Sample records for x-ray dose reduction

  1. Relationship between radiation dose reduction and image quality change in photostimulable phosphor luminescence X-ray imaging systems.

    PubMed

    Sakurai, T; Kawamata, R; Kozai, Y; Kaku, Y; Nakamura, K; Saito, M; Wakao, H; Kashima, I

    2010-05-01

    The aim of the study was to clarify the change in image quality upon X-ray dose reduction and to re-analyse the possibility of X-ray dose reduction in photostimulable phosphor luminescence (PSPL) X-ray imaging systems. In addition, the study attempted to verify the usefulness of multiobjective frequency processing (MFP) and flexible noise control (FNC) for X-ray dose reduction. Three PSPL X-ray imaging systems were used in this study. Modulation transfer function (MTF), noise equivalent number of quanta (NEQ) and detective quantum efficiency (DQE) were evaluated to compare the basic physical performance of each system. Subjective visual evaluation of diagnostic ability for normal anatomical structures was performed. The NEQ, DQE and diagnostic ability were evaluated at base X-ray dose, and 1/3, 1/10 and 1/20 of the base X-ray dose. The MTF of the systems did not differ significantly. The NEQ and DQE did not necessarily depend on the pixel size of the system. The images from all three systems had a higher diagnostic utility compared with conventional film images at the base and 1/3 X-ray doses. The subjective image quality was better at the base X-ray dose than at 1/3 of the base dose in all systems. The MFP and FNC-processed images had a higher diagnostic utility than the images without MFP and FNC. The use of PSPL imaging systems may allow a reduction in the X-ray dose to one-third of that required for conventional film. It is suggested that MFP and FNC are useful for radiation dose reduction.

  2. Paediatric x-ray radiation dose reduction and image quality analysis.

    PubMed

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  3. Significant Radiation Dose Reduction in the Hybrid Operating Room Using a Novel X-ray Imaging Technology.

    PubMed

    van den Haak, R F F; Hamans, B C; Zuurmond, K; Verhoeven, B A N; Koning, O H J

    2015-10-01

    To prospectively quantify radiation dose change in aortoiliac endovascular procedures in the hybrid operating room (OR) for patients and medical staff with a novel X-ray imaging technology (ClarityIQ technology), and to assess whether procedure or fluoroscopy time or dose of iodinated contrast was affected. A prospective study including 138 patients was performed to compare radiation dose before and after installation of a novel X-ray imaging technology. Endovascular aneurysm repair (EVAR) was performed in 37 patients and an endovascular procedure for aortoiliac occlusive disease (AIOD) in 101. Patient radiation dose in air kerma (AK) and dose area product (DAP), patient demographics, and procedural data were recorded. Staff radiation dose was measured with real time personal dosimetry measurements. In both the EVAR and AIOD groups the reference system, ALX (AlluraXper FD20; Philips Healthcare, Best, the Netherlands), was compared with the upgraded X-ray system, CIQ (AlluraClarity FD20; Philips Healthcare). Procedure time, fluoroscopy time, and iodinated contrast dose were recorded. Patient radiation dose reduction in the EVAR group, in median AK, was 56% (ALX = 1,262.5 mGy; CIQ = 556.0 mGy [p < .01]); and in median DAP it was 57% (ALX = 224.4 Gycm(2) and CIQ = 95.8 Gycm(2) [p < .01]). Patient radiation dose reduction in the AIOD group, in median AK, was 76% (ALX = 1,011.0 mGy; CIQ = 248.0 mGy [p < .01]); and in median DAP it was 73% (ALX = 138.1 Gycm(2); CIQ = 38.0 Gycm(2) [p < .01]). Staff dose reduction in the EVAR group was 16% (ALX = 70.1 μSv; CIQ = 59.2 μSv [p = .43]) and in the AIOD group it was 69% (ALX = 96.2 μSv; CIQ = 30.1 μSv [p < .01]). There was no statistically significant difference between patient demographics, procedure time, fluoroscopy time, and iodinated contrast medium use in the two treatment groups before and after installation. A novel X-ray imaging technology in the hybrid OR suite resulted in a significant reduction of patient and

  4. The reduction methods of operator's radiation dose for portable dental X-ray machines.

    PubMed

    Cho, Jeong-Yeon; Han, Won-Jeong

    2012-08-01

    This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

  5. [Examination of patient dose reduction in cardiovasucular X-ray systems with a metal filter].

    PubMed

    Yasuda, Mitsuyoshi; Kato, Kyouichi; Tanabe, Nobuaki; Sakiyama, Koushi; Uchiyama, Yushi; Suzuki, Yoshiaki; Suzuki, Hiroshi; Nakazawa, Yasuo

    2012-01-01

    In interventional X-ray for cardiology of flat panel digital detector (FPD), the phenomenon that exposure dose was suddenly increased when a subject thickness was thickened was recognized. At that time, variable metal built-in filters in FPD were all off. Therefore, we examined whether dose reduction was possible without affecting a clinical image using metal filter (filter) which we have been conventionally using for dose reduction. About 45% dose reduction was achieved when we measured an exposure dose at 30 cm of acrylic thickness in the presence of a filter. In addition, we measured signal to noise ratio/contrast to noise ratio/a resolution limit by the visual evaluation, and there was no influence by filter usage. In the clinical examination, visual evaluation of image quality of coronary angiography (40 cases) using a 5-point evaluation scale by a physician was performed. As a result, filter usage did not influence the image quality (p=NS). Therefore, reduction of sudden increase of exposure dose was achieved without influencing an image quality by adding filter to FPD.

  6. Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.

    PubMed

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    reconstruction showed that for a scatter magnitude decrease by a factor of 2.4, the molecular sensitivity could almost be doubled. Scatter reduction lowers the amount of noise in the projection datasets and reconstructed images which enhance molecular sensitivity at equal dose. The results support the use of linear polarized x rays to reduce scatter in XFCT imaging. © 2018 American Association of Physicists in Medicine.

  7. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    PubMed

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). Inmore » each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the

  9. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    PubMed

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  10. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    PubMed Central

    Fahimian, Benjamin P.; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J.; Osher, Stanley J.; McNitt-Gray, Michael F.; Miao, Jianwei

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  11. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  12. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  13. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  14. A study on the dependence of exposure dose reduction and image evaluation on the distance from the dental periapical X-ray machine

    NASA Astrophysics Data System (ADS)

    Joo, Kyu-Ji; Shin, Jae-Woo; Dong, Kyung-Rae; Lim, Chang-Seon; Chung, Woon-Kwan; Kim, Young-Jae

    2013-11-01

    Reducing the exposure dose from a periapical X-ray machine is an important aim in dental radiography. Although the radiation exposure dose is generally low, any radiation exposure is harmful to the human body. Therefore, this study developed a method that reduces the exposure dose significantly compared to that encountered in a normal procedure, but still produces an image with a similar resolution. The correlation between the image resolution and the exposure dose of the proposed method was examined with increasing distance between the dosimeter and the X-ray tube. The results were compared with those obtained from the existing radiography method. When periapical radiography was performed once according to the recommendations of the International Commission on Radiological Protection (ICRP), the measured skin surface dose was low at 7 mGy or below. In contrast, the skin surface dose measured using the proposed method was only 1.57 mGy, showing a five-fold reduction. These results suggest that further decreases in dose might be achieved using the proposed method.

  15. Comprehensive assessment of patient image quality and radiation dose in latest generation cardiac x-ray equipment for percutaneous coronary interventions

    PubMed Central

    Gislason-Lee, Amber J.; Keeble, Claire; Egleston, Daniel; Bexon, Josephine; Kengyelics, Stephen M.; Davies, Andrew G.

    2017-01-01

    Abstract. This study aimed to determine whether a reduction in radiation dose was found for percutaneous coronary interventional (PCI) patients using a cardiac interventional x-ray system with state-of-the-art image enhancement and x-ray optimization, compared to the current generation x-ray system, and to determine the corresponding impact on clinical image quality. Patient procedure dose area product (DAP) and fluoroscopy duration of 131 PCI patient cases from each x-ray system were compared using a Wilcoxon test on median values. Significant reductions in patient dose (p≪0.001) were found for the new system with no significant change in fluoroscopy duration (p=0.2); procedure DAP reduced by 64%, fluoroscopy DAP by 51%, and “cine” acquisition DAP by 76%. The image quality of 15 patient angiograms from each x-ray system (30 total) was scored by 75 clinical professionals on a continuous scale for the ability to determine the presence and severity of stenotic lesions; image quality scores were analyzed using a two-sample t-test. Image quality was reduced by 9% (p≪0.01) for the new x-ray system. This demonstrates a substantial reduction in patient dose, from acquisition more than fluoroscopy imaging, with slightly reduced image quality, for the new x-ray system compared to the current generation system. PMID:28491907

  16. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    NASA Astrophysics Data System (ADS)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Filkins, T.; Steidle, Jeffrey A.; Steidle, Jessica A.; Traynor, N.; Freeman, C.

    2015-12-01

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1-100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protons with energies in the range 0.5-9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.

  17. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  18. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G., E-mail: rinderknecht1@llnl.gov; Rojas-Herrera, J.; Zylstra, A. B.

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. The impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  19. Impact of x-ray dose on track formation and data analysis for CR-39-based proton diagnostics

    DOE PAGES

    Rinderknecht, H. G.; Rojas-Herrera, J.; Zylstra, A. B.; ...

    2015-12-23

    The nuclear track detector CR-39 is used extensively for charged particle diagnosis, in particular proton spectroscopy, at inertial confinement fusion facilities. These detectors can absorb x-ray doses from the experiments in the order of 1–100 Gy, the effects of which are not accounted for in the previous detector calibrations. X-ray dose absorbed in the CR-39 has previously been shown to affect the track size of alpha particles in the detector, primarily due to a measured reduction in the material bulk etch rate [Rojas-Herrera et al., Rev. Sci. Instrum. 86, 033501 (2015)]. Similar to the previous findings for alpha particles, protonsmore » with energies in the range 0.5–9.1 MeV are shown to produce tracks that are systematically smaller as a function of the absorbed x-ray dose in the CR-39. The reduction of track size due to x-ray dose is found to diminish with time between exposure and etching if the CR-39 is stored at ambient temperature, and complete recovery is observed after two weeks. Furthermore, the impact of this effect on the analysis of data from existing CR-39-based proton diagnostics on OMEGA and the National Ignition Facility is evaluated and best practices are proposed for cases in which the effect of x rays is significant.« less

  20. Dose Matters: FDA's Guidance on Children's X-rays

    MedlinePlus

    ... Consumers Home For Consumers Consumer Updates Dose Matters: FDA's Guidance on Children's X-rays Share Tweet Linkedin ... extra care to “child size” the radiation dose. FDA’s Role The FDA's Center for Devices and Radiological ...

  1. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    DOE PAGES

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; ...

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-K α and K β x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those notmore » exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less

  2. X-ray surface dose measurements using TLD extrapolation.

    PubMed

    Kron, T; Elliot, A; Wong, T; Showell, G; Clubb, B; Metcalfe, P

    1993-01-01

    Surface dose measurements in therapeutic x-ray beams are of importance in determining the dose to the skin of patients undergoing radiotherapy. Measurements were performed in the 6-MV beam of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD) using a solid water phantom. TLD chips (surface area 3.17 x 3.17 cm2) of three different thicknesses (0.230, 0.099, and 0.038 g/cm2) were used to extrapolate dose readings to an infinitesimally thin layer of LiF. This surface dose was measured for field sizes ranging from 1 x 1 cm2 to 40 x 40 cm2. The surface dose relative to maximum dose was found to be 10.0% for a field size of 5 x 5 cm2, 16.3% for 10 x 10 cm2, and 26.9% for 20 x 20 cm2. Using a 6-mm Perspex block tray in the beam increased the surface dose in these fields to 10.7%, 17.7%, and 34.2% respectively. Due to the small size of the TLD chips, TLD extrapolation is applicable also for intracavity and exit dose determinations. The technique used for in vivo dosimetry could provide clinicians information about the build up of dose up to 1-mm depth in addition to an extrapolated surface dose measurement.

  3. Evaluation of the medical exposure doses regarding dental examinations with different X-ray instruments

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chi; Chuang, Keh-Shih; Yu, Cheng-Ching; Chao, Jiunn-Hsing; Hsu, Fang-Yuh

    2015-11-01

    Modern dental X-ray examination that consists of traditional form, panorama, and cone-beamed 3D technologies is one of the most frequent diagnostic applications nowadays. This study used the Rando Phantom and thermoluminescence dosimeters (TLD) to measure the absorbed doses of radiosensitive organs recommended by International Commission on Radiological Protection (ICRP), and whole body effective doses which were delivered due to dental X-ray examination performed with different types of X-ray instrument. Besides, enamel samples which performed reading with Electronic Paramagnetic Resonance (EPR) procedure were also used to estimate the tooth doses. EPR is a dose reconstruction method of measuring free radicals induced by radiation exposure to the calcified tissue (mainly in the tooth enamel or bone) to evaluate the accepted high dose. The tooth doses estimated by TLD and EPR methods were compared. Relationships between the tooth doses and effective doses by dental X-ray examinations with different types of X-ray equipment were investigated in this work.

  4. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

    PubMed

    Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen

    2017-03-01

    Dosimetric control of staff exposure during interventional procedures under fluoroscopy is of high relevance. In this paper, a novel ray casting approximation of radiation transport is presented and the potential and limitation vs. a full Monte Carlo transport and dose measurements are discussed. The x-ray source of a Siemens Axiom Artix C-arm is modeled by a virtual source model using single Gaussian-shaped source. A Geant4-based Monte Carlo simulation determines the radiation transport from the source to compute scatter from the patient, the table, the ceiling and the floor. A phase space around these scatterers stores all photon information. Only those photons are traced that hit a surface of phantom that represents medical staff in the treatment room, no indirect scattering is considered; and a complete dose deposition on the surface is calculated. To evaluate the accuracy of the approximation, both experimental measurements using Thermoluminescent dosimeters (TLDs) and a Geant4-based Monte Carlo simulation of dose depositing for different tube angulations of the C-arm from cranial-caudal angle 0° and from LAO (Left Anterior Oblique) 0°-90° are realized. Since the measurements were performed on both sides of the table, using the symmetry of the setup, RAO (Right Anterior Oblique) measurements were not necessary. The Geant4-Monte Carlo simulation agreed within 3% with the measured data, which is within the accuracy of measurement and simulation. The ray casting approximation has been compared to TLD measurements and the achieved percentage difference was -7% for data from tube angulations 45°-90° and -29% from tube angulations 0°-45° on the side of the x-ray source, whereas on the opposite side of the x-ray source, the difference was -83.8% and -75%, respectively. Ray casting approximation for only LAO 90° was compared to a Monte Carlo simulation, where the percentage differences were between 0.5-3% on the side of the x-ray source where the highest dose

  5. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts

    PubMed Central

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R.; Medlin, Donald; Zheng, Leon; Wilson, R. Kevin; Rusin, Matthew; Takacs, Endre

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial “pause” in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature. PMID:29300773

  6. Mutations induced in Tradescantia by small doses of X-rays and neutrons - Analysis of dose-response curves.

    NASA Technical Reports Server (NTRS)

    Sparrow, A. H.; Underbrink, A. G.; Rossi, H. H.

    1972-01-01

    Dose-response curves for pink somatic mutations in Tradescantia stamen hairs were analyzed after neutron and X-ray irradiation with doses ranging from a fraction of a rad to the region of saturation. The dose-effect relation for neutrons indicates a linear dependence from 0.01 to 8 rads; between 0.25 and 5 rads, a linear dependence is indicated for X-rays also. As a consequence the relative biological effectiveness reaches a constant value (about 50) at low doses. The observations are in good agreement with the predictions of the theory of dual radiation action and support its interpretation of the effects of radiation on higher organisms. The doubling dose of X-rays was found to be nearly 1 rad.

  7. Dose reduction in fluoroscopic interventions using a combination of a region of interest (ROI) x-ray attenuator and spatially different, temporally variable temporal filtering

    NASA Astrophysics Data System (ADS)

    Swetadri Vasan, S. N.; Pope, Liza; Ionita, Ciprian N.; Titus, A. H.; Bednarek, D. R.; Rudin, S.

    2013-03-01

    A novel dose reduction technique for fluoroscopic interventions involving a combination of a material x-ray region of interest (ROI) attenuator and spatially different, temporally variable ROI temporal recursive filter, was used to guide the catheter to the ROI in three live animal studies, two involving rabbits and one involving a sheep. In the two rabbit studies presented , a catheter was guided to the entrance of the carotid artery. With the added ROI attenuator the image under the high attenuation region is very noisy. By using temporal filtering with a filter weight of 0.6 on previous frames, the noise is reduced. In the sheep study the catheter was guided to the descending aorta of the animal. The sheep offered a relatively higher attenuation to the incident x-rays and thus a higher temporal filter weight of 0.8 on previous frames was used during the procedure to reduce the noise to levels acceptable by the interventionalist. The image sequences from both studies show that significant dose reduction of 5-6 times can be achieved with acceptable image quality outside the ROI by using the above mentioned technique. Even though the temporal filter weighting outside the ROI is higher, the consequent lag does not prevent perception of catheter movement.

  8. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O 2 -reduction states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia Patricia

    2015-11-26

    During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O 2 to 2H 2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth -MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O 2 reduction was found in a double conformation: Glu451a (~7 Åmore » from the TNC) and Glu451b (~4.5 Å from the TNC). A positive peak of electron density above 3.5σ in anF o-F c map for Glu451a O ε2 indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth -MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth -MCO-C1–8) with different X-ray-absorbed doses allowed the observation of different O 2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.« less

  9. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Rakhee; Roy, Amitava; Mitra, S.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. Amore » maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.« less

  10. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum.

    PubMed

    Benz, Mark G; Benz, Matthew W; Birnbaum, Steven B; Chason, Eric; Sheldon, Brian W; McGuire, Dale

    2014-08-01

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique.

  11. PATIENT RADIATION DOSE FROM CHEST X-RAY EXAMINATIONS IN THE WEST BANK-PALESTINE.

    PubMed

    Lahham, Adnan; Issa, Ahlam; ALMasri, Hussein

    2018-02-01

    Radiation doses to patients resulting from chest X-ray examinations were evaluated in four medical centers in the West Bank and East Jerusalem-Palestine. Absorbed organ and effective doses were calculated for a total of 428 adult male and female patients by using commercially available Monte Carlo based softwares; CALDOSE-X5 and PCXMC-2.0, and hermaphrodite mathematical adult phantoms. Patients were selected randomly from medical records in the time period from November 2014 to February 2015. A database of surveyed patients and exposure factors has been established and includes: patient's height, weight, age, gender, X-ray tube voltage, electric current (mAs), examination projection (anterior posterior (AP), posterior anterior (PA), lateral), X-ray tube filtration thickness in each X-ray equipment, anode angle, focus to skin distance and X-ray beam size. The average absorbed doses in the whole body from different projections were: 0.06, 0.07 and 0.11 mGy from AP, PA and lateral projections, respectively. The average effective dose for all surveyed patients was 0.14 mSv for all chest X-ray examinations and projections in the four investigated medical centers. The effect of projection geometry was also investigated. The average effective doses for AP, PA and lateral projections were 0.14, 0.07 and 0.22 mSv, respectively. The collective effective dose estimated for the exposed population was ~60 man-mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes.

    PubMed

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.

  13. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes

    PubMed Central

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications. PMID:28078052

  14. Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose-volume histogram analysis.

    PubMed

    Makishima, Hirokazu; Ishikawa, Hitoshi; Terunuma, Toshiyuki; Hashimoto, Takayuki; Yamanashi, Koichi; Sekiguchi, Takao; Mizumoto, Masashi; Okumura, Toshiyuki; Sakae, Takeji; Sakurai, Hideyuki

    2015-05-01

    Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose-volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive CCRT using X-rays (n = 19) or protons (n = 25). Experimental recalculation using protons was performed for the patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were conserved. Lung V5-V20, mean lung dose (MLD), and heart V30-V50 were compared for risk organ doses between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients actually treated with X-rays, and vice versa. Pulmonary events of Grade ≥2 occurred in 8/44 cases (18%), and cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade ≥2 were significantly higher than for those with events of Grade ≤1. Risk organ doses were lower in proton plans compared with X-ray plans. All patients suffering toxicity who were treated with X-rays (n = 13) had reduced predicted doses in lung and heart using protons, while doses in all patients treated with protons (n = 24) with toxicity of Grade ≤1 had worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. Intraoral radiology in general dental practices - a comparison of digital and film-based X-ray systems with regard to radiation protection and dose reduction.

    PubMed

    Anissi, H D; Geibel, M A

    2014-08-01

    The purpose of this study was to gain insight into the distribution and application of digital intraoral radiographic techniques within general dental practices and to compare these with film-based systems in terms of patient dose reduction. 1100 questionnaires were handed out to general dental practitioners. Data was analyzed with respect to the type of system by using descriptive statistics and nonparametric tests, i.e. Kruskal-Wallis, Mann-Whitney and chi-square test (SPSS 20). 64% of the questioned dentists still use film-based radiology, 23% utilize storage phosphor plate (SPP) systems and 13% use a charge-coupled device (CCD). A strong correlation between the number of dentists working in a practice and the use of digital dental imaging was observed. Almost 3/4 of the film users work with E- or F-speed film. 45% of them refuse to change to a digital system. The use of lead aprons was popular, while only a minority preferred thyroid shields and rectangular collimators. A fourfold reduction of exposure time from D-speed film to CCD systems was observed. Due to detector size and positioning errors, users of CCD systems take significantly more single-tooth radiographs in total. Considering the number of radiographs per patient, there is only a slight tendency towards more X-rays with CCD systems. Up to image generation, digital systems seem to be as or even more difficult to handle than film-based systems, while their handling was favored after radiographic exposure. Despite a slight increase of radiographs taken with CCD systems, there is a significant dosage reduction. Corresponding to the decrease in exposure time, the patient dose for SPP systems is reduced to one half compared to film. The main issues in CCD technology are positioning errors and the size of the X-ray detectors which are difficult to eliminate. The usage of radiation protection measures still needs to be improved. ► Responsible use of digital intraoral radiology results in a significant

  16. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  17. Thomson scattering laser-electron X-ray source for reduction of patient radiation dose in interventional coronary angiography

    NASA Astrophysics Data System (ADS)

    Artyukov, I. A.; Dyachkov, N. V.; Feshchenko, R. M.; Polunina, A. V.; Popov, N. L.; Shvedunov, V. I.; Vinogradov, A. V.

    2017-05-01

    It was medical applications that stimulated F. Carrol in the early 1990s to start the research of on relativistic Thomson scattering X-ray sources, as a part of the infrastructure of the future society. The possibility to use such a source in interventional cardiology is discussed in this paper. The replacement of X-ray tube by relativistic Thomson scattering Xray source is predicted to lower the patient radiation dose by a factor of 3 while image quality remains the same. The required general characteristics of accelerator and laser units are found. They can be reached by existing technology. A semiempirical method for simulation of medical and technical parameters of interventional coronary angiography systems is suggested.

  18. Low-dose x-ray tomography through a deep convolutional neural network

    DOE PAGES

    Yang, Xiaogang; De Andrade, Vincent; Scullin, William; ...

    2018-02-07

    Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less

  19. Low-dose x-ray tomography through a deep convolutional neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaogang; De Andrade, Vincent; Scullin, William

    Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less

  20. Radiation dose and magnification in pelvic X-ray: EOS™ imaging system versus plain radiographs.

    PubMed

    Chiron, P; Demoulin, L; Wytrykowski, K; Cavaignac, E; Reina, N; Murgier, J

    2017-12-01

    In plain pelvic X-ray, magnification makes measurement unreliable. The EOS™ (EOS Imaging, Paris France) imaging system is reputed to reproduce patient anatomy exactly, with a lower radiation dose. This, however, has not been assessed according to patient weight, although both magnification and irradiation are known to vary with weight. We therefore conducted a prospective comparative study, to compare: (1) image magnification and (2) radiation dose between the EOS imaging system and plain X-ray. The EOS imaging system reproduces patient anatomy exactly, regardless of weight, unlike plain X-ray. A single-center comparative study of plain pelvic X-ray and 2D EOS radiography was performed in 183 patients: 186 arthroplasties; 104 male, 81 female; mean age 61.3±13.7years (range, 24-87years). Magnification and radiation dose (dose-area product [DAP]) were compared between the two systems in 186 hips in patients with a mean body-mass index (BMI) of 27.1±5.3kg/m 2 (range, 17.6-42.3kg/m 2 ), including 7 with morbid obesity. Mean magnification was zero using the EOS system, regardless of patient weight, compared to 1.15±0.05 (range, 1-1.32) on plain X-ray (P<10 -5 ). In patients with BMI<25, mean magnification on plain X-ray was 1.15±0.05 (range, 1-1.25) and, in patients with morbid obesity, 1.22±0.06 (range, 1.18-1.32). The mean radiation dose was 8.19±2.63dGy/cm 2 (range, 1.77-14.24) with the EOS system, versus 19.38±12.37dGy/cm 2 (range, 4.77-81.75) with plain X-ray (P<10 -4 ). For BMI >40, mean radiation dose was 9.36±2.57dGy/cm 2 (range, 7.4-14.2) with the EOS system, versus 44.76±22.21 (range, 25.2-81.7) with plain X-ray. Radiation dose increased by 0.20dGy with each extra BMI point for the EOS system, versus 0.74dGy for plain X-ray. Magnification did not vary with patient weight using the EOS system, unlike plain X-ray, and radiation dose was 2.5-fold lower. 3, prospective case-control study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  2. Absorbed dose determination using experimental and analytical predictions of x-ray spectra

    NASA Astrophysics Data System (ADS)

    Edwards, David Lee

    1999-10-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during

  3. A real-time regional adaptive exposure method for saving dose-area product in x-ray fluoroscopy

    PubMed Central

    Burion, Steve; Speidel, Michael A.; Funk, Tobias

    2013-01-01

    Purpose: Reduction of radiation dose in x-ray imaging has been recognized as a high priority in the medical community. Here the authors show that a regional adaptive exposure method can reduce dose-area product (DAP) in x-ray fluoroscopy. The authors' method is particularly geared toward providing dose savings for the pediatric population. Methods: The scanning beam digital x-ray system uses a large-area x-ray source with 8000 focal spots in combination with a small photon-counting detector. An imaging frame is obtained by acquiring and reconstructing up to 8000 detector images, each viewing only a small portion of the patient. Regional adaptive exposure was implemented by varying the exposure of the detector images depending on the local opacity of the object. A family of phantoms ranging in size from infant to obese adult was imaged in anteroposterior view with and without adaptive exposure. The DAP delivered to each phantom was measured in each case, and noise performance was compared by generating noise arrays to represent regional noise in the images. These noise arrays were generated by dividing the image into regions of about 6 mm2, calculating the relative noise in each region, and placing the relative noise value of each region in a one-dimensional array (noise array) sorted from highest to lowest. Dose-area product savings were calculated as the difference between the ratio of DAP with adaptive exposure to DAP without adaptive exposure. The authors modified this value by a correction factor that matches the noise arrays where relative noise is the highest to report a final dose-area product savings. Results: The average dose-area product saving across the phantom family was (42 ± 8)% with the highest dose-area product saving in the child-sized phantom (50%) and the lowest in the phantom mimicking an obese adult (23%). Conclusions: Phantom measurements indicate that a regional adaptive exposure method can produce large DAP savings without compromising the

  4. SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo

    2017-03-01

    State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.

  5. Dose inspection and risk assessment on radiation safety for the use of non-medical X-ray machines in Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Fang-Yuh; Hsu, Shih-Ming; Chao, Jiunn-Hsing

    2017-11-01

    The subject of this study is the on-site visits and inspections of facilities commissioned by the Atomic Energy Council (AEC) in Taiwan. This research was conducted to evaluate the possible dose and dose rate of cabinet-type X-ray equipment with nominal voltages of 30-150 kV and open-beam (portable or handheld) equipment, taking both normal operation and possibly abnormal operation conditions into account. Doses and dose rates were measured using a plastic scintillation survey meter and an electronic personal dosimeter. In total, 401 X-ray machines were inspected, including 139 units with nominal voltages of 30-50 kV X-ray equipment, 140 units with nominal voltages of 50-150 kV, and 122 open-beam (portable or handheld) X-ray equipment. The investigated doses for radiation workers and non-radiation workers operating cabinet-type X-ray equipment under normal safety conditions were all at the background dose level. Several investigated dose rates at the position of 10 cm away from the surface of open-beam (portable or handheld) X-ray equipment were very high, such X-ray machines are used by aeronautical police for the detection of suspected explosives, radiation workers are far away (at least 10 m away) from the X-ray machine during its operation. The doses per operation in X-ray equipment with a 30-50 kV nominal voltage were less than 1 mSv in all cases of abnormal use. Some doses were higher than 1 mSv per operation for X-ray equipment of 50-150 kV nominal voltage X-ray. The maximum dose rates at the beam exit have a very wide range, mostly less than 100 μSv/s and the largest value is about 3.92 mSv/s for open-beam (portable or handheld) X-ray devices. The risk induced by operating X-ray devices with nominal voltages of 30-50 kV is extremely low. The 11.5 mSv dose due to one operation at nominal voltage of 50-150 kV X-ray device is equivalent to the exposure of taking 575 chest X-rays. In the abnormal use of open-beam (portable or handheld) X-ray equipment, the

  6. Enhancement of X-ray dose absorption for medical applications

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Montenegro, Maximiliano; Nahar, Sultana; Pradhan, Anil; Barth, Rolf; Nakkula, Robin; Bell, Erica; Yu, Yan

    2012-06-01

    Interaction of high-Z (HZ) elements with X-rays occurs efficiently at specific resonant energies. Cross sections for photoionization rapidly decrease after the K-edge; higher energy X-rays are mostly Compton-scattered. These features restrict the energy range for the use of HZ moities for radiosensitization in cancer therapy. Conventional X-ray sources such as linear accelerators (LINAC) used in radiotherapy emit a broad spectrum up to MeV energies. We explore the dichotomy between X-ray radiotherapy in two ranges: (i) E < 100 keV including HZ sensitization, and (ii) E > 100 keV where sensitization is inefficient. We perform Monte Carlo numerical simulations of tumor tissue embedded with platinum compounds and gold nanoparticles and compute radiation dose enhancement factors (DEF) upon irradiation with 100 kV, 170 kV and 6 MV sources. Our results demonstrate that the DEF peak below 100 keV and fall sharply above 200 keV to very small values. Therefore most of the X-ray output from LINACs up to the MeV range is utilized very inefficiently. We also describe experimental studies for implementation of option (i) using Pt and Au reagents and selected cancer cell lines. Resultant radiation exposure to patients could be greatly reduced, yet still result in increased tumoricidal ability.

  7. Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less

  8. X-Ray Dose in Microfocus Radiographic Inspections

    DTIC Science & Technology

    2007-03-15

    convenient because they can be placed inside electronic assemblies. The TLDs must be returned to the vendor for readout. Com- mercial providers of...AEROSPACE REPORT NO. TR-2007(8555)-3 X-Ray Dose in Microfocus Radiographic Inspections 15 March 2007 Prepared by G. W. STUPIAN Electronics and...Segundo, CA 90245. It was reviewed and approved for The Aerospace Corporation by B. Jaduszliwer, Principal Director, Electronics and Photonics Laboratory

  9. Dose in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kalender, Willi A.

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  10. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose

  11. Performance of optically stimulated luminescence Al₂O₃ dosimeter for low doses of diagnostic energy X-rays.

    PubMed

    Lim, Chang Seon; Lee, Sang Bock; Jin, Gye Hwan

    2011-10-01

    Personal dosimeters measure the radiation dose from exposure to hazardous sources outside the body. The present manuscript evaluates the performance of a commercially available optically stimulated luminescence (OSL) Al₂O₃ dosimeter using diagnostic energy X-rays. The OSL system satisfies the ANSI N13.11-2001 performance criteria for low dose diagnostic energy X-rays. Non-uniformity of sensitivity, dose linearity, X-ray energy response, and angular performance are all within the criteria of IEC-62387-1(2007). Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Verwohlt, Jan; Reiser, Mario; Randolph, Lisa; Matic, Aleksandar; Medina, Luis Aguilera; Madsen, Anders; Sprung, Michael; Zozulya, Alexey; Gutt, Christian

    2018-04-01

    X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7 ×10-3 per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature TG with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below TG . We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below TG .

  13. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  14. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness.

    PubMed

    Kong, Eva Yi; Cheng, Shuk Han; Yu, Kwan Ngok

    2016-07-01

    The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. Kinetic Modeling of the X-ray-induced Damage to a Metalloprotein

    PubMed Central

    Davis, Katherine M.; Kosheleva, Irina; Henning, Robert W.; Seidler, Gerald T.; Pushkar, Yulia

    2013-01-01

    It is well known that biological samples undergo x-ray-induced degradation. One of the fastest occurring x-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room temperature data on the photoreduction of Mn ions in the oxygen evolving complex (OEC) of photosystem II, one of the most radiation damage sensitive proteins and a key constituent of natural photosynthesis in plants, green algae and cyanobacteria. Time-resolved x-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of x-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC MnIII/IV ions by solvated electrons was determined. From this model, the possible kinetics of x-ray-induced damage at variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of x-ray-induced damage with increasing rates of damage deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and x-ray FEL sources. PMID:23815809

  16. Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain

    PubMed Central

    Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi

    2018-01-01

    The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson–Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson–Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods. PMID:29596335

  17. Poisson-Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain.

    PubMed

    Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi

    2018-03-29

    The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson-Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson-Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods.

  18. Low dose X -ray effects on catalase activity in animal tissue

    NASA Astrophysics Data System (ADS)

    Focea, R.; Nadejde, C.; Creanga, D.; Luchian, T.

    2012-12-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, p<0.05) suggested the stimulation of the antioxidant enzyme biosynthesis within several hours after exposure at doses of 0.5 Gy and 2 Gy; the putative enzyme inactivation could also occur (due to the injuries on the hydrogen bonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  19. Ambient dose equivalent and effective dose from scattered x-ray spectra in mammography for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations.

    PubMed

    Künzel, R; Herdade, S B; Costa, P R; Terini, R A; Levenhagen, R S

    2006-04-21

    In this study, scattered x-ray distributions were produced by irradiating a tissue equivalent phantom under clinical mammographic conditions by using Mo/Mo, Mo/Rh and W/Rh anode/filter combinations, for 25 and 30 kV tube voltages. Energy spectra of the scattered x-rays have been measured with a Cd(0.9)Zn(0.1)Te (CZT) detector for scattering angles between 30 degrees and 165 degrees . Measurement and correction processes have been evaluated through the comparison between the values of the half-value layer (HVL) and air kerma calculated from the corrected spectra and measured with an ionization chamber in a nonclinical x-ray system with a W/Mo anode/filter combination. The shape of the corrected x-ray spectra measured in the nonclinical system was also compared with those calculated using semi-empirical models published in the literature. Scattered x-ray spectra measured in the clinical x-ray system have been characterized through the calculation of HVL and mean photon energy. Values of the air kerma, ambient dose equivalent and effective dose have been evaluated through the corrected x-ray spectra. Mean conversion coefficients relating the air kerma to the ambient dose equivalent and to the effective dose from the scattered beams for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations were also evaluated. Results show that for the scattered radiation beams the ambient dose equivalent provides an overestimate of the effective dose by a factor of about 5 in the mammography energy range. These results can be used in the control of the dose limits around a clinical unit and in the calculation of more realistic protective shielding barriers in mammography.

