. ► The sequence Pm3-bar m→I4/mcm→Ibmm→Pbnm results from tilting of the octahedra. ► The tilting maintains optimal bonding of the cations seen from the BVS analysis.« less
Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J
2009-04-01
Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.
Dulani Dhanapala, B; Mannino, Natalie A; Mendoza, Laura M; Tauni Dissanayake, K; Martin, Philip D; Suescun, Leopoldo; Rabuffetti, Federico A
2017-01-31
Owing to their potential as single-source precursors for compositionally complex materials, there is growing interest in the rational design of multimetallic compounds containing fluorinated ligands. In this work, we show that chemical and structural principles for a materials-by-design approach to bimetallic trifluoroacetates can be established through a systematic investigation of the crystal-chemistry of their monometallic counterparts. A(CF 3 COO) 2 ·nH 2 O (A = Mg, Ca, Sr, Ba, Mn) monometallic trifluoroacetates were employed to demonstrate the feasibility of this approach. The crystal-chemistry of monometallic trifluoroacetates was mapped using variable-temperature single-crystal X-ray diffraction, powder X-ray diffraction, and thermal analysis. The evolution with temperature of the previously unknown crystal structure of Mg(CF 3 COO) 2 ·4H 2 O was found to be identical to that of Mn(CF 3 COO) 2 ·4H 2 O. More important, the flexibility of Mn x (CF 3 COO) 2x ·4H 2 O (x = 1, 3) to adopt two structures, one isostructural to Mg(CF 3 COO) 2 ·4H 2 O, the other isostructural to Ca 3 (CF 3 COO) 6 ·4H 2 O, enabled the synthesis of Mg-Mn and Ca-Mn bimetallic trifluoroacetates. Mg 0.45 Mn 0.55 (CF 3 COO) 2 ·4H 2 O was found to be isostructural to Mg(CF 3 COO) 2 ·4H 2 O and exhibited isolated metal-oxygen octahedra with Mg 2+ and Mn 2+ nearly equally distributed over the metal sites (Mg/Mn: 45/55). Ca 1.72 Mn 1.28 (CF 3 COO) 6 ·4H 2 O was isostructural to Ca 3 (CF 3 COO) 6 ·4H 2 O and displayed trimers of metal-oxygen corner-sharing octahedra; Ca 2+ and Mn 2+ were unequally distributed over the central (Ca/Mn: 96/4) and terminal (Ca/Mn: 38/62) octahedral sites.
NASA Astrophysics Data System (ADS)
Hassan, N.; Ismail, K. N.; Hamid, K. H. Ku; Hadi, Abdul
2018-05-01
Depletion of fossil fuel sources in a few decades due to industrialization and motorization has led to a keen interest in the production of alternative fuels like biodiesel. Research on the development and improvement of more efficient transesterification process for biodiesel production has attain great attention in the last decade. The using of low cost catalyst is one of the main focuses on the biodiesel production. As a basic heterogeneous catalyst, CaO has been examined in the transesterification of vegetable oils for biodiesel production. In this research, calcium oxide (CaO-X) catalysts were prepared by sol-gel method at different Ca2+ precursor concentration (X = 1.0, 1.5, 2.0 M). The crystalline structure and morphology of the synthesized catalysts were characterized by means of x-ray diffraction (XRD) and N2 adsorption-desorption analysis. All the synthesized catalysts were then applied to transesterification reaction of palm oil to produce biodiesel. The characterization by x-ray diffraction demonstrate CaO-1.0 was partially hydrated due to the incomplete reaction during synthesis. As a matter of fact, formation of H2O on the surface of CaO causes lower basic strength of the catalysts, thus responsible in lowering the catalytic activity. It is demonstrated that CaO-2.0 exhibits mesoporous structure with least chemisorb amount of H2O on the catalysts surface has a very active catalytic activity. It was found that 2.0M of calcium precursor has high catalytic activity and 81% FAME yield was obtained within 3h reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi
2006-12-01
UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the productmore » complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.« less
Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin
Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G.; Dao, E. Han; Ahmadi, Radman; Aksit, Fulya; Aquila, Andrew L.; Batyuk, Alexander; Ciftci, Halilibrahim; Guillet, Serge; Hayes, Matt J.; Hayes, Brandon; Lane, Thomas J.; Liang, Meng; Lundström, Ulf; Koglin, Jason E.; Mgbam, Paul; Rao, Yashas; Rendahl, Theodore; Rodriguez, Evan; Zhang, Lindsey; Wakatsuki, Soichi; Boutet, Sébastien; Holton, James M.; Hunter, Mark S.
2017-01-01
We provide a detailed description of selenobiotinyl-streptavidin (Se-B SA) co-crystal datasets recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) for selenium single-wavelength anomalous diffraction (Se-SAD) structure determination. Se-B SA was chosen as the model system for its high affinity between biotin and streptavidin where the sulfur atom in the biotin molecule (C10H16N2O3S) is substituted with selenium. The dataset was collected at three different transmissions (100, 50, and 10%) using a serial sample chamber setup which allows for two sample chambers, a front chamber and a back chamber, to operate simultaneously. Diffraction patterns from Se-B SA were recorded to a resolution of 1.9 Å. The dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) and also on LCLS compute nodes as a resource for research and algorithm development. PMID:28440794
Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin
NASA Astrophysics Data System (ADS)
Yoon, Chun Hong; Demirci, Hasan; Sierra, Raymond G.; Dao, E. Han; Ahmadi, Radman; Aksit, Fulya; Aquila, Andrew L.; Batyuk, Alexander; Ciftci, Halilibrahim; Guillet, Serge; Hayes, Matt J.; Hayes, Brandon; Lane, Thomas J.; Liang, Meng; Lundström, Ulf; Koglin, Jason E.; Mgbam, Paul; Rao, Yashas; Rendahl, Theodore; Rodriguez, Evan; Zhang, Lindsey; Wakatsuki, Soichi; Boutet, Sébastien; Holton, James M.; Hunter, Mark S.
