Sample records for x-ray diffraction density

  1. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2018-06-01

    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.

  2. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less

  3. Density of bunched threading dislocations in epitaxial GaN layers as determined using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Holý, V.; Rafaja, D.

    2018-04-01

    X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.

  4. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  5. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  6. Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy.

    PubMed

    Kodama, Wataru; Nakasako, Masayoshi

    2011-08-01

    Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.

  7. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  8. Langmuir-Blodgett films of random copolymers of fluoroalkyl(meth)acrylate and methacrylic acid: Fabrication and X-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronov, V.; Feigin, L.A.; Budovskaya, L.D.

    1994-12-31

    Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.

  9. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimminau, G; Nagler, B; Higginbotham, A

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  10. Mass density images from the diffraction enhanced imaging technique.

    PubMed

    Hasnah, M O; Parham, C; Pisano, E D; Zhong, Z; Oltulu, O; Chapman, D

    2005-02-01

    Conventional x-ray radiography measures the projected x-ray attenuation of an object. It requires attenuation differences to obtain contrast of embedded features. In general, the best absorption contrast is obtained at x-ray energies where the absorption is high, meaning a high absorbed dose. Diffraction-enhanced imaging (DEI) derives contrast from absorption, refraction, and extinction. The refraction angle image of DEI visualizes the spatial gradient of the projected electron density of the object. The projected electron density often correlates well with the projected mass density and projected absorption in soft-tissue imaging, yet the mass density is not an "energy"-dependent property of the object, as is the case of absorption. This simple difference can lead to imaging with less x-ray exposure or dose. In addition, the mass density image can be directly compared (i.e., a signal-to-noise comparison) with conventional radiography. We present the method of obtaining the mass density image, the results of experiments in which comparisons are made with radiography, and an application of the method to breast cancer imaging.

  11. X-Ray Spectroscopies of Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver

    This dissertation provides a perspective on the role of x-ray spectroscopy and diffraction diagnostics in experimental studies of warm dense matter (WDM). The primary focus of the work I discuss is the development of techniques to measure the structure and state variables of laboratory-generated WDM with a view towards both phenomenlogy and placing contraints on theoretical models. I present techniques adapted to two experimental venues for WDM studies: large-scale laser plasma facilities and x-ray free electron lasers. My focus is on the latter, in the context of which I have studied a dose enhancement technique that exploits nonlocal heat transport in nanostructured targets and considered several aspects of optimizing x-ray diffraction measurements. This work came into play in beam runs at the Linac Coherent Light Source (LCLS) in which my group performed x-ray diffraction studies of several materials heated to eV-scale temperatures. The results from these experiments include confirmation of the persistence of long-range crystalline order upon heating of metal oxides to tens of eV temperarures on the 40 fs timescale. One material, MgO, additionally manifested a surprising anomalous early onset in delocalization of valence charge density, contradicting predictions of all models based on either ground state electronic structure or (high-energy density) plasma physics. This particular result outlines a future path for studies of ordered insulators heated to temperatures on the order of the band gap. Such experiments will offer strong tests of electronic strucure theory, implementing a scientific approach that sees measurement of real-space charge density via x-ray diffraction (XRD) as a particularly effectve means to constrain density functional theory (DFT)-based modeling of the solid state/plasma transitional regime.

  12. Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2014-11-17

    Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.

  13. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less

  14. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  15. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  16. A protocol for searching the most probable phase-retrieved maps in coherent X-ray diffraction imaging by exploiting the relationship between convergence of the retrieved phase and success of calculation.

    PubMed

    Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2017-09-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.

  17. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  18. Crystallization and preliminary X-ray analysis of a low density lipoprotein from human plasma.

    PubMed

    Prassl, R; Chapman, J M; Nigon, F; Sara, M; Eschenburg, S; Betzel, C; Saxena, A; Laggner, P

    1996-11-15

    Single crystals of human plasma low density lipoprotein (LDL), the major transport vehicle for cholesterol in blood, have been produced with a view to analysis of the three-dimensional structure by x-ray crystallography. Crystals with dimensions of approximately 200 x 100 x 50 microm have been reproducibly obtained from highly homogeneous LDL particle subspecies, isolated in the density ranges d = 1.0271-1. 0297 g/ml and d = 1.0297-1.0327 g/ml. Electron microscopic imaging of ultrathin-sectioned preparations of the crystals confirmed the existence of a regular, quasihexagonal arrangement of spherical particles of approximately 18 nm in diameter, thereby resembling the dimensions characteristic of LDL after dehydration and fixation. X-ray diffraction with synchrotron radiation under cryogenic conditions revealed the presence of well resolved diffraction spots, to a resolution of about 29 A. The diffraction patterns are indexed in terms of a triclinic lattice with unit cell dimensions of a = 16. 1 nm, b = 39.0 nm, c = 43.9 nm; alpha = 96.2 degrees, beta = 92.1 degrees, gamma = 102 degrees, and with space group P1.

  19. Effect of Pressure on Valence and Structural Properties of YbFe 2 Ge 2 Heavy Fermion Compound—A Combined Inelastic X-ray Spectroscopy, X-ray Diffraction, and Theoretical Investigation

    DOE PAGES

    Kumar, Ravhi S.; Svane, Axel; Vaitheeswaran, Ganapathy; ...

    2015-10-19

    We measured the crystal structure and the Yb valence of the YbFe 2Ge 2 heavy fermion compound at room temperature and under high pressures using high-pressure powder X-ray diffraction and X-ray absorption spectroscopy via both partial fluorescence yield and resonant inelastic X-ray emission techniques. Moreover, the measurements are complemented by first-principles density functional theoretical calculations using the self-interaction corrected local spin density approximation investigating in particular the magnetic structure and the Yb valence. Finally, while the ThCr 2Si 2-type tetragonal (I4/mmm) structure is stable up to 53 GPa, the X-ray emission results show an increase of the Yb valence frommore » v = 2.72(2) at ambient pressure to v = 2.93(3) at ~9 GPa, where at low temperature a pressure-induced quantum critical state was reported.« less

  20. Microgravity

    NASA Image and Video Library

    2001-06-06

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  1. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.

    2016-07-27

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs viamore » numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4{sup th} or 5{sup th} order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.« less

  2. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  3. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Pressure-induced Lifshitz transition in NbP: Raman, x-ray diffraction, electrical transport, and density functional theory

    NASA Astrophysics Data System (ADS)

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Qi, Yanpeng; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-02-01

    We report high-pressure Raman, synchrotron x-ray diffraction, and electrical transport studies on Weyl semimetals NbP and TaP along with first-principles density functional theoretical (DFT) analysis. The frequencies of first-order Raman modes of NbP harden with increasing pressure and exhibit a slope change at Pc˜9 GPa. The pressure-dependent resistivity exhibits a minimum at Pc. The temperature coefficient of resistivity below Pc is positive as expected for semimetals but changes significantly in the high-pressure phase. Using DFT calculations, we show that these anomalies are associated with a pressure-induced Lifshitz transition, which involves the appearance of electron and hole pockets in its electronic structure. In contrast, the results of Raman and synchrotron x-ray diffraction experiments on TaP and DFT calculations show that TaP is quite robust under pressure and does not undergo any phase transition.

  5. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berecz, Tibor, E-mail: berecz@eik.bme.hu; Jenei, Péter, E-mail: jenei@metal.elte.hu; Csóré, András, E-mail: csorean@gmail.com

    2016-03-15

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreementmore » with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.« less

  6. Characterization of Beryllium Windows for Coherent X-ray Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji

    2007-01-19

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.

  7. When combined X-ray and polarized neutron diffraction data challenge high-level calculations: spin-resolved electron density of an organic radical.

    PubMed

    Voufack, Ariste Bolivard; Claiser, Nicolas; Lecomte, Claude; Pillet, Sébastien; Pontillon, Yves; Gillon, Béatrice; Yan, Zeyin; Gillet, Jean Michel; Marazzi, Marco; Genoni, Alessandro; Souhassou, Mohamed

    2017-08-01

    Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.

  8. Conceptual Design for Time-Resolved X-ray Diffraction in a Single Laser-Driven Compression Experiment

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.

    2017-06-01

    Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.

  9. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.

    2016-05-23

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  10. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography.

    PubMed

    Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A

    2010-05-01

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  11. Electronic and atomic structures of Ti{sub 1-x}Al{sub x}N thin films related to their damage behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.

    2008-04-15

    Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grainmore » boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.« less

  12. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    PubMed

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  13. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments.

    PubMed

    Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed

    2014-05-01

    Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  14. Structural properties of alkaline sodium lead fluoride borate glasses incorporated with Praseodymium ion

    NASA Astrophysics Data System (ADS)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    The effect of different alkaline and Pr ions on the density and structure of Na2O-PbO-MO-B2O3 (M represents Ba/Ca/Sr) has been investigated using X-ray diffraction (XRD), infrared spectrophotometer (FTIR). The amorphous phase has been identified based on X-ray diffraction analysis. The Praseodymium oxide plays the role as a glass-modifier and influences on BO3↔BO4 conversion. The same effect is also observed in density and molar volume variation due to non bridging oxygen's (NBO) created when BO3 units are converted.

  15. Graphene as a protein crystal mounting material to reduce background scatter.

    PubMed

    Wierman, Jennifer L; Alden, Jonathan S; Kim, Chae Un; McEuen, Paul L; Gruner, Sol M

    2013-10-01

    The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects.

  16. Graphene as a protein crystal mounting material to reduce background scatter

    PubMed Central

    Wierman, Jennifer L.; Alden, Jonathan S.; Kim, Chae Un; McEuen, Paul L.; Gruner, Sol M.

    2013-01-01

    The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects. PMID:24068843

  17. Monitoring nonadiabatic avoided crossing dynamics in molecules by ultrafast X-ray diffraction

    DOE PAGES

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2017-05-26

    We examine time-resolved X-ray diffraction from molecules in the gas phase which undergo nonadiabatic avoided-crossing dynamics involving strongly coupled electrons and nuclei. Several contributions to the signal are identified, representing (in decreasing strength) elastic scattering, contributions of the electronic coherences created by nonadiabatic couplings in the avoided crossing regime, and inelastic scattering. The former probes the charge density and delivers direct information on the evolving molecular geometry. The latter two contributions are weaker and carry spatial information through the transition charge densities (off-diagonal elements of the charge-density operator). Furthermore, simulations are presented for the nonadiabatic harpooning process in the excitedmore » state of sodium fluoride.« less

  18. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps.

    PubMed

    Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David

    2017-04-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.

  19. Origin of Pressure-induced Superconducting Phase in K xFe 2-ySe 2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    DOE PAGES

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...

    2016-08-08

    Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less

  20. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  1. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  2. Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.

  3. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  4. Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.

    2018-04-01

    The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.

  5. Study of the physical properties of a mesogenic mixture showing induced smectic A(d) phase by refractive index, density and x-ray diffraction measurements.

    PubMed

    Roy, P D; Prasad, A; Das, M K

    2009-02-18

    The binary mixture of 4-n-pentyl phenyl 4-n'-hexyloxy benzoate (ME6O.5) and p-cyanophenyl trans-4-pentyl cyclohexane carboxylate (CPPCC) shows the presence of an induced smectic A(d) phase in a certain concentration range 0.030.33, whereas there is a discontinuity in these values for mixtures with x<0.33, consistent with the density and transition entropy measurements done on this system. The orientational order parameter, measured from x-ray diffraction studies, are somewhat smaller than those obtained from refractive index measurement in the induced smectic phase for all the mixtures. In the smectic phase, the OOP values initially increases with molar concentration up to x = 0.24 and then decreases showing a broad minima around x = 0.4. The variation of layer thickness in the induced smectic phase with composition has been explained by assuming the formation of homo- and heterodimers. We conclude that the possible packing of molecules in the induced smectic A(d) phase stabilizes the layers but increases the orientational free volume, consistent with the lower orientational order parameter.

  6. Neutron and X-ray Microbeam Diffraction Studies around a Fatigue-Crack Tip after Overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sooyeol; Barabash, Rozaliya; Chung, Jin-Seok

    2008-01-01

    An in-situ neutron diffraction technique was used to investigate the lattice-strain distributions and plastic deformation around a crack tip after overload. The lattice-strain profiles around a crack tip were measured as a function of the applied load during the tensile loading cycles after overload. Dislocation densities calculated from the diffraction peak broadening were presented as a function of the distance from the crack tip. Furthermore, the crystallographic orientation variations were examined near a crack tip using polychromatic X-ray microdiffraction combined with differential aperture microscopy. Crystallographic tilts are considerably observed beneath the surface around a crack tip, and these are consistentmore » with the high dislocation densities near the crack tip measured by neutron peak broadening.« less

  7. Ultrafast molecular processes mapped by femtosecond x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Elsaesser, Thomas

    2012-02-01

    X-ray diffraction with a femtosecond time resolution allows for mapping photoinduced structural dynamics on the length scale of a chemical bond and in the time domain of atomic and molecular motion. In a pump-probe approach, a femtosecond excitation pulse induces structural changes which are probed by diffracting a femtosecond hard x-ray pulse from the excited sample. The transient angular positions and intensities of diffraction peaks give insight into the momentary atomic or molecular positions and into the distribution of electronic charge density. The simultaneous measurement of changes on different diffraction peaks is essential for determining atom positions and charge density maps with high accuracy. Recent progress in the generation of ultrashort hard x-ray pulses (Cu Kα, wavelength λ=0.154 nm) in laser-driven plasma sources has led to the implementation of the powder diffraction and the rotating crystal method with a time resolution of 100 fs. In this contribution, we report new results from powder diffraction studies of molecular materials. A first series of experiments gives evidence of a so far unknown concerted transfer of electrons and protons in ammonium sulfate [(NH4)2SO4], a centrosymmetric structure. Charge transfer from the sulfate groups results in the sub-100 fs generation of a confined electron channel along the c-axis of the unit cell which is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A second study addresses atomic rearrangements and charge dislocations in the non-centrosymmetric potassium dihydrogen phosphate [KH2PO4, KDP]. Photoexcitation generates coherent low-frequency motions along the LO and TO phonon coordinates, leaving the average atomic positions unchanged. The time-dependent maps of electron density demonstrate a concomitant oscillatory relocation of electronic charge with a spatial amplitude of the order of a chemical bond length, two orders of magnitude larger than the vibrational amplitudes. The coherent phonon motions drive the charge relocation, similar to a soft mode driven phase transition between the ferro- and paraelectric phase of KDP.

  8. Origin of Pressure-induced Superconducting Phase in KxFe2-ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun'Ichiro

    2016-08-01

    Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.

  9. Properties of micro-arc oxidation coatings on aluminum alloy at different negative peak current densities

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian

    2018-05-01

    Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.

  10. High-pressure studies with x-rays using diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less

  11. High-pressure studies with x-rays using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Shen, Guoyin; Mao, Ho Kwang

    2017-01-01

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.

  12. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  13. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa

    DOE PAGES

    Briggs, R.; Gorman, M. G.; Coleman, A. L.; ...

    2017-01-09

    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Furthermore, shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearancemore » of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.« less

  14. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa.

    PubMed

    Briggs, R; Gorman, M G; Coleman, A L; McWilliams, R S; McBride, E E; McGonegle, D; Wark, J S; Peacock, L; Rothman, S; Macleod, S G; Bolme, C A; Gleason, A E; Collins, G W; Eggert, J H; Fratanduono, D E; Smith, R F; Galtier, E; Granados, E; Lee, H J; Nagler, B; Nam, I; Xing, Z; McMahon, M I

    2017-01-13

    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.

  15. Single-shot coherent diffraction imaging of microbunched relativistic electron beams for free-electron laser applications.

    PubMed

    Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B

    2013-03-01

    With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

  16. Quantum Crystallography: Density Matrix-Density Functional Theory and the X-Ray Diffraction Experiment

    NASA Astrophysics Data System (ADS)

    Soirat, Arnaud J. A.

    Density Matrix Theory is a Quantum Mechanical formalism in which the wavefunction is eliminated and its role taken over by reduced density matrices. The interest of this is that, it allows one, in principle, to calculate any electronic property of a physical system, without having to solve the Schrodinger equation, using only two entities much simpler than an N-body wavefunction: first and second -order reduced density matrices. In practice, though, this very promising possibility faces the tremendous theoretical problem of N-representability, which has been solved for the former, but, until now, voids any hope of theoretically determining the latter. However, it has been shown that single determinant reduced density matrices of any order may be recovered from coherent X-ray diffraction data, if one provides a proper Quantum Mechanical description of the Crystallography experiment. A deeper investigation of this method is the purpose of this work, where we, first, further study the calculation of X-ray reduced density matrices N-representable by a single Slater determinant. In this context, we independently derive necessary and sufficient conditions for the uniqueness of the method. We then show how to account for electron correlation in this model. For the first time, indeed, we derive highly accurate, yet practical, density matrices approximately N-representable by correlated-determinant wavefunctions. The interest of such a result lies in the Quantum Mechanical validity of these density matrices, their property of being entirely obtainable from X-ray coherent diffraction data, their very high accuracy conferred by this known property of the N-representing wavefunction, as well as their definition as explicit functionals of the density. All of these properties are finally used in both a theoretical and a numerical application: in the former, we show that these density matrices may be used in the context of Density Functional Theory to highly accurately determine the unknown HK functional, associated with the theorem of Hohenberg and Kohn. The latter is provided by the calculation of helium correlation energy, where we test approximating the second-order density function by the leading term of its McLaurin's series expansion.

  17. Single-crystal Raman spectroscopy and X-ray crystallography at beamline X26-C of the NSLS

    PubMed Central

    Stoner-Ma, Deborah; Skinner, John M.; Schneider, Dieter K.; Cowan, Matt; Sweet, Robert M.; Orville, Allen M.

    2011-01-01

    Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of ‘mystery density’, i.e. ambiguous or unknown features within the electron density maps, especially at ∼2 Å resolutions typical of most macromolecular structures. Beamline X26-C at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), provides researchers with the opportunity to not only determine the atomic structure of their samples but also to explore the electronic and vibrational characteristics of the sample before, during and after X-ray diffraction data collection. When samples are maintained under cryo-conditions, an opportunity to promote and follow photochemical reactions in situ as a function of X-ray exposure is also provided. Plans are in place to further expand the capabilities at beamline X26-C and to develop beamlines at NSLS-II, currently under construction at BNL, which will provide users access to a wide array of complementary spectroscopic methods in addition to high-quality X-ray diffraction data. PMID:21169688

  18. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme

    PubMed Central

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru

    2016-01-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  19. Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xian-Rong; Gog, Thomas; Kim, Jungho

    Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h 1h 2h 3L} and {h 2h 1h 3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystalsmore » therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.« less

  20. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter

    PubMed Central

    Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; Baum, Peter

    2015-01-01

    For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. In particular, we point out nontrivial relations between microscopic electric current and density in undoped graphene. PMID:26412407

  1. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter

    DOE PAGES

    Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; ...

    2015-09-28

    For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. Here, we point out nontrivial relations between microscopic electric current and density in undoped graphene.

  2. Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging.

    PubMed

    Oroguchi, Tomotaka; Nakasako, Masayoshi

    2013-02-01

    Coherent and intense x-ray pulses generated by x-ray free-electron laser (XFEL) sources are paving the way for structural determination of noncrystalline biomolecules. However, due to the small scattering cross section of electrons for x rays, the available incident x-ray intensity of XFEL sources, which is currently in the range of 10(12)-10(13) photons/μm(2)/pulse, is lower than that necessary to perform single-molecule diffraction experiments for noncrystalline biomolecules even with the molecular masses of megadalton and submicrometer dimensions. Here, we propose an experimental protocol and analysis method for visualizing the structure of those biomolecules by the combined application of coherent x-ray diffraction imaging and three-dimensional reconstruction methods. To compensate the small scattering cross section of biomolecules, in our protocol, a thin vitreous ice plate containing several hundred biomolecules/μm(2) is used as sample, a setup similar to that utilized by single-molecule cryoelectron microscopy. The scattering cross section of such an ice plate is far larger than that of a single particle. The images of biomolecules contained within irradiated areas are then retrieved from each diffraction pattern, and finally provide the three-dimensional electron density model. A realistic atomic simulation using large-scale computations proposed that the three-dimensional structure determination of the 50S ribosomal subunit embedded in a vitreous ice plate is possible at a resolution of 0.8 nm when an x-ray beam of 10(16) photons/500×500 nm(2)/pulse is available.

  3. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong

    2015-06-16

    Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, polyβ-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ∼1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure.

  4. Tight-Binding Approach to Computational Materials Science, Symposium Held December 1-3, 1997, Boston, Massachusetts, USA. Volume 491

    DTIC Science & Technology

    1998-01-01

    to their large unit size and to experimental difficulties in determining geometries of carbon-based complex materials because of the weak X - ray ...qualitative relationship between the calculated local density of states and the experimental X - ray pho- toelectron spectra (XPS) and the Bremsstrahlung...from interaction schemes and allows complete data sets from different sources (neutron or X - ray diffraction, chemical constraints) to be fitted. In

  5. The microscopic structure of charge density waves in underdoped YBa 2Cu 3O 6.54 revealed by x-ray diffraction

    DOE PAGES

    E. M. Forgan; Huecker, M.; Blackburn, E.; ...

    2015-12-09

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa 2Cu 3O 6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO 2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO 2 planes, and are out of phase with each other. The planar oxygen atomsmore » have the largest displacements, perpendicular to the CuO 2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For example, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.« less

  6. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Forgan, E. M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; Zimmermann, M. V.; Hücker, M.; Hayden, S. M.

    2015-12-01

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.

  7. Electron density studies of methyl cellobioside

    USDA-ARS?s Scientific Manuscript database

    Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...

  8. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  9. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grygiel, C.; Lebius, H.; Bouffard, S.

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIXmore » to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.« less

  10. High-level expression and deuteration of sperm whale myoglobin: A study of its solvent structure by X-ray and neutron diffraction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, F.; Ramakrishnan, V.; Schoenborn, B.P.

    1994-12-31

    Neutron diffraction has become one of the best ways to study light atoms, such as hydrogens. Hydrogen however has a negative coherent scattering factor, and a large incoherent scattering factor, while deuterium has virtually no incoherent scattering, but a large positive coherent scattering factor. Beside causing high background due to its incoherent scattering, the negative coherent scattering of hydrogen tends to cancel out the positive contribution from other atoms in a neutron density map. Therefore a fully deuterated sample will yield better diffraction data with stronger density in the hydrogen position. On this basis, a sperm whale myoglobin gene modifiedmore » to include part of the A cII protein gene has been cloned into the T7 expression system. Milligram amounts of fully deuterated holo-myoglobin have been obtained and used for crystallization. The synthetic sperm whale myoglobin crystallized in P2{sub 1} space group isomorphous with the native protein crystal. A complete X-ray diffraction dataset at 1.5{Angstrom} has been collected. This X-ray dataset, and a neutron data set collected previously on a protonated carbon-monoxymyoglobin crystal have been used for solvent structure studies. Both X-ray and neutron data have shown that there are ordered hydration layers around the protein surface. Solvent shell analysis on the neutron data further has shown that the first hydration layer behaves differently around polar and apolar regions of the protein surface. Finally, the structure of per-deuterated myoglobin has been refined using all reflections to a R factor of 17%.« less

  11. Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal.