  20. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  1. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses.

    PubMed

    Huda, Walter; Lieberman, Kristin A; Chang, Jack; Roskopf, Marsha L

    2004-03-01

    We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18 x 7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186+/-8 mm and 147+/-8 mm, respectively, with an average HU value of 209+/-40. An infant head was found to be equivalent to a water cylinder with a radius of approximately 60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is approximately 20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors.

  2. The dose received by patients during dental X-ray examination and the technical condition of radiological equipment.

    PubMed

    Bekas, Marcin; Pachocki, Krzysztof A

    2013-01-01

    Implementation of X-ray dental examination is associated with the patients exposure to ionizing radation. The size of the exposure depends on the type of medical procedure, the technical condition of the X-ray unit and selected exposure conditions. The aim of this study was to determine the dose received by patients during dental X-ray examination and the assessment of the technical condition of medical equipment, The study included a total number of 79 dental X-ray units located in the region of Mazovia. The test methods for the assessment of the technical condition of dental X-ray units and measurement of radiation dose received by patients were based on the procedures elaborated in the Department of Radiation Hygiene and Radiobiology in the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland) accredited for the certification of compliance with PN-EN 17025. The research found that 69.6% fully meets the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 30.4% did not meet some of them. A tenfold difference in the size of the dose received by patients during dental X-ray examinations was discovered. For example, during a radiography of the canine teeth of a child, the recorded entrance surface dose (ESD) ranged from 72.8 to 2430 microGy with the average value of 689.1 microGy. Cases where the dose reference level defined in Polish legislation of 5 mGy was exceeded were also found. CONCKUSIONS: It is essential to constantly monitor the situation regarding the technical condition of X-ray units which affects the size of the population's exposure to ionizing radiation as well as raising dentists' awareness about the effects of X-rays on the human body.

  3. Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations

    NASA Astrophysics Data System (ADS)

    Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.

  4. Low-dose X-ray CT reconstruction via dictionary learning.

    PubMed

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  5. Evaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology procedures.

    PubMed

    Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Kottmaier, Marc; Semmler, Verena; Telishevska, Marta; Brkic, Amir; Grebmer, Christian; Lennerz, Carsten; Kolb, Christof; Hessling, Gabriele; Deisenhofer, Isabel

    2016-09-01

    This study presents and evaluates the impact of a new lowest-dose fluoroscopy protocol (Siemens AG), especially designed for electrophysiology (EP) procedures, on X-ray dose levels. From October 2014 to March 2015, 140 patients underwent an EP study on an Artis zee angiography system. The standard low-dose protocol was operated at 23 nGy (fluoroscopy) and at 120 nGy (cine-loop), the new lowest-dose protocol was operated at 8 nGy (fluoroscopy) and at 36 nGy (cine-loop). Procedural data, X-ray times, and doses were analysed in 100 complex left atrial and in 40 standard EP procedures. The resulting dose-area products were 877.9 ± 624.7 µGym² (n = 50 complex procedures, standard low dose), 199 ± 159.6 µGym² (n = 50 complex procedures, lowest dose), 387.7 ± 36.0 µGym² (n = 20 standard procedures, standard low dose), and 90.7 ± 62.3 µGym² (n = 20 standard procedures, lowest dose), P < 0.01. In the low-dose and lowest-dose groups, procedure times were 132.6 ± 35.7 vs. 126.7 ± 34.7 min (P = 0.40, complex procedures) and 72.3 ± 20.9 vs. 85.2 ± 44.1 min (P = 0.24, standard procedures), radiofrequency (RF) times were 53.8 ± 26.1 vs. 50.4 ± 29.4 min (P = 0.54, complex procedures) and 10.1 ± 9.9 vs. 12.2 ± 14.7 min (P = 0.60, standard procedures). One complication occurred in the standard low-dose and lowest-dose groups (P = 1.0). The new lowest-dose imaging protocol reduces X-ray dose levels by 77% compared with the currently available standard low-dose protocol. From an operator standpoint, lowest X-ray dose levels create a different, reduced image quality. The new image quality did not significantly affect procedure or RF times and did not result in higher complication rates. Regarding radiological protection, operating at lowest-dose settings should become standard in EP procedures. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  6. Impact of new X-ray technology on patient dose in pacemaker and implantable cardioverter defibrillator (ICD) implantations.

    PubMed

    van Dijk, Joris D; Ottervanger, Jan Paul; Delnoy, Peter Paul H M; Lagerweij, Martine C M; Knollema, Siert; Slump, Cornelis H; Jager, Pieter L

    2017-01-01

    New X-ray technology providing new image processing techniques may reduce radiation exposure. The aim of this study was to quantify this radiation exposure reduction for patients during pacemaker and implantable cardioverter defibrillator (ICD) implantation. In this retrospective study, 1185 consecutive patients who had undergone de novo pacemaker or ICD implantation during a 2-year period were included. All implantations in the first year were performed using the reference technology (Allura Xper), whereas in the second year, the new X-ray technology (AlluraClarity) was used. Radiation exposure, expressed as the dose area product (DAP), was compared between the two time periods to determine the radiation exposure reduction for pacemaker and ICD implantations without cardiac resynchronization therapy (CRT) and with CRT. Procedure duration and contrast volume were used as measures to compare complexity and image quality. The study population consisted of 591 patients who had undergone an implantation using the reference technology, and 594 patients with the new X-ray technology. The two groups did not differ in age, gender, or body mass index. The DAP decreased with 69 % from 16.4 ± 18.5 to 5.2 ± 6.6 Gy cm 2 for the non-CRT implantations (p < 0.001). The DAP decreased with 75 % from 72.1 ± 60.0 to 17.8 ± 17.4 Gy cm 2 for the CRT implantations (p < 0.001). Nevertheless, procedure duration and contrast volume did not differ when using the new technology (p = 0.09 and p = 0.20, respectively). Introduction of new X-ray technology resulted in a radiation exposure reduction of more than 69 % for patients during pacemaker and ICD implantation while image quality was unaffected.

  7. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    NASA Astrophysics Data System (ADS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  8. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique overmore » conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.« less

  9. Evaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology procedures

    PubMed Central

    Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Kottmaier, Marc; Semmler, Verena; Telishevska, Marta; Brkic, Amir; Grebmer, Christian; Lennerz, Carsten; Kolb, Christof; Hessling, Gabriele; Deisenhofer, Isabel

    2016-01-01

    Aims This study presents and evaluates the impact of a new lowest-dose fluoroscopy protocol (Siemens AG), especially designed for electrophysiology (EP) procedures, on X-ray dose levels. Methods and results From October 2014 to March 2015, 140 patients underwent an EP study on an Artis zee angiography system. The standard low-dose protocol was operated at 23 nGy (fluoroscopy) and at 120 nGy (cine-loop), the new lowest-dose protocol was operated at 8 nGy (fluoroscopy) and at 36 nGy (cine-loop). Procedural data, X-ray times, and doses were analysed in 100 complex left atrial and in 40 standard EP procedures. The resulting dose–area products were 877.9 ± 624.7 µGym² (n = 50 complex procedures, standard low dose), 199 ± 159.6 µGym² (n = 50 complex procedures, lowest dose), 387.7 ± 36.0 µGym² (n = 20 standard procedures, standard low dose), and 90.7 ± 62.3 µGym² (n = 20 standard procedures, lowest dose), P < 0.01. In the low-dose and lowest-dose groups, procedure times were 132.6 ± 35.7 vs. 126.7 ± 34.7 min (P = 0.40, complex procedures) and 72.3 ± 20.9 vs. 85.2 ± 44.1 min (P = 0.24, standard procedures), radiofrequency (RF) times were 53.8 ± 26.1 vs. 50.4 ± 29.4 min (P = 0.54, complex procedures) and 10.1 ± 9.9 vs. 12.2 ± 14.7 min (P = 0.60, standard procedures). One complication occurred in the standard low-dose and lowest-dose groups (P = 1.0). Conclusion The new lowest-dose imaging protocol reduces X-ray dose levels by 77% compared with the currently available standard low-dose protocol. From an operator standpoint, lowest X-ray dose levels create a different, reduced image quality. The new image quality did not significantly affect procedure or RF times and did not result in higher complication rates. Regarding radiological protection, operating at lowest-dose settings should become standard in EP procedures. PMID:26589627

  10. Scattered radiation doses absorbed by technicians at different distances from X-ray exposure: Experiments on prosthesis.

    PubMed

    Chiang, Hsien-Wen; Liu, Ya-Ling; Chen, Tou-Rong; Chen, Chun-Lon; Chiang, Hsien-Jen; Chao, Shin-Yu

    2015-01-01

    This work aimed to investigate the spatial distribution of scattered radiation doses induced by exposure to the portable X-ray, the C-arm machine, and to simulate the radiologist without a shield of lead clothing, radiation doses absorbed by medical staff at 2 m from the central exposure point. With the adoption of the Rando Phantom, several frequently X-rayed body parts were exposed to X-ray radiation, and the scattered radiation doses were measured by ionization chamber dosimeters at various angles from the patient. Assuming that the central point of the X-ray was located at the belly button, five detection points were distributed in the operation room at 1 m above the ground and 1-2 m from the central point horizontally. The radiation dose measured at point B was the lowest, and the scattered radiation dose absorbed by the prosthesis from the X-ray's vertical projection was 0.07 ±0.03 μGy, which was less than the background radiation levels. The Fluke biomedical model 660-5DE (400 cc) and 660-3DE (4 cc) ion chambers were used to detect air dose at a distance of approximately two meters from the central point. The AP projection radiation doses at point B was the lowest (0.07±0.03 μGy) and the radiation doses at point D was the highest (0.26±0.08 μGy) .Only taking the vertical projection into account, the radiation doses at point B was the lowest (0.52 μGy), and the radiation doses at point E was the highest (4 μGy).The PA projection radiation at point B was the lowest (0.36 μGy) and the radiation doses at point E was the highest(2.77 μGy), occupying 10-32% of the maximum doses. The maximum dose in five directions was nine times to the minimum dose. When the PX and the C-arm machine were used, the radiation doses at a distance of 2 m were attenuated to the background radiation level. The radiologist without a lead shield should stand at point B of patient's feet. Accordingly, teaching materials on radiation safety for radiological interns and clinical

  11. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    PubMed

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  12. Rat Phantom Depth Dose Studies in Electron, X-ray, Gamma-Ray, and Reactor Radiation Fields

    DTIC Science & Technology

    1986-12-01

    i©™D©/^ ^1[P@^T Rat phantom depth dose studies in electron , Xrayf gamma-ray, and reactor radiation fields M. Dooley D. M. Eagleson G. H. Zeman...energy electrons , bremsstrahlung, and mixed neutron/gamma radiation fields are sometimes used in radiobiological experiments employing rats. This report...have revealed differing sensitivities of experimental animals that have been exposed to cobalt-60 photons, high-energy electrons , high-energy X rays

  13. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure

  14. Dynamic X-ray diffraction sampling for protein crystal positioning

    PubMed Central

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by

  15. Dynamic X-ray diffraction sampling for protein crystal positioning.

    PubMed

    Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by

  16. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE PAGES

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure

  17. SU-C-12A-07: Effect of Vertical Position On Dose Reduction Using X-Care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silosky, M; Marsh, R

    Purpose: Reduction of absorbed dose to radiosensitive tissues is an important goal in diagnostic radiology. Siemens Medical has introduced a technique (X-CARE) to lower CT dose to anterior anatomy by reducing the tube current during 80° of rotation over radiosensitive tissues. Phantom studies have shown 30-40% dose reduction when phantoms are positioned at isocenter. However, for CT face and sinus exams, the center of the head is commonly positioned below isocenter. This work investigated the effects of vertical patient positioning on dose reduction using X-CARE. Methods: A 16cm Computed Tomography Dose Index phantom was scanned on a Siemens Definition Flashmore » CT scanner using a routine head protocol, with the phantom positioned at scanner isocenter. Optically stimulated luminescent dosimeters were placed on the anterior and posterior sides of the phantom. The phantom was lowered in increments of 2cm and rescanned, up to 8cm below isocenter. The experiment was then repeated using the same scan parameters but adding the X-CARE technique. The mean dosimeter counts were determined for each phantom position, and the difference between XCARE and routine scans was plotted as a function of distance from isocenter. Results: With the phantom positioned at isocenter, using XCARE reduced dose to the anterior side of the phantom by 40%, compared to dose when X-CARE was not used. Positioned below isocenter, anterior dose was reduced by only 20-27%. Additionally, using X-CARE at isocenter reduced dose to the anterior portion of the phantom by 45.6% compared to scans performed without X-CARE 8cm below isocenter. Conclusion: While using X-CARE substantially reduced dose to the anterior side of the phantom, this effect was diminished when the phantom was positioned below isocenter, simulating common practice for face and sinus scans. This indicates that centering the head in the gantry will maximize the effect of X-CARE.« less

  18. Dose evaluation in paediatric patients undergoing chest X-ray examinations

    NASA Astrophysics Data System (ADS)

    Piantini, F.; Schelin, H. R.; Denyak, V.; Bunick, A. P.; Legnani, A.; Ledesma, J. A.; Filipov, D.; Paschuk, S. A.

    2017-11-01

    This study aimed to estimate the incident air kerma in chest X-ray examinations, for lateral (LAT) and anterior-posterior (AP) (together with posterior-anterior (PA)) projections, in one of the largest paediatric hospitals in Brazil, and to compare these with the results obtained in a general hospital of the same city. The dosimetric results were analysed along with the patient characteristics and radiographer strategies. The examinations of 225 (119 male and 106 female) patients were studied and 389 X-ray scans (200 AP/PA projections and 189 LAT projections) of paediatric patients were acquired. For analysis of the results, the patients were divided into the following age groups: 0-1 y, 1-5 y, 5-10 y, and 10-15 y. Patient's thickness can be determined from age, height or weight with an uncertainty of 20-30%. In different hospitals, the difference in patient's thicknesses between the same age groups can reach 25-55%. A minimal correlation between the patient dose and thickness was observed, with a 4-fold difference in the dose for patients of the same thickness. By standardizing radiological protocols, it should be possible to keep the dose within intervals of 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection.

  19. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    PubMed Central

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  20. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  1. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy.

    PubMed

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C

    2013-06-01

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.

  2. A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray.

    PubMed

    Pan, Chien-Lin; Chen, Ming-Hong; Tung, Fu-I; Liu, Tse-Ying

    2017-01-01

    Many non-antibiotic strategies, such as photocatalysis and photodynamic therapy, have been proposed to inhibit and/or kill bacteria. However, these approaches still have drawbacks such as insufficient bacterial specificity and the limited penetration depth of ultraviolet and near-infrared light. To overcome these limitations, we developed a bacteria-specific anti-bacterial technique via using low-dose X-ray. Graphene oxide quantum dots (GQDs, a multifunctional vehicle) conjugated with vancomycin (Van, a bacteria-targeting ligand) were assembled with Protoporphyrin IX (PpIX, a photo/radiation sensitizer) to yield a novel Van-GQDs/PpIX complex that specifically attached to Escherichia coli and efficiently generated intracellular reactive oxygen species following X-ray activation. Delivery using GQDs increased the PpIX/Van ratio in the target bacterial cell, damaged bacterial cell wall, and enhanced X-ray-induced PpIX activation. Hence, this approach allowed for the use of a low-dose X-ray to efficiently activate the Van-GQDs/PpIX complex to exert its bactericidal effects on Escherichia coli without damaging normal cells. Furthermore, the E. coli did not develop resistance to the proposed approach for at least 7 rounds of repeated administration during one week. Thus, this proposed vehicle exhibiting bacteria-specific X-ray-triggered toxicity is a promising alternative to antibiotics for treating serious bacterial infections occurring in deep-seated tissues/organs (e.g., osteomyelitis and peritonitis). Administration of antibiotics is the most common treatment modality for bacterial infections. However, in some cases, patient attributes such as age, health, tolerance to antibiotics do not allow for the use of high-dose antibiotics. In addition, some bacteria develop resistance to antibiotics because of improper and long-term use of these agents. Therefore, non-antibiotic strategies to treat deeply situated bacterial infections, such as osteomyelitis, are urgently

  3. Exposure Dose Reconstruction from EPR Spectra of Tooth Enamel Exposed to the Combined Effect of X-rays and Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, J. I.

    2014-09-01

    We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.

  4. X-Ray-Induced Chromosome Aberrations in Mouse Dictyate Oocytes. II. Fractionation and Dose Rate Effects

    PubMed Central

    Brewen, J. G.; Payne, H. S.; Adler, I. D.

    1977-01-01

    Split-dose experiments were done on maturing dictyate oocytes to determine if the magnitude of the first dose influenced the "rejoining time" of radiation-induced chromosomal lesions. A total dose of 400r was split into various combinations with varying fractionation intervals. The data derived from analyzing interchanges indicate that there is no difference in the rejoining time whether the first dose was 100, 200, or 300r. It thus appears that the radiation dose in the ranges studied does not significantly alter the rate of repair of the chromosomal lesions. This conclusion is contrary to that which has been propounded to explain the nonlinear dose curves obtained for specific locus mutations. Chronic 60Co γ-ray exposures were given to female mice over an 8-day period. The exposures were delivered during the period of peak sensitivity, i.e., 8–16 days prior to ovulation. The doses given were 117, 240, 348, and 483r. The aberration yields observed were dramatically lower than for comparable doses of acute X rays even when the RBE of γ rays compared with X rays is taken into account. The large drop in yields at the low dose rates is interpreted as resulting from a large two-track component in the acute curve, and as being independent of effects on repair systems. PMID:604163

  5. SU-E-I-37: Low-Dose Real-Time Region-Of-Interest X-Ray Fluoroscopic Imaging with a GPU-Accelerated Spatially Different Bilateral Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H; Lee, J; Pua, R

    2014-06-01

    Purpose: The purpose of our study is to reduce imaging radiation dose while maintaining image quality of region of interest (ROI) in X-ray fluoroscopy. A low-dose real-time ROI fluoroscopic imaging technique which includes graphics-processing-unit- (GPU-) accelerated image processing for brightness compensation and noise filtering was developed in this study. Methods: In our ROI fluoroscopic imaging, a copper filter is placed in front of the X-ray tube. The filter contains a round aperture to reduce radiation dose to outside of the aperture. To equalize the brightness difference between inner and outer ROI regions, brightness compensation was performed by use of amore » simple weighting method that applies selectively to the inner ROI, the outer ROI, and the boundary zone. A bilateral filtering was applied to the images to reduce relatively high noise in the outer ROI images. To speed up the calculation of our technique for real-time application, the GPU-acceleration was applied to the image processing algorithm. We performed a dosimetric measurement using an ion-chamber dosimeter to evaluate the amount of radiation dose reduction. The reduction of calculation time compared to a CPU-only computation was also measured, and the assessment of image quality in terms of image noise and spatial resolution was conducted. Results: More than 80% of dose was reduced by use of the ROI filter. The reduction rate depended on the thickness of the filter and the size of ROI aperture. The image noise outside the ROI was remarkably reduced by the bilateral filtering technique. The computation time for processing each frame image was reduced from 3.43 seconds with single CPU to 9.85 milliseconds with GPU-acceleration. Conclusion: The proposed technique for X-ray fluoroscopy can substantially reduce imaging radiation dose to the patient while maintaining image quality particularly in the ROI region in real-time.« less

  6. SU-C-204-06: Monte Carlo Dose Calculation for Kilovoltage X-Ray-Psoralen Activated Cancer Therapy (X-PACT): Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mein, S; Gunasingha, R; Nolan, M

    Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp withmore » the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data

  7. Observation of dose-rate dependence in a Fricke dosimeter irradiated at low dose rates with monoenergetic X-rays.

    PubMed

    O'Leary, Mel; Boscolo, Daria; Breslin, Nicole; Brown, Jeremy M C; Dolbnya, Igor P; Emerson, Chris; Figueira, Catarina; Fox, Oliver J L; Grimes, David Robert; Ivosev, Vladimir; Kleppe, Annette K; McCulloch, Aaron; Pape, Ian; Polin, Chris; Wardlow, Nathan; Currell, Fred J

    2018-03-16

    Absolute measurements of the radiolytic yield of Fe3+ in a ferrous sulphate dosimeter formulation (6 mM Fe2+), with a 20 keV x-ray monoenergetic beam, are reported. Dose-rate suppression of the radiolytic yield was observed at dose rates lower than and different in nature to those previously reported with x-rays. We present evidence that this effect is most likely to be due to recombination of free radicals radiolytically produced from water. The method used to make these measurements is also new and it provides radiolytic yields which are directly traceable to the SI standards system. The data presented provides new and exacting tests of radiation chemistry codes.

  8. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimwegen, Frederika A. van; Cutter, David J.; Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–controlmore » study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  9. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    PubMed

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a

  10. Low dose digital X-ray imaging with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  11. Photodynamic synchrotron x-ray therapy in Glioma cell using superparamagnetic iron nanoparticle

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Tae; Kim, Ki-Hong; Choi, Gi-Hwan; Jheon, Sanghoon; Park, Sung-Hwan; Kim, Bong-Il; Hyodo, Kazuyuki; Ando, Masami; Kim, Jong-Ki

    2009-06-01

    In order to evaluate cytotoxic effects of secondary Auger electron emission(Photon Activation Therapy:PAT) from alginate-coated iron nanoparticles(Alg-SNP), Alg-SNP-uptaken C6 glioma cell lines were irradiated with 6.89/7.2 Kev synchrotron X-ray. 0-125 Gy were irradiated on three experimental groups including No-SNP group incubating without SNP as control group, 6hr-SNP group incubating with SNP for 6hr and ON-SNP group incubating with SNP overnight. Irradiated cells were stained with Acridine Orange(AO) and Edithium Bromide(EB) to count their viability with fluorescent microscopy in comparison with control groups. AO stained in damaged DNA, giving FL color change in X-ray plus SNP group. EB did not or less enter inside the cell nucleus of control group. In contrast, EB entered inside the cell nucleus of Alg-SNP group which means more damage compared with Control groups. The results of MTT assay demonstrated a X-ray dose-dependent reduction generally in cell viability in the experimental groups. 3 or 9 times increase in cell survival loss rate was observed at 6hr-SNP and ON-SNP groups, respectively compared to No-SNP control group in first experiment that was done to test cell survival rate at relatively lower dose, from 0 to 50 Gy. In second experiment X-ray dose was increased to 125 Gy. Survival loss was sharply decreased in a relatively lower dose from 5 to 25 Gy, and then demonstrated an exponentially decreasing behavior with a convergence until 125 Gy for each group. This observation suggests PAT effects on the cell directly by X-ray in the presence of Alg-SNP occurs within lower X-ray dose, and conventional X-ray radiation effect becomes dominant in higher X-ray dose. The cell viability loss of ON-SNP group was three times higher compared with that of 6hr-SNP group. In conclusion, it is possible to design photodynamic X-ray therapy study using a monochromatic x-ray energy and metal nanoparticle as x-ray sensitizer, which may enable new X-ray PDT to

  12. Reduction in Listeria monocytogenes and spoilage bacteria on smoked catfish using X-ray treatments.

    PubMed

    Mahmoud, B S M; Coker, R; Su, Y-C

    2012-06-01

    To determine the efficacy of X-ray processes in inactivating L. monocytogenes levels in smoked catfish during storage at 5°C and to determine the effects of X-ray doses on controlling the growth of spoilage bacteria on smoked catfish during storage at 5°C for up to 5 weeks. Smoked catfish fillets inoculated with L. monocytogenes were treated with 0.0-2.0 kGy X-ray and stored at 5°C for 5 weeks. The negative controls (uninoculated/untreated) and uninoculated samples treated with the lowest (0.1 kGy) and highest (2.0 kGy) doses were stored at 5°C and tested for psychrotrophs count during the 5 weeks of storage. The initial L. monocytogenes population on smoked catfish was significantly (P < 0.05) reduced to undetectable level by a treatment of 1.0 kGy or higher. The initial psychrotrophs count on smoked catfish was significantly reduced from 4.7 CFU g(-1) to below the detectable level by a treatment with 2.0 kGy. Smoked catfish treated with 2.0 kGy X-ray had no detectable L. monocytogenes throughout 35 days of storage at 5°C. A treatment with 2.0 kGy X-ray also kept the levels of psychrotrophs in the smoked catfish within the acceptable level until 35 days. The results of this investigation indicate that X-ray at 2.0 kGy can eliminate L. monocytogenes and extend the shelf life of smoked catfish stored at refrigeration temperature. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  13. Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspection equipment.

    PubMed

    Uehara, Kazuaki; Tagami, Tatsuaki; Miyazaki, Itaru; Murata, Norikazu; Takahashi, Yoshifumi; Ohkubo, Hiroshi; Ozeki, Tetsuya

    2015-06-01

    X-ray inspection equipment is widely used to detect missing materials and defective goods in opaque containers. Its application has been expanded to the pharmaceutical industry to detect the presence of drug tablets in aluminum foil press-through packaging. However, the effect of X-rays on the pharmaceutical quality of drug tablets is not well known. In this study, the effect of X-rays on the pharmaceutical quality of drug tablets was investigated. Exposure of acetaminophen, loxoprofen and mefenamic acid tablets to X-ray doses of 0.34 mGy (thrice the dose by X-ray scanning) to 300 Gy (maximum dose from our X-ray equipment) was demonstrated, and the samples were evaluated by formulation tests. Exposure to X-rays did not affect the pharmaceutical quality of the drug content. The samples exposed to X-rays exhibited almost the same profile in formulation tests (dissolution test, disintegrating test and hardness test) as control samples (0 Gy). The combination of X-ray exposure with accelerated temperature and humidity tests (six months) also did not affect the pharmaceutical quality. The color change of light-sensitive drugs (nifedipine and furosemide tablets) after X-ray exposure was negligible (< 1.0). In contrast, tablet color was remarkably changed by light from a D65 lamp. The X-ray scanning and X-ray exposure under our experimental conditions did not affect the pharmaceutical quality of drug tablets.

  14. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    PubMed

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  15. Marked depression of time interval between fertilization period and hatching period following exposure to low-dose X-rays in zebrafish.

    PubMed

    Miyachi, Yukihisa; Kanao, Tomoko; Okamoto, Takehito

    2003-10-01

    In recent years there has been growing concern over the stimulating effects of very low-dose X-rays. Our laboratory had observed that zebrafish irradiated with low-dose X-rays tended to emerge earlier than sham controls. This observation led us to quantitatively examine the effects of low-dose X irradiation on a series of stages of development in the zebrafish. The embryos were fertilized simultaneously in vitro and incubated at an optimal temperature without crowding. Following exposure of the cleavage period (1.5 h after fertilization) to 0.025-Gy X-rays, the duration to hatching was slightly shorter than that of the sham controls. This tendency was increased when the X-ray exposure occurred during the blastula period (3.5 h). In these embryos, the duration to hatching decreased significantly by an average of 6 h sooner than for sham controls. No differences in duration to hatching were seen when irradiation was given during either the zygote period (45 min) or the segmentation period (12 h). On the contrary, upon exposure to 0.5-Gy X-rays during the blastula period, the duration to hatching increased significantly relative to that of sham controls. These results suggest that the radiation-induced early hatching effect is observed for low doses of X-rays.

  16. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and

  17. Trimodal low-dose X-ray tomography

    PubMed Central

    Zanette, I.; Bech, M.; Rack, A.; Le Duc, G.; Tafforeau, P.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.

    2012-01-01

    X-ray grating interferometry is a coherent imaging technique that bears tremendous potential for three-dimensional tomographic imaging of soft biological tissue and other specimens whose details exhibit very weak absorption contrast. It is intrinsically trimodal, delivering phase contrast, absorption contrast, and scattering (“dark-field”) contrast. Recently reported acquisition strategies for grating-interferometric phase tomography constitute a major improvement of dose efficiency and speed. In particular, some of these techniques eliminate the need for scanning of one of the gratings (“phase stepping”). This advantage, however, comes at the cost of other limitations. These can be a loss in spatial resolution, or the inability to fully separate the three imaging modalities. In the present paper we report a data acquisition and processing method that optimizes dose efficiency but does not share the main limitations of other recently reported methods. Although our method still relies on phase stepping, it effectively uses only down to a single detector frame per projection angle and yields images corresponding to all three contrast modalities. In particular, this means that dark-field imaging remains accessible. The method is also compliant with data acquisition over an angular range of only 180° and with a continuous rotation of the specimen. PMID:22699500

  18. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range < 200 keV, far lower than the energy of the majority of photons in the LINAC energy range. In vitro studies were carried to demonstrate the tumoricidal effects of HZ sensitized F98 rat glioma cells following irradiation with both low energy 160 kV and high energy 6 MV X-ray sources. The platinum compound, pyridine terpyridine Pt(II) nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are

  19. An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Yukihara, E. G.; Ruan, C.; Gasparian, P. B. R.; Clouse, W. J.; Kalavagunta, C.; Ahmad, S.

    2009-10-01

    This paper describes an LED-based optically stimulated luminescence (OSL) system for dose profile measurements using OSL detector strips and investigates its performance in x-ray computed tomography (CT) dosimetry. To compensate for the energy response of the Al2O3:C OSL detectors, which have an effective atomic number of 11.28, field-specific energy correction factors were determined using two methods: (a) comparing the OSL profiles with ionization chamber point measurements (0.3 cm3 ionization chamber) and (b) comparing the OSL profiles integrated over a 100 mm length with 100 mm long pencil ionization chamber measurements. These correction factors were obtained for the CT body and head phantoms, central and peripheral positions and three x-ray tube potential differences (100 kVp, 120 kVp and 140 kVp). The OSL dose profiles corrected by the energy dependence agreed with the ionization chamber point measurements over the entire length of the phantom (300 mm). For 120 kVp x-ray tube potential difference, the CTDI100 values calculated using the OSL dose profiles corrected for the energy dependence and those obtained from an independent measurement with a 100 mm long pencil ionization chamber also agreed within ±5%.

  20. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  1. Dose measurement using Al2O3 dosimeter in comparison to LiF:Mg,Ti dosimeter and ionization chamber at low and high energy x-ray

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Yahya, Muhammad Hadzmi; Rosnan, Muhammad Syazwan; Abdullah, Reduan; Kadir, Ahmad Bazlie Abdul

    2017-01-01

    The dose measurement using Al2O3 OSL dosimeter (OSLD) was carried out at low and high energy x-ray. The dose at low energy x-ray was measured at 40, 71 and 125 kVp x-ray energies. The dose ar high energy x-ray was measured at 6 and 10 MV x-ray energies measured at the depth of maximum dose (Zmax). The results were compared to that in ionization chamber and LiF: Mg,Ti thermoluminescent dosimeters (TLD100). The results showed that the dose of OSLD were less in agreement to ionization chamber compared to that in TLD100. The dose of OSLD however was in good agreement to that in ionization chamber at high energy x-ray. The dose measured using OSLD were found to be more consistence at high energy x-ray shown by the standard deviation of the readings. The measurement of x2 showed that the readings of OSLD were close to that in ionization chamber with values of 2.21 and 4.63 for 6 and 10 MV respectively. The results indicated that OSLD is more suitable for dose measurement at high energy x-ray.

  2. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    PubMed

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  3. Printable organometallic perovskite enables large-area, low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-01

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  4. Printable organometallic perovskite enables large-area, low-dose X-ray imaging.

    PubMed

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-04

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  5. EXACT DOSE X-IRRADIATION OF VARIOUS REGIONS OF THE HEAD AND VISUAL SENSATIONS--X-RAY LOCATION METHOD OF STUDY OF THE REACTIVITY OF THE CENTRAL NERVOUS SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurtovoi, G.K.; Burdianskaya, E.O.

    1960-01-01

    The primary substrate excited by threshold doses of x radiation of the normal human eye causes perception of a light flash in the retinal region. The threshold dose for the retina is about 1 mr; the threshold absorbed dose is about 1 mrad. Persons with a removed eyeball, on irradiation of the operated region with a frontal x-ray beam, perceive a flash of light at definite doses of radiation. Six persons taking part in an experiment saw a flash at doses of 17 to 150 mr (different observers saw flash at different doses) and did not see flash at dosesmore » of 5 to 90 mr. The cause of x-ray phosphene on frontal irradiation of the region of the removed eye with threshold doses is neither the reactivity of the optic nerve stump, the reactivity of the parts of the brain irradiated, nor the sensitivity of the skin receptors. In the cases considered, the cause of x-ray phosphene was irradiation of the retina of the nomnal eye by scattered x rays. The averaged coefficient of scatter was about 2%. On irradiation of the occiptal regions of the brain in subjects with normal eyes at a dose of about 150 mr, one subject perceived a flash of light. In this case, the absorbed dose for the occipital regions of the brain was about 40 mrad. The reason for this phenomenon must be explored. Stimulation of the cerebral formations (after atrophic changes in the visual tract and cortex) by x radia tion with a dose of up to 3 r, did not cause visual sensations. With the disposition of the beam, the absorbed dose for the chiasma was about 1 rad and for the occipital regions about 0.2 rad. In the study of threshold visual sensation and their causes on x irradiation of various regions of the head, it is important to apply defined doses of radiation. Scatter of the x rays in the head must be taken into consideration. (auth)« less

  6. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane

    Purpose: This work investigates the dose-response curves of GAFCHROMIC{sup Registered-Sign} EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} polymethylmethacrylate phantom. AAPM TG-61 protocol wasmore » applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.« less

  7. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  8. Image-based metal artifact reduction in x-ray computed tomography utilizing local anatomical similarity

    NASA Astrophysics Data System (ADS)

    Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees

    2017-03-01

    X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.

  9. The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages.

    PubMed

    Schaue, D; Marples, B; Trott, K R

    2002-07-01

    Local irradiation with a dose of around 0.5 Gy is an effective treatment of acute necrotizing inflammations. The hypothesis that low doses of X-rays modulate the oxidative burst in activated macrophages, which plays a major role in the acute inflammatory process, was tested. Murine RAW 264.7 macrophages were stimulated with LPS/gammaIFN, PMA or zymosan and oxidative burst was measured using either DCFH-DA or by reduction of cytochrome-C. Radiation doses of 0.3-10 Gy were given shortly before or after stimulation. Low X-ray doses of <1 Gy significantly reduced the oxidative burst in activated macrophages, whereas higher doses had little effect on oxidative burst. The modulation of oxidative burst by low radiation doses may contribute to the therapeutic effectiveness of low-dose radiotherapy of acute necrotizing inflammations.