2017-04-01
We provide a detailed description of selenobiotinyl-streptavidin (Se-B SA) co-crystal datasets recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) for selenium single-wavelength anomalous diffraction (Se-SAD) structure determination. Se-B SA was chosen as the model system for its high affinity between biotin and streptavidin where the sulfur atom in the biotin molecule (C10H16N2O3S) is substituted with selenium. The dataset was collected at three different transmissions (100, 50, and 10%) using a serial sample chamber setup which allows for two sample chambers, a front chamber and a back chamber, to operate simultaneously. Diffraction patterns from Se-B SA were recorded to a resolution of 1.9 Å. The dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) and also on LCLS compute nodes as a resource for research and algorithm development.
In situ x-ray diffraction studies of a new LiMg{sub 0.125}Ni{sub 0.75}O{sub 2} cathode material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X.Q.; Sun, X.; McBreen, J.
A Synchrotron x-ray source was used for In Situ x-ray diffraction studies during charge on a new LiMg{sub 0.125}Ti{sub 0.125}Ni{sub 0.75} cathode material synthesized by FMC Corp. It had been demonstrated by Gao that this new material has superior thermal stability than LiNiO{sub 2} and LiCo{sub 0.2}Ni{sub 0.8}O{sub 2} at over-charged state. In this current paper, studies on the relationship between the structural changes and thermal stability at over-charged state for these materials are presented. For the first time, the thermal stability of these materials are related to their structural changes during charge, especially to the formation and lattice constantmore » change of a hexagonal phase (H3). The spectral evidence support the hypothesis that the improvement of thermal stability is obtained by suppressing the formation of H3 phase and reducing the shrinkage of its lattice constant c when charged above 4.3 V.« less
Kovalevsky, Andrey Y.; Hanson, B. Leif; Seaver, Sean; Fisher, S. Zoë; Mustyakimov, Marat; Langan, Paul
2011-01-01
Room-temperature X-ray and neutron diffraction data were measured from a family 11 endoxylanase holoenzyme (XynII) originating from the filamentous fungus Trichoderma longibrachiatum to 1.55 Å resolution using a home source and to 1.80 Å resolution using the Protein Crystallography Station at LANSCE. Crystals of XynII, which is an important enzyme for biofuel production, were grown at pH 8.5 in order to examine the effect of basic conditions on the protonation-state distribution in the active site and throughout the protein molecule and to provide insights for rational engineering of catalytically improved XynII for industrial applications. PMID:21301107
Amorphous boron gasket in diamond anvil cell research
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin
2003-11-01
Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.
First-principles prediction of low-energy structures for AlH3
NASA Astrophysics Data System (ADS)
Sun, Shoutian; Ke, Xuezhi; Chen, Changfeng; Tanaka, Isao
2009-01-01
We report density-functional calculations that predict ten different low-energy structures for aluminum hydride AlH3 with space groups Pnma , P6/mmm , I4/mcm , P4/mbm , P4/nmm , Pm3¯m , P21/m , P21/c , Pbcm , and P4/n . Phonon calculations within harmonic approximation reveal unstable modes in the P6/mmm , I4/mcm , P4/mbm , P4/nmm , Pm3¯m , P21/m , and P21/c structures, indicating that they are unstable at low temperatures. The calculations show that the thermodynamic stabilities for AlH3 with space groups Pnma , Pbcm , and P4/n are overall close to the existing α - and γ-AlH3 . From x-ray powder-diffraction patterns, the simulated main-peak positions for AlH3 (P4/n) are in good agreement with experimental δ-AlH3 . A full Rietveld analysis reveals that the fitting space groups R3¯c , Pbcm , and Pnma to the experimental x-ray powder-diffraction pattern of α-AlH3 gives almost the same satisfactory result.
Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude
2014-11-28
Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.
NASA Astrophysics Data System (ADS)
Thanigaimani, Kaliyaperumal; Khalib, Nuridayanti Che; Temel, Ersin; Arshad, Suhana; Razak, Ibrahim Abdul
2015-11-01
2-amino-5-chloropyridine: 3-methylbenzoic acid [(2A5CP) (3MBA)] (I) cocrystal was synthesized and its single crystal was grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction technique. The cocrystal belongs to the monoclinic crystallographic system with space group P21/c, Z = 4, and a = 13.3155 (5) Å, b = 5.5980 (2) Å, c = 18.3787 (7) Å, β = 110.045 (2)°. The crystal structure is stabilized by Npyridine-H•••Odbnd C, Cdbnd O-H•••Npyridine and C-H⋯O type hydrogen bonding interactions. The presence of unionized -COOH functional group in the cocrystal was identified both by spectral methods and X-ray structural analysis. The experimental studies obtained by using the methods of single crystal X-ray analysis, powder X-ray diffraction (PXRD) analysis, FTIR, 1H NMR and 13C NMR spectroscopies confirmed the predicted cocrystal. The supramolecular assembly of the cocrystal was analyzed and discussed. The molecular geometry, vibrational frequencies of the compound in the ground state were calculated by using the density functional theory (DFT) method with 6-311++G (d,p) basis set and were compared with the experimental data. Additionally, HOMO-LUMO energy gap, natural bond orbital (NBO) analysis and nonlinear optical (NLO) properties of the compound were performed at B3LYP/6-311++G (d,p) level. Hirshfeld surfaces were used to confirm the existence of inter-molecular interactions in the compound.