    PubMed

    Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian

    2012-08-01

    A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam.

  12. Structural properties of barium stannate

    NASA Astrophysics Data System (ADS)

    Phelan, D.; Han, F.; Lopez-Bezanilla, A.; Krogstad, M. J.; Gim, Y.; Rong, Y.; Zhang, Junjie; Parshall, D.; Zheng, H.; Cooper, S. L.; Feygenson, M.; Yang, Wenge; Chen, Yu-Sheng

    2018-06-01

    BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported by density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.

  13. USAF Summer Research Program - 1993 High School Apprenticeship Program Final Reports, Volume 15, Wright Laboratory

    DTIC Science & Technology

    1993-12-01

    of the films. One is x - ray diffraction which is used to determine the crystallographic orientation of the films. No phases other than the YBa 2Cu3O 7...x were observed in any of the films. The x - ray data for the films with high critical current densities show strong peaks of reflections indicating a...Solving for x ca = (p/2 Now, if we look at a close-up of the prism face at the input ray (FIGURE 7), we want to solve for the angle between the rays

  14. Electrochemical performance of MXenes as K-ion battery anodes

    DOE PAGES

    Naguib, Michael; Adams, Ryan A.; Zhao, Yunpu; ...

    2017-05-31

    In this paper, we report on the electrochemical performance of two-dimensional transition metal carbonitrides as novel promising electrode materials in K-ion batteries. Titanium carbonitride, Ti 3CNT z, was investigated in detail using electrochemical galvanostatic cycling at various current densities. Finally, X-ray diffraction and X-ray photoelectron spectroscopy were used to study the potassiation mechanism and its structural changes.

  15. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.

    PubMed

    Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio

    2015-06-01

    The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.

  16. Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: Implications for the composition of the Earth's core

    NASA Astrophysics Data System (ADS)

    Shibazaki, Yuki; Ohtani, Eiji; Fukui, Hiroshi; Sakai, Takeshi; Kamada, Seiji; Ishikawa, Daisuke; Tsutsui, Satoshi; Baron, Alfred Q. R.; Nishitani, Naoya; Hirao, Naohisa; Takemura, Kenichi

    2012-01-01

    We have determined the density evolution of the sound velocity of dhcp-FeH x ( x ≈ 1) up to 70 GPa at room temperature, by inelastic X-ray scattering and by X-ray diffraction. We find that the variation of VP with density is different for the ferromagnetic and nonmagnetic dhcp-FeH x, and that only nonmagnetic dhcp-FeH x follows Birch's law. Combining our results with Birch's law for iron and assuming an ideal two-component mixing model, we obtain an upper bound of the hydrogen content in the Earth's inner core, 0.23(6) wt.% H, corresponding to FeH 0.13(3). The iron alloy with 0.23(6) wt.% H can satisfy the density, and compressional and shear sound velocities of the PREM inner core, assuming that there are no other light elements in the inner core.

  17. Density and structure of jadeite melt at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Yu, T.; Jing, Z.; Park, C.; Shen, G.; Wang, Y.

    2011-12-01

    Knowledge of density of magma is important for understanding magma-related processes such as volcanic activity and differentiation in the Earth's early history. Since these processes take place in Earth's interior, we need to measure the density of magma in situ at high pressures. It is also necessary to relate the density with the structure of silicate melts at high pressure and temperature and further understand the densification mechanism of magma with pressure. Here we report the density and structural data for jadeite melt up to 7 GPa,. The density measurements were carried out using a DIA-type cubic press at the 13-BM-D beamline at APS using monochromatic radiation tuned to the desired energy (~20 keV) with a Si (111) double-crystal monochromator. Intensities of the incident and transmitted X-rays were measured by two ion chambers placed before and after the press for X-ray absorption measurements. Incident and transmitted X-ray intensities were obtained by moving the incident slits perpendicular to the X-ray beam direction at 0.010 mm steps crosses the sample. Lambert-Beer law was then applied to the normalized intensities as a function of the sample position across the assembly. Density of jadeite melt was determined up to 7 GPa and 2300 K. For structural determination, high-pressure and high-temperature energy-dispersive XRD experiments were carried out by using a Paris-Edinburgh press installed at the 16-BM-B of APS. Incident X-rays were collimated by a vertical slit (0.5 mm) and a horizontal slit (0.1 mm) to irradiate the sample. Diffracted X-rays were detected by a Ge solid state detector with a 4k multi-channel analyzer, through a collimator and 5.0mm (V) by and 0.1mm (H) receiving slits. Diffraction patterns were collected until the highest intensity reached 2000 counts, at 12 angles (2theta=3, 4, 5, 7, 9, 11, 15, 20, 25, 30, 35, 39.5 degrees). The structural measurements were carried out in the pressure range from 1 to 5 GPa and at 1600 to 2000 K. Pressure and temperature dependence of density of jadeite melt will be presented, along with structure factor S(Q) and radial distribution function G(r) of jadeite melt at high pressure and high temperature. The density-structure relationships will be discussed.

  18. Structural Properties of Barium Stannate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelan, D.; Han, F.; Lopez-Bezanilla, A.

    2018-06-01

    BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported bymore » density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.« less

  19. Application of several physical techniques in the total analysis of a canine urinary calculus.

    PubMed

    Rodgers, A L; Mezzabotta, M; Mulder, K J; Nassimbeni, L R

    1981-06-01

    A single calculus from the bladder of a Beagle bitch has been analyzed by a multiple technique approach employing x-ray diffraction, infrared spectroscopy, scanning electron microscopy, x-ray fluorescence spectrometry, atomic absorption spectrophotometry and density gradient fractionation. The qualitative and quantitative data obtained showed excellent agreement, lending confidence to such an approach for the evaluation and understanding of stone disease.

  20. Anisotropic x-ray scattering and orientation fields in cardiac tissue cells

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Nicolas, J.-D.; Eckermann, M.; Eltzner, B.; Rehfeldt, F.; Salditt, T.

    2017-01-01

    X-ray diffraction from biomolecular assemblies is a powerful technique which can provide structural information about complex architectures such as the locomotor systems underlying muscle contraction. However, in its conventional form, macromolecular diffraction averages over large ensembles. Progress in x-ray optics has now enabled to probe structures on sub-cellular scales, with the beam confined to a distinct organelle. Here, we use scanning small angle x-ray scattering (scanning SAXS) to probe the diffraction from cytoskeleton networks in cardiac tissue cells. In particular, we focus on actin-myosin composites, which we identify as the dominating contribution to the anisotropic diffraction patterns, by correlation with optical fluorescence microscopy. To this end, we use a principal component analysis approach to quantify direction, degree of orientation, nematic order, and the second moment of the scattering distribution in each scan point. We compare the fiber orientation from micrographs of fluorescently labeled actin fibers to the structure orientation of the x-ray dataset and thus correlate signals of two different measurements: the native electron density distribution of the local probing area versus specifically labeled constituents of the sample. Further, we develop a robust and automated fitting approach based on a power law expansion, in order to describe the local structure factor in each scan point over a broad range of the momentum transfer {q}{{r}}. Finally, we demonstrate how the methodology shown for freeze dried cells in the first part of the paper can be translated to alive cell recordings.

  1. Experimental evidence of low-density liquid water upon rapid decompression

    PubMed Central

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Shen, Guoyin

    2018-01-01

    Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140–165 K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LDL). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter. PMID:29440411

  2. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  3. X-ray Diffraction from Membrane Protein Nanocrystals

    PubMed Central

    Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.

    2011-01-01

    Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672

  4. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    PubMed

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  5. X-ray diffraction gratings: Precise control of ultra-low blaze angle via anisotropic wet etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, Dmitriy L.; Naulleau, Patrick; Gullikson, Eric M.

    2016-07-25

    Diffraction gratings are used from micron to nanometer wavelengths as dispersing elements in optical instruments. At shorter wavelengths, crystals can be used as diffracting elements, but due to the 3D nature of the interaction with light are wavelength selective rather than wavelength dispersing. There is an urgent need to extend grating technology into the x-ray domain of wavelengths from 1 to 0.1 nm, but this requires the use of gratings that have a faceted surface in which the facet angles are very small, typically less than 1°. Small facet angles are also required in the extreme ultra-violet and soft x-ray energymore » ranges in free electron laser applications, in order to reduce power density below a critical damage threshold. In this work, we demonstrate a technique based on anisotropic etching of silicon designed to produce very small angle facets with a high degree of perfection.« less

  6. Anomalous X-Ray yields under surface wave resonance during reflection high energy electron diffraction and adatom site determination

    PubMed

    Yamanaka; Ino

    2000-05-08

    In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.

  7. International Conference (4th) on Nanostructured Materials Held in Stockholm, Sweden on 14-19 June 1998. Special Volume - Part A. Volume 12, Numbers 1-4, 1999

    DTIC Science & Technology

    1998-06-19

    correlation was found between the X - ray grain size and the TEM grain size. Table 2 contains the hardness and density data for the nanocrystalline 5083...temperature with a Neophot hardness tester and a load of 0.2 N. RESULTS AND DISCUSSION X - ray diffraction and transmission electron microscopy combined with...For Single- Wall Carbon Nanotubes by Raman Scattering Technique Microstructure Change in Co46AI19035 Granular Thin Films by Annealing X - Ray

  8. Clusters of Defects in Semiconductors

    DTIC Science & Technology

    1984-08-01

    onecionbewen-te heica seces .-. o* Fe and.th deec prd *n th *Rlmnecne ae t..* E. STATISTICS The funds from this contract were used to support the research of...characterized at Hughes Research Laboratories. L x No Np N1 . Electron X-ray Sample (cm- 1) (cm- ) (cm-3 ) microprobe Density diffraction .. -. C077 3.6x 10

  9. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  10. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries.

    PubMed

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-09-08

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.

  11. Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YB a 2 C u 3 O 6.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Först, M.; Frano, A.; Kaiser, S.

    2014-11-17

    In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  12. Hirshfeld atom refinement.

    PubMed

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  13. Hirshfeld atom refinement

    PubMed Central

    Capelli, Silvia C.; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-01-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu’s), all other structural parameters agree within less than 2 csu’s. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. PMID:25295177

  14. Dislocation structure in textured zirconium tensile-deformed along rolling and transverse directions determined by X-ray diffraction line profile analysis

    NASA Astrophysics Data System (ADS)

    Fan, Zhijian; Jóni, Bertalan; Xie, Lei; Ribárik, Gábor; Ungár, Tamás

    2018-04-01

    Specimens of cold-rolled zirconium were tensile-deformed along the rolling (RD) and the transverse (TD) directions. The stress-strain curves revealed a strong texture dependence. High resolution X-ray line profile analysis was used to determine the prevailing active slip-systems in the specimens with different textures. The reflections in the X-ray diffraction patterns were separated into two groups. One group corresponds to the major and the other group to the random texture component, respectively. The dislocation densities, the subgrain size and the prevailing active slip-systems were evaluated by using the convolutional multiple whole profile (CMWP) procedure. These microstructure parameters were evaluated separately in the two groups of reflections corresponding to the two different texture components. Significant differences were found in both, the evolution of dislocation densities and the development of the fractions of and type slip systems in the RD and TD specimens during tensile deformation. The differences between the RD and TD stress-strain curves are discussed in terms of the differences of the microstructure evolution.

  15. Nanoscale femtosecond imaging of transient hot solid density plasmas with elemental and charge state sensitivity using resonant coherent diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T., E-mail: t.kluge@hzdr.de; Bussmann, M.; Huang, L. G., E-mail: lingen.huang@hzdr.de

    Here, we propose to exploit the low energy bandwidth, small wavelength, and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominated by the free electron distribution. We propose that the ionic scattering signal becomes visible when the X-ray energy is in resonance with an electron transition between two bound states (resonant coherent X-ray diffraction). In this case, the scattering cross-section dramatically increases somore » that the signal of X-ray scattering from ions silhouettes against the free electron scattering background which allows to measure the opacity and derived quantities with high spatial and temporal resolution, being fundamentally limited only by the X-ray wavelength and timing. Deriving quantities such as ion spatial distribution, charge state distribution, and plasma temperature with such high spatial and temporal resolution will make a vast number of processes in shortpulse laser-solid interaction accessible for direct experimental observation, e.g., hole-boring and shock propagation, filamentation and instability dynamics, electron transport, heating, and ultrafast ionization dynamics.« less

  16. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  17. Crystal structure of pentasodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rammohan, Alagappa; Kaduk, James A.

    2017-01-27

    The crystal structure of pentasodium hydrogen dicitrate, Na 5H(C 6H 5O 7) 2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H...O hydrogen bonds, with O...O distances of 2.419 and 2.409 Å. Four octahedrally coordinated Na +ions share edges to form open layers parallel to theabplane. A fifth Na +ion in trigonal–bipyramidal coordination shares faces with NaO 6octahedra on both sides of these layers.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Wang, Leyun; Almer, Jonathan D.

    Deformation processes in Grade 91 (Fe–9%Cr–1%Mo–V,Nb) and Grade 92 (Fe–9%Cr–0.5%Mo–2%W–V,Nb) ferritic–martensitic steels were investigated at temperatures between 20 and 650 °C using high-energy synchrotron X-ray diffraction with in situ thermal–mechanical loading. The change of the dislocation density with strain was quantified by X-ray diffraction line profile analysis complemented by transmission electron microscopy measurements. The relationship between dislocation density and strain during uniform deformation was described by a dislocation model, and two critical materials parameters, namely dislocation mean free path and dynamic recovery coefficient, were determined as a function of temperature. Effects of alloy chemistry, thermal–mechanical treatment and temperature on themore » tensile deformation process in Grade 91 and Grade 92 steels can be well understood by the dislocation evolution behavior.« less

  19. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less

  20. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  1. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  2. Twin density of aragonite in molluscan shells characterized using X-ray diffraction and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Kogure, Toshihiro; Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Checa, Antonio G.; Sasaki, Takenori; Nagasawa, Hiromichi

    2014-07-01

    {110} twin density in aragonites constituting various microstructures of molluscan shells has been characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM), to find the factors that determine the density in the shells. Several aragonite crystals of geological origin were also investigated for comparison. The twin density is strongly dependent on the microstructures and species of the shells. The nacreous structure has a very low twin density regardless of the shell classes. On the other hand, the twin density in the crossed-lamellar (CL) structure has large variation among classes or subclasses, which is mainly related to the crystallographic direction of the constituting aragonite fibers. TEM observation suggests two types of twin structures in aragonite crystals with dense {110} twins: rather regulated polysynthetic twins with parallel twin planes, and unregulated polycyclic ones with two or three directions for the twin planes. The former is probably characteristic in the CL structures of specific subclasses of Gastropoda. The latter type is probably related to the crystal boundaries dominated by (hk0) interfaces in the microstructures with preferred orientation of the c-axis, and the twin density is mainly correlated to the crystal size in the microstructures.

  3. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  4. Quantum crystallography: A perspective.

    PubMed

    Massa, Lou; Matta, Chérif F

    2018-06-30

    Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Real-time X-ray Diffraction: Applications to Materials Characterization

    NASA Technical Reports Server (NTRS)

    Rosemeier, R. G.

    1984-01-01

    With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.

  6. Probing the structure of heterogeneous diluted materials by diffraction tomography.

    PubMed

    Bleuet, Pierre; Welcomme, Eléonore; Dooryhée, Eric; Susini, Jean; Hodeau, Jean-Louis; Walter, Philippe

    2008-06-01

    The advent of nanosciences calls for the development of local structural probes, in particular to characterize ill-ordered or heterogeneous materials. Furthermore, because materials properties are often related to their heterogeneity and the hierarchical arrangement of their structure, different structural probes covering a wide range of scales are required. X-ray diffraction is one of the prime structural methods but suffers from a relatively poor detection limit, whereas transmission electron analysis involves destructive sample preparation. Here we show the potential of coupling pencil-beam tomography with X-ray diffraction to examine unidentified phases in nanomaterials and polycrystalline materials. The demonstration is carried out on a high-pressure pellet containing several carbon phases and on a heterogeneous powder containing chalcedony and iron pigments. The present method enables a non-invasive structural refinement with a weight sensitivity of one part per thousand. It enables the extraction of the scattering patterns of amorphous and crystalline compounds with similar atomic densities and compositions. Furthermore, such a diffraction-tomography experiment can be carried out simultaneously with X-ray fluorescence, Compton and absorption tomographies, enabling a multimodal analysis of prime importance in materials science, chemistry, geology, environmental science, medical science, palaeontology and cultural heritage.

  7. Radiation damage free ghost diffraction with atomic resolution

    DOE PAGES

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...

    2017-12-21

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  8. Radiation damage free ghost diffraction with atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  9. Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.

    PubMed

    Iwamoto, Hiroyuki

    2018-06-13

    X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.

  10. Nanorelief of the natural cleavage surface of triglycine sulphate crystals with substitutional and interstitial impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belugina, N. V.; Gainutdinov, R. V.; Tolstikhina, A. L., E-mail: alla@ns.crys.ras.ru

    2011-11-15

    Ferroelectric triglycine sulphate crystals (TGS) with substitutional (LADTGS+ADP, DTGS) and interstitial (Cr) impurities have been studied by atomic-force microscopy, X-ray diffraction, and X-ray fluorescence. The nanorelief parameters of the mirror cleavage TGS(010) surface have been measured with a high accuracy. A correlation between the crystal defect density in the bulk and the cleavage surface nanorelief is revealed at the submicrometer level.

  11. Studies on densification, mechanical, micro-structural and structure–properties relationship of magnesium aluminate spinel refractory aggregates prepared from Indian magnesite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Chandrima; Ghosh, Arup; Haldar, Manas Kamal, E-mail: manashaldar@cgcri.res.in

    The present work intends to study the development of magnesium aluminate spinel aggregates from Indian magnesite in a single firing stage. The raw magnesite has been evaluated in terms of chemical analysis, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction. The experimental batch containing Indian magnesite and calcined alumina has been sintered in the temperature range of 1550 °C–1700 °C. The sintered material has been characterized in terms of physico-chemical properties like bulk density, apparent porosity, true density, relative density and thermo-mechanical/mechanical properties like hot modulus of rupture, thermal shock resistance, cold modulus of rupture and structural propertiesmore » by X-ray diffraction in terms of phase identification and evaluation of crystal structure parameters of corresponding phases by Rietveld analysis. The microstructures developed at different temperatures have been analyzed by field emission scanning electron microscope study and compositional analysis of the developed phase has been carried out by energy dispersive X-ray study. - Highlights: • The studies have been done to characterize the developed magnesium aluminate spinel. • The studies reveal correlation between refractory behavior of spinel and developed microstructures. • The studies show the values of lattice parameters of developed phases.« less

  12. Advancing X-ray scattering metrology using inverse genetic algorithms.

    PubMed

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  13. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  14. Evaluation of partial coherence correction in X-ray ptychography

    DOE PAGES

    Burdet, Nicolas; Shi, Xiaowen; Parks, Daniel; ...

    2015-02-23

    Coherent X-ray Diffraction Imaging (CDI) and X-ray ptychography both heavily rely on the high degree of spatial coherence of the X-ray illumination for sufficient experimental data quality for reconstruction convergence. Nevertheless, the majority of the available synchrotron undulator sources have a limited degree of partial coherence, leading to reduced data quality and a lower speckle contrast in the coherent diffraction patterns. It is still an open question whether experimentalists should compromise the coherence properties of an X-ray source in exchange for a higher flux density at a sample, especially when some materials of scientific interest are relatively weak scatterers. Amore » previous study has suggested that in CDI, the best strategy for the study of strong phase objects is to maintain a high degree of coherence of the illuminating X-rays because of the broadening of solution space resulting from the strong phase structures. In this article, we demonstrate the first systematic analysis of the effectiveness of partial coherence correction in ptychography as a function of the coherence properties, degree of complexity of illumination (degree of phase diversity of the probe) and sample phase complexity. We have also performed analysis of how well ptychographic algorithms refine X-ray probe and complex coherence functions when those variables are unknown at the start of reconstructions, for noise-free simulated data, in the case of both real-valued and highly-complex objects.« less

  15. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  16. Effect of Cu2+ substitution on the structural, optical and magnetic behaviour ofchemically derived manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Vasuki, G.; Balu, T.

    2018-06-01

    Mixed spinel copper manganese ferrite (CuXMn1‑XFe2O4, X = 0, 0.25, 0.5, 0.75, 1) nanoparticles were synthesized by chemical co-precipitation technique. From the powder x-ray diffraction analysis the lattice constant, volume of unit cell, x-ray density, hopping lengths, crystallite size, surface area, dislocation density and microstrain were calculated. The substitution of Cu2+ ions shows a considerable reduction in the crystallite size of manganese ferrite from 34 nm to 22 nm. Further a linear fit of Williamson-Hall plot has been drawn to determine the microstrain and crystallite size. The crystallite size and morphology were further observed through high resolution transmission electron microscope and scanning electron microscope. The diffraction rings observed from selected area electron diffraction pattern exhibits the crystalline nature of all the samples. The energy dispersive x-ray analysis shows the composition of all the elements incorporated in the synthesized nanomaterials. FTIR studies reveal the absorption peaks that correspond to the metal-oxygen vibrations in the tetrahedral and octahedral sites. From the UV–vis absorption spectra the band gap energy, refractive index and optical dielectric constant were determined. Magnetic studies carried out using vibrating sample magnetometer shows interesting behaviour in the variation of magnetisation and coercivity. Peculiar magnetic behaviour is observed when Cu2+ ions are substituted in manganese ferrites. All the synthesized materials have very low value of squareness ratio which attributes to the superparamagnetic behaviour.

  17. Time-resolved x-ray imaging of a laser-induced nanoplasma and its neutral residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluckiger, L.; Rupp, D.; Adolph, M.

    The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensitymore » distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.« less

  18. High-Pressure Polymorph of NaBiO3.

    PubMed

    Naa, Octavianti; Kumada, Nobuhiro; Miura, Akira; Takei, Takahiro; Azuma, Masaki; Kusano, Yoshihiro; Oka, Kengo

    2016-06-20

    A new high-pressure polymorph of NaBiO3 (hereafter β-NaBiO3) was synthesized under the conditions of 6 GPa and 600 °C. The powder X-ray diffraction pattern of this new phase was indexed with a hexagonal cell of a = 9.968(1) Å and c = 3.2933(4) Å. Crystal structure refinement using synchrotron powder X-ray diffraction data led to RWP = 8.53% and RP = 5.55%, and the crystal structure was closely related with that of Ba2SrY6O12. No photocatalytic activity for phenol decomposition was observed under visible-light irradiation in spite of a good performance for its mother compound, NaBiO3. The optical band-gap energy of β-NaBiO3 was narrower than that of NaBiO3, which was confirmed with density of states curves simulated by first-principles density functional theory calculation.

  19. Time-resolved x-ray imaging of a laser-induced nanoplasma and its neutral residuals

    DOE PAGES

    Fluckiger, L.; Rupp, D.; Adolph, M.; ...