  10. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  11. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy.

    PubMed

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (-50 to -6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies.

  12. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy

    PubMed Central

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (−50 to −6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  13. Application of the Monte Carlo method to the analysis of doses and shielding around an X-ray fluorescence equipment

    NASA Astrophysics Data System (ADS)

    Ródenas, José; Juste, Belén; Gallardo, Sergio; Querol, Andrea

    2017-09-01

    An X-ray fluorescence equipment is used for practical exercises in the laboratory of Nuclear Engineering of the Polytechnic University of Valencia (Spain). This equipment includes a compact X-ray tube, ECLIPSE-III, and a Si-PIN XR-100T detector. The voltage (30 kV), and the current (100 μA) of the tube are low enough so that expected doses around the tube do not represent a risk for students working in the laboratory. Nevertheless, doses and shielding should be evaluated to accomplish the ALARA criterion. The Monte Carlo method has been applied to evaluate the dose rate around the installation provided with a shielding composed by a box of methacrylate. Dose rates calculated are compared with experimental measurements to validate the model. Obtained results show that doses are below allowable limits. Hence, no extra shielding is required for the X-ray beam. A previous Monte Carlo model was also developed to obtain the tube spectrum and validated by comparison with data from manufacturer.

  14. Hybrid materials with an increased resistance to hard X-rays using fullerenes as radical sponges.

    PubMed

    Pinna, Alessandra; Malfatti, Luca; Piccinini, Massimo; Falcaro, Paolo; Innocenzi, Plinio

    2012-07-01

    The protection of organic and hybrid organic-inorganic materials from X-ray damage is a fundamental technological issue for broadening the range of applications of these materials. In the present article it is shown that doping hybrid films with fullerenes C(60) gives a significant reduction of damage upon exposure to hard X-rays generated by a synchrotron source. At low X-ray dose the fullerene molecules act as `radical scavengers', considerably reducing the degradation of organic species triggered by radical formation. At higher doses the gradual hydroxylation of the fullerenes converts C(60) into fullerol and a bleaching of the radical sinking properties is observed.

  15. Application of stereo x-ray photogrammetry (SRM) in the determination of absorbed dose values during intracavitary radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Kleffens, H.J.; Star, W.M.

    1979-04-01

    The method of stereo x-ray photogrammetry is described, using a stereo x-ray comparator, as well as some clinical applications. The x-ray equipment consists of two x-ray tubes and a pneumatically driven cassette changer, developed to reduce effects of patient or organ motion between stero radiographs. The accuracy of the set-up is demonstated with measurements on a geometrical model and on a gelatine phantom containing radium needles. The clinical use is reported in determining dose rates to points of the intestinal wall during intracavitary radiotherapy of gynecological cancer. In a number of cases the stereo measurements have resulted in a changemore » in the application time or in the charge or position of the applicator, possibly preventing later complications, as a result of a high dose. Future applications for implant dosimetry (/sup 192/Ir, /sup 125/I) are suggested.« less

  16. Tissue-equivalent TL sheet dosimetry system for X- and gamma-ray dose mapping.

    PubMed

    Nariyama, N; Konnai, A; Ohnishi, S; Odano, N; Yamaji, A; Ozasa, N; Ishikawa, Y

    2006-01-01

    To measure dose distribution for X- and gamma rays simply and accurately, a tissue-equivalent thermoluminescent (TL) sheet-type dosemeter and reader system were developed. The TL sheet is composed of LiF:Mg,Cu,P and ETFE polymer, and the thickness is 0.2 mm. For the TL reading, a square heating plate, 20 cm on each side, was developed, and the temperature distribution was measured with an infrared thermal imaging camera. As a result, linearity within 2% and the homogeneity within 3% were confirmed. The TL signal emitted is detected using a CCD camera and displayed as a spatial dose distribution. Irradiation using synchrotron radiation between 10 and 100 keV and (60)Co gamma rays showed that the TL sheet dosimetry system was promising for radiation dose mapping for various purposes.

  17. Differential response of two cell lines sequentially irradiated with low X-ray doses.

    PubMed

    Güerci, A M; Dulout, F N; Grillo, C A; Seoane, A I

    2005-05-01

    An experiment was designed to compare the effect of repeated low doses of X-rays in two different cell lines: one transformed, epithelial like and aneuploid Chinese hamster ovary K-1 (CHO-K1); the other originated from a human primary culture, fibroblast, diploid and non-transformed, MRC-5. CHO and MRC-5 cells were cultured for 14 or eight passages, respectively. Irradiation was performed once per passage when cells were in the quiescent state (90 - 95% in G1/G0). Cells were exposed to 10.0 mSv X-ray doses. Ionizing radiation did not induce apoptosis or necrosis in the exposed CHO cell population. Significant increases of low-level damaged cells (degrees 1 and 2) were found for the 14 cycles of radiation when compared with controls, except for the first irradiation cycle. No significant increases in the frequency of cells with severe damage were observed. The frequency of MRC-5 cells with low-level damage increased significantly when compared with controls for radiation cycles seven and eight. Significant increases of apoptosis, necrosis and severe damage were found only for the highest dose. Transformed and non-transformed cell types responded differently to direct and indirect damage using low-dose repeat exposures to ionizing radiation. Though more investigation is needed to understand the mechanisms of radiation effects in chronic low-dose-exposed cell populations, cellular type should be taken into account in the design of in vitro experiments for understanding low-dose-irradiation effects.

  18. STUDIES ON DECREASING THE REACTION OF NORMAL SKIN TO DESTRUCTIVE DOSES OF X-RAYS BY PHARMACOLOGICAL MEANS AND ON THE MECHANISM INVOLVED

    PubMed Central

    Auer, John; Witherbee, William D.

    1921-01-01

    When a fixed area of the ears of rabbits is subjected to the action of a standard destructive dose of x-rays (30 skin units) the type of reaction resulting depends upon the previous treatment of the rabbit. (1) In normal rabbits a mild acute inflammation develops in the x-rayed area which leads at once to a perforating gangrene within an average of 15 days. (2) If rabbits are x-rayed and about 2 weeks later injected with horse serum for the first time, a mild acute inflammation appears which heals for a time; then a second, subacute inflammation sets in which leads to a perforating gangrene. The average time of the process from the first inflammation to gangrene is 32 days. (3) If rabbits are sensitized with horse serum and 10 days later are exposed locally to the standard dose of x-rays, the ensuing ear reaction is either similar to the second reaction described above, except that it may last up to 110 days, or the first inflammation leads to a healing which may be apparently permanent (340 + days). (4) If rabbits are first sensitized with horse serum, exposed locally to the standard dose of x-rays 10 days later, and 13 days after the x-ray treatment reinjected with horse serum, the reaction of the x-rayed area of the ears is in general similar to the second reaction described above (inflammation—healing—inflammation—gangrene). The average time of the whole process is about 42 days. On the basis of the general hypothesis that an anaphylactic reaction is initiated in the body when the specific antibody meets its antigen, and that both antibody and antigen are rendered more or less functionally inert by their interaction, the following inferences may be drawn from our experimental results. (1) The protection from the effects of a standard destructive dose of x-rays which a previous sensitization confers, is referable to the presence of anaphylactic antibodies in the x-rayed area. (2) This protection is largely due to the anaphylactic antibodies which are

  19. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  20. Increased γ-H2A.X Intensity in Response to Chronic Medium-Dose-Rate γ-Ray Irradiation

    PubMed Central

    Sugihara, Takashi; Murano, Hayato; Tanaka, Kimio

    2012-01-01

    Background The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. Methodology/Principal Findings We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G1 phase, although no significant difference was observed in G2/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G1 phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G1 phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Conclusions Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by

  1. Increased γ-H2A.X intensity in response to chronic medium-dose-rate γ-ray irradiation.

    PubMed

    Sugihara, Takashi; Murano, Hayato; Tanaka, Kimio

    2012-01-01

    The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G(1) phase, although no significant difference was observed in G(2)/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G(1) phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G(1) phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by HDR γ-ray irradiation.

  2. X-ray mask and method for making

    DOEpatents

    Morales, Alfredo M.

    2004-10-26

    The present invention describes a method for fabricating an x-ray mask tool which is a contact lithographic mask which can provide an x-ray exposure dose which is adjustable from point-to-point. The tool is useful in the preparation of LIGA plating molds made from PMMA, or similar materials. In particular the tool is useful for providing an ability to apply a graded, or "stepped" x-ray exposure dose across a photosensitive substrate. By controlling the x-ray radiation dose from point-to-point, it is possible to control the development process for removing exposed portions of the substrate; adjusting it such that each of these portions develops at a more or less uniformly rate regardless of feature size or feature density distribution.

  3. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques

    NASA Astrophysics Data System (ADS)

    Carpentieri, C.; Schwarz, C.; Ludwig, J.; Ashfaq, A.; Fiederle, M.

    2002-07-01

    High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within ±1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.

  4. Soft x-ray-controlled dose deposition in yeast cells: techniques, model, and biological assessment

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Batani, Dimitri; Conti, Aldo; Masini, Alessandra; Costato, Michele; Pozzi, Achille; Turcu, I. C. Edmond

    1996-12-01

    A procedure is presented to release soft x-rays onto yeast cell membrane allegedly damaging the resident enzymatic processes connected with fermentation. The damage is expected to be restricted to regulating fermentation processes without interference with respiration. By this technique fermentation is followed leading to CO2 production, and respiration resulting in global pressure measurements. A solid state pressure sensor system has been developed linked to a data acquisition system. Yeast cells cultures have been investigated at different concentrations and with different nutrients. A non-monotone response in CO2 production as a function of the delivered x-ray dose is observed.

  5. Investigation of x-ray spectra for iodinated contrast-enhanced dedicated breast CT

    PubMed Central

    Glick, Stephen J.; Makeev, Andrey

    2017-01-01

    Abstract. Screening for breast cancer with mammography has been very successful, resulting in part to a reduction of breast cancer mortality by approximately 39% since 1990. However, mammography still has limitations in performance, especially for women with dense breast tissue. Iodinated contrast-enhanced, dedicated breast CT (BCT) has been proposed to improve lesion analysis and the accuracy of diagnostic workup for patients suspected of having breast cancer. A mathematical analysis to explore the use of various x-ray filters for iodinated contrast-enhanced BCT is presented. To assess task-based performance, the ideal linear observer signal-to-noise ratio (SNR) is used as a figure-of-merit under the assumptions of a linear, shift-invariant imaging system. To estimate signal and noise propagation through the BCT detector, a parallel-cascade model was used. The lesion model was embedded into a structured background and included a realistic level of iodine uptake. SNR was computed for 84,000 different exposure settings by varying the kV setting, x-ray filter materials and thickness, breast size, and composition and radiation dose. It is shown that some x-ray filter material/thickness combinations can provide up to 75% improvement in the linear ideal observer SNR over a conventionally used x-ray filter for BCT. This improvement in SNR can be traded off for substantial reductions in mean glandular dose. PMID:28149923

  6. Repetitive flash x-ray generator operated at low-dose rates for a medical x-ray television system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Isobe, Hiroshi; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies for the repetitive flash x-ray generator operated at lowdose rates for a medical x-ray television system are described. This x-ray generator consisted of the following components: a high-voltage power supply, an energy storage condenser of lOOnF, a coaxial cable condenser with a capacity of l000pF, a repetitive impulse switching system, a turbo molecular pump, and an x-ray tube having a cold cathode. The condenser was charged from 40 to 70kV by a power supply, and the electric charges stored in the condenser were discharged repetitively by using a trigger electrode operated by an impulse switching system. The x-ray tube was of the triode-type which was connected to the turbo molecular pump and had a large discharge impedance in order to prevent the damped oscillations of the tube current and voltage. The maximum tube voltage was equivalent to the initial charged voltage, and the peak current was less than 70A. The durations were about 2ps, and the x-ray intensities were less than 1. OpC/kg at 0. 5m per pulse. The repetition frequency was less than 50Hz, and the effective focal spot size was equivalent to the anode diameter of 3. 0mm. For the x-ray television system used in conjunction with this repetitive pulsed x-ray generator, since the electromagnetic noise primarily caused by the high tube current was decreased, noise-free stroboscopic radiography performed by the television system could be realized.

  7. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.

    PubMed

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L

    2014-08-30

    The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Radiation dose response of N channel MOSFET submitted to filtered X-ray photon beam

    NASA Astrophysics Data System (ADS)

    Gonçalves Filho, Luiz C.; Monte, David S.; Barros, Fabio R.; Santos, Luiz A. P.

    2018-01-01

    MOSFET can operate as a radiation detector mainly in high-energy photon beams, which are normally used in cancer treatments. In general, such an electronic device can work as a dosimeter from threshold voltage shift measurements. The purpose of this article is to show a new way for measuring the dose-response of MOSFETs when they are under X-ray beams generated from 100kV potential range, which is normally used in diagnostic radiology. Basically, the method consists of measuring the MOSFET drain current as a function of the radiation dose. For this the type of device, it has to be biased with a high value resistor aiming to see a substantial change in the drain current after it has been irradiated with an amount of radiation dose. Two types of N channel device were used in the experiment: a signal transistor and a power transistor. The delivered dose to the device was varied and the electrical curves were plotted. Also, a sensitivity analysis of the power MOSFET response was made, by varying the tube potential of about 20%. The results show that both types of devices have responses very similar, the shift in the electrical curve is proportional to the radiation dose. Unlike the power MOSFET, the signal transistor does not provide a linear function between the dose rate and its drain current. We also have observed that the variation in the tube potential of the X-ray equipment produces a very similar dose-response.

  9. Use of EOS Low-Dose Biplanar X-Ray for Shunt Series in Children with Hydrocephalus: A Preliminary Study.

    PubMed

    Ben-Sira, Liat; Shiran, Shelly I; Pratt, Li-Tal; Precel, Ronit; Ovadia, Dror; Constantini, Shlomi; Roth, Jonathan

    2018-05-04

    Shunt series (SS) are a common diagnostic tool used to verify shunt integrity. SS include X-ray films of the skull, chest, and abdomen and often are performed either when a shunted patient presents with suspected shunt malfunction or as a screening test to identify shunt disconnections or dislodgment. EOS low-dose biplanar X-rays are associated with significantly reduced radiation doses compared with ordinary X-rays and are used for various indications. This is the first publication on the use of EOS as a SS technique. Over a period of 6 months, EOS were performed at our center for various orthopedic indications, mostly for scoliosis evaluation. Nine children (<20 years of age) had a ventriculoperitoneal shunt and served as the study group. We retrospectively reviewed shunt visibility and integrity in the EOS scans as well as regular SS or plain spinal X-rays. Three patients had bilateral shunts, and 8 had previous X-rays for comparison. In all patients, the shunt integrity was easily demonstrated on the EOS images. Two patients had an identified shunt disconnection confirmed on the EOS images. No shunt-related information was missed on the EOS compared with the other X-ray images. These preliminary results suggest that EOS may be used as an alternative technology to demonstrate shunt integrity instead of regular X-ray SS. Favorable shunt visibility without the need for multiple radiation exposures and image processing (such as stitching) results in a significantly shorter examination time and significant less radiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  11. Enhancement of X-ray dose absorption for medical applications

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Nahar, S.; Pradhan, A.; Barth, R.

    2013-05-01

    A promising technique for cancer treatment is radiation therapy with high-Z (HZ) nanomoities acting as radio-sensitizers attached to tumor cells and irradiated with X-rays. But the efficacy of radiosenstization is highly energy dependent. We study the physical effects in using platinum (Pt) as the radio-sensitizing agent, coupled with commonly employed broadband x-ray sources with mean energies around 100 keV, as opposed to MeV energies produced by clinical linear accelerators (LINAC) used in radiation therapy. Numerical calculations, in vitro, and in vivo studies of F98 rat glioma (brain cancer) demonstrate that irradiation from a medium energy X-ray (MEX) 160 kV source is far more effective than from a high energy x-ray (HEX) 6 MV LINAC. We define a parameter to quantify photoionization by an x-ray source, which thereby provides a measure of subsequent Auger decays. The platinum (Z = 78) results are also relevant to ongoing studies on x-ray interaction with gold (Z = 79) nanoparticles, widely studied as an HZ contrast agent. The present study should be of additional interest for a combined radiation plus chemotherapy treatment since Pt compounds such cis-Pt and carbo-Pt are commonly used in chemotherapy.

  12. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles

  13. Cost-effectiveness analysis of cochlear dose reduction by proton beam therapy for medulloblastoma in childhood.

    PubMed

    Hirano, Emi; Fuji, Hiroshi; Onoe, Tsuyoshi; Kumar, Vinay; Shirato, Hiroki; Kawabuchi, Koichi

    2014-03-01

    The aim of this study is to evaluate the cost-effectiveness of proton beam therapy with cochlear dose reduction compared with conventional X-ray radiotherapy for medulloblastoma in childhood. We developed a Markov model to describe health states of 6-year-old children with medulloblastoma after treatment with proton or X-ray radiotherapy. The risks of hearing loss were calculated on cochlear dose for each treatment. Three types of health-related quality of life (HRQOL) of EQ-5D, HUI3 and SF-6D were used for estimation of quality-adjusted life years (QALYs). The incremental cost-effectiveness ratio (ICER) for proton beam therapy compared with X-ray radiotherapy was calculated for each HRQOL. Sensitivity analyses were performed to model uncertainty in these parameters. The ICER for EQ-5D, HUI3 and SF-6D were $21 716/QALY, $11 773/QALY, and $20 150/QALY, respectively. One-way sensitivity analyses found that the results were sensitive to discount rate, the risk of hearing loss after proton therapy, and costs of proton irradiation. Cost-effectiveness acceptability curve analysis revealed a 99% probability of proton therapy being cost effective at a societal willingness-to-pay value. Proton beam therapy with cochlear dose reduction improves health outcomes at a cost that is within the acceptable cost-effectiveness range from the payer's standpoint.

  14. Primary DNA damage assessed with the comet assay and comparison to the absorbed dose of diagnostic X-rays in children.

    PubMed

    Milkovic, Durdica; Garaj-Vrhovac, Vera; Ranogajec-Komor, Mária; Miljanic, Saveta; Gajski, Goran; Knezevic, Zeljka; Beck, Natko

    2009-01-01

    The aim of this work is to assess DNA damage in peripheral blood lymphocytes of children prior to and following airway X-ray examinations of the chest using the alkaline comet assay and to compare data with the measured absorbed dose. Twenty children with pulmonary diseases, between the ages of 5 and 14 years, are assessed. Absorbed dose measurements are conducted for posterior-anterior projection on the forehead, thyroid gland, gonads, chest, and back. Doses are measured using thermoluminescent and radiophotoluminescent dosimetry systems. Differences between tail lengths, tail intensity, and tail moments as well as for the long-tailed nuclei before and after exposures are statistically significant and are dependent on the individual. The results demonstrate the usefulness of the comet assay as a measure of X-ray damage to lymphocytes in a clinical setting. Doses measured with both dosimeters show satisfactory agreement (0.01 mSv) and are suitable for dosimetric measurements in X-ray diagnostics.

  15. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  16. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators.

    PubMed

    Belley, Matthew D; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J; Chen, Benny J; Dewhirst, Mark W; Yoshizumi, Terry T

    2014-03-01

    Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Average doses in soft-tissue organs were found to vary by as much as 23%-32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.

  17. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    PubMed Central

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.

    2014-01-01

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigning a single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs. PMID:24593746

  18. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao

    2014-03-15

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application formore » tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.« less

  19. X-Ray Psoralen Activated Cancer Therapy (X-PACT)

    PubMed Central

    Oldham, Mark; Yoon, Paul; Fathi, Zak; Beyer, Wayne F.; Adamson, Justus; Liu, Leihua; Alcorta, David; Xia, Wenle; Osada, Takuya; Liu, Congxiao; Yang, Xiao Y.; Dodd, Rebecca D.; Herndon, James E.; Meng, Boyu; Kirsch, David G.; Lyerly, H. Kim; Dewhirst, Mark W.; Fecci, Peter; Walder, Harold; Spector, Neil L.

    2016-01-01

    This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of solid cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with current application to proliferative disease and extracorporeal photopheresis (ECP) of cutaneous T Cell Lymphoma. An immunogenic role for light-activated psoralen has been reported, contributing to long-term clinical responses. Psoralen therapies have to-date been limited to superficial or extracorporeal scenarios due to the requirement for psoralen activation by UVA light, which has limited penetration in tissue. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and re-radiate (phosphoresce) at UV wavelengths. The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed to X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry in combination with complimentary assays, and the in-vivo mouse study. In an in-vitro study, we show that X-PACT induces significant tumor cell apoptosis and cytotoxicity, unlike psoralen or phosphor alone (p<0.0001). We also show that apoptosis increases as doses of phosphor, psoralen, or radiation increase. Finally, in an in-vivo pilot study of BALBc mice with syngeneic 4T1 tumors, we show that the rate of tumor growth is slower with X-PACT than with saline or AMT + X-ray (p<0.0001). Overall these studies demonstrate a potential therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. In summary, X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation are delivered to a specific tumor site to generate UVA light which

  20. Sinogram-based adaptive iterative reconstruction for sparse view x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Trinca, D.; Zhong, Y.; Wang, Y.-Z.; Mamyrbayev, T.; Libin, E.

    2016-10-01

    With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this paper, we propose an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. The proposed algorithm is thus provided for free to the scientific community, for regular use, and for possible further optimization.

  1. The effect of dose enhancement near metal interfaces on synthetic diamond based X-ray dosimeters

    NASA Astrophysics Data System (ADS)

    Alamoudi, D.; Lohstroh, A.; Albarakaty, H.

    2017-11-01

    This study investigates the effects of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond detectors based X-ray dosimeters as a function of bias voltages. Monte Carlo (MC) simulations with the BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigations. The MC simulation results show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystals (SC) and one polycrystalline (PC) synthetic diamond samples were fabricated into detectors with carbon based electrodes by boron and carbon ion implantation. Subsequently; the samples were each mounted inside a tissue equivalent encapsulation to minimize unintended fluence perturbation. Dose enhancement was generated by placing copper, lead or gold near the active volume of the detectors using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond bulk as expected. The variation in the photocurrent measurement depends on the type of diamond samples, their electrodes' fabrication and the applied bias voltages indicating that the dose enhancement near the detector may modify their electronic performance.

  2. Development, beam characterization and chromosomal effectiveness of X-rays of RBC characteristic X-ray generator.

    PubMed

    Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Takatsuji, Toshihiro; Ejima, Yosuke; Saigusa, Shin; Tachibana, Akira; Sasaki, Masao S

    2006-06-01

    A characteristic hot-filament type X-ray generator was constructed for irradiation of cultured cells. The source provides copper K, iron K, chromium K, molybdenum L, aluminium K and carbon K shell characteristic X-rays. When cultured mouse m5S cells were irradiated and frequencies of dicentrics were fitted to a linear-quadratic model, Y = alphaD + betaD2, the chromosomal effectiveness was not a simple function of photon energy. The alpha-terms increased with the decrease of the photon energy and then decreased with further decrease of the energy with an inflection point at around 10 keV. The beta-terms stayed constant for the photon energy down to 10 keV and then increased with further decrease of energy. Below 10 keV, the relative biological effectiveness (RBE) at low doses was proportional to the photon energy, which contrasted to that for high energy X- or gamma-rays where the RBE was inversely related with the photon energy. The reversion of the energy dependency occurred at around 1-2 Gy, where the RBE of soft X-rays was insensitive to X-ray energy. The reversion of energy-RBE relation at a moderate dose may shed light on the controversy on energy dependency of RBE of ultrasoft X-rays in cell survival experiments.

  3. Stacked competitive networks for noise reduction in low-dose CT

    PubMed Central

    Du, Wenchao; Chen, Hu; Wu, Zhihong; Sun, Huaiqiang; Liao, Peixi

    2017-01-01

    Since absorption of X-ray radiation has the possibility of inducing cancerous, genetic and other diseases to patients, researches usually attempt to reduce the radiation dose. However, reduction of the radiation dose associated with CT scans will unavoidably increase the severity of noise and artifacts, which can seriously affect diagnostic confidence. Due to the outstanding performance of deep neural networks in image processing, in this paper, we proposed a Stacked Competitive Network (SCN) approach to noise reduction, which stacks several successive Competitive Blocks (CB). The carefully handcrafted design of the competitive blocks was inspired by the idea of multi-scale processing and improvement the network’s capacity. Qualitative and quantitative evaluations demonstrate the competitive performance of the proposed method in noise suppression, structural preservation, and lesion detection. PMID:29267360

  4. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data

    PubMed Central

    Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.; Hantke, Max; Yoon, Chun Hong; White, Thomas A.; Chapman, Henry

    2014-01-01

    The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License. PMID:24904246

  5. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    PubMed

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Digital radiography can reduce scoliosis x-ray exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kling, T.F. Jr.; Cohen, M.J.; Lindseth, R.E.

    1990-09-01

    Digital radiology is a new computerized system of acquiring x-rays in a digital (electronic) format. It possesses a greatly expanded dose response curve that allows a very broad range of x-ray dose to produce a diagnostic image. Potential advantages include significantly reduced radiation exposure without loss of image quality, acquisition of images of constant density irrespective of under or over exposure, and reduced repeat rates for unsatisfactory films. The authors prospectively studied 30 adolescents with scoliosis who had both conventional (full dose) and digital (full, one-half, or one-third dose) x-rays. They found digital made AP and lateral image with allmore » anatomic areas clearly depicted at full and one-half dose. Digital laterals were better at full dose and equal to conventional at one-half dose. Cobb angles were easily measured on all one-third dose AP and on 8 of 10 one-third dose digital laterals. Digital clearly depicted the Risser sign at one-half and one-third dose and the repeat rate was nil in this study, indicating digital compensates well for exposure errors. The study indicates that digital does allow radiation dose to be reduced by at least one-half in scoliosis patients and that it does have improved image quality with good contrast over a wide range of x-ray exposure.« less

  7. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    PubMed Central

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745

  8. Feasibility study for application of the compressed-sensing framework to interior computed tomography (ICT) for low-dose, high-accurate dental x-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, U. K.; Cho, H. M.; Cho, H. S.; Park, Y. O.; Park, C. K.; Lim, H. W.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Woo, T. H.; Choi, S. I.

    2016-02-01

    In this paper, we propose a new/next-generation type of CT examinations, the so-called Interior Computed Tomography (ICT), which may presumably lead to dose reduction to the patient outside the target region-of-interest (ROI), in dental x-ray imaging. Here an x-ray beam from each projection position covers only a relatively small ROI containing a target of diagnosis from the examined structure, leading to imaging benefits such as decreasing scatters and system cost as well as reducing imaging dose. We considered the compressed-sensing (CS) framework, rather than common filtered-backprojection (FBP)-based algorithms, for more accurate ICT reconstruction. We implemented a CS-based ICT algorithm and performed a systematic simulation to investigate the imaging characteristics. Simulation conditions of two ROI ratios of 0.28 and 0.14 between the target and the whole phantom sizes and four projection numbers of 360, 180, 90, and 45 were tested. We successfully reconstructed ICT images of substantially high image quality by using the CS framework even with few-view projection data, still preserving sharp edges in the images.

  9. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  10. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  11. Handbook Of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  12. Investigation of the practical aspects of an additional 0.1 mm copper x-ray spectral filter for cine acquisition mode imaging in a clinical care setting.

    PubMed

    Fetterly, Kenneth A

    2010-11-01

    Minimizing the x-ray radiation dose is an important aspect of patient safety during interventional fluoroscopy procedures. This work investigates the practical aspects of an additional 0.1 mm Cu x-ray beam spectral filter applied to cine acquisition mode imaging on patient dose and image quality. Measurements were acquired using clinical interventional imaging systems. Acquisition images of Solid Water phantoms (15-40 cm) were acquired using x-ray beams with the x-ray tube inherent filtration and using an additional 0.1 mm Cu x-ray beam spectral filter. The skin entrance air kerma (dose) rate was measured and the signal difference to noise ratio (SDNR) of an iodine target embedded into the phantom was calculated to assess image quality. X-ray beam parameters were recorded and analyzed and a primary x-ray beam simulation was performed to assess additional x-ray tube burden attributable to the Cu filter. For all phantom thicknesses, the 0.1 mm Cu filter resulted in a 40% reduction in the entrance air kerma rate to the phantoms and a 9% reduction in the SDNR of the iodine phantom. The expected additional tube load required by the 0.1 mm Cu filter ranged from 11% for a 120 kVp x-ray beam to 43% for a 60 kVp beam. For these clinical systems, use of the 0.1 mm Cu filter resulted in a favorable compromise between reduced skin dose rate and image quality and increased x-ray tube burden.

  13. Changes in the electrical properties of pure and doped polymers under the influence of small doses of X-rays

    NASA Astrophysics Data System (ADS)

    Mahmoud, S. A.; Madi, N. K.; Kassem, M. E.; El-Khatib, A.

    A study has been made of the temperature dependence of the d.c. conductivity of pure and borated low density polyethylene LDPE (4% and 8% borax). The above calculations were carried out before and after X-ray irradiation. The irradiation dose was varied from 0 to 1000 rad. The d.c. electrical conductivity of Polyvinyl chloride (PVC) and perspex was measured as a function of temperature ranging from 20°C to 100°C. These samples were irradiated with X-rays of dose 200 rad. The variation of the d.c. conductivity of the treated samples versus temperature was investigated. The results reveal that the d.c. conductivity of LDPE is highly affected by radiation and/or dopant. In addition, the sensitivity of the explored polymers to X-ray irradiation is strongly dependent on its chemical nature.

  14. Assessing the dose values received by patients during conventional radiography X-ray examinations and the technical condition of the equipment used for this purpose.

    PubMed

    Bekas, Marcin; Pachocki, Krzysztof A; Waśniewska, Elżbieta; Bogucka, Dagmara; Magiera, Andrzej

    2014-01-01

    X-ray examination is associated with patient exposure to ionizing radiation. Dose values depend on the type of medical procedure used, the X-ray unit technical condition and exposure conditions selected. The aim of this study was to determine the dose value received by patients during certain conventional radiography X-ray examinations and to assess the technical condition of medical equipment used for this purpose. The study covered the total number of 118 conventional diagnostic X-ray units located in the Masovian Voivodeship. The methodology used to assess the conventional diagnostic X-ray unit technical condition and the measurement of the radiation dose rate received by patients are based on test procedures developed by the Department of Radiation Protection and Radiobiology of the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland) accredited for compliance with PN-EN 17025 standard by the Polish Centre for Accreditation. It was found that 84.7% of X-ray units fully meet the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 15.3% of the units do not meet some of them. The broadest dose value range was recorded for adult patients. Particularly, during lateral (LATl) lumbar spine radiography the recorded entrance surface dose (ESD) values ranged from 283.5 to 7827 µGy (mean: 2183.3 µGy). It is absolutely necessary to constantly monitor the technical condition of all X-ray units, because it affects population exposure to ionizing radiation. Furthermore, it is essential to raise radiographers' awareness of the effects that ionizing radiation exposure can have on the human body.

  15. Synthesis and x-ray characterization of cobalt phosphide (Co₂P) nanorods for the oxygen reduction reaction

    DOE PAGES

    Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; ...

    2015-07-14

    Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co₂P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable thanmore » conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.« less

  16. Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework

    PubMed Central

    Dunkerley, David A. P.; Tomkowiak, Michael T.; Slagowski, Jordan M.; McCabe, Bradley P.; Funk, Tobias; Speidel, Michael A.

    2015-01-01

    Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8–6.4% (18.6–31.5 cm acrylic, 100 kV), versus 2.1–4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems. PMID:26113765

  17. Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework.

    PubMed

    Dunkerley, David A P; Tomkowiak, Michael T; Slagowski, Jordan M; McCabe, Bradley P; Funk, Tobias; Speidel, Michael A

    2015-02-21

    Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.

  18. CT-guided brachytherapy of prostate cancer: reduction of effective dose from X-ray examination

    NASA Astrophysics Data System (ADS)

    Sanin, Dmitriy B.; Biryukov, Vitaliy A.; Rusetskiy, Sergey S.; Sviridov, Pavel V.; Volodina, Tatiana V.

    2014-03-01

    Computed tomography (CT) is one of the most effective and informative diagnostic method. Though the number of CT scans among all radiographic procedures in the USA and European countries is 11% and 4% respectively, CT makes the highest contribution to the collective effective dose from all radiographic procedures, it is 67% in the USA and 40% in European countries [1-5]. Therefore it is necessary to understand the significance of dose value from CT imaging to a patient . Though CT dose from multiple scans and potential risk is of great concern in pediatric patients, this applies to adults as well. In this connection it is very important to develop optimal approaches to dose reduction and optimization of CT examination. International Commission on Radiological Protection (ICRP) in its publications recommends radiologists to be aware that often CT image quality is higher than it is necessary for diagnostic confidence[6], and there is a potential to reduce the dose which patient gets from CT examination [7]. In recent years many procedures, such as minimally invasive surgery, biopsy, brachytherapy and different types of ablation are carried out under guidance of computed tomography [6;7], and during a procedures multiple CT scans focusing on a specific anatomic region are performed. At the Clinics of MRRC different types of treatment for patients with prostate cancer are used, incuding conformal CT-guided brachytherapy, implantation of microsources of I into the gland under guidance of spiral CT [8]. So, the purpose of the study is to choose optimal method to reduce radiation dose from CT during CT-guided prostate brachytherapy and to obtain the image of desired quality.

  19. A combination of spatial and recursive temporal filtering for noise reduction when using region of interest (ROI) fluoroscopy for patient dose reduction in image guided vascular interventions with significant anatomical motion

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.

  20. Paediatric dose reduction with the introduction of digital fluorography.

    PubMed

    Mooney, R B; McKinstry, J

    2001-01-01

    Fluoroscopy guided examinations in a paediatric X ray department were initially carried out on a unit that used a conventional screen-film combination for spot-films. A new fluoroscopy unit was installed with the facilities of digital fluorography and last image hold. Comparison of equipment performance showed that the dose per image for screen-film and digital fluorography was 3 microGy and 0.4 microGy, respectively. Although the screen-film had superior image quality, the department's radiologist confirmed that digital fluorography provided a diagnostic image. Patient dose measurements showed that introduction of the new unit caused doses to fall by an average of 70%, although fluoroscopy time had not changed significantly. The new unit produced 40% less air kerma during fluoroscopy. The remaining 30% reduction in dose was due to the introduction of digital fluorography and last image hold facilities. It is concluded that the use of digital fluorography can be an effective way of reducing paediatric dose.