An investigation of phase transformation and crystallinity in laser surface modified H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-03-01
This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
NASA Astrophysics Data System (ADS)
Ghosh, Santunu; Oliveira, Michelle; Pacheco, Tiago S.; Perpétuo, Genivaldo J.; Franco, Carlos J.
2018-04-01
We have obtained a set of sample crystals of the family of Tutton's salt comprise in the isomorphic series with general chemical formula (NH4)2NixCo(1-x) (SO4)2·6H2O, by employing growth from solutions by slow evaporation technique. The samples crystals were characterized by ICP-AES, X-ray powder diffraction analysis, thermogravimetric analysis, UV-Vis-NIR, Raman and FTIR spectroscopy. This type of material has been studied because of its physical and chemical properties not yet understood and they have potential technological applications. Chemical analysis of the samples by ICP-AES method allowed us to investigate the efficiency of the method of growth used. Thermogravimetric analysis provides the information about the thermal stability of the obtained crystals for high temperature applications, and powder X-ray diffraction analysis at ambient and high temperature reveals the structural quality and structural change of the samples respectively. We have used Raman spectroscopy in the range 100-4000 cm-1 and FTIR spectroscopy in the range 400-4000 cm-1 to understand the internal vibrational mode of the octahedral complexes [Ni(H2O)6]2+ and [Co(H2O)6]2+, SO42- and NH4+ tetrahedra. The transmittance of our mixed ammonium nickel cobalt sulfate hexahydrate (ACNSH) crystals is 75% in the UV region, which indicates that they are ideal to use in UV light filters and UV sensors.
Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles
NASA Astrophysics Data System (ADS)
Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; Bucher, Max; Maia, Filipe R. N. C.; Bielecki, Johan; Ekeberg, Tomas; Hantke, Max F.; Daurer, Benedikt J.; Nettelblad, Carl; Andreasson, Jakob; Barty, Anton; Bruza, Petr; Carron, Sebastian; Hasse, Dirk; Krzywinski, Jacek; Larsson, Daniel S. D.; Morgan, Andrew; Mühlig, Kerstin; Müller, Maria; Okamoto, Kenta; Pietrini, Alberto; Rupp, Daniela; Sauppe, Mario; van der Schot, Gijs; Seibert, Marvin; Sellberg, Jonas A.; Svenda, Martin; Swiggers, Michelle; Timneanu, Nicusor; Westphal, Daniel; Williams, Garth; Zani, Alessandro; Chapman, Henry N.; Faigel, Gyula; Möller, Thomas; Hajdu, Janos; Bostedt, Christoph
2018-03-01
Ultrafast X-ray imaging on individual fragile specimens such as aerosols1, metastable particles2, superfluid quantum systems3 and live biospecimens4 provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined4,5. Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.
NASA Astrophysics Data System (ADS)
Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek
2010-08-01
In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.
Backbone N xH compounds at high pressures
Goncharov, Alexander F.; Holtgrewe, Nicholas; Qian, Guangrui; ...
2015-06-05
Optical and synchrotron x-ray diffraction diamond anvil cell experiments have been combined with first principles theoretical structure predictions to investigate mixtures of N 2 and H 2 up to 55 GPa. Our experiments show the formation of structurally complex van der Waals compounds above 10 GPa. However, we found that these N xH (0.52, H 2, and NH 3 above approximately 40 GPa. Lastly, our results suggest new pathways for synthesis of environmentally benign high energy-density materials. These materials could also exist as alternative planetary ices.
NASA Astrophysics Data System (ADS)
Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.
2018-04-01
A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.
NASA Astrophysics Data System (ADS)
İnkaya, Ersin; Günnaz, Salih; Özdemir, Namık; Dayan, Osman; Dinçer, Muharrem; Çetinkaya, Bekir
2013-02-01
The title molecule, 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine (C33H25N5), was synthesized and characterized by elemental analysis, FT-IR spectroscopy, one- and two-dimensional NMR spectroscopies, and single-crystal X-ray diffraction. In addition, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the density functional theory at the B3LYP/6-311G(d,p) level, and compared with the experimental data. The complete assignments of all vibrational modes were performed by potential energy distributions using VEDA 4 program. The geometrical parameters of the optimized structure are in good agreement with the X-ray crystallographic data, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. Besides, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMO) and non-linear optical properties of the title compound were investigated by theoretical calculations at the B3LYP/6-311G(d,p) level. The linear polarizabilities and first hyper polarizabilities of the molecule indicate that the compound is a good candidate of nonlinear optical materials. The thermodynamic properties of the compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures.
How Rosalind Franklin Discovered the Helical Structure of DNA: Experiments in Diffraction
ERIC Educational Resources Information Center
Braun, Gregory; Tierney, Dennis; Schmitzer, Heidrun
2011-01-01
Rosalind Franklin, a chemical physicist (1920-1958), used x-ray diffraction to determine the structure of DNA. What exactly could she read out from her x-ray pattern, shown in Fig. 1? In lecture notes dated November 1951, R. Franklin wrote the following: "The results suggest a helical structure (which must be very closely packed) containing 2, 3…
Low-temperature structure transition in hexagonal LuFeO3
NASA Astrophysics Data System (ADS)
Xu, Xiaoshan; Wang, Wenbin; Wang, Xiao; Zhu, Leyi; Kim, Jong-Woo; Ryan, Phillip; Keavney, David; Ward, Thomas; Shen, Jian; Cheng, Xuemei
2014-03-01
The structural change of h-LuFeO3 films at low temperature has been studied using x-ray diffraction and x-ray absorption experiments. The results are analyzed using the displacements of three phonon modes that are related to the P63/mmc to P63cm structural transition. The data indicate that the in-plane motion of the Fe and apex oxygen are responsible for the observed anomaly in both x-ray absorption and diffraction experiments. This subtle structural transition may be an origin of the low temperature magnetic phase transition at TR=130 K. Research supported by US DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division. Work at BMC is supported by NSF Career award (DMR 1053854). Work at ANL is supported by US-DOE, Office of Science, BES (No. DE-AC02-06CH11357).