    2016-04-13

    The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensitymore » distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.« less

  20. Understanding self ion damage in FCC Ni-Cr-Fe based alloy using X-ray diffraction techniques

    NASA Astrophysics Data System (ADS)

    Halder Banerjee, R.; Sengupta, P.; Chatterjee, A.; Mishra, S. C.; Bhukta, A.; Satyam, P. V.; Samajdar, I.; Dey, G. K.

    2018-04-01

    Using X-ray diffraction line profile analysis (XRDLPA) approach the radiation response of FCC Ni-Cr-Fe based alloy 690 to 1.5 and 3 MeV Ni2+ ion damage was quantified in terms of its microstructural parameters. These microstructural parameters viz. average domain size, microstrain and dislocation density were found to vary anisotropically with fluence. The anisotropic behaviour is mainly attributable to presence of twins in pre-irradiated microstructure. After irradiation, surface roughness increases as a function of fluence attributable to change in surface and sub-surface morphology caused by displacement cascade, defects and sputtered atoms created by incident energetic ion. The radiation hardening in case of 1.5 MeV Ni2+ irradiated specimens too is a consequence of the increase in dislocation density formed by interaction of radiation induced defects with pre-existing dislocations. At highest fluence there is an initiation of saturation.

  1. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    PubMed

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  2. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  3. Structure of phospholipid-cholesterol membranes: an x-ray diffraction study.

    PubMed

    Karmakar, Sanat; Raghunathan, V A

    2005-06-01

    We have studied the phase behavior of mixtures of cholesterol with dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and dilauroyl phosphatidylethanolamine (DLPE), using x-ray diffraction techniques. Phosphatidylcholine (PC)-cholesterol mixtures are found to exhibit a modulated phase for cholesterol concentrations around 15 mol % at temperatures below the chain melting transition. Lowering the relative humidity from 98% to 75% increases the temperature range over which it exists. An electron density map of this phase in DPPC-cholesterol mixtures, calculated from the x-ray diffraction data, shows bilayers with a periodic height modulation, as in the ripple phase observed in many PCs in between the main- and pretransitions. However, these two phases differ in many aspects, such as the dependence of the modulation wavelength on the cholesterol content and thermodynamic stability at reduced humidities. This modulated phase is found to be absent in DLPE-cholesterol mixtures. At higher cholesterol contents the gel phase does not occur in any of these three systems, and the fluid lamellar phase is observed down to the lowest temperature studied (5 degrees C).

  4. Crystallization and preliminary X-ray diffraction analysis of a myotoxic Lys49-PLA{sub 2} from Bothrops jararacussu venom complexed with p-bromophenacyl bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchi-Salvador, D. P.; Fernandes, C. A. H.; Amui, S. F.

    2006-06-01

    A non-catalytic and myotoxic Lys49-PLA{sub 2} from B. jararacussu venom was crystallized with BPB inhibitor and X-ray diffraction data were collected. Preliminary analysis indicates that the ligand is bound to the His48 residue. Structure determination may provide insights into the myotoxic and cytotoxic mechanisms of Lys49-PLA{sub 2}s. For the first time, a non-catalytic and myotoxic Lys49-PLA{sub 2} (BthTX-I from Bothrops jararacussu venom) has been crystallized with BPB inhibitor. X-ray diffraction data were collected and electron-density calculations showed that the ligand is bound to the His48 residue. BthTX-I with His48 chemically modified by BPB shows strongly reduced myotoxic and cytotoxic activities.more » This suggests a biological correlation between the modification of His48, which is associated with catalytic activity of PLA{sub 2}s, and other toxicological activities of Lys49-PLA{sub 2}s.« less

  5. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  6. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE PAGES

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  7. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

  8. Combined Diffraction and Density Functional Theory Calculations of Halogen-Bonded Cocrystal Monolayers

    PubMed Central

    2013-01-01

    This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4′-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results. PMID:24215390

  9. Combined diffraction and density functional theory calculations of halogen-bonded cocrystal monolayers.

    PubMed

    Sacchi, Marco; Brewer, Adam Y; Jenkins, Stephen J; Parker, Julia E; Friščić, Tomislav; Clarke, Stuart M

    2013-12-03

    This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4'-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results.

  10. Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.

    2018-06-01

    Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.

  11. Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James; Gindhart, Amy; Blanton, Thomas

    The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.

  12. Predicting In-Situ X-ray Diffraction for the SrTiO3/Liquid Interface from First Principles

    NASA Astrophysics Data System (ADS)

    Letchworth-Weaver, Kendra; Gunceler, Deniz; Sundararaman, Ravishankar; Huang, Xin; Brock, Joel; Arias, T. A.

    2013-03-01

    Recent advances in experimental techniques, such as in-situ x-ray diffraction, allow researchers to probe the solid-liquid interface in electrochemical systems under operating conditions. These advances offer an unprecedented opportunity for theory to predict properties of electrode materials in aqueous environments and inform the design of energy conversion and storage devices. To compare with experiment, these theoretical studies require microscopic details of both the liquid and the electrode surface. Joint Density Functional Theory (JDFT), a computationally efficient alternative to molecular dynamics, couples a classical density-functional, which captures molecular structure of the liquid, to a quantum-mechanical functional for the electrode surface. We present a JDFT exploration of SrTiO3, which can catalyze solar-driven water splitting, in an electrochemical environment. We determine the geometry of the polar SrTiO3 surface and the equilibrium structure of the contacting liquid, as well as the influence of the liquid upon the electronic structure of the surface. We then predict the effect of the fluid environment on x-ray diffraction patterns and compare our predictions to in-situ measurements performed at the Cornell High Energy Synchrotron Source (CHESS). This material is based upon work supported by the Energy Materials Center at Cornell (EMC2), an Energy Frontier Research Center funded by the U.S. Department of Energy.

  13. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  14. Electron transfer in a virtual quantum state of LiBH4 induced by strong optical fields and mapped by femtosecond x-ray diffraction.

    PubMed

    Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A

    2012-10-05

    Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.

  15. Synchrotron-radiation X-ray diffraction evidence of the emergence of ferroelectricity in LiTaO3 by ordering of a disordered Li ion in the polar direction

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Gang; Abe, Tomohiro; Moriyoshi, Chikako; Tanaka, Hiroshi; Kuroiwa, Yoshihiro

    2018-07-01

    Synchrotron-radiation X-ray diffraction studies as a function of temperature reveal the structural origin of the spontaneous polarization and related lattice strains in stoichiometric LiTaO3. Electron charge density distribution maps visualized by the maximum entropy method clearly demonstrate that ordering of the disordered Li ion in the polar direction accompanied by deformation of the oxygen octahedra lead to the ferroelectric phase transition. The ionic polarization attributed to the ionic displacements is dominant in the polar structure. The structural change occurs continuously at the phase transition temperature, which suggests a second-order phase transition.

  16. DynAMITe: a prototype large area CMOS APS for breast cancer diagnosis using x-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.

    2012-03-01

    X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.

  17. Two-dimensional single crystal diamond refractive x-ray lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S., E-mail: s.antipov@euclidtechlabs.com; Baryshev, S. V.; Butler, J. E.

    2016-07-27

    The next generation light sources such as diffraction-limited storage rings and high repetition rate x-ray free-electron lasers will generate x-ray beams with significantly increased brilliance. These future machines will require X-ray optical components that are capable of handling higher instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Single crystal diamond is one of the best bulk materials for this application, because it is radiation hard, has a suitable uniform index of refraction and the best available thermal properties. In this paper we report on fabrication and experimental testing ofmore » a two-dimensional (2D) single crystal diamond compound refractive X-ray lenses (CRL). These lenses were manufactured using femto-second laser cutting and tested at the Advanced Photon Source of Argonne National Laboratory.« less

  18. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  19. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    DOE PAGES

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...

    2015-06-27

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less

  20. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  1. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  2. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  3. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  4. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  5. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  6. An image focusing means by using an opaque object to diffract x-rays

    DOEpatents

    Sommargren, Gary E.; Weaver, H. Joseph

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  7. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  8. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol, E-mail: drlee@ssu.ac.kr

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low thatmore » a large proportion of the substrate surface is bare.« less

  9. Probing the Li Insertion Mechanism of ZnFe 2O 4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe 2O 4 in Li ion batteries: A combined XRD, EXAFS, and DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.

    Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less

  10. Probing the Li Insertion Mechanism of ZnFe 2O 4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe 2O 4 in Li ion batteries: A combined XRD, EXAFS, and DFT study

    DOE PAGES

    Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2017-04-24

    Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less

  11. Polarization-dependent DANES study on vertically-aligned ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chengjun; Park, Chang-In; Jin, Zhenlan

    2016-05-01

    The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.

  12. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  13. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less

  14. Comet composition and density analyzer

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1982-01-01

    Distinctions between cometary material and other extraterrestrial materials (meteorite suites and stratospherically-captured cosmic dust) are addressed. The technique of X-ray fluorescence (XRF) for analysis of elemental composition is involved. Concomitant with these investigations, the problem of collecting representative samples of comet dust (for rendezvous missions) was solved, and several related techniques such as mineralogic analysis (X-ray diffraction), direct analysis of the nucleus without docking (electron macroprobe), dust flux rate measurement, and test sample preparation were evaluated. An explicit experiment concept based upon X-ray fluorescence analysis of biased and unbiased sample collections was scoped and proposed for a future rendezvous mission with a short-period comet.

  15. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  16. Rietveld refinement and electrical properties of Ni-Zn spinel ferrites

    NASA Astrophysics Data System (ADS)

    Hooda, Ashima; Sanghi, Sujata; Agarwal, Ashish; Khasa, Satish; Hooda, Bhawana

    2017-05-01

    NiFe2O4, ZnFe2O4, Ni0.5Zn0.5Fe2O4 spinel samples have been synthesized by conventional solid state reaction technique. Powder X-ray diffraction and Rietveld refinement revealed that the samples were single Spinel phase with space group fd3m. The average crystalline size (D), lattice constant (a), X-ray density (ρx), measured density (ρm) and Porosity (P) of prepared samples were determined from XRD data. The dc electrical resistivity (p) was measured as a function of temperature. The variations of ρ were explained on the basis of Verwey and de Bohr mechanism. The value of DC resistivity found to increase with increase Zn concentration.

  17. Confinement-induced liquid ordering investigated by x-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunk, Oliver; Diaz, Ana; Pfeiffer, Franz

    2007-02-15

    Using synchrotron x-ray diffraction, we have determined the ensemble-averaged density profile of colloidal fluids within confining channels of different widths. We observe an oscillatory ordering-disordering behavior of the colloidal particles as a function of the channel width, while the colloidal solution remains in the liquid state. This phenomenon has been suggested by surface force studies of hard-sphere fluids and also theoretically predicted, but here we see it by direct measurements of the structure for comparable systems.

  18. Sound velocity measurements of dhcp-FeHx up to 70 GPa using inelastic X-ray scattering: Implications for the abundance of hydrogen in the Earth's core

    NASA Astrophysics Data System (ADS)

    Shibazaki, Y.; Ohtani, E.; Fukui, H.; Sakai, T.; Kamada, S.; Baron, A. Q.; Nishitani, N.; Hirao, N.; Takemura, K.

    2011-12-01

    The Earth's interior has been directly investigated by seismic wave propagation and normal mode oscillation. In particular, the distributions of density and sound velocity are available to study the Earth's core (e.g. PREM). The inner core, which is solid state, is approximately 3 % less dense than pure iron (a core density deficit), and it is considered that the core consists of iron and light elements, such as hydrogen, carbon, oxygen, silicon, and sulfur. In this work, in order to constrain the abundance of hydrogen in the Earth's core by matching the density and sound velocity of FeHx to those of PREM, we determined the compressional sound velocity of iron hydride at high pressure using inelastic X-ray scattering (IXS). The IXS experiments and in situ X-ray diffraction (XRD) experiments were conducted up to 70 GPa and room temperature. High-pressure conditions were generated using a symmetric diamond anvil cell (DAC) with tungsten gaskets. Hydrogen initially pressurized to 0.18 GPa was loaded to the sample chamber. The IXS experiments were performed at BL35XU of the SPring-8 facility in Japan. The XRD experiments at high pressure were carried out by the angle dispersive method at BL10XU of the SPring-8 facility in Japan. The each XRD pattern of FeHx was collected after each IXS measurement in order to obtain directly the density of FeHx. Over the range of pressure studied, the diffraction lines of double-hexagonal close-packed (dhcp)-FeHx were observed and there were no diffraction lines of iron. We show that FeHx follows Birch's law for Vp above 37 GPa, namely a linear dependence between velocity and density. The estimated Vp, extrapolated to core conditions, is compared with PREM. Our results provide that the Earth's inner core could contain about 0.2 wt% hydrogen.

  19. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  20. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction.

    PubMed

    Davtyan, Arman; Lehmann, Sebastian; Kriegner, Dominik; Zamani, Reza R; Dick, Kimberly A; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J; Pietsch, Ullrich; Holý, Václav

    2017-09-01

    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\\bar{1}] direction in the vicinity of the wurtzite 00\\bar{1}\\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.

  1. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction

    PubMed Central

    Davtyan, Arman; Lehmann, Sebastian; Zamani, Reza R.; Dick, Kimberly A.; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J.; Pietsch, Ullrich; Holý, Václav

    2017-01-01

    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the direction in the vicinity of the wurtzite Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire. PMID:28862620

  2. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2.

    PubMed

    Fugel, Malte; Jayatilaka, Dylan; Hupf, Emanuel; Overgaard, Jacob; Hathwar, Venkatesha R; Macchi, Piero; Turner, Michael J; Howard, Judith A K; Dolomanov, Oleg V; Puschmann, Horst; Iversen, Bo B; Bürgi, Hans-Beat; Grabowsky, Simon

    2018-01-01

    Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element-hydrogen distances, r ( X -H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r ( X -H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydro-carbon rubrene (orthorhombic 5,6,11,12-tetra-phenyl-tetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element-hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily launched inside its graphical user interface following a conventional IAM.

  3. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  4. Philip A. Parilla | NREL

    Science.gov Websites

    atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence

  5. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential.

    PubMed

    Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V

    2015-07-01

    The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.

  6. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    PubMed

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The behavior of single-crystal silicon to dynamic loading using in-situ X-ray diffraction and phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hae Ja; Xing, Zhou; Galtier, Eric; Arnold, Brice; Granados, Eduardo; Brown, Shaughnessy B.; Tavella, Franz; McBride, Emma; Fry, Alan; Nagler, Bob; Schropp, Andreas; Seiboth, Frank; Samberg, Dirk; Schroer, Christian; Gleason, Arianna E.; Higginbotham, Andrew

    Hydrostatic and uniaxial compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including orthorhombic Imma phase, body-centered tetragonal phase, and a hexagonal primitive phase. The dynamic response of silicon at high pressure, however, is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. In order to characterize the elastic and phase transitions, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudo-flat top shape creates high pressures up to 60 GPa. We measure the crystal structure by observing X-ray diffraction orthogonal to the shock propagation direction over a range of pressures. We describe the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and discuss the dynamic response of Si in high-pressure phases Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by.

  8. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less

  9. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  10. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  11. Free-electron-laser coherent diffraction images of individual drug-carrying liposome particles in solution.

    PubMed

    Huang, Chi-Feng; Liang, Keng S; Hsu, Tsui-Ling; Lee, Tsung-Tse; Chen, Yi-Yun; Yang, Shun-Min; Chen, Hsiang-Hsin; Huang, Shih-Hsin; Chang, Wei-Hau; Lee, Ting-Kuo; Chen, Peilin; Peng, Kuei-En; Chen, Chien-Chun; Shi, Cheng-Zhi; Hu, Yu-Fang; Margaritondo, Giorgio; Ishikawa, Tetsuya; Wong, Chi-Huey; Hwu, Y

    2018-02-08

    Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.

  12. Coherent X-ray diffraction imaging of nanoengineered polymeric capsules

    NASA Astrophysics Data System (ADS)

    Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.

    2017-10-01

    For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.

  13. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  14. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  15. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    PubMed

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  16. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  17. Density Determination of Metallic Melts from Diffuse X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.

  18. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  19. Crystallization and X-ray data analysis of the 10 kDa C-terminal lid subdomain from Caenorhabditis elegans Hsp70

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrall, Liam; Walkinshaw, Malcolm D., E-mail: m.walkinshaw@ed.ac.uk

    Crystals of the C-terminal 10 kDa lid subdomain from the C. elegans chaperone Hsp70 have been obtained that diffract X-rays to ∼3.5 Å and belong to space group I2{sub 1}2{sub 1}2{sub 1}. Analysis of X-ray data and initial heavy-atom phasing reveals 24 monomers in the asymmetric unit related by 432 non-crystallographic symmetry. Hsp70 is an important molecular chaperone involved in the regulation of protein folding. Crystals of the C-terminal 10 kDa helical lid domain (residues 542–640) from a Caenorhabditis elegans Hsp70 homologue have been produced that diffract X-rays to ∼3.4 Å. Crystals belong to space group I2{sub 1}2{sub 1}2{sub 1},more » with unit-cell parameters a = b = 197, c = 200 Å. The Matthews coefficient, self-rotation function and Patterson map indicate 24 monomers in the asymmetric unit, showing non-crystallographic 432 symmetry. Molecular-replacement studies using the corresponding domain from rat, the only eukaryotic homologue with a known structure, failed and a mercury derivative was obtained. Preliminary MAD phasing using SHELXD and SHARP for location and refinement of the heavy-atom substructure and SOLOMON for density modification produced interpretable maps with a clear protein–solvent boundary. Further density-modification, model-building and refinement are currently under way.« less

  20. Relativistic effects on x-ray structure factors

    NASA Astrophysics Data System (ADS)

    Batke, Kilian; Eickerling, Georg

    2016-04-01

    Today, combined experimental and theoretical charge density studies based on quantum chemical calculations and x-ray diffraction experiments allow for the investigation of the topology of the electron density at subatomic resolution. When studying compounds containing transition metal elements, relativistic effects need to be adequately taken into account not only in quantum chemical calculations of the total electron density ρ ({r}), but also for the atomic scattering factors employed to extract ρ ({r}) from experimental x-ray diffraction data. In the present study, we investigate the magnitude of relativistic effects on x-ray structure factors and for this purpose {F}({{r}}*) have been calculated for the model systems M(C2H2) (M = Ni, Pd, Pt) from four-component molecular wave functions. Relativistic effects are then discussed by a comparison to structure factors obtained from a non-relativistic reference and different quasi-relativistic approximations. We show, that the overall effects of relativity on the structure factors on average amount to 0.81%, 1.51% and 2.78% for the three model systems under investigation, but that for individual reflections or reflection series the effects can be orders of magnitude larger. Employing the quasi-relativistic Douglas-Kroll-Hess second order or the zeroth order regular approximation Hamiltonian takes these effects into account to a large extend, reducing the differences between the (quasi-)relativistic and the non-relativistic result by one order of magnitude. In order to further determine the experimental significance of the results, the magnitude of the relativistic effects is compared to the changes of the model structure factor data when charge transfer and chemical bonding is taken into account by a multipolar expansion of {F}({{r}}*).

  1. Diffraction Correlation to Reconstruct Highly Strained Particles

    NASA Astrophysics Data System (ADS)

    Brown, Douglas; Harder, Ross; Clark, Jesse; Kim, J. W.; Kiefer, Boris; Fullerton, Eric; Shpyrko, Oleg; Fohtung, Edwin

    2015-03-01

    Through the use of coherent x-ray diffraction a three-dimensional diffraction pattern of a highly strained nano-crystal can be recorded in reciprocal space by a detector. Only the intensities are recorded, resulting in a loss of the complex phase. The recorded diffraction pattern therefore requires computational processing to reconstruct the density and complex distribution of the diffracted nano-crystal. For highly strained crystals, standard methods using HIO and ER algorithms are no longer sufficient to reconstruct the diffraction pattern. Our solution is to correlate the symmetry in reciprocal space to generate an a priori shape constraint to guide the computational reconstruction of the diffraction pattern. This approach has improved the ability to accurately reconstruct highly strained nano-crystals.

  2. Method for detecting a mass density image of an object

    DOEpatents

    Wernick, Miles N [Chicago, IL; Yang, Yongyi [Westmont, IL

    2008-12-23

    A method for detecting a mass density image of an object. An x-ray beam is transmitted through the object and a transmitted beam is emitted from the object. The transmitted beam is directed at an angle of incidence upon a crystal analyzer. A diffracted beam is emitted from the crystal analyzer onto a detector and digitized. A first image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a first angular position. A second image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a second angular position. A refraction image is obtained and a regularized mathematical inversion algorithm is applied to the refraction image to obtain a mass density image.

  3. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  4. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  5. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  6. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  7. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  8. Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.

    2017-01-15

    Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТР and KTP:6%Nbmore » crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.« less

  9. Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography.

    PubMed

    Baruchel, J; Cloetens, P; Härtwig, J; Ludwig, W; Mancini, L; Pernot, P; Schlenker, M

    2000-05-01

    Several hard X-rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the 'long' (145 m) ID19 'imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample ('effective divergence' approximately microradians). When using the ;propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the 'edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro-heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three-dimensional density mapping of the sample ('holotomography'). The combination of diffraction topography and phase-contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination.

  10. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  11. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Voloshin, A. E.; Ralchenko, V. G.

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.

    This paper provides an overview of research evaluating the use of tellurite glass as a waste form for salt wastes from electrochemical processing. The capacities to immobilize different salts were evaluated including: a LiCl-Li2O oxide reduction salt (for oxide fuel) containing fission products, a LiCl-KCl eutectic salt (for metallic fuel) containing fission products, and SrCl2. Physical and chemical properties of the glasses were characterized by using X-ray diffraction, bulk density measurements, chemical durability tests, scanning electron microscopy, and energy dispersive X-ray emission spectroscopy. These glasses were found to accommodate high concentrations of halide salts and have high densities. However, improvementsmore » are needed to meet chemical durability requirements.« less

  13. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    PubMed

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  14. X-ray Diffraction Gratings for Astrophysics

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    2010-12-01

    Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.

  15. Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries

    PubMed Central

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-01-01

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4. PMID:26345306

  16. Amorphous boron gasket in diamond anvil cell research

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin

    2003-11-01

    Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.

  17. Super-resolution biomolecular crystallography with low-resolution data.

    PubMed

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.

  18. Topology of the electron density of d0 transition metal compounds at subatomic resolution.

    PubMed

    Batke, Kilian; Eickerling, Georg

    2013-11-14

    Accurate X-ray diffraction experiments allow for a reconstruction of the electron density distribution of solids and molecules in a crystal. The basis for the reconstruction of the electron density is in many cases a multipolar expansion of the X-ray scattering factors in terms of spherical harmonics, a so-called multipolar model. This commonly used ansatz splits the total electron density of each pseudoatom in the crystal into (i) a spherical core, (ii) a spherical valence, and (iii) a nonspherical valence contribution. Previous studies, for example, on diamond and α-silicon have already shown that this approximation is no longer valid when ultrahigh-resolution diffraction data is taken into account. We report here the results of an analysis of the calculated electron density distribution in the d(0) transition metal compounds [TMCH3](2+) (TM = Sc, Y, and La) at subatomic resolution. By a detailed molecular orbital analysis, it is demonstrated that due to the radial nodal structure of the 3d, 4d, and 5d orbitals involved in the TM-C bond formation a significant polarization of the electron density in the inner electronic shells of the TM atoms is observed. We further show that these polarizations have to be taken into account by an extended multipolar model in order to recover accurate electron density distributions from high-resolution structure factors calculated for the title compounds.