  1. SU-F-18C-13: Low-Dose X-Ray CT Reconstruction Using a Hybrid First-Order Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L; Lin, W; Jin, M

    2014-06-15

    Purpose: To develop a novel reconstruction method for X-ray CT that can lead to accurate reconstruction at significantly reduced dose levels combining low X-ray incident intensity and few views of projection data. Methods: The noise nature of the projection data at low X-ray incident intensity was modeled and accounted by the weighted least-squares (WLS) criterion. The total variation (TV) penalty was used to mitigate artifacts caused by few views of data. The first order primal-dual (FOPD) algorithm was used to minimize TV in image domain, which avoided the difficulty of the non-smooth objective function. The TV penalized WLS reconstruction wasmore » achieved by alternated FOPD TV minimization and projection onto convex sets (POCS) for data fidelity constraints. The proposed FOPD-POCS method was evaluated using the FORBILD jaw phantom and the real cadaver head CT data. Results: The quantitative measures, root mean square error (RMSE) and contrast-to-noise ratio (CNR), demonstrate the superior denoising capability of WLS over LS-based TV iterative reconstruction. The improvement of RMSE (WLS vs. LS) is 15%∼21% and that of CNR is 17%∼72% when the incident counts per ray are ranged from 1×10{sup 5} to 1×10{sup 3}. In addition, the TV regularization can accurately reconstruct images from about 50 views of the jaw phantom. The FOPD-POCS reconstruction reveals more structural details and suffers fewer artifacts in both the phantom and real head images. The FOPD-POCS method also shows fast convergence at low X-ray incident intensity. Conclusion: The new hybrid FOPD-POCS method, based on TV penalized WLS, yields excellent image quality when the incident X-ray intensity is low and the projection views are limited. The reconstruction is computationally efficient since the FOPD minimization of TV is applied only in the image domain. The characteristics of FOPD-POCS can be exploited to significantly reduce radiation dose of X-ray CT without compromising accuracy for

  2. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers.

    PubMed

    Rau, A W; Bakueva, L; Rowlands, J A

    2005-10-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously, (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/ microm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S0) of the a-Se layers was 63 +/- 2 nC cm(-2) cGy(-1). It was found that S decreases to 30% of S0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25 +/- 0.1 x 10(22) ehp m(-3) s(-1) and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport

  3. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-10-15

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting inmore » a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/{mu}m, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S{sub 0}) of the a-Se layers was 63{+-}2 nC cm{sup -2} cGy{sup -1}. It was found that S decreases to 30% of S{sub 0} after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25{+-}0.1x10{sup 22} ehp m{sup -3} s{sup -1} and, to a first approximation, independent of the ghosting dose. However

  4. How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

    NASA Astrophysics Data System (ADS)

    Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.

    2015-03-01

    Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.

  5. Effect of X-ray flux on polytetrafluoroethylene in X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    The effect of the X-ray flux in X-ray photoelectron spectroscopy (STAT) on the constitution of the polytetrafluoroethylene (PTFE) surface has been examined. The radiation dose rate for our specimen was about 10 to the 7th rad/s. The structure, magnitude and binding energy of the C(1s) and F(1s) features of the XPS spectrum and the mass spectrum of gaseous species evolved during irradiation are observed. The strong time dependence of these signals over a period of several hours indicated that the surface constitution of PTFE is greatly affected by this level of radiation dose. The results are consistent with the development of a heavily cross-linked or branched structure in the PTFE surface region and the evolution of short chain fragments into the gas phase.

  6. Radiation Exposure in X-Ray and CT Examinations

    MedlinePlus

    ... disease. See the X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety page for more information. top of page ... and Radiation Safety X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Videos related to Radiation Dose in X- ...

  7. Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: a review

    PubMed Central

    Zhang, Hao; Zeng, Dong; Zhang, Hua; Wang, Jing; Liang, Zhengrong

    2017-01-01

    Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the clinic because of growing concerns over excessive radiation exposure. However, the CT images reconstructed by the conventional filtered back-projection (FBP) method from low-dose acquisitions may be severely degraded with noise and streak artifacts due to excessive X-ray quantum noise, or with view-aliasing artifacts due to insufficient angular sampling. In 2005, the nonlocal means (NLM) algorithm was introduced as a non-iterative edge-preserving filter to denoise natural images corrupted by additive Gaussian noise, and showed superior performance. It has since been adapted and applied to many other image types and various inverse problems. This paper specifically reviews the applications of the NLM algorithm in LDCT image processing and reconstruction, and explicitly demonstrates its improving effects on the reconstructed CT image quality from low-dose acquisitions. The effectiveness of these applications on LDCT and their relative performance are described in detail. PMID:28303644

  8. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays

    PubMed Central

    Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics. PMID:26642305

  9. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    NASA Astrophysics Data System (ADS)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  10. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    PubMed Central

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel

    2017-01-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching. PMID:29333113

  11. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  12. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme

    PubMed Central

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru

    2016-01-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  14. TU-D-209-06: Head and Neck Tissue Dose From X-Ray Scatter to Physicians Performing Cardiovascular Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetterly, K; Schueler, B; Grams, M

    Purpose: The purpose of this work was to characterize the spatial distribution of scatter radiation to the head and neck of a physician performing an x-ray interventional procedure and assess brain, eye lens, and carotid artery dose. Methods: Radiographic x-ray beams were tuned to match the peak energy (56 to 106 keV) and HVL (3.5 to 6.5 mm Al) of x-ray scatter originating from a patient during a fluoroscopic procedure. The radiographic beam was directed upon a Rando phantom from an inferior-left location to mimic a typical patient-operator geometric relationship. A lead-equivalent protective garment was secured to the phantom. Directmore » exposure Gafchromic film (XRQA2) was placed between the transverse plane layers of the head and neck region of the phantom and exposed with 4 scatter-equivalent radiographic beams. A 3×3 cm{sup 2} film placed at the left collar of the phantom was used to monitor incident dose in the position of a radiation monitoring badge. The films were converted to 2D dose distribution maps using FilmQA Pro software and an Epson 11000-XL scanner. The 2D dose distributions maps were normalized by the left collar dose and the percent of left collar dose (%LCD) was calculated for select tissues. Results: The dose maps had high dynamic range (10{sub 4}) and spatial detail. Considering all transverse planes and 4 scatter beam qualities, the median %LCD values were: whole brain 8.5%, left brain 13%, right brain 5.4%, left eye lens 67%, right eye lens 25%, left carotid artery 72%, and right carotid artery 28%. Conclusion: Scatter radiation dose to an operator can be simulated using a tuned radiographic beam and used to expose a phantom and Gafchromic film, thereby creating detailed 2D dose distribution maps. This work facilitates individualized estimation of dose to select head and neck tissues based on an operator’s radiation monitoring badge value.« less

  15. SU-G-IeP3-02: Characteristics of In-Vivo MOSFET Dosimeters for Diagnostic X-Ray Low-Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S; Ali, S; Harper, K

    Purpose: To correct in-vivo metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters dependence on X-ray energy, dose and dose rate, and temperature in order to measure doses or exposures on several anatomic points of interest undergoing some routine radiographs. Methods: A mobile MOSFET system (BEST Medical) was carefully calibrated with X-ray at kVp of 70, 80, 100, 120, and 138 kVp, phantom temperatures at 0, 21, and 43 oC, and exposure range from 0.01 to 10 R confirmed with Raysafe and RadCal dosimeters. The MOSFETS were placed on the midline bladder or uterus, left pelvic iliac artery, left abdominal above iliac crest, abdominalmore » midline anterior at inferior margin of stomach, and left pectoral of a large and a small body-size cadavers undergoing AP/PA chest and lumber spine radiographs using manual and automatic exposure control (AEC) with and without lead shielding. MOSTFETs and TLD chips were also placed on the stomach, sigmoid, pubic symphysis, left and right pelvic walls of another cadaver for AP pelvic manual or AEC radiography prior to and after a left hip metal implant. Results: Individual MOSFET detectors had various low-dose limits in ranged from 0.03 to 0.08 R, nonlinear response to X-ray energy, and significant temperature effect of 15%. By accumulating 10 manual exposures and 20 AEC exposures, we achieved dose measured accuracy of 6%. There were up to 8 fold increases for AEC exposure of spine and chest X-ray procedure from no shielding to with shielding. For pelvic radiography, exposure to public symphysis was the highest even higher than that of the skin. After hip implant, AEC pelvic radiograph increase exposure by 30 to 200% consistent with results of TLDs. Conclusion: Dependence of energy, temperature and dose limit were accurately corrected. We have found significant exposure for those clinical pr°ocedures and the study provided evidences for developing new clinical procedures.« less

  16. Fluorescent scanning x-ray tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  17. Study on the quality assurance of diagnostic X-ray machines and assessment of the absorbed dose to patients

    NASA Astrophysics Data System (ADS)

    Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.

    2012-09-01

    Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.

  18. Bone X-Ray (Radiography)

    MedlinePlus Videos and Cool Tools

    ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  19. Iterative reconstruction for x-ray computed tomography using prior-image induced nonlocal regularization.

    PubMed

    Zhang, Hua; Huang, Jing; Ma, Jianhua; Bian, Zhaoying; Feng, Qianjin; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2014-09-01

    Repeated X-ray computed tomography (CT) scans are often required in several specific applications such as perfusion imaging, image-guided biopsy needle, image-guided intervention, and radiotherapy with noticeable benefits. However, the associated cumulative radiation dose significantly increases as comparison with that used in the conventional CT scan, which has raised major concerns in patients. In this study, to realize radiation dose reduction by reducing the X-ray tube current and exposure time (mAs) in repeated CT scans, we propose a prior-image induced nonlocal (PINL) regularization for statistical iterative reconstruction via the penalized weighted least-squares (PWLS) criteria, which we refer to as "PWLS-PINL". Specifically, the PINL regularization utilizes the redundant information in the prior image and the weighted least-squares term considers a data-dependent variance estimation, aiming to improve current low-dose image quality. Subsequently, a modified iterative successive overrelaxation algorithm is adopted to optimize the associative objective function. Experimental results on both phantom and patient data show that the present PWLS-PINL method can achieve promising gains over the other existing methods in terms of the noise reduction, low-contrast object detection, and edge detail preservation.

  20. Iterative Reconstruction for X-Ray Computed Tomography using Prior-Image Induced Nonlocal Regularization

    PubMed Central

    Ma, Jianhua; Bian, Zhaoying; Feng, Qianjin; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2014-01-01

    Repeated x-ray computed tomography (CT) scans are often required in several specific applications such as perfusion imaging, image-guided biopsy needle, image-guided intervention, and radiotherapy with noticeable benefits. However, the associated cumulative radiation dose significantly increases as comparison with that used in the conventional CT scan, which has raised major concerns in patients. In this study, to realize radiation dose reduction by reducing the x-ray tube current and exposure time (mAs) in repeated CT scans, we propose a prior-image induced nonlocal (PINL) regularization for statistical iterative reconstruction via the penalized weighted least-squares (PWLS) criteria, which we refer to as “PWLS-PINL”. Specifically, the PINL regularization utilizes the redundant information in the prior image and the weighted least-squares term considers a data-dependent variance estimation, aiming to improve current low-dose image quality. Subsequently, a modified iterative successive over-relaxation algorithm is adopted to optimize the associative objective function. Experimental results on both phantom and patient data show that the present PWLS-PINL method can achieve promising gains over the other existing methods in terms of the noise reduction, low-contrast object detection and edge detail preservation. PMID:24235272

  1. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography.

    PubMed

    Dietrich, Tobias J; Pfirrmann, Christian W A; Schwab, Alexander; Pankalla, Katja; Buck, Florian M

    2013-07-01

    To compare the radiation dose, workflow, patient comfort, and financial break-even of a standard digital radiography and a biplanar low-dose X-ray system. A standard digital radiography system (Ysio, Siemens Healthcare, Erlangen, Germany) was compared with a biplanar X-ray unit (EOS, EOS imaging, Paris, France) consisting of two X-ray tubes and slot-scanning detectors, arranged at an angle of 90° allowing simultaneous vertical biplanar linear scanning in the upright patient position. We compared data of standing full-length lower limb radiographs and whole spine radiographs of both X-ray systems. Dose-area product was significantly lower for radiographs of the biplanar X-ray system than for the standard digital radiography system (e.g. whole spine radiographs; standard digital radiography system: 392.2 ± 231.7 cGy*cm(2) versus biplanar X-ray system: 158.4 ± 103.8 cGy*cm(2)). The mean examination time was significantly shorter for biplanar radiographs compared with standard digital radiographs (e.g. whole spine radiographs: 449 s vs 248 s). Patients' comfort regarding noise was significantly higher for the standard digital radiography system. The financial break-even point was 2,602 radiographs/year for the standard digital radiography system compared with 4,077 radiographs/year for the biplanar X-ray unit. The biplanar X-ray unit reduces radiation exposure and increases subjective noise exposure to patients. The biplanar X-ray unit demands a higher number of examinations per year for the financial break-even point, despite the lower labour cost per examination due to the shorter examination time.

  2. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  3. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    PubMed

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  4. Development of cable fed flash X-ray (FXR) system

    NASA Astrophysics Data System (ADS)

    Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana

    2017-08-01

    Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.

  5. Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques

    NASA Astrophysics Data System (ADS)

    Golosio, Bruno; Schoonjans, Tom; Brunetti, Antonio; Oliva, Piernicola; Masala, Giovanni Luca

    2014-03-01

    The simulation of X-ray imaging experiments is often performed using deterministic codes, which can be relatively fast and easy to use. However, such codes are generally not suitable for the simulation of even slightly more complex experimental conditions, involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions, or more complex geometries, particularly for experiments that combine spatial resolution with spectral information. In such cases, simulations are often performed using codes based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction position of an X-ray photon and the state of the photon after an interaction are obtained simply according to the theoretical probability distributions. This approach may be quite inefficient because the final channels of interest may include only a limited region of space or photons produced by a rare interaction, e.g., fluorescent emission from elements with very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has been solved by combining the Monte Carlo method with variance reduction techniques, which can reduce the computation time by several orders of magnitude. In this work, we present a C++ code for the general simulation of X-ray imaging and spectroscopy experiments, based on the application of the Monte Carlo method in combination with variance reduction techniques, with a description of sample geometry based on quadric surfaces. We describe the benefits of the object-oriented approach in terms of code maintenance, the flexibility of the program for the simulation of different experimental conditions and the possibility of easily adding new modules. Sample applications in the fields of X-ray imaging and X-ray spectroscopy are discussed. Catalogue identifier: AERO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

  6. High Atomic Number Contrast Media Offer Potential for Radiation Dose Reduction in Contrast-Enhanced Computed Tomography.

    PubMed

    Roessler, Ann-Christin; Hupfer, Martin; Kolditz, Daniel; Jost, Gregor; Pietsch, Hubertus; Kalender, Willi A

    2016-04-01

    Spectral optimization of x-ray computed tomography (CT) has led to substantial radiation dose reduction in contrast-enhanced CT studies using standard iodinated contrast media. The purpose of this study was to analyze the potential for further dose reduction using high-atomic-number elements such as hafnium and tungsten. As in previous studies, spectra were determined for which the patient dose necessary to provide a given contrast-to-noise ratio (CNR) is minimized. We used 2 different quasi-anthropomorphic phantoms representing the liver cross-section of a normal adult and an obese adult patient with the lateral widths of 360 and 460 mm and anterior-posterior heights of 200 and 300 mm, respectively. We simulated and measured on 2 different scanners with x-ray spectra from 80 to 140 kV and from 70 to 150 kV, respectively. We determined the contrast for iodine-, hafnium-, and tungsten-based contrast media, the noise, and 3-dimensional dose distributions at all available tube voltages by measurements and by simulations. The dose-weighted CNR was determined as optimization parameter. Simulations and measurements were in good agreement regarding their dependence on energy for all parameters investigated. Hafnium provided the best performance for normal and for obese patient phantoms, indicating a dose reduction potential of 30% for normal and 50% for obese patients at 120 kV compared with iodine; this advantage increased further with higher kV values. Dose-weighted CNR values for tungsten were always slightly below the hafnium results. Iodine proved to be the superior choice at voltage values of 80 kV and below. Hafnium and tungsten both seem to be candidates for contrast-medium-enhanced CT of normal and obese adult patients with strongly reduced radiation dose at unimpaired image quality. Computed tomography examinations of obese patients will decrease in dose for higher kV values.

  7. Effect of common building materials in narrow shaped X-ray fields transmission

    NASA Astrophysics Data System (ADS)

    Vlachos, I.; Tsantilas, X.; Fountos, G.; Delis, H.; Kandarakis, I.; Panayiotakis, G.

    2015-09-01

    Diagnostic and interventional radiology, are an essential part of present day medical practice. Advances in X-ray imaging technology, together with developments in digital imaging have had a significant impact on the practice of radiology. This includes improvement in image quality, reduction in dose and a broader range of available applications resulting to better patient diagnosis and treatment. X-rays have the potential for damaging healthy cells and tissues, therefore all medical procedures employing X-ray equipment must be carefully managed. In all facilities and for all equipment types, procedures must be in place in order to ensure that exposures to patients, staff and the public are kept as low as reasonably achievable. Commonly used construction materials such as, ceramic tiles and plasterboards can provide a certain degree of protection against X-radiation. In this study, the secondary radiation transmission through common building materials is investigated, in the case of narrow shaped X-ray fields. Double plasterboard and double reinforced in thickness ceramic tile provided better radiation protection results.

  8. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  9. X-ray shielding behaviour of kaolin derived mullite-barites ceramic

    NASA Astrophysics Data System (ADS)

    Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.

    2018-03-01

    Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.

  10. X-ray-induced changes in growth of Mozambique tilapia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, B.B.; Basu, M.

    1995-01-01

    Early fry (30 d postfertilization) and 7-8-week-old Mozambique tilapias (Tilapia mossambica) were exposed to X rays in dosages of 50, 100, 200, 300, 400 or 500 roentgens and reared in outdoor culture tanks between May 1981 and October 1988. Fish of either sex that were irradiated as fry grew faster than controls at all test X-ray doses. Among fish irradiated at 7-8 weeks, males grew significantly faster, but females grew significantly slower, than controls at all test doses. X-ray-induced changes in growth were dose-dependent: growth rates of fry (both sexes) and of juvenile males rose relative to those of controlsmore » with increased radiation dose. The growth increase per unit of radiation dose was higher for fry than for older juveniles. The length-weight regression was steeper for irradiated males than for controls. The average weights of F{sub 1} offspring of irradiated fish were greatly reduced as compared with controls, which suggests the transfer of the detrimental effects of X rays from irradiated parents to their offspring. 39 refs., 3 figs., 3 tabs.« less

  11. Effects of X-ray irradiation on the microbial growth and quality of flue-cured tobacco during aging

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Xu, Z. C.; Fan, J. L.; Wang, Y.; Tian, Z. J.; Chen, Y. T.

    2015-06-01

    X-ray irradiation was evaluated for improving microbial safety and the quality of flue-cured tobacco during aging. Tobacco samples were irradiated at doses of 0, 1, 2, 3 and 5 kGy and stored for 12 months under normal storage conditions or in a high-humidity (RH>70%) room. Microbiological data indicated that the population of total aerobic bacteria was significantly decreased with increasing irradiation doses. In particular, a dose of 2 kGy was effective for the decontamination of fungi from the tested samples, with a 0.93 log CFU/g reduction for bacteria. The control and 1 kGy X-ray treated tobacco samples were became rotted and moldy after the 12th month, whereas those treated with 2, 3 and 5 kGy had no detectable mold during 12 months of storage at high humidity. Chemical measurements showed that irradiation up to 3 kGy did not affect the total nitrogen, nicotine, reducing and total sugars, ratio of total nitrogen to nicotine and sugar-to-nicotine ratio. Furthermore, sensory evaluation results also showed that X-ray irradiation did not affect sensory scores with irradiation at a dose <3 kGy. Based on these results, X-ray irradiation dose in the range of 2-3 kGy is recommended for the decontamination of fungi from flue-cured tobacco.

  12. A framework for organ dose estimation in x-ray angiography and interventional radiology based on dose-related data in DICOM structured reports

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Bujila, Robert; Fransson, Annette; Andreo, Pedro; Poludniowski, Gavin

    2016-04-01

    Although interventional x-ray angiography (XA) procedures involve relatively high radiation doses that can lead to deterministic tissue reactions in addition to stochastic effects, convenient and accurate estimation of absorbed organ doses has traditionally been out of reach. This has mainly been due to the absence of practical means to access dose-related data that describe the physical context of the numerous exposures during an XA procedure. The present work provides a comprehensive and general framework for the determination of absorbed organ dose, based on non-proprietary access to dose-related data by utilizing widely available DICOM radiation dose structured reports. The framework comprises a straightforward calculation workflow to determine the incident kerma and reconstruction of the geometrical relation between the projected x-ray beam and the patient’s anatomy. The latter is difficult in practice, as the position of the patient on the table top is unknown. A novel patient-specific approach for reconstruction of the patient position on the table is presented. The proposed approach was evaluated for 150 patients by comparing the estimated position of the primary irradiated organs (the target organs) with their position in clinical DICOM images. The approach is shown to locate the target organ position with a mean (max) deviation of 1.3 (4.3), 1.8 (3.6) and 1.4 (2.9) cm for neurovascular, adult and paediatric cardiovascular procedures, respectively. To illustrate the utility of the framework for systematic and automated organ dose estimation in routine clinical practice, a prototype implementation of the framework with Monte Carlo simulations is included.

  13. Dose-dependent X-ray measurements using a 64×64 hybrid GaAs pixel detector with photon counting

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Campbell, M.; Goeppert, R.; Ludwig, J.; Mikulec, B.; Rogalla, M.; Runge, K.; Soeldner-Rembold, A.; Smith, K. M.; Snoeys, W.; Watt, J.

    2001-03-01

    New developments in medical imaging head towards semiconductor detectors flip-chip bonded to CMOS readout chips. In this work, detectors fabricated on SI-GaAs bulk material were bonded to Photon Counting Chips. This PCC consists of a matrix of 64×64 identical square pixels (170 μm×170 μm) with a 15-bit counter in each cell. We investigated the imaging properties of these detector systems under exposure of a dental X-ray tube. First, a dose calibration of the X-ray tube was performed. Fixed pattern noise in flood exposure images was determined for a fixed dose and an image correction method, which uses a gain map, was applied. For characterising the imaging properties, the signal-to-noise ratio (SNR) was calculated as function of exposure dose. Finally, the dynamic range of the system was estimated. Developed in the framework of the MEDIPIX collaboration: CERN, Universities of Freiburg, Glasgow, Naples and Pisa.

  14. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    NASA Astrophysics Data System (ADS)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  15. Silicon trench photodiodes on a wafer for efficient X-ray-to-current signal conversion using side-X-ray-irradiation mode

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2018-04-01

    In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.

  16. A statistical model of catheter motion from interventional x-ray images: application to image-based gating

    NASA Astrophysics Data System (ADS)

    Panayiotou, M.; King, A. P.; Ma, Y.; Housden, R. J.; Rinaldi, C. A.; Gill, J.; Cooklin, M.; O'Neill, M.; Rhode, K. S.

    2013-11-01

    The motion and deformation of catheters that lie inside cardiac structures can provide valuable information about the motion of the heart. In this paper we describe the formation of a novel statistical model of the motion of a coronary sinus (CS) catheter based on principal component analysis of tracked electrode locations from standard mono-plane x-ray fluoroscopy images. We demonstrate the application of our model for the purposes of retrospective cardiac and respiratory gating of x-ray fluoroscopy images in normal dose x-ray fluoroscopy images, and demonstrate how a modification of the technique allows application to very low dose scenarios. We validated our method on ten mono-plane imaging sequences comprising a total of 610 frames from ten different patients undergoing radiofrequency ablation for the treatment of atrial fibrillation. For normal dose images we established systole, end-inspiration and end-expiration gating with success rates of 100%, 92.1% and 86.9%, respectively. For very low dose applications, the method was tested on the same ten mono-plane x-ray fluoroscopy sequences without noise and with added noise at signal to noise ratio (SNR) values of √50, √10, √8, √6, √5, √2 and √1 to simulate the image quality of increasingly lower dose x-ray images. The method was able to detect the CS catheter even in the lowest SNR images with median errors not exceeding 2.6 mm per electrode. Furthermore, gating success rates of 100%, 71.4% and 85.7% were achieved at the low SNR value of √2, representing a dose reduction of more than 25 times. Thus, the technique has the potential to extract useful information whilst substantially reducing the radiation exposure.

  17. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  18. Reduction of metal artifacts in x-ray CT images using a convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbo; Chu, Ying; Yu, Hengyong

    2017-09-01

    Patients usually contain various metallic implants (e.g. dental fillings, prostheses), causing severe artifacts in the x-ray CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past four decades, MAR is still one of the major problems in clinical x-ray CT. In this work, we develop a convolutional neural network (CNN) based MAR framework, which combines the information from the original and corrected images to suppress artifacts. Before the MAR, we generate a group of data and train a CNN. First, we numerically simulate various metal artifacts cases and build a dataset, which includes metal-free images (used as references), metal-inserted images and various MAR methods corrected images. Then, ten thousands patches are extracted from the databased to train the metal artifact reduction CNN. In the MAR stage, the original image and two corrected images are stacked as a three-channel input image for CNN, and a CNN image is generated with less artifacts. The water equivalent regions in the CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal affected projections, followed by the FBP reconstruction. Experimental results demonstrate the superior metal artifact reduction capability of the proposed method to its competitors.

  19. X-ray irradiation-induced structural changes on Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Bardi, N.; Jurewicz, I.; King, A. K.; Alkhorayef, M. A.; Bradley, D.; Dalton, A. B.

    2017-11-01

    Dosimetry devices based on Carbon Nanotubes are a promising new technology. In particular using devices based on single wall Carbon Nanotubes may offer a tissue equivalent response with the possibility for device miniaturisation, high scale manufacturing and low cost. An important precursor to device fabrication requires a quantitative study of the effects of X-ray radiation on the physical and chemical properties of the individual nanotubes. In this study, we concentrate on the effects of relatively low doses, 20 cGy and 45 cGy , respectively. We use a range of characterization techniques including scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to quantify the effects of the radiation dose on inherent properties of the nanotubes. Specifically we find that the radiation exposure results in a reduction in the sp2 nature of the nanotube bond structure. Moreover, our analysis indicates that the exposure results in nanotubes that have an increased defect density which ultimately effects the electrical properties of the nanotubes.

  20. Medical imaging: Material change for X-ray detectors

    NASA Astrophysics Data System (ADS)

    Rowlands, John A.

    2017-10-01

    The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87

  1. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  2. Phantom-derived estimation of effective dose equivalent from X rays with and without a lead apron.

    PubMed

    Mateya, C F; Claycamp, H G

    1997-06-01

    Organ dose equivalents were measured in a humanoid phantom in order to estimate effective dose equivalent (H(E)) and effective dose (E) from low-energy x rays and in the presence or absence of a protective lead apron. Plane-parallel irradiation conditions were approximated using direct x-ray beams of 76 and 104 kVp and resulting dosimetry data was adjusted to model exposures conditions in fluoroscopy settings. Values of H(E) and E estimated under-shielded conditions were compared to the results of several recent studies that used combinations of measured and calculated dosimetry to model exposures to radiologists. While the estimates of H(E) and E without the lead apron were within 0.2 to 20% of expected values, estimates based on personal monitors worn at the (phantom) waist (underneath the apron) underestimated either H(E) or E while monitors placed at the neck (above the apron) significantly overestimated both quantities. Also, the experimentally determined H(E) and E were 1.4 to 3.3 times greater than might be estimated using recently reported "two-monitor" algorithms for the estimation of effective dose quantities. The results suggest that accurate estimation of either H(E) or E from personal monitors under conditions of partial body exposures remains problematic and is likely to require the use of multiple monitors.

  3. MIXI: Mobile Intelligent X-Ray Inspection System

    NASA Astrophysics Data System (ADS)

    Arodzero, Anatoli; Boucher, Salime; Kutsaev, Sergey V.; Ziskin, Vitaliy

    2017-07-01

    A novel, low-dose Mobile Intelligent X-ray Inspection (MIXI) concept is being developed at RadiaBeam Technologies. The MIXI concept relies on a linac-based, adaptive, ramped energy source of short X-ray packets of pulses, a new type of fast X-ray detector, rapid processing of detector signals for intelligent control of the linac, and advanced radiography image processing. The key parameters for this system include: better than 3 mm line pair resolution; penetration greater than 320 mm of steel equivalent; scan speed with 100% image sampling rate of up to 15 km/h; and material discrimination over a range of thicknesses up to 200 mm of steel equivalent. Its minimal radiation dose, size and weight allow MIXI to be placed on a lightweight truck chassis.

  4. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, L; Tang, S; Ahmad, M

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less

  5. Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose–volume histogram analysis

    PubMed Central

    Makishima, Hirokazu; Ishikawa, Hitoshi; Terunuma, Toshiyuki; Hashimoto, Takayuki; Yamanashi, Koichi; Sekiguchi, Takao; Mizumoto, Masashi; Okumura, Toshiyuki; Sakae, Takeji; Sakurai, Hideyuki

    2015-01-01

    Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose–volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive CCRT using X-rays (n = 19) or protons (n = 25). Experimental recalculation using protons was performed for the patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were conserved. Lung V5–V20, mean lung dose (MLD), and heart V30–V50 were compared for risk organ doses between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients actually treated with X-rays, and vice versa. Pulmonary events of Grade ≥2 occurred in 8/44 cases (18%), and cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade ≥2 were significantly higher than for those with events of Grade ≤1. Risk organ doses were lower in proton plans compared with X-ray plans. All patients suffering toxicity who were treated with X-rays (n = 13) had reduced predicted doses in lung and heart using protons, while doses in all patients treated with protons (n = 24) with toxicity of Grade ≤1 had worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer. PMID:25755255

  6. Evaluation of the dose received in the tissues of the neck during quantification of iodine in the thyroid by X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Portararo, Antonio; Licour, Caroline; Gerardy, Isabelle; Pozuelo Navarro, Fausto

    2018-04-01

    The determination of the iodine content in the thyroid is of great interest for many investigations of this gland. The conventional scintigraphic method, using radionuclides, is efficient but delivers a significant dose to the patient. The X-ray fluorescence spectrometry could give information about the iodine content in the thyroid. The measured signal is obtained after stimulation of the stable iodine contained in the gland by X-rays. The advantage of this technique is the complete absence of radioactive isotope injected into the patient body. By applying this, a decrease in effective dose to the patient should be obtained. In this work, the study of the dose received by a thyroid phantom (surrounded by the different tissues of the neck) was performed. The phantom is made of PLA. The dose is measured in optimised conditions defined for the analytical technique. A total head-neck phantom was also used in order to consider the absorbed dose in each different tissues and organs as spinal cord or eyes. Thermo-luminescence dosimeters were chosen for their small size, their sensitivity and the easy positioning on the surface of the phantom but also inside of it to evaluate dose to internal organs. Those LiF 100 dosimeters have been calibrated within the X-ray beam also used for the analysis of iodine. The repeatability and reproducibility of the method has been evaluated. The influence of parameters as concentration of iodine in the thyroid, distance between the X-ray generator and the neck, thickness of the tissues surrounding the thyroid, has been investigated in terms of modifying parameters of the dose received by different tissues situated in the neck and the head.

  7. Effect of x-ray irradiation on maize inbred line B73 tissue cultures and regenerated plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A.S.; Cheng, D.S.K.; Milcic, J.B.

    In order to enhance variation induced by the tissue culture process and to obtain agronomically desirable mutants, friable embryogenic tissue cultures of maize (Zea mays L.) inbred line B73 were x-ray irradiated with 11 doses (0-8.4 kilorads (kR)). Reductions in callus growth rate and embryogenic callus formation occurred with increasing x-ray doses 20 d and 3 months after irradiation. Callus irradiated with 0.8 kR showed a significant increase in growth rate and a 20% increase in embryogenic callus 9 months after irradiation. A total of 230 R/sub 0/ plants were regenerated for evaluation. Pollen fertility and seed set of R/submore » 0/ plants decreased with increasing x-ray dosage. Days to anthesis and plant height of R/sub 0/ plants varied among x-ray treatments but were generally reduced with higher dosages. The number of chromosomal aberrations increased with x-ray dosage. The R/sub 1/ seeds taken from R/sub 0/ plants were also grown and tested for mutant segregation. Plants regenerated from irradiated calli had a two- to 10-fold increase in mutations over plants regenerated from unirradiated control callus. Germination frequency of seeds from R/sub 0/ plants decreased with increasing x-ray dosage. Although chlorophyll mutants were most frequently observed, a number of vigorous plants with earlier anthesis date were also recovered.« less

  8. A photon recycling approach to the denoising of ultra-low dose X-ray sequences.

    PubMed

    Hariharan, Sai Gokul; Strobel, Norbert; Kaethner, Christian; Kowarschik, Markus; Demirci, Stefanie; Albarqouni, Shadi; Fahrig, Rebecca; Navab, Nassir

    2018-06-01

    Clinical procedures that make use of fluoroscopy may expose patients as well as the clinical staff (throughout their career) to non-negligible doses of radiation. The potential consequences of such exposures fall under two categories, namely stochastic (mostly cancer) and deterministic risks (skin injury). According to the "as low as reasonably achievable" principle, the radiation dose can be lowered only if the necessary image quality can be maintained. Our work improves upon the existing patch-based denoising algorithms by utilizing a more sophisticated noise model to exploit non-local self-similarity better and this in turn improves the performance of low-rank approximation. The novelty of the proposed approach lies in its properly designed and parameterized noise model and the elimination of initial estimates. This reduces the computational cost significantly. The algorithm has been evaluated on 500 clinical images (7 patients, 20 sequences, 3 clinical sites), taken at ultra-low dose levels, i.e. 50% of the standard low dose level, during electrophysiology procedures. An average improvement in the contrast-to-noise ratio (CNR) by a factor of around 3.5 has been found. This is associated with an image quality achieved at around 12 (square of 3.5) times the ultra-low dose level. Qualitative evaluation by X-ray image quality experts suggests that the method produces denoised images that comply with the required image quality criteria. The results are consistent with the number of patches used, and they demonstrate that it is possible to use motion estimation techniques and "recycle" photons from previous frames to improve the image quality of the current frame. Our results are comparable in terms of CNR to Video Block Matching 3D-a state-of-the-art denoising method. But qualitative analysis by experts confirms that the denoised ultra-low dose X-ray images obtained using our method are more realistic with respect to appearance.

  9. Dose and risk in diagnostic radiology: How big How little Lecture Number 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, E.W.

    1992-01-01

    This lecture is divided into two parts: dose and risk. The dose segment is technical and noncontroversial since it deals with straightforward measurements or calculations which do not depend on unproven hypotheses. Some conflicting contributions of low dose epidemiological studies to the appraisal of risk are briefly presented. Attention is focused on the following: dose reduction in radiography; dose reduction in fluoroscopy; limitations of dose reduction; estimated radiation risks for diagnostic radiology examinations; excess breast cancer following X-ray examinations for scoliosis; dose-response relation for human mammary cancer; lung cancer from protracted X-irradiation; leukemia and diagnostic X-ray exposure; and thyroid cancermore » after diagnostic dose of I-131.« less

  10. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  11. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  12. Unidirectional x-ray microbeam radiosurgery of infantile neuraxial malignancies: estimations of tolerable valley doses

    NASA Astrophysics Data System (ADS)

    Hanson, A. L.; Slatkin, D. N.; Laissue, J. A.