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
NASA Astrophysics Data System (ADS)
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
X-Ray Diffraction and the Discovery of the Structure of DNA
ERIC Educational Resources Information Center
Crouse, David T.
2007-01-01
A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
NASA Astrophysics Data System (ADS)
Tella, Adedibu C.; Owalude, Samson O.; Omotoso, Mary F.; Olatunji, Sunday J.; Ogunlaja, Adeniyi S.; Alimi, Lukman O.; Popoola, Olugbenga K.; Bourne, Susan A.
2018-04-01
Two novel isostructural compounds containing multi-component co-crystals [M(C6H4NO2)2(H2O)2](C9H6O6)2 (M = Co (1), Zn (2), C6H4NO2 = Picolinic acid, C9H6O6 = Trimesic acid) have been synthesized. The compounds were characterized by elemental analysis, FT-IR, UV-Visible and 1H NMR spectroscopies as well as thermal and single crystal X-ray diffraction analyses. Single crystal X-ray diffraction analysis reveals that 1 and 2 are isostructural. Compound 1 crystallizes in triclinic space group (P-1, with a = 5.154 (10) Å, b = 11.125 (2) Å, c = 14.113 (3) Å, α = 91.01 (3)°, β = 100.54 (3)°, and γ = 102.71 (3)°). In a similar fashion, compound 2 crystallizes in triclinic space group (P-1, with a = 5.1735 (3) Å, b = 11.0930 (10) Å, c = 14.1554 (8) Å, α = 91.70 (3)°, β = 100.26 (3)°, γ = 102.90 (3)°). The metal (II) cation presents distorted MN2O4 octahedral geometry with H2O molecules coordinated to the metal in equatorial position while the picolinic acid molecules are axially coordinated through the pyridine N atom. The two trimesic acid molecules are not part of the first coordination sphere. Compounds 1 and 2 constitute an example of a class of coordination compound of multicomponent crystals having trimesic acid outside the coordination sphere where it is neither protonated or deprotonated. The two compounds were investigated for luminiscence properties.
Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders
NASA Astrophysics Data System (ADS)
Liu, Shuling; Qian, Yitai; Xu, Liqiang
2009-03-01
In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.
Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.
2014-01-01
Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008
Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P
2014-09-01
Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.
Zhao, Shun; Liu, Lin
2016-10-01
GDP-D-mannose pyrophosphorylase catalyzes the production of GDP-D-mannose, an intermediate product in the plant ascorbic acid (AsA) biosynthetic pathway. This enzyme is a key regulatory target in AsA biosynthesis and is encoded by VITAMIN C DEFECTIVE 1 (VTC1) in the Arabidopsis thaliana genome. Here, recombinant VTC1 was expressed, purified and crystallized. Diffraction data were obtained from VTC1 crystals grown in the absence and presence of substrate using X-rays. The ligand-free VTC1 crystal diffracted X-rays to 3.3 Å resolution and belonged to space group R32, with unit-cell parameters a = b = 183.6, c = 368.5 Å, α = β = 90, γ = 120°; the crystal of VTC1 in the presence of substrate diffracted X-rays to 1.75 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 70.8, b = 83.9, c = 74.5 Å, α = γ = 90.0, β = 114.9°.
Synthesis, characterizations and catalytic activities of CoFe2O4 nanoparticles
NASA Astrophysics Data System (ADS)
Verma, Divya; Sharma, Vikash; Parmar, Sarita; Okram, Gunadhor Singh; Jain, Shubha
2018-05-01
We report the synthesis of CoFe2O4 nanoparticles (NPs) through a novel one-step coprecipitation method. These NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR), and Raman spectroscopy. These nano ferrites were successfully used for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and thiones. They can be easily recovered by simple filtration and their catalytic activity remains nearly unaltered even after 4 consecutive cycles, making them ecofriendly and widely applicable due to their efficiency, ease of handling, and cost effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.
In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.« less
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
Cha, W.; Ulvestad, A.; Allain, M.; ...
2016-11-23
Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.
2004-01-01
X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
NASA Astrophysics Data System (ADS)
Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.
2016-11-01
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.
Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O
2016-11-25
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
X-Ray Diffraction Studies on Metal Deposition in Group D Streptococci
Tucker, Fayne L.; Thomas, John W.; Appleman, Milo D.; Goodman, Stewart H.; Donohue, Jerry
1966-01-01
Tucker, Fayne L. (University of Southern California, Los Angeles), John W. Thomas, Milo D. Appleman, Stewart H. Goodman, and Jerry Donohue. X-ray diffraction studies on metal deposition in group D streptococci. J. Bacteriol. 92:1311–1314. 1966.—Streptococcus faecalis N83 and S. faecium K6A reduced several compounds of Group VI elements to the elemental form, but reduced none of several compounds tested containing elements of other groups. The elemental tellurium deposited by S. faecium K6A was in general of a larger particle size than that deposited by S. faecalis N83 as judged from X-ray diffraction analysis. The particle size of the deposited tellurium was correlated with the blackness of the precipitate produced by cells growing in the presence of tellurite. A black and gray variation was observed in S. faecium K6A which was considered to be due to particle size, the amount of tellurium present, and the location of the deposited tellurium. The gray color of S. faecium K6A was not due to the presence of any oxidized tellurium products. PMID:4958879
Rodamilans, Bernardo; Montoya, Guillermo
2007-04-01
DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P2(1), with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 A, alpha = gamma = 90, beta = 101.02 degrees , and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 A using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS).