  19. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  20. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  1. Thin Film Research. Volume 1

    DTIC Science & Technology

    1985-05-30

    Order (FECO) ......... 23 3. X -Ray Diffraction ............................... 26 4. Transmission Electron Microscopy (TEM) ............... 26 5...remained amorphous after bombardment, as evidenced by X - ray diffraction, and showed no other changes. 0 (2) For Sb203, the crystallite size was reduced...main effect on MgF2 was the reduction in crystallite size. The films were too thir. for meaningful x - ray diffraction analysis. Durability and

  2. X-Ray Diffraction and the Discovery of the Structure of DNA

    ERIC Educational Resources Information Center

    Crouse, David T.

    2007-01-01

    A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…

  3. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  4. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain

    DOE PAGES

    Logan, Jonathan; Harder, Ross; Li, Luxi; ...

    2016-01-01

    Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd 5Si 2Ge 2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. Thesemore » tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd 5Si 2Ge 2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.« less

  5. Stability and melting of Fe3C at high pressure and temperature: Implication for the carbon in the Earth's core

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ohtani, E.; Sakai, T.; Hirao, N.; Ohishi, Y.

    2012-12-01

    The Earth's core is regarded as an Fe-Ni alloy but its density is lower than that of pure Fe at the core conditions. Therefore, the Earth's core is supposed to contain light elements and carbon is one of the candidates of the light elements to explain the density deficit of the Earth's core. Nakajima et al. (2009) reported the melting temperature of Fe3C up to around 30 GPa based on textual observations, the chemical analysis of the quenched run products and in situ X-ray diffraction experiments using a Kawai-type multi anvil apparatus. Lord et al. (2009) reported melting temperatures of Fe3C up to 70 GPa, which was determined by the temperature plateau during increasing laser power using a laser-heated diamond anvil cell. They also suggested Fe+Fe7C3 is a stable subsolidus phase. There are obvious discrepancies between the melting curve and the stable subsolidus phase reported by Nakajima et al. (2009) and those reported by Lord et al. (2009). In this study, the melting temperatures of Fe3C and a subsolidus phase relation were determined based on in situ X-ray diffraction experiments. This study aims to reveal the stability field of Fe3C and the melting temperature of Fe3C and to discuss the behaviors of carbon in the Earth's core. We have performed experiments using a laser-heated diamond anvil cell combined with in situ X-ray diffraction experiment at BL10XU beamline, SPring-8 synchrotron facility. An NaCl powder and a rhenium or tungsten foil were used for the insulator and gasket, respectively. Melting of the sample was determined by disappearance of the X-ray diffraction peaks. We determined the melting relation of Fe3C up to 145 GPa by in situ X-ray diffraction experiments. Present results are close to Nakajima et al. (2009) up to 30 GPa but become close to that reported by Lord et al. (2009) at higher pressure conditions. The solidus temperature extrapolated to the ICB pressure, 330 GPa, is 5400 K. We also confirmed that Fe3C is stable as a subsolidus phase at least up to 237 GPa and 4100 K. This strongly suggests that Fe3C is a potential candidate of the Earth's inner core although we need further studies at the inner core conditions.

  6. Three-dimensional coherent x-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution.

    PubMed

    Jiang, Huaidong; Xu, Rui; Chen, Chien-Chun; Yang, Wenge; Fan, Jiadong; Tao, Xutang; Song, Changyong; Kohmura, Yoshiki; Xiao, Tiqiao; Wang, Yong; Fei, Yingwei; Ishikawa, Tetsuya; Mao, Wendy L; Miao, Jianwei

    2013-05-17

    We report quantitative 3D coherent x-ray diffraction imaging of a molten Fe-rich alloy and crystalline olivine sample, synthesized at 6 GPa and 1800 °C, with nanoscale resolution. The 3D mass density map is determined and the 3D distribution of the Fe-rich and Fe-S phases in the olivine-Fe-S sample is observed. Our results indicate that the Fe-rich melt exhibits varied 3D shapes and sizes in the olivine matrix. This work has potential for not only improving our understanding of the complex interactions between Fe-rich core-forming melts and mantle silicate phases but also paves the way for quantitative 3D imaging of materials at nanoscale resolution under extreme pressures and temperatures.

  7. Crystallization and X-ray diffraction analysis of a novel immune-type receptor from Ictalurus punctatus and phasing by selenium anomalous dispersion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrov, David A., E-mail: ostroda@pathology.ufl.edu; Hernández Prada, José A.; Haire, Robert N.

    2007-12-01

    A highly diversified novel immune-type receptor from catfish, NITR10, was crystallized to reveal novel mechanisms of immune recognition. X-ray diffraction data from crystals of a novel immune-type receptor (NITR10 from the catfish Ictalurus punctatus) were collected to 1.65 Å resolution and reduced to the primitive hexagonal lattice. Native and selenomethionine derivatives of NITR10 crystallized under different conditions yielded P3{sub 1}21 crystals. SeMet NITR10 was phased to a correlation coefficient of 0.77 by SAD methods and experimental electron-density maps were calculated to 1.65 Å. Five NITR10 molecules are predicted to be present in the asymmetric unit based on the Matthews coefficient.

  8. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    DOE PAGES

    Cha, W.; Ulvestad, A.; Allain, M.; ...

    2016-11-23

    Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  9. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.

    2004-01-01

    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  10. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    NASA Astrophysics Data System (ADS)

    Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.

    2016-11-01

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  11. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.

    PubMed

    Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O

    2016-11-25

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  12. Characterization of SiGe thin films using a laboratory X-ray instrument

    PubMed Central

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-01-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si0.4Ge0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2–6 nm layers. For another set of partially relaxed layers, 50–200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation. PMID:24046495

  13. Characterization of SiGe thin films using a laboratory X-ray instrument.

    PubMed

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-08-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si 0.4 Ge 0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2-6 nm layers. For another set of partially relaxed layers, 50-200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation.

  14. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  15. First principles simulation of amorphous InSb

    NASA Astrophysics Data System (ADS)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-05-01

    Ab initio molecular dynamics simulations based on density functional theory have been performed to generate a model of amorphous InSb by quenching from the melt. The resulting network is mostly tetrahedral with a minor fraction (10%) of atoms in a fivefold coordination. The structural properties are in good agreement with available x-ray diffraction and extended x-ray-absorption fine structure data and confirm the proposed presence of a sizable fraction of homopolar In-In and Sb-Sb bonds whose concentration in our model amounts to about 20% of the total number of bonds.

  16. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    DOE PAGES

    Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.; ...

    2015-10-14

    Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.

  17. Candidate Elastic Quantum Critical Point in LaCu 6 - x Au x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Lekh; May, Andrew F.; Koehler, Michael R.

    2016-11-30

    In this paper, the structural properties of LaCu 6-xAu x are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu 6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x c=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x c. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature terminationmore » of a continuous structural phase transition suggesting that the LaCu 6-xAu x series hosts an elastic quantum critical point.« less

  18. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  19. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.

    PubMed

    Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  20. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Matthias; Carlson, David B.; Hunter, Mark

    2014-02-28

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less

  1. Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cu x TiSe 2

    DOE PAGES

    Kogar, A.; de la Pena, G. A.; Lee, Sangjun; ...

    2017-01-11

    X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu xTiSe 2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. In this paper, the results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x = 0.055(5) . Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up tomore » x = 0.091(6) , the highest copper concentration examined in this study. Lastly, the phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.« less

  2. Influence of gamma ray irradiation on stoichiometry of hydrothermally synthesized bismuth telluride nanoparticles

    NASA Astrophysics Data System (ADS)

    Abishek, N. S.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.

  3. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with

  4. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  5. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less

  6. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE PAGES

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less

  7. Dynamic X-ray diffraction sampling for protein crystal positioning

    PubMed Central

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558

  8. Dynamic X-ray diffraction sampling for protein crystal positioning.

    PubMed

    Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.

  9. Lattice and Valence Electronic Structures of Crystalline Octahedral Molybdenum Halide Clusters-Based Compounds, Cs2[Mo6X14] (X = Cl, Br, I), Studied by Density Functional Theory Calculations.

    PubMed

    Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki

    2017-06-05

    The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.

  10. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOEpatents

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  11. Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus

    DOEpatents

    Green, Lanny A.; Heck, Jr., Joaquim L.

    1987-01-01

    A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.

  12. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  13. JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian

    2006-01-01

    X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...

  14. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  15. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  16. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  17. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  18. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  19. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  20. Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.

    2018-03-01

    The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.

  1. Crystallization and preliminary X-ray diffraction analysis of mouse galectin-4 N-terminal carbohydrate recognition domain in complex with lactose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejčiříková, Veronika; Fábry, Milan; Marková, Vladimíra

    2008-07-01

    Mouse galectin-4 carbohydrate binding domain was overexpressed in E. coli and crystallized in the presence of lactose. The crystals belong to tetragonal space group P42{sub 1}2 and diffraction data were collected to 2.1 Å resolution. Galectin-4 is thought to play a role in the process of tumour conversion of cells of the alimentary tract and the breast tissue; however, its exact function remains unknown. With the aim of elucidating the structural basis of mouse galectin-4 (mGal-4) binding specificity, we have undertaken X-ray analysis of the N-terminal domain, CRD1, of mGal-4 in complex with lactose (the basic building block of knownmore » galectin-4 carbohydrate ligands). Crystals of CRD1 in complex with lactose were obtained using vapour-diffusion techniques. The crystals belong to tetragonal space group P42{sub 1}2 with unit-cell parameters a = 91.1, b = 91.16, c = 57.10 Å and preliminary X-ray diffraction data were collected to 3.2 Å resolution. An optimized crystallization procedure and cryocooling protocol allowed us to extend resolution to 2.1 Å. Structure refinement is currently under way; the initial electron-density maps clearly show non-protein electron density in the vicinity of the carbohydrate binding site, indicating the presence of one lactose molecule. The structure will help to improve understanding of the binding specificity and function of the potential colon cancer marker galectin-4.« less

  2. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  3. Scanning force microscope for in situ nanofocused X-ray diffraction studies

    PubMed Central

    Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.

    2014-01-01

    A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002

  4. Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction.

    PubMed

    Simmons, Lisa M; Montgomery, Janet; Beaumont, Julia; Davis, Graham R; Al-Jawad, Maisoon

    2013-11-01

    The complex biological, physicochemical process of human dental enamel formation begins in utero and for most teeth takes several years to complete. Lost enamel tissue cannot regenerate, therefore a better understanding of the spatial and temporal progression of mineralization of this tissue is needed in order to design improved in vivo mineral growth processes for regenerative dentistry and allow the possibility to grow a synthetic whole or partial tooth. Human dental enamel samples across a range of developmental stages available through archaeological collections have been used to explore the spatial and temporal progression of enamel biomineralization. Position sensitive synchrotron X-ray diffraction was used to quantify spatial and temporal variations in crystallite organization, lattice parameters and crystallite thickness at three different stages in enamel maturation. In addition X-ray microtomography was used to study mineral content distributions. An inverse correlation was found between the spatial variation in mineral content and the distribution of crystallite organization and thickness as a function of time during enamel maturation. Combined X-ray microtomography and synchrotron X-ray diffraction results show that as enamel matures the mineral content increases and the mineral density distribution becomes more homogeneous. Starting concurrently but proceeding at a slower rate, the enamel crystallites become more oriented and larger; and the crystallite organization becomes spatially more complex and heterogeneous. During the mineralization of human dental enamel, the rate of mineral formation and mineral organization are not identical. Whilst the processes start simultaneously, full mineral content is achieved earlier, and crystallite organization is slower and continues for longer. These findings provide detailed insights into mineral development in human dental enamel which can inform synthetic biomimetic approaches for the benefit of clinical dentistry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Nature of isomerism of solid isothiourea salts, inhibitors of nitric oxide synthases, as studied by 1H-14N nuclear quadrupole double resonance, X-ray, and density functional theory/quantum theory of atoms in molecules.

    PubMed

    Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z

    2012-02-09

    Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.

  6. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  7. Angular rheology study of colloidal nanocrystals using Coherent X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Liang, Mengning; Harder, Ross; Robinson, Ian

    2007-03-01

    A new method using coherent x-ray diffraction provides a way to investigate the rotational motion of a colloidal suspension of crystals in real time. Coherent x-ray diffraction uses the long coherence lengths of synchrotron sources to illuminate a nanoscale particle coherently over its spatial dimensions. The penetration of high energy x-rays into various media allows for in-situ measurements making it ideal for suspensions. This technique has been used to image the structure of nanocrystals for some time but also has the capability of providing information about the orientation and dynamics of crystals. The particles are imaged in a specific diffraction condition allowing us to determine their orientation and observe how they rotate in real time with exceptional resolution. Such sensitivity allows for the study of rotational Brownian motion of nanocrystals in various suspensions and conditions. We present a study of the angular rheology of alumina and TiO2 colloidal nanocrystals in media using coherent x-ray diffraction.

  8. Quantitative analysis of thoria phase in Th-U alloys using diffraction studies

    NASA Astrophysics Data System (ADS)

    Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.

    2017-05-01

    In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.

  9. 1-Pentyl-3-(4-methoxy-1-naphthoyl)indole and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone: X-ray structures and computational studies

    NASA Astrophysics Data System (ADS)

    Nycz, Jacek E.; Malecki, Grzegorz; Zawiazalec, Marcin; Pazdziorek, Tadeusz; Skop, Patrycja

    2010-12-01

    1-Pentyl-3-(4-methoxy-1-naphthoyl)indole (shortly named JWH-081) ( 1) and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone (shortly named JWH-250) ( 2), are examples of cannabinoids which were characterized by FTIR, UV-Vis, multinuclear NMR spectroscopy and single crystal X-ray diffraction method. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.

  10. Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster

    PubMed Central

    Yano, Junko; Kern, Jan; Sauer, Kenneth; Latimer, Matthew J.; Pushkar, Yulia; Biesiadka, Jacek; Loll, Bernhard; Saenger, Wolfram; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2014-01-01

    The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn4Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn4Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and x-ray diffraction data, the cluster was placed within PSII, taking into account the overall trend of the electron density of the metal site and the putative ligands. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 angstrom–resolution x-ray structures or other previously proposed models. PMID:17082458

  11. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  12. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  13. Characterization of Dislocations in Semiconductor Heterostructures Using X-ray Rocking Curve Pendellösung

    NASA Astrophysics Data System (ADS)

    Althowibi, Fahad A.; Ayers, John E.

    2018-02-01

    In this work we investigated the dislocation-dependent behavior of Pendellösung fringes from two types of semiconductor heterostructures: a uniform-composition InGaAs epitaxial layer grown on a GaAs (001) substrate with an intermediate step-graded InGaAs buffer, and an InGaAs/InAlAs high electron mobility transistor grown on an InP (001) substrate. Dynamical x-ray diffraction simulations were carried out in the 004, 115,135, and 117 geometry, assuming Cu kα1 incident radiation, for both structures. The dislocation density strongly affects the intensities and widths of Pendellösung fringes, and we have established quantitative relationships which will allow characterization of the dislocation density.

  14. Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)

    DTIC Science & Technology

    2012-05-14

    on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m

  15. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    PubMed Central

    Popescu, Andrei C.; Stan, George E.; Duta, Liviu; Nita, Cristina; Popescu, Camelia; Surdu, Vasile-Adrian; Husanu, Marius-Adrian; Bita, Bogdan; Ghisleni, Rudy; Himcinschi, Cameliu; Craciun, Valentin

    2015-01-01

    Hard carbon thin films were synthesized on Si (100) and quartz substrates by the Pulsed Laser Deposition (PLD) technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  16. Efficient modeling of Bragg coherent x-ray nanobeam diffraction

    DOE PAGES

    Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...

    2015-07-02

    X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less

  17. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal.

    PubMed

    Clabbers, M T B; van Genderen, E; Wan, W; Wiegers, E L; Gruene, T; Abrahams, J P

    2017-09-01

    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm 3 , i.e. no more than 6 × 10 5 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.

  18. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal

    PubMed Central

    Clabbers, M. T. B.; van Genderen, E.; Wiegers, E. L.; Gruene, T.; Abrahams, J. P.

    2017-01-01

    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm3, i.e. no more than 6 × 105 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures. PMID:28876237

  19. Statistical Nature of Atomic Disorder in Irradiated Crystals.

    PubMed

    Boulle, A; Debelle, A

    2016-06-17

    Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ=0.73-0.37 range, i.e., far from the commonly assumed Gaussian case (γ=2)]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter f_{D}^{XRD} to quantify the disordering. f_{D}^{XRD} is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.

  20. Statistical Nature of Atomic Disorder in Irradiated Crystals

    NASA Astrophysics Data System (ADS)

    Boulle, A.; Debelle, A.

    2016-06-01

    Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ =0.73 - 0.37 range, i.e., far from the commonly assumed Gaussian case (γ =2 )]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter fDXRD to quantify the disordering. fDXRD is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.

  1. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  2. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  3. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    PubMed Central

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-01-01

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634

  4. Predictions for partial and monolayer coverages of O2 on graphite

    NASA Technical Reports Server (NTRS)

    Pan, R. P.; Etters, R. D.; Kobashi, K.; Chandrasekharan, V.

    1982-01-01

    Monolayer properties of O2 on graphite are calculated using a pattern recognition, optimization scheme. Equilibrium monolayers are predicted at two different densities with properties in agreement with recent X-ray diffraction, specific heat, and neutron scattering data. Properties of the extremely low density regime are calculated using a model based upon a distribution of two-dimensional O2 clusters. The results are consistent with experimental evidence.

  5. Defect structure of epitaxial layers of III nitrides as determined by analyzing the shape of X-ray diffraction peaks

    NASA Astrophysics Data System (ADS)

    Kyutt, R. T.

    2017-04-01

    The shape of X-ray diffraction epitaxial layers with high dislocation densities has been studied experimentally. Measurements with an X-ray diffractometer were performed in double- and triple-crystal setups with both Cu K α and Mo K α radiation. Epitaxial layers (GaN, AlN, AlGaN, ZnO, etc.) with different degrees of structural perfection grown by various methods on sapphire, silicon, and silicon carbide substrates have been examined. The layer thickness varied in the range of 0.5-30 μm. It has been found that the center part of peaks is well approximated by the Voigt function with different Lorentz fractions, while the wing intensity drops faster and may be represented by a power function (with the index that varies from one structure to another). A well-marked dependence on the ordering of dislocations was observed. The drop in intensity in the majority of structures with a regular system and regular threading dislocations was close to the theoretically predicted law Δθ-3; the intensity in films with a chaotic distribution decreased much faster. The dependence of the peak shape on the order of reflection, the diffraction geometry, and the epitaxial layer thickness was also examined.

  6. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Edward B.; Gurda-Whitaker, Brittney; Govindasamy, Lakshmanan

    2006-12-01

    Crystals of baculovirus-expressed adeno-associated virus serotype 1 (AAV1) capsids have been grown in the rhombohedral space group R32 (unit-cell parameters a = 254.7 Å, α = 62.3°) and shown to diffract X-rays to at least 2.5 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 1 (AAV1) capsids have been grown in the rhombohedral space group R32 (unit-cell parameters a = 254.7 Å, α = 62.3°) and shown to diffract X-rays to at least 2.5 Å resolution. The diffraction data were subsequently processed and reduced with an overall R{sub sym} of 12.3% and a completeness of 89.0%. Based on the unit-cellmore » volume, rotation-function and translation-function results and packing considerations, there is one virus capsid (60 viral proteins) per unit cell and there are ten viral proteins per crystallographic asymmetric unit. The AAV1 capsid shares both the twofold and threefold crystallographic symmetry operators. The AAV1 data have been initially phased using a polyalanine model (based on the crystal structure of AAV4) to 4.0 Å resolution and the structure determination and refinement is in progress using tenfold noncrystallographic symmetry electron-density averaging.« less

  7. Growth, crystalline perfection, spectral, thermal and theoretical studies on imidazolium L-tartrate crystals.

    PubMed

    Meena, K; Muthu, K; Meenatchi, V; Rajasekar, M; Bhagavannarayana, G; Meenakshisundaram, S P

    2014-04-24

    Transparent optical quality single crystals of imidazolium L-tartrate (IMLT) were grown by conventional slow evaporation solution growth technique. Crystal structure of the as-grown IMLT was determined by single crystal X-ray diffraction analysis. Thermal analysis reveals the purity of the crystal and the sample is stable up to the melting point. Good transmittance in the visible region is observed and the band gap energy is estimated using diffuse reflectance data by the application of Kubelka-Munk algorithm. The powder X-ray diffraction study reveals the crystallinity of the as-grown crystal and it is compared with that of the experimental one. An additional peak in high resolution X-ray diffraction (HRXRD) indicates the presence of an internal structural low angle boundary. Second harmonic generation (SHG) activity of IMLT is significant as estimated by Kurtz and Perry powder technique. HOMO-LUMO energies and first-order molecular hyperpolarizability of IMLT have been evaluated using density functional theory (DFT) employing B3LYP functional and 6-31G(d,p) basis set. The optimized geometry closely resembles the ORTEP. The vibrational patterns present in the molecule are confirmed by FT-IR coinciding with theoretical patterns. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. 1-Amino-4-hydroxy-9,10-anthraquinone - An analogue of anthracycline anticancer drugs, interacts with DNA and induces apoptosis in human MDA-MB-231 breast adinocarcinoma cells: Evaluation of structure-activity relationship using computational, spectroscopic and biochemical studies.

    PubMed

    Mondal, Palash; Roy, Sanjay; Loganathan, Gayathri; Mandal, Bitapi; Dharumadurai, Dhanasekaran; Akbarsha, Mohammad A; Sengupta, Partha Sarathi; Chattopadhyay, Shouvik; Guin, Partha Sarathi

    2015-12-01

    The X-ray diffraction and spectroscopic properties of 1-amino-4-hydroxy-9,10-anthraquinone (1-AHAQ), a simple analogue of anthracycline chemotherapeutic drugs were studied by adopting experimental and computational methods. The optimized geometrical parameters obtained from computational methods were compared with the results of X-ray diffraction analysis and the two were found to be in reasonably good agreement. X-ray diffraction study, Density Functional Theory (DFT) and natural bond orbital (NBO) analysis indicated two types of hydrogen bonds in the molecule. The IR spectra of 1-AHAQ were studied by Vibrational Energy Distribution Analysis (VEDA) using potential energy distribution (PED) analysis. The electronic spectra were studied by TDDFT computation and compared with the experimental results. Experimental and theoretical results corroborated each other to a fair extent. To understand the biological efficacy of 1-AHAQ, it was allowed to interact with calf thymus DNA and human breast adino-carcinoma cell MDA-MB-231. It was found that the molecule induces apoptosis in this adinocarcinoma cell, with little, if any, cytotoxic effect in HBL-100 normal breast epithelial cell.