    2013-03-01

    Hindbrains of sedated, prone, suckling rats were irradiated 11-13 days postpartum horizontally from the left with an array of upright wiggler-generated synchrotron X-ray microbeams spaced either 105 or 210 μm apart. The microbeams were in an array of 48 (for the 205 μm interval) or of 96 (for the 105 μm interval), with microbeam widths ranging from 19 to 39 μm, the array having an approximately 1-cm-square cross section. The microbeams imparted doses of either ≍50 or ≍150 Gy to the inner skin (computed here as the average dose 0.5-1.5 mm deep to the surface of our phantom) at their entrance to the head, where their median energy was ≍120 keV. The array traversed the postero-superior quadrant of the phantom, which represented the occiput of the head, so that about one in five photons in the array bypassed the head altogether. The resultant radiation doses to the head were simulated by computing the tracks of thirty billion X-ray photons incident on the multislit collimator along with all >=1 keV secondary electrons from interactions in water of the photons entering the left circular wall of the 1.00 cm-radius, 1.55 cm-wide (i.e., "15.5 mm-long") cylindrical head phantom. The computations were performed using the Los Alamos National Laboratory Monte Carlo radiation transport computer program MCNPX, yielding ionization energies imparted to approximately twenty-four thousand 1.00 mmdeep, 10 μm-wide, up to 3.33 mm-high voxels distributed throughout one quadrant of the phantom, each representing up to 33.3 μg water. Computed nadir doses between microbeams were defined as the average of the three lowest doses between horizontally adjacent peak doses. We notice that nadir interbeam doses under 5 Gy were associated with neurologically minor and/or inconsequential sequelae fifteen months after irradiation and thus postulate that unidirectional microbeam radiosurgery using hindbrain nadir doses under 5 Gy may safely ameliorate the symptoms of some presently

  13. Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy.

    PubMed

    Astolfo, Alberto; Endrizzi, Marco; Vittoria, Fabio A; Diemoz, Paul C; Price, Benjamin; Haig, Ian; Olivo, Alessandro

    2017-05-19

    X-ray phase contrast imaging (XPCI) is an innovative imaging technique which extends the contrast capabilities of 'conventional' absorption based x-ray systems. However, so far all XPCI implementations have suffered from one or more of the following limitations: low x-ray energies, small field of view (FOV) and long acquisition times. Those limitations relegated XPCI to a 'research-only' technique with an uncertain future in terms of large scale, high impact applications. We recently succeeded in designing, realizing and testing an XPCI system, which achieves significant steps toward simultaneously overcoming these limitations. Our system combines, for the first time, large FOV, high energy and fast scanning. Importantly, it is capable of providing high image quality at low x-ray doses, compatible with or even below those currently used in medical imaging. This extends the use of XPCI to areas which were unpractical or even inaccessible to previous XPCI solutions. We expect this will enable a long overdue translation into application fields such as security screening, industrial inspections and large FOV medical radiography - all with the inherent advantages of the XPCI multimodality.

  14. Study of the X-Ray Diagnosis of Unstable Pelvic Fracture Displacements in Three-Dimensional Space and its Application in Closed Reduction.

    PubMed

    Shi, Chengdi; Cai, Leyi; Hu, Wei; Sun, Junying

    2017-09-19

    ABSTRACTS Objective: To study the method of X-ray diagnosis of unstable pelvic fractures displaced in three-dimensional (3D) space and its clinical application in closed reduction. Five models of hemipelvic displacement were made in an adult pelvic specimen. Anteroposterior radiographs of the pelvis were analyzed in PACS. The method of X-ray diagnosis was applied in closed reductions. From February 2012 to June 2016, 23 patients (15 men, 8 women; mean age, 43.4 years) with unstable pelvic fractures were included. All patients were treated by closed reduction and percutaneous cannulate screw fixation of the pelvic ring. According to Tile's classification, the patients were classified into type B1 in 7 cases, B2 in 3, B3 in 3, C1 in 5, C2 in 3, and C3 in 2. The operation time and intraoperative blood loss were recorded. Postoperative images were evaluated by Matta radiographic standards. Five models of displacement were made successfully. The X-ray features of the models were analyzed. For clinical patients, the average operation time was 44.8 min (range, 20-90 min) and the average intraoperative blood loss was 35.7 (range, 20-100) mL. According to the Matta standards, 7 cases were excellent, 12 cases were good, and 4 were fair. The displacements in 3D space of unstable pelvic fractures can be diagnosed rapidly by X-ray analysis to guide closed reduction, with a satisfactory clinical outcome.

  15. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  16. Effects of dose reduction on bone strength prediction using finite element analysis

    NASA Astrophysics Data System (ADS)

    Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas

    2016-12-01

    This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2  = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.

  17. Differences in responses to X-ray exposure between osteoclast and osteoblast cells

    PubMed Central

    Zhang, Jian; Wang, Ziyang; Wu, Anqing; Nie, Jing; Pei, Hailong; Hu, Wentao; Wang, Bing; Shang, Peng; Li, Bingyan

    2017-01-01

    Abstract Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss. PMID:28541506

  18. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  20. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    PubMed

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype. Copyright 2004 Wiley-Liss, Inc.

  1. MO-FG-CAMPUS-IeP1-05: New Ionization Chamber Dosimetry of Absorbed Dose to Water in Diagnostic KV X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araki, F; Ohno, T

    Purpose: To develop new ionization chamber dosimetry of absorbed dose to water in diagnostic kV x-ray beams, by using a beam quality conversion factor, kQ, for Co-60 to kV x-ray and an ionization conversion factor for a water-substitute plastic phantom. Methods: kQ was calculated for aluminum half value-layers (Al-HVLs) of 1.5 mm to 8 mm which were generated by kV x-ray beams of 50 to 120 kVp. Twenty-two energy spectra for ten effective energies (Eeff) were calculated by a SpecCalc program. Depth doses in water were calculated at 5 × 5 to 30 × 30 cm{sup 2} fields. Output factorsmore » were also obtained from the dose ratio for a 10 × 10 cm{sup 2} field. kQ was obtained for a PTW30013 Former ion chamber. In addition, an ionization conversion factor of the PWDT phantom to water was calculated. All calculations were performed with EGSnrc/cavity code and egs-chamber codes. Results: The x-ray beam energies for 1.5 mm to 8 mm Al-HVLs ranged in Eeff of 25.7 to 54.3 keV. kQ for 1.5 mm to 8 mm Al-HVLs were 0.831 to 0.897, at 1 and 2 cm depths for a 10 × 10 cm2 field. Similarly, output factors for 5 × 5 to 30 × 30 cm{sup 2} fields were 0.937 to 1.033 for 25.7 keV and 0.857 to 1.168 for 54.3 keV. The depth dose in a PWDT phantom decreased up to 5% compared to that in water at depth of ten percent of maximum dose for 1.5 mm Al-HVL. The ionization ratios of water/PWDT phantoms for the PTW30013 chamber were 1.012 to 1.007 for 1.5 mm to 8 mm Al-HVLs at 1 cm depth. Conclusion: It became possible to directly measure the absorbed dose to water with the ionization chamber in diagnostic kV x-ray beams, by using kQ and the PWDT phantom.« less

  2. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less

  3. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  4. Low Dose High Energy X-ray In-Line Phase Sensitive Imaging Prototype: Investigation of Optimal Geometric Conditions and Design Parameters

    PubMed Central

    Ghani, Muhammad. U.; Yan, Aimin; Wong, Molly. D.; Li, Yuhua; Ren, Liqiang; Wu, Xizeng; Liu, Hong

    2016-01-01

    The objective of this study was to investigate the optimization of a high energy in-line phase sensitive x-ray imaging prototype under different geometric and operating conditions for mammography application. A phase retrieval algorithm based on phase attenuation duality (PAD) was applied to the phase contrast images acquired by the prototype. Imaging performance was investigated at four magnification values of 1.67, 2, 2.5 and 3 using an acrylic edge, an American College of Radiology (ACR) mammography phantom and contrast detail (CD) phantom with tube potentials of 100, 120 and 140 kVp. The ACR and CD images were acquired at the same mean glandular dose (MGD) of 1.29 mGy with a computed radiography (CR) detector of 43.75 µm pixel pitch at a fixed source to image distance (SID) of 170 cm. The x-ray tube focal spot size was kept constant as 7 µm while a 2.5 mm thick aluminum (Al) filter was used for beam hardening. The performance of phase contrast and phase retrieved images were compared with computer simulations based on the relative phase contrast factor (RPF) at high x-ray energies. The imaging results showed that the x-ray tube operated at 100 kVp under the magnification of 2.5 exhibits superior imaging performance which is in accordance to the computer simulations. As compared to the phase contrast images, the phase retrieved images of the ACR and CD phantoms demonstrated improved imaging contrast and target discrimination. We compared the CD phantom images acquired in conventional contact mode with and without the anti-scatter grid using the same prototype at 1.295 mGy and 2.59 mGy using 40 kVp, a 25 µm rhodium (Rh) filter. At the same radiation dose, the phase sensitive images provided improved detection capabilities for both the large and small discs, while compared to the double dose image acquired in conventional mode, the observer study also indicated that the phase sensitive images provided improved detection capabilities for the large discs. This

  5. Response of optically stimulated luminescence dosimeters subjected to X-rays in diagnostic energy range

    NASA Astrophysics Data System (ADS)

    Musa, Y.; Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Ang, W. C.; Salehhon, N.

    2017-05-01

    The use of optically stimulated luminescence (OSL) for dosimetry applications has recently increased considerably due to availability of commercial OSL dosimeters (nanoDots) for clinical use. The OSL dosimeter has a great potential to be used in clinical dosimetry because of its prevailing advantages in both handling and application. However, utilising nanoDot OSLDs for dose measurement in diagnostic radiology can only be guaranteed when the performance and characteristics of the dosimeters are apposite. In the present work, we examined the response of commercially available nanoDot OSLD (Al2O3:C) subjected to X-rays in general radiography. The nanoDots response with respect to reproducibility, dose linearity and signal depletion were analysed using microStar reader (Landauer, Inc., Glenwood, IL). Irradiations were performed free-in-air using 70, 80 and 120 kV tube voltages and tube currents ranging from 10 - 100 mAs. The results showed that the nanoDots exhibit good linearity and reproducibility when subjected to diagnostic X-rays, with coefficient of variations (CV) ranging between 2.3% to 3.5% representing a good reproducibility. The results also indicated average of 1% signal reduction per readout. Hence, the nanoDots showed a promising potential for dose measurement in general X-ray procedure.

  6. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  7. Building lab-scale x-ray tube based irradiators

    USDA-ARS?s Scientific Manuscript database

    The construction of economical x-ray tube based irradiators in a variety of configurations is described using 1000 Watt x-ray tubes. Single tube, double tube, and four tube designs are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small s...

  8. Feasibility Studies of Parametric X-rays Use in a Medical Environment

    NASA Astrophysics Data System (ADS)

    Sones, Bryndol; Danon, Yaron; Blain, Ezekiel

    2009-03-01

    Parametric X-rays (PXR) are produced from the interaction of relativistic electrons with the periodic structure of crystal materials. Smooth X-ray energy tunability is achieved by rotating the crystal with respects to the electron beam direction. Experiments at the Rensselaer Polytechnic Institute 60-MeV LINAC produce quasi-monochromatic X-rays (6-35 keV) from various target crystals to include highly oriented pyrolytic graphite (HOPG), LiF, Si, Ge, Cu, and W using electron beam currents up to 6 uA. These experiments demonstrate the first PXR images and some of the merits of thin metallic crystals. Recent experiments with a 100-μm thick Cu crystal improve the Cu PXR (with energy ˜12 keV) to Cu fluorescence ratio by a factor of 20 compared to a 1 mm-thick Cu crystal. This study uses Monte Carlo techniques to investigate (1) PXR dose compared to emissions from simulated Mo, Rh, and W anodes for mammography applications and (2) electron scattering effects when considering LiF111, Si111, and Cu111 PXR production using electron beams with energies of 20-30 MeV. Advantages in using monochromatic PXR compared to X-rays from Mo and Rh anodes in mammography applications result in a dose per incident photon reduction by a factor of 2. Using 20 MeV electrons, the thinner Cu111 crystal for 15 keV PXR production results in an electron scattering angle of 30.7+/-0.2 mrad offering the best potential for PXR from lower energy electrons.

  9. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum.

    PubMed

    Jones, Michael W M; Dearnley, Megan K; van Riessen, Grant A; Abbey, Brian; Putkunz, Corey T; Junker, Mark D; Vine, David J; McNulty, Ian; Nugent, Keith A; Peele, Andrew G; Tilley, Leann

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. © 2013 Elsevier B.V. All rights reserved.

  10. Industrial applications of automated X-ray inspection

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.

    2015-03-01

    Many industries require that 100% of manufactured parts be X-ray inspected. Factors such as high production rates, focus on inspection quality, operator fatigue and inspection cost reduction translate to an increasing need for automating the inspection process. Automated X-ray inspection involves the use of image processing algorithms and computer software for analysis and interpretation of X-ray images. This paper presents industrial applications and illustrative case studies of automated X-ray inspection in areas such as automotive castings, fuel plates, air-bag inflators and tires. It is usually necessary to employ application-specific automated inspection strategies and techniques, since each application has unique characteristics and interpretation requirements.

  11. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    DOE PAGES

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; ...

    2012-11-05

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ 1,3 XES spectra of Mn II and Mn 2 III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less

  12. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    PubMed Central

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2012-01-01

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631

  13. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    PubMed

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P < 0.05) with irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  14. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  15. SU-E-T-145: MRI Gel Dosimetry Applied to Dose Profile Determination for 50kV X-Ray Tube.

    PubMed

    Schwarcke, M; Marques, T; Nicolucci, P; Filho, O Baffa

    2012-06-01

    The aim of this study was to use MRI gel dosimetry to determine the dose profile of 50kV MAGNUM® X-ray tube, MOXTEK Inc., in order to calibrate small solid dosimeters of alanine, tooth enamel and LiF-TLDs, commonly used in clinical quality assurance and datation dosimetry. MAGIC-f polymer gel was kept in two plastic containers of 100mL, avoiding attenuation of the primary beam trough the wall. Beam aberture of 3mm and dose rate of 16.5Gy/min were set, reproducing irradiation conditions of interest. The dose rate was assumed based on data of the vendor information of the tube and dose of 30Gy was delivered at the surface of the gel. MAGIC-f gel was irradiated at source-surface distances(SSD) of 0.1cm and 1.0cm. After 24hours of irradiation, gel was scanned in an Achieva® 3T Philips® MRI tomography using relaxometry sequence with 32 Echos, Time-to-Echo(TE) of 15.0ms, Time-to-Repetition(TR) of 6000ms and Field-of-View(FOV) of 0.5×0.5×2.0mm. Dose map at the central plain of irradiation was calculated from T2 relaxometry map. The gel dosimetry results evidenced a build-up depth of 0.13cm for SSD=0.1cm and no build-up was detected for SSD=1.0cm. However, the dose profile evidenced high gradient of dose in SSD=0.1, decreasing the dose from 100% to 30% in 1.4cm depth inside the gel; In turn, the dose distribution is homogeneous after 0.4cm deth for SSD=1.0cm. MRI gel dosimetry using MAGIC-f presented as feasible technique to determine dose profiles for kilovoltage x-rays tubes. The results evidenced that the calibration of small solid dosimeters can be performed using SSD of 1.0cm in the 50kV MAGNUM® X-ray tube using 0.4cm/g/cm 3 filter. This work was funded supported by CNPQ, CAPES and FAPESP. © 2012 American Association of Physicists in Medicine.

  16. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    NASA Astrophysics Data System (ADS)

    Borg, Leise; Jørgensen, Jakob S.; Frikel, Jürgen; Sporring, Jon

    2017-12-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance to sample is derived and verified numerically and with experimental data. The model accurately describes the arising variable-truncation artifacts across simulated variations of the experimental setup. Three variable-truncation artifact-reduction methods are proposed, all aimed at addressing sinogram discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray tomography experiments.

  17. Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography

    PubMed Central

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-01-01

    Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831

  18. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  19. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    PubMed Central

    Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834

  1. Mutagenic synergism detected between dimethyl sulfate and X-rays but not found between N-methyl-N-nitrosourea and X-rays in the stamen hairs of Tradescantia clone BNL 4430.

    PubMed

    Shima, N; Ichikawa, S

    1995-09-01

    Mutagenic interactions with X-rays of two monofunctional alkylating agents, dimethyl sulfate (DMS) and N-methyl-N-nitrosourea (MNU), were studied in the stamen hairs of Tradescantia clone BNL 4430, a blue/pink heterozygote. The young inflorescence-bearing shoots with roots cultivated in the nutrient solution circulating growth chamber were used as tester plants. Synergism between two different mutagens was judged to have occurred when the mutation frequency observed after applying the two mutagens concurrently was statistically significantly higher than the mutation frequency expected from the additive effects of the two mutagens. Clear synergistic effects in inducing somatic pink mutations were detected with all combinations of doses of DMS and X-rays examined, even in a relatively low X-ray dose range (down to 299 mGy), resembling those confirmed earlier between ethyl methanesulfonate (EMS) and X-rays, but somewhat differing from the synergisms observed earlier between methyl methanesulfonate (MMS) and X-rays. On the other hand, no mutagenic synergism was detected between MNU and X-rays, even in a relatively high X-ray dose range (up to 862 mGy). The presence or absence of mutagenic synergisms of these alkylating agents with X-rays could be related to the action mechanism of each alkylating agent.

  2. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering.

    PubMed

    den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R

    1994-06-01

    Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and

  3. X-ray emission as a potential hazard during ultrashort pulse laser material processing

    NASA Astrophysics Data System (ADS)

    Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg

    2018-06-01

    In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.

  4. X-ray induced chemical reaction revealed by in-situ X-ray diffraction and scanning X-ray microscopy in 15 nm resolution (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ge, Mingyuan; Liu, Wenjun; Bock, David; De Andrade, Vincent; Yan, Hanfei; Huang, Xiaojing; Marschilok, Amy; Takeuchi, Esther; Xin, Huolin; Chu, Yong S.

    2016-09-01

    The detection sensitivity of synchrotron-based X-ray techniques has been largely improved due to the ever increasing source brightness, which have significantly advanced ex-situ and in-situ research for energy materials, such as lithium-ion batteries. However, the strong beam-matter interaction arisen from the high beam flux can significantly modify the material structure. The parasitic beam-induced effect inevitably interferes with the intrinsic material property, which brings difficulties in interpreting experimental results, and therefore requires comprehensive evaluation. Here we present a quantitative in-situ study of the beam-effect on one electrode material Ag2VO2PO4 using four different X-ray probes with different radiation dose rate. The material system we reported exhibits interesting and reversible radiation-induced thermal and chemical reactions, which was further evaluated under electron microscopy to illustrate the underlying mechanism. The work we presented here will provide a guideline in using synchrotron X-rays to distinguish the materials' intrinsic behavior from extrinsic structure changed induced by X-rays, especially in the case of in-situ and operando study where the materials are under external field of either temperature or electric field.

  5. Reduction of Vanadium Oxide (VOx) under High Vacuum Conditions as Investigated by X-Ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chourasia, A.

    2015-03-01

    Vanadium oxide thin films were formed by depositing thin films of vanadium on quartz substrates and oxidizing them in an atmosphere of oxygen. The deposition was done by the e-beam technique. The oxide films were annealed at different temperatures for different times under high vacuum conditions. The technique of x-ray photoelectron spectroscopy has been employed to study the changes in the oxidation states of vanadium and oxygen in such films. The spectral features in the vanadium 2p, oxygen 1s, and the x-ray excited Auger regions were investigated. The Auger parameter has been utilized to study the changes. The complete oxidation of elemental vanadium to V2O5 was observed to occur at 700°C. At any other temperature, a mixture of oxides consisting of V2O5 and VO2 was observed in the films. Annealing of the films resulted in the gradual loss of oxygen followed by reduction in the oxidation state from +5 to 0. The reduction was observed to depend upon the annealing temperature and the annealing time. Organized Research, TAMU-Commerce.

  6. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  7. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  8. X-ray ‘ghost images’ could cut radiation doses

    NASA Astrophysics Data System (ADS)

    Chen, Sophia

    2018-03-01

    On its own, a single-pixel camera captures pictures that are pretty dull: squares that are completely black, completely white, or some shade of gray in between. All it does, after all, is detect brightness. Yet by connecting a single-pixel camera to a patterned light source, a team of physicists in China has made detailed x-ray images using a statistical technique called ghost imaging, first pioneered 20 years ago in infrared and visible light. Researchers in the field say future versions of this system could take clear x-ray photographs with cheap cameras—no need for lenses and multipixel detectors—and less cancer-causing radiation than conventional techniques.

  9. SU-D-207-07: Implementation of Full/half Bowtie Filter Model in a Commercial Treatment Planning System for Kilovoltage X-Ray Imaging Dose Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Alaei, P

    2015-06-15

    Purpose: To implement full/half bowtie filter models in a commercial treatment planning system (TPS) to calculate kilovoltage (kV) x-ray imaging dose of Varian On-Board Imager (OBI) cone beam CT (CBCT) system. Methods: Full/half bowtie filters of Varian OBI were created as compensator models in Pinnacle TPS (version 9.6) using Matlab software (version 2011a). The profiles of both bowtie filters were acquired from the manufacturer, imported into the Matlab system and hard coded in binary file format. A Pinnacle script was written to import each bowtie filter data into a Pinnacle treatment plan as a compensator. A kV x-ray beam modelmore » without including the compensator model was commissioned per each bowtie filter setting based on percent depth dose and lateral profile data acquired from Monte Carlo simulations. To validate the bowtie filter models, a rectangular water phantom was generated in the planning system and an anterior/posterior beam with each bowtie filter was created. Using the Pinnacle script, each bowtie filter compensator was added to the treatment plan. Lateral profile at the depth of 3cm and percent depth dose were measured using an ion chamber and compared with the data extracted from the treatment plans. Results: The kV x-ray beams for both full and half bowtie filter have been modeled in a commercial TPS. The difference of lateral and depth dose profiles between dose calculations and ion chamber measurements were within 6%. Conclusion: Both full/half bowtie filter models provide reasonable results in kV x-ray dose calculations in the water phantom. This study demonstrates the possibility of using a model-based treatment planning system to calculate the kV imaging dose for both full and half bowtie filter modes. Further study is to be performed to evaluate the models in clinical situations.« less

  10. X-ray effects on pacemaker type circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blamires, N.G.; Myatt, J.

    1982-03-01

    Queries have been raised concerning the potential hazards of X-ray irradiation on patients using the new generation of heart pacemakers based on digital circuitry. The present study was undertaken to provide some answers to these queries. The work was conducted in two parts. First, a literature search was done and, second, circuits using current state of the art digital technology were irradiated with X-rays. Watch circuits were chosen because of their availability and built-in facilities by which their function could be tested. Doses up to 330 rads were administered to them using energies of 46, 114, and 141 KeV. Themore » conclusion drawn from both parts of the study was that X-rays used for diagnostic purposes were unlikely to affect the performance of this type of circuit in any way. It was accepted that for therapeutic purposes doses far in excess of this are administered and circuit malfunctions are likely to occur. To assess the probability of a digital pacemaker malfunctioning, samples of that particular type would have to be irradiated at the relevant dose.« less

  11. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. Themore » observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.« less

  12. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1

  13. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector.

    PubMed

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-21

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.

  14. MO-FG-CAMPUS-IeP1-02: Dose Reduction in Contrast-Enhanced Digital Mammography Using a Photon-Counting Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Kang, S; Eom, J

    Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions includedmore » in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.« less

  15. Development of a position sensitive X-ray detector for use in a light weight X-ray diffractometer

    NASA Technical Reports Server (NTRS)

    Semmler, R. A.

    1971-01-01

    A position sensitive proportional counter for use in an X-ray diffractometer is developed to permit drastic reductions in the power and weight requirements of the X-ray source and the elimination of the power, weight, and complexity of a moving slit. The final detector constructed and tested has a window spanning 138 and a free standing anode curved along an arc of 7.1 cm radius. Demonstration spectra of a quartz sample in a Debye-Sherrer geometry indicate a spatial resolution of 0.4 - 0.5 mm (0.3 - 0.4 theta). The lunar diffractometer consumed 25 watts in the X-ray generator and weighed about 20 pounds.

  16. Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol.

    PubMed

    Gao, Yang; Bian, Zhaoying; Huang, Jing; Zhang, Yunwan; Niu, Shanzhou; Feng, Qianjin; Chen, Wufan; Liang, Zhengrong; Ma, Jianhua

    2014-06-16

    To realize low-dose imaging in X-ray computed tomography (CT) examination, lowering milliampere-seconds (low-mAs) or reducing the required number of projection views (sparse-view) per rotation around the body has been widely studied as an easy and effective approach. In this study, we are focusing on low-dose CT image reconstruction from the sinograms acquired with a combined low-mAs and sparse-view protocol and propose a two-step image reconstruction strategy. Specifically, to suppress significant statistical noise in the noisy and insufficient sinograms, an adaptive sinogram restoration (ASR) method is first proposed with consideration of the statistical property of sinogram data, and then to further acquire a high-quality image, a total variation based projection onto convex sets (TV-POCS) method is adopted with a slight modification. For simplicity, the present reconstruction strategy was termed as "ASR-TV-POCS." To evaluate the present ASR-TV-POCS method, both qualitative and quantitative studies were performed on a physical phantom. Experimental results have demonstrated that the present ASR-TV-POCS method can achieve promising gains over other existing methods in terms of the noise reduction, contrast-to-noise ratio, and edge detail preservation.

  17. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    PubMed

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  18. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography.

    PubMed

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.

  19. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    PubMed

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  20. Luminescence properties after X-ray irradiation for dosimetry

    NASA Astrophysics Data System (ADS)

    Hong, Duk-Geun; Kim, Myung-Jin

    2016-05-01

    To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.

  1. X-rays and photocarcinogenesis in hairless mice.

    PubMed

    Lerche, Catharina M; Philipsen, Peter A; Wulf, Hans Christian

    2013-08-01

    It is well known that excessive X-ray radiation can cause non-melanoma skin cancers. With the increased incidence of sun-related skin cancer there is a need to investigate the combination of sunlight and X-rays. Immunocompetent C3.Cg/TifBomTac mice (n = 298) were divided into 12 groups. Mice were irradiated with 12, 29 or 50 kV X-rays. The mice received a total dose of 45 Gy. They were irradiated with 3 SED simulated solar radiation (SSR) either before or after irradiation with X-rays. The groups irradiated with X-rays alone, 0, 3, 9 and 10 mice (0, 12, 29 and 50 kV, respectively) developed squamous cell carcinoma. In the groups irradiated with SSR after X-rays the development of tumours was significantly faster in the 50 kV group than in the corresponding control group (175 vs. 194 days, p < 0.001). In the groups irradiated with SSR prior to the X-ray radiation the development of tumours was significantly faster in the 29 and the 50 kV groups than in the corresponding control group (175 vs. 202 days, p < 0.001 and 158 vs. 202 days, p < 0.001, respectively). In conclusion, X-ray radiation alone is a weak carcinogen in hairless mice. There is an added carcinogenic effect if X-ray radiation is given on prior sun-exposed skin or if the skin is sun-exposed after X-rays. We still believe that X-ray radiation is a safe and effective therapy for various dermatological diseases but caution should be observed if a patient has severely sun-damaged skin or has a high-risk sun behaviour.

  2. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  3. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  4. Artifact Reduction in X-Ray CT Images of Al-Steel-Perspex Specimens Mimicking a Hip Prosthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhogarhia, Manish; Munshi, P.; Lukose, Sijo

    2008-09-26

    X-ray Computed Tomography (CT) is a relatively new technique developed in the late 1970's, which enables the nondestructive visualization of the internal structure of objects. Beam hardening caused by the polychromatic spectrum is an important problem in X-ray computed tomography (X-CT). It leads to various artifacts in reconstruction images and reduces image quality. In the present work we are considering the Artifact Reduction in Total Hip Prosthesis CT Scan which is a problem of medical imaging. We are trying to reduce the cupping artifact induced by beam hardening as well as metal artifact as they exist in the CT scanmore » of a human hip after the femur is replaced by a metal implant. The correction method for beam hardening used here is based on a previous work. Simulation study for the present problem includes a phantom consisting of mild steel, aluminium and perspex mimicking the photon attenuation properties of a hum hip cross section with metal implant.« less

  5. [Study on bamboo treated with gamma rays by X-ray diffraction].

    PubMed

    Sun, Feng-Bo; Fei, Ben-Hua; Jiang, Ze-Hui; Yu, Zi-Xuan; Tian, Gen-Lin; Yang, Quan-Wen

    2011-06-01

    The microfibril angle and crystallinity of bamboo treated with gamma rays were tested by X-ray diffraction (XRD). The result indicated that crystallinity in bamboo increased when irradiation dose was less than 100 kGy, while the irradiation dose was raised to about 100 kGy, crystallinity in bamboo reduced. But during the whole irradiation process, the influence on microfibril angle was not obvious, so it was not the dominant factors on variation in physical-mechanical properties of bamboo during the process of irradiation.

  6. TU-F-CAMPUS-I-02: Validation of a CT X-Ray Source Characterization Technique for Dose Computation Using An Anthropomorphic Thorax Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommerville, M; Tambasco, M; Poirier, Y

    2015-06-15

    Purpose: To experimentally validate a rotational kV x-ray source characterization technique by computing CT dose in an anthropomorphic thorax phantom using an in-house dose computation algorithm (kVDoseCalc). Methods: The lateral variation in incident energy spectra of a GE Optima big bore CT scanner was found by measuring the HVL along the internal, full bow-tie filter axis. The HVL and kVp were used to generate the x-ray spectra using Spektr software, while beam fluence was derived by dividing the integral product of the spectra and in-air mass-energy absorption coefficients by in-air dose measurements along the bow-tie filter axis. Beams produced bymore » the GE Optima scanner were modeled at 80 and 140 kVp tube settings. kVDoseCalc calculates dose by solving the linear Boltzmann transport equation using a combination of deterministic and stochastic methods. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima scanner were measured using a (0.015 cc) PTW Freiburg ionization chamber, and compared to computations from kVDoseCalc. Results: The agreement in relative dose between dose computation and measurement for points of interest (POIs) within the primary path of the beam was within experimental uncertainty for both energies, however points outside the primary beam were not. The average absolute percent difference for POIs within the primary path of the beam was 1.37% and 5.16% for 80 and 140 kVp, respectively. The minimum and maximum absolute percent difference for both energies and all POIs within the primary path of the beam was 0.151% and 6.41%, respectively. Conclusion: The CT x-ray source characterization technique based on HVL measurements and kVp can be used to accurately compute CT dose in an anthropomorphic thorax phantom.« less

  7. Determination of the implantation dose in silicon wafers by X-ray fluorescence analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klockenkaemper, R.; Becker, M.; Bubert, H.

    1990-08-01

    The ion dose implanted in silicon wafers was determined by X-ray fluorescence analysis after the implantation process. As only near-surface layers below 1-{mu}m thickness were considered, the calibration could be carried out with external standards consisting of thin films of doped gelatine spread on pure wafers. Dose values for Cr and Co were determined between 4 {times} 10{sup 15} and 2 {times} 10{sup 17} atoms/cm{sup 2}, the detection limits being about 3 {times} 10{sup 14} atoms/cm{sup 2}. The results are precise and accurate apart from a residual scatter of less than 7%. This was confirmed by flame atomic absorption spectrometrymore » after volatilization of the silicon matrix as SiF{sub 4}. It was found that ion-current measurements carried out during the implantation process can have considerable systematic errors.« less

  8. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  9. The selection criteria elements of X-ray optics system

    NASA Astrophysics Data System (ADS)

    Plotnikova, I. V.; Chicherina, N. V.; Bays, S. S.; Bildanov, R. G.; Stary, O.

    2018-01-01

    At the design of new modifications of x-ray tomography there are difficulties in the right choice of elements of X-ray optical system. Now this problem is solved by practical consideration, selection of values of the corresponding parameters - tension on an x-ray tube taking into account the thickness and type of the studied material. For reduction of time and labor input of design it is necessary to create the criteria of the choice, to determine key parameters and characteristics of elements. In the article two main elements of X-ray optical system - an x-ray tube and the detector of x-ray radiation - are considered. Criteria of the choice of elements, their key characteristics, the main dependences of parameters, quality indicators and also recommendations according to the choice of elements of x-ray systems are received.

  10. Effects of X-ray irradiation on the Eu3+ → Eu2+ conversion in CaAl2O4 phosphors

    NASA Astrophysics Data System (ADS)

    Gomes, Manassés A.; Carvalho, Jéssica C.; Andrade, Adriano B.; Rezende, Marcos V.; Macedo, Zélia S.; Valerio, Mário E. G.

    2018-01-01

    This paper reports structural and luminescence properties of Eu-doped CaAl2O4 produced by an alternative sol-gel method using coconut water. Results of differential thermal analysis (DTA), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) allowed us to identify the best synthesis conditions for sample preparation. Simultaneous measurements of X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) were also performed in the X-ray energy range of the Eu LIII edge. Results from photoluminescence (PL) showed only the characteristic Eu3+ emission. However, radioluminescence emission spectra from Eu-doped CaAl2O4 shows a process of conversion of Eu3+ to Eu2+, which is induced by X-ray irradiation and is dependent on the radiation dose energy. X-ray absorption near edge structure (XANES) measurements corroborate Eu reduction due to irradiation, showing that only the Eu3+ ion is present in stable form in the CaAl2O4.