Wang, Wendong; Song, Shan; Zhang, Xiaoni; Mitchell Spear, J; Wang, Xiaochang; Wang, Wen; Ding, Zhenzhen; Qiao, Zixia
2014-07-01
Observations of aluminum containing sediments/scales formed within the distribution pipes have been reported for several decades. In this study, the effect of Ni(2+) on the formation and transformation processes of aluminum hydroxide sediment in a simulated drinking water distribution system were investigated using X-ray diffraction spectrum (XRD), Fourier transform infrared spectrum (FT-IR), scanning electron microscope (SEM), and thermodynamic calculation methods. It was determined that the existence of Ni(2+) had notable effects on the formation of bayerite. In the system without Ni(2+) addition, there was no X-ray diffraction signal observed after 400 d of aging. The presence of Ni(2+), however, even when present in small amounts (Ni/Al=1:100) the formation of bayerite would occur in as little as 3d at pH 8.5. As the molar ratio of Ni/Al increase from 1:100 to 1:10, the amount of bayerite formed on the pipeline increased further; meanwhile, the specific area of the pipe scale decreased from 160 to 122 m(2)g(-1). In the system with Ni/Al molar ratio at 1:3, the diffraction spectrum strength of bayerite became weaker, and disappeared when Ni/Al molar ratios increased above 1:1. At these highs Ni/Al molar ratios, Ni5Al4O11⋅18H2O was determined to be the major component of the pipe scale. Further study indicated that the presence of Ni(2+) promoted the formation of bayerite and Ni5Al4O11⋅18H2O under basic conditions. At lower pH (6.5) however, the existence of Ni(2+) had little effect on the formation of bayerite and Ni5Al4O11⋅18H2O, rather the adsorption of amorphous Al(OH)3 for Ni(2+) promoted the formation of crystal Ni(OH)2. Copyright © 2013 Elsevier Ltd. All rights reserved.
New metal-organic complexes based on bis(tetrazole) ligands: Synthesis, structures and properties
NASA Astrophysics Data System (ADS)
Du, Ceng-Ceng; Fan, Jian-Zhong; Wang, Xin-Fang; Zhou, Sheng-Bin; Wang, Duo-Zhi
2017-04-01
In this paper, a series of new complexes, [Zn2(HL1)2(H2O)4]·H2O (1), [Co2(HL1)2]·TEA (2), [Co3(HL1)2(H2L1)2(H2O)4]n (3), [Cu(HL1)(H2O)2]n (4), {[Cu5(HL2)2(OH)4(ClO4)2]·4H2O}n (5) and [Cu2(L3)]n (6) were successfully prepared by utilizing three bis(tetrazole) ligands [bis-(1H-tetrazol-5-ylmethyl)-amine (H3L1), bis-(1H-tetrazol-5-ylethyl)-amine (H3L2) and 1,5-bis(5-tetrazolo)-3-thiapentane (H2L3)], all of which have been characterized by elemental analyses, FT-IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analyses as well as single-crystal X-ray diffraction analyses showing different dimensionalities (0D, 1D and 3D). Complexes 1 and 2 are 0D structures, 1 shows a dinuclear structure, 2 displays two crystallographically different mononuclear structures, 1 and 2 are further assembled to form 3D supramolecular framework and 2D supramolecular network by hydrogen-bonding interactions, respectively. Complexes 3, 4 and 5 are 1D structures, 3 features a mononuclear unit and a 1D chain, which are arranged into 3D supramolecular architecture by hydrogen-bonding interactions, 4 presents a zigzag chain, 5 shows an infinite chain structure constructed from pentanuclear Cu(II) subunits and ClO4- anions. Complex 6 exhibits a 3D coordination framework based on cyclic [Cu4(L3)2] dimmer subunits as nodes possessing an 8-connected network topology with the point symbol {424·64}. Further, semiconductor behaviors, the solid-state luminescent properties of the complexes 1-3 and 6 were measured and studied seriously at room temperature.
High resolution X-ray diffraction imaging of lead tin telluride
NASA Technical Reports Server (NTRS)
Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald
1991-01-01
High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.
In-situ X-ray diffraction system using sources and detectors at fixed angular positions
Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY
2007-06-26
An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.
NASA Astrophysics Data System (ADS)
Sharma, Swati; Yawer, Mohd; Kariem, Mukaddus; Sheikh, Haq Nawaz
2016-08-01
Two new 3D MOFs [Nd2(TDA)3(DEF)2(H2O)]n (1) and [Y4(TDA)6(DEF)4]n (2) [Thiophene-2,5-dicarboxylic acid (H2TDA) and N,N‧-diethylformamide (DEF)] were synthesized by solvothermal method. They were characterized by elemental analyses, infrared spectroscopy and single crystal X-ray diffraction studies. The two MOFs (1) and (2) belong to the monoclinic system with space group P21/n and C 2 respectively. Structural characterizations by single-crystal X-ray crystallography reveal that 1 and 2 adopt three-dimensional frameworks constructed by cross-linking of rod shaped infinite chain secondary building unit (SBU) by thiophene-2,5-dicarboxylates as linker. These frameworks feature rhomboidal channels, inside which coordinated DEF/H2O solvent molecules are located. DEF plays pivotal role in reaction and design of MOFs. Thermogravimetric analysis shows that both MOFs are thermally robust.