  9. Crystallization and preliminary X-ray diffraction analysis of a Lys49-phospholipase A2 complexed with caffeic acid, a molecule with inhibitory properties against snake venoms

    PubMed Central

    Shimabuku, Patrícia S.; Fernandes, Carlos A. H.; Magro, Angelo J.; Costa, Tássia R.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2011-01-01

    Phospholipases A2 (PLA2s) are one of the main components of bothropic venoms; in addition to their phospholipid hydrolysis action, they are involved in a wide spectrum of pharmacological activities, including neurotoxicity, myo­toxicity and cardiotoxicity. Caffeic acid is an inhibitor that is present in several plants and is employed for the treatment of ophidian envenomations in the folk medicine of many developing countries; as bothropic snake bites are not efficiently neutralized by conventional serum therapy, it may be useful as an antivenom. In this work, the cocrystallization and preliminary X-ray diffraction analysis of the Lys49-PLA2 piratoxin I from Bothrops pirajai venom in the presence of the inhibitor caffeic acid (CA) are reported. The crystals diffracted X-rays to 1.65 Å resolution and the structure was solved by molecular-replacement techniques. The electron-density map unambiguously indicated the presence of three CA molecules that interact with the C-terminus of the protein. This is the first time a ligand has been observed bound to this region and is in agreement with various experiments previously reported in the literature. PMID:21301098

  10. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples

    DOE PAGES

    Sun, Tao; Fezzaa, Kamel

    2016-06-17

    Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less

  11. The future of crystallography in drug discovery

    PubMed Central

    Zheng, Heping; Hou, Jing; Zimmerman, Matthew D; Wlodawer, Alexander; Minor, Wladek

    2014-01-01

    Introduction X-ray crystallography plays an important role in structure-based drug design (SBDD), and accurate analysis of crystal structures of target macromolecules and macromolecule–ligand complexes is critical at all stages. However, whereas there has been significant progress in improving methods of structural biology, particularly in X-ray crystallography, corresponding progress in the development of computational methods (such as in silico high-throughput screening) is still on the horizon. Crystal structures can be overinterpreted and thus bias hypotheses and follow-up experiments. As in any experimental science, the models of macromolecular structures derived from X-ray diffraction data have their limitations, which need to be critically evaluated and well understood for structure-based drug discovery. Areas covered This review describes how the validity, accuracy and precision of a protein or nucleic acid structure determined by X-ray crystallography can be evaluated from three different perspectives: i) the nature of the diffraction experiment; ii) the interpretation of an electron density map; and iii) the interpretation of the structural model in terms of function and mechanism. The strategies to optimally exploit a macromolecular structure are also discussed in the context of ‘Big Data’ analysis, biochemical experimental design and structure-based drug discovery. Expert opinion Although X-ray crystallography is one of the most detailed ‘microscopes’ available today for examining macromolecular structures, the authors would like to re-emphasize that such structures are only simplified models of the target macromolecules. The authors also wish to reinforce the idea that a structure should not be thought of as a set of precise coordinates but rather as a framework for generating hypotheses to be explored. Numerous biochemical and biophysical experiments, including new diffraction experiments, can and should be performed to verify or falsify these hypotheses. X-ray crystallography will find its future application in drug discovery by the development of specific tools that would allow realistic interpretation of the outcome coordinates and/or support testing of these hypotheses. PMID:24372145

  12. X-ray diffraction and X-ray standing-wave study of the lead stearate film structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.

    2016-05-15

    A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less

  13. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  14. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  15. Enhancing resolution in coherent x-ray diffraction imaging.

    PubMed

    Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong

    2016-12-14

    Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  16. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  17. New Occurrence of Shocked Graphite Aggregates at Barringer Crater

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Noma, Y.; Iancu, O. G.

    1993-07-01

    High-pressure carbon minera]s are considered to be formed by solid-solid transformation under static or impact high-pressure condition, but shocked quartz aggregates of impact craters are considered to be formed by quenched accretion of various aggregates by dynamic impact process [1-3]. The main purpose of this study is to elucidate new findings and occurrences of shocked graphite (SG) aggregates [2,3] at the Barringer meteorite crater. The graphite nodule block of Barringer Crater used in this study is collected near the rim. The sample is compared with standard graphite samples of Korea, Madagascar, and artificial impact graphites. There are four different mineral aggregates of the Barringer graphite nodule sample: (1) shocked graphite-1, (2) shocked graphite-2 and hexagonal diamond in the vein, (3) shocked quartz-1 (with kamacite) in the rim, and (4) calcite in the rim (Table 1). X-ray diffraction peaks of shocked graphite reveal low X-ray intensity, high Bragg-angle shift of X-ray diffraction peak, and multiple splitting of X-ray diffraction peaks. X-ray calculated density (rho) has been determined by X-ray diffractometer by the equation of density deviation Delta rho (%) = 100 x {(rho-rho(sub)0)/rho(sub)0}, where standard density rho(sub)0 is 2.255 g/cm^3 in Korean graphite [2,3]. The high-density value of shocked graphite grain obtained in Barringer is Delta rho = +0.6 +/- 0.1%. Shocked hexagonal diamonds (chaoite) show a high value of Delta rho = +0.6 +/- 0.9%. Analytical electron microscopy data reveal three different aggregates in the graphite nodule samples (Table 1): (1) shocked graphite-1 in the matrix, which contains uniformly Fe and Ca elements formed under gas state; (2) shocked graphite-2 in the vein, where crystallized shocked graphites and hexagonal diamonds are surrounded by kamacite-rich metals formed under gas-melt states of mixed compositions from iron meteorite and target rocks; and (3) shocked quartz-1 and kamacite in the rim, where coexisted elements are supplied from kamacite, sandstone, and limestone. The shocked quartz-1 grains with high density contain Fe and Ca elements that are different from the shocked quartz-2 of pure silica [1] formed at the final stage from the Coconino sandstone. (4) Limestone in the rim is attached from Kaibab limestone. The present shocked graphites with high density are the same as artificial fine-grained shocked graphites (Delta rho = +0.7%). Table 1, which appears here in the hard copy, shows formation stages with two shocked graphites in the Barringer Crater. Formation of shocked aggregates with chemical contamination indicate dynamic accretion processes of quenching and depression at impact. The existence of two shocked graphites indicates the two formation stages of the first gas-state and the second gas-melt states with quenching processes. The origin of carbon in the shocked graphites is considered in this study to be from Kaibab limestone. References: [1] Miura Y. (1991) Shock Waves, 1, 35-41. [2] Miura Y. (1992) Proc. Shock Waves (Japan), 2, 54-57. [3] Miura Y. et al. (1993) Symp. NIPR Antarctic Meteorite (Tokyo), in press. [4] Foote A. E. (1891) Am. J. Sci., 42, 413-417. [5] Hannemann R. E. et al. (1967) Science, 155, 995-997.

  18. X-ray fractography on fatigue fractured surface of austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yajima, Zenjiro; Tokuyama, Hideki; Kibayashi, Yasuo

    1995-12-31

    X-ray diffraction observation of the material internal structure beneath fracture surfaces provide fracture analysis with useful information to investigate the conditions and mechanisms of fracture. X-ray fractography is a generic name given to this technique. In the present study, X-ray fractography was applied to fatigue fracture surfaces of austenitic stainless steel (AISI 304) which consisted of solution treatment. The fatigue tests were carried out on compact tension (CT) specimens. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The line broadening of X-ray diffraction profiles was measured on and beneath fatiguemore » fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from the line broadening. The results are discussed on the basis of fracture mechanics.« less

  19. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  20. Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.

  1. Effect of PbO on optical properties of tellurite glass

    NASA Astrophysics Data System (ADS)

    Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.

    2018-03-01

    Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.

  2. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  3. History and Solution of the Phase Problem in theTheory of Structure Determination of Crystals from X-ray Diffraction Experiments

    ScienceCinema

    Wolf, Emil [University of Rochester, Rochester, New York, United States

    2017-12-09

    Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.

  4. X-ray diffraction of solid tin to 1.2 TPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazicki, A.; Rygg, J. R.; Coppari, F.

    2015-08-12

    In this study, we report direct in situ measurements of the crystal structure of tin between 0.12 and 1.2 TPa, the highest stress at which a crystal structure has ever been observed. Using angle-dispersive powder x-ray diffraction, we find that dynamically compressed Sn transforms to the body-centered-cubic (bcc) structure previously identified by ambient-temperature quasistatic-compression studies and by zero-kelvin density-functional theory predictions between 0.06 and 0.16 TPa. However, we observe no evidence for the hexagonal close-packed (hcp) phase found by those studies to be stable above 0.16 TPa. Instead, our results are consistent with bcc up to 1.2 TPa. We conjecturemore » that at high temperature bcc is stabilized relative to hcp due to differences in vibrational free energy.« less

  5. Synthesis, characterization of (3E)-1-(6-chloro-2-methyl-4-phenyl quinolin-3-Yl)-3-aryl prop-2-en-1-ones through IR, NMR, single crystal X-ray diffraction and insights into their electronic structure using DFT calculations

    NASA Astrophysics Data System (ADS)

    Sarveswari, S.; Srikanth, A.; Arul Murugan, N.; Vijayakumar, V.; Jasinski, Jerry P.; Beauchesne, Hanna C.; Jarvis, Ethan E.

    2015-02-01

    3E-1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-arylprop-2-en-1-ones were synthesized and characterized by FTIR, 1H NMR, 13C NMR, HSQC, DEPT-135. In addition the compound 3E-1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one was subjected to the single crystal X-ray diffraction studies. Density functional theory calculations were carried out for this chalcone and its derivatives to investigate into their electronic structure, chemical reactivity, linear and non-linear optical properties. The structure predicted from DFT for chalcone is in good agreement with the structure from XRD measurement.

  6. Impact of magnetic fields on the morphology of hybrid perovskite films for solar cells

    NASA Astrophysics Data System (ADS)

    Corpus-Mendoza, Asiel N.; Moreno-Romero, Paola M.; Hu, Hailin

    2018-05-01

    The impact of magnetic fields on the morphology of hybrid perovskite films is assessed via scanning electron microscopy and X-ray diffraction. Small-grain non-uniform perovskite films are obtained when a large magnetic flux density is applied to the sample during reaction of PbI2 and methylammonium iodide (chloride). Similarly, X-ray diffraction reveals a change of preferential crystalline planes when large magnetic fields are applied. Furthermore, we experimentally demonstrate that the quality of the perovskite film is affected by the magnetic field induced by the magnetic stirring system of the hot plate where the samples are annealed. As a consequence, optimization of the perovskite layer varies with magnetic field and annealing temperature. Finally, we prove that uncontrolled magnetic fields on the environment of preparation can severely influence the reproducibility of results.

  7. Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu

    The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less

  8. XRayView: a teaching aid for X-ray crystallography.

    PubMed

    Phillips, G N

    1995-10-01

    A software package, XRayView, has been developed that uses interactive computer graphics to introduce basic concepts of x-ray diffraction by crystals, including the reciprocal lattice, the Ewald sphere construction, Laue cones, the wavelength dependence of the reciprocal lattice, primitive and centered lattices and systematic extinctions, rotation photography. Laue photography, space group determination and Laue group symmetry, and the alignment of crystals by examination of reciprocal space. XRayView is designed with "user-friendliness" in mind, using pull-down menus to control the program. Many of the experiences of using real x-ray diffraction equipment to examine crystalline diffraction can be simulated. Exercises are available on-line to guide the users through many typical x-ray diffraction experiments.

  9. Application of MEMS-based x-ray optics as tuneable nanosecond choppers

    NASA Astrophysics Data System (ADS)

    Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin

    2017-08-01

    Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.

  10. Probing the thermal stability and the decomposition mechanism of a magnesium-fullerene polymer via X-ray Raman spectroscopy, X-ray diffraction and molecular dynamics simulations.

    PubMed

    Aramini, Matteo; Niskanen, Johannes; Cavallari, Chiara; Pontiroli, Daniele; Musazay, Abdurrahman; Krisch, Michael; Hakala, Mikko; Huotari, Simo

    2016-02-21

    We report the microscopic view of the thermal structural stability of the magnesium intercalated fullerene polymer Mg2C60. With the application of X-ray Raman spectroscopy and X-ray diffraction, we study in detail the decomposition pathways of the polymer system upon annealing at temperatures between 300 and 700 °C. We show that there are at least two energy scales involved in the decomposition reaction. Intermolecular carbon bonds, which are responsible for the formation of a 2D fullerene polymer, are broken with a relatively modest thermal energy, while the long-range order of the original polymer remains intact. With an increased thermal energy, the crystal structure in turn is found to undergo a transition to a novel intercalated cubic phase that is stable up to the highest temperature studied here. The local structure surrounding magnesium ions gets severely modified close to, possibly at, the phase transition. We used density functional theory based calculations to study the thermodynamic and kinetic aspects of the collapse of the fullerene network, and to explain the intermediate steps as well as the reaction pathways in the break-up of this peculiar C60 intermolecular bonding architecture.

  11. Fabrication of high-resolution x-ray diffractive optics at King's College London

    NASA Astrophysics Data System (ADS)

    Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia

    1995-09-01

    The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.

  12. DSC and Raman studies of silver borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando

    2016-05-01

    Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.

  13. Bonding in uranium(V) hexafluoride based on the experimental electron density distribution measured at 20 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianopoulos, Christopher G.; Zhurov, Vladimir V.; Minasian, Stefan G.

    The electron density distribution of [PPh 4][UF 6] was obtained from high-resolution X-ray diffraction data measured at 20 K. The electron density was modeled with an augmented Hansen–Coppens multipolar formalism. Topological analysis reveals that the U–F bond is of incipient covalent nature. Theoretical calculations add further support to the bonding description gleaned from the experimental model. The impact of the uranium anomalous dispersion terms on the refinement is also discussed.

  14. Bonding in uranium(V) hexafluoride based on the experimental electron density distribution measured at 20 K

    DOE PAGES

    Gianopoulos, Christopher G.; Zhurov, Vladimir V.; Minasian, Stefan G.; ...

    2017-02-06

    The electron density distribution of [PPh 4][UF 6] was obtained from high-resolution X-ray diffraction data measured at 20 K. The electron density was modeled with an augmented Hansen–Coppens multipolar formalism. Topological analysis reveals that the U–F bond is of incipient covalent nature. Theoretical calculations add further support to the bonding description gleaned from the experimental model. The impact of the uranium anomalous dispersion terms on the refinement is also discussed.

  15. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    NASA Astrophysics Data System (ADS)

    Mubarak Ali, M.; Raj, V.

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  16. Orbital configuration in CaTiO 3 films on NdGaO 3

    DOE PAGES

    Cao, Yanwei; Park, Se Young; Liu, Xiaoran; ...

    2016-10-13

    Despite its use as a constituent layer for realization of a polar metal and interfacial conductivity, the microscopic study of electronic structure of CaTiO 3 is still very limited. Here, we epitaxially stabilized CaTiO 3 films on NdGaO 3 (110) substrates in a layer-by-layer way by pulsed laser deposition. The structural and electronic properties of the films were characterized by reflection-high-energy-electron-diffraction, X-ray diffraction, and element-specific resonant X-ray absorption spectroscopy. To reveal the orbital polarization and the crystal field splitting of the titanium 3d state, X-ray linear dichroism was carried out on CaTiO 3 films, demonstrating the orbital configuration of dmore » xz/d yz < d xy < d 3z2-r2 < d x2-y2. To further explore the origin of this configuration, we performed the first-principles density function theory calculations, which linked the orbital occupation to the on-site energy of Ti 3d orbitals. Finally, these findings can be important for understanding and designing exotic quantum states in heterostructures based on CaTiO 3.« less

  17. Two-photon x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, J.

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  18. Two-photon x-ray diffraction

    DOE PAGES

    Stohr, J.

    2017-01-11

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  19. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  20. Influence of the divalent and trivalent ions substitution on the structural and magnetic properties of Mg0.5-xCdxCo0.5Cr0.04TbyFe1.96-yO4 ferrites prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Mustafa, Ghulam; Islam, M. U.; Zhang, Wenli; Anwar, Abdul Waheed; Jamil, Yasir; Murtaza, Ghulam; Ali, Ihsan; Hussain, Mudassar; Ali, Akbar; Ahmad, Mukhtar

    2015-08-01

    A series of the divalent and trivalent co-substituted Mg0.5-xCdxCo0.5Cr0.04TbyFe1.96-yO4 spinel ferrite systems (where x=0-0.5 in steps of 0.1 and y=0.00-0.10 in steps 0.02) are synthesized by sol-gel auto combustion method. The product materials were characterized by the thermo gravimetric analysis and differential scanning calorimetry (TGA/DSC), Fourier transform infrared spectra (FTIR), nitrogen adsorption (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The X-ray diffraction patterns and Fourier transform infrared spectroscopy confirm spinel nanocrystalline phase. The crystallite size is determined by Scherer's formula from 36.6 to 69.4 nm. The X-ray density is found in the range of 5.09-6.43 (g/cm3). The morphological features are studied using scanning electron microscope and AFM. Saturation magnetization (Ms) and remanence (Mr) magnetization extracted from M-H loops exhibit the decreasing trends 21.4-16 emu/g and 9.1-6.3 emu/g, respectively. A significant decrease in the intrinsic parameters is observed in the prepared samples due to the weakening of the A-B interaction as iron enters into the tetrahedral A-site. The coercivity lies in the range of 300-869 Oe as a function of co-substitution contents. The coercivity of the sample with x=0.1, y=0.02 was found maximum i.e. 869 Oe. The obtained results suggest that the investigated materials may be potential candidates for high density recording media applications.

  1. Misfit strain of oxygen precipitates in Czochralski silicon studied with energy-dispersive X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gröschel, A., E-mail: alexander.groeschel@fau.de; Will, J.; Bergmann, C.

    Annealed Czochralski Silicon wafers containing SiO{sub x} precipitates have been studied by high energy X-ray diffraction in a defocused Laue setup using a laboratory tungsten tube. The energy dispersive evaluation of the diffracted Bragg intensity of the 220 reflection within the framework of the statistical dynamical theory yields the static Debye-Waller factor E of the crystal, which gives access to the strain induced by the SiO{sub x} precipitates. The results are correlated with precipitate densities and sizes determined from transmission electron microscopy measurements of equivalent wafers. This allows for the determination of the constrained linear misfit ε between precipitate andmore » crystal lattice. For samples with octahedral precipitates the values ranging from ε = 0.39 (+0.28/−0.12) to ε = 0.48 (+0.34/−0.16) indicate that self-interstitials emitted into the matrix during precipitate growth contribute to the lattice strain. In this case, the expected value calculated from literature values is ε = 0.26 ± 0.05. Further, the precise evaluation of Pendellösung oscillations in the diffracted Bragg intensity of as-grown wafers reveals a thermal Debye-Waller parameter for the 220 reflection B{sup 220}(293 K) of 0.5582 ± 0.0039 Å{sup 2} for a structure factor based on spherically symmetric scattering contributions.« less

  2. Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.

    PubMed

    Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter

    2011-03-01

    A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.

  3. Cl⋯N weak interactions. Conformational analysis of imidazol-2-ylum heterocycles bearing N-β-chloroethyl and N-vinyl pendant groups

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Germán; Montes-Tolentino, Pedro; Sánchez-Ruiz, Sonia; Villaseñor-Granados, Tayde Osvaldo; Flores-Parra, Angelina

    2017-11-01

    Enantiomerically pure and racemic mixtures of β-chloroethylamines hydrochlorides with one and two stereogenic centres were used to synthesise 1,4-dialkyl-1,3-diimines, which in turn gave place to a series of imidazolium chlorides and tetraphenylborates bearing pendant N-β-chloroethyl substituents (sbnd CHEt-CH2Cl; sbnd CHMe-CHPhCl). Stereoselective dehydrochlorination of imidazolium compounds afforded in good yield the corresponding heterocycles bearing N-vinyl groups (-CEt=CH2; -CMe=CHPh). The volume of the N-substituents provides a steric screening of the cationic ring. The structure of the new compounds was determined by IR, mass spectra, NMR and X-ray diffraction analyses as well as DFT calculations of the optimized geometries. Uncommon stabilising intramolecular Cl⋯N weak interactions are described, together with H⋯Cl and H···π hydrogen bonds. The existence of the non-covalent weak intramolecular bonds was deduced from the X-ray diffraction analysis and confirmed by calculations of the electrostatic potential, electronic density distributions and the maps of the Laplacian functions of the electronic density.

  4. Deformation and spallation of a magnesium alloy under high strain rate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.; Lu, L.; Li, C.

    2016-04-01

    We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolvemore » three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.« less

  5. Microscopic structural change in a liquid Fe-C alloy of ~5 GPa

    DOE PAGES

    Shibazaki, Yuki; Kono, Yoshio; Fei, Yingwei

    2015-07-04

    The structure of a liquid Fe-3.5 wt% C alloy is examined for up to 7.2 GPa via multiangle energy-dispersive X-ray diffraction using a Paris-Edinburgh type large-volume press. X-ray diffraction data show clear changes in the pressure-dependent peak positions of structure factor and reduced pair distribution function at 5GPa. These results suggest that the liquid Fe-3.5wt%C alloys change structurally at approximately 5GPa. This finding serves as a microscopic explanation for the alloy’s previously observed density change at the same pressure. The pressure dependencies of the nearest and second neighbor distances of the liquid Fe-3.5 wt% C alloy are similar to thosemore » of liquid Fe which exhibits a structural change near the bcc-fcc-liquid triple point (5.2GPa and 1991 K). Here, similarities between Fe-3.5wt% C and Fe suggest that a density change also occurs in liquid Fe and that this structural change extends to other Fe-light element alloys.« less

  6. A comparative study on the experimentally derived electron densities of three protease inhibitor model compounds.

    PubMed

    Grabowsky, Simon; Pfeuffer, Thomas; Morgenroth, Wolfgang; Paulmann, Carsten; Schirmeister, Tanja; Luger, Peter

    2008-07-07

    In order to contribute to a rational design of optimised protease inhibitors which can covalently block the nucleophilic amino acids of the proteases' active sites, we have chosen three model compounds (aziridine , oxirane and acceptor-substituted olefin ) for the examination of their electron-density distribution. Therefore, high-resolution low temperature (9, 27 and 100 K) X-ray diffraction experiments on single-crystals were carried out with synchrotron and conventional X-radiation. It could be shown by the analysis of the electron density using mainly Bader's Theory of Atoms in Molecules, Volkov's EPMM method for interaction energies, electrostatic potentials and Gatti's Source Function that aziridine is most suitable for drug design in this field. A regioselective nucleophilic attack at carbon atom C1 could be predicted and even hints about the reaction's stereoselectivity could be obtained. Moreover, the comparison between two data sets of aziridine (conventional X-ray source vs. synchrotron radiation) gave an estimate concerning the reproducibility of the quantitative results.

  7. High Precision 2-D Grating Groove Density Measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxiao; McEntaffer, Randall; Tedesco, Ross

    2017-08-01

    Our research group at Penn State University is working on producing X-ray reflection gratings with high spectral resolving power and high diffraction efficiency. To estimate our fabrication accuracy, we apply a precise 2-D grating groove density measurement to plot groove density distributions of gratings on 6-inch wafers. In addition to plotting a fixed groove density distribution, this method is also sensitive to measuring the variation of the groove density simultaneously. This system can reach a measuring accuracy (ΔN/N) of 10-3. Here we present this groove density measurement and some applications.