  11. Radiation dose reduction in a neonatal intensive care unit in computed radiography.

    PubMed

    Frayre, A S; Torres, P; Gaona, E; Rivera, T; Franco, J; Molina, N

    2012-12-01

    The purpose of this study was to evaluate the dose received by chest x-rays in neonatal care with thermoluminescent dosimetry and to determine the level of exposure where the quantum noise level does not affect the diagnostic image quality in order to reduce the dose to neonates. In pediatric radiology, especially the prematurely born children are highly sensitive to the radiation because of the highly mitotic state of their cells; in general, the sensitivity of a tissue to radiation is directly proportional to its rate of proliferation. The sample consisted of 208 neonatal chest x-rays of 12 neonates admitted and treated in a Neonatal Intensive Care Unit (NICU). All the neonates were preterm in the range of 28-34 weeks, with a mean of 30.8 weeks. Entrance Surface Doses (ESD) values for chest x-rays are higher than the DRL of 50 μGy proposed by the National Radiological Protection Board (NRPB). In order to reduce the dose to neonates, the optimum image quality was achieved by determining the level of ESD where level noise does not affect the diagnostic image quality. The optimum ESD was estimated for additional 20 chest x-rays increasing kVp and reducing mAs until quantum noise affects image quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. SU-D-209-02: Percent Depth Dose Curves for Fluoroscopic X-Ray Beam Qualities Incorporating Copper Filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunderle, K; Wayne State University School of Medicine, Detroit, MI; Godley, A

    Purpose: The purpose of this investigation was to quantify percent depth dose (PDD) curves for fluoroscopic x-ray beam qualities incorporating added copper filtration. Methods: A PTW (Freiburg, Germany) MP3 water tank was used with a Standard Imaging (Middleton, WI) Exradin Model 11 Spokas Chamber to measure PDD curves for 60, 80, 100 and 120 kVp x-ray beams with copper filtration ranging from 0.0–0.9 mm at 22cm and 42cm fields of view from 0 to 150 mm of water. A free-in-air monitor chamber was used to normalize the water tank data to fluctuations in output from the fluoroscope. The measurements weremore » acquired on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope. The fluoroscope was inverted from the typical orientation providing an x-ray beam originating from above the water tank. The water tank was positioned so that the water level was located at 60cm from the focal spot; which also represents the focal spot to interventional reference plane distance for that fluoroscope. Results: PDDs for 60, 80, 100, and 120 kVp with 0 mm of copper filtration compared well to previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)] for those beam qualities given differences in fluoroscopes, geometric orientation, type of ionization chamber, and the water tank used for data collection. PDDs for 60, 80, 100, and 120 kVp with copper filtration were obtained and are presented, which have not been previously investigated and published. Conclusion: The equipment and processes used to acquire the reported data were sound and compared well with previously published data for PDDs without copper filtration. PDD data for the fluoroscopic x-ray beams incorporating copper filtration can be used as reference data for estimating organ or soft tissue dose at depth involving similar beam qualities or for comparison with mathematical models.« less

  13. Computed radiography as a gamma ray detector—dose response and applications

    NASA Astrophysics Data System (ADS)

    O'Keeffe, D. S.; McLeod, R. W.

    2004-08-01

    Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.

  14. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    PubMed

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  15. The Columbia University proton-induced soft x-ray microbeam.

    PubMed

    Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2011-09-15

    A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

  16. Line focus x-ray tubes—a new concept to produce high brilliance x-rays

    NASA Astrophysics Data System (ADS)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-11-01

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3rd generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy s-1 can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  17. Impact of rare earth element added filters on the X-ray beam spectra: a Monte Carlo approach.

    PubMed

    Eskandarlou, Amir; Jafari, Amir Abbas; Mohammadi, Mohammad; Zehtabian, Mehdi; Faghihi, Reza; Shokri, Abbas; Pourolajal, Jalal

    2014-01-01

    The effectiveness of added filters including conventional and rare earth materials for dental radiography tasks was investigated using a simulation approach. Current study focuses on the combination of a range of various filters to investigate the reduction of radiation absorbed dose and improving the quality of a radiography image. To simulate the X-ray beam spectrum, a MCNP5 code was applied. Relative intensity, beam quality, and mean energy were investigated for a typical dental radiography machine. The impact of different rare-earth materials with different thicknesses and tube voltages on the X-ray spectrum was investigated. For Aluminum as a conventional filter, the modeled X-ray spectra and HVL values were in a good agreement with those reported by IPEM. The results showed that for a 70 kVp voltage, with an increase of the thickness and atomic number of a given added filters, an increase of HVL values were observed. However, with the increase of the attenuator thickness, X-ray beam intensity decreases. For mean energy, different results were observed. It was also found that rare earth made filters reduce high energy X-ray radiation due to k-edge absorption. This leads to an ideal beam for intra-oral radiography tasks. However, as a disadvantage of rare earth added filters, the reduction of the tube output levels should also be considered.

  18. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Despres, Philippe; Beaudoin, Gilles; Gravel, Pierre

    2005-04-01

    A new scanning slit gas detector dedicated to orthopedic x-ray imaging is presented and evaluated in terms of its fundamental imaging characteristics. The system is based on the micromesh gaseous structure detector and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for imaging at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of imaging an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected bymore » the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the images contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm{sup -1}) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 {mu}Gy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal detectors is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in sensitive clientele undergoing intensive x-ray procedures, like young scoliotic women.« less

  19. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  20. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography*

    PubMed Central

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553

  1. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.

    PubMed

    Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian

    2017-01-05

    Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the

  2. Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase

    PubMed Central

    Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael

    2013-01-01

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774

  3. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase.

    PubMed

    Sigfridsson, Kajsa G V; Chernev, Petko; Leidel, Nils; Popovic-Bijelic, Ana; Gräslund, Astrid; Haumann, Michael

    2013-04-05

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.

  4. Diagnostic x-ray dosimetry using Monte Carlo simulation.

    PubMed

    Ioppolo, J L; Price, R I; Tuchyna, T; Buckley, C E

    2002-05-21

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 x 10(7)) than required for the calculation of dose profiles (1 x 10(9)). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  5. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.

    2018-03-01

    In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.

  6. The origins of radiotherapy: discovery of biological effects of X-rays by Freund in 1897, Kienböck's crucial experiments in 1900, and still it is the dose.

    PubMed

    Widder, Joachim

    2014-07-01

    The discovery of X-rays by Wilhelm Conrad Röntgen (1845-1923) was triggered by pursuing an anomalous phenomenon: arousal of fluorescence at a distance from tubes in which cathode rays were elicited, a phenomenon which suggested the existence of a new kind of ray other than cathode rays. The discovery of biological effects of these X-rays by Leopold Freund (1868-1943) was triggered by pursuit of the purportedly useless phenomenon of epilation and dermatitis ensuing from X-ray-diagnostic experiments that others had reported. The crucial experiments performed by Robert Kienböck (1871-1953) entailed the proof that X-ray-dose, not electric phenomena, was the active agent of biological effects ensuing when illuminating the skin using Röntgen tubes. For both the discovery of X-rays and the discovery of their biological effectiveness, priority did not matter, but understanding the physical and medico-biological significance of phenomena that others had ignored as a nuisance. Present discussions about the clinical relevance of improving the dose distribution including protons and other charged particles resemble those around 1900 to a certain degree. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  8. Red blood cells metabolome changes upon treatment with different X-ray irradiation doses.

    PubMed

    Baroni, Fabio; Marraccini, Chiara; Merolle, Lucia; Piccagli, Vando; Lambertini, Daniele; Iori, Mauro; Fasano, Tommaso; Casali, Emanuela; Spisni, Alberto; Baricchi, Roberto; Pertinhez, Thelma A

    2018-06-07

    The upholding of red blood cells (RBC) quality and the removal of leukocytes are two essential issues in transfusion therapy. Leukodepletion provides optimum results, nonetheless there are cases where irradiation is recommended for some groups of hematological patients such as the ones with chronic graft-vs-host disease, congenital cellular immunodeficiency, and hematopoietic stem cell transplant recipients. The European guidelines suggest irradiation doses from 25 to 50 Gray (Gγ). We evaluated the effect of different prescribed doses (15 to 50 Gγ) of X-ray irradiation on fresh leukodepleted RBCs bags using a novel protocol that provides a controlled irradiation. Biochemical assays integrated with RBCs metabolome profile, assessed by nuclear magnetic resonance spectroscopy, were performed on RBC units supernatant, during 14 days storage. Metabolome analysis evidenced a direct correlation between concentration increase of three metabolites, glycine, glutamine and creatine, and irradiation dose. Higher doses (35 and 50 Gγ) effect on RBC mean corpuscular volume, hemolysis, and ammonia concentration are considerable after 7 and 14 days of storage. Our data show that irradiation with 50 Gγ should be avoided and we suggest that 35 Gγ should be the upper limit. Moreover, we suggest for leukodepleted RBCs units the irradiation with the prescribed dose of 15 Gγ, value at center of bag, and ranging between 13.35-15 Gγ, measured over the entire bag volume, may guarantee the same benefits of a 25 Gγ dose assuring, in addition, a better quality of RBCs.

  9. Dose Enhancement near Metal Interfaces in Synthetic Diamond Based X-ray Dosimeters

    NASA Astrophysics Data System (ADS)

    Alamoudi, Dalal

    Diamond is an attractive material for medical dosimetry due to its radiation hardness, fast response, chemical resilience, small sensitive volume, high spatial resolution, near-tissue equivalence, and energy and dose rate independence. These properties make diamond a promising material for medical dosimetry compared to other semiconductor detector materials and wider radiation detection applications. This study is focused on one of the important factors to consider in the radiation detector; the influence of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond radiation dosimeters with carbon based electrodes as a function of bias voltages. Monte Carlo (MC) simulations with BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigation. MC simulations show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystal (SC) and one polycrystalline (PC) samples with carbon based electrodes were used. The samples were each mounted inside a tissue equivalent encapsulation design in order to minimize fluence perturbations. Copper, Gold and Lead have been investigated experimentally as generators of photoelectrons using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond detector. The variation in the photocurrent ratio measurements depends on the type of diamond samples, their electrode fabrication and the applied bias voltages indicating that the dose enhancement from diamond-metal interface modifies the electronic performance of the detector.

  10. Early effects comparison of X-rays delivered at high-dose-rate pulses by a plasma focus device and at low dose rate on human tumour cells.

    PubMed

    Virelli, A; Zironi, I; Pasi, F; Ceccolini, E; Nano, R; Facoetti, A; Gavoçi, E; Fiore, M R; Rocchi, F; Mostacci, D; Cucchi, G; Castellani, G; Sumini, M; Orecchia, R

    2015-09-01

    A comparative study has been performed on the effects of high-dose-rate (DR) X-ray beams produced by a plasma focus device (PFMA-3), to exploit its potential medical applications (e.g. radiotherapy), and low-DR X-ray beams produced by a conventional source (XRT). Experiments have been performed at 0.5 and 2 Gy doses on a human glioblastoma cell line (T98G). Cell proliferation rate and potassium outward currents (IK) have been investigated by time lapse imaging and patch clamp recordings. The results showed that PFMA-3 irradiation has a greater capability to reduce the proliferation rate activity with respect to XRT, while it does not affect IK of T98G cells at any of the dose levels tested. XRT irradiation significantly reduces the mean IK amplitude of T98G cells only at 0.5 Gy. This work confirms that the DR, and therefore the source of radiation, is crucial for the planning and optimisation of radiotherapy applications. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. X-ray Crystal Truncation Rod Studies of Surface Oxidation and Reduction on Pt(111)

    DOE PAGES

    Liu, Yihua; Barbour, Andi; Komanicky, Vladimir; ...

    2016-02-26

    Here, we present X-ray crystal truncation rods measurements of Pt(111) surface under electrochemical conditions. Analyses of crystal truncation rods reveal that surface oxide formation buckles the top surface layer of platinum to two different heights at the potential (0.95 V vs RHE) below the so-called place-exchange potential. While the anti-Bragg intensity, sensitive to the top surface layer, drops in response to the anodic charge transfers, its responses to the cathodic charge transfers are significantly delayed. Implications to the surface oxidation and reduction behaviors are discussed.

  12. Low-Dose CT of the Paranasal Sinuses: Minimizing X-Ray Exposure with Spectral Shaping.

    PubMed

    Wuest, Wolfgang; May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael

    2016-11-01

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192x0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 × 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI vol 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. • Spectral optimization (tin filtration) is beneficial to low-dose parasinus CT • Tin filtration at 100 kV yields sufficient image quality for pre-operative planning • Diagnostic parasinus CT can be performed with an effective dose <0.05 mSv.

  13. X-ray versus gamma irradiation effects on polymers

    NASA Astrophysics Data System (ADS)

    Croonenborghs, B.; Smith, M. A.; Strain, P.

    2007-11-01

    Today, the most common methods used for medical device sterilisation are by gaseous ethylene oxide and by electron beam or gamma irradiation. With X-ray sterilisation about to enter the market, its material compatibility needs to be assessed at doses typically encountered during a sterilisation process. This paper reports on a study that compares the effects of exposing different types of plastics that are commonly used in medical devices to 60Co or to 5 MeV X-rays. The dose rate for both irradiation modalities was of the same order of magnitude. Under these conditions, both types of radiation are found to have similar effects on polymer properties.

  14. Dynamic electronic collimation method for 3-D catheter tracking on a scanning-beam digital x-ray system

    PubMed Central

    Dunkerley, David A. P.; Slagowski, Jordan M.; Funk, Tobias; Speidel, Michael A.

    2017-01-01

    Abstract. Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3-D catheter tracking. This work proposes a method of dose-reduced 3-D catheter tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. This is achieved through the selective deactivation of focal spot positions not needed for the catheter tracking task. The technique was retrospectively evaluated with SBDX detector data recorded during a phantom study. DEC imaging of a catheter tip at isocenter required 340 active focal spots per frame versus 4473 spots in full field-of-view (FOV) mode. The dose-area product (DAP) and peak skin dose (PSD) for DEC versus full FOV scanning were calculated using an SBDX Monte Carlo simulation code. The average DAP was reduced to 7.8% of the full FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full FOV value. The root-mean-squared-deviation between DEC-based 3-D tracking coordinates and full FOV 3-D tracking coordinates was less than 0.1 mm. The 3-D distance between the tracked tip and the sheath centerline averaged 0.75 mm. DEC is a feasible method for dose reduction during SBDX 3-D catheter tracking. PMID:28439521

  15. Spherical grating based x-ray Talbot interferometry.

    PubMed

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-11-01

    Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh-Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose

  16. MO-FG-CAMPUS-IeP1-04: Kerma Area Product Calculation for Non-Uniform X-Ray Fields Using a Skin Dose Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Xiong, Z; Rudin, S

    Purpose: The functionality of the Dose-Tracking System (DTS) has been expanded to include the calculation of the Kerma-Area Product (KAP) for non-uniform x-ray fields such as result from the use of compensation filters during fluoroscopic procedures Methods: The DTS calculates skin dose during fluoroscopic interventions and provides a color-coded dose map on a patient-graphic model. The KAP is the integral of air kerma over the x-ray field and is usually measured with a transmission-ionization chamber that intercepts the entire x-ray beam. The DTS has been modified to determine KAP when there are beam non-uniformities that can be modeled. For example,more » the DTS includes models of the three compensation filters with tapered edges located in the collimator assembly of the Toshiba Infinix fluoroscopic C-Arm and can track their movement. To determine the air kerma after the filters, DTS includes transmission factors for the compensation filters as a function of kVp and beam filtration. A virtual KAP dosimeter is simulated in the DTS by an array of graphic vertices; the air kerma at each vertex is corrected by the field non-uniformity, which in this case is the attenuation factor for those rays which pass through the filter. The products of individual vertex air-kerma values for all vertices within the beam times the effective-area-per-vertex are summed for each x-ray pulse to yield the KAP per pulse and the cumulative KAP for the procedure is then calculated. Results: The KAP values estimated by DTS with the compensation filter inserted into the x-ray field agree within ± 6% with the values displayed on the fluoroscopy unit monitor, which are measured with a transmission chamber. Conclusion: The DTS can account for field non-uniformities such as result from the use of compensation filters in calculating KAP and can obviate the need for a KAP transmission ionization chamber. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  17. Roles of oxidative stress in synchrotron radiation X-ray-induced testicular damage of rodents

    PubMed Central

    Ma, Yingxin; Nie, Hui; Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Shao, Jiaxiang; He, Xin; Zhang, Tingting; Zheng, Chaobo; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has characteristic properties such as coherence and high photon flux, which has excellent potential for its applications in medical imaging and cancer treatment. However, there is little information regarding the mechanisms underlying the damaging effects of SR X-ray on biological tissues. Oxidative stress plays an important role in the tissue damage induced by conventional X-ray, while the role of oxidative stress in the tissue injury induced by SR X-ray remains unknown. In this study we used the male gonads of rats as a model to study the roles of oxidative stress in SR X-ray-induced tissue damage. Exposures of the testes to SR X-ray at various radiation doses did not significantly increase the lipid peroxidation of the tissues, assessed at one day after the irradiation. No significant decreases in the levels of GSH or total antioxidation capacity were found in the SR X-ray-irradiated testes. However, the SR X-ray at 40 Gy induced a marked increase in phosphorylated H2AX – a marker of double-strand DNA damage, which was significantly decreased by the antioxidant N-acetyl cysteine (NAC). NAC also attenuated the SR X-ray-induced decreases in the cell layer number of seminiferous tubules. Collectively, our observations have provided the first characterization of SR X-ray-induced oxidative damage of biological tissues: SR X-ray at high doses can induce DNA damage and certain tissue damage during the acute phase of the irradiation, at least partially by generating oxidative stress. However, SR X-ray of various radiation doses did not increase lipid peroxidation. PMID:22837810

  18. Treatment of foods with high-energy X rays

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  19. X-ray fluorescence tomographic system design and image reconstruction.

    PubMed

    Cong, Wenxiang; Shen, Haiou; Cao, Guohua; Liu, Hong; Wang, Ge

    2013-01-01

    In this paper, we presented a new design of x-ray fluorescence CT imaging system. For detecting fuorescence signals of gold nanoparticles in-vivo, multiple spectroscopic detectors are arranged and rotated orthogonal to an excited region of interest so that a localized scan can be acquired with a maximized efficiency. Excitation filtration was employed to minimize the effects of low-energy x-rays and background scattering for lowering radiation dose to the object. Numerical simulations showed that the radiation dose is less than 300 mGy/second for a complete 30 views tomographic scan; and the sensitivity of 3D fluorescence signal detection is up to 0.2% contrast concentrations of nanoparticles. The x-ray fluorescence computed tomography is an important molecular imaging tool. It can be used directly in samall animal research. It has great translational potential for future clinical applications.

  20. Stellar winds in binary X-ray systems

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.; Vitello, P. A. J.

    1982-01-01

    It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.

  1. Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol

    PubMed Central

    Gao, Yang; Bian, Zhaoying; Huang, Jing; Zhang, Yunwan; Niu, Shanzhou; Feng, Qianjin; Chen, Wufan; Liang, Zhengrong; Ma, Jianhua

    2014-01-01

    To realize low-dose imaging in X-ray computed tomography (CT) examination, lowering milliampere-seconds (low-mAs) or reducing the required number of projection views (sparse-view) per rotation around the body has been widely studied as an easy and effective approach. In this study, we are focusing on low-dose CT image reconstruction from the sinograms acquired with a combined low-mAs and sparse-view protocol and propose a two-step image reconstruction strategy. Specifically, to suppress significant statistical noise in the noisy and insufficient sinograms, an adaptive sinogram restoration (ASR) method is first proposed with consideration of the statistical property of sinogram data, and then to further acquire a high-quality image, a total variation based projection onto convex sets (TV-POCS) method is adopted with a slight modification. For simplicity, the present reconstruction strategy was termed as “ASR-TV-POCS.” To evaluate the present ASR-TV-POCS method, both qualitative and quantitative studies were performed on a physical phantom. Experimental results have demonstrated that the present ASR-TV-POCS method can achieve promising gains over other existing methods in terms of the noise reduction, contrast-to-noise ratio, and edge detail preservation. PMID:24977611

  2. Analysis of Patients' X-ray Exposure in 146 Percutaneous Radiologic Gastrostomies.

    PubMed

    Petersen, Tim-Ole; Reinhardt, Martin; Fuchs, Jochen; Gosch, Dieter; Surov, Alexey; Stumpp, Patrick; Kahn, Thomas; Moche, Michael

    2017-09-01

    Purpose  Analysis of patient´s X-ray exposure during percutaneous radiologic gastrostomies (PRG) in a larger population. Materials and Methods  Data of primary successful PRG-procedures, performed between 2004 and 2015 in 146 patients, were analyzed regarding the exposition to X-ray. Dose-area-product (DAP), dose-length-product (DLP) respectively, and fluoroscopy time (FT) were correlated with the used x-ray systems (Flatpanel Detector (FD) vs. Image Itensifier (BV)) and the necessity for periprocedural placement of a nasogastric tube. Additionally, the effective X-ray dose for PRG placement using fluoroscopy (DL), computed tomography (CT), and cone beam CT (CBCT) was estimated using a conversion factor. Results  The median DFP of PRG-placements under fluoroscopy was 163 cGy*cm 2 (flat panel detector systems: 155 cGy*cm 2 ; X-ray image intensifier: 175 cGy*cm 2 ). The median DLZ was 2.2 min. Intraprocedural placement of a naso- or orogastric probe (n = 68) resulted in a significant prolongation of the median DLZ to 2.5 min versus 2 min in patients with an already existing probe. In addition, dose values were analyzed in smaller samples of patients in which the PRG was placed under CBCT (n = 7, median DFP = 2635 cGy*cm 2 ), or using CT (n = 4, median DLP = 657 mGy*cm). Estimates of the median DFP and DLP showed effective doses of 0.3 mSv for DL-assisted placements (flat panel detector 0.3 mSv, X-ray image converter 0.4 mSv), 7.9 mSv using a CBCT - flat detector, and 9.9 mSv using CT. This corresponds to a factor 26 of DL versus CBCT, or a factor 33 of DL versus CT. Conclusion  In order to minimize X-ray exposure during PRG-procedures for patients and staff, fluoroscopically-guided interventions should employ flat detector systems with short transmittance sequences in low dose mode and with slow image frequency. Series recordings can be dispensed with. The intraprocedural placement of a naso- or orogastric probe

  3. Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields.

    PubMed

    Saha, Shreya; Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Ricket, Nicole; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2014-11-06

    The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10-200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1-5 mGy X-rays.

  4. Automated X-ray quality control of catalytic converters

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2017-02-01

    Catalytic converters are devices attached to the exhaust system of automobile or other engines to eliminate or substantially reduce polluting emissions. They consist of coated substrates enclosed in a stainless steel housing. The substrate is typically made of ceramic honeycombs; however stainless steel foil honeycombs are also used. The coating is usually a slurry of alumina, silica, rare earth oxides and platinum group metals. The slurry also known as the wash coat is applied to the substrate in two doses, one on each end of the substrate; in some cases multiple layers of coating are applied. X-ray imaging is used to inspect the applied coating depth on a substrate to confirm compliance with quality requirements. Automated image analysis techniques are employed to measure the coating depth from the X-ray image. Coating depth is assessed by analysis of attenuation line profiles in the image. Edge detection algorithms with noise reduction and outlier rejection are used to calculate the coating depth at a specified point along an attenuation line profile. Quality control of the product is accomplished using several attenuation line profile regions for coating depth measurements, with individual pass or fail criteria specified for each region.

  5. Radiation dose reduction in chest radiography using a flat-panel amorphous silicon detector.

    PubMed

    Hosch, W P; Fink, C; Radeleff, B; kampschulte a, A; Kauffmann, G W; Hansmann, J

    2002-10-01

    The aim of this study was to evaluate the image quality and the potential for radiation dose reduction with a digital flat-panel amorphous silicon detector radiography system. Using flat-panel technology, radiographs of an anthropomorphic thorax phantom were taken with a range of technical parameters (125kV, 200mA and 5, 4, 3.2, 2, 1, 0.5, and 0.25mAs) which were equivalent to a radiation dose of 332, 263, 209, 127, 58.7, 29, and 14 microGy, respectively. These images were compared to radiographs obtained by a conventional film-screen radiography system at 125kV, 200mA and 5mAs (equivalent to 252 microGy) which served as reference. Three observers evaluated independently the visibility of simulated rounded lesions and anatomical structures, comparing printed films from the flat-panel amorphous silicon detector and conventional x-ray system films. With flat-panel technology, the visibility of rounded lesions and normal anatomical structures at 5, 4, and 3.2mAs was superior compared to the conventional film-screen radiography system. (P< or =0.0001). At 2mAs, improvement was only marginal (P=0.19). At 1.0, 0.5 and 0.25mAs, the visibility of simulated rounded lesions was worse (P< or =0.004). Comparing fine lung parenchymal structures, the flat-panel amorphous silicon detector showed improvement for all exposure levels down to 2mAs and equality at 1mAs. Compared to a conventional x-ray film system, the flat-panel amorphous silicon detector demonstrated improved image quality and the possibility for a reduction of the radiation dose by 50% without loss in image quality.

  6. In situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks

    PubMed Central

    Rothkamm, Kai; Crosbie, Jeffrey C.; Daley, Frances; Bourne, Sarah; Barber, Paul R.; Vojnovic, Borivoj; Cann, Leonie; Rogers, Peter A. W.

    2012-01-01

    Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to ‘spared’ tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30–40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies. PMID:22238667

  7. Technical Note: Scanning of parallel-plate ionization chamber and diamond detector for measurements of water-dose profiles in the vicinity of a narrow x-ray microbeam.

    PubMed

    Nariyama, Nobuteru

    2017-12-01

    Scanning of dosimeters facilitates dose distribution measurements with fine spatial resolutions. This paper presents a method of conversion of the scanning results to water-dose profiles and provides an experimental verification. An Advanced Markus chamber and a diamond detector were scanned at a resolution of 6 μm near the beam edges during irradiation with a 25-μm-wide white narrow x-ray beam from a synchrotron radiation source. For comparison, GafChromic films HD-810 and HD-V2 were also irradiated. The conversion procedure for the water dose values was simulated with Monte Carlo photon-electron transport code as a function of the x-ray incidence position. This method was deduced from nonstandard beam reference-dosimetry protocols used for high-energy x-rays. Among the calculated nonstandard beam correction factors, P wall , which is the ratio of the absorbed dose in the sensitive volume of the chamber with water wall to that with a polymethyl methacrylate wall, was found to be the most influential correction factor in most conditions. The total correction factor ranged from 1.7 to 2.7 for the Advanced Markus chamber and from 1.15 to 1.86 for the diamond detector as a function of the x-ray incidence position. The water dose values obtained with the Advanced Markus chamber and the HD-810 film were in agreement in the vicinity of the beam, within 35% and 18% for the upper and lower sides of the beam respectively. The beam width obtained from the diamond detector was greater, and the doses out of the beam were smaller than the doses of the others. The comparison between the Advanced Markus chamber and HD-810 revealed that the dose obtained with the scanned chamber could be converted to the water dose around the beam by applying nonstandard beam reference-dosimetry protocols. © 2017 American Association of Physicists in Medicine.

  8. ESTIMATION OF ADULT PATIENT DOSES FOR CHEST X-RAY EXAMINATIONS AND COMPARISON WITH DIAGNOSTIC REFERENCE LEVELS (DRLs).

    PubMed

    Bas Mor, H; Altinsoy, N; Söyler, I

    2018-05-08

    The aim of this study was to evaluate the radiation doses to patient during chest (posterior anterior/and lateral) examinations. The study was performed in three public hospitals of İstanbul province with a total of 300 adult patients. Entrance surface dose (ESD) measurements were conducted on computed radiography, digital radiography and screen film system. ESD was estimated by using International Atomic Energy Agency (IAEA) model and Davies model which are the common indirect models. Results were compared with diagnostic reference levels from the European Commission, IAEA and National Radiological Protection Board. Although the results are compatible with the international diagnostic reference levels, they present variations between the hospitals. Dose variations for the same type of X-ray examination support the idea that further optimization is possible.

  9. Differential Impact of Single-Dose Fe Ion and X-Ray Irradiation on Endothelial Cell Transcriptomic and Proteomic Responses

    PubMed Central

    Baselet, Bjorn; Azimzadeh, Omid; Erbeldinger, Nadine; Bakshi, Mayur V.; Dettmering, Till; Janssen, Ann; Ktitareva, Svetlana; Lowe, Donna J.; Michaux, Arlette; Quintens, Roel; Raj, Kenneth; Durante, Marco; Fournier, Claudia; Benotmane, Mohammed A.; Baatout, Sarah; Sonveaux, Pierre; Tapio, Soile; Aerts, An

    2017-01-01

    Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial

  10. Evaluation of flow with dynamic x-ray imaging for aneurysms

    NASA Astrophysics Data System (ADS)

    Dohatcu, Andreea Cristina

    characteristics as a result of interaction with an AVS. A comparison with optical-dye-dilution data and 3D Computational Fluid Dynamics virtual angiography (CFD) data in similar conditions was also performed. Task oriented optimization of x-ray system parameters with regard to the needs of obtaining TDCs so as to obtain more accurate information of contrast media flow into aneurysms from angiographic images, were done. This includes a comparison between a commercial x-ray Flat Panel Detector (FPD) and an in-house new x-ray micro detector prototype, the Micro-Angiographic Fluoroscope (MAF). X-ray dose levels given in clinical procedures similar in length and complexity to aneurysm treatments, were studied on a statistical representative batch. It was concluded that there is a need for reduction of radiation-induced skin injuries to patients following interventional procedures. Hence, we developed and assessed a method to evaluate the variation of image quality (which impacts the success of TDC analysis) and dose with the acquisition mode operation logic and the automatic-brightness-control (ABC); this method was applied to two clinical interventional fluoroscopic imaging systems: one with an Image Intensifier (II) and the other with a Flat Panel Detector (FPD). The resultant ABC tracking curves obtained for the various imaging modes available on a given system can then be used for proper selection of technique to achieve the needed contrast signal to noise ratio to acquire adequate data for TDC evaluation, while controlling the patient dose.

  11. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  12. X-ray microscopy with high-resolution zone plates: recent developments

    NASA Astrophysics Data System (ADS)

    Schneider, Gerd; Wilhein, Thomas; Niemann, Bastian; Guttman, P.; Schliebe, T.; Lehr, J.; Aschoff, H.; Thieme, Juergen; Rudolph, Dietbert M.; Schmahl, Guenther A.

    1995-09-01

    In order to expand the applications of x-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross- linked polymer chain electron beam resist allows us to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for x-ray microscopy was developed and implemented on the Gottingen x-ray microscope at BESSY. The effects of x ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free x-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T less than or equal to 130 K unfixed biological specimen can be exposed to a radiation dose of 109 - 1010 Gy without any observable structural changes. A multiple-angle viewing stage allows us to take stereoscopic images with the x-ray microscope, giving a 3D-impression of the object. As an example for the applications of x-ray microscopy in biology, erythrocytes infected by malaria parasite have been examined. Studies of the aggregation of hematite by sodium sulfate gives an example for the application of x-ray microscopy in the field of colloid research.

  13. [Characteristics of specifications of transportable inverter-type X-ray equipment].

    PubMed

    Yamamoto, Keiichi; Miyazaki, Shigeru; Asano, Hiroshi; Shinohara, Fuminori; Ishikawa, Mitsuo; Ide, Toshinori; Abe, Shinji; Negishi, Toru; Miyake, Hiroyuki; Imai, Yoshio; Okuaki, Tomoyuki

    2003-07-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met JIS standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment.

  14. WE-FG-BRA-01: Cancer Treatment Utilizing Photo-Activation of Psoralen with KV X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, M; Yoon, S; Meng, B

    Purpose: This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with immunogenic anti-cancer potential. Psoralen therapies have been limited due to the requirement for psoralen activation by UVA light. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and reradiate (phosphoresce) at UV wavelengths. Methods: The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed tomore » X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry to investigate treatment induced apoptosis. Methylene blue staining, and WST assays were also used. X-PACT was then evaluated in an in-vivo pilot study on BALBc mice with syngeneic 4T1 tumors, including control arms for X-PACT components. Analysis focused on tumor growth delay. Results: A multivariable regression analysis of 36 independent in-vitro irradiation experiments demonstrated that X-PACT induces significant tumor cell apoptosis and cytotoxicity on all three tumor cell lines in-vitro (p<0.0001). Neither psoralen nor phosphor alone had a strongly significant effect. The in-vivo studies show a pronounced tumor growth delay when compared to controls (42% reduction at 25 days, p=0.0002). Conclusions: These studies demonstrate for the first time a therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation generate UVA light in-situ (including deep seated lesions) which in-turn photo-activates powerful anticancer therapeutics

  15. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Brian M.; Beachey, David J.; Pignol, Jean-Philippe

    2007-10-15

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume ismore » dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator (2) to characterize the energy of this beam (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3x0.3 to 4.0x4.0 cm{sup 2}, varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a

  16. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  17. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  18. Evaluation of Exposure From a Low Energy X-Ray Device Using Thermoluminescent Dosimeters

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Harris, William S., Jr.

    1997-01-01

    The exposure from an electron beam welding device was evaluated using thermoluminescent dosimeters (TLDs). The device generated low energy X-rays which the current dose equivalent conversion algorithm was not designed to evaluate making it necessary to obtain additional information relating to TLD operation at the photon energies encountered with the device. This was accomplished by performing irradiations at the National Institute of Standards and Technology (NIST) using low energy X-ray techniques. The resulting data was used to determine TLD badge response for low energy X-rays and to establish the relationship between TLD element response and the dose equivalent at specific depths in tissue for these photon energies. The new energy/dose equivalent calibration data was used to calculate the shallow and eye dose equivalent of badges exposed to the device.

  19. Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: a Monte Carlo study

    PubMed Central

    Jung, Seongmoon; Sung, Wonmo; Ye, Sung-Joon

    2017-01-01

    This work aims to develop a Monte Carlo (MC) model for pinhole K-shell X-ray fluorescence (XRF) imaging of metal nanoparticles using polychromatic X-rays. The MC model consisted of two-dimensional (2D) position-sensitive detectors and fan-beam X-rays used to stimulate the emission of XRF photons from gadolinium (Gd) or gold (Au) nanoparticles. Four cylindrical columns containing different concentrations of nanoparticles ranging from 0.01% to 0.09% by weight (wt%) were placed in a 5 cm diameter cylindrical water phantom. The images of the columns had detectable contrast-to-noise ratios (CNRs) of 5.7 and 4.3 for 0.01 wt% Gd and for 0.03 wt% Au, respectively. Higher concentrations of nanoparticles yielded higher CNR. For 1×1011 incident particles, the radiation dose to the phantom was 19.9 mGy for 110 kVp X-rays (Gd imaging) and 26.1 mGy for 140 kVp X-rays (Au imaging). The MC model of a pinhole XRF can acquire direct 2D slice images of the object without image reconstruction. The MC model demonstrated that the pinhole XRF imaging system could be a potential bioimaging modality for nanomedicine. PMID:28860750

  20. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Selvakumaran, T. S.

    2006-03-01

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  1. Hard X-ray-induced damage on carbon–binder matrix for in situ synchrotron transmission X-ray microscopy tomography of Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Cheolwoong; Kang, Huixiao; De Andrade, Vincent

    2017-03-21

    The electrode of Li-ion batteries is required to be chemically and mechanically stable in the electrolyte environment forin situmonitoring by transmission X-ray microscopy (TXM). Evidence has shown that continuous irradiation has an impact on the microstructure and the electrochemical performance of the electrode. To identify the root cause of the radiation damage, a wire-shaped electrode is soaked in an electrolyte in a quartz capillary and monitored using TXM under hard X-ray illumination. The results show that expansion of the carbon–binder matrix by the accumulated X-ray dose is the key factor of radiation damage. Forin situTXM tomography, intermittent X-ray exposure duringmore » image capturing can be used to avoid the morphology change caused by radiation damage on the carbon–binder matrix.« less

  2. X-ray emission reduction and photon dose lowering by energy loss of fast electrons induced by return current during the interaction of a short-pulse high-intensity laser on a metal solid target

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.