Suganuma, Masatoshi; Teh, Aik Hong; Makino, Masatomo; Shimizu, Nobutaka; Kaneko, Tomonori; Hirata, Kunio; Yamamoto, Masaki; Kumasaka, Takashi
2009-01-01
RsbX from Bacillus subtilis is a manganese-dependent PPM phosphatase and negatively regulates the signal transduction of the general stress response by the dephosphorylation of RsbS and RsbR, which are activators of the alternative RNA polymerase σ factor SigB. In order to elucidate the structural–functional relationship of its Ser/Thr protein-phosphorylation mechanism, an X-ray crystallographic diffraction study of RsbX was performed. Recombinant RsbX was expressed in Escherichia coli, purified and crystallized. Crystals were obtained using the sitting-drop vapour-diffusion method and X-ray diffraction data were collected to 1.06 Å resolution with an R merge of 8.1%. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 33.3, b = 41.7, c = 68.6 Å, α = 98.8, β = 90.0, γ = 108.4°. PMID:19923733
Suganuma, Masatoshi; Teh, Aik Hong; Makino, Masatomo; Shimizu, Nobutaka; Kaneko, Tomonori; Hirata, Kunio; Yamamoto, Masaki; Kumasaka, Takashi
2009-11-01
RsbX from Bacillus subtilis is a manganese-dependent PPM phosphatase and negatively regulates the signal transduction of the general stress response by the dephosphorylation of RsbS and RsbR, which are activators of the alternative RNA polymerase sigma factor SigB. In order to elucidate the structural-functional relationship of its Ser/Thr protein-phosphorylation mechanism, an X-ray crystallographic diffraction study of RsbX was performed. Recombinant RsbX was expressed in Escherichia coli, purified and crystallized. Crystals were obtained using the sitting-drop vapour-diffusion method and X-ray diffraction data were collected to 1.06 angstrom resolution with an R(merge) of 8.1%. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 33.3, b = 41.7, c = 68.6 angstrom , alpha = 98.8, beta = 90.0, gamma = 108.4 degrees.
NASA Astrophysics Data System (ADS)
Wang, Duo-Zhi; Wang, Xin-Fang; Du, Jia-Qiang; Dong, Jun-Liang; Xie, Fei
2018-02-01
We report the synthesis and characterization of five transition metal coordination polymers (CPs) based on M(II) (M: Co, Ni and Cu), 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L) ligand. They are formulated as {[Co2(HL)2(H2O)3(SO4)]·H2O}n (1), {[Co2(HL)2(H2O)2]·SiF6}n (2), {[Ni2(HL)2(H2O)3(SO4)]·2H2O}n (3), {[Ni2(HL)2(H2O)4]·H2O·SiF6}n (4), {[Cu2(HL)2(H2O)2]·SiF6}n (5). The complexes 1-5 structure were characterized by single-crystal X-ray diffraction, elemental analyses, infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). Complexes 1-5 are two-dimensional (2D) network type coordination polymers that 1-3, 5 crystallize in monoclinic system within the centrosymmetric space group P2(1)/c, and 4 in triclinic system P-1 space group, they show the same coordination modes (κ1-κ1)-(κ1)-(κ1)-μ3 in coordination polymers. Complexes 1 and 3 expand to three-dimensional framework by means of hydrogen bond interactions, and can be rationalized to be three-connected {63} topological network, while 2, 4, 5 exhibit the topological network with a four-connected {44·62} topological sql network. The luminescent properties (for complexes 1, 2) and UV diffuse reflectance (for complexes 1-5) in the solid state at room temperature were also investigated and discussed. Complexes 1-5 act as effective heterogeneous catalysts, under mild conditions, for the homocoupling reaction of 4-substituted aryl iodides bearing electron-donating groups (-CH3, -OCH3).
A new nondestructive instrument for bulk residual stress measurement using tungsten kα1 X-ray.
Ma, Ce; Dou, Zuo-Yong; Chen, Li; Li, Yun; Tan, Xiao; Dong, Ping; Zhang, Jin; Zheng, Lin; Zhang, Peng-Cheng
2016-11-01
We describe an experimental instrument used for measuring nondestructively the residual stress using short wavelength X-ray, tungsten k α1 . By introducing a photon energy screening technology, the monochromatic X-ray diffraction of tungsten k α1 was realized using a CdTe detector. A high precision Huber goniometer is utilized in order to reduce the error in residual stress measurement. This paper summarizes the main performance of this instrument, measurement depth, stress error, as opposed to the neutron diffraction measurements of residual stress. Here, we demonstrate an application on the determination of residual stress in an aluminum alloy welded by the friction stir welding.
Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blake, David F.; DeVincenzi, D. (Technical Monitor)
1999-01-01
The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.
Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
Fe-catalyzed thermal conversion of sodium lignosulfonate to graphene
Sung Phil Mun; Zhiyong Cai; Jilei Zhang
2013-01-01
Sodium lignosulfonate (LS) from sulfite pulping processing was used as a carbon source to synthesize graphene. LS was mixed with Fe nanoparticles (FeNPs) as a catalyst and thermally treated at 1000 °C for 1 h. The Raman spectrum and X-ray diffraction pattern suggested that graphene sheets were formed in LS thermally treated with FeNPs (Fe-HTLS). Scanning...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramchik, Yu. A.; Timofeev, V. I., E-mail: tostars@mail.ru; Muravieva, T. I.
2016-11-15
Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P12{sub 1}1 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, βmore » = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.« less
Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Carlson, David B.; Hunter, Mark
2014-02-28
Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less
A Compact X-Ray System for Support of High Throughput Crystallography
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.