  8. Editorial: Focus on X-ray Beams with High Coherence

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon

    2010-03-01

    This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J Williams, H M Quiney, A G Peele and K A Nugent Imaging of complex density in silver nanocubes by coherent x-ray diffraction R Harder, M Liang, Y Sun, Y Xia and I K Robinson Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent x-ray diffraction N Vaxelaire, H Proudhon, S Labat, C Kirchlechner, J Keckes, V Jacques, S Ravy, S Forest and O Thomas Ptychographic coherent diffractive imaging of weakly scattering specimens Martin Dierolf, Pierre Thibault, Andreas Menzel, Cameron M Kewish, Konstantins Jefimovs, Ilme Schlichting, Konstanze von König, Oliver Bunk and Franz Pfeiffer Dose requirements for resolving a given feature in an object by coherent x-ray diffraction imaging Andreas Schropp and Christian G Schroer FLASH: new opportunities for (time-resolved) coherent imaging of nanostructures R Treusch and J Feldhaus Structure of a single particle from scattering by many particles randomly oriented about an axis: toward structure solution without crystallization? D K Saldin, V L Shneerson, M R Howells, S Marchesini, H N Chapman, M Bogan, D Shapiro, R A Kirian, U Weierstall, K E Schmidt and J C H Spence Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging V Favre-Nicolin, F Mastropietro, J Eymery, D Camacho, Y M Niquet, B M Borg, M E Messing, L-E Wernersson, R E Algra, E P A M Bakkers, T H Metzger, R Harder and I K Robinson Coherent science at the SwissFEL x-ray laser B D Patterson, R Abela, H-H Braun, U Flechsig, R Ganter, Y Kim, E Kirk, A Oppelt, M Pedrozzi, S Reiche, L Rivkin, Th Schmidt, B Schmitt, V N Strocov, S Tsujino and A F Wrulich Energy recovery linac (ERL) coherent hard x-ray sources Donald H Bilderback, Joel D Brock, Darren S Dale, Kenneth D Finkelstein, Mark A Pfeifer and Sol M Gruner Statistical and coherence properties of radiation from x-ray free-electron lasers E L Saldin, E A Schneidmiller and M V Yurkov Microscopic return point memory in Co/Pd multilayer films K A Seu, R Su, S Roy, D Parks, E Shipton, E E Fullerton and S D Kevan Holographic and diffractive x-ray imaging using waveguides as quasi-point sources K Giewekemeyer, H Neubauer, S Kalbfleisch, S P Krüger and T Salditt Mapping the conformations of biological assemblies P Schwander, R Fung, G N Phillips Jr and A Ourmazd Imaging the displacement field within epitaxial nanostructures by coherent diffraction: a feasibility study Ana Diaz, Virginie Chamard, Cristian Mocuta, Rogerio Magalhães-Paniago, Julian Stangl, Dina Carbone, Till H Metzger and Günther Bauer The potential for two-dimensional crystallography of membrane proteins at future x-ray free-electron laser sources Cameron M Kewish, Pierre Thibault, Oliver Bunk and Franz Pfeiffer Coherence properties of hard x-ray synchrotron sources and x-ray free-electron lasers I A Vartanyants and A Singer Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH A P Mancuso, Th Gorniak, F Staier, O M Yefanov, R Barth, C Christophis, B Reime, J Gulden, A Singer, M E Pettit, Th Nisius, Th Wilhein, C Gutt, G Grübel, N Guerassimova, R Treusch, J Feldhaus, S Eisebitt, E Weckert, M Grunze, A Rosenhahn and I A Vartanyants

  9. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  10. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  11. In Situ Ramp Anneal X-ray Diffraction Study of Atomic Layer Deposited Ultrathin TaN and Ta 1-x Al x N y Films for Cu Diffusion Barrier Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consiglio, S.; Dey, S.; Yu, K.

    2016-01-01

    Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less

  12. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veluraja, K., E-mail: veluraja@msuniv.ac.in; Vennila, K.N.; Umamakeshvari, K.

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of themore » homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.« less

  13. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP-oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution.

    PubMed

    Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A

    2016-03-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  14. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  15. Investigating the Effects of Low Temperature Annealing of Amorphous Corrosion Resistant Alloys.

    DTIC Science & Technology

    1980-11-01

    Ray Diffraction.................................................... 6 Differential Scanning Calorimetry....................................... 9...17 LIST OF FIGURES Figure 1. X- Ray Diffraction Results From Fe32Ni 36Cr 4P 2 B Annealed for One Hour at...Various Temperatures (Cr Ka Radiation) ................................. 7 Figure 2. X- Ray Diffraction Results From FeU2NiaeCr14SieB Annealed for One

  16. Changes in the chemical composition and spectroscopy of loblolly pine medium density fiberboard furnish as a function of age and refining pressure

    Treesearch

    Stephen S. Kelley; Thomas Elder; Leslie H. Groom

    2005-01-01

    Loblolly pine wood between the ages of 5-35 was refined into medium density fiberboard furnish at steam pressures from 2 to 18 bar, The effect of age and processing conditions on the properties of the fibers was assessed by wet chemical analyses, Near Infared Spectroscopy (NIR) and powder X-ray diffraction (XRD).In general ,the percentages of extractives and glucose...

  17. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl(6) and other alloys are twinned cubic crystals.

    PubMed

    Pauling, L

    1987-06-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).

  18. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl6 and other alloys are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1987-01-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841

  19. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  20. Crystallization and preliminary X-ray diffraction analysis of a chitin-binding domain of hyperthermophilic chitinase from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa

    The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.

  1. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    PubMed

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  2. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2

    PubMed Central

    Fugel, Malte; Hathwar, Venkatesha R.; Turner, Michael J.; Howard, Judith A. K.

    2018-01-01

    Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element–hydrogen distances, r(X—H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r(X—H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydro­carbon rubrene (orthorhombic 5,6,11,12-tetra­phenyl­tetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element–hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily launched inside its graphical user interface following a conventional IAM. PMID:29354269

  3. X-ray electron density investigation of chemical bonding in van der Waals materials

    NASA Astrophysics Data System (ADS)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  4. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  5. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  6. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  7. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides.

    PubMed

    Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  8. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    NASA Astrophysics Data System (ADS)

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  9. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    NASA Astrophysics Data System (ADS)

    Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.

    2005-08-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.

  10. Inkjet printable-photoactive all inorganic perovskite films with long effective photocarrier lifetimes

    NASA Astrophysics Data System (ADS)

    Ilie, C. C.; Guzman, F.; Swanson, B. L.; Evans, I. R.; Costa, P. S.; Teeter, J. D.; Shekhirev, M.; Benker, N.; Sikich, S.; Enders, A.; Dowben, P. A.; Sinitskii, A.; Yost, A. J.

    2018-05-01

    Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr3 perovskite quantum dots. The current–voltage (I–V) and capacitance–voltage (C–V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 109 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr3, indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.

    Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less

  12. IDATEN and G-SITENNO: GUI-assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA.

    PubMed

    Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi

    2014-11-01

    Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.

  13. Matter under extreme conditions experiments at the Linac Coherent Light Source

    DOE PAGES

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; ...

    2015-12-10

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the firstmore » experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering techniques on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. Furthermore, these complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness X rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. This set of studies demonstrates our ability to measure fundamental thermodynamic properties that determine the state of matter in the high-energy density physics regime.« less

  14. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  15. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  16. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.

    2016-08-11

    Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

  17. An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography

    ERIC Educational Resources Information Center

    Clegg, William

    2004-01-01

    The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…

  18. Laser-induced Multi-energy Processing in Diamond Growth

    DTIC Science & Technology

    2012-05-01

    microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions

  19. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    NASA Astrophysics Data System (ADS)

    Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.

    2013-03-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  20. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-11

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  1. Functionalizing Designer DNA Crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine nucleotides is usually pH dependent (pH < 6) four different TFOs were examined: TFO-1 was unmodified while TFOs 2-4 contained additional stabilizing analogues capable of extending triplex formation to pH 7. In addition, each of the TFOs contained a Cy5 dye at the 5'-end of the oligonucleotide to aid in characterization of TFO binding - crystals were obtained with all four variations of TFOs. Formation of DNA triplex in the motif was characterized by an electrophoretic mobility shift assay (EMSA), UV melting studies and FRET. Crystals containing TFO-1 (unmodified) and TFO-2 (with 2'-amino ethoxy modification) were isolated and flash-frozen in liquid nitrogen for X-ray data collection at beam line NSLS-X25. X-ray data was also collected for crystals of the 3-turn triangle without any TFO bound to it. Difference maps were done between the crystals with TFO against the one without to identify any additional electron density corresponding to the third strand in the triplex binding region. The data from the crystal containing TFO-2 was used to further analyze if the additional density can match the expected position of the TFO on the triangle motif. Since the additional density did not correspond to the entire binding region, 2Fo-Fc, 3Fo-2Fc and 4Fo-3Fc maps were done to check for missing pieces of the electron density. From the resulting 2Fo-Fc map, the asymmetric unit from the 3-turn triangle (31-bp duplex model based on previous structure 3UBI) was inserted into the density as a reference. However, the electron density corresponding to the TFO was still not continuous throughout the 13-nt triplex binding region and allowed only a partial fit of the TFO. The third nucleotide in positions 1, 3, 4, 6, 7 were fit into the density in the major groove of the underlying duplex with proper triplex configuration. The third chapter describes the triplex approach to position a functional group (the UV cross-linking agent psoralen) within a pre-formed DNA motif. Triplex formation and psoralen cross-linking of the motif were analyzed by native and denaturing gel electrophoresis respectively. Motifs containing the Psoralen-TFO were also successfully crystallized and the crosslinking shown by analyzing the denatured crystals on a gel. The end goal would be to form a crosslinked designed DNA crystal that can diffract to a higher resolution. The fourth chapter describes the use of serial femtosecond crystallography for structure determination of designed DNA lattices. X-ray diffraction data from self-assembled 3D DNA microcrystals were collected from a stream of crystals in solution. Serial femtosecond crystallography eliminates the need for large crystals and the need for freezing, thus overcoming any associated crystal defects and radiation damage. Self-assembled nano/microcrystals were successfully made and were diffracted at room temperature. The best diffraction was from the 1-nt SE motif to an extent of 3.5 A in resolution.

  2. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures.

    PubMed

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  3. Evaluation of Argon ion irradiation hardening of ferritic/martensitic steel-T91 using nanoindentation, X-ray diffraction and TEM techniques

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.

    2017-08-01

    In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.

  4. Boron monosulfide: Equation of state and pressure-induced phase transition

    NASA Astrophysics Data System (ADS)

    Cherednichenko, K. A.; Kruglov, I. A.; Oganov, A. R.; Le Godec, Y.; Mezouar, M.; Solozhenko, V. L.

    2018-04-01

    Quasi-hydrostatic compression of rhombohedral boron monosulfide (r-BS) has been studied up to 50 GPa at room temperature using diamond-anvil cells and angle-dispersive synchrotron X-ray diffraction. A fit of the experimental P-V data to the Vinet equation of state yields the bulk modulus B0 of 42.2(1.4) GPa and its first pressure derivative B0' of 7.6(2) that are in excellent agreement with our ab initio calculations. Formation of a new high-pressure phase of boron monosulfide (hp-BS) has been observed above 35 GPa. According to ab initio evolutionary crystal structure predictions combined with Rietveld refinement of high-pressure X-ray diffraction data, the structure of hp-BS has trigonal symmetry and belongs to the space group P-3m1. As it follows from the electron density of state calculations, the phase transformation is accompanied by an insulator-metal transition.

  5. Molecular, crystal, and electronic structure of the cobalt(II) complex with 10-(2-benzothiazolylazo)-9-phenanthrol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linko, R. V., E-mail: rlinko@mail.ru; Sokol, V. I.; Polyanskaya, N. A.

    2013-05-15

    The reaction of 10-(2-benzothiazolylazo)-9-phenanthrol (HL) with cobalt(II) acetate gives the coordination compound [CoL{sub 2}] {center_dot} CHCl{sub 3} (I). The molecular and crystal structure of I is determined by X-ray diffraction. The coordination polyhedron of the Co atom in complex I is an octahedron. The anion L acts as a tridentate chelating ligand and is coordinated to the Co atom through the phenanthrenequinone O1 atom and the benzothiazole N1 atom of the moieties L and the N3 atom of the azo group to form two five-membered metallocycles. The molecular and electronic structures of the compounds HL, L, and CoL{sub 2} aremore » studied at the density functional theory level. The results of the quantum-chemical calculations are in good agreement with the values determined by X-ray diffraction.« less

  6. Synthesis, structural characterization and theoretical studies of a new Schiff base 4-(((3-(tert-Butyl)-(1-phenyl)pyrazol-5-yl) imino)methyl)phenol

    NASA Astrophysics Data System (ADS)

    Cuenú, Fernando; Londoño-Salazar, Jennifer; Torres, John Eduard; Abonia, Rodrigo; D'Vries, Richard F.

    2018-01-01

    4-(((3-(tert-Butyl)-(1-phenyl)pyrazol-5-yl)imino)methyl)phenol (4-OHFPz) was synthesized and characterized by FT-IR, MS, NMR, and single-crystal X-ray diffraction. Optimization of molecular geometry, vibrational frequencies, and chemical shifts were calculated by using the methods of density functional theory (DFT) with B3LYP and B3PW91 as functionals and Hartree-Fock with 6-311G++(d,p) as basis set using the GAUSSIAN 09 program package. With the VEDA 4 software, the vibrational frequencies were assigned in terms of the potential energy distribution (PED). The equilibrium geometries calculated by all methods were compared with X-ray diffraction results, indicating that the theoretical results matches well with the experimental ones. The data obtained from the vibrational analysis and the calculated NMR are consistent with the experimental spectra.

  7. Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.

    PubMed

    Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin

    2012-12-14

    GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full width at half maximum measurement from x-ray diffraction and photoluminescence spectra of GaAs on a planar Si(001) substrate, those of GaAs on the 55 nm round-hole patterned Si substrate are reduced by 39.6 and 31.4%, respectively. The improvement in material quality is verified by transmission electron microscopy, field-emission scanning electron microscopy, Hall measurements, Raman spectroscopy, photoluminescence, and x-ray diffraction studies.

  8. Single-crystal X-ray diffraction study of SrGeO3 high-pressure perovskite phase at 100 K

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Akihiko; Arima, Hiroshi; Ohtaka, Osamu; Fujiwara, Keiko; Yoshiasa, Akira

    2017-10-01

    Single-crystal X-ray diffraction study of SrGeO3 perovskite (cubic; space group Pmɜ¯m) synthesized at 6 GPa and 1223 K was conducted at a low temperature of 100 K. The residual electron density revealed the presence of the bonding electron at the center of the Ge-O bond, in accordance with our previous conclusion that the Ge-O bond is strongly covalent. From comparison with our previous structure-refinement result at 296 K, the mean square displacement (MSD) of the O atom in the direction of the Ge-O bond is suggested to exhibit no significant temperature dependence, in contrast to that in the direction perpendicular to the bond. Thus, the strong covalency of the Ge-O bond can have a large influence on the temperature dependence of thermal vibration of the O atom.

  9. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  10. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.

    PubMed

    Shareef, M Y; Messer, P F; van Noort, R

    1993-01-01

    In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.

  11. Substrate temperature effect on structural and optical properties of Bi2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Jariwala, B. S.; Shah, D. V.; Kheraj, Vipul

    2012-06-01

    Structural and optical properties of Bi2Te3 thin films, thermally evaporated on well-cleaned glass substrates at different substrate temperatures, are reported here. X-ray diffraction was carried out for the structural characterization. XRD patterns of the films exhibit preferential orientation along the [0 1 5] direction for the films deposited at all the substrate temperatures together with other supported planes [2 0 5] & [1 1 0]. All other deposition conditions like thickness, deposition rate and pressure were maintained same throughout the experiment. X-ray diffraction lines confirm that the grown films are polycrystalline in nature with hexagonal crystal structure. The effect of substrate temperature on lattice constants, grain size, micro strain, number of crystallites and dislocation density have been investigated and reported in this paper. Also the substrate temperature effect on the optical property has been also investigated using the FTIR spectroscopy.

  12. Combined experimental and computational study of high-pressure behavior of triphenylene

    PubMed Central

    Zhao, Xiao-Miao; Zhong, Guo-Hua; Zhang, Jiang; Huang, Qiao-Wei; Goncharov, Alexander F.; Lin, Hai-Qing; Chen, Xiao-Jia

    2016-01-01

    We have performed measurements of Raman scattering, synchrotron x-ray diffraction, and visible transmission spectroscopy combined with density functional theory calculations to study the pressure effect on solid triphenylene. The spectroscopic results demonstrate substantial change of the molecular configuration at 1.4 GPa from the abrupt change of splitting, disappearance, and appearance of some modes. The structure of triphenylene is found be to stable at high pressures without any evidence of structural transition from the x-ray diffraction patterns. The obtained lattice parameters show a good agreement between experiments and calculations. The obtained band gap systematically decreases with increasing pressure. With the application of pressure, the molecular planes become more and more parallel relative to each other. The theoretical calculations indicate that this organic compound becomes metallic at 180 GPa, fueling the hope for the possible realization of superconductivity at high pressure. PMID:27161429

  13. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis.

    PubMed

    Liu, Qun; Hendrickson, Wayne A

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an "anomalous" component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.

  14. Hydrothermal synthesis infrared to visible upconversion luminescence of SrMoO4: Er3+/Yb3+ phosphor

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Kumar, Kaushal

    2018-04-01

    The upconversion emission properties in Er3+/Yb3+ doped SrMoO4 phosphor synthesized via hydrothermal method is investigated upon 980 nm laser light excitation. The crystal structure and morphology of the synthesized phosphor are characterized by X-ray diffraction and field emission scanning electron microscopy. The X-ray diffraction pattern suggests that SrMoO4 phosphor has tetragonal phase structure. The phosphor emits strong green (525 and 552 nm) and red (665 nm) UC emissions along with weak blue (410 and 488 nm) and near infrared (798 nm) emission bands. The color emitted from the phosphor is shifted from yellow to green region with increasing the power density from 15 to 65 W/cm2. The result indicates that the present material is suitable for making infrared to visible up-converts and display devices.

  15. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  16. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  17. Modeling and measurements of XRD spectra of extended solids under high pressure

    NASA Astrophysics Data System (ADS)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  18. Pressure dependence of the monoclinic phase in (1–x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO₃ solid solutions

    DOE PAGES

    Ahart, Muhtar; Sinogeikin, Stanislav; Shebanova, Olga; ...

    2012-12-26

    We combine high-pressure x-ray diffraction, high-pressure Raman scattering, and optical microscopy to investigate a series of (1–x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO₃ (PMN-xPT) solid solutions (x=0.2, 0.3, 0.33, 0.35, 0.37, 0.4) in diamond anvil cells up to 20 GPa at 300 K. The Raman spectra show a peak centered at 380 cm⁻¹ starting above 6 GPa for all samples, in agreement with previous observations. X-ray diffraction measurements are consistent with this spectral change indicating a structural phase transition; we find that the triplet at the pseudocubic (220) Bragg peak merges into a doublet above 6 GPa. Our results indicate that the morphotropicmore » phase boundary region (x=0.33–0.37) with the presence of monoclinic symmetry persists up to 7 GPa. The pressure dependence of ferroelectric domains in PMN-0.32PT single crystals was observed using a polarizing optical microscope. The domain wall density decreases with pressure and the domains disappear at a modest pressure of 3 GPa. We propose a pressure-composition phase diagram for PMN-xPT solid solutions.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less

  20. Preparation, electronic structure, and chemical bonding of lead-free (1 - x)(K0.5Bi0.5)TiO3- xBaTiO3 solid solution

    NASA Astrophysics Data System (ADS)

    Sasikumar, S.; Saravanan, R.; Saravanakumar, S.; Robert, M. Charles

    2018-01-01

    Polycrystalline lead-free (1 - x)(K0.5Bi0.5)TiO3- xBaTiO3, ((1 - x)KBT- xBT) ( x = 0.00, 0.08, 0.12) ceramics were synthesized via solid-state reaction method. The powder X-ray diffraction (PXRD) and structural refinement results confirm that a single-phase tetragonal structure with space group P4mm. Charge density distribution inside the unit cell of (1 - x)KBT- xBT was investigated by the maximum entropy method. Charge density analysis reveals the reduction in ionic nature along K/Bi-O bond and enhancement of covalent nature along Ti-O bond with the addition of BaTiO3. The charge density distribution studies done using maximum entropy method for (1 - x)KBT- xBT have not been done so far. The surface morphology study was done using scanning electron microscopy (SEM). Energy dispersive X-rays spectra (EDS) were used to investigate the elemental compositions present in the system. The dielectric constant and loss tangent were studied as a function of frequency. The dielectric constant and loss were decreased with increase of frequency. Room temperature dielectric constant ( ɛ) and loss (tan δ) were measured for x = 0.00 about 511 and 0.51, respectively, at a frequency of 10 kHz.

  1. X-ray Diffraction, Big and Small

    NASA Image and Video Library

    2012-10-30

    A conventional X-ray diffraction instrument left is the size of a large refrigerator, in contrast to the compact size of the Chemistry and Mineralogy CheMin instrument on NASA Curiosity rover top right.

  2. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    PubMed Central

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  3. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; ...

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  4. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment

    DOE PAGES

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; ...

    2016-07-26

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable,more » for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.« less

  5. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    DOE PAGES

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; ...

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less

  6. Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.

    2017-04-01

    Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.

  7. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.

  8. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film

    NASA Astrophysics Data System (ADS)

    Beyerlein, Kenneth R.

    2018-03-01

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  9. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

  10. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film.

    PubMed

    Beyerlein, Kenneth R

    2018-02-27

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  11. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  12. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  13. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  14. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.

    2018-05-01

    This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.

  15. Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy)1-xCaxCoO3-δ

    NASA Astrophysics Data System (ADS)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; Freeland, J. W.; Chen, Yu-Sheng; Mitchell, J. F.; Phelan, D.

    2017-10-01

    Praseodymium-containing cobalt perovskites, such as (Pr1-yYy)1-xCaxCoO3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, TVT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr0.85Y0.15)0.7Ca0.3CoO3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at TVT. No evidence of charge ordering was revealed by the single crystal diffraction. Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at TVT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO2 grown single crystals.

  16. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  17. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    PubMed Central

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-01-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336

  18. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1–yY y) 1–xCa xCoO 3-δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  19. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1–yY y) 1–xCa xCoO 3-δ

    DOE PAGES

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; ...

    2017-06-27

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  20. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  1. Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials

    DTIC Science & Technology

    2013-06-17

    of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional

  2. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  3. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...

    2017-03-21

    Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less

  4. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.

    PubMed

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-09-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.

  5. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources

    PubMed Central

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-01-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079

  6. DSC and Raman studies of silver borotellurite glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Amandeep; Khanna, Atul, E-mail: atul.phy@gndu.ac.in; Gonzàlez, Fernando

    2016-05-23

    Silver borotellurite glasses of composition: xAg{sub 2}O-yB{sub 2}O{sub 3}-(100-x-y)TeO{sub 2} (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B{sub 2}O{sub 3} content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B{sub 2}O{sub 3} due to the transformation of TeO{sub 4} into TeO{sub 3} units.