    2018-04-01

    During the interaction of a short-pulse high-intensity laser with the preplasma produced by the pulse's pedestal in front of a high-Z metal solid target, high-energy electrons are produced, which in turn create an X-ray source by interacting with the atoms of the converter target. The current brought by the hot electrons is almost completely neutralized by a return current j → driven by the background electrons of the conductive target, and the force exerted on the hot electrons by the electric field E → which induces Ohmic heating j → .E → , produced by the background electrons, reduces the energy of the hot electrons and thus lowers the X-ray emission and photon dose. This effect is analyzed here by means of a simple 1-D temperature model which contains the most significant terms of the relativistic Fokker-Planck equation with electron multiple scattering, and the energy equations of ions, hot, and cold electrons are then solved numerically. This Ohmic heating energy loss fraction τOh is introduced as a corrective term in an improved photon dose model. For instance, for a ps laser pulse with 10 μm spot size, the dose obtained with a tantalum target is reduced by less than about 10% to 40% by the Ohmic heating, depending upon the plasma scale length, target thickness, laser parameters, and in particular its spot size. The laser and plasma parameters may be optimized to limit the effect of Ohmic heating, for instance at a small plasma scale length or small laser spot size. Conversely, others regimes not suitable for dose production are identified. For instance, the resistive heating is enhanced in a foam target or at a long plasma scale length and high laser spot size and intensity, as the mean emission angle θ0 of the incident hot electron bunch given by the ponderomotive force is small; thus, the dose produced by a laser interacting in a gas jet may be inhibited under these circumstances. The resistive heating may also be maximized in order to reduce

  3. Evaluation of scattered radiation emitted from X-ray security scanners on occupational dose to airport personnel

    NASA Astrophysics Data System (ADS)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-06-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.

  4. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  5. Femtosecond X-ray protein nanocrystallography

    PubMed Central

    Chapman, Henry N.; Fromme, Petra; Barty, Anton; White, Thomas A.; Kirian, Richard A.; Aquila, Andrew; Hunter, Mark S.; Schulz, Joachim; DePonte, Daniel P.; Weierstall, Uwe; Doak, R. Bruce; Maia, Filipe R. N. C.; Martin, Andrew V.; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L.; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J.; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D.; Hau-Riege, Stefan P.; Frank, Matthias; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Williams, Garth J.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E.; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M.; Barends, Thomas R. M.; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C. H.

    2012-01-01

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1-3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage. PMID:21293373

  6. Femtosecond X-ray protein nanocrystallography.

    PubMed

    Chapman, Henry N; Fromme, Petra; Barty, Anton; White, Thomas A; Kirian, Richard A; Aquila, Andrew; Hunter, Mark S; Schulz, Joachim; DePonte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Maia, Filipe R N C; Martin, Andrew V; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L; Epp, Sascha W; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sébastien; Bogan, Michael J; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Saša; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Reich, Christian; Pietschner, Daniel; Strüder, Lothar; Hauser, Günter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kühnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D; Hau-Riege, Stefan P; Frank, Matthias; Hampton, Christina Y; Sierra, Raymond G; Starodub, Dmitri; Williams, Garth J; Hajdu, Janos; Timneanu, Nicusor; Seibert, M Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schröter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M; Barends, Thomas R M; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn; Spence, John C H

    2011-02-03

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  7. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.

    PubMed

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita

    2015-11-01

    Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for

  8. X-ray-induced bystander responses reduce spontaneous mutations in V79 cells

    PubMed Central

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomita, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10–5 (background level), and the frequency decreased to 5.3 × 10–6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. PMID:23660275

  9. MEASUREMENT OF RADIATION DOSES TO THE EYE LENS DURING ORTHOPEDIC SURGERY USING AN C-ARM X-RAY SYSTEM.

    PubMed

    Suzuki, Akira; Matsubara, Kosuke; Sasa, Yuko

    2018-04-01

    The present study aimed to determine doses delivered to the eye lenses of surgeons while using the inverted-C-arm technique and the protective effect of leaded spectacles during orthopedic surgery. The kerma in air was measured at five positions on leaded glasses positioned near the eye lens and on the neck using small optically stimulated luminescence (OSL) dosemeters. The lens equivalent dose was also measured at the neck using an OSL dosemeter. The maximum equivalent dose to the eye lens and the maximum kerma were 0.8 mSv/month and 0.66 mGy/month, respectively. The leaded glasses reduced the exposure by ~60%. Even if the surgeons are exposed to the maximum dose of X-ray radiation for 5 years, the equivalent doses to the eye lens will not exceed the present limit recommended by the ICRP.

  10. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  11. Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.

  12. Perfectly Cold Crystals: What Happens When They Are X-rayed?

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren S.; Snell, Edward H.

    2003-01-01

    For many macromolecular crystals the cryo-preservation of these crystals during X-ray data collection is of crucial importance, particularly at synchrotron facilities where the crystals rapidly receive a high dose of radiation. A practical variable to ensure adequate preservation is the variation of the cryo-protectant present when the crystal is preserved. Our initial approach to study X-ray diffraction data quality as a function of cryo-protectant present when preserving a xylose isomerase crystal shows that the data quality can be tremendously improved by recipe adjustment. Guided by crystal mosaicity estimates, we optimized crystal growth conditions to obtain cryo-preserved xylose isomerase crystals that withstand a very high dose of X-rays, with only the smallest amount of radiation damage at ultra-high resolution (1.2Angstroms). The rate at which damage occurs allowed us to collect a series of complete data sets, which show how the data degradation proceeds over time. We are here presenting data for the xylose isomerase crystallization recipe improvement and our interpretation of the crystal degradation process during X-ray data collection.

  13. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2012-05-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.

  14. Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph

    2017-03-01

    Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.

  15. Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields

    PubMed Central

    Saha, Shreya; Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Ricket, Nicole; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2014-01-01

    The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10–200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1–5 mGy X-rays. PMID:25209403

  16. Ross filter pairs for metal artefact reduction in x-ray tomography: a case study based on imaging and segmentation of metallic implants

    NASA Astrophysics Data System (ADS)

    Arhatari, Benedicta D.; Abbey, Brian

    2018-01-01

    Ross filter pairs have recently been demonstrated as a highly effective means of producing quasi-monoenergetic beams from polychromatic X-ray sources. They have found applications in both X-ray spectroscopy and for elemental separation in X-ray computed tomography (XCT). Here we explore whether they could be applied to the problem of metal artefact reduction (MAR) for applications in medical imaging. Metal artefacts are a common problem in X-ray imaging of metal implants embedded in bone and soft tissue. A number of data post-processing approaches to MAR have been proposed in the literature, however these can be time-consuming and sometimes have limited efficacy. Here we describe and demonstrate an alternative approach based on beam conditioning using Ross filter pairs. This approach obviates the need for any complex post-processing of the data and enables MAR and segmentation from the surrounding tissue by exploiting the absorption edge contrast of the implant.

  17. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions☆

    PubMed Central

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-01-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  18. Spherical grating based x-ray Talbot interferometry

    PubMed Central

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  19. Spherical grating based x-ray Talbot interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme formore » a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  20. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis.

    PubMed

    Zhao, Chumin; Kanicki, Jerzy

    2014-09-01

    .3 mR without a significant reduction of DQE. The signal-to-noise ratio of the a-IGZO APS imager under 0.3 mR x-ray exposure is comparable to that of a-Si:H passive pixel sensor imager under 1 mR, indicating good image quality under low dose. A threefold reduction of current tomosynthesis dose is expected if proposed technology is combined with an advanced DBT image reconstruction method. The proposed a-IGZO APS x-ray imager with a pixel pitch<75 μm is capable to achieve a high spatial frequency (>6.67 lp/mm) and a low dose (<0.4 mGy) in next generation DBT systems.

  1. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  2. Analysis of Giant-nucleated Cell Formation Following X-ray and Proton Irradiations

    NASA Astrophysics Data System (ADS)

    Almahwasi, Ashraf Abdu

    Radiation-induced genetic instability has been observed in survivors of irradiated cancerous and normal cells in vitro and in vivo and has been determined in different forms, such as delayed cell death, chromosomal aberration or mutation. A well defined and characterized normal human-diploid AG1522 fibroblast cell line was used to study giant-nucleated cell (GCs) formation as the ultimate endpoint of this research. The average nuclear cross-sectional areas of the AG1522 cells were measured in mum2. The doubling time required by the AG1522 cells to divide was measured. The potential toxicity of the Hoechst dye at a working concentration on the live AG1522 cells was assessed. The yield of giant cells was determined at 7, 14 and 21 days after exposure to equivalent clinical doses of 0.2, 1 or 2 Gy of X-ray or proton irradiation. Significant differences were found to exist between X-ray or proton irradiation when compared with sham-irradiated control populations. The frequency of GCs induced by X-rays was also compared to those formed in proton irradiated cultures. The results confirm that 1 Gy X-rays are shown to induce higher rates of mitotically arrested GCs, increasing continually over time up to 21 days post-irradiation. The yield of GCs was significantly greater (10%) compared to those formed in proton populations (2%) 21 days postirradiation. The GCs can undergo a prolonged mitotic arrest that significantly increases the length of cell cycle. The arrest of GCs at the mitotic phase for longer periods of time might be indicative of a strategy for cell survival, as it increases the time available for DNA repair and enables an alternative route to division for the cells. However, the reduction in their formation 21 days after both types of radiation might favour GCs formation, ultimately contributing to carcinogenesis or cancer therapy resistance. The X-ray experiments revealed a dose-dependent increase in the GCs up to 14 days after irradiation. Although the proton

  3. Comparison between infrared optical and stereoscopic X-ray technologies for patient setup in image guided stereotactic radiotherapy.

    PubMed

    Tagaste, Barbara; Riboldi, Marco; Spadea, Maria F; Bellante, Simone; Baroni, Guido; Cambria, Raffaella; Garibaldi, Cristina; Ciocca, Mario; Catalano, Gianpiero; Alterio, Daniela; Orecchia, Roberto

    2012-04-01

    To compare infrared (IR) optical vs. stereoscopic X-ray technologies for patient setup in image-guided stereotactic radiotherapy. Retrospective data analysis of 233 fractions in 127 patients treated with hypofractionated stereotactic radiotherapy was performed. Patient setup at the linear accelerator was carried out by means of combined IR optical localization and stereoscopic X-ray image fusion in 6 degrees of freedom (6D). Data were analyzed to evaluate the geometric and dosimetric discrepancy between the two patient setup strategies. Differences between IR optical localization and 6D X-ray image fusion parameters were on average within the expected localization accuracy, as limited by CT image resolution (3 mm). A disagreement between the two systems below 1 mm in all directions was measured in patients treated for cranial tumors. In extracranial sites, larger discrepancies and higher variability were observed as a function of the initial patient alignment. The compensation of IR-detected rotational errors resulted in a significantly improved agreement with 6D X-ray image fusion. On the basis of the bony anatomy registrations, the measured differences were found not to be sensitive to patient breathing. The related dosimetric analysis showed that IR-based patient setup caused limited variations in three cases, with 7% maximum dose reduction in the clinical target volume and no dose increase in organs at risk. In conclusion, patient setup driven by IR external surrogates localization in 6D featured comparable accuracy with respect to procedures based on stereoscopic X-ray imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  5. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  6. Fluorescent x-ray computed tomography to visualize specific material distribution

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1997-10-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.

  7. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  8. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  9. Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.

    PubMed

    Daniels, Robert D; Kubale, Travis L; Spitz, Henry B

    2005-03-01

    Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.

  10. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  11. Evidence that the oxygen enhancement ratio for pink somatic mutations in Tradescantia stamen hairs may approach unity at very low x-ray doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underbrink, A.G.; Woch, B.

    1980-11-01

    Experimental evidence was found that the oxygen enhancement ratio (OER) for pink somatic mutations in the stamen hairs of Tradescantia clone 02 appears to reach unity at X-ray doses of 2 to 3 rad. There is also a small segment on the dose-response curves from about 3 to 10 rad where the OER appears to be dose-dependent. At higher doses the aerated and hypoxic curves are parallel, and the OER is 3.2 up to doses where the mutation frequency reaches a plateau.

  12. Enhanced neoplastic transformation by mammography X rays relative to 200 kVp X rays: indication for a strong dependence on photon energy of the RBE(M) for various end points.

    PubMed

    Frankenberg, D; Kelnhofer, K; Bär, K; Frankenberg-Schwager, M

    2002-01-01

    The fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer. In this study, the efficiency of mammography X rays relative to 200 kVp X rays to induce neoplastic cell transformation was evaluated using cells of a human hybrid cell line (CGL1). For both radiations, a linear-quadratic dose-effect relationship was observed for neoplastic transformation of CGL1 cells; there was a strong linear component for the 29 kVp X rays. The RBE(M) of mammography X rays relative to 200 kVp X rays was determined to be about 4 for doses < or = 0.5 Gy. A comparison of the electron fluences for both X rays provides strong evidence that electrons with energies of < or = 15 keV can induce neoplastic transformation of CGL1 cells. Both the data available in the literature and the results of the present study strongly suggest an increase of RBE(M) for carcinogenesis in animals, neoplastic cell transformation, and clastogenic effects with decreasing photon energy or increasing LET to an RBE(M) approximately 8 for mammography X rays relative to 60Co gamma rays.

  13. The effects of pre-emptive low-dose X-ray irradiation on MIA induced inflammatory pain in rats

    NASA Astrophysics Data System (ADS)

    Hahm, Suk-Chan; Lee, Go-Eun; Kim, Eun-Hye; Kim, Junesun; Lee, Taewoong; Lee, Wonho

    2013-07-01

    This study was performed to determine the effect of pre-emptive low-dose irradiation on the development of inflammatory pain and to characterize the potential mechanisms underlying this effect in osteoarthritis (OA) animal model. Whole-body X-irradiations with 0.1, 0.5, 1 Gy or sham irradiations were performed for 3 days before the induction of ostearthritis with monosodium iodoacetate (MIA) (40 µl, in saline) into the right knee joint in male Sprague Dawley rats. Behavioral tests for arthritic pain including evoked and non-evoked pain were conducted before and after MIA injection and inducible nitric-oxide synthase (iNOS) expression level was measured by western blot. Low-dose radiation significantly prevented the development of mechanical allodynia and thermal hyperalgesia and reduction in weight bearing that is regarded as a behavioral signs of non-evoked pain following MIA injection. Low-dose radiation significantly inhibited the increase in iNOS expression after MIA injection in spinal L3-5 segments in rat. These data suggest that low-dose X-irradiation is able to prevent the development of arthritic pain through modulation of iNOS expression in the spinal cord dorsal horn. Thus, low-dose radiotherapy could be substituted in part for treatment with drugs for patients with chronic inflammatory disease in clinical setting.

  14. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  15. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  16. Imaging Molecular Signatures of Breast Cancer With X-ray Activated Nano-Phosphors

    DTIC Science & Technology

    2011-09-01

    high resolution with a decrease in X-ray dose to healthy tissue. For the first-year training goals, this grant has provided for extensive study in...europium (red) were studied . The light emission was imaged in a clinical X-ray scanner with a cooled CCD camera and a spectrophotometer; dose...Indeed, in a preliminary study , these phosphor were targeted to the Folate receptor (commonly expressed in breast cancer), and uptaken by live cells

  17. Early effects of low dose 12C6+ ion or X-ray irradiation on human peripheral blood lymphocytes

    NASA Astrophysics Data System (ADS)

    Chen, Yingtai; Li, Yumin; Zhang, Hong; Xie, Yi; Chen, Xuezhong; Ren, Jinyu; Zhang, Xiaowei; Zhu, Zijiang; Liu, Hongliang; Zhang, Yawei

    2010-04-01

    The aim of this study was to estimate the acute effects of low dose 12C6+ ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy 12C6+ ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supernatant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-γ and TNF-α in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy 12C6+ ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) 12C6+ radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDI.

  18. Refractive optics to compensate x-ray mirror shape-errors

    NASA Astrophysics Data System (ADS)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  19. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  20. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Wei, Haotong; Fang, Yanjun; Mulligan, Padhraic; Chuirazzi, William; Fang, Hong-Hua; Wang, Congcong; Ecker, Benjamin R.; Gao, Yongli; Loi, Maria Antonietta; Cao, Lei; Huang, Jinsong

    2016-05-01

    The large mobilities and carrier lifetimes of hybrid perovskite single crystals and the high atomic numbers of Pb, I and Br make them ideal for X-ray and gamma-ray detection. Here, we report a sensitive X-ray detector made of methylammonium lead bromide perovskite single crystals. A record-high mobility-lifetime product of 1.2 × 10-2 cm2 V-1 and an extremely small surface charge recombination velocity of 64 cm s-1 are realized by reducing the bulk defects and passivating surface traps. Single-crystal devices with a thickness of 2-3 mm show 16.4% detection efficiency at near zero bias under irradiation with continuum X-ray energy up to 50 keV. The lowest detectable X-ray dose rate is 0.5 μGyair s-1 with a sensitivity of 80 μC Gy-1air cm-2, which is four times higher than the sensitivity achieved with α-Se X-ray detectors. This allows the radiation dose applied to a human body to be reduced for many medical and security check applications.

  1. Synchrotron phase-contrast X-ray imaging reveals fluid dosing dynamics for gene transfer into mouse airways.

    PubMed

    Donnelley, M; Siu, K K W; Jamison, R A; Parsons, D W

    2012-01-01

    Although airway gene transfer research in mouse models relies on bolus fluid dosing into the nose or trachea, the dynamics and immediate fate of delivered gene transfer agents are poorly understood. In particular, this is because there are no in vivo methods able to accurately visualize the movement of fluid in small airways of intact animals. Using synchrotron phase-contrast X-ray imaging, we show that the fate of surrogate fluid doses delivered into live mouse airways can now be accurately and non-invasively monitored with high spatial and temporal resolution. This new imaging approach can help explain the non-homogenous distributions of gene expression observed in nasal airway gene transfer studies, suggests that substantial dose losses may occur at deliver into mouse trachea via immediate retrograde fluid motion and shows the influence of the speed of bolus delivery on the relative targeting of conducting and deeper lung airways. These findings provide insight into some of the factors that can influence gene expression in vivo, and this method provides a new approach to documenting and analyzing dose delivery in small-animal models.

  2. X-Ray Scan Detection for Cargo Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Juan D.; Miller, Steven D.

    ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, andmore » easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF« less

  3. Optically stimulated luminescence in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass

    NASA Astrophysics Data System (ADS)

    Nanto, H.; Nakagawa, R.; Takei, Y.; Hirasawa, K.; Miyamoto, Y.; Masai, H.; Kurobori, T.; Yanagida, T.; Fujimoto, Y.

    2015-06-01

    An intense optically stimulated luminescence (OSL) was observed, for the first time, in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass. It was found that the peak wavelength of OSL emission spectrum and its stimulation spectrum is about 400 nm and 600 nm, respectively. The OSL intensity is depended on the SnO contents (x=0.05-1.5) and the most intense OSL was observed in 1.0 mol% SnO doped glass. It was found that the OSL intensity is increased with increasing x-ray absorbed dose. Fairly good fading characteristics were observed in the x-ray irradiated glass, showing that this glass is useful as a candidate for OSL sensor materials for ionizing radiation monitoring.

  4. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  5. Radiation levels and image quality in patients undergoing chest X-ray examinations

    NASA Astrophysics Data System (ADS)

    de Oliveira, Paulo Márcio Campos; do Carmo Santana, Priscila; de Sousa Lacerda, Marco Aurélio; da Silva, Teógenes Augusto

    2017-11-01

    Patient dose monitoring for different radiographic procedures has been used as a parameter to evaluate the performance of radiology services; skin entrance absorbed dose values for each type of examination were internationally established and recommended aiming patient protection. In this work, a methodology for dose evaluation was applied to three diagnostic services: one with a conventional film and two with digital computerized radiography processing techniques. The x-ray beam parameters were selected and "doses" (specifically the entrance surface and incident air kerma) were evaluated based on images approved in European criteria during postero-anterior (PA) and lateral (LAT) incidences. Data were collected from 200 patients related to 200 PA and 100 LAT incidences. Results showed that doses distributions in the three diagnostic services were very different; the best relation between dose and image quality was found in the institution with the chemical film processing. This work contributed for disseminating the radiation protection culture by emphasizing the need of a continuous dose reduction without losing the quality of the diagnostic image.

  6. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  7. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  8. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    PubMed

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  9. Dosimetric comparison of carbon ion and X-ray radiotherapy for Stage IIIA non-small cell lung cancer.

    PubMed

    Kubo, Nobuteru; Saitoh, Jun-Ichi; Shimada, Hirofumi; Shirai, Katsuyuki; Kawamura, Hidemasa; Ohno, Tatsuya; Nakano, Takashi

    2016-09-01

    The present study compared the dose-volume histograms of patients with Stage IIIA non-small cell lung cancer (NSCLC) treated with carbon ion radiotherapy with those of patients treated with X-ray radiotherapy. Patients with Stage IIIA NSCLC (n = 10 patients for each approach) were enrolled. Both radiotherapy plans were calculated with the same targets and organs at risk on the same CT. The treatment plan for the prophylactic lymph node and primary tumor (PTV1) delivered 40 Gy for X-ray radiotherapy and 40 Gy (relative biological effectiveness; RBE) for carbon ion radiotherapy. The total doses for the primary tumor and clinically positive lymph nodes (PTV2) were 60 Gy for X-ray radiotherapy and 60 Gy (RBE) for carbon ion radiotherapy. The homogeneity indexes for PTV1 and PTV2 were superior for carbon ion radiotherapy in comparison with X-ray radiotherapy (PTV1, 0.57 vs 0.65, P = 0.009; PTV2, 0.07 vs 0.16, P = 0.005). The normal lung mean dose, V5, V10 and V20 for carbon ion radiotherapy were 7.7 Gy (RBE), 21.4%, 19.7% and 17.0%, respectively, whereas the corresponding doses for X-ray radiotherapy were 11.9 Gy, 34.9%, 26.6% and 20.8%, respectively. Maximum spinal cord dose, esophageal maximum dose and V50, and bone V10, V30 and V50 were lower with carbon ion radiotherapy than with X-ray radiotherapy. The present study indicates that carbon ion radiotherapy provides a more homogeneous target dose and a lower dose to organs at risk than X-ray radiotherapy for Stage IIIA non-small cell lung cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  11. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies.

    PubMed

    Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  12. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    PubMed Central

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-01-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579

  13. A versatile indirect detector design for hard X-ray microimaging

    NASA Astrophysics Data System (ADS)

    Douissard, P.-A.; Cecilia, A.; Rochet, X.; Chapel, X.; Martin, T.; van de Kamp, T.; Helfen, L.; Baumbach, T.; Luquot, L.; Xiao, X.; Meinhardt, J.; Rack, A.

    2012-09-01

    Indirect X-ray detectors are of outstanding importance for high resolution imaging, especially at synchrotron light sources: while consisting mostly of components which are widely commercially available, they allow for a broad range of applications in terms of the X-ray energy employed, radiation dose to the detector, data acquisition rate and spatial resolving power. Frequently, an indirect detector consists of a thin-film single crystal scintillator and a high-resolution visible light microscope as well as a camera. In this article, a novel modular-based indirect design is introduced, which offers several advantages: it can be adapted for different cameras, i.e. different sensor sizes, and can be trimmed to work either with (quasi-)monochromatic illumination and the correspondingly lower absorbed dose or with intense white beam irradiation. In addition, it allows for a motorized quick exchange between different magnifications / spatial resolutions. Developed within the European project SCINTAX, it is now commercially available. The characteristics of the detector in its different configurations (i.e. for low dose or for high dose irradiation) as measured within the SCINTAX project will be outlined. Together with selected applications from materials research, non-destructive evaluation and life sciences they underline the potential of this design to make high resolution X-ray imaging widely available.

  14. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  15. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  16. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  17. High-sensitivity x-ray mask damage studies employing holographic gratings and phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Hansen, Matthew E.; Cerrina, Franco

    1994-05-01

    A high-sensitivity holographic and interferometric metrology developed at the Center for X- ray Lithography (CXrL) has been employed to investigate in-plane distortions (IPD) produced in x-ray mask materials. This metrology has been applied to characterize damage to x-ray mask materials exposed to synchrotron radiation. X-ray mask damage and accelerated mask damage studies on silicon nitride and silicon carbide were conducted on the Aladdin ES-1 and ES-2 beamline exposure stations, respectively. Accumulated in-plane distortions due to x-ray irradiation were extracted from the incremental interferometric phase maps to yield IPD vs. dose curves for silicon nitride mask blanks. Silicon carbide mask blanks were subjected to accelerated mask damage in the high flux 2 mm X 2 mm beam of the ES-2 exposure station. An accelerated damage study of silicon carbide has shown no in-plane distortion for an accumulated dose of 800 kJ/cm2 with a measurement sensitivity of less than 5 nm.

  18. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  19. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-10-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F1 egg hatching was only 66 Gy. ED99 value for inhibition of hatching of F1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae.

  20. Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System

    NASA Astrophysics Data System (ADS)

    Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.

    2016-02-01

    The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.

  1. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  2. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  3. Flash x-ray radiography of argon jets in ambient air

    NASA Astrophysics Data System (ADS)

    Geiswiller, J.; Robert, E.; Huré, L.; Cachoncinlle, C.; Viladrosa, R.; Pouvesle, J. M.

    1998-09-01

    This paper describes the development and application of a soft x-ray flash radiography technique. A very compact soft x-ray flash source has been specially designed for these studies. The table-top x-ray source developed in this work emits strong doses, up to one roentgen at the output window, of x-ray photons, with most of them in the characteristic lines of the anode material (photon energy in the energy range 5-10 keV), in pulse of 20 ns FWHM with an x-ray emission zone smaller than 0957-0233/9/9/024/img1. All these characteristics make this source attractive for the x-ray radiography of high-speed phenomena, down to ten nanoseconds duration and/or for the media presenting weak absorption for the harder x-ray photons emitted by more conventional flash x-ray systems. Argon streams in ambient air were chosen as a typical case to enlighten the potentialities of this method. Single-shot radiographs of such an argon jet through rectangular nozzles were obtained. No attempt of quantitative measurement of local density in the argon stream has yet been performed, only the qualitative structure of the jet has been investigated. Nevertheless, these preliminary results enable us to state that the diagnostics of gaseous or plasma media, even at rather low pressures, can proceed using soft x-ray flash radiography.

  4. A novel x-ray imaging system and its imaging performance

    NASA Astrophysics Data System (ADS)

    Yu, Chunyu; Chang, Benkang; Wang, Shiyun; Zhang, Junju; Yao, Xiao

    2006-09-01

    Since x-ray was discovered and applied to the imaging technology, the x-ray imaging techniques have experienced several improvements, from film-screen, x-ray image intensifier, CR to DR. To store and transmit the image information conveniently, the digital imaging is necessary for the imaging techniques in medicine and biology. Usually as the intensifying screen technique as for concerned, to get the digital image signals, the CCD was lens coupled directly to the screen, but which suffers from a loss of x-ray signal and resulted in the poor x-ray image perfonnance. Therefore, to improve the image performance, we joined the brightness intensifier, which, was named the Low Light Level (LLL) image intensifier in military affairs, between the intensifying screen and the CCD and designed the novel x-ray imaging system. This design method improved the image performance of the whole system thus decreased the x-ray dose. Comparison between two systems with and without the brightness intensifier was given in detail in this paper. Moreover, the main noise source of the image produced by the novel system was analyzed, and in this paper, the original images produced by the novel x-ray imaging system and the processed images were given respectively. It was clear that the image performance was satisfied and the x-ray imaging system can be used in security checking and many other nondestructive checking fields.

  5. X-ray imaging performance of scintillator-filled silicon pore arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd

    2008-03-15

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depthsmore » of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore

  6. Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elshahat, Bassem; Gill, Hardeep Singh; Kumar, Jayant

    2015-07-15

    Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60–150 kVp. Methods: Experiments were designed to optimize the detector’s x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C{sub 61} butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode. Themore » authors measured the radiation-induced electric current at zero bias voltage in all fabricated OPV cells. Results: The net OPV current as a function of beam potential (kVp) was proportional to kVp{sup −0.5} when normalized to x-ray tube output, which varies with kVp. Of the tested configurations, the best combination of parameters was 270 nm active layer thicknesses with 0.7 cm{sup 2} electrode area, which provided the highest signal per electrode area. For this cell, the measured current ranged from approximately 0.7 to 2.4 nA/cm{sup 2} for 60–150 kVp, corresponding to about 0.09 nA–0.06 nA/mGy air kerma, respectively. When compared to commercial amorphous silicon thin film photovoltaic cells irradiated under the same conditions, this represents 2.5 times greater sensitivity. An additional 40% signal enhancement was observed when a 1 mm layer of plastic scintillator was attached to the cells’ beam-facing side. Conclusions: Since both OPVs can be produced as flexible devices and they do not require external bias voltage, they open the possibility for use as thin film in vivo detectors for dose monitoring in diagnostic x-ray imaging.« less

  7. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  8. Air kerma calibration factors and chamber correction values for PTW soft x-ray, NACP and Roos ionization chambers at very low x-ray energies.

    PubMed

    Ipe, N E; Rosser, K E; Moretti, C J; Manning, J W; Palmer, M J

    2001-08-01

    This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water using very low-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB 1996 code of practice for the UK secondary standard ionization chambers (PTW type M23342 and PTW type M23344), the Roos (PTW type 34001) and NACP electron chambers are derived. The responses in air of the small and large soft x-ray chambers (PTW type M23342 and PTW type M23344) and the NACP and Roos electron ionization chambers were compared. Besides the soft x-ray chambers, the NACP and Roos chambers can be used for very low-energy x-ray dosimetry provided that they are used in the restricted energy range for which their response does not change by more than 5%. The chamber correction factor was found by comparing the absorbed dose to water determined using the dosimetry protocol recommended for low-energy x-rays with that for very low-energy x-rays. The overlap energy range was extended using data from Grosswendt and Knight. Chamber correction factors given in this paper are chamber dependent, varying from 1.037 to 1.066 for a PTW type M23344 chamber, which is very different from a value of unity given in the IPEMB code. However, the values of k(ch) determined in this paper agree with those given in the DIN standard within experimental uncertainty. The authors recommend that the very low-energy section of the IPEMB code is amended to include the most up-to-date values of k(ch).

  9. Hard X-ray dosimetry of a plasma focus suitable for industrial radiography

    NASA Astrophysics Data System (ADS)

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.

    2018-04-01

    Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.

  10. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu; Konstantinidis, Anastasios C.

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterizedmore » and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT

  11. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  12. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  13. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  14. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  15. Energy determination in industrial X-ray processing facilities

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.

    2005-12-01

    In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.

  16. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  17. SU-F-J-39: Dose Reduction Strategy Using Attenuation-Based Tube Current Modulation Method in CBCT for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, K; Lee, H; Kim, C

    2016-06-15

    Purpose: To reduce radiation dose to the patients, tube current modulation (TCM) method has been actively used in diagnostic CT systems. However, TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate whether the use of TCM method is desirable in kV-CBCT system for IGRT. We have developed an attenuation-based tube current modulation (a-TCM) method using the prior knowledge of treatment CT image of a patient. Methods: Patients go through a diagnostic CT scan for RT planning; therefore, using this prior information of CT images, one canmore » estimate the total attenuation of an x-ray through the patient body in a CBCT setting for radiation therapy. We performed a numerical study incorporating major factors into account such as polychromatic x-ray, scatter, noise, and bow-tie filter to demonstrate that a-TCM method can produce equivalent quality of images at reduced imaging radiation doses. Using the CT projector program, 680 projection images of the pediatric XCAT phantom were obtained both in conventional scanning condition, i.e., without modulating the tube current, and in the proposed a-TCM scanning condition. FDK reconstruction algorithm was used for image reconstruction, and the organ dose due to imaging radiation has been calculated in both cases and compared using GATE/Geant4 simulation toolkit. Results: Reconstructed CT images in the a-TCM method showed similar SSIM values and noise properties to the reference images acquired by the conventional CBCT. In addition, reduction of organ doses ranged from 12% to 27%. Conclusion: We have successfully demonstrated the feasibility and dosimetric merit of the a-TCM method for kV-CBCT, and envision that it can be a useful option of CBCT scanning that provides patient dose reduction without degrading image quality.« less

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  19. Low-Dose-Rate Computed Tomography System Utilizing 25 mm/s-Scan Silicon X-ray Diode and Its Application to Iodine K-Edge Imaging Using Filtered Bremsstrahlung Photons

    NASA Astrophysics Data System (ADS)

    Matsushita, Ryo; Sato, Eiichi; Yanbe, Yutaka; Chiba, Hiraku; Maeda, Tomoko; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2013-03-01

    A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of sub-mA was developed using a silicon X-ray diode (Si-XD). The Si-XD is a high-sensitivity Si photodiode (PD) selected for detecting X-ray photons, and the X-ray sensitivity of the Si-XD was twice as high as that of Si-PD cerium-doped yttrium aluminum perovskite [YAP(Ce)]. X-ray photons are directly detected using the Si-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with a maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to the differentiator with a time constant of 500 ns to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 0.55 mA and 60 kV, respectively, and iodine K-edge CT was carried out using filtered bremsstrahlung X-ray spectra with a peak energy of 38 keV.

  20. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum

  1. Amorphous In–Ga–Zn–O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu

    detector entrance exposure per projection can be reduced from 1 to 0.3 mR without a significant reduction of DQE. The signal-to-noise ratio of the a-IGZO APS imager under 0.3 mR x-ray exposure is comparable to that of a-Si:H passive pixel sensor imager under 1 mR, indicating good image quality under low dose. A threefold reduction of current tomosynthesis dose is expected if proposed technology is combined with an advanced DBT image reconstruction method. Conclusions: The proposed a-IGZO APS x-ray imager with a pixel pitch <75 μm is capable to achieve a high spatial frequency (>6.67 lp/mm) and a low dose (<0.4 mGy) in next generation DBT systems.« less

  2. In situ X-ray diffraction study of reduction processes of Fe{sub 3}O{sub 4}- and Fe{sub 1-x}O-based ammonia-synthesis catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Yifan, E-mail: zhengyifan@zjut.edu.c; Catalysis Institute, Zhejiang University of Technology, Hangzhou 310014; Liu Huazhang

    2009-09-15

    The temperature-programmed reduction process of two types of industrial ammonia-synthesis catalysts, A110 and ZA-5, which are, respectively, based on Fe{sub 3}O{sub 4} and Fe{sub 1-x}O precursors, were studied by in situ X-ray power diffraction (XRD). It has been found that the ZA-5 has lower reduction temperature and faster reduction rate, and its active phase alpha-Fe possesses a higher value of lattice microstrain than A110. The simulation based on Rietveld refinement has also shown that the shape of alpha-Fe grain of ZA-5 has a mixed shape of cube and sphere with more exposing (111) and (211) planes, while that of A110more » looks like a concave cube with more exposing (110) planes. Based on the results obtained, a growth model of alpha-Fe during the reduction of Fe{sub 3}O{sub 4}- and Fe{sub 1-x}O-based ammonia-synthesis catalysts is proposed, and the origins for the activity difference has been also discussed. - Graphical Abstract: A proposed growth model of active phase alpha-Fe during reduction. Due to H{sub 2} diffusing easily into the pores, reduction starts on outside and inside surface simultaneously to form 'microcrystalline film', and the particles shrink during reduction which results in breaking of the aggregated oxide particle.« less

  3. Technology Requirements For a Square-Meter, Arcsecond-Resolution Telescope for X-Rays: The SMART-X Mission

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay; Cotroneo, Vincenzo; Forman, William; Freeman, Mark; McMuldroch, Stuart; Reid, Paul; Tananbaum, Harvey; Vikhlinin, Alexey; hide

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first supermassive black holes. We have envisioned a mission based on adjustable x-ray optics technology, in order to achieve the required reduction of mass to collecting area for the mirrors. We are pursuing technology which effects this adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMARTX will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no more stringent requirements than those which are well understood and proven on the current Chandra X-ray Observatory.