NASA Astrophysics Data System (ADS)
Kırca, Başak Koşar; Çakmak, Şükriye; Kütük, Halil; Odabaşoğlu, Mustafa; Büyükgüngör, Orhan
2018-01-01
This study treats about two successfully synthesized secondary amide compounds 3-Acetoxy-2-methyl-N-(phenyl)benzamide, I and 3-Acetoxy-2-methyl-N-(4-methylphenyl)benzamide, II. Compounds were characterized by FTIR, 1H NMR, 13C NMR and X-ray single crystal diffraction analysis techniques. Single crystal X-ray diffraction analyses show that while I crystallized in the orthorhombic system with space group Pbca, II crystallized in the triclinic system with space group P-1 and the asymmetric unit of II consists of two crystallographically independent molecules. Lattice constants are a = 7.9713 (3) Å, b = 9.5059 (3) Å, c = 37.1762 (2) Å, Z = 8 for I and a = 7.5579 (8) Å, b = 8.8601 (8) Å, c = 23.363 (3) Å, α = 97.011 (9) °, β = 96.932 (9)°, γ = 90.051 (8)°, Z = 4 for II. Crystallographic studies also show that the supramolecular structures were stabilized by intramolecular, intermolecular hydrogen bonds and Csbnd H … π interactions for both compounds. Characteristic amide bonds were observed in IR and NMR spectra.
High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage
2012-08-28
diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with
Materials identification using a small-scale pixellated x-ray diffraction system
NASA Astrophysics Data System (ADS)
O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.
2016-05-01
A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Duane C.; Liu, Shengming; Chen, Xuenian
2009-11-04
Water-free rare earth(III) hexacyanoferrate(III) complexes, {l_brace}Ln(DMF){sub 6}({mu}-CN){sub 2}Fe(CN){sub 4}{r_brace}{sub {infinity}} (DMF = N,N-dimethylformamide; Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Ho, 6; Er, 7; Tm, 8; Yb, 9; Lu, 10; Y, 11; La, 12; Ce, 13; Pr, 14; Nd, 15), were synthesized in dry DMF through the metathesis reactions of [(18-crown-6)K]{sub 3}Fe(CN){sub 6} with LnX{sub 3}(DMF){sub n} (X = Cl or NO{sub 3}). Anhydrous DMF solutions of LnX{sub 3}(DMF){sub n} were prepared at room temperature from LnCl{sub 3} or LnX{sub 3} {center_dot} nH{sub 2}O under a dynamic vacuum. All compounds were characterized by IR, X-raymore » powder diffraction (except for 10), and single crystal X-ray diffraction (except for 2, 7, 10). Infrared spectra reveal that a monotonic, linear relationship exists between the ionic radius of the lanthanide and the {nu}{sub {mu}-CN} stretching frequency of 1-10, 12-15 while 11 deviates slightly from the ionic radius relationship. X-ray powder diffraction data are in agreement with powder patterns calculated from single crystal X-ray diffraction results, a useful alternative for bulk sample confirmation when elemental analysis data are difficult to obtain. Eight-coordinate Ln(III) metal centers are observed for all structures. trans-cyanide units of [Fe(CN){sub 6}]{sup 3-} formed isocyanide linkages to Ln(III) resulting in one-dimensional polymeric chains. Structures of compounds 1-9 and 11 are isomorphous, crystallizing in the space group C2/c. Structures of compounds 12-15 are also isomorphous, crystallizing in the space group P2/n. One unique polymeric chain exists in the structures of 1-9 and 11 while two unique polymeric chains exist in structures of 12-15. One of the polymeric chains of 12-15 is similar to that observed for 1-9, 11 while the other is more distorted and has a shorter Ln-Fe distance. Magnetic susceptibility measurements for compounds 3-6, 8, 11 were performed on polycrystalline samples of the compounds.« less
Short-time dissolution mechanisms of kaolinitic tropical soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malengreau, N.; Sposito, Garrison
1996-03-01
Previous research on the short-time dissolution behavior of kaolinitic Oxisols suggested pH-dependent kinetics involving ligand-promoted dissolution, metal readsorption, and colloidal dispersion, with soil organic matter conjectured to play a decisive role. A novel combination of spectroscopy, lightscattering, and batch dissolution experiments, conducted at controlled pH and ionic strength over five dissolution periods ranging from 1 to 12 h, was applied to evaluate this mechanism for samples of a representative kaolinitic Oxisol; collected at both forested and cultivated field sites (leading to significant differences in organic matter content and field soil pH). The overall characteristics of the pH-dependent net release kineticsmore » of Al, Fe, and Si by the soil samples, for any dissolution period in the range investigated, were determined by the pH value at which colloid dispersion commenced, which decreased significantly as the soil organic matter content increased. Plots of log(Si/Al released) (or Si/Fe released) vs. -log [H+] ([H+] is proton concentration) were superimposable for all dissolution periods studied, rising to a plateau value above the point of zero net charge of the soils (pH 3.2). Light-scattering and X-ray diffraction data showed conclusively that this plateau represented the release of siliceous colloids containing kaolinite and X-ray amorphous material. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and electron spin resonance spectroscopy, applied to the soil samples before and after dissolution, and after conventional chemical extractions to remove Al, C, Fe, and Si, showed that kaolinite and iron oxide phases (the latter being highly Al-substituted and present in both coatings and occlusions) were essentially unaltered by dissolution, even at -log [H+] = 2, whereas substantial dissolution loss of soil quartz occurred. Diffuse reflectance spectroscopy gave strong evidence that C in these soils occurs principally in discrete solid phases, not as a reactive coating on mineral surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, Ludmila, E-mail: llm@ispms.tsc.ru; Meisner, Stanislav, E-mail: msn@ispms.tsc.ru; Mironov, Yurii, E-mail: myp@ispms.tsc.ru
The paper considers the effects arising on X-ray diffraction patterns taken in different diffraction geometries and how these effects can be interpreted to judge structural states in NiTi near-surface regions after electron and ion beam treatment. It is shown that qualitative and quantitative analysis of phase composition, lattice parameters of main phases, elastic stress states, and their in-depth variation requires X-ray diffraction patterns in both symmetric Bragg–Brentano and asymmetric Lambot–Vassamilleta geometries with variation in X-ray wavelengths and imaging conditions (with and with no β-filter). These techniques of structural phase analysis are more efficient when the thickness of modified NiTi surfacemore » layers is 1–10 μm (after electron beam treatment) and requires special imaging conditions when the thickness of modified NiTi surface layers is no greater than 1 μm (after ion beam treatment)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee,Y.; Kumar, S.; Jobichen, C.