  7. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  8. Study of Early Transition Metal Carbides for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Dall'Agnese, Yohan

    An increase in energy and power density is needed to match the growing energy storage demands linked with the development of renewable energy production, and portable electronics. Several energy storage technologies exist including lithium-ion batteries, sodium-ion batteries, fuel cells and supercapacitors. These systems are mutually complementary. For example, supercapacitors can deliver high power densities whereas batteries can be used for high energy density applications. The first objective of this work was to investigate the electrochemical performances of a new family of 2-D materials called MXenes by cyclic voltammetry and galvanostatic charge-discharge measurements and to propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focused on Ti3C 2-based MXenes behavior as electrode materials for supercapacitors in aqueous electrolytes. The charge storage mechanisms in basic and neutral aqueous electrolytes, investigated by X-ray diffraction, were demonstrated to be attributed to cations intercalation between Ti3C2 layers. X-ray photoelectron spectroscopy highlighted the contribution of oxygenated functional groups on surface redox reactions in sulfuric acid. High capacitances were achieved, up to 520 F/cm3 and 325 F/g. Then the electrochemical behaviors of MXenes in sodium-based organic electrolytes were explored. A new hybrid system of sodium-ion capacitor was proposed. It was demonstrated that V2C-based MXene electrodes were suitable to be used as positive electrodes with an operating potential from 1 V to 3.5 V vs. Na+/Na. Continuous intercalation and de-intercalation of sodium ions between the V2C layers during sodiation and desodiation were showed by X-ray diffraction. An asymmetric sodium-ion capacitor full cell was assembled using hard carbon as negative electrode and showed promising results, with a capacity of 50 mAh/g. The last part was focused on the study of MXene electrodes for supercapacitors in an organic electrolyte; 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) in acetonitrile. High volumetric capacitances, up to 245 F/cm 3, were achieved by using carbon nanotubes as an additive to improve ion accessibility to Ti3C2 layers. The redox intercalation of large EMI+ cations between Ti3C2 layers at -0.4 V vs. Ag was observed by X-ray diffraction.

  9. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGES

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  10. Crystallographic perturbations to valence charge density and hydrogen-surface interactions

    NASA Astrophysics Data System (ADS)

    Ciston, James W.

    The subject of surfaces has been the epicenter of numerous studies in recent years, particularly with respect to applications in catalysis, thin films, and self-assembly of nanostructures where the surface-to-volume ratio is large. Understanding how the atomic structure of materials differs at surfaces where the atoms are far less constrained can yield fundamental insight into these interesting nanoscale phenomena. Quantum surface crystallography takes this one step further in an attempt to experimentally measure the structure of the electrons themselves, which is of greater importance than atomic positions in determining material properties. We report a procedure for obtaining a much better initial parameterization of the charge density than what is possible from a neutral atom model. This procedure involves the parameterization of a bulk charge density model in terms of simple variables such as bond lengths, which can then be transferred to the problem of interest, for instance a surface. Parameterization is accomplished through the fitting of Density Functional Theory calculations of a variety of crystal distortions to a bond-centered pseudoatom (BCPA) model. This parameterized model can then be applied to surfaces or for other problems where an initial higher-order model is needed without the addition of any extra fitted parameters. Through the use of the BCPA model, we report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (001) 2x1H surface. By properly accounting for the covalent bonding effects in the silicon structure, we were able to stably refine the positions of hydrogen atoms at this surface in three dimensions, which had never before been accomplished for any surface. In addition, we found experimentally an increased, slightly localized bond density of approximately 0.31 electrons between each Si atom pair at the surface. Both the atomic positions and the charge density were found to be in remarkably good agreement with density functional theory (DFT) calculations. The BCPA model was also applied to an experimental refinement of the local charge density at the Si (111) 7x7 surface utilizing a combination of x-ray and high energy electron diffraction. By perturbing about the bond-centered pseudoatom model, we found experimentally that the adatoms were in an anti-bonding state with the atoms directly below. We were also able to experimentally refine a charge transfer of 0.26+/-0.04 e- from each adatom site to the underlying layers. This was the first statistically significant refinement of site-specific bonding information at any surface utilizing x-ray diffraction data. Precession electron diffraction (PED) is a technique which is gaining increasing interest due to its ease of use and reduction of the dynamical scattering problem in electron diffraction. To further investigate the usefulness of this technique, we performed a systematic study of the effect of precession angle on the mineral andalusite where the semiangle was varied from 6.5 to 32 mrad in five discrete steps. We have shown that the intensities of kinematically forbidden reflections decayed exponentially as the precession semiangle (ϕ) was increased. Additionally, we have determined that charge density effects were best observed at moderately low angles (6.5-13 mrad) even though PED patterns became more kinematical in nature as the precession angle was increased further. We have also shown that the amount of interpretable information provided by direct methods phase inversion of the diffraction data increases monotonically but non-systematically as ϕ increases. We report an experimental and theoretical analysis of the ✓3x✓3-R30° and 2x2 reconstructions on the MgO (111) surface combining transmission electron microscopy, x-ray photoelectron spectroscopy, and reasonably accurate density functional calculations using the meta-GGA functional TPSS. We have not only conclusively solved the atomic structures of these reconstructions, but have developed a kinetic model for an evolutionary pathway between structures driven entirely by exchange of water molecules between the surface and the environment that does not require the cations to move when the structure transforms. This is the first time an experimentally and theoretically supported kinetic model has described not only all of the structures in a series on a single oxide surface, but also describes why none of the structures pass through the thermodynamically most stable configuration. Lastly, we have investigated the observability of valence bonding effects in aberration-corrected high resolution electron microscopy (HREM) images along the [010] projection of the mineral Forsterite (Mg2SiO 4). Direct observability of bonding effects would be both faster and less ambiguous than the refinement of similar features against diffraction data. Through analysis of simulated high resolution electron microscopy images, we have determined that bonding effects should be observable at levels approaching 20% of the total contrast. Initial experimental results for this material system have also been presented.

  11. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less

  12. In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?

    NASA Astrophysics Data System (ADS)

    Barber, John

    2011-03-01

    In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.

  13. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  14. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  15. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    PubMed

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  16. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1

    PubMed Central

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-01-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976

  17. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  18. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  19. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  20. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  1. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  2. Illicit drug detection using energy dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  3. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  4. Crystallization and preliminary X-ray diffraction study of the protealysin precursor belonging to the peptidase family M4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromova, T. Yu., E-mail: duk@img.ras.ru; Demidyuk, I. V.; Kostrov, S. V.

    2008-09-15

    A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.

  5. Framework for three-dimensional coherent diffraction imaging by focused beam x-ray Bragg ptychography.

    PubMed

    Hruszkewycz, Stephan O; Holt, Martin V; Tripathi, Ash; Maser, Jörg; Fuoss, Paul H

    2011-06-15

    We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.

  6. In situ data collection and structure refinement from microcapillary protein crystallization

    PubMed Central

    Yadav, Maneesh K.; Gerdts, Cory J.; Sanishvili, Ruslan; Smith, Ward W.; Roach, L. Spencer; Ismagilov, Rustem F.; Kuhn, Peter; Stevens, Raymond C.

    2007-01-01

    In situ X-ray data collection has the potential to eliminate the challenging task of mounting and cryocooling often fragile protein crystals, reducing a major bottleneck in the structure determination process. An apparatus used to grow protein crystals in capillaries and to compare the background X-ray scattering of the components, including thin-walled glass capillaries against Teflon, and various fluorocarbon oils against each other, is described. Using thaumatin as a test case at 1.8 Å resolution, this study demonstrates that high-resolution electron density maps and refined models can be obtained from in situ diffraction of crystals grown in microcapillaries. PMID:17468785

  7. Fabrication and characterization of photovoltaic cell with novel configuration ITO/n-CuIn3Se5/p-CIS/In

    NASA Astrophysics Data System (ADS)

    Geethu, R.; Jacob, R.; Sreenivasan, P. V.; Shripathi, T.; S, Okram G.; Philip, R. R.

    2015-02-01

    A novel configuration ITO/n-OVC CuIn3Se5/p-CIS/In solar cell has been fabricated by multisource vacuum co-evaporation technique on soda lime glass substrates. The pn junction is formed with ordered vacancy compound as the n counter part for the p type CuInSe2. The structural, compositional, hall coefficient, optical and electrical properties of the p and n layers have been studied respectively by X-ray diffraction, Energy Dispersive Analysis of X rays, optical absorbance and conductivity measurements. Current density-Voltage measurements enabled the determination of efficiency of the device.

  8. Focusing X-ray free-electron laser pulses using Kirkpatrick-Baez mirrors at the NCI hutch of the PAL-XFEL.

    PubMed

    Kim, Jangwoo; Kim, Hyo Yun; Park, Jaehyun; Kim, Sangsoo; Kim, Sunam; Rah, Seungyu; Lim, Jun; Nam, Ki Hyun

    2018-01-01

    The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) is a recently commissioned X-ray free-electron laser (XFEL) facility that provides intense ultrashort X-ray pulses based on the self-amplified spontaneous emission process. The nano-crystallography and coherent imaging (NCI) hutch with forward-scattering geometry is located at the hard X-ray beamline of the PAL-XFEL and provides opportunities to perform serial femtosecond crystallography and coherent X-ray diffraction imaging. To produce intense high-density XFEL pulses at the interaction positions between the X-rays and various samples, a microfocusing Kirkpatrick-Baez (KB) mirror system that includes an ultra-precision manipulator has been developed. In this paper, the design of a KB mirror system that focuses the hard XFEL beam onto a fixed sample point of the NCI hutch, which is positioned along the hard XFEL beamline, is described. The focusing system produces a two-dimensional focusing beam at approximately 2 µm scale across the 2-11 keV photon energy range. XFEL pulses of 9.7 keV energy were successfully focused onto an area of size 1.94 µm × 2.08 µm FWHM.

  9. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less

  10. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies.more » Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.« less

  11. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  12. Advantages of phase retrieval for fast x-ray tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.

    2013-12-01

    In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.

  13. Thermolysis synthesis of pure phase NiO from novel sonochemical synthesized Ni(II) nano metal-organic supramolecular architecture.

    PubMed

    Hanifehpour, Younes; Morsali, Ali; Mirtamizdoust, Babak; Joo, Sang Woo; Soltani, Behzad

    2017-07-01

    Nano-structures of a new supramolecular coordination compound of divalent nickel with the pyrazol (pzH) containing the terminal azide anions, [Ni(pzH) 2 (N 3 ) 2 ] (1), with discrete molecular architecture (DMA) in solid state was synthesized via sonochemical method. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, IR, and elemental analysis. Compound 1 was structurally characterized by single crystal X-ray diffraction and the single-crystal X-ray data shows that the coordination number of Ni (II) ions is six, (NiN 6 ), with four N-donor atoms from neutral "pzH" ligands and two N-donors from two terminal azide anions. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are consistent with the crystal structure. The NiO nanoparticles were obtained by thermolysis of 1 at 180°C with oleic acid as a surfactant. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.

    PubMed

    Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael

    2018-04-24

    This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.

  15. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  16. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  17. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  18. Pressure-induced densification in GeO{sub 2} glass: A transmission x-ray microscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yu, E-mail: lyforest@stanford.edu; Zeng, Qiaoshi; Yang, Wenge

    2013-12-23

    Nanoscale transmission x-ray microscopy measurements have been performed to determine the effect of pressure (P) on the volume (V) change in GeO{sub 2} glass up to 38.5 GPa. The P-V data show a continuous increase upon compression, indicating that the density-driven structural transformation is a gradual process. Over the pressure range studied, a transition is observed at approximately 10–13 GPa, where the material displays distinct compression behaviors. The pressure-induced densification that involves the coordination number change has been discussed. Using this newly developed high-pressure imaging technique with tens of nanometer resolution, we have provided a direct and unequivocal way for measuring densitymore » of amorphous materials to much higher pressures with accuracy rivaling x-ray diffraction of crystalline solids.« less

  19. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    NASA Astrophysics Data System (ADS)

    Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.

    2016-03-01

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  20. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility.

    PubMed

    Döppner, T; Kraus, D; Neumayer, P; Bachmann, B; Emig, J; Falcone, R W; Fletcher, L B; Hardy, M; Kalantar, D H; Kritcher, A L; Landen, O L; Ma, T; Saunders, A M; Wood, R D

    2016-11-01

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  1. Magnetic topology of Co-based inverse opal-like structures

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.

    2011-08-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.

  2. X-ray radiation generated by a beam of relativistic electrons in composite structure

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Noskov, A. V.

    2018-04-01

    The dynamic theory of coherent X-ray radiation generated by a beam of relativistic electrons in the three-layer structure consisting of an amorphous layer, a vacuum (air) layer and a single crystal has been developed. The phenomenon description is based on two main radiation mechanisms, namely, parametric X-ray radiation (PXR) and diffracted transition radiation (DTR). The possibility to increase the spectral-angular density of DTR under the condition of constructive interference of the transition radiation waves from different boundaries of such a structure has been demonstrated. It is shown that little changes in the layers thicknesses should not cause a considerable change in the interference picture, for example, the transition of constructive interference into destructive one. It means that in the considered process the conditions of constructive interference are enough stable to use them for increasing the intensity of X-ray source that can be created based on the interaction of relativistic electrons with such a structure.

  3. Emerging opportunities in structural biology with X-ray free-electron lasers

    PubMed Central

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  4. Structure Evolution and Distributions of Grain-Boundary Misorientainons in Submicrocrystalline Molybdenum Irradiated with a Pulsed Electron Beam

    NASA Astrophysics Data System (ADS)

    Stepanova, E. N.; Grabovetskaya, G. P.; Teresov, A. D.; Mishin, I. P.

    2018-05-01

    Using the methods of electron backscatter diffraction, electron microscopy and X-ray diffraction analysis, it is demonstrated that irradiation of the surface of a submicrocrystalline molybdenum specimen with a pulsed electron beam in a non-melt regime results in the formation of a gradient structure in its bulk. The irradiation temperature is shown to affect the density of defects, the value of stress, and the distributions of grain-boundary misorientations in the surface and bulk of the submicrocrystalline molybdenum specimens.

  5. Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses

  6. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  7. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination

    NASA Astrophysics Data System (ADS)

    Maiden, A. M.; Morrison, G. R.; Kaulich, B.; Gianoncelli, A.; Rodenburg, J. M.

    2013-04-01

    Ptychography is a form of scanning diffractive imaging that can successfully retrieve the modulus and phase of both the sample transmission function and the illuminating probe. An experimental difficulty commonly encountered in diffractive imaging is the large dynamic range of the diffraction data. Here we report a novel ptychographic experiment using a randomly phased X-ray probe to considerably reduce the dynamic range of the recorded diffraction patterns. Images can be reconstructed reliably and robustly from this setup, even when scatter from the specimen is weak. A series of ptychographic reconstructions at X-ray energies around the L absorption edge of iron demonstrates the advantages of this method for soft X-ray spectromicroscopy, which can readily provide chemical sensitivity without the need for optical refocusing. In particular, the phase signal is in perfect registration with the modulus signal and provides complementary information that can be more sensitive to changes in the local chemical environment.

  8. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  9. Submicron x-ray diffraction and its applications to problems in materials and environmental science

    NASA Astrophysics Data System (ADS)

    Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.

    2002-03-01

    The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  10. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.

    1999-02-01

    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  11. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  12. Backbone N xH compounds at high pressures

    DOE PAGES

    Goncharov, Alexander F.; Holtgrewe, Nicholas; Qian, Guangrui; ...

    2015-06-05

    Optical and synchrotron x-ray diffraction diamond anvil cell experiments have been combined with first principles theoretical structure predictions to investigate mixtures of N 2 and H 2 up to 55 GPa. Our experiments show the formation of structurally complex van der Waals compounds above 10 GPa. However, we found that these N xH (0.52, H 2, and NH 3 above approximately 40 GPa. Lastly, our results suggest new pathways for synthesis of environmentally benign high energy-density materials. These materials could also exist as alternative planetary ices.

  13. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  14. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less

  15. Curved focusing crystals for hard X-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, C., E-mail: ferrari@imem.cnr.it; Buffagni, E.; Bonnini, E.

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  16. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  17. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.

  18. Inkjet printable-photoactive all inorganic perovskite films with long effective photocarrier lifetimes.

    PubMed

    Ilie, C C; Guzman, F; Swanson, B L; Evans, I R; Costa, P S; Teeter, J D; Shekhirev, M; Benker, N; Sikich, S; Enders, A; Dowben, P A; Sinitskii, A; Yost, A J

    2018-05-10

    Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr 3 perovskite quantum dots. The current-voltage (I-V) and capacitance-voltage (C-V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 10 9 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr 3 , indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.

  19. The Earth's core composition from high pressure density measurements of liquid iron alloys

    NASA Astrophysics Data System (ADS)

    Morard, G.; Siebert, J.; Andrault, D.; Guignot, N.; Garbarino, G.; Guyot, F.; Antonangeli, D.

    2013-07-01

    High-pressure, high-temperature in situ X-ray diffraction has been measured in liquid iron alloys (Fe-5 wt% Ni-12 wt% S and Fe-5 wt% Ni-15 wt% Si) up to 94 GPa and 3200 K in laser-heated diamond anvil cells. From the analysis of the X-ray diffuse scattering signal of the metallic liquids, we determined density and bulk modulus of the two liquid alloys. Comparison with a reference Earth model indicates that a core composition containing 6% of sulfur and 2% of silicon by weight would best match the geophysical data. Models with 2.5% of sulfur and 4-5% of silicon are still consistent with geophysical constraints whereas silicon only compositions are not. These results suggest only moderate depletion of sulfur in the bulk Earth.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. Thesemore » glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability. (C) 2017 Published by Elsevier B.V.« less

  1. X-ray diffraction on radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Roof, R.B.

    1978-01-01

    X-ray diffraction studies on radioactive materials are discussed with the aim of providing a guide to new researchers in the field. Considerable emphasis is placed on the safe handling and loading of not-too-exotic samples. Special considerations such as the problems of film blackening by the gamma rays and changes induced by the self-irradiation of the sample are covered. Some modifications of common diffraction techniques are presented. Finally, diffraction studies on radioactive samples under extreme conditions are discussed, with primary emphasis on high-pressure studies involving diamond-anvil cells.

  2. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  3. Oxygen induced strain field homogenization in AlN nucleation layers and its impact on GaN grown by metal organic vapor phase epitaxy on sapphire: An x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Bläsing, J.; Krost, A.; Hertkorn, J.; Scholz, F.; Kirste, L.; Chuvilin, A.; Kaiser, U.

    2009-02-01

    This paper presents an x-ray study of GaN, which is grown on nominally undoped and oxygen-doped AlN nucleation layers on sapphire substrates by metal organic vapor phase epitaxy. Without additional oxygen doping a trimodal nucleation distribution of AlN is observed leading to inhomogeneous in-plane strain fields, whereas in oxygen-doped layers a homogeneous distribution of nucleation centers is observed. In both types of nucleation layers extremely sharp correlation peaks occur in transverse ω-scans which are attributed to a high density of edge-type dislocations having an in-plane Burgers vector. The correlation peaks are still visible in the (0002) ω-scans of 500 nm GaN which might mislead an observer to conclude incorrectly that there exists an extremely high structural quality. For the undoped nucleation layers depth-sensitive measurements in grazing incidence geometry reveal a strong thickness dependence of the lattice parameter a, whereas no such dependence is observed for doped samples. For oxygen-doped nucleation layers, in cross-sectional transmission electron microscopy images a high density of stacking faults parallel to the substrate surface is found in contrast to undoped nucleation layers where a high density of threading dislocations is visible. GaN of 2.5 μm grown on top of 25 nm AlN nucleation layers with an additional in situ SiN mask show full widths at half maximum of 160″ and 190″ in (0002) and (10-10) high-resolution x-ray diffraction ω-scans, respectively.

  4. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction.

    PubMed

    Sherratt, Samuel C R; Mason, R Preston

    2018-01-31

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differentially influence lipid oxidation, signal transduction, fluidity, and cholesterol domain formation, potentially due in part to distinct membrane interactions. We used small angle X-ray diffraction to evaluate the EPA and DHA effects on membrane structure. Membrane vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA (1:10 mol ratio to POPC). Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an energetically favorable extended orientation for EPA likely stabilized by van der Waals interactions. By contrast, DHA increased electron density in the phospholipid head group region starting at ± 12 Å from the membrane center, presumably due to DHA-surface interactions, with coincident reduction in electron density in the membrane hydrocarbon core centered ± 7-9 Å from the membrane center. The membrane width (d-space) decreased by 5 Å in the presence of vehicle as the temperature increased from 10 °C to 30 °C due to increased acyl chain trans-gauche isomerizations, which was unaffected by addition of EPA or DHA. The influence of DHA on membrane structure was modulated by temperature changes while the interactions of EPA were unaffected. The contrasting EPA and DHA effects on membrane structure indicate distinct molecular locations and orientations that may contribute to observed differences in biological activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  6. Highly Reversible Water Oxidation at Ordered Nanoporous Iridium Electrodes Based on an Original Atomic Layer Deposition.

    PubMed

    Schlicht, Stefanie; Haschke, Sandra; Mikhailovskii, Vladimir; Manshina, Alina; Bachmann, Julien

    2018-05-01

    Nanoporous iridium electrodes are prepared and electrochemically investigated towards the water oxidation (oxygen evolution) reaction. The preparation is based on 'anodic' aluminum oxide templates, which provide straight, cylindrical nanopores. Their walls are coated using atomic layer deposition (ALD) with a newly developed reaction which results in a metallic iridium layer. The ALD film growth is quantified by spectroscopic ellipsometry and X-ray reflectometry. The morphology and composition of the electrodes are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Their catalytic activity is quantified for various pore geometries by cyclic voltammetry, steady-state electrolysis, and electrochemical impedance spectroscopy. With an optimal pore length of L ≈17-20 μm, we achieve current densities of J =0.28 mA cm -2 at pH 5 and J =2.4 mA cm -2 at pH 1. This platform is particularly competitive for achieving moderate current densities at very low overpotentials, that is, for a high degree of reversibility in energy storage.

  7. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  8. A multi-dataset data-collection strategy produces better diffraction data

    PubMed Central

    Liu, Zhi-Jie; Chen, Lirong; Wu, Dong; Ding, Wei; Zhang, Hua; Zhou, Weihong; Fu, Zheng-Qing; Wang, Bi-Cheng

    2011-01-01

    A multi-dataset (MDS) data-collection strategy is proposed and analyzed for macromolecular crystal diffraction data acquisition. The theoretical analysis indicated that the MDS strategy can reduce the standard deviation (background noise) of diffraction data compared with the commonly used single-dataset strategy for a fixed X-ray dose. In order to validate the hypothesis experimentally, a data-quality evaluation process, termed a readiness test of the X-ray data-collection system, was developed. The anomalous signals of sulfur atoms in zinc-free insulin crystals were used as the probe to differentiate the quality of data collected using different data-collection strategies. The data-collection results using home-laboratory-based rotating-anode X-ray and synchrotron X-ray systems indicate that the diffraction data collected with the MDS strategy contain more accurate anomalous signals from sulfur atoms than the data collected with a regular data-collection strategy. In addition, the MDS strategy offered more advantages with respect to radiation-damage-sensitive crystals and better usage of rotating-anode as well as synchrotron X-rays. PMID:22011470

  9. Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Mistler, G. W.; Ishikawa, M.; Li, B.