  4. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer.

    PubMed

    Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh

    2018-01-01

    We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.

  5. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  6. SU-F-T-53: Treatment Planning with Inhomogeneity Correction for Intraoperative Radiotherapy Using KV X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Ghaly, M; Souri, S

    Purpose: The current standard in dose calculation for intraoperative radiotherapy (IORT) using the ZEISS Intrabeam 50 kV x-ray system is based on depth dose measurements in water and no heterogeneous tissue effect has been taken into account. We propose an algorithm for pre-treatment planning including inhomogeneity correction based on data of depth dose measurements in various tissue phantoms for kV x-rays. Methods: Direct depth dose measurements were made in air, water, inner bone and cortical bone phantoms for the Intrabeam 50 kV x-rays with a needle applicator. The data were modelled by a function of power law combining exponential withmore » different parameters. Those phantom slabs used in the measurements were scanned to obtain CT numbers. The x-ray beam initiated from the source isocenter is ray-traced through tissues. The corresponding doses will be deposited/assigned at different depths. On the boundary of tissue/organ changes, the x-ray beam will be re-traced in new tissue/organ starting at an equivalent depth with the same dose. In principle, a volumetric dose distribution can be generated if enough directional beams are traced. In practice, a several typical rays traced may be adequate in providing estimates of maximum dose to the organ at risk and minimum dose in the target volume. Results: Depth dose measurements and modeling are shown in Figure 1. The dose versus CT number is shown in Figure 2. A computer program has been written for Kypho-IORT planning using those data. A direct measurement through 2 mm solid water, 2 mm inner bone, and 1 mm solid water yields a dose rate of 7.7 Gy/min. Our calculation shows 8.1±0.4 Gy/min, consistent with the measurement within 5%. Conclusion: The proposed method can be used to more accurately calculate the dose by taking into account the heterogeneous effect. The further validation includes comparison with Monte Carlo simulation.« less

  7. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    PubMed Central

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun

    2014-01-01

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  8. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    PubMed

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 ke

  9. Studying Dust Scattering Halos with Galactic X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  10. Measures for curtailment of iatrogenic exposure. Guide to correct x-ray examinations (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misonoo, K.

    1973-08-01

    Of the coposure dose for humans from various radiation sources, introgenic exposure amounts to 1/2 to twice the natural radiation source. Although the mechanism of induction of malignant tumor by radiation is not clanified, it is evident that it is induced after receiving a dose above 100 rads. However, the presence of a threshold, under which it does not develop, is unknown. Tabulated were ICRP's calculations on the degree of risk of injury and the estimated values of genetic injury due to 1 rad. In order to estimate the harmful effect of exposure in x-ray diagnosis, the dose in themore » critical tissue of the human body and the types and the frequency of radiation examinations are important. The judgment of genetic injury is expressed by the genetically significant dose, which is calculated from the dose in the genital gland received by individuals. The impcrtant criterion for the judgment of physical injury is the mean annual dose per person in the marrow (mean dose in the red marrow). The dose in the genital organ is important as the dose related to the evaluation of the degree of genetic risk. The characteristics of iatrogenic exposure are partial and acute exposure and a high dose rate. Tabulated individually were the frequency of x-ray examinations, the mean dose in the genital organ according urce. The radiation dose during x-ray pelvimetry to 51 patients was estimated, and the cytogenetic response of peripheral lymphocytes was determined in 25 of their newborn babies. The calculations resulted in an average midline fetal dose of 1,035 and 1,860 mrads for the patients receiving 2 projections and more than 2 projections, respectively. There was no evidence of radioinduced chromosomal darnage in the newborn infants following x-ray exposure in utero. (auth)« less

  11. Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair.

    PubMed

    Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu

    2012-03-01

    The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.

  12. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  13. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  14. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  15. Late effects of X-ray treatment of warts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veien, N.K.; Norholm, A.; Hattel, T.

    1982-04-01

    Five to 22 years after warts on hands and feet were treated by X ray, 1122 patients with a total of 3675 warts were re-examined. X-Ray therapy had been given as one dose of 3000 r using 29 kV with a 0.3-mm Al filter; 19% of the warts had been given two treatments. Sequelae were seen in 4.8% of the sites where warts had been given one X-ray treatment and in 12.2% of the sites after two treatments. These side effects include hyperkeratosis in the pressure areas of palms and soles and atrophy primarily in areas with a thin cutis.more » There was no evidence of malignant transformation in any treatment site, and there were no deep-seated side effects such as ostitis or tendinitis.« less

  16. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].

    PubMed

    Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa

    2014-01-01

    Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.

  17. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  18. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  19. X-Ray and near-infrared imaging: similarities, differences and combinations

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.

    2010-02-01

    The integration of x-ray imaging with optical imaging is becoming routine at the pre-clinical level, as both projection and tomography systems are now commercially integrated as packaged systems. Yet, the differences between their capabilities are wide, and there is still perhaps a lack of appreciation about how difference pre-clinical x-ray systems are from clinical x-ray systems. In this survey, the key advantages of each approach, x-ray and optical, are described, and the potential synergies and deficiencies are discussed. In simple terms, the major benefit of optical imaging is in the spectroscopic capabilities, which allow the potential for imaging fluorescent agents in vivo, and the future potential for imaging multiple species at a time with spectral discrimination or spectral fitting of the data. In comparison, multienergy x-ray systems are being realized in clinical use, or automated discrimination of soft versus hard tissues, and the combination of optical imaging with this type of dual-energy x-ray imaging will significantly enhance the capabilities of the hybrid systems. Unfortunately, the power of dual energy imaging is not as possible at the pre-clinical stage, because of the limitations of contrast-resolution and x-ray dose. This is discussed and future human systems outlined.

  20. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  1. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.

    Here, developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced frommore » an X-ray generator, SubPc:C 60, AlPcCl:C 70, and P3HT:PC 61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.28 µGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy -1 cm -2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.« less

  2. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    NASA Astrophysics Data System (ADS)

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.; Nino, Juan C.; Xue, Jiangeng

    2017-12-01

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from an X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.18 μGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.

  3. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    DOE PAGES

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.; ...

    2017-12-14

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from anmore » X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.28 µGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.« less

  4. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  5. Diagnostic x-ray dosimetry using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ioppolo, J. L.; Price, R. I.; Tuchyna, T.; Buckley, C. E.

    2002-05-01

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 × 107) than required for the calculation of dose profiles (1 × 109). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  6. Antero-posterior (AP) pelvis x-ray imaging on a trolley: Impact of trolley design, mattress design and radiographer practice on image quality and radiation dose.

    PubMed

    Tugwell, J R; England, A; Hogg, P

    2017-08-01

    Physical and technical differences exist between imaging on an x-ray tabletop and imaging on a trolley. This study evaluates how trolley imaging impacts image quality and radiation dose for an antero-posterior (AP) pelvis projection whilst subsequently exploring means of optimising this imaging examination. An anthropomorphic pelvis phantom was imaged on a commercially available trolley under various conditions. Variables explored included two mattresses, two image receptor holder positions, three source to image distances (SIDs) and four mAs values. Image quality was evaluated using relative visual grading analysis with the reference image acquired on the x-ray tabletop. Contrast to noise ratio (CNR) was calculated. Effective dose was established using Monte Carlo simulation. Optimisation scores were derived as a figure of merit by dividing effective dose with visual image quality scores. Visual image quality reduced significantly (p < 0.05) whilst effective dose increased significantly (p < 0.05) for images acquired on the trolley using identical acquisition parameters to the reference image. The trolley image with the highest optimisation score was acquired using 130 cm SID, 20 mAs, the standard mattress and platform not elevated. A difference of 12.8 mm was found between the image with the lowest and highest magnification factor (18%). The acquisition parameters used for AP pelvis on the x-ray tabletop are not transferable to trolley imaging and should be modified accordingly to compensate for the differences that exist. Exposure charts should be developed for trolley imaging to ensure optimal image quality at lowest possible dose. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    NASA Astrophysics Data System (ADS)

    Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.

    2014-03-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  8. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  9. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. X-ray examinations of newborns

    NASA Astrophysics Data System (ADS)

    Potrakhov, N. N.; Potrakhov, Y. N.

    2018-02-01

    At the present time, the basis of instrumental diagnostics of atelectasis is lung radiography. In the case of preterm infants, it should be performed immediately after birth, and then regularly throughout the entire nursing period. The purpose of the project, within the framework of which this development is carried out, is the creation of an original domestic digital low-dose technology for X-ray examinations in neonatology, including in non-stationary conditions.

  11. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Yang; Xu, Qiang; Wei, Haotong; Fang, Yanjun; Wang, Qi; Deng, Yehao; Li, Tao; Gruverman, Alexei; Cao, Lei; Huang, Jinsong

    2017-04-01

    The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair-1 cm-2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15-120-fold compared with state-of-the-art X-ray imaging systems.

  12. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  13. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  14. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  15. Fluence thresholds for grazing incidence hard x-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, A.; Ozkan, C.; Sinn, H.

    2015-06-15

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. Wemore » conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.« less

  16. X-ray mosaic nanotomography of large microorganisms.

    PubMed

    Mokso, R; Quaroni, L; Marone, F; Irvine, S; Vila-Comamala, J; Blanke, A; Stampanoni, M

    2012-02-01

    Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. X-ray dose reduction in abdominal computed tomography using advanced iterative reconstruction algorithms.

    PubMed

    Ning, Peigang; Zhu, Shaocheng; Shi, Dapeng; Guo, Ying; Sun, Minghua

    2014-01-01

    This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP), 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs) of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol) were recorded. At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.

  18. X-ray examinations during pregnancy: National Natality Surveys, 1963 and 1980.

    PubMed Central

    Kaczmarek, R G; Moore, R M; Keppel, K G; Placek, P J

    1989-01-01

    Based on 1963 and 1980 National Natality Surveys, the rate of medical x-ray examinations during pregnancy per 100 mothers fell 34.2 percent. A decrease in chest x-ray examinations accounted for almost all of the decline in total x-ray examinations. The reductions were greater for older mothers and those who were not White. While the number of births fell from 4,071,000 in 1963 to 3,612,000 in 1980, the number of pelvimetry examinations actually increased by 45,000. PMID:2909188

  19. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  20. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  1. Radiation dose reduction in parasinus CT by spectral shaping.

    PubMed

    May, Matthias S; Brand, Michael; Lell, Michael M; Sedlmair, Martin; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-02-01

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR eye globe/air did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality.

  2. Food Irradiation Using Electron Beams and X-Rays

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    2003-04-01

    In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The

  3. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  4. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters.

    PubMed

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-12-01

    The objective of this study was to assess and compare the organ and effective doses in the knee area resulting from different commercially available multislice computed tomography devices (MSCT), one cone beam computed tomography device (CBCT) and one conventional X-ray radiography device using MOSFET dosemeters and an anthropomorphic RANDO knee phantom. Measurements of the MSCT devices resulted in effective doses ranging between 27 and 48 µSv. The CBCT measurements resulted in an effective dose of 12.6 µSv. The effective doses attained using the conventional radiography device were 1.8 µSv for lateral and 1.2 µSv for anterior-posterior projections. The effective dose resulting from conventional radiography was considerably lower than those recorded for the CBCT and MSCT devices. The MSCT effective dose results were two to four times higher than those measured on the CBCT device. This study demonstrates that CBCT can be regarded as a potential low-dose 3D imaging technique for knee examinations.

  5. Reprint of 'Evaluation of Scattered Radiation Emitted From X-ray Security Scanners on Occupational Dose to Airport Personnel'

    NASA Astrophysics Data System (ADS)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-11-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.

  6. Dose tracking and dose auditing in a comprehensive computed tomography dose-reduction program.

    PubMed

    Duong, Phuong-Anh; Little, Brent P

    2014-08-01

    Implementation of a comprehensive computed tomography (CT) radiation dose-reduction program is a complex undertaking, requiring an assessment of baseline doses, an understanding of dose-saving techniques, and an ongoing appraisal of results. We describe the role of dose tracking in planning and executing a dose-reduction program and discuss the use of the American College of Radiology CT Dose Index Registry at our institution. We review the basics of dose-related CT scan parameters, the components of the dose report, and the dose-reduction techniques, showing how an understanding of each technique is important in effective auditing of "outlier" doses identified by dose tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Inactivation effect of X-ray treatments on Cronobacter species (Enterobacter sakazakii) in tryptic soy broth, skim milk, low-fat milk and whole-fat milk.

    PubMed

    Mahmoud, B S M

    2009-11-01

    To determine the inactivation effect of X-ray treatments on Cronobacter (E. sakazakii) in tryptic soy broth (TSB), skim milk (0% fat), low-fat milk (1% and 2%) and whole-fat milk (3.5%). X-rays were produced using the RS 2400 generator system (Rad Source Technologies Inc.). Cronobacter (in TSB), inoculated skim milk (0% fat), low-fat milk (1% and 2% fat) and whole-fat milk (3.5% fat) were treated with 0.0, 0.1, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 kGy X-ray doses. Surviving bacteria in the TSB and inoculated milk, before and after treatment, were enumerated using plating method onto trypticase soy agar. Greater than 7.0-log CFU reduction in Cronobacter population was observed with 4.0, 5.0, 6.0, 6.0 and 6.0 kGy X-ray in the TSB, skim milk, 1% fat milk, 2% fat milk and 3.5% fat milk, respectively. Treatment with X-rays significantly (P < 0.05) reduced Cronobacter to less than detectable limits (<1 log CFU ml(-1)) in skim milk at 5.0 kGy and milk with 1% fat content and greater at 6.0 kGy dose levels. The D-value for Cronobacter in TSB was significantly (P < 0.05) lower than those in milk samples. Treatment with X-rays could be an effective and safe alternative technology to control pathogenic bacteria (Cronobacter) in the dairy industry.

  8. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FER Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  9. A comparison of intensity modulated x-ray therapy to intensity modulated proton therapy for the delivery of non-uniform dose distributions

    NASA Astrophysics Data System (ADS)

    Flynn, Ryan

    2007-12-01

    The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of

  10. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  11. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  12. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT.

    PubMed

    Messerli, Michael; Ottilinger, Thorsten; Warschkow, René; Leschka, Sebastian; Alkadhi, Hatem; Wildermuth, Simon; Bauer, Ralf W

    2017-06-01

    To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and

  13. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  14. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  15. Feasibility study of the neutron dose for real-time image-guided proton therapy: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kim, Jin Sung; Shin, Jung Suk; Kim, Daehyun; Shin, Eunhyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-07-01

    Two full rotating gantries with different nozzles (multipurpose nozzle with MLC, scanning dedicated nozzle) for a conventional cyclotron system are installed and being commissioned for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to use Monte Carlo simulation to investigate the neutron dose equivalent per therapeutic dose, H/D, for X-ray imaging equipment under various treatment conditions. At first, we investigated the H/D for various modifications of the beamline devices (scattering, scanning, multi-leaf collimator, aperture, compensator) at the isocenter and at 20, 40 and 60 cm distances from the isocenter, and we compared our results with those of other research groups. Next, we investigated the neutron dose at the X-ray equipment used for real-time imaging under various treatment conditions. Our investigation showed doses of 0.07 ~ 0.19 mSv/Gy at the X-ray imaging equipment, depending on the treatment option and interestingly, the 50% neutron dose reduction was observed due to multileaf collimator during proton scanning treatment with the multipurpose nozzle. In future studies, we plan to measure the neutron dose experimentally and to validate the simulation data for X-ray imaging equipment for use as an additional neutron dose reduction method.

  16. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  17. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  18. Radiation protection in dental X-ray surgeries--still rooms for improvement.

    PubMed

    Hart, G; Dugdale, M

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  19. Bismuth Sulfide Nanoflowers for Detection of X-rays in the Mammographic Energy Range

    PubMed Central

    Nambiar, Shruti; Osei, Ernest K.; Yeow, John T. W.

    2015-01-01

    The increased use of diagnostic x-rays, especially in the field of medical radiology, has necessitated a significant demand for high resolution, real-time radiation detectors. In this regard, the photoresponse of bismuth sulfide (Bi2S3), an n-type semiconducting metal chalcogenide, to low energy x-rays has been investigated in this study. In recent years, several types of nanomaterials of Bi2S3 have been widely studied for optoelectronic and thermoelectric applications. However, photoresponse of Bi2S3 nanomaterials for dosimetric applications has not yet been reported. The photosensitivity of Bi2S3 with nanoscale “flower-like” structures was characterized under x-ray tube-potentials typically used in mammographic procedures. Both dark current and photocurrent were measured under varying x-ray doses, field sizes, and bias voltages for each of the tube potentials – 20, 23, 26 and 30 kV. Results show that the Bi2S3 nanoflowers instantaneously responded to even minor changes in the dose delivered. The photoresponse was found to be relatively high (few nA) at bias voltage as low as +1 V, and fairly repeatable for both short and long exposures to mammographic x-rays with minimal or no loss in sensitivity. The overall dose-sensitivity of the Bi2S3 nanoflowers was found to be similar to that of a micro-ionization chamber. PMID:25801531

  20. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  1. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.; Luo, J.; Wang, A.

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  2. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE PAGES

    Chen, A.; Luo, J.; Wang, A.; ...

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  3. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  4. Advances in X-ray Mapping for Characterization of Microstructures: Silicon Drift Detectors, Microcalorimeters, X-ray Spectrum Imaging, and Data Mining

    NASA Astrophysics Data System (ADS)

    Newbury, D. E.

    2006-05-01

    X-ray mapping, performed with the electron probe microanalyzer (EPMA) or scanning electron microscope/energy dispersive x-ray spectrometer (SEM/EDS), is one of the most popular modes of studying chemically heterogeneous microstructures [1]. Despite the maturity of the technique, now in its 50th anniversary year [2], recent remarkable advances in instrumentation and software will provide microanalysts with an even more effective and efficient microstructural characterization tool: (1) Increased x-ray mapping speed: The silicon drift detector (SDD) [3] is a new form of the familiar silicon EDS that uses the same detection physics but with a radically different design that outperforms the classic Si-EDS in nearly every way [4]: (1) the SDD operates requires only Peltier cooling to -20 oC to - 50 oC; (2) for a given detector active area, the SDD has superior resolution; (3) the SDD achieves the same resolution but with a peaking time that is 5 to 8 times faster; and (4) maximum output count rate (OCR) ranges from about 14 kHz at optimum resolution (134 eV at MnKa for a 50 mm2 area) to 500 kHz (217 eV). This OCR performance enables rapid x-ray mapping collection in the x-ray spectrum image (XSI) mode, in which a complete EDS spectrum (2048 10eV-channels) is captured at each pixel (e.g., 10 ms dwell with 1.3 ms overhead per pixel, or 185 seconds for a 128x128 pixel map). XSI collection captures all possible spectral information within the limits imposed by the spectrometer and the primary beam dose. (2) EDS with WDS resolution: The microcalorimeter EDS measures the temperature rise when a single x-ray photon is absorbed in a metal target [5]. Demonstrated resolution is 4.5 eV at Mn Ka for a broad energy range (0.2 - 10 keV) spectrometer and 2 eV (AlKa) for a low photon energy range (0.2 - 2.0 keV) version. The low energy spectrometer is sensitive to peak shape and position changes associated with chemical bonding, opening the possibility of EDS chemical-state mapping. (3

  5. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  6. SNR-weighted sinogram smoothing with improved noise-resolution properties for low-dose x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Tianfang; Wang, Jing; Wen, Junhai; Li, Xiang; Lu, Hongbing; Hsieh, Jiang; Liang, Zhengrong

    2004-05-01

    To treat the noise in low-dose x-ray CT projection data more accurately, analysis of the noise properties of the data and development of a corresponding efficient noise treatment method are two major problems to be addressed. In order to obtain an accurate and realistic model to describe the x-ray CT system, we acquired thousands of repeated measurements on different phantoms at several fixed scan angles by a GE high-speed multi-slice spiral CT scanner. The collected data were calibrated and log-transformed by the sophisticated system software, which converts the detected photon energy into sinogram data that satisfies the Radon transform. From the analysis of these experimental data, a nonlinear relation between mean and variance for each datum of the sinogram was obtained. In this paper, we integrated this nonlinear relation into a penalized likelihood statistical framework for a SNR (signal-to-noise ratio) adaptive smoothing of noise in the sinogram. After the proposed preprocessing, the sinograms were reconstructed with unapodized FBP (filtered backprojection) method. The resulted images were evaluated quantitatively, in terms of noise uniformity and noise-resolution tradeoff, with comparison to other noise smoothing methods such as Hanning filter and Butterworth filter at different cutoff frequencies. Significant improvement on noise and resolution tradeoff and noise property was demonstrated.

  7. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  8. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  9. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  10. Differences in effective dose and energy imparted estimation from PA AP, RLAT LLAT projections in pediatric full spine x-ray examination using the Monte Carlo technique

    NASA Astrophysics Data System (ADS)

    Gialousis, George I.; Yakoumakis, Emmanouel N.; Papadopoulou, Despina I.; Makri, Triantafillia K.; Yakoumakis, Nikolaos E.; Dimitriou, Panayiotis A.; Georgiou, Evangelos K.

    2006-01-01

    Effective dose (E) and energy imparted (ɛ) can be used to quantify the risk of radiation-induced carcinogenesis or hereditary effects arising from radiographic exposures. When the children are examined or treated for idiopathic scoliokyphosis it is important to estimate E and ɛ in the patients due to full spine x-ray examination. The aim of this study is to calculate E and ɛ in the case of children of 5 and 10 years old who undergo full spine x-ray examination using the Monte Carlo approach. Dose area product (DAP) and entrance surface dose (ESD) were also used. AP, PA, RLAT, LLAT projections are simulated by using appropriate energy spectra. According to the results, the effective dose (E) and the energy imparted (ɛ) are smaller at PA projection than AP, although for spine the opposite occurs, in agreement with previous studies. On the other hand, E and ɛ do not differ statistically among RLAT and LLAT projections. Moreover, the role of lung and bone as tissue inhomogeneities in ɛ is shown to be very important.

  11. X-ray microbeam stand-alone facility for cultured cells irradiation

    NASA Astrophysics Data System (ADS)

    Bożek, Sebastian; Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M.

    2017-03-01

    The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.

  12. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  13. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  14. Effective dose reduction in spine radiographic imaging by choosing the less radiation-sensitive side of the body.

    PubMed

    Ben-Shlomo, Avi; Bartal, Gabriel; Mosseri, Morris; Avraham, Boaz; Leitner, Yosef; Shabat, Shay

    2016-04-01

    X-ray absorption is highest in the organs and tissues located closest to the radiation source. The photon flux that crosses the body decreases from the entry surface toward the image receptor. The internal organs absorb x-rays and shield each other during irradiation. Therefore, changing the x-ray projection angle relative to the patient for specific spine procedures changes the radiation dose that each organ receives. Every organ has different radiation sensitivity, so irradiation from different sides of the body changes the biological influence and radiation risk potential on the total body, that is the effective dose (ED). The study aimed to determine the less radiation-sensitive sides of the body during lateral and anterior-posterior (AP) or posterior anterior (PA) directions. The study used exposure of patient phantoms and Monte Carlo simulation of the effective doses. Calculations for adults and 10-year-old children were included because the pediatric population has a greater lifetime radiation risk than adults. Pediatric and adult tissue and organ doses and ED from cervical, thoracic, and lumbar x-ray spine examinations were performed from different projections. Standard mathematical phantoms for adults and 10-year-old children, using PCXMC 2.0 software based on Monte Carlo simulations, were used to calculate pediatric and adult tissue and organ doses and ED. The study was not funded. The authors have no conflicts of interest to declare. Spine x-ray exposure from various right (RT) LAT projection angles was associated with lower ED compared with the same left (LT) LAT projections (up to 28% and 27% less for children aged 10 and adults, respectively). The PA spine projections showed up to 64% lower ED for children aged 10 and 65% for adults than AP projections. The AP projection at the thoracic spine causes an excess breast dose of 543.3% and 597.0% for children aged 10 and adults, respectively. Radiation ED in spine procedures can be significantly reduced by

  15. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  16. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  17. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  18. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study.

    PubMed

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-01

    The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  19. Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.

    2018-04-01

    The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.

  20. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  1. Image quality evaluation and patient dose assessment of medical fluoroscopic X-ray systems: a national study.

    PubMed

    Economides, S; Hourdakis, C J; Kalivas, N; Kalathaki, M; Simantirakis, G; Tritakis, P; Manousaridis, G; Vogiatzi, S; Kipouros, P; Boziari, A; Kamenopoulou, V

    2008-01-01

    This study presents the results from a survey conducted by the Greek Atomic Energy Commission (GAEC), during the period 1998-2003, in 530 public and private owned fluoroscopic X-ray systems in Greece. Certain operational parameters for conventional and remote control systems were assessed, according to a quality control protocol developed by GAEC on the basis of the current literature. Public (91.5%) and private (81.5%) owned fluoroscopic units exhibit high-contrast resolution values over 1 lp mm(-1). Moreover, 88.5 and 87.1% of the fluoroscopic units installed in the public and private sector, respectively, present Maximum Patient Entrance Kerma Rate values lower than 100 mGy min(-1). Additionally, 68.3% of the units assessed were found to perform within the acceptance limits. Finally, the third quartile of the Entrance Surface Dose Rate distribution was estimated according to the Dose Reference Level definition and found equal to 35 mGy min(-1).

  2. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  3. X-Ray modeling of η Carinae & WR 140 from SPH simulations

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Corcoran, Michael F.; Okazaki, Atsuo T.; Madura, Thomas I.; Owocki, Stanley P.

    2011-07-01

    The colliding wind binary (CWB) systems η Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we apply 3D hydrodynamic simulations of the wind-wind collision using smoothed particle hydrodynamics (SPH). We find adiabatic simulations that account for the absorption of X-rays from an assumed point source of X-ray emission at the apex of the wind-collision shock cone can closely match the RXTE light curves of both η Car and WR140. This point-source model can also explain the early recovery of η Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of η Car. Our more recent models account for the extended emission and absorption along the full wind-wind interaction shock front. For WR140, the computed X-ray light curves again match the RXTE observations quite well. But for η Car, a hot, post-periastron bubble leads to an emission level that does not match the extended X-ray minimum observed by RXTE. Initial results from incorporating radiative cooling and radiative forces via an anti-gravity approach into the SPH code are also discussed.

  4. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  5. Dose distribution of a 125 keV mean energy microplanar x-ray beam for basic studies on microbeam radiotherapy.

    PubMed

    Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao; Umetani, Keiji; Imai, Yasuhiko; Uesugi, Kentaro; Yagi, Naoto

    2008-07-01

    A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 microm high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 microm-thick polyimide sheets that were separated by 175 microm-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of the dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.

  6. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  7. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  8. Accelerated radiation damage testing of x-ray mask membrane materials

    NASA Astrophysics Data System (ADS)

    Seese, Philip A.; Cummings, Kevin D.; Resnick, Douglas J.; Yanof, Arnold W.; Johnson, William A.; Wells, Gregory M.; Wallace, John P.

    1993-06-01

    An accelerated test method and resulting metrology data are presented to show the effects of x- ray radiation on various x-ray mask membrane materials. A focused x-ray beam effectively reduces the radiation time to 1/5 of that required by normal exposure beam flux. Absolute image displacement results determined by this method indicate imperceptible movement for boron-doped silicon and silicon carbide membranes at a total incident dose of 500 KJ/cm2, while image displacement for diamond is 50 nm at 150 KJ/cm2 and silicon nitride is 70 nm at 36 KJ/cm2. Studies of temperature rise during the radiation test and effects of the high flux radiation, i.e., reciprocity tests, demonstrate the validity of this test method.

  9. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  10. Influence of solar flare X-rays on the habitability on the Mars

    NASA Astrophysics Data System (ADS)

    Jain, Rajmal; Awasthi, Arun K.; Tripathi, Sharad C.; Bhatt, Nipa J.; Khan, Parvaiz A.

    2012-08-01

    We probe the lethality of X-rays from solar flares to organisms on Mars based on the observations of 10 solar flares. We, firstly, estimate the doses produced by the strong flares observed by the RHESSI and GOES missions during the descending phase of sunspot cycle 23. Next, in order to realize the dependence of dose on flux and steepness of spectra, we model the incident spectra over a wide range of spectral index to estimate dose values and compare them with the observed doses. We calculate the distribution of surficial spectra visible to organisms on the martian surface by employing attenuation of X-rays due to CO2 column densities distribution over the South Pole. The surficial flux distribution after folding with the opacity of water enables us to estimate the dose distribution over the South Pole. The dose measured from the surficial spectrum produced by the observed 10 flares corresponding to the latitudes 50-60°, 60-70°, 70-80° and 80-90°S varies in the range of 6.39 × 10-9-1.80 × 10-6; 4.89 × 10-10-5.21 × 10-8; 5.10 × 10-11-5.20 × 10-9 and 4.42 × 10-10-4.89 × 10-12 gray (1 gray = 104 erg/g) respectively. Comparing the measured as well as the modeled doses with those proposed to be lethal for various organisms by Smith and Scalo (Smith, D.S., Scalo, J. [2007]. Planet. Space Sci. 55, 517-527); we report that the habitability of life on the South Pole remains unaffected even by the strongest solar flare occurred during descending phase of solar cycle 23. Further, the monthly integrated energy released by the solar flares in the most productive month viz. October 2003 and January 2005 from the GOES soft X-ray observations is estimated to be 8.43 and 3.32 × 1032 ergs respectively, which is almost equal in order to the typical energy released by a single strong X-class flare. Therefore, we propose the life near the South Pole region on the Mars remain uninfluenced by X-ray emission even during monster phenomena of energy release on the Sun and

  11. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase.

    PubMed

    Daughtry, Kelly D; Xiao, Youli; Stoner-Ma, Deborah; Cho, Eunsun; Orville, Allen M; Liu, Pinghua; Allen, Karen N

    2012-02-08

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  12. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  13. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    PubMed

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  14. Evaluating Galactic Cosmic Ray Environment Models Using RaD-X Flight Data

    NASA Technical Reports Server (NTRS)

    Norman, R. B.; Mertens, C. J.; Slaba, T. C.

    2016-01-01

    Galactic cosmic rays enter Earth's atmosphere after interacting with the geomagnetic field. The primary galactic cosmic rays spectrum is fundamentally changed as it interacts with Earth's atmosphere through nuclear and atomic interactions. At points deeper in the atmosphere, such as at airline altitudes, the radiation environment is a combination of the primary galactic cosmic rays and the secondary particles produced through nuclear interactions. The RaD-X balloon experiment measured the atmospheric radiation environment above 20 km during 2 days in September 2015. These experimental measurements were used to validate and quantify uncertainty in physics-based models used to calculate exposure levels for commercial aviation. In this paper, the Badhwar-O'Neill 2014, the International Organization for Standardization 15390, and the German Aerospace Company galactic cosmic ray environment models are used as input into the same radiation transport code to predict and compare dosimetric quantities to RaD-X measurements. In general, the various model results match the measured tissue equivalent dose well, with results generated by the German Aerospace Center galactic cosmic ray environment model providing the best comparison. For dose equivalent and dose measured in silicon, however, the models were compared less favorably to the measurements.

  15. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  16. Aplanatic Three-Mirror Objective for High-Magnification Soft X-Ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, M.; Jinno, T.; Yanagihara, M.

    2011-09-09

    An innovative solution for high-magnification microscopy, based on attaching afocal optics for focal length reduction, is proposed. The solution, consisting of three spherical mirrors, allows one to enhance a magnification of a laboratory based soft x-ray microscope over 1000x, where movies with diffraction-limited resolution can be observed with an x-ray CCD. The design example, having a numerical aperture of 0.25, was successfully demonstrated both a high magnification and a large field of view.

  17. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  18. A case for ZnO nanowire field emitter arrays in advanced x-ray source applications

    NASA Astrophysics Data System (ADS)

    Robinson, Vance S.; Bergkvist, Magnus; Chen, Daokun; Chen, Jun; Huang, Mengbing

    2016-09-01

    Reviewing current efforts in X-ray source miniaturization reveals a broad spectrum of applications: Portable and/or remote nondestructive evaluation, high throughput protein crystallography, invasive radiotherapy, monitoring fluid flow and particulate generation in situ, and portable radiography devices for battle-front or large scale disaster triage scenarios. For the most part, all of these applications are being addressed with a top-down approach aimed at improving portability, weight and size. That is, the existing system or a critical sub-component is shrunk in some manner in order to miniaturize the overall package. In parallel to top-down x-ray source miniaturization, more recent efforts leverage field emission and semiconductor device fabrication techniques to achieve small scale x-ray sources via a bottom-up approach where phenomena effective at a micro/nanoscale are coordinated for macro-scale effect. The bottom-up approach holds potential to address all the applications previously mentioned but its entitlement extends into new applications with much more ground-breaking potential. One such bottom-up application is the distributed x-ray source platform. In the medical space, using an array of microscale x-ray sources instead of a single source promises significant reductions in patient dose as well as smaller feature detectability and fewer image artifacts. Cold cathode field emitters are ideal for this application because they can be gated electrostatically or via photonic excitation, they do not generate excessive heat like other common electron emitters, they have higher brightness and they are relatively compact. This document describes how ZnO nanowire field emitter arrays are well suited for distributed x-ray source applications because they hold promise in each of the following critical areas: emission stability, simple scalable fabrication, performance, radiation resistance and photonic coupling.

  19. Cone beam x-ray luminescence computed tomography: a feasibility study.

    PubMed

    Chen, Dongmei; Zhu, Shouping; Yi, Huangjian; Zhang, Xianghan; Chen, Duofang; Liang, Jimin; Tian, Jie

    2013-03-01

    The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then

  20. X-Ray Exam: Hip

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What ... Have Questions Print What It Is A hip X-ray is a safe and painless test that ...