2007-01-01
Hemextin A was isolated and purified from African Ringhals cobra (Hemachatus haemachatus). It is a three-finger toxin that specifically inhibits blood coagulation factor VIIa and clot formation and that also interacts with hemextin B to form a unique anticoagulant complex. Hemextin A was crystallized by the hanging-drop vapor-diffusion method by equilibration against 0.2 M ammonium acetate, 0.1 M sodium acetate trihydrate pH 4.6 and 30% PEG 4000 as the precipitating agent. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 49.27, b = 49.51, c = 57.87 {angstrom} and two molecules in the asymmetricmore » unit. They diffracted to 1.5 {angstrom} resolution at beamline X25 at BNL.« less
Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus
Green, L.A.; Heck, J.L. Jr.
1985-04-23
A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.
Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus
Green, Lanny A.; Heck, Jr., Joaquim L.
1987-01-01
A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.
NASA Astrophysics Data System (ADS)
Daszkiewicz, Marek; Marchewka, Mariusz K.
2012-09-01
Crystal structures of 3-amino-1,2,4-triazolium chloride and bis(3-amino-1,2,4-triazolium) hexachloridostannate monohydrate were determined by means of X-ray single crystal diffraction. The route of protonation of organic molecule and tautomer equilibrium constants for the cationic forms were calculated using B3LYP/6-31G* method. The most stable protonated species is 2,4-H2-3-amino-1,2,4-triazolium ion, 24(3at)+. Very good agreement between theoretical and experimental frequencies was achieved due to very weak interactions existing in studied compounds. Significantly weaker intermolecular interactions are found in [24(3at)]2SnCl6·H2O than in [24(3at)]Cl. The differences in strength of interactions are manifested in red and blue shifts for stretching and bending motions, respectively. PED calculations show that for 24(3at)+ ion the stretching type of motion of two Nringsbnd H bonds is independent, whereas bending is coupled.
Enhanced Photocatalytic Activity in Bi1-x Ba x FeO3 Prepared by a PEG400 Assisted Sol-Gel Method
NASA Astrophysics Data System (ADS)
Zhang, Chenlan; Chen, Jianguo; Jin, Dengren; Cheng, Jinrong
2018-03-01
Ferroelectric Bi1-x Ba x FeO3 nanoparticles for x = 0, 0.01, 0.03, 0.05 and 0.10 were synthesized by a polyethylene glycol 400 (PEG400) assisted sol-gel method. X-ray diffraction reveals that Bi1-x Ba x FeO3 nanoparticles exhibit a distorted rhombohedral structure with the R3c space group, and the diffraction peaks shift upon incorporation of Ba. Transmission electron microscope analysis shows that the particle size of Bi1-x Ba x FeO3 nanoparticles is in the range of 30-60 nm, decreasing with an increase in Ba content. Bi1-x Ba x FeO3 nanoparticles have band gaps in the range of 1.68-2.0 eV, which are capable of responding to visible light irradiation. The rate of the photocatalytic degradation of Bi1-x Ba x FeO3 nanoparticles for x = 0.03 to methyl orange (MO) dye achieves about 81% under visible light irradiation for 3 h, which is higher than that of 66% for pure phase BiFeO3 (BFO). Moreover, the effects of Ba2+ modification on the band gap of BFO crystallites have been investigated and discussed.
NASA Astrophysics Data System (ADS)
Li, Naixu; Chen, Yong; Shen, Quanhao; Yang, Bin; Liu, Ming; Wei, Lingfei; Tian, Wei; Zhou, Jiancheng
2018-05-01
We report a simple and efficient method for the preparation of highly dispersed Au nanoparticles (< 5 nm) on TS-1 substrate. The synthesis relies on the use of NaBH4 as a reductant for rapid Au atom generation, as well as PVA as a capping agent confining the particle size and dispersion. The samples were characterized by N2 physisorption, inductively coupled plasma mass spectrometry, power X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, CO pulse chemisorption and thermogravimetric analysis. The size of Au particles can be controlled in the range of 3-5 nm. The supported catalyst shows both good activity and selectivity for propylene oxide (PO) generation from direct propylene epoxidation. An optimal performance with PO formation rate of 102.94 gPO h-1 kg-1cat and selectivity of 84.83% is achieved over 2.0 wt% Au/TS-1 catalyst, which is prepared by controlling PVA/Au3+ mass ratio of 1.5/1 and NaBH4/Au3+ mole ratio of 5/1. After 50 h test at 200 °C, no significant decrement of both catalytic activity and PO selectivity can be observed, indicating the excellent thermally stability of the catalyst. Furthermore, a possible reaction mechanism is described on basis of the previous researches and our experimental results.