    2002-12-01

    With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.

  10. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  11. Preparation and physical properties of polycrystalline (Bi1-xPbx)2Sr2Ca2Cu3Oy high T c superconductors

    NASA Astrophysics Data System (ADS)

    Awan, M. S.; Maqsood, M.; Mirza, S. A.; Yousaf, M.; Maqsood, A.

    1995-02-01

    (Bi1-xPbx:)2Sr2Ca2Cu3Oy ( x = 0.3) high critical transition temperature ( T c) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a high T c phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the high T c phase were determined as a = 0.537(1) nm, b = 0.539(1) nm, and c = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.

  12. Influence of Nb Doping Concentration on Bolometric Properties of RF Magnetron Sputtered Nb:TiO2- x Films

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul

    2018-03-01

    The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2- x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear I- V characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2- x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/ f noise was measured in the frequency range of 1-60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.

  13. {ital In-situ} x-ray investigation of hydrogen charging in thin film bimetallic electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; Wiesmann, H.; Ruckman, M.W.

    Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. {copyright} {ital 1997 Materials Research Society.}

  14. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    PubMed

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Rosalind Franklin's X-ray photo of DNA as an undergraduate optical diffraction experiment

    NASA Astrophysics Data System (ADS)

    Thompson, J.; Braun, G.; Tierney, D.; Wessels, L.; Schmitzer, H.; Rossa, B.; Wagner, H. P.; Dultz, W.

    2018-02-01

    Rosalind Franklin's X-ray diffraction patterns of DNA molecules rendered the important clue that DNA has the structure of a double helix. The most famous X-ray photograph, Photo 51, is still printed in most Biology textbooks. We suggest two optical experiments for undergraduates that make this historic achievement comprehensible for students by using macromodels of DNA and visible light to recreate a diffraction pattern similar to Photo 51. In these macromodels, we replace the double helix both mathematically and experimentally with its two-dimensional (flat) projection and explain why this is permissible. Basic optical concepts are used to infer certain well-known characteristics of DNA from the diffraction pattern.

  16. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals

    DOE PAGES

    Awel, Salah; Kirian, Richard A.; Wiedorn, Max O.; ...

    2018-02-01

    High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.

  17. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    NASA Astrophysics Data System (ADS)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  18. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  19. Publications - GMC 42 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 42 Publication Details Title: X-ray diffraction clay mineralogy analysis of the J.W. Dalton #1 for more information. Bibliographic Reference Unknown, 1984, X-ray diffraction clay mineralogy

  20. Publications - GMC 297 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 297 Publication Details Title: X-ray diffraction analysis of cuttings from the: Texaco Inc information. Bibliographic Reference Unknown, 2001, X-ray diffraction analysis of cuttings from the: Texaco

  1. Publications - GMC 196 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 196 Publication Details Title: X-ray diffraction patterns of clay from the following wells for more information. Bibliographic Reference Unknown, 1992, X-ray diffraction patterns of clay from

  2. Publications - GMC 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 43 Publication Details Title: X-ray diffraction clay mineralogy analysis of 23 North Slope more information. Bibliographic Reference Unknown, 1983, X-ray diffraction clay mineralogy analysis of

  3. Multiple film plane diagnostic for shocked lattice measurements (invited)

    NASA Astrophysics Data System (ADS)

    Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.

    2003-03-01

    Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.

  4. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-01

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  5. X-ray diffraction, crystal structure, and spectral features of the optical susceptibilities of single crystals of the ternary borate oxide lead bismuth tetraoxide, PbBiBO4.

    PubMed

    Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean

    2009-05-14

    The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.

  6. Impacts of excimer laser annealing on Ge epilayer on Si

    NASA Astrophysics Data System (ADS)

    Huang, Zhiwei; Mao, Yichen; Yi, Xiaohui; Lin, Guangyang; Li, Cheng; Chen, Songyan; Huang, Wei; Wang, Jianyuan

    2017-02-01

    The impacts of excimer laser annealing on the crystallinity of Ge epilayers on Si substrate grown by low- and high-temperature two-step approach in an ultra-high vacuum chemical vapor deposition system were investigated. The samples were treated by excimer laser annealing (ELA) at various laser power densities with the temperature above the melting point of Ge, while below that of Si, resulting in effective reduction of point defects and dislocations in the Ge layer with smooth surface. The full-width at half-maximum (FWHM) of X-ray diffraction patterns of the low-temperature Ge epilayer decreases with the increase in laser power density, indicating the crystalline improvement and negligible effect of Ge-Si intermixing during ELA processes. The short laser pulse time and large cooling rate cause quick melting and recrystallization of Ge epilayer on Si in the non-thermal equilibrium process, rendering tensile strain in Ge epilayer as calculated quantitatively with thermal mismatch between Si and Ge. The FWHM of X-ray diffraction patterns is significantly reduced for the two-step grown samples after treated by a combination of ELA and conventional furnace thermal annealing, indicating that the crystalline of Ge epilayer is improved more effectively with pre- annealing by excimer laser.

  7. Investigation on surface layer characteristics of shot peened graphene reinforced Al composite by X-ray diffraction method

    NASA Astrophysics Data System (ADS)

    Zhan, Ke; Wu, Yihao; Li, Jiongli; Zhao, Bin; Yan, Ya; Xie, Lechun; Wang, Lianbo; Ji, V.

    2018-03-01

    Graphene reinforced Al composite with high mechanical property was successfully reported. However, there are quite limited studies about shot peening effect on this new type material. Here, 1.0 wt% graphene reinforced Al composite was produced by powder metallurgy and treated by shot peening. The surface layer characteristics of shot peened composite was investigated by X-ray diffraction line profile analysis. The microstructure including domain size, micro-strain, dislocation density and crystalline texture were analyzed. The results showed that after surface shot-peening, the domain size were refined, the dislocation density of the composite was increased sharply to 9.0 × 1011/cm2 at the top surface. The original strong texture was diminished after shot peening. Based on the calculated results, the microstructure variation of composite was more severe than that of Al without graphene reinforcement after shot peening. Besides, the micro-hardness of composite at the top surface increased up to 75HV one time higher than that of matrix. It is concluded that shot peening can be considered as an essential process of improving the surface properties of graphene reinforced Al composite.

  8. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.

    PubMed

    Bolzoni, L; Weissgaerber, T; Kieback, B; Ruiz-Navas, E M; Gordo, E

    2013-04-01

    The Ti-6Al-7Nb alloy was obtained using the blending elemental approach with a master alloy and elemental titanium powders. Both the elemental titanium and the Ti-6Al-7Nb powders were characterised using X-ray diffraction, differential thermal analysis and dilatometry. The powders were processed using the conventional powder metallurgy route that includes uniaxial pressing and sintering. The trend of the relative density with the sintering temperature and the microstructural evolution of the materials sintered at different temperatures were analysed using scanning electron microscopy and X-ray diffraction. A minimum sintering temperature of 1200°C has to be used to ensure the homogenisation of the alloying elements and to obtain a pore structure composed of spherical pores. The sintered samples achieve relative density values that are typical for powder metallurgy titanium and no intermetallic phases were detected. Mechanical properties comparable to those specified for wrought Ti-6Al-7Nb medical devices are normally obtained. Therefore, the produced materials are promising candidates for load bearing applications as implant materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Persistence of Mixed and Non-intermediate Valence in the High-Pressure Structure of Silver(I,III) Oxide, AgO: A Combined Raman, X-ray Diffraction (XRD), and Density Functional Theory (DFT) Study.

    PubMed

    Grzelak, Adam; Gawraczyński, Jakub; Jaroń, Tomasz; Somayazulu, Maddury; Derzsi, Mariana; Struzhkin, Viktor; Grochala, Wojciech

    2017-05-15

    The X-ray diffraction data collected up to ca. 56 GPa and the Raman spectra measured up to 74.8 GPa for AgO, or Ag I Ag III O 2 , which is a prototypical mixed valence (disproportionated) oxide, indicate that two consecutive phase transitions occur: the first-order phase transition occurs between 16.1 GPa and 19.7 GPa, and a second-order phase transition occurs at ca. 40 GPa. All polymorphic forms host the square planar [Ag III O 4 ] units typical of low-spin Ag III . The disproportionated Imma form persists at least up to 74.8 GPa, as indicated by Raman spectra. Theoretical hybrid density functional theory (DFT) calculations show that the first-order transition is phonon-driven. AgO stubbornly remains disproportionated up to at least 100 GPa-in striking contrast to its copper analogue-and the fundamental band gap of AgO is ∼0.3 eV at this pressure and is weakly pressure-dependent. Metallization of AgO is yet to be achieved.

  10. Theoretical calculation of coherent Laue-case conversion between x-rays and ALPs for an x-ray light-shining-through-a-wall experiment

    NASA Astrophysics Data System (ADS)

    Yamaji, T.; Yamazaki, T.; Tamasaku, K.; Namba, T.

    2017-12-01

    Single crystals have high atomic electric fields as much as 1 011 V /m , which correspond to magnetic fields of ˜103 T . These fields can be utilized to convert x-rays into axionlike particles (ALPs) coherently similar to x-ray diffraction. In this paper, we perform the first theoretical calculation of the Laue-case conversion in crystals based on the Darwin dynamical theory of x-ray diffraction. The calculation shows that the Laue-case conversion has longer interaction length than the Bragg case, and that ALPs in the keV range can be resonantly converted by tuning an incident angle of x-rays. ALPs with mass up to O (10 keV ) can be searched by light-shining-through-a-wall (LSW) experiments at synchrotron x-ray facilities.

  11. Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by charge flipping method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthaka Silva, G.W., E-mail: chinthaka.silva@gmail.com; Kercher, Andrew A., E-mail: rokparent@comcast.net; Hunn, John D., E-mail: hunnjd@ornl.gov

    2012-10-15

    Samples with five different zirconium carbide compositions (C/Zr molar ratio=0.84, 0.89, 0.95, 1.05, and 1.17) have been fabricated and studied using a variety of experimental techniques. Each sample was zone refined to ensure that the end product was polycrystalline with a grain size of 10-100 {mu}m. It was found that the lattice parameter was largest for the x=0.89 composition and smallest for the x=1.17 total C/Zr composition, but was not linear; this nonlinearity is possibly explained using electron densities calculated using charge flipping technique. Among the five samples, the unit cell of the ZrC{sub 0.89} sample showed the highest electronmore » density, corresponding to the highest carbon incorporation and the largest lattice parameter. The ZrC{sub 0.84} sample showed the lowest carbon incorporation, resulting in a larger number of carbon vacancies and resultant strain. Samples with larger carbon ratios (x=0.95, 1.05, and 1.17) showed a slight decrease in lattice parameter, due to a decrease in electron density. Optical anisotropy measurements suggest that these three samples contained significant amounts of a graphitic carbon phase, not bonded to the Zr atoms. - Graphical abstract: Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by the charge flipping method. Highlights: Black-Right-Pointing-Pointer The lattice parameter variation: ZrC{sub 0.89}>ZrC{sub 0.84}>ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}. Black-Right-Pointing-Pointer Surface oxygen with no correlation to the lattice parameter variation. Black-Right-Pointing-Pointer ZrC{sub 0.89} had highest electron densities correspond to highest carbon incorporation. Black-Right-Pointing-Pointer Second highest lattice parameter in ZrC{sub 0.84} due to strain. Black-Right-Pointing-Pointer Unit cell electron density order: ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}.« less

  12. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    PubMed Central

    Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-01-01

    Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214

  13. X-ray phase Identification of Chocolate is Possible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrie,S.; Mazzanti, G.; Idziak, S.

    2005-01-01

    When examining chocolate samples by means of X-ray diffraction, it has become common practice for any sugar to be removed through repeated rinsing in cold water. While necessary in some cases, we show that it is possible to determine the phase of certain dark chocolate samples without sugar removal, through examination of distinctive X-ray diffraction peaks corresponding to lattice spacings of 3.98 and 3.70 Angstroms.

  14. The effect of laser radiation on the diffraction of X-rays in crystals

    NASA Astrophysics Data System (ADS)

    Trushin, V. N.; Chuprunov, E. V.; Khokhlov, A. F.

    1988-10-01

    The effect of laser radiation on the intensity of the X-ray diffraction peaks of KDP, ADP, and CuSO4-5H2O crystals was studied experimentally. This intensity was found to increase as a function of the laser beam power. This result suggests that it is possible to use laser beams to control X-ray intensity in the crystals considered.

  15. Relations for lipid bilayers. Connection of electron density profiles to other structural quantities.

    PubMed Central

    Nagle, J F; Wiener, M C

    1989-01-01

    Three relations are derived that connect low angle diffraction/scattering results obtained from lipid bilayers to other structural quantities of interest. The first relates the area along the surface of the bilayer, the measured specific volume, and the zeroth order structure factor, F(0). The second relates the size of the trough in the center of the electron density profile, the volume of the terminal methyl groups, and the volume of the methylene groups in the fatty acid chains. The third relates the size of the headgroup electron density peak, the volume of the headgroup, and the volumes of water and hydrocarbon in the headgroup region. These relations, which are easily modified for neutron diffraction, are useful for obtaining structural quantities from electron density profiles obtained by fitting model profiles to measured low angle x-ray intensities. PMID:2713444

  16. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  17. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.

    PubMed

    Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  18. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  19. X-ray characterization of curved crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo

    2015-05-01

    Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).

  20. Publications - GMC 95 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 95 Publication Details Title: X-ray diffraction analysis of seven core samples from the information. Bibliographic Reference Bergman, S.C., and Stuart, C.J., 1988, X-ray diffraction analysis of

  1. X-Ray Topography of Tetragonal Lysozyme Grown by the Temperature-Controlled Technique

    NASA Technical Reports Server (NTRS)

    Stojanoff, V.; Siddons, D. P.; Monaco, Lisa A.; Vekilov, Peter; Rosenberger, Franz

    1997-01-01

    Growth-induced defects in lysozyme crystals were observed by white-beam and monochromatic X-ray topography at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). The topographic methods were non-destructive to the extent that traditional diffraction data collection could be performed to high resolution after topography. It was found that changes in growth parameters, defect concentration as detected by X-ray topography, and the diffraction quality obtainable from the crystals were all strongly correlated. In addition, crystals with fewer defects showed lower mosaicity and higher diffraction resolution as expected.

  2. Crystallization and X-ray diffraction analysis of a catalytic domain of hyperthermophilic chitinase from Pyrococcus furiosus

    PubMed Central

    Mine, Shouhei; Nakamura, Tsutomu; Hirata, Kunio; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Uegaki, Koichi

    2006-01-01

    The crystallization and preliminary X-ray diffraction analysis of a catalytic domain of chitinase (PF1233 gene) from the hyperthermophilic archaeon Pyrococcus furiosus is reported. The recombinant protein, prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at the undulator beamline BL44XU at SPring-8 to a resolution of 1.50 Å. The crystals belong to space group P212121, with unit-cell parameters a = 90.0, b = 92.8, c = 107.2 Å. PMID:16880559

  3. Si Lattice, Avogadro Constant, and X- and Gamma-Ray Measurements: Contributions by R.D. Deslattes

    NASA Astrophysics Data System (ADS)

    Kessler, Jr.

    2002-04-01

    The achievement of x-ray interferometry in 1965 opened the possibility of more accurately measuring the lattice spacing of a diffraction crystal on a scale directly tied to the SI system of units. The road from the possible to reality required moving objects and measuring translations with sub-atomic accuracy. The improved crystal lattice spacing determinations had a significant impact on two fundamental measurement areas: 1) the amount of substance (the mole and the associated Avogadro Constant), and 2) short wavelengths (the x- and gamma-ray regions). Progress in both areas required additional metrological advances: density and isotopic abundance measurements are needed for the Avogadro constant and small angle measurements are required for the determination of short wavelengths. The x- and gamma-ray measurements have led to more accurate wavelength standards and neutron binding energy measurements that connect gamma-ray measurements to precision atomic mass measurements, particularly the neutron mass. Richard D. Deslattes devoted much of his scientific career to this measurement program. His outstanding contributions and insights will be reviewed.

  4. Effect of molybdenum on gamma ray shielding and structural properties of PbO-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder

    2018-04-01

    The present study is aimed at developing new shielding materials for gamma ray shielding applications. Transparent glasses of the composition xMoO3-0.7PbO-(0.3-x)B2O3 where x= 0.03 to 0. 06 (mole fraction) have been prepared by using melt-quenchingtechnique. Gamma ray shielding properties have been evaluated in terms of mass attenuation coefficient and half value layer parameter at photon energies 662 and 1173 keV. These shielding parameters are also compared with standard shielding material`concretes'. It has been found that prepared glass system shows better shielding properties than barite and ordinary concretes proving the possibility of its usage as an alternate to conventional concrete for gamma ray shielding applications. The density, molar volume, X-Ray Diffraction, Fourier Transform InfraRed and Raman studies have been performed to study the structural properties of the glass system. It has been analyzed from FTIR and Raman studies that bridging oxygens increase with the decrease of MoO3 content in the glass composition.

  5. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  6. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    NASA Astrophysics Data System (ADS)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  7. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  8. Improvement of critical current density in thallium-based (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) superconductors

    NASA Technical Reports Server (NTRS)

    Ren, Z. F.; Wang, C. A.; Wang, J. H.; Miller, D. J.; Goretta, K. C.

    1995-01-01

    Epitaxial (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) ((Tl,Bi)-1223) thin films on (100) single crystal LaAlO3 substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field cooled magnetization, and transport critical current density (J(sub c)) were measured. The zero-resistance temperature was 105-111 K. J(sub c) at 77 K and zero field was greater than 2 x 10(exp 6) A/sq cm. The films exhibited good flux pinning properties.

  9. Short-range structure and thermal properties of lead tellurite glasses

    NASA Astrophysics Data System (ADS)

    Hirdesh, Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    PbO-TeO2 glasses having composition: xPbO-(100 - x)TeO2 (x = 10, 15 and 20 mol%) were prepared by melt quenching and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density increases from 5.89 to 6.22 g cm-3 with increase in PbO concentration from 10 to 20 mol%, due to the replacement of TeO2 by heavier PbO. DSC studies found that glass transition temperature (Tg) decreases from a value of 295°C to 281°C. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and that PbO modifies the network by the structural transformation: TeO4 to TeO3.

  10. Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method.

    PubMed

    Lazzari, Olivier; Jacques, Simon; Sochi, Taha; Barnes, Paul

    2009-09-01

    Tomographic Energy-Dispersive Diffraction Imaging (TEDDI) enables a unique non-destructive mapping of the interior of bulk objects, exploiting the full range of X-ray signals (diffraction, fluorescence, scattering, background) recorded. By analogy to optical imaging, a wide variety of features (structure, composition, orientation, strain) dispersed in X-ray wavelengths can be extracted and colour-coded to aid interpretation. The ultimate aim of this approach is to realise real-time high-definition colour X-ray diffraction imaging, on the timescales of seconds, so that one will be able to 'look inside' optically opaque apparatus and unravel the space/time-evolution of the materials chemistry taking place. This will impact strongly on many fields of science but there are currently two barriers to this goal: speed of data acquisition (a 2D scan currently takes minutes to hours) and loss of image definition through spatial distortion of the X-ray sampling volume. Here we present a data-collection scenario and reconstruction routine which overcomes the latter barrier and which has been successfully applied to a phantom test object and to real materials systems such as a carbonating cement block. These procedures are immediately transferable to the promising technology of multi-energy-dispersive-detector-arrays which are planned to deliver the other breakthrough, that of one-two orders of magnitude improvement in data acquisition rates, that will be needed to realise real-time high-definition colour X-ray diffraction imaging.

  11. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  12. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  13. Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene.

    PubMed

    Seuring, Carolin; Ayyer, Kartik; Filippaki, Eleftheria; Barthelmess, Miriam; Longchamp, Jean-Nicolas; Ringler, Philippe; Pardini, Tommaso; Wojtas, David H; Coleman, Matthew A; Dörner, Katerina; Fuglerud, Silje; Hammarin, Greger; Habenstein, Birgit; Langkilde, Annette E; Loquet, Antoine; Meents, Alke; Riek, Roland; Stahlberg, Henning; Boutet, Sébastien; Hunter, Mark S; Koglin, Jason; Liang, Mengning; Ginn, Helen M; Millane, Rick P; Frank, Matthias; Barty, Anton; Chapman, Henry N

    2018-05-09

    Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.

  14. Diffracted diffraction radiation and its application to beam diagnostics

    NASA Astrophysics Data System (ADS)

    Goponov, Yu. A.; Shatokhin, R. A.; Sumitani, K.; Syshchenko, V. V.; Takabayashi, Y.; Vnukov, I. E.

    2018-03-01

    We present theoretical considerations for diffracted diffraction radiation and also propose an application of this process to diagnosing ultra-relativistic electron (positron) beams for the first time. Diffraction radiation is produced when relativistic particles move near a target. If the target is a crystal or X-ray mirror, diffraction radiation in the X-ray region is expected to be diffracted at the Bragg angle and therefore be detectable. We present a scheme for applying this process to measurements of the beam angular spread, and consider how to conduct a proof-of-principle experiment for the proposed method.

  15. Absolute x-ray energy calibration and monitoring using a diffraction-based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.

    2016-07-27

    In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.

  16. High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter

    2017-09-01

    The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline

  17. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  18. Ultrafast observation of lattice dynamics in laser-irradiated gold foils

    DOE PAGES

    Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.; ...

    2017-02-13

    Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less

  19. Ultrafast observation of lattice dynamics in laser-irradiated gold foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.

    Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less

  20. Insights into the dominant factors of porous gold for CO oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kameoka, Satoshi, E-mail: kameoka@tagen.tohoku.ac.jp; Miyamoto, Kanji; Tanabe, Toyokazu

    2016-01-21

    Three different porous Au catalysts that exhibit high catalytic activity for CO oxidation were prepared by the leaching of Al from an intermetallic compound, Al{sub 2}Au, with 10 wt. %-NaOH, HNO{sub 3}, or HCl aqueous solutions. The catalysts were investigated using Brunauer-Emmett-Teller measurements, synchrotron X-ray powder diffraction, hard X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy (TEM). Broad diffraction peaks generated during the leaching process correlated with high activity for all the porous Au catalysts. CO oxidation catalyzed by porous Au leached with NaOH and HNO{sub 3} is considered to be dominated by different mechanisms atmore » low (< 320 K) and high (> 370 K) temperatures. Activity in the low-temperature region is mainly attributed to the perimeter interface between residual Al species (AlO{sub x}) and porous Au, whereas activity in the high-temperature region results from a high density of lattice defects such as twins and dislocations, which were evident from diffraction peak broadening and were observed with high-resolution TEM in the porous Au leached with NaOH. It is proposed that atoms located at lattice defects on the surfaces of porous Au are the active sites for catalytic reactions.« less

